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Abstract:We study Fubini instantons of a self-gravitating scalar field. The Fubini instan-

ton describes the decay of a vacuum state under tunneling instead of rolling in the presence

of a tachyonic potential. The tunneling occurs from the maximum of the potential, which

is a vacuum state, to any arbitrary state, belonging to the tunneling without any barrier.

We consider two different types of the tachyonic potential. One has only a quartic term.

The other has both the quartic and quadratic terms. We show that, there exist several

kinds of new O(4)-symmetric Fubini instanton solution, which are possible only if gravity

is taken into account. One type of them has the structure with Z2 symmetry. This type of

the solution is possible only in the de Sitter background. We discuss on the interpretation

of the solutions with Z2 symmetry.
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1 Introduction

The very first picture of an inflationary multiverse scenario was proposed in ref. [1], in

which it would seem that the author wanted to suggest a universe without the cosmolog-

ical singularity problem using an interesting feature of self-reproducting or regenerating

exponential expansion of the universe. A major development in this scenario was triggered

by the discovery of the eternal inflationary scenario [2–6] and a paradigm for string theory

landscape [7, 8]. The eternal inflation is related to the expanding false vacuum solution

with a positive cosmological constant, which in turn means that the inflation is eternal

into the future. If the theory has multiple minima then the false vacuum state decays into

the true vacuum state, i.e. the phase transition proceeded via the nucleation of a vacuum

bubble. In this scenario the universe is situated within some bubble called a pocket uni-

verse [5] having a certain value of the cosmological constant and the whole universes are

referred to as multiverse. The description of self-reproduction including tunneling process

and random walk was combined into a scenario called recycling universe [9]. These scenar-

ios seem to provide an escape from the question of the initial conditions of the universe,

i.e. it seems to be eternal into the past. Unfortunately, inflationary spacetimes cannot

be made complete in the past direction [10], even though the universe is eternal into the

future. There are still interesting arguments on the beginning of the universe [11–13]. The

string theory landscape is a setting that involves a huge number of different metastable

and stable vacua [14, 15], originated from different choices of Calabi-Yau manifolds and

generalized magnetic fluxes. The huge number of different vacua can be approximated by

the potential of a scalar field. The important thing is the fact that, once the de Sitter vac-

uum can exist, the inflationary expansion is eternal into the future and has the possibility

of self-reproduction.
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On the other hand, there are theories of gauged d = 4, N = 8 supergravity having

de Sitter(dS) solution, in which all SUSYs are spontaneously broken. It is well known

that the dS solution corresponds to a M/sting theory solution with a non-compact 7- or

6-dimensional internal space, in which a small value of the cosmological constant stems

from the 4-form flux. The simplest representative of these kind of theories has a tachyonic

potential with the dS maxima [16–19]. The potential in the vicinity of the maximum

reduces to a form having a quadratic term, that is not metastable but unstable. However,

according to some authors, the time for collapse giving rise to the tachyonic potential can

be much greater than the age of the universe for anthropic reasoning. If the curvature

radius of the potential in the vicinity of the maximum is greater than that used in the

above theory, then that will be all together different story. The supergravity analogue of

the tachyonic potential could be constructed also by using an exact supergravity solution

representing the Dp-D̄p system [20].

From the above scenarios, the study of the possibility of the tunneling process for

the potential with stable and metastable vacua, or even tachyonic behavior has acquired

renewed interest. In the present paper, we will study the tunneling process under a sim-

ple tachyonic potential governed by a quartic term both without the quadratic term and

with the term as a toy model. To obtain the general solution including the effect of the

backreaction, we solve the coupled equations for the gravity and the scalar field simulta-

neously. Although the model has a tachyonic potential, it might still be an useful example

to show how the tunneling process occurs in various shapes of the potential provided by

the above scenarios.

A quantum particle can tunnel through a finite potential barrier via the so-called

barrier penetration. This process can be described by the Euclidean solution obeying ap-

propriate boundary conditions. There exist two kinds of Euclidean solutions describing

quantum tunneling phenomena. One corresponds to an instanton solution representing a

stable pseudoparticle configuration characterized by the existence of a nontrivial topolog-

ical charge. It does not change even if we continuously deform the field, as long as the

boundary conditions remain the same. The instanton solution corresponds to the min-

imum of the Euclidean action to pass from the initial to final state [21]. The solution,

in case of a double well potential, describes a general shift in the ground state energy of

the classical vacuum due to the presence of an additional potential well, then lifting the

so-called classical degeneracy. The other is a bounce solution representing an unstable

nontopological configuration that corresponds to a saddle point rather than a minimum of

the Euclidean action. The second derivative of the Euclidean action around the bounce

has one negative eigenvalue which leads to the imaginary part of the energy. The existence

of the negative eigenvalue implies that the vacuum state is unstable, i.e. the state decays

into other states [22].

The Euclidean solutions can also mediate phase transitions. The phase transition de-

scribes the sudden change of a physical system from one state to another. The transition

are of two different types transition accompanied by temperature or zero temperature.

The competition between the entropy and the energy terms in the thermodynamic po-

tential cause thermal phase transitions in which dynamics is irrelevant. In the modern
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classification scheme, thermal phase transitions are divided into two broad categories ei-

ther with a discontinuous jump in the first-order derivatives of the free energy or without

it. A first-order phase transition is characterized by the discontinuity in the first derivative

of the free energy and is associated with the existence of latent heat, whereas a nth-order

phase transition is characterized by the continuity in the first derivative while there is a dis-

continuity in the nth-order derivative. A quantum phase transition describes a transition

between different phases by quantum fluctuation, which occurs at zero temperature, unlike

the case of a thermal phase transition which is governed by a thermal fluctuation [23].

To simplify things, we consider an asymmetric double well potential to distinguish

two different phase transitions at zero temperature. If the initial state is the metastable

vacuum state and the tunneling occurs from that state to the other vacuum state, then

the transition corresponds to a tunneling process [24–29]. On the other hand, if the initial

state is the local maxima of the potential and the field is rolling down to one vacuum

state continuously rather than any discontinuous jump, then the transition corresponds

to the rolling. However, one more channel exists as tunneling and that corresponds to

the one without a barrier. In this kind of transition, the initial state on the top of a

potential can tunnel to the other state rather than rolling down the potential [30–33, 35].

There are two different kind of transitions in this case. One is the tunneling without a

barrier representing the tunneling from the local maximum of the potential to the vacuum

state [32–37]. Recently, an analytic study on this type of solution was performed in [36, 37].

The other is a tunneling without a barrier representing the tunneling from the maximum of

the potential to any arbitrary state. This case corresponds to the Fubini instanton [30, 31],

where the tachyonic potential is employed. Can we describe the rolling corresponding to the

transition between the initial metastable vacuum state and the other final vacuum state?

This may look similar to a superfluid motion by the liquid helium. Although to establish

the phase transition corresponding to the superfluid motion is itself a very challenging

problem, we concentrate on the Fubini instantons in this work.

The Fubini instanton [30, 31] describes the decay of a vacuum state by the quantum

phase transition instead of rolling down the tachyonic potential consisted of a quartic term

only. On the other hand, one can consider a tachyonic potential consisted of a quadratic

term only, the point Φ = 0 is unstable. A small perturbation will cause it to roll down

the hill of the potential. Originally, it was Fubini who introduced a fundamental scale of

hadron phenomena by means of the dilatation noninvariant vacuum state in the framework

of a scale invariant Lagrangian field theory [30]. However, the solution is a one-parameter

family of instanton solutions representing a tunneling without a barrier as an interpolating

solution from the maximum of the potential to any arbitrary state. The instanton solution

was studied in a conformally invariant model, i.e. a fixed background was used and the effect

of the backreaction by instantons was neglected [38–40]. This is a good approximation,

when the variation of the potential during the transition is much smaller than the maximum

of the potential. The instanton has gained much interest now-a-days in the context of anti-

de Sitter(AdS)/conformal field theory correspondence [41–44].

The paper is organized as follows: In section 2, we review the Fubini instanton in the

absence of gravity. We present numerical solutions including the Euclidean energy density
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as an example and analyze the structure of the solution in the theory with a potential having

only the quartic self-interaction term. We stress the fact that there is no such solutions

with the potential containing both the quartic and the quadratic terms. In section 3, we

show that the instanton solutions exist in the curved space. We perform a numerical study

to solve the coupled equations for the gravity and the scalar field simultaneously. We

show that there exist numerical solutions without oscillation in the initial AdS space in the

potential with only the quartic term. We also show that there exist numerical solutions

in the potential both with the quartic and the quadratic terms irrespective of the value

of the cosmological constant, which is possible only when the gravity is switched on. In

order to estimate the decay rate of the background state, we compute the action difference

between that of the solution and the background obtained by numerical means. We present

an oscillating numerical solutions in the potential with only the quartic term with various

values of the cosmological constant. One type of these solutions has the structure with

Z2 symmetry. We will discuss on the interpretation of the solutions with Z2 symmetry

in the final section. We analyze the behavior of the solutions using the phase diagram

method. In section 4, to observe the dynamics of the solutions, we briefly sketch the causal

structures of the solutions in the Lorentzian spacetime. Finally in section 5, we summarize

and discuss our results.

2 Fubini instanton in the absence of gravity

One can consider the following action in the absence of gravity

S =

∫

M

√−gd4x

[

−1

2
∇αΦ∇αΦ− U(Φ)

]

, (2.1)

where g = det ηµν , ηµν = diag(−1, 1, 1, 1) is the Minkowski metric, and the tachyonic

potential has a quartic self-interaction term and also a quadratic term as follows:

U(Φ) = −λ

4
Φ4 +

m2

2
Φ2 + Uo, (2.2)

where m2 > 0 and λ > 0. The plots of potentials (a) without the quadratic term and (b)

with the quadratic term are shown in figure 1. The potential has a metastable vacuum

state at Φ = 0 and no other stationary state in figure 1(a), while figure 1(b) illustrates

that the potential has a local minimum at Φ = 0 and two maxima [31, 45–47]. In both the

cases, the potential is not bounded from below.

Before going to the tunneling problem in four dimensions, we briefly describe the

problem in one dimension. One can consider the simplest quantum tunneling problem in

one dimension. Quantum field theory in one dimension is nothing but ordinary quantum

mechanics. In case of m2 = 0, the amplitude for transmission obeys the WKB formula in

the semiclassical approximation, in which Φ± = ±(4Uo

λ )1/4 are the classical turning points.

On the other hand, the double-hump potential with m2 > 0 and Uo = 0 can be considered

as an inverted double-well potential for a bounce solution representing the tunneling from

Φ = 0 to Φ± = ±m
√

2/λ. The solution is given by Φs(τ) = ±m
√

2/λsech[m(τ − τo)],
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Figure 1. Potentials for the case of (a) Fubini instantons and (b) generalized Fubini instantons.

where τo is an integration constant. The bounce solutions can be easily understood in the

Euclidean space. The particle can only reach the point Φ = 0 at τ = ±∞ and it bounces

off Φ± = ±m
√

2/λ at τ = 0 with a vanishing velocity [48, 49].

We now turn to the tunneling problem in four dimensions. It is an well-known fact

that the massless theory has an instanton [30]. Actually, the instanton corresponds to the

bounce solution representing the decay of the background vacuum state. The equation of

motion with O(4) symmetry, obtained by varying the Euclidean action, is then;

d2Φ

dη2
+

3

η

dΦ

dη
= −d(−U)

dΦ
, (2.3)

where η(=
√
τ2 + x2) plays the role of the evolution parameter in Euclidean space and

the second term in the left-hand side plays the role of a damping term. The boundary

conditions are
dΦ

dη

∣

∣

∣

η=0
= 0 and Φ|η=∞ = 0 . (2.4)

The particle in the classical mechanics problem starts at Φ = Φo with zero velocity in the

inverted potential, and stops at Φ|η=∞ = 0 without any oscillation.

For the potential with m2 = 0, the analytic solution of the Fubini instanton has the

form

Φ(η) =

√

8

λ

b

η2 + b2
, (2.5)

where η is the radial length in the Euclidean space, b is any arbitrary length scale which

characterizes the size of the instanton and is related to the initial value Φo. In addition,

the value of the scalar field of the center of the solution depends on b as Φ(0) =
√

8
λ
1
b .

This solution was used in the related perturbation theory [50].

The characteristic behavior of the analytic solution is ploted in figure 2 in terms of

the value of the parameter b. We take λ = 1 for all the cases. The solid line denotes the

solution with b = 1, the dashed line with b = 3, and the dotted line with b = 5. The
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Figure 2. The analytic solution of the Fubini instanton in absence of gravity.

corresponding Euclidean action is given by

SE =
32π2b2

λ

∫ ∞

0

η5(1− b2

η2
)

(η2 + b2)4
dη =

8π2

3λ
, (2.6)

where the action does not depend on the parameter b due to the consequence of the

conformal invariance of the potential and we take that value to be Uo = 0. The action has

the same value irrespective of the starting point Φo. In other words, the tunneling from the

maximum of the potential to any arbitrary state always happens with same probability.

The numerical solutions for Φ and Φ′ and the Euclidean energy including the density

variation with η are as shown in figure 3. Figure 3(a) illustrates the numerical solution for

Φ, in which the initial value set as Φo = −1 and the solution asymptotically approaches

the value Φ = 0. Figure 3(b) illustrates Φ′ with respect to η. There is a peak of Φ′ near

η = 2.31. Figure 3(c) depicts the volume energy density, when the density has got the form

ξ = [1
2
Φ′2+U ]. The lower right box in the same figure shows the magnification of the small

region clearly representing the existence of a smooth hill. The smooth peak of the volume

energy density exists at η = 5.17. There is a disagreement between the location of the peak

for the energy density and that for Φ′. It clearly reveals the fact that the position with

the maximum value for Φ′ is still not the same as the maximum of the energy density due

to non-trivial contribution coming from the potential, U = −λ
4
Φ4. Figure 3(d) shows the

Euclidean energy Eξ for each slice of constant η. The Euclidean energy signifies the value of

energy after the full integration of variables except for η in the present work, Eξ = 2π2η3ξ.

There are one minimum and one maximum point for Eξ. The location of the minimum

of Eξ is around η = 2.31, whereas that of the maximum is near η = 6.93. Ironically, the

location of the minimum of Eξ coincides with that of the maximum of Φ′. These solutions

can be considered as a ball consisting of only a thick wall except for one point at the center

of the solution with a lower arbitrary state than the outer vacuum state unlike a vacuum

bubble that consists of an inside part with a lower vacuum state and a wall.
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Figure 3. (a) The numerical solution for Φ in the case of m2 = 0, (b) the variation of Φ′ with

respect to η, (c) the energy density ξ and (d) the Euclidean energy Eξ evaluated at constant η.

For a theory with m2 > 0, the conformal invariance is broken and any solution with a

finite action is forbidden by scaling argument. In other worlds, the particle can not have

enough energy to reach the hill overcome the barrier near Φ = 0 since the damping term

has got a large value due to a large value of Φ′ near the initial point [51].

3 Fubini instantons of a self-gravitating scalar field

Let us consider the following action:

S =

∫

M

√−gd4x

[

R

2κ
− 1

2
∇αΦ∇αΦ− U(Φ)

]

+

∮

∂M

√
−hd3x

K −Ko

κ
, (3.1)

where g = det gµν , κ ≡ 8πG, R denotes the scalar curvature of the spacetime M, h is

the induced boundary metric, K and Ko are the traces of the extrinsic curvatures of ∂M
for the metric gµν and ηµν , respectively. The second term on the right-hand side is the

boundary term [52–54]. It is necessary to have a well-posed variational problem including

the Einstein-Hilbert term. Here we adopt the notations and sign conventions of Misner,

Thorne and Wheeler [55].
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We study the creation process of Fubini instantons in curved spacetime. In the first

place, we consider the massless case, and then we will also consider generalized Fubini

instantons, the so-called massive case (see the form of the potential in eq. (2.2)). The

cosmological constant is given by Λ = κU0, such that background space will be dS, flat or

AdS depending on the signs of U0.

In order to solve the coupled equations, we assume an O(4) symmetry for the geometry

and the scalar field similar to ref. [26]

ds2 = dη2 + ρ2(η)
[

dχ2 + sin2 χ
(

dθ2 + sin2 θdφ2
)]

. (3.2)

And then, Φ and ρ depends only on η, and the Euclidean equation can be written respec-

tively as follows:

Φ′′ +
3ρ′

ρ
Φ′ =

dU

dΦ
and ρ′′ = −κ

3
ρ(Φ′2 + U) , (3.3)

and the Hamiltonian constraint is then given by

ρ′2 − 1− κρ2

3

(

1

2
Φ′2 − U

)

= 0 . (3.4)

In order to yield a meaningful solution, the constraint requires a delicate balance among all

the different terms. Otherwise the solution can yield qualitatively incorrect behavior [56].

To solve the eqs. (3.3), we have to impose suitable boundary conditions. When the

gravity is switched off, boundary conditions for the Fubini instanton are dΦ
dη

∣

∣

∣

η=0
= 0 and

Φ|η=∞ = 0 as in ref. [30]. While gravity is taken into account, we can write boundary

conditions as follows:

ρ|η=0 = 0,
dρ

dη

∣

∣

∣

η=0
= 1,

dΦ

dη

∣

∣

∣

η=0
= 0, and Φ|η=ηmax

= 0 , (3.5)

where ηmax is the maximum value of η. For the flat and AdS background ηmax = ∞,

while ηmax is finite for the dS background. The first condition is to obtain a geodesically

complete spacetime. The second condition is nothing but eq. (3.4). The third condition

is the regularity condition as can be seen from the first equation in eq. (3.3). One should

find the undetermined initial value of Φ, i.e. Φ|η=0 = Φo, using the undershoot-overshoot

procedure [25, 35], to satisfy the fourth condition Φ|η=ηmax
= 0. We employ these conditions

for Fubini instantons in section III A, B.

If the background space is dS, we can impose conditions specified at η = 0 and η =

ηmax. For this purpose, we choose the values of the field ρ and derivatives of the field Φ as

follows:

ρ|η=0 = 0, ρ|η=ηmax
= 0,

dΦ

dη

∣

∣

∣

η=0
= 0, and

dΦ

dη

∣

∣

∣

η=ηmax

= 0. (3.6)

The first two conditions are for the background space. The last two conditions are for the

scalar field. In general, the solutions satisfying eq. (3.6) do not guaranty Φη=ηmax
to be

zero. For the solution having Φη=ηmax
= 0, the conditions eq. (3.6) are equivalent to the

conditions eq. (3.5). If Φη=ηmax
= ±Φo, they represent completely new type of solutions

with Z2 symmetry. We will discuss this case more in detail in section III C.
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In order to solve the Euclidean field eqs. (3.3) and (3.4) numerically, we rewrite the

equations in terms of dimensionless variables as in ref. [35]. In the present work, we employ

the shooting method using the adaptive step size Runge-Kutta as the integrator similar

to the treatment in ref. [57]. For this procedure we choose the initial values of Φ̃(η̃initial),

Φ̃′(η̃initial), ρ̃(η̃initial), and ρ̃′(η̃initial) at η̃ = η̃initial as follows:

Φ̃(η̃initial) ∼ Φ̃o −
ǫ2

8
Φ̃o(Φ̃

2
o − 1) + · · · ,

Φ̃′(η̃initial) ∼ − ǫ

4
Φ̃o(Φ̃

2
o − 1) + · · · , (3.7)

ρ̃(η̃initial) ∼ ǫ+ · · · ,
ρ̃′(η̃initial) ∼ 1 + · · · ,

where η̃initial = 0+ ǫ for ǫ ≪ 1. The minus sign in front of the second formula is due to the

negative value of the Φ̃′′ determined by the sign of dU/dΦ at η̃ = 0. However, the initial

value of Φ̃′ is taking to be positive in the present work. Once we specify the initial value

Φ̃0, the remaining conditions can be exactly determined from eqs. (3.7). Furthermore we

impose additional conditions implicitly. To avoid a singular solution at η̃ = η̃max for the

Euclidean field equations and to demand a Z2 symmetry, the conditions dΦ̃/dη̃ → 0 and

ρ̃ → 0 as η̃ → η̃max are needed in the next section. In this work, we require that the value

of dΦ̃/dη̃ goes to a value smaller than 10−6 as η̃ → η̃max, as the exact value of η̃max is not

known [35]. The parameter κ̃ is the ratio between the gravitational constant or Planck

mass and the mass scale in the theory, κ̃ = m2

λ κ = 8πm2

M2
p
λ
, and the parameter κ̃Ũo is related

to the rescaled cosmological constant Λ/m2.

To find the probability of the instanton solution, we only consider the Euclidean action

for the bulk part in eq. (3.1) to get,

SE =

∫

M

√
gEd

4xE

[

−RE

2κ
+

1

2
Φ′2 + U

]

= 2π2

∫

ρ3dη[−U ] , (3.8)

where RE = 6[1/ρ2 − ρ′2/ρ2 − ρ′′/ρ]. We used eqs. (3.3) and (3.4) to arrive at this. The

volume energy density has the form: ξ = −U , which has a different sign compared to the

sign of the density used in ref. [35]. The Euclidean energy signifies the energy value after

the full integration of variables except for η in the present case as Eξ = 2π2ρ3ξ.

In the beginning, we obtain the numerical solution for m2 = 0. And then we obtain

the numerical solution for m2 > 0. We call the space dS when the initial vacuum state has

a positive cosmological constant, Uo > 0, flat when Uo = 0 and AdS when Uo < 0.

The rate of decay of a metastable state can be evaluated in terms of the classical config-

uration and represented as Ae−B in this approximation, in which the leading semiclassical

exponent B = Scs−Sbg is the difference between the Euclidean action corresponding to the

classical solution Scs and the background action Sbg. The prefactor A is evaluated from

the Gaussian integral over fluctuations around the background classical solution [58–61].

3.1 Solutions without oscillation

We perform the numerical work with m2 = 0 and take κ̃ = 0.1. The solutions without

oscillation are only possible in the initial AdS background as shown in figure 4. We guess
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Figure 4. (color online). The numerical solutions of Fubini instantons with m2 = 0 in the AdS

space.

Ũ0 Φ̃0 Color of plot Scs Sbg B

−0.05 −3.09706 Red 1.38470× 105 1.36162× 105 2.30801× 103

−0.10 −3.60269 Green 3.91419× 105 3.82936× 105 8.48298× 104

−0.15 −3.93551 Blue 8.25148× 105 8.03225× 105 2.19226× 104

Table 1. The dimensionless variables and color of plot used and the actions obtained in figure 4.

that there is no solution without any oscillation for the initial flat and dS background. In the

given κ̃, there may exist the phase space of solutions having the region of an arbitrary Φo.

If κ̃ is increased, the oscillating behavior is appearing in the phase space of solutions [62].

Figure 4(a) illustrates the solution for Φ̃, in which the right box in the same figure shows

the magnification of a small region representing the initial values of Φ̃ and the behavior

of the curves. The curves move upwards with increasing value of Ũo, then overlap near

η̃ = 1, and more downwards with increasing value of Ũo. Figure 4(b) shows the solutions

of ρ̃. The curves move downwards with increasing Ũo. The shape of the numerical solution

ρ̃ can be easily understood if one thinks of the shape of the solution in a fixed AdS space

as ρ =
√

3
Λ
sinh

√

Λ
3
η. Table 1 shows the dimensionless variables and the color of plot

used, and also the actions obtained from figure 4. From the numerical data, one can easily

see that the magnitude of Φ̃o approaches the vacuum state Φ̃ = 0 as Ũo approaches a

vanishing value. The vanishing of Ũo means the background geometry which serves as the

initial vacuum state is flat. The action difference B̃ between the action of the solution S̃cs

and that of the background S̃bg has positive values. We carry out the action integral in the

range 0 ≦ η̃ ≦ 25 numerically as the action difference B̃ diverges to infinity if we perform

the integration for an infinite η̃ value. This divergence is due to the fact that the size of the
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Figure 5. (color online). The numerical solution of Φ, the derivative of Φ with respect to η, ρ,

and the derivative of ρ with respect to η for the generalized Fubini instantons with m2 > 0.

solution including the outside part in the evolution parameter space decrease compared to

the size of the initial background similar to what happens for the case of the nucleation of

a vacuum bubble. In the analytic computation, the outside part and the background are

simply canceled at the same radius. In the present numerical work, it is difficult to decide

the exact size of the solution. Thus we straightforwardly compute the action difference and

then the difference B̃ has got an approximate behavior δ(sinh3 η̃) = 3 sinh2 η̃ cosh η̃ which

cause the divergence at infinity. If this minor error is cured, the action difference has a

finite value.

Now we perform the numerical work with m2 > 0 and take κ̃ = 0.3. This type of

solutions belongs to usual tunneling with a barrier. We obtained the numerical solutions

with an arbitrary cosmological constant as shown in figure 5. The solutions are only

possible for specific Φ̃os.

The figures represent the vary fact that the solution is only possible in curved space-

time irrespective of the value of the cosmological constant. Figure 5(a) illustrates the

solution of Φ̃. The upper right box in the same figure shows the magnification of the small

region representing behavior of the curves which move to the left with an increase in Ũo.

Figure 5(b) shows Φ̃′ with respect to η̃. The upper right box in the same figure shows the

magnification of the small region representing behavior of the curves moving below with

increasing value of Ũo. Figure 5(c) illustrates the solutions of ρ̃. The curves move down-
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Ũ0 Φ̃0 Color of plot Scs Sbg B

−0.15 −6.92872 Black 8.70060× 107 4.13605× 107 4.56455× 107

−0.10 −6.89194 Red 1.00592× 107 7.78648× 106 2.27277× 106

−0.05 −6.85532 Green 1.17726× 106 9.75934× 105 2.01329× 105

0.00 −6.81885 Blue 2.18938× 102 0 2.18938× 102

0.10 −6.74631 Sky blue −2.61086× 104 −2.63187× 104 2.10070× 102

0.15 −6.71021 Pink −1.73397× 104 −1.75457× 104 2.05942× 102

0.20 −6.67421 Yellow −1.29572× 104 −1.31591× 104 2.01936× 102

Table 2. The dimensionless variables and color of plot used and the actions obtained in figure 5.

wards with increasing value of Ũo. The shape of the numerical solutions of ρ̃ can be easily

understood if one consider a fixed space. In the fixed flat space, ρ = η. In the dS space,

ρ =
√

3
Λ
sin

√

Λ
3
η. In the AdS space, ρ =

√

3
Λ
sinh

√

Λ
3
η. Figure 5(d) depicts the variation

of ρ̃ with respect to η̃. The curves move below with increase in Ũo. The horizontal line with

Ũo = 0 indicate a flat space with ρ̃′ = 1. Table 2 shows the dimensionless variables and

color of the plot used among with the action obtained from figure 5. From the numerical

data, one can infer that the magnitude of Φ̃o decreases as Ũo increases. We carry out the

action integral in the range 0 ≦ η̃ ≦ 30.58 numerically. In the dS space, the solution and

the background have their own periods for η̃, which we take the period as the integration

limit. For the background dS space, we take η̃ = π
√

3

κ̃Ũo

. The action for S̃cs and S̃bg

are positive or zero as long as Ũo ≦ 0. The background action is zero for Ũo = 0. In

this work, we do not check for the special case S̃cs = 0. Simply, the action has a negative

value for the dS space. It is related to the fact that the Euclidean action for Einstein

gravity is not bounded from below, and this is known as the conformal factor problem in

Euclidean quantum gravity [63]. It was argued in [64] that the conformal divergence due to

the unboundedness of the action might get cancelled with a similar term of opposite sign

caused by the measure of the path integral. However, the difference between the action of

the solution and that of the background remains positive-valued.

3.2 Oscillating Fubini instantons

The oscillating instanton and the bounce solutions with an O(4) symmetry between the

dS-dS vacuum states was first studied in ref. [65, 66], in which the authors found the

solutions in a fixed background geometry and showed how does the maximum allowed

number nmax depend on the parameters of the theory, where n denotes the crossing number

of the potential barrier by the oscillating solutions. The oscillating bounce solutions in the

presence of gravity was also studied in ref. [67, 68], in which the authors analyzed the

negative modes and the fluctuations around the oscillating solutions. The instanton was

interpreted as the thermal tunneling [69]. The oscillating instanton solutions under a
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Figure 6. The numerical solutions representing oscillatory solutions.

symmetric double-well potential in the curved space with an arbitrary vacuum energy was

also investigated in detail in [35], where a numerical solution is possible as long as the

local maximum value of the potential remains positive. The solutions have a thick wall

and can be interpreted as a mechanism for the nucleation of the thick wall for topological

inflation [70, 71]. Similarly, the process for the tunneling without a barrier in curved space,

was studied in ref. [32–34]. The existence of numerical solutions was shown in ref. [35],

in which the case representing the tunneling from flat to AdS space shows an oscillating

behavior. The solution oscillates around Φ = 0 in the inverted potential and the oscillating

behavior die away unlike the case under a harmonic potential.

In the present paper, the oscillation means that the field in the solutions oscillates

around the minimum of the inverted potential and die away asymptotically to the minimum

Φ = 0 for the case withm2 = 0. Thus the resulting geometry of the initial state has wrinkles

due to the variation of the volume energy density and the instanton simultaneously. The

behavior of the solutions representing the resulting geometry with wrinkles is quite different

from those in ref. [35].

Figure 6 shows the numerical solutions representing an oscillatory behavior in (A) the

initial flat background and (B) the initial AdS background. We take κ̃ = 0.30, Ũo = 0

(for the flat case), and Ũo = −0.0001 (for the AdS case), respectively. Figures 6(a) and

(c) illustrate the numerical solutions of Φ̃. The lower right box in those figure shows the

– 13 –



J
H
E
P
0
6
(
2
0
1
3
)
0
0
3

Φ̃0 Scs (AdS) Sbg (AdS) B (AdS) B (flat)

−1 9.03462× 105 9.01815× 105 1.64726× 103 1.08561× 102

−2 9.05239× 105 9.01815× 105 3.42429× 103 1.58782× 102

−3 9.07584× 105 9.01815× 105 5.76952× 103 2.77028× 102

−4 9.10850× 105 9.01815× 105 9.03545× 103 3.62471× 102

−5 9.16368× 105 9.01815× 105 1.45537× 104 7.67645× 102

−6 9.26167× 105 9.01815× 105 2.43521× 104 1.37407× 103

−7 9.47248× 105 9.01815× 105 4.54330× 104 3.70685× 103

Table 3. The dimensionless variables and color of plot used and the actions obtained in figure 6.

magnification of a small region representing the behavior of the solution around Φ̃ = 0. The

peak corresponds to the first turning point of the particle similar to a classical mechanics

problem in the presence of an inverted potential. For the case with Φ̃o = −7 the first

turning point reaches furthermost point away from Φ̃ = 0 among all the other cases, as

one can easily see from the figure. The curves oscillate around Φ̃ = 0 and eventually stop

at Φ̃ = 0 in the flat and AdS space. We take the initial point as an arbitrary Φ̃o, which

means that the number of oscillations for each solution can be different. However, there is

the tendency that the number of oscillations is decreased as the value of Φ̃o is decreased in

the given κ̃. Figures 6(b) and (d) illustrate the numerical solutions for ρ̃. The upper left

box in those figure shows the magnification of an initial small region representing behavior

of the curves which move below with the decrease in Φ̃o.

Table 3 shows the initial values of Φ̃, the actions for the AdS, and flat background

which are obtained from figure 6. In the flat case, the background action is zero as Ũo = 0

and therefore S̃cs is equal to B̃. In the present case, we cut all the data at a certain point

which is η̃ = 200.

We now analyze the behavior of the solutions using a phase diagram method. After

plugging the value of ρ′

ρ from eq. (3.4) into eq. (3.3) and using Φ′′ = Φ′ dΦ′

dΦ , the equation

becomes

dΦ′

dΦ
= −

3
√

1
ρ2

+ κ
3
(1
2
Φ′2 + λ

4
Φ4 − Uo)Φ

′ + λΦ3

Φ′
. (3.9)

First, we consider the situation where the kinetic energy is small compared to the potential

energy such that |U | ≫ Φ′2, Uo ≪ 1 and the term 1/ρ2 is smaller than other terms. In

other words, the last term is the most dominant among other terms in the numerator.

Then the equation reduces to the form

Φ′ ≃
√

λ

2
(Φ4

o − Φ4) . (3.10)

The above relation shows that the first stage of the curve has got such kind of form. Second,

we consider the situation where dΦ′/dΦ = 0, i.e. with vanishing acceleration and then we
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Figure 7. The behavior of the solutions represented in the phase diagram.

impose all the above mentioned conditions. It will then describe the special points in the

phase diagram. Then the equation reduces to the form

Φ′ ≃ −2

√

λ

3κ
Φ . (3.11)

Third, we consider the situation where dΦ′/dΦ = −c, i.e. a negative constant. We impose

all the above mentioned conditions among with Φ2 ≫ 2c/
√
3κλ. Thus, we obtain the above

equation again. This relation implies that the special points with a vanishing acceleration

and some of the region with a negative constant acceleration in the phase diagram have

got a linear function type behavior in the phase diagram as shown in figures 7(a) and (c).

Figure 7 illustrates the behavior of the solutions in the Φ̃-Φ̃′ plane. Each trajectory

represents the behavior of the solution in the phase diagram. The trajectories begin with

zero velocity as Φ̃′ = 0 shown in figures 7(a) and (c). The velocity increases rapidly to

the maximum and then decreases linearly up to the turning point. Figures 7(b) and (d)

show the magnification of the small region representing the behavior of the solution around

Φ̃′ = 0 and Φ̃ = 0.

Basically, the Fubini solution has an asymptotic condition to be satisfied. We expect

that there exist an oscillating solutions although the dS background has got a finite size in

the Euclidean signature. However, if we consider an analytic continuation not of the angle
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parameter χ but of the Euclidean evolution parameter η = it, then the meaning becomes

clearer. When there is an ‘even’ symmetry for the oscillating instantons, we can see the

half-way point η0 as ρ̇(η0) = Φ̇(η0) = 0. Then, we can paste the Lorentzian manifold

t = 0 at the η = η0 surface. This is possible only for the case ρ̇(η0) = Φ̇(η0) = 0, because

of the Cauchy-Riemann theorem of complex analysis; otherwise, the Lorentzian manifold

should be complex valued functions (for exceptional cases, we might be able to consider

complex valued instantons, the so-called fuzzy instantons [72–75]). In this procedure, an

event shows a spontaneous creation of the universe from ‘nothing’ [2, 3], in which nothing

means a state without the concept of classical spacetime [76]. We already know that there

is such a solution when the scalar field is exactly on top of the local maximum. However,

now we observe a creation from nothing with highly non-trivial field dynamics. This is

worthwhile to be highlighted and we postpone further analysis for the future work.

3.3 Fubini instantons with Z2 symmetry

We now shift our attention to the new type of solutions in the initial background as the dS

space, i.e. Uo > 0. The Euclidean dS space has a compact geometry. Thus the solutions

can have Z2 symmetry. We consider the boundary conditions in eq. (3.6). To obtain the

solutions with Z2 symmetry, we need to impose additional conditions. For the background

geometry, ρ′ = 0 at η = ηmax

2
. On the other hand, for the scalar field, we impose Φ = 0 at

η = ηmax

2
for the solutions with odd number of crossings of the potential well and Φ′ = 0 at

η = ηmax

2
for the solutions with even number of crossings. The solutions with odd number of

crossing have the opposite state of the value Φ at η = 0 and η = ηmax, i.e. Φ|η=ηmax
= −Φo.

The solutions with even number of crossing have the same state of the value Φ at η = 0

and η = ηmax, i.e. Φ|η=ηmax
= Φo. We stress that the boundary conditions in eq. (3.6) gives

rise to completely new type of solutions of Fubini instanton.

Figure 8 shows the numerical solutions of the Fubini instanton with Z2 symmetry. We

take κ̃ = 0.50 and Ũo = 0.03. Thus the dS region in the Φ̃-space spans the region −0.589 .

Φ̃ . 0.589. We consider four cases with different initial positions of Φ̃. Figure 8(a)

illustrates the numerical solution of Φ̃. The trajectories with the blue and red color go

back to the same position of Φ̃ in the presence of the inverted potential, i.e. they have

even number of crossings. The trajectories with the black and green color go back to the

opposite position of Φ̃, i.e. they have odd number of crossings. Figure 8(b) depicts the

numerical solution of ρ̃. Figures 8(c) and (d) illustrate the behavior of the solutions in the

Φ̃-Φ̃′ plane. Each trajectory represents the behavior of the solution in the phase diagrams.

The blue and red lines indicate that the interior part of two instantons has got the same

state as Φ̃, whereas the green and black lines indicate that the interior part has got the

opposite state of Φ̃. Figure 8(d) illustrates the magnification of a small region representing

the behavior of the solution around Φ̃′ = 0 and Φ̃ = 0. Figure 8(e) illustrates the volume

energy density, where the density has got a form ξ̃ = −Ũ . The box shows the magnification

of a small region representing behavior of curves. The densities in each of the case have got

positive values near the initial starting point Φ̃o far away from the point Φ̃ = 0, because

the densities have the form ξ̃ = −Ũ and Ũo > 0. The solutions oscillate in the dS region

as found the present work. The density always negative values for the case of the black
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Figure 8. (color online). The numerical solutions of the Fubini instanton with Z2 symmetry.

line. Figure 8(f) illustrates the Euclidean energy Ẽξ̃ = 2π2ρ̃3ξ̃ for each slice of constant

η̃ values. The negative energy parts in each of the case signifies a rolling state in the

dS region. Table 4 shows the initial value of Φ̃, colors of the plot used, and the actions

obtained from figure 8.

4 Causal structures

In this section, we briefly outline the causal structure of the solutions in the Lorentzian

signature. Due to the pressure difference, the nucleated AdS region will expand over the
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Φ̃0 Color of plot Scs Sbg B

−0.37875 Black −3.15525× 104 −3.15827× 104 30.2

−2.45703 Red −3.15176× 104 −3.15827× 104 65.2

−3.94902 Green −3.14005× 104 −3.15827× 104 182.2

−5.14568 Blue −3.10727× 104 −3.15827× 104 510.0

Table 4. The dimensionless variables and the color of plot used, and the actions obtained in

figure 8.

background and hence the boundary of the nucleated AdS region will be time-like.

Figure 9 shows the schematic diagrams representing the causal structures of the Fubini

instantons and the related solutions. The χ = π/2 surface can be analytically continued

to the surface t = 0 in the Lorentzian signature. The lower vacuum region in the instan-

ton (green colored region) will be unstable during the Lorentzian time evolution (orange

colored region). Due to the instability of the Fubini type potential, the whole causal struc-

ture may depend on the shape of the potential or the vacuum structure i.e. whether the

left or the right side of the potential has true vacua or not. Therefore, the followings are

meaningful only as reasonable estimations for general behavior and these may be different

for special examples.

Figure 9(a) illustrates the instanton solution in an AdS background. It will form time-

like r = 0 and r = ∞ boundaries in the Lorentzian signature. However, the AdS region

may be unstable to form a kind of singularity. Figure 9(b) illustrates the instanton solution

in the dS background. The dS region has a cosmological horizon and will this form a future

infinity. The AdS region (orange colored region) will expand over the dS region due to the

pressure difference. Figure 9(c) is the pair creation by the oscillating instanton solutions.

Therefore, in the instanton part, the dS region around the ρ = ρmax is surrounded by the

AdS (green colored region) part. In the Lorentzian signature, we can interpret these two

AdS parts as being nucleated in a dS background. In figure 9(c), we infer that, there still

remains a dS region and a future infinity.

The pair creation of the instantons in this work is quite different from the ordinary

quantum process of pair creation of particles. We take the initial background as the dS

space, i.e. Uo > 0. The Euclidean dS space has a compact geometry. Thus, the geometry

has two poles. If one object is created on the north pole and the other on the south

pole, we can interpret that process as the pair creation of objects. As an example of

the process, the two-crossing solution between the sides of the potential barrier in the

double-well potential was considered as a type of a double-bounce solution or an anti-

double-bounce solution [77], in which the authors interpreted the double-bounce solution

as the spontaneous pair-creation of true vacuum bubbles, one at each pole in the dS space.

We adopt a similar interpretation for our solutions with Z2 symmetry.
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Figure 9. (color online). The schematic diagrams representing the causal structure of the Fubini

instantons and the related solutions. (a) Tunneling in an AdS background. (b) oscillating instanton

solution in a dS background. (c) Pair creation by oscillating instantons in dS background.

5 Summary and discussions

In this paper we have studied Fubini instantons of a self-gravitating scalar field representing

the tunneling without a barrier. There are two kinds of Euclidean solutions representing

the tunneling without any barrier. One of them is the tunneling from the local maximum

of the potential to the vacuum state. The other one is the tunneling from the maximum

to any arbitrary state. The latter corresponds to the Fubini instanton solution. We have

shown that there exist several new kinds of Fubini instanton solutions of a self-gravitating

scalar field found as numerical solutions, which are possible only if gravity is taken into

account. We also computed the action difference B, in each case, between the Euclidean

action corresponding to a classical solution Scs and the background action Sbg for the rate

of decay.

In section 2, we reviewed the Fubini instanton in the absence of gravity from the

viewpoint of a tunneling problem. We have presented a numerical solution including the

Euclidean energy density for example. We analyzed the structure of the solution in a

theory with the potential having only a quartic self-interaction term. These solutions can

be considered as a ball consisting of only a thick wall except for the one point at the center

of the solution with a lower arbitrary state than the outer vacuum state unlike a vacuum

bubble which consists of an inner part with a lower vacuum state and a wall.

In section 3, we have studied the instanton solutions in curved space. We performed

careful numerical study to solve the coupled equations for the gravity and the scalar field

simultaneously. We have shown that there exist numerical solutions without any oscillation

in the initial AdS space for the potential with only the quartic term. We have also shown

– 19 –



J
H
E
P
0
6
(
2
0
1
3
)
0
0
3

that there exist numerical solutions for the potential with both a quartic and a quadratic

term irrespective of the value of the cosmological constant. For this particular case, there

is no solution with an O(4) symmetry when gravity is switched off. In order to estimate

the decay rate of the background state, we calculated the action difference between the

action of the solution and that of the background obtained using numerical means.

We have obtained oscillating Fubini instantons as new types of solutions. We have

shown that there exist oscillating numerical solutions for the potential with only the quartic

term in the flat and AdS space, except for the solution without oscillation in the initial

AdS space with the specific value of a cosmological constant and the parameters. We have

analyzed the behavior of the solutions using the phase diagram method. The oscillation

dies away asymptotically in both the flat and the AdS space.

We have obtained numerical solutions representing the Fubini instanton with Z2 sym-

metry. We stress that they represent completely new type of solutions of Fubini instanton.

These solutions can be interpreted as the pair creation with each one having the same state

and with each one having the opposite state, respectively. The solutions can lead to more

interesting interpretation as follows: any arbitrary state can tunnel into another arbitrary

state with an O(4)-symmetry in the curved spacetime, although no vacuum state exists as

the instanton solution. The solutions are possible as long as the maximum of the potential

remains positive.

The subject on the pair creation of bubbles was first considered in ref. [78, 79]. The

numerical solution representing the pair of solutions is in figure 2 in ref. [77], which can be

interpreted as the pair creation of the bubbles, one at each pole in the dS space. However,

there is a different interpretation on the solutions [69, 80], in which the authors studied a

decay channel of de Sitter vacua. The solutions with O(3) symmetry can be understood as

describing tunneling in a finite horizon volume at finite temperature. The solutions maybe

correspond to thermal production of a bubble in their interpretation. In this stage, the

comparative analysis between the O(4)-symmetric solution and O(3)-symmetric solution

with respect to the pair creation is needed to be studied more. We leave this for future work.

In section 4, we have analyzed the schematic diagrams representing the causal struc-

tures of the Fubini instantons and the related solutions in the Lorentzian signature. For

the special case representing the solution with Z2 symmetry, the dS region around the

ρ = ρmax is surrounded by an AdS part.

We now mention on the negative mode problem. It was known that the bounce solution

has one negative mode in the spectrum of small perturbations about the solution [58, 81].

The bounce solution with one negative mode corresponds to the tunneling process in the

lowest WKB approximation. In ref. [81], Coleman argued that the Euclidean solution with

only one negative mode is related to the tunneling process in the flat Minkowski spacetime.

However, there is no rigorous proof on extension of Coleman’s argument to the curved space

claiming the physical irrelevance of the solutions with additional negative modes. For

example, the time-translation invariance, or zero modes, is one of crucial elements to prove

the uniqueness of the negative mode in his argument. However, the existence of zero modes

is not guaranteed in curved spacetime. Another point is that the Euclidean time interval

is at most of O(H−1) in de Sitter space. Hence, only a finite number of the bounces can
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be placed far apart from each other. Therefore, the dilute gas approximation may become

invalid easily, which leads to the breakdown of the WKB approximation [82, 83]. There

appears diverse situations on the negative modes when the gravity is taken into account [82–

87]. Although, the bounce solution with one negative mode in curved space dominates the

tunneling process, the solutions with additional negative modes may also contribute to

the tunneling process. There exist some works including the physical interpretation on

the oscillating solutions with more than one negative mode. One can naturally interpret

the system in de Sitter background as a thermal system. The authors in refs. [65, 66, 69]

interpreted that the existence of additional negative modes represents the solutions as

unstable intermediate thermal configuration. They seem to observe the clue to support

this idea on the other point of view. It is known that the N times oscillating solutions have

N negative modes [65, 66, 69, 88]. The even numbers of negative modes of the form 4N

and 4N + 2 do not have imaginary part of the energy, while the odd numbers of negative

modes of the form 4N + 3 have the imaginary part of the energy with the wrong sign.

However, 4N + 1 negative modes may have a meaning for a tunneling process even if the

solution may not be related to the lowest WKB approximation. Recently the analysis on

the negative modes of oscillating instantons has been investigated [88]. The oscillating

instantons as homogeneous tunneling channels have been also studied [89]. In conclusion,

we believe many Euclidean solutions in curved space with zero and negative modes may

have physical significance and deserves further investigation.

In summary, we illustrate the following finding in our new contribution regarding

this issue:

1. In the absence of gravity, a −φ4-type potential has infinitely many instanton solutions

whereas a −φ4+φ2-type potential has no instanton solution. However, the inclusion

of the gravity changes all the situation abruptly : for the former case, the solution

space get reduced to a finite space and for the latter case, there exists solutions.

2. We also confirm that −φ4-type potentials have oscillating instanton solutions as well

as the solutions with Z2 symmetry.

Therefore, the Fubini instanton is one of the few examples that shows the effect of

gravity bringing drastic changes to the tunneling process. There can be more applications

of the oscillating instantons and we confirm that the Fubini-type potentials also contribute

largely towards these processes. We postpone any possible application of such oscillating

solutions including the phase space of solutions for our future work [62].
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