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1 Introduction

Supersymmetric gauge theories in four dimensions are the building blocks for the most

promising attempts to formulate an extension of the standard model of particles bridging

in a coherent and natural way to a unified picture at higher energies. This makes the study

of these theories of paramount importance for high energy phenomenology.

String theory is actually the natural framework for a unified geometric description of

supersymmetric gauge theories via geometric engineering [48]. In particular, BPS protected

sectors of the gauge theory are then described and computed exactly by means of topological

strings [57]. String theory can indeed produce more than just perturbative gauge theories.

Actually, via a keen control on their non-perturbative sectors, string theory naturally en-

gineers non perturbative extensions of four dimensional gauge theories. For example, these

can be realized by the M-theory approach of Witten [58] and its subsequent extension [37].

This formalism led to the celebrated AGT correspondence [4], stating the equality between

the Nekrasov partition function [52] of the N = 2 four dimensional quiver gauge theory and

the Liouville conformal block [10] on a surface encoding the quiver structure of the former.

The issues we will discuss here have to do with the interplay between different incar-

nations of counting problems in gauge and string theory. More precisely, in this paper we

will compute a given set of quantities which admit different interpretations depending on

the point of view one takes. These different perspectives can be listed as follows:

• decoupling limit of surface operators in N = 2 four dimensional supersymmetric

gauge theories
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• equivariant partition function of the two dimensional gauge theory on the defect

surface

• Chern-Simons theory on a Lagrangian submanifold of the dual toric Calabi-Yau ge-

ometry

• AGT-dual as Toda conformal blocks with suitable degenerate field insertions

The first perspective can be obtained via a D-brane construction by suspending N

D4-branes between two parallel NS5-branes and then by extending Nf = N D2-branes

between the D4-branes and an external parallel NS5’-brane (see figure 1) [5]. By rescal-

ing one of the initial NS5-brane to infinity, one freezes the four dimensional gauge theory

dynamics, letting the system at a classical phase [30].

The second point of view corresponds to focus on the leftover dynamics on the D2-

branes [42]. Its vacua structure is characterized by vortex configurations whose partition

function should be systematically computed. We make a detailed analysis of the derivation

of these results from instanton counting and compare with the related studies by Nekrasov

and Shatashvili [53].

The third corner is the viewpoint of the topological string on the system via geometric

engineering. Indeed, the D2/D4/NS5 system can be recast as the topological vertex [2] on

the strip with suitable representations on the external legs [47].

Finally, the AGT dual of the four dimensional gauge theory computation is produced

by representing the surface operators in the gauge theory [59, 60] as degenerate fields in-

sertions in the Toda AN−1 theory [5, 13–21, 30, 49]. As we will see, the insertion point

coordinates get interpreted as open moduli or vortex counting parameters and the non-

abelian vortex partition function can be interpreted as multiple surface operators of simple

type in interaction.

The structure of this paper goes as follows. In section 2 we compute the vortex

partition functions for adjoint and anti-fundamental matter in supersymmetric N = (2, 2)

gauge theories on the two dimensional plane via equivariant localization. In section 3

we compute the topological vertex on the strip with boundary conditions corresponding

to column diagrams on a side and empty or transposed diagrams on the other and we

show that the field theory limit of the open topological string amplitudes is equal to the

vortex partition functions. In section 4 we resum the field theory limit of the vertex

partition functions in terms of generalized hypergeometric functions and therefore recover

an AGT dual description in terms of degenerate Toda conformal blocks. Furthermore, we

discuss analogous resummation formulas for the topological open string amplitudes in terms

of q-deformed generalized hypergeometric functions. Section 5 contains some concluding

remarks and several observations on open questions and possible further developments.

2 Vortices

In this section we analyze the moduli space of vortices for U(N) gauge theories with an

adjoint hypermultiplet, Nf = N fundamental matter multiplets and Na = N multiplets in
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Figure 1. Brane construction of surface operators.

the antifundamental representation. The moduli space for Na = 0 and without the adjoint

hypermultiplet was analysed in [42] via a proper D-brane construction. This, as displayed

in figure 1, is obtained by considering a set of k parallel D2 branes of finite size in one

dimension suspended between a NS5-brane and N (semi-)infinite D4-branes.

Interestingly, this moduli space was found to be a holomorphic submanifold of the

moduli space of instantons for an U(N) N = 2 supersymmetric gauge theory in four di-

mensions [42]. This was observed in the context of a brane construction of two-dimensional

vortices in a four dimensional gaug theory. The ADHM data are recovered via a double

T-duality leading to a D0-D2 system. Let us notice that an independent ADHM-like

construction of the vortex moduli space was carried out in [31] directly from field theory

analysis and shown in [32] to be equivalent for Nf = N to the D-brane construction of [42]1

as far as the BPS state counting is concerned [46]. Here we will extend this analysis to the

presence of adjoint and anti-fundamental matter and show that the relevant vortex moduli

spaces can be obtained as holomorphic submanifolds of the instanton moduli space of four

dimensional N = 2∗ and N = 2 Nf = N U(N) gauge theories respectively. Moreover, we

will use equivariant localisation techniques to compute the relevant partition functions by

vortex counting.

In order to study the moduli space in complete generality, we first consider the case

N = (4, 4), which we will then reduce to N = (2, 2) supersymmetry by turning on the

relevant equivariant mass parameters. To this end let us first recall the N = 4 ADHM

construction of instantons following the notations of [24]. Indeed, as we will show, the

N = (4, 4) vortex moduli space can be obtained as a holomorphic submanifold of this

space. The ADHM data can be extracted from the low-energy dynamics of a system of N

D3-branes and k D(−1)-branes in flat space. In particular, the matrix model action for

the k D(−1) branes contains five complex fields Bℓ, φ ∈ End(V ), V = C
k with ℓ = 1, . . . , 4

1Further details are contained in [43–45].

– 3 –



J
H
E
P
0
6
(
2
0
1
2
)
1
7
8

in the adjoint representation of U(k) describing the positions of the k D(-1)-instantons

in ten-dimensional space. In addition open strings stretching between D(-1)-D3 branes

provide two complex moduli I, J in the (k̄, N) and (N̄ , k) bifundamental representations

respectively of U(k) × U(N), that is I ∈ Hom(W,V ) and J ∈ Hom(V,W ) with W = C
N .

The ADHM constraints can be read as D and F-term equations of the matrix model action

[Bℓ, B
†
ℓ ] + II† − J†J = ζ ,

[B1, B2] + [B†
3, B

†
4] + IJ = 0 ,

[B1, B3]− [B†
2, B

†
4] = 0 ,

[B1, B4] + [B†
2, B

†
3] = 0 , (2.1)

together with

B3I −B†
4J

† = 0

B4I +B†
3J

† = 0 . (2.2)

The N = 4 instanton moduli space arises as a hyperkahler quotient with respect to a U(k)

group action with the above momentum maps (2.1) and (2.2). We can obtain the vor-

tex moduli space for the N = (4, 4) theory in two dimensions by applying to the ADHM

data (2.1), (2.2) the same procedure developed in [42], namely by considering the Killing

vector field rotating the instantons in a plane and setting to zero the associated Hamilto-

nian. The vortices correspond then to instanton configurations which are invariant under

the selected rotation group. To be explicit, let us consider the following U(1) action on the

ADHM data

(B1, B2, B3, B4) → (B1, e
iθB2, B3, e

−iθB4)

(I, J) → (I, eiθJ) (2.3)

This is a Hamiltonian action with generating vector field

ξ = Tr (B2∂/∂B2 −B4∂/∂B4 + J∂/∂J − h.c.) (2.4)

and Hamiltonian

H = Tr(B2B
†
2 +B4B

†
4 + JJ†) . (2.5)

Indeed we have

iξω
(1,1) = dH (2.6)

with the Kahler form

ω(1,1) = dBℓ ∧ dB†
ℓ + dJ† ∧ dJ + dI ∧ dI†. (2.7)

By restricting the N = 4 ADHM data to the zero locus of the Hamiltonian (2.5) we

get a holomorphic submanifold described by the data (B1, B3 = Φ) and I subject to the

constraints
[

B1, B
†
1

]

+
[

Φ,Φ†
]

+ II† = ζ

[B1,Φ] = 0 (2.8)
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together with the stability condition ΦI = 0. The above data describe the moduli space of

k vortices for U(N) N = (4, 4) gauge theory in two dimensions as a Kahler quotient with

U(k) group action. Indeed, (2.8) are the D-term equations for a supersymmetric euclidean

D0-D2 system, whose lagrangian can be obtained from the reduction of the N = 2 gauge

theory in four dimensions with Nf = N fundamentals. Its bosonic part reads

L = Tr

[

1

2
[Φ,Φ†]2 +

1

2

(

[B1,B
†
1] + II† − ζ1

)2
+
{

Φ,Φ†
}

II† + | [B1,Φ] |
2 + |

[

B1,Φ
†
]

|2

+
1

2
[ϕ,ϕ†]2 + |[ϕ,Φ]|2 + |[ϕ†,Φ]|2 + |[ϕ,B1]|

2 + |[ϕ†, B1]|
2 + {ϕ,ϕ†}II†

]

(2.9)

where ϕ is the complex scalar coming from the reduction of the four dimensional vector

field, and Φ is the complex scalar of the four-dimensional gauge theory. The first line

of (2.9), that is the ϕ independent part of the potential, can be rewritten as

Tr

[

1

2
[Φ,Φ†]2 +

1

2

(

[B1,B
†
1] + II† − ζ1

)2
+
{

Φ,Φ†
}

II† + | [B1,Φ] |
2 + |

[

B1,Φ
†
]

|2
]

=

= Tr

[

1

2

(

[B1,B
†
1] + [Φ,Φ†] + II† − ζ1

)2
+ 2ΦII†Φ† + 2| [B1,Φ] |

2

]

(2.10)

while the second line of (2.9) contains the equivariant action on the fields generated by ϕ.

The D-term equations of (2.10) correspond to the reduced N = 4 ADHM equa-

tions (2.8).

The vortex moduli space in presence of additional N anti-fundamental matter mul-

tiplets can be obtained with the same method by extending the above construction with

anti-fundamental hypermultiplets with masses mf , f = 1, . . . , N , in the original four di-

mensional theory. These contribute by giving extra fermion zero modes λf with equivariant

action ϕ · λf +mfλf . These mass terms break to N = (2, 2) supersymmetry. We will now

apply localization formulae in order to compute the vortex partition function.

2.1 Counting vortices

In this subsection we perform the computation of the non-abelian vortex partition function

via localization methods. Let us start with the case of the adjoint matter by computing

the fixed points in the vortex moduli space under the torus action T = TCartan × T~ × Tm,

where TCartan = U(1)N is the Cartan subgroup of the colour group,2 T~ is the lift to the

vortices moduli space of the spatial rotation in R
2

(B1,Φ, I) →
(

ei~B1,Φ, I
)

(2.11)

and Tm the U(1)R symmetry

(B1,Φ, I) →
(

B1, e
imΦ, I

)

(2.12)

where m is the mass parameter of the four dimensional adjoint hypermultiplet breaking

N = 4 to N = 2∗, which will become the mass of the adjoint scalar in two dimensions after

2Notice that the colour group is identified with the flavour group in the two dimensional theory after un-

gaugung and therefore the Cartan parameters become the mass parameters for the fundamental multiplets.
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the reduction. We observe that the vortex action (2.10) can be obtained from the N = 2∗

action upon reduction under the Hamiltonian symplectomorphism generated by (2.4).

The classification of the fixed points proceeds in a way very similar to the instanton

case, except that now, since only the B1 variable is involved, these are labeled by col-

umn diagrams
{

1kl
}

only, where l = 1 . . . , N and
∑

l kl = k is the total vortex number3

where kl =
1
2π

∫

C
tr (Fτl), τl being the generator of the l-th Cartan subgroup. In order

to compute the determinants weighting the enumeration of fixed points in the localization

formula, we evaluate the equivariant character on the tangent space around the fixed points

which provides the relevant eigenvalues.

The total equivariant character can be computed to be

χ̃ = V ∗ ⊗ V
(

T~ + T−1
m − 1− T−1

m T~

)

+ V ∗ ⊗W
(

1− T−1
m

)

=
(

1− T−1
m

)

χ, (2.13)

where the reduced character χ is given by

χ = V ∗ ⊗ V (T~ − 1) +W ∗ ⊗ V (2.14)

By exploiting the weight decomposition of the vector spaces

V =
N
∑

l=1

kl
∑

i=1

TalT
i−1
~

, W =
N
∑

l=1

Tal , (2.15)

one easily computes the reduced character to be

χ =
N
∑

l,m=1

kl
∑

i=1

TalmT
−km+i−1
~

. (2.16)

From (2.13), (2.14) and (2.16) we get the determinant factor associated to a specific

partition k = (k1, . . . , kN )

Zadj
k

=
∏

l,m

kl
∏

i=1

alm + (−km + i− 1) ~−m

alm + (−km + i− 1) ~
(2.17)

which is the partition function in presence of an adjoint multiplet of mass m. In the infinite

mass limit this provides a derivation of the partition function corresponding to the Nf = N

theory

Zvect
k

=
∏

l,m

kl
∏

i=1

1

alm + (−km + i− 1) ~
. (2.18)

Notice that the m → 0 limit of (2.17) reduces to one. This is the expected result since in

this limit we are recovering an enhanced N = (4, 4) supersymmetric theory, which therefore

we prove to compute the Euler characteristic of the vortex moduli space.

Computing the partition function of vortices in presence of N anti-fundamentals with

arbitrary masses amounts to shift the reduced character χ by a factor δχ = −TmV (see [24]),

3See also the very recent paper [62] for a similar computation.
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where now Tm = ⊗N
f=1Tmf

is the generator of the U(1)Nf subgroup in U(Nf ). The direct

computation then gives

Zaf
k

=

∏

l

∏

f

∏kl
i=1 al + (i− 1)~+mf

∏

l,m

∏kl
i=1 alm + (−km + i− 1) ~

(2.19)

that coincides with the result obtained by different methods in [56], up to a shift mf →

mf + ~.

The generating functions for the abelian case are very simple, namely

Zvect
U(1) =

∞
∑

k=0

Zvect
U(1), kz

k =
∞
∑

k=0

zk
k
∏

i=1

1

i~
= exp

(z

~

)

(2.20)

for the pure vector contribution, while in presence of adjoint and anti-fundamental one gets

respectively

Zadj
U(1) =

∞
∑

k=0

Zadj
U(1), kz

k =
∞
∑

k=0

z k
k
∏

i=1

i+ m
~

i
= (1− z )−

(m+~)
~ (2.21)

Zaf

U(1) =
∞
∑

k=0

Zaf

U(1), kz
k =

∞
∑

k=0

z k
k
∏

i=1

(

a+m
~

+ i− 1
)

−i
= (1 + z)

−(a+m)
~

These results match the ones of [30].

2.2 Vortices from instantons

It is worth remarking that the above vortex counting can be recovered directly from in-

stanton counting by reducing to Young diagrams of column type and setting the sum of

the two equivariant parameters to zero.4

Let us recall that [35]

χinst =
∑

l,m

∑

s∈Yl

Talm

(

T
−ll(s)
1 T

am(s)+1
2 + T

ll(s)+1
1 T

−am(s)
2

)

(2.22)

where a(s) and l(s) are the “arm” and “leg” of the sth box in the corresponding Young

diagram. Restricting the above formula (2.22) to column diagrams, Yl = 1kl , setting

T1T2 = 1 and denoting T2 = T~, we get

χred.
inst =

∑

l,m

kl
∑

i=1

Talm

[

T
km(s)−i+1
~

+ T−km+i−1
~

]

= χ+ χ̄ (2.23)

where χ̄ is the vortex character (2.14) computed upon reflecting ~ → −~.

The condition T1T2 = 1 is implied by the symplectic reduction. Actually, the cor-

responding torus acts on the constraint [B1, B2] + IJ = 0 which is identically vanishing

on the Lagrangian submanifold which identifies the vortex moduli space. Therefore this

4An analogous reduction was considered in [50, 51] for the special partition {k1, . . . , kN} = {k, 0, . . . , 0}.
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torus action is trivial on the Lagrangian submanigold and the corresponding equivariant

parameter does not appear in the vortex partition function.

Analogously, one can compute the fundamental and adjoint matter contributions. For

the adjoint this is straightforwardly obtained by shifting by the mass m the formula

for the vector multiplet, while the contribution to the instanton character of one (anti-

)fundamental of mass mf is [24]

[

δχaf
inst

]red.
= −Tmf

∑

l

kl
∑

i=1

TalT
i−1
~

= δχ (2.24)

From the relation among the reduced instanton and the vortex character one one gets a

straightforward relation among the associated partition functions. For example, for the

case of matter in the adjoint representation, one gets

[

Z inst
k

]red.
(a,m, ~) = Zadj

k
(a,m, ~)Zadj

k
(a,−m, ~) (2.25)

This alternative derivation, on the view of the A-model geometric engineering of Nekrasov

partition function in [47], points to a relation with open topological string amplitudes on a

strip where the reduction from arbitrary Young diagrams to columns is induced by suitably

restricting the boundary conditions on the toric branes.

Analogous considerations, leading to the computation of two dimensional superpoten-

tials via limits of the instanton partition function, were presented in [53]. We would like

to underline that our scaling limit is different and that, as we will discuss at the beginning

of next section, corresponds to a classical limit in four dimensional gauge theories. Indeed,

the Nekrasov-Shatashvili limit corresponds to sending ǫ2 → 0 at fixed coupling, while, as

shown in [38], the vortex partition functions can be recovered in a scaling limit in which

also the gauge coupling is involved. This on one side confirms our interpretation of the

vortex counting as a classical limit of the four dimensional gauge theory and moreover

suggests that our result could represent a specific sector of the Nekrasov-Shatashvili’s one.

3 Vertices

In this section we describe the topological open string counterpart of the vortex counting

functions by using the topological vertex formalism. Notice that in the previous para-

graph we have shown that vortex counting can be obtained from instanton counting at

ǫ1 + ǫ2 = 0. This implies that its topological string counterpart is obtained in term of

unrefined topological vertex.

The vortex partition function is identified with the classical limit Λ → 0 of the four

dimensional gauge theory surface operator evaluation [30]. In the brane construction, this

limit is realized by scaling to infinity the extension of the D4-brane in the x6 direction.

From the viewpoint of the toric geometry engineering of the four dimensional N = 2 gauge

theory, this limit corresponds to send to infinity the ladders of the relevant toric diagram,

leaving us with a pure strip geometry, see figure 2.

As we will show in the following, the presence of the D2-branes is exactly taken into ac-

count by suitable boundary conditions on the topological vertex on the strip. In particular,

– 8 –
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Æ
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Figure 2. Toric diagram engineering the 4D gauge theory and its classical limit to the strip.

in the case of antifundamental matter one has to place on the internal legs column diagrams

with lengths kl l = 1, . . . , N , corresponding to the vortex number on each D2-brane ending

on the l-th D4 brane, see figure 3a. These correspond exactly to the column partitions

of the total vortex number introduced in section 2.1. The case of adjoint matter can be

reproduced in the same setup by identifying the boundary conditions on the horizontal

direction of the toric diagram, see figure 3b. This identification comes from the periodicity

of the D-brane construction engineering the N = 2∗ theory.

Let us recall that the shape of the Young tableaux encoding the boundary conditions on

the D-branes corresponds to the choice of the representation of the gauge group of each in-

serted Wilson line. Since the vortex vacua studied in the previous section maximally break

the gauge group as SU(N) → U(1)N−1, this has to be reproduced by the corresponding

choice of D-brane boundary conditions, namely by single column representations.

3.1 Anti-fundamental matter

In this subsection we compute the topological vertex on the strip with boundary condi-

tions given by single column Young diagram of variable lengths on one side of the strip

and we show that there is a natural scaling limit on the Kahler moduli of the toric dia-

gram amplitudes such that these reduce to the vortex counting partition functions with

anti-fundamentals.

We start from the (normalized) topological vertex on a strip as calculated in [47]. Its

form and some properties useful to our computations are given in the appendix.

Let us compute then topological vertex on the strip with boundary conditions corre-

sponding to single columns representations on one side and trivial representations on the

other. It reads

A
{1k1 ,1k2 ,...,1kN }
{∅,∅,...,∅} =

N
∏

l=1

kl
∏

i=1

1

1−qi

∏N
l≤m

∏kl
i=1

(

1−Qαlβm
q(i−1)

)
∏N

l<m

∏km
i=1

(

1−Qβlαm
q−(i−1)

)

∏N
l<m

(

∏km
i=1 (1−Qαlαmq

i−1−kl)
∏kl

i=1 (1−Qαlαmq
1+km−i)

) .

– 9 –
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Figure 3. Strip diagrams: (a) anti-fundamental, (b) adjoint.

By defining

Qαlβf
= e−β(al+mf ) (l ≤ f)

Qβfαm
= eβ(al+mf ) (f < l) (3.1)

Qαlαm = eβalm

q = e−β~

and going to the cohomological limit β → 0 we find

A
{1k1 ,1k2 ,...,1kN }
{∅,∅,...,∅} →

N
∏

l=1

kl
∏

i=1

1

i~

∏N
l≤f

∏kl
i=1 (al+mf+(i−1)~)

∏N
f<l

∏kl
i=1 (al+mf+(i−1)~)

∏N
l<m

∏km
i=1 (aml+~ (i−1−kl))

∏kl
i=1 (alm+~ (i−1−km))

which is easily recognized to be equal to (2.19).

3.2 Adjoint matter

As we said, the adjoint matter case can be obtained by computing the topological vertex

on the strip diagram of figure 3b.
The topological vertex computation gives, by using the properties listed in the ap-

pendix,

A
{1k1 ,1k2 ,...,1kN }
{k1,k2,...,kN} =

N
∏

l=1

qkl(kl−1)/2
kl
∏

i=1

1

(1− qi)2

kl
∏

i=1

(1− qiQαlβl
)(1− q−iQαlβl

)× (3.2)

×

∏

l<m

∏kl

i=1(1−qi−1−kmQαlβm
)(1−qi−1−kmQβlαm

)
∏km

i=1(1−q−i+1+klQαlβm
)(1−q−i+1+klQβlαm

)
∏

l<m

∏kl

i=1(1−qi−1−kmQαlαm
)(1−qi−1−kmQβlβm

)
∏km

i=1(1−q−i+1+klQαlαm
)(1−q−i+1+klQβlβm

)

– 10 –
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where αl = (1kl) and βl = αt
l = (kl).

Via the identifications

q = e−β~

Qαlβl
= e−βm

and for l < m

Qβlαm
= e−β(m+alm)

Qαlαm = e−βalm

Qβlβm
= e−βalm

Qαlβm
= e−β(alm−m)

and by taking the β −→ 0 limit, (3.2) reduces to

N
∏

l=1

kl
∏

i=1

(i~+m)(i~−m)

(~i)2

N
∏

l<m

∏kl
i=1((i− 1− km)~+ alm −m)((i− 1− km)~+ alm +m)
∏kl

i=1((i− 1− km)~+ alm)((i− 1− km)~+ alm)

×
N
∏

l<m

∏km
i=1((−i+ 1 + kl)~+ alm −m)((−i+ 1 + kl)~+ alm +m)
∏km

i=1((−i+ 1 + kl)~+ alm)((−i+ 1 + kl)~+ alm)
(3.3)

which is equal to

Zadj
k

(a,m)Zadj
k

(a,−m).

4 Surface operators and Toda CFT

In this section we discuss the resummation formulae for supersymmetric vortex partition

functions and interpret them in terms of suitable conformal blocks of Toda field theory.

In particular we provide a closed expression for the generating functions of vortices in

terms of generalised hypergeometric functions, which in turn are the building blocks for

amplitudes with degenerate field insertions in Toda conformal field theory (CFT). As an-

ticipated in the introduction the origin of this relation has to be understood in terms of

surface operators in four-dimensional N = 2 superconformal gauge theory, namely they

can be described in terms of a two dimensional gauge theory living on the defects where

the surface operators lies.

In order to clarify this issue, let us consider the brane realization of surface operators

in N = 2 SYM with U(N) gauge group, see figure 1. The gauge theory is realized as a set of

N parallel D4-branes suspended between two parallel NS5 branes. The transverse distance

between these two NS5-branes is proportional to lnΛ, Λ being the dynamical scale of the

gauge theory [58]. The surface operator is obtained by suspending N D2-branes between a

further parallel and transversally displaced NS5’-brane and the D4-branes. The transverse

distance is the dynamical scale of a two dimensional theory, namely its Fayet-Iliopoulos

parameter. The location of the N D2-branes on the D4-branes determines a partition of

N =
∑N

a=1Na corresponding to the generically unbroken gauge symmetry
∏

aU(Na). We

will consider the case of surface operators breaking to U(1)N , namely Na = 1 for all a. It

– 11 –



J
H
E
P
0
6
(
2
0
1
2
)
1
7
8

I1k1 M

I1k2 M

I1kN M

I1k1 M

I1k2 M

I1kN M

Dk
× ×

=

Figure 4. The strip amplitude for matter in the anti-fundamental.

was shown in [30] that the abelian vortex partition function computes the classical limit

of simple surface operators. In this section we argue that the non-abelian vortex counting

of the previous sections corresponds to the classical limit of interacting multiple surface

operators of simple type. Restricting to the computation of the classical value of the above

surface operators corresponds to move the two NS5-branes far away, therefore leaving the

corresponding U(N) theory non dynamical. In particular the four dimensional gauge group

becomes the flavour symmetry of the two dimensional gauge theory.

The gauge theory point of view also suggests looking for an AGT dual of the vortex

partition function. Actually, having realized the vortex partition function in terms of the

dual topological string as the vertex on the strip with single columns Young tableaux,

we can formulate the Toda field theory dual along the lines elaborated in [49], that is by

realizing the surface operator insertions as particular toric branes on the strip.

The AGT dual of the Nekrasov partition function of the U(N) gauge theory with

2N fundamentals can be obtained by the Toda conformal block on the sphere with two

maximal punctures, at 0 and ∞, and two semi-degenerate fields at 1 and z [61]. In this

framework the dual of surface operators is realized by inserting further degenerate fields [5]

in the Toda field theory conformal block. Indeed we are about to prove that the resummed

vortex partition function can be expressed precisely in terms of these conformal blocks.

Let us focus on the case of antifundamental matter and consider the following gener-

ating function

Zaf (z,mf , al, ~) =
∑

k

zkZaf
k

(4.1)

where k = {k1, . . . , kN}, z = {z1, . . . , zN} and zk =
∏

l z
kl
l By making use of the identity

(a− l)m(−a−m)l =

(

1 +
(m− l)

a

)−1

(a+ 1)m(−a+ 1)l (4.2)

where (a)n =
∏n

i=1(a+ i− 1) is the usual Pochhammer symbol we can rewrite the vortex

– 12 –
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partition function as

Zaf
k

=
N
∏

l<m

(

1 + ~
(km − kl)

aml

) N
∏

l=1

1

kl!

N
∏

f

(

al +mf

~

)

kl





N
∏

l 6=m

(

alm + ~

~

)

kl





−1

(4.3)

By replacing the latter in the definition (4.1), we then get

Zaf (z,mf , al, ~) = D
N
∏

l=1

N FN−1 (Al, Bl, zl) (4.4)

where N FN−1 (A,B, z) =
∑

k
zk

k!
(A1)k·...·(AN )k

(B1)k·...·(BN−1)k
is the generalized hypergeometric function

and

D =
N
∏

l<m

(

1 + ~
zm∂zm − zl∂zl

aml

)

(4.5)

Al =

{

al +m1

~
,
al +m2

~
, ...,

al +mN

~

}

Bl =

{

al1 + ~

~
,
al2 + ~

~
, ...,

alN + ~

~

}

The AGT dual picture is then recovered by noticing that the generalized hypergeomet-

ric functions are the degenerate conformal blocks in Toda field theory considered in [33],

namely the ones associated to the four point function

< α2|V−bω1(z)V−κωN−1(1)|α1 > (4.6)

where |α1 > and |α2 > are two primary states, V−bω1 is the highest weight degenerate field

and V−κωN−1 the vertex with momentum proportional to the lowest root. Each of them

corresponds to the field theory limit of a single toric brane amplitude [49]. The total am-

plitude (4.4) is given by the action of the differential operator D in (4.5) over a product of

N single brane amplitudes (see figure 4). The non-abelian structure of the amplitude is en-

coded in the operator D of which it would be nice to provide a precise CFT transliteration.

As we have shown in section 2.2, the vortex counting can be obtained from instanton

counting by restricting to columns. This should have a clean counterpart in the AGT dual

picture. Notice that the full amplitude is expressed in terms of correlators with a single

degenerate field insertion. Therefore it should be possible to interpret (4.4) as a correlator

on a degenerate sphere, with further insertions of degenerate fields on the stretching collars.

In this way, the intermediate states would reduce to a tower of degenerate states which de-

pend on the level only and thus could be represented as columns with height corresponding

to the level.

Let us notice that the operator z∂z acting on generalized hypergeometric functions pro-

duces linear combinations of them with shifted parameters. Therefore formula (4.4) can

also be written in terms of products of linear combinations of generalized hypergeometric

functions with shifted parameters.

– 13 –
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It is easy to uplift the previous procedure to the full open topological string amplitude

on the strip

A
{1k1 ,1k2 ,...,1kN }
{∅,∅,...,∅} =

N
∏

l<m

1−Qαlαmq
kl−km

1−Qαaαb

(

Qβlαm
q

Qαlαm

)

km

(4.7)

×
N
∏

l=1

kl
∏

i=1

1−Qαlβl
qi−1

1− qi

N
∏

l<m

kl
∏

i=1

1−Qαlβm
qi−1

1−Qαlαmq
i

km
∏

i=1

1−Q−1
βlαm

qi−1

1−Q−1
αlαmq

i

For l < m, we define Ml,m = Qαlβm
q−1;Mm,l = Q−1

βlαm
q−1;Ql,m = Qαlαm ;Qm,l =

Q−1
αlαm ,while for l = m, Ml,l = Qαlβl

q−1;Ql,l = 1. By also defining

[Q]k =
k
∏

i=1

(

1−Qqi
)

(4.8)

Dk =
N
∏

l<m

1−Ql,mqkl−km

1−Ql,m

(

M−1
m,l

Ql,m

)

km

we get

A
{1k1 ,1k2 ,...,1kN }
{∅,∅,...,∅} =

N
∏

m=1

Dk

∏N
l=1 [Ml,m]

kl

[1]km
∏N

n 6=m [Qn,m]
kn

. (4.9)

This is schematically encoded in figure 4. By resumming the topological string amplitudes

as

A(z) =
∑

k

zkA
{1k1 ,1k2 ,...,1kN }
{∅,∅,...,∅} (4.10)

we obtain

A(z) = D
N
∏

l=1

N ΦN−1 (Xl, Yl, zl) (4.11)

where NΦN−1 (X,Y, z) =
∑

k
zk

[1]k

[X1]k·...·[XN ]k
[Y1]k·...·[YN−1]k

is a q-deformed generalized hypergeometric

function, Xl = e−β~(Al−1), Yl = e−β~Bl and D =
∏

l<m

1−Ql,mq
zl∂zl

−zm∂zm

1−Ql,m
up to a multi-

plicative redefinition of the open moduli z. The operator D is a finite difference operator

whose action on the q-deformed generalized hypergeometric functions multiplicatively shifts

their arguments. This result could be interpreted in the light of a five dimensional uplift

of the AGT relation [8].

Let us now discuss the vortex partition function for the adjoint matter case. By making

use of the previous identity (4.2) we obtain

Zadj
k

=
∏

l<m

(

1− ~
kl−km
alm

)

(

1− ~
kl−km
alm−m

)

∏

l

(m/~+ 1)kl
kl!

∏

l 6=m

(

alm−m
~

+ 1
)

kl
(

alm
~

+ 1
)

kl

∏

l<m

(

−alm+m
~

− kl
)

km
(

−alm−m
~

− kl
)

km

(4.12)

Notice that this form does not show an obvious resummation in terms of generalized hy-

pergeometric functions due to the last multiplicative factor in (4.12). However, the open
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topological string amplitude in the β → 0 limit (3.3) can be recast, by making use of (4.12),

in the form5

∏

l<m

(

1− ~
kl−km
alm

)2

(

1− ~
kl−km
alm−m

)(

1− ~
kl−km
alm+m

)

∏

l,m

(

alm−m
~

+ 1
)

kl

(

alm+m
~

+ 1
)

kl
(

(

alm
~

+ 1
)

kl

)2 (4.13)

By resumming the above coefficients against zk one finally gets

Dadj(a,m)
∏

l

2NF2N−1

(

Aadj
l , Badj

l , zl

)

(4.14)

where

Aadj
l =

(

alm +m

~
+ 1,

alm −m

~
+ 1

)

Badj
l =

(alm
~

+ 1,
alm
~

+ 1
)

(4.15)

and

Dadj(a,m) =
∏

l<m

(

1− ~
zl∂zl−zm∂zm

alm

)2

(

1− ~
zl∂zl−zm∂zm

alm−m

)(

1− ~
zl∂zl−zm∂zm

alm+m

) . (4.16)

The resummed form (4.14) in terms of generalized hypergeometric functions suggests an

interpretation of the resummed open topological string amplitude in the β → 0 limit as

degenerate conformal blocks of Toda field theory on the sphere. We argue that, by using

a suitable generalization of the results in [34] to Toda field theory, this can be recast as

conformal blocks on the torus giving the expected AGT dual description.

As it is well known generalized hypergeometric functions satisfy generalized hypergeo-

metric differential equations. Moreover, the q-deformed generalized hypergeometric func-

tions, resumming the vertex amplitudes, satisfy corresponding finite difference equations.

5 Discussion and open issues

In this paper we presented a description of the moduli spaces of non-abelian U(N) vortices

with adjoint and N (anti-)fundamental matter multiplets as holomorphic submanifolds of

instanton moduli spaces. The associated partition functions provide the classical limit (zero

instanton sector) of the v.e.v. of multiple surface operator insertions in the parent N = 2

superconformal gauge theories in four dimensions. The results we found can be simply

expressed in terms of an ensemble of abelian partition functions intertwined by the action

of a differential operator which couples the abelian factors of the Cartan subgroup, and thus

induces pairwise interactions in the ensemble of multiple surface operators of simple type.

We performed a resummation of the full partition functions over the vortex numbers

by providing a closed expression in terms of combinations of generalized hypergeometric

functions. This allowed us to make contact with a dual Toda CFT description in terms

5Notice that in the product the two multiplicative unfair terms cancel.
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conformal blocks with degenerate field insertions. In particular we have shown that the

vortex counting amounts to a restriction of instanton counting just to column diagrams

and proposed a possible interpretation in the CFT dual which should be further refined.

We also studied the K-theoretical uplift of these countings and find a dual string de-

scription in terms of open topological strings on a strip with suitable boundary conditions.

There are several issues raised by our results which are worth to be investigated further.

First of all it would be highly desirable to provide a full four-dimensional computation of

the instanton partition function with interacting surface operators, going beyond the clas-

sical limit presented in this paper. It would be also interesting to investigate the extension

and the relation to other kind of surface operators, for example to full ones [6, 7]. Con-

cerning the K-theoretical uplift, a nice connection of the abelian vortex counting with the

equivariant J-function [39, 40] encoding the quantum cohomology of complex projective

spaces has been pointed out in [30]. It is natural to argue that the generating functions

we find in this paper are related to J-functions of more general flag varieties. Along this

line of thought, it would be certainly interesting to analyse the moduli space of vortices on

generic Riemann surfaces in order to extend these relations to equivariant Gromov-Witten

invariants of higher genera. A useful starting point should be [9] and the analysis of [11].

A complementary route that could be taken in this direction is to analyse the B-model

mirror description of the strip computations that we presented. Indeed we showed that

the resummation of vortices can be performed also at the K-theoretical level in terms of q-

deformed generalised hypergeometric functions, which point to the possibility of encoding in

geometrical terms the fully resummed amplitudes. The route to the B-model mirror picture

could pass by a rephrasing of the result in terms of generalized matrix models [26–29] via

the encoding of the mirror geometry in the spectral curve. All this points to an heavy role

played by integrable systems also in vortex counting problems, both from their appearance

in the AGT dual [22, 23] and from the topological string viewpoint [3, 12]. Furthermore,

in [54], it has been shown that the approach of [53] can be recast in terms of restriction of

the instanton counting to columns diagrams. It would be nice to exploit this observation

to make a precise connection between vortex counting and the Nekrasov-Shatashvili limit.

It would be nice to further analyse the role of vortex counting in the AGT correspon-

dence also in the light of the application to fractional quantum Hall systems presented

in [55].

Last but not least, it has been shown in [36] that the instanton counting techniques

are suitable to describe the superpotentials of N = 1 theories in four dimensions by setting

the Cartan parameters to appropriate values, describing the N = 1 vacua. An evidence

in this direction is that in [1, 12, 25] disk amplitudes are expressed precisely in terms of

hypergeometric functions with parameters fixed in terms of the masses and the strong

coupling scale. We expect that analogous results can be obtained in the vortex counting

case, possibly opening a window on a extension of AGT duality to N = 1 theories.
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A The conventions on the topological vertex

In this appendix we summarize the usual conventions on the topological vertex on the strip

and some useful formulas that we used in the main text.

The normalized amplitude on the strip is given by [47]

A
{α}
{β} =

N
∏

a=1

sαasβa

∞
∏

i=−∞

∏

a≤b

(

1− qiQαaβb

)

Ci(αa,βb)
∏

a<b

(

1− qiQβaαb

)

Ci(βt
a,α

t
b) (A.1)

×

(

∏

a<b

(

1− qiQαaαb

)

Ci(αa,α
t
b)
(

1− qiQβaβb

)

Ci(βt
a,βb)

)

−1

where αa, βb are the left and right partitions parametrizing the toric branes boundary

conditions. sα is the Schur function

sα(q)=q
∑

i(i−1)αi

∏

p∈α

1

1− qhook(p)
(A.2)

where αi is the i − th component of the partition α, and hook(p) is the hook length of a

point p ∈ α seen as a Young tableaux.

For columns and strips one has

s(1k) =
k
∏

i=1

1

1− qi

s(k) = q
k(k−1)

2

k
∏

i=1

1

1− qi
(A.3)

The coefficients Ck(α, β) are defined for two given partitions α and β by the formula

∑

k

Ck(α, β)q
k =

q

(1− q)2



1 + (q − 1)2
dα
∑

i=1

q−i

αi−1
∑

j=0

qj





×



1 + (q − 1)2
dβ
∑

i=1

q−i

βi−1
∑

j=0

qj



−
q

(1− q)2
(A.4)

and are symmetric by definitions, that is Ci(α, β) = Ci(β, α).
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Specializing to columns and strips one finds

Ci

(

1k, ∅
)

=

{

1 i ∈ [0, k − 1]

0 otherwise

Ci((k), ∅) =

{

1 i ∈ [−k + 1, 0]

0 otherwise

Ci

(

1k1 , (k2)
)

=

{

1 i ∈ [−k2, k1 − k2 − 1] ∪ [k1 − k2 + 1, k1]

0 otherwise
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