
J
H
E
P
0
6
(
2
0
1
2
)
1
6
1

Published for SISSA by Springer

Received: January 12, 2012

Revised: May 25, 2012

Accepted: June 11, 2012

Published: June 27, 2012

Boundary action of free AdS higher-spin gauge fields

and the holographic correspondence

Euihun Jounga and Jihad Mouradb

aScuola Normale Superiore and INFN,

Piazza dei Cavalieri 7, 56126 Pisa, Italy
bAPC,1 Université Paris VII,
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1 Introduction

One of the most remarkable holographic correspondences is the one relating an interact-

ing higher-spin (HS) theory1 in Anti de Sitter spacetime (AdS) to a boundary free scalar

theory [18–25]. This conjectured correspondence allows, in principle, to connect the observ-

ables of the HS theory to observables in the free CFT coupled to external HS sources [26].

1For recent reviews on higher-spin theory, see e.g. the proceeding [1] (which includes the contributions [2–

6]) and [7–10]. For recent works on massless higher-spin fields from string theory, see e.g. [11–17].
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Since the CFT is free, one expects to deduce many features of the HS theory and to

gain a better understanding of the Vasiliev system (see e.g. [27, 28] for some reviews),

the candidate of the AdS theory. Despite many checks [20, 29–41] (see also [42, 43] for

the AdS3/CFT2 case), the state of affairs is still, in our opinion, unsatisfactory because a

systematic comparison is lacking.

In this article we propose to initiate a systematic study starting from the reasonable

assumption that the HS theory can be described as a series in the coupling constant with the

first term being the free Fronsdal action [44]. The subject of this paper is the determination

of the free on-shell Fronsdal action as a functional of the boundary data. This is the object

to be compared with the quadratic part of the CFT effective action.

The AdS/CFT correspondence applied to gauge fields in the semi-classical regime

states that the finite part of on-shell AdS action coincides with the generating functional

for connected correlation functions of conserved currents on the boundary. These two

quantities are to be matched after the identification of the asymptotic behavior of the

bulk gauge fields with the source fields of the conserved currents. In the case of the HS

holography, the boundary behaviors of an infinite number of HS gauge fields in AdS turn

into the sources of an infinite tower of conserved currents of higher ranks. These currents,

for free scalar fields, are bilinear so that the generating functional can be viewed as the finite

part of the quantum effective action of the scalar field in an external HS background [45].

The ultra-violet divergences of the effective action can be handled with a cut-off and

holographically they become infra-red divergences regularized by displacing the boundary

of AdS to a finite distance. As a consequence, the AdS Fronsdal action needs to be sup-

plemented by boundary terms. In the presence of a boundary, the variation of the AdS

Fronsdal action leads to boundary terms whose cancellation determines the HS generaliza-

tion of the spin two York-Gibbons-Hawking terms [46, 47]. This is the subject of section 2.

The boundary terms have some arbitrariness because the addition of boundary terms in-

dependent of the radial derivative does not change the equations of motions. In section 3,

we constrain these terms in order to keep as much as possible of the gauge symmetries of

the action. We show that it is not possible to restore all the bulk gauge symmetries with

local counterterms, and identify the broken part of the symmetries. The latter generalizes

to HS the radial diffeomorphism of Gravity. This broken gauge symmetry lead in general

to the corresponding anomaly of the AdS on-shell action, and should match with the HS

Weyl anomaly of CFT [36, 45].2 We then turn to the evaluation of the on-shell action as

a functional of the boundary behavior of spin s Fronsdal field. The latter actually con-

tains more independent components than needed to couple to a rank s conserved current.

But we show that these components are related on-shell to each others and reduce to a

d-dimensional spin s field. This field, which we call a HS conformal field, is not subject

to trace constraints, but as the classical CFT action suggests, has a HS generalization

of gauge and Weyl symmetries.3 The HS Weyl symmetry of the boundary theory is in

general broken by quantum corrections. The holographic dual of this is developed in sec-

2See [48] for the Gravity case.
3The conformal HS fields were considered in [23, 49–51].
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tion 4 where we deduce the expression of the on-shell action in terms of the boundary data

provided by the d-dimensional conformal spin s field. For spin two, we show how one can

obtain the same answer as the more conventional boundary field given by the bulk field in

radial gauge evaluated on the boundary. In the general case, we give the expression of the

finite part of the on-shell action and show that it is identical, up to an overall constant, to

the finite part of the effective action as determined in [45]. This is due to the cancellation

of the bulk anomaly by the local counterterm identified in section 3. Finally, we collect

our conclusions in section 5 where, we discuss our results in the light of the AdS/CFT

correspondence and in particular, we compare the on shell action with the quadratic part

of the CFT effective action confirming the HS holography conjecture at this level. The

technical details used in the text can be found in the appendices.

2 Boundary action

2.1 Bulk action and notations

We first recall the AdS Fronsdal HS equations and action in order to explicit our nota-

tions. We adopt the Poincaré coordinate system where the (d + 1)-dimensional AdS is

parametrized by xM ∈ R
d × R>0 . The AdS background metric ḡMN is given by

ds2 = ḡMN dx
M dxN =

1

(xd)
2 ηMN dx

M dxN [M,N = 0, 1, · · · , d ]

=
1

z2

(

ηµν dx
µ dxν + dz2

)

[µ, ν = 0, 1, · · · , d− 1] , (2.1)

where z := xd . The constant-z hyperplanes are d-dimensional Minkowski spaces, and the

z = 0 surface is the boundary of AdS. The regularization of the on-shell action is performed

by transporting the boundary to zB 6= 0 .

It is convenient, in order to simplify the notations, to handle the tensor fields by

contracting them with auxiliary variables. More precisely in the spin s case, we contract

the symmetric tensor ϕM1...Ms with auxiliary variables UA ∈ R
d+1 , by making use of the

vielbein of the AdS metric: ē M
A (x, z) = z δMA , as

ϕ(x, z;U) :=
1

s!
UA1 . . . UAs ē

M1
A1

(x, z) . . . ē Ms
As

(x, z) ϕM1...Ms(x, z) . (2.2)

With this notation, the doubly traceless constraint reads (∂2U )
2 ϕ = 0 while the equations

of motion (EOM) of the massless spin s field FM1...Ms ≈ 0 can be expressed as

1

s!
UA1 . . . UAs ē

M1
A1

. . . ē Ms
As

FM1...Ms = F ϕ(U) , (2.3)

where the Fronsdal operator F acts on the auxiliary variables as well as the spacetime

variables with the AdS covariant expression:

F = �AdS − (U · D)(∂U · D) +
1

2
(U · D)2 ∂2U − U2 ∂2U −m2

s , (2.4)
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where D and �AdS are respectively the AdS covariant derivative and the D’Alembertian

operator in auxiliary variables:

DA = ē M

A ∂xM +
1

2
ω̄ C

AB UB ∂UC = z ∂xA + Ud ∂UA − UA ∂Ud ,

�AdS = ∂U ′ · (D + U ′d ∂U ′ − U ′ ∂U ′d) (U ′ · D) , (2.5)

and m2
s is given by

m2
s = s2 + (d− 5) s− 2(d− 2) . (2.6)

Using these notations for the fields and EOM, we now express the action of the free massless

spin s field in the region z ≥ zB of AdSd+1 denoted in the following by M:

IM = −1

2

∫ ∞

zB

dz

zd+1

〈〈

ϕ
∣

∣

(

1− 1

4
U2 ∂2U

)

F ϕ
〉〉

, (2.7)

where the bracket
〈〈

·
∣

∣ ·
〉〉

is defined as

〈〈

f
∣

∣ g
〉〉

:=

∫

ddx

∞
∑

n=0

1

n!
fµ1···µn(x) g

µ1···µn(x) . (2.8)

This Fronsdal action is our starting point to construct the boundary terms which allow to

derive the EOM from the variational principle and which insure that the total action is

invariant under the largest subset of gauge transformations. In fact, the Fronsdal equation

F ϕ ≈ 0 is invariant under the gauge transformation:

δε ϕ(x, z;U) = U · D ε(x, z;U) , (2.9)

where the gauge parameter ε is subject to the traceless constraint:

∂2U ε(x, z;U) = 0 . (2.10)

The gauge invariance of the Fronsdal action in AdS is due to the Bianchi identity:

(∂U · D − 1

2
U · D ∂2U )F = 0 . (2.11)

2.2 Radial decomposition

In order to unravel the field content from the boundary point of view, we decompose

the O(d, 1)-tensors in terms of the boundary O(d)-tensors. This is conveniently done by

denoting UA as (uµ, v) and by expanding the fields ϕ(u, v) and the gauge parameters ε(u, v)

in powers of v as

ϕ(x, z;u, v) :=
s
∑

r=0

vr

r!
φ(s−r)(x, z;u) , (2.12)

ε(x, z;u, v) :=
s−1
∑

r=0

vr

r!
ǫ(s−1−r)(x, z;u) . (2.13)
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The doubly tracelessness and the tracelessness constraints allow to express φ(r) for r =

0, · · · , s− 4 and ǫ(r) for r = 0, · · · , s− 3 as

φ(s−2n−m) = (−1)n+1
[

(n− 1) (∂2u)
nφ(s−m) + n (∂2u)

n−1φ(s−2−m)
]

, (2.14)

ǫ(s−1−2n−m) = (−1)n(∂2u)
nǫ(s−1−m), (2.15)

where n = 1, · · · and m = 0 or 1. Thus the independent gauge fields and parameters are

the unconstrained

φ(s) , φ(s−1) , φ(s−2) , φ(s−3) , (2.16)

and

ǫ(s−1) , ǫ(s−2) . (2.17)

In terms of these O(d)-tensors, the gauge transformation (2.9) reads

δ φ(s) = z (u · ∂) ǫ(s−1) − u2 ǫ(s−2) ,

δ φ(s−1) = (z ∂z + s− 1 + u2 ∂2u) ǫ
(s−1) + z (u · ∂) ǫ(s−2) ,

δ φ(s−2) = −z (u · ∂) ∂2u ǫ(s−1) +
[

2 (z ∂z + s− 2) + u2 ∂2u
]

ǫ(s−2) ,

δ φ(s−3) = −
[

3 (z ∂z + s− 3) + u2 ∂2u
]

∂2u ǫ
(s−1) − z (u · ∂) ∂2u ǫ(s−2) . (2.18)

Notice that the transformation of φ(s) is a combination of a d-dimensional HS gauge trans-

formation with an unconstrained parameter and a HS Weyl transformation characterizing

a conformal d-dimensional gauge field. From the boundary point of view at constant z

there are two spin s − 1 unconstrained gauge parameters ǫ(s−1) and ∂z ǫ
(s−1) and two spin

s − 2 unconstrained gauge parameters ǫ(s−2) and ∂z ǫ
(s−2). Notice also that ∂z ǫ

(s−1) and

∂z ǫ
(s−2) can be seen as Stueckelberg shift fields for φ(s−1) and φ(s−2). The latter pair of

fields can thus be set to zero by fixing ∂z ǫ
(s−1) and ∂z ǫ

(s−2).4

2.3 Construction of boundary action

In the presence of a finite distance boundary, the bulk action IM (2.7) is not sufficient to

get the EOM from the variational principle. This can be easily seen by calculating the

on-shell variation of the bulk action δ IM under δ ϕ :

δ IM ≈ −1

2

∫ ∞

zB

dz

zd+1

〈〈

ϕ
∣

∣

(

1− 1

4
U2 ∂2U

)

F δ ϕ
〉〉

, (2.19)

where we have used the EOM. If M were a manifold without boundary, then integrating

by part (2.19), δ IM could be expressed with the EOM and so would vanish on-shell. But

for the present case, M has a boundary at z = zB and the integration by part results in

an additional boundary term. Remember also that when varying the action we should use

a proper boundary condition, either the Dirichlet condition δ ϕ(zB) = 0 or the Neumann

condition δ ∂zϕ(zB) = 0 (or a mixed one). Following the standard version of AdS/CFT,

4In eq. (2.18) and in the following, we will use the notation ∂ = ∂/(∂x) and the derivative with respect

to z will be explicitly spelled ∂z.
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we use the Dirichlet boundary condition. By integrating (2.19) by parts and by using

δ ϕ(zB) = 0 and the EOM, we obtain δ IM as a boundary term:

δ IM ≈ z−d−1
B

2

〈〈

ϕ
∣

∣

(

1− 1

4
U2 ∂2U

)

Fzz ∂z δ ϕ
〉〉

zB
, (2.20)

where Fzz is the coefficient of ∂2z in the Fronsdal operator (2.4). Explicitly it is given by

Fzz = z2
(

1− v ∂v +
1

2
v2 ∂2U

)

. (2.21)

We see that the on-shell variation δ IM does not vanish, and this implies that the variational

principle does not lead to the EOM and needs the addition of a boundary term I 0
∂M so

that the total action satisfies

δ ( IM + I 0
∂M ) ≈ 0 . (2.22)

In order that the bulk action provides the Fronsdal equation from the variational

principle with δ ϕ(zB) = 0 , the boundary term I 0
∂M is determined by

I 0
∂M = −z

−d−1
B

2

〈〈

ϕ
∣

∣

(

1− 1

4
U2 ∂2U

)

Fzz ∂z ϕ
〉〉

zB
. (2.23)

By using the radial decomposition of the field ϕ, we obtain the explicit expression of (2.23)

in terms of O(d)-tensor fields as

I 0
∂M =

z−dB
2

[

〈〈

φ(s)
∣

∣P
′
e z ∂z φ

(s)
〉〉

zB
+
〈〈

ψ(s−3)
∣

∣P
′
o z ∂z ψ

(s−3)
〉〉

zB

]

, (2.24)

with

ψ(s−3) :=
1

2

(

φ(s−3) + 3 ∂2u φ
(s−1)

)

, (2.25)

and

P
′
e :=

∞
∑

n=0

2n− 1

(2n)!
(u2)n(∂2u)

n , P
′
o :=

∞
∑

n=0

2n+ 2

(2n+ 3)!
(u2)n(∂2u)

n . (2.26)

Notice that the boundary term I 0
∂M does not depend on φ(s−2), and it depends on φ(s−1)

and φ(s−3) only through ψ(s−3).

The action IM + I 0
∂M provides the Fronsdal equation in M, but, since we are using

a Dirichlet boundary condition, any boundary term which does not involve ∂z φ
(r) can be

freely added without affecting the variational principle. This gives rise to an ambiguity on

the on-shell action and consequently in the AdS/CFT correspondence. In order to fix the

ambiguity, we rely on the variation under the gauge transformation of the total action:

δε ( IM + I∂M ) = 0 , (2.27)

where I∂M is a completion of I 0
∂M with ∂zφ

(r)-free boundary terms. For the determination

of I∂M, we proceed in two steps:

– 6 –
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1. we determine the gauge variation of IM+I 0
∂M under the transformations α generated

by ǫ(s−1), ∂zǫ
(s−1) and ∂zǫ

(s−2) , and then add a ∂zφ
(r)-independent boundary term such

that

δα ( IM + I∂M ) = 0 . (2.28)

The result of this step is summarised in eqs. (2.69) and (2.70).

2. The most general boundary term is then given by the addition to the above term

of a ∂zφ
(r)-independent local term invariant under the above transformations α. We

determine these counterterms and examine whether they can compensate the gauge

variation of IM + I∂M under ǫ(s−2) . The outcome of this step are the countert-

erms (3.7) and (3.8) with the definitions (3.3) and (3.10). We will also prove in

section 3.2 that, for spin larger than two, no counterterm can fully compensate the

ǫ(s−2) variation and hence the action is characterized by an anomaly under the HS

Weyl transformations.

Let us first specialize to the spin 2 case for which the formulas simplify considerably.

2.4 Spin 2 case

The boundary term (2.24) reduces to

I 0
∂M = −z

−d
B

2

〈〈

φ(2)
∣

∣

(

1− 1

2
u2 ∂2u

)

z ∂z φ
(2)
〉〉

zB
. (2.29)

Any boundary term independent of ∂z φ
(r) vanishes under the variation δ ϕ with the Dirich-

let condition, and can be freely added without effecting the EOM.

In order to fix this ambiguity of boundary terms, as stated above, we will rely on the

gauge invariance. The linearized diffeorphism is expressed in auxiliary variables in eq. (2.9),

and in terms of φ(2), φ(1), φ(0) (2.12) and ǫ(1), ǫ(0) (2.13), the gauge transformation (2.18)

reads

δ φ(2) = z (u · ∂) ǫ(1) − u2 ǫ(0) ,

δ φ(1) = (z ∂z + 1) ǫ(1) + z (u · ∂) ǫ(0) ,
δ φ(0) = 2 z ∂z ǫ

(0) . (2.30)

Notice that the transformation of φ(2) is a combination of a d-dimensional gauge transfor-

mation and a Weyl transformation characterizing a conformal d-dimensional spin 2 gauge

field. From the boundary point of view at constant z there are two spin 1 gauge parameters

ǫ(1)(zB) and ∂z ǫ
(1)(zB) and two spin 0 gauge parameters ǫ(0)(zB) and ∂z ǫ

(0)(zB). Notice

also that ∂z ǫ
(1)(zB) and ∂z ǫ

(0)(zB) can be seen as Stueckelberg shift fields for φ(1)(zB)

and φ(0)(zB) . The latter pair of fields can thus be set to zero by fixing ∂z ǫ
(1)(zB) and

∂z ǫ
(0)(zB) .

Under the gauge transformation (2.30) the bulk action IM is not invariant but gives a

boundary term because the gauge invariance of the linearized Gravity action requires again

– 7 –
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an integration by part. More precisely the gauge variation of the bulk action is given with

the aid of the Bianchi identity by the following boundary term:

δε IM =
z−dB
2

〈〈

v ε
∣

∣

(

1− 1

4
U2 ∂2U

)

F ϕ
〉〉

zB
. (2.31)

Note that the bulk action is still invariant under the gauge transformation whose gauge

parameter vanishes on the boundary: ε(zB) = 0 . We want to complete I 0
∂M with suitable

∂z φ
(r)-free boundary terms so that the resulting boundary term I∂M satisfies

δǫ(r) ( IM + I∂M ) = 0 [r = 1, 0] . (2.32)

To begin with, we construct a boundary term which restores the gauge invariance under

ǫ(1) (that is, both of ǫ(1)(zB) and ∂z ǫ
(1)(zB)).

For that, we need to first compute the gauge variations of IM and I 0
∂M under ǫ(1) ,

and then construct a suitable boundary term to cancel them. It is in fact more convenient

to consider, instead of I 0
∂M , a complemented one I 0′

∂M whose gauge variation is easier to

compute. This is equivalent since in any case we should add another boundary term to

compensate the gauge variation. Let us replace z ∂z φ
(2) in the l.h.s. of I 0

∂M (2.29) with a

ǫ(1)(zB), ∂zǫ
(1)(zB) and ∂zǫ

(0)(zB)-invariant:

χ(2) := z ∂z φ
(2) − z (u · ∂)φ(1) +

1

2
u2 φ(0) . (2.33)

The complemented boundary term containing ∂z φ
(2) becomes now

I 0′

∂M =
z−dB
2

〈〈

φ(2)
∣

∣

(

−1 +
1

2
u2 ∂2u

)

χ(2)
〉〉

zB
, (2.34)

and its ǫ(1)-variation is given by

δǫ(1) I 0′

∂M =
z−d+1
B

2

〈〈

ǫ(1)
∣

∣

(

∂u · ∂ − u · ∂ ∂2u
)

χ(2)
〉〉

zB
. (2.35)

After obtaining the gauge variation of the boundary term, it is time to compute the gauge

variation of the bulk action IM . For the case of ǫ(1)-gauge variation, (2.31) reduces to

δǫ(1) IM =
z−dB
2

〈〈

ǫ(1)
∣

∣ ∂v F ϕ
〉〉

zB
, (2.36)

and we obtain (∂v F ϕ)(x, z;u, 0) from a direct computation (B.3) as

(∂vFϕ)(x, z;u, 0) = z2(u · ∂∂2u − ∂ · ∂u)∂zφ(2)(x, z;u)

+z2 (�− u · ∂∂ · ∂u)φ(1)(x, z;u) + (d− 1)zu · ∂φ(0)(x, z) . (2.37)

Finally, by summing (2.35) and (2.36), we see that the ǫ(1)-variation of the total action

vanish:

δǫ(1)

(

IM + I 0′

∂M

)

= 0 . (2.38)

– 8 –



J
H
E
P
0
6
(
2
0
1
2
)
1
6
1

Moreover the total action is also invariant under the gauge transformation generated by

∂z ǫ
(0)(zB) since φ(2) and χ(2) are invariant. In fact, the boundary term that we have

just constructed corresponds to the quadratic part of the boundary term appearing in the

linearized AdS Gravity, that is the Einstein-Hilbert bulk action supplemented with the

York-Gibbons-Hawking term. More precisely, I 0′

∂M coincides to the boundary term (A.10)

of the linearized AdS Gravity (see appendix A for the details).

Let us now determine the variation of the bulk and boundary terms under the gauge

transformation generated by ǫ(0), the first is given by

δǫ(0) IM =
z−dB
4

〈〈

ǫ(0)
∣

∣ (∂v
2 − ∂u

2)F ϕ(2)
〉〉

=
z−dB
2

〈〈

ǫ(0)
∣

∣ (d− 1) ∂ 2
u χ

(2) − z2
[

� ∂ 2
u − (∂u · ∂)2

]

φ(2)
〉〉

zB
, (2.39)

and the second

δǫ(0) I 0′

∂M =
z−dB
2

〈〈

ǫ(0)
∣

∣−(d− 1) ∂ 2
u χ

(2) − z2
[

� ∂ 2
u − (∂u · ∂)2

]

φ(2)
〉〉

zB
. (2.40)

The χ(2)-contribution cancels and finally we get for the total variation

δǫ(0)

(

IM + I 0′

∂M

)

= −z−d+2
B

〈〈

ǫ(0)
∣

∣

[

� ∂ 2
u − (∂u · ∂)2

]

φ(2)
〉〉

zB
. (2.41)

It is natural now to continue the procedure and look for a boundary term which is ∂z φ
(r)-

independent, invariant under the ǫ(1) , ∂z ǫ
(1) and ∂z ǫ

(0) and which cancels the above vari-

ation. In fact, checking the gauge variations we easily see that such a term could depend

only on φ(2) . The ǫ(1)-invariant terms with two derivatives reduce to

I (c.t.)
∂M = c z−d+2

B

〈〈

φ(2)
∣

∣

(

1− 1

4
u2 ∂2u

)

FMd φ(2)
〉〉

zB
, (2.42)

with an undetermined constant c . Its variation under ǫ(0) is

δǫ(0) I
(c.t.)
∂M = 2(d− 2) c z−d+2

B

〈〈

ǫ(0)
∣

∣

[

� ∂2u − (∂u · ∂)2
]

φ(2)
〉〉

zB
. (2.43)

As a result, for d 6= 2 it is possible to cancel the term (2.41) by the addition of I (c.t.)
∂M with

c =
1

2(d− 2)
. (2.44)

For d = 2 it is not possible to cancel (2.41) by a local term, this results in an anomaly

under the symmetries generated by ǫ(0) .

In brief, we have found that in the spin 2 case the bulk action has to be amended by

a boundary term in such a way that the equations of motion are correctly reproduced and

that the action is invariant under all the gauge symmetries but the ones generated by ǫ(0)

which are anomalous for d = 2 . We now turn to the generalization of the above results to

the arbitrary spin case.
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2.5 General case

We want to construct a boundary term I∂M satisfying (2.28). In fact, it will be more

convenient as for spin 2 to first modify I 0
∂M into I 0′

∂M such that its ǫ(s−1)-variation has a

simpler expression. Then, we construct a boundary term I 1
∂M such that

δα I 1
∂M = − δα

(

IM + I 0′

∂M

)

, (2.45)

where α is a gauge transformation generated by ǫ(s−1) and ∂zǫ
(s−1) . We will proceed in

steps, from ǫ(s−1) and ∂zǫ
(s−1) transformations we will construct the first boundary term

I 1
∂M and then from the transformation of IM+I 0′

∂M+I 1
∂M under ∂zǫ

(s−2) we determine I 2
∂M .

The zeroth boundary term I 0
∂M (2.24) contains ∂z φ

(s) and ∂z ψ
(s−3) on the r.h.s. of the

brackets. They can be replaced by the invariants under the ǫ(s−1)-transformation by adding

∂z φ
(r)-independent terms as

χ(s) := (z ∂z + s− 2)φ(s) − z (u · ∂)φ(s−1) − u2 φ(s−2) , (2.46)

χ(s−3) := (z ∂z + s− 3)ψ(s−3) + (d+ 2s− 5)φ(s−3) +
1

2
u2 ∂2u

(

φ(s−3) + ∂2u φ
(s−1)

)

,

so that I 0
∂M is replaced by

I 0′

∂M =
z−dB
2

[

〈〈

φ(s)
∣

∣P
′
e χ

(s)
〉〉

zB
+
〈〈

ψ(s−3)
∣

∣P
′
o χ

(s−3)
〉〉

zB

]

. (2.47)

Since χ(s) and χ(s−3) are ǫ(s−1)-invariants, the ǫ(s−1)-variation of the above is simple to

compute, and is given by

δǫ(s−1) I 0′

∂M =
z−dB
2

〈〈

ǫ(s−1)
∣

∣Pe

[

z (∂u · ∂ − u · ∂ ∂2u)χ(s) + u2 χ(s−3)
] 〉〉

zB
, (2.48)

with

Pe :=

∞
∑

n=0

1

(2n)!
(u2)n(∂2u)

n , Po :=

∞
∑

n=0

1

(2n+ 1)!
(u2)n(∂2u)

n . (2.49)

In order to get (2.48), we have used the identities (C.1 , C.2). To construct the first

boundary term I 1
∂M with (2.45), we need to compute also the gauge variation of the bulk

action. From the gauge invariance of the Fronsdal equation and the Bianchi identity (2.11),

we get the gauge variation of the action as (2.31). For a more explicit expression of the

above, we consider the radial decomposition of the Fronsdal equation:

(F ϕ(s))(x, z;u, v) =
s
∑

r=0

vr

r!
f (s−r)(x, z;u) , (2.50)

where f (r) are determined by f (s), f (s−1), f (s−2) and f (s−3) since the Fronsdal equation also

has vanishing the double-trace:

f (s−2n−m)(x, z;u) = (−1)n+1
[

(n− 1)(∂2u)
n (∂mv Fϕ)(x, z;u, 0)

+ n(∂2u)
n−1

(

∂m+2
v Fϕ

)

(x, z;u, 0)
]

, (2.51)
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where m is either 0 or 1. Using (2.50) and (2.51), the gauge variation of the bulk action is

written as

δε IM =
z−dB
2

[

〈〈

ǫ(s−1)
∣

∣Pe ∂v F ϕ
〉〉

+
〈〈

ǫ(s−2)
∣

∣Po
1

2
(∂2v − ∂2u)F ϕ

〉〉

]

. (2.52)

The expressions for ∂v F ϕ |v=0 and (∂2u−∂2v)F ϕ |v=0 are obtained in (B.3) and (B.4) from

the explicit decomposition (B.2) of the Fronsdal operator. Noting that ∂v F ϕ |v=0 is gauge

invariant as the Fronsdal equation is, we express it in terms of ǫ(s−1)-invariants as

∂v F ϕ
∣

∣

v=0
= −z (∂u · ∂ − u · ∂ ∂2u)χ(s) − u2 χ(s−3) + z u · ∂ ζ(s−2) , (2.53)

where ζ(s−2) is a ǫ(s−1)-invariant:

ζ(s−2) := z u · ∂ ψ(s−3) + 3 (d+ 2s− 5)φ(s−2) + u2 ∂2u
(

φ(s−2) + 2 ∂2u φ
(s)
)

. (2.54)

Finally, summing up the two contributions (2.48 , 2.52), the ǫ(s−1)-variation of the bulk

action plus the zeroth boundary term reads

δǫ(s−1)

(

IM + I 0′

∂M

)

=
z−dB
2

〈〈

ǫ(s−1)
∣

∣Pe z u · ∂ ζ(s,s−2)
〉〉

zB
. (2.55)

We now look for a local ∂z φ
(r)-independent expression whose variation is precisely (2.55).

Using an identity of P-operator (C.2) and an integration by parts, the variation (2.55)

becomes

− z−dB
2

〈〈

z
(

∂u · ∂ + u · ∂ ∂2u
)

ǫ(s−1)
∣

∣Po ζ
(s−2)

〉〉

zB
. (2.56)

So it can be cancelled by a term of the form

I 1
∂M =

z−dB
2

〈〈

ξ(s−2)
∣

∣Po ζ
(s−2)

〉〉

zB
, (2.57)

where ξ(s−2) is a linear combination of the fields which does not involve any ∂z φ
(r) and

whose ǫ(s−1)-variation is

δǫ(s−1) ξ
(s−2) = z

(

∂u · ∂ + u · ∂ ∂2u
)

ǫ(s−1) . (2.58)

From the gauge transformations (2.18) of the decomposed fields, we determine ξ(s−2) as

ξ(s−2) =
1

2

(

∂2u φ
(s) − φ(s−2)

)

. (2.59)

Now we turn to the determination of the second (ǫ(s−1)-invariant) boundary term I 2
∂M

by requiring (2.28) under the ∂zǫ
(s−2)-variation. For that, let us first consider the vanish-

ing boundary condition for the gauge parameter: ǫ(s−2)(zB) = 0, but with an arbitrary

∂z ǫ
(s−2)(zB) . After finding I 2

∂M with this condition, we will see, in the next subsection,

whether this boundary condition can be relaxed by adding another boundary term.

Since δǫ(s−2) IM = 0 with ǫ(s−2)(zB) = 0 , we require simply

δǫ(s−2) I 2
∂M = − δǫ(s−2)

(

I 0′

∂M + I 1
∂M

)

, (2.60)
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where the zeroth and the first boundary terms are obtained in the previous section as

I 0′

∂M + I 1
∂M =

z−dB
2

[

〈〈

φ(s)
∣

∣P
′
e χ

(s)
〉〉

zB
+
〈〈

ψ(s−3)
∣

∣P
′
o χ

(s−3)
〉〉

zB
+
〈〈

ξ(s−2)
∣

∣Po ζ
(s−2)

〉〉

zB

]

.

(2.61)

The above is written in terms of the boundary values of φ(s), χ(s), ψ(s−3), χ(s−3), ξ(s−2) and

ζ(s,s−2) , and their boundary values transform under ǫ(s−2) with ǫ(s−2)(zB) = 0 as

δ φ(s) = 0 , δ χ(s) = −3u2 z ∂z ǫ
(s−2) ,

δ ψ(s−3) = 0 , δ χ(s−3) = z
(

3 ∂ · ∂u + u · ∂ ∂2u
)

∂z ǫ
(s−2) , (2.62)

δ ξ(s−2) = −z ∂z ǫ(s−2) , δ ζ(s−2) = 2
[

3(d+ 2s− 5) + u2 ∂2u
]

z ∂z ǫ
(s−2) .

By using the above transformations rules, we get the ǫ(s−2)-variation of the boundary term,

with ǫ(s−2)(zB) = 0 , as

δǫ(s−2)

(

I 0′

∂M + I 1
∂M

)

= −z−dB
〈〈

Po z ∂z ǫ
(s−2)

∣

∣ ζ(s−2)
〉〉

zB
. (2.63)

This variation can be compensated by the following second boundary term:

I 2
∂M =

z−dB
4

〈〈

ζ(s−2)
∣

∣P
′′
o ζ

(s−2)
〉〉

zB
, P

′′
o := Po

[

3 (d+ 2s− 5) + u2 ∂2u
]−1

. (2.64)

The inversion of the operator can be readily done and the result is

T :=
[

3 (d+ 2s− 5) + u2 ∂2u
]−1

=
1

3(d+ 2s− 5)

∞
∑

n=0

1

4n (a+)n (a−)n
(u2)n(∂2u)

n , (2.65)

with

a± =
d+ 2u · ∂u + 2

4
±

√

(

d+ 2u · ∂u − 2

4

)2

+
3(d+ 2s− 5)

4
. (2.66)

Notice that this second boundary term has a peculiar aspect. It contains, for s > 2, a

second order derivative term in x (since ζ(s−2) contains a term with one derivative).

It remains to examine whether the symmetries under ǫ(s−2)(zB) can be restored. For

that we need first to obtain the variation of IM + I∂M under ǫ(s−2) , and it is given by (see

appendix D for more details)

δǫ(s−2) (IM + I∂M) =
z−dB
2

〈〈

ǫ(s−2)
∣

∣ JM + J∂M

〉〉

zB
, (2.67)
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with

JM + J∂M = Po

{

z2
[

2
(

(∂u · ∂)2 −� ∂2u
)

− 5

2
u · ∂ ∂u · ∂ ∂2u −

3

2
(u · ∂)2 (∂2u)2

+
1

2
u · ∂ (u · ∂ ∂2u + 3 ∂u · ∂)

(

1 + 4Tu2 ∂2u
)

∂2u

]

φ(s)

+

[(

s− 2 +
1

2
u2 ∂2u

)

(

3(d+ 2s− 5) + u2 ∂2u
)

−1

2

(

7d+ 10s− 19− u2 ∂2u
)

u2 ∂2u − 4 ∂2u (u
2)2 ∂2u u

2 ∂2u T

]

∂2u φ
(s)

+ z3 u · ∂ (u · ∂ + 3 ∂u · ∂)Tu · ∂ ψ(s−3)

+ z
[

(d+ 2s− 5 + u2 ∂2u)u · ∂ + u2 ∂u · ∂ − 2 ∂2u (u
2)2 ∂2u Tu · ∂

]

ψ(s−3)

}

− (d+ 2s− 5)
[

(3(s− 2) + u2 ∂2u)Pe ∂
2
u φ

(s) + z u · ∂ Pe ψ
(s−3)

]

. (2.68)

Notice that the variation does not contain φ(s−2) while the dependence on φ(s−1) is only

through ψ(s−3) . In the next section, we show that the variation (2.68) cannot be cancelled

by including additional boundary terms.

Before closing this section let us assemble all the terms and give the complete boundary

term

I∂M =
z−dB
2

[

〈〈

φ(s)
∣

∣P
′
e χ

(s)
〉〉

zB
+

1

2

〈〈

3 ∂ 2
u φ

(s−1) + φ(s−3)
∣

∣P
′
o χ

(s−3)
〉〉

zB

+
1

2

〈〈

∂ 2
u φ

(s) − φ(s−2)
∣

∣Po ζ
(s−2)

〉〉

zB
+

1

2

〈〈

ζ(s−2)
∣

∣P
′′
o ζ

(s,s−2)
〉〉

zB

]

, (2.69)

where we recall the definitions

χ(s) := (z ∂z + s− 2)φ(s) − z (u · ∂)ϕ(s,s−1) − u2 φ(s−2) ,

χ(s−3) :=
1

2
(z ∂z + s− 3)

(

3 ∂ 2
u φ

(s−1) + φ(s−3)
)

+

+(d+ 2s− 5)φ(s−3) +
1

2
u2 ∂2u

(

φ(s−3) + ∂2u φ
(s−1)

)

,

ζ(s−2) :=
1

2
z u · ∂

(

3 ∂ 2
u φ

(s−1) + φ(s−3)
)

+

+3 (d+ 2s− 5)φ(s−2) + u2 ∂2u
(

φ(s−2) + 2 ∂2u φ
(s)
)

. (2.70)

3 General boundary actions and anomalies

In order to see whether it is possible to maintain the symmetry under ǫ(s−2)(zB) in the pres-

ence of a boundary we will proceed in two steps. First, we determine the most general action

compatible with the equations of motion and the invariance under ǫ(s−1)(zB) , ∂z ǫ
(s−1)(zB)

and ∂z ǫ
(s−2)(zB) and then we see whether this action can be invariant ǫ(s−2)(zB) .

The most general action differs from (2.69) by a quadratic term, I (c.t.)
∂M , with no ∂z φ

(r)

dependence and invariant under the transformations generated by ǫ(s−1)(zB), ∂z ǫ
(s−1)(zB)

and ∂z ǫ
(s−2)(zB) .
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• Invariance under ∂z ǫ
(s−2)(zB) implies that I (c.t.)

∂M does not depend on φ(s−2) ;

• invariance under ∂z ǫ
(s−1)(zB) is insured if the dependence on φ(s−1) and φ(s−3) is only

through the combination ψ(s−3) or equivalently

β(s−3) := Tψ(s−3) . (3.1)

The latter has the advantage of a simple transformation under ǫ(s−1)(zB) :

δǫ(s−1) β
(s−3) = ∂ 2

u ǫ
(s−1) . (3.2)

In the following, we examine all ǫ(s−1)(zB)-invariants built in terms of φ(s) and β(s−3) . Since

the gauge variation (2.68) contains up to two derivatives acting on φ(s) , we focus on the

ones involving at most two derivatives on φ(s) .

3.1 Gauge-invariant boundary terms and their transformations

To examine all invariants, we classify the latter as the ones quadratic or linear in the basic

invariants, which are linear in φ(s) and β(s−3).5 There are only two basic invariants up to

two derivatives on φ(s) , and they are

A(s) := z2FMd φ(s) − 1

2
z3 (u · ∂)3 β(s−3) ,

C(s−4) := (∂ 2
u )

2 φ(s) − z
(

4 ∂u · ∂ + u · ∂ ∂ 2
u

)

β(s−3) , (3.3)

where FMd is the d-dimensional Fronsdal operator:

FMd := �− u · ∂ ∂u · ∂ +
1

2
(u · ∂)2 ∂ 2

u . (3.4)

Notice that these two invariants are related as

(∂ 2
u )

2A(s) = 3 z2
[

�+ u · ∂ ∂u · ∂ +
1

6
(u · ∂)2 ∂ 2

u

]

C(s−4) , (3.5)

z

(

∂u · ∂ − 1

2
u · ∂ ∂2u

)

A(s) +
1

4
z3 (u · ∂)3C(s−4) = 0 . (3.6)

Hence, the double trace and the de Donder divergence of A(s) are given by C(s−4) .

Concerning the quadratic terms built with these two invariants, there is only one

invariant involving up to two derivatives :

I 1 (c.t.)
∂M = z−dB

〈〈

C(s−4)
∣

∣O C(s−4)
〉〉

zB
, (3.7)

where O is a self-adjoint operator in u and x at most second-order in z ∂ . The quadratic

terms in A(s) contain at least four derivatives and the bilinear (cross) terms in A(s) and C(s−4)

are either containing higher derivatives or re-expressible as (3.7) using (3.5). The explicit

form O is to be determined by requiring the invariance of the total action under ǫ(s−2) .

5This is similar to the problem of unconstrained gauge invariance with a compensator examined in [52–54]

and in particular the case k = 1 in [53].
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The linear invariant in A(s) and C(s−4) is given by

I 2 (c.t.)
∂M = z−dB

[

〈〈

φ(s)
∣

∣G(s)
〉〉

zB
+
〈〈

β(s−3)
∣

∣K(s−3)
〉〉

zB

]

, (3.8)

where G(s) and K(s−3) are linear invariants so that, with the restriction of number of

derivatives, they are given by A(s) and C(s−4) . The gauge invariance of I 2 (c.t.)
∂M under ǫ(s−1)

imposes the Bianchi identities on these objects:6

z ∂u · ∂ G(s) = u2K(s−3) . (3.9)

Using the identity (3.6) , we find the solution for (3.9) as

G(s) = c

[(

1− 1

4
u2 ∂2u

)

A(s) +
1

8
z2 (u · ∂)2 u2C(s−4)

]

,

K(s−3) = −c z
4
∂ · ∂u

[

∂2uA
(s) − 1

2
z2 (u · ∂)2C(s−4)

]

, (3.10)

where c is an arbitrary constant.

We now calculate the variation of the total counterterm, I (c.t.)
∂M = I 1 (c.t.)

∂M + I 2 (c.t.)
∂M ,

under the remaining gauge transformation, that is, the one by ǫ(s−2)(zB) . We obtain the

variation of the counterterms as

δǫ(s−2) I (c.t.)
∂M =

z−dB
2

〈〈

ǫ(s−2)
∣

∣ J
(c.t.)
∂M

〉〉

zB
, (3.11)

with

J
(c.t.)
∂M =−4

[

4(d+2s−6)u2+(u2)2 ∂2u+

+z2 (3u · ∂+u2 ∂u · ∂)T(4u · ∂+u2 ∂u · ∂)
]

OC(s−4) ,

+c

{

2(d+2s−6) ∂2uA
(s)−z2

[

(d+2s−4) (u · ∂)2+u2 (2�+u · ∂ ∂u · ∂)
]

C(s−4)

−z2 (u2 ∂u · ∂+3u · ∂)T ∂u · ∂
[

∂2uA
(s)− z2

2
(u · ∂)2C(s−4)

]}

. (3.12)

For more details on the calculation, see appendix E. An important property of the variations

of the invariants that we obtained is that the variation involves terms with different number

of derivatives. The origin of this property lies in the transformation of φ(s) and β(s−3) under

ǫ(s−2) with respectively zero and one derivative.

3.2 Anomaly

Now we determine the variation under ǫ(s−2) of the total action:

δǫ(s−2)

(

IM + I∂M + I (c.t.)
∂M

)

=
〈〈

ǫ(s−2)
∣

∣A
(s−2)

〉〉

zB
, (3.13)

6Recall that the gauge transformation of φ(s) is z u · ∂ ǫ(s−1) , this explains the z factor in (3.9).

– 15 –



J
H
E
P
0
6
(
2
0
1
2
)
1
6
1

and see whether there exists a choice for the counterterms such that this variation vanishes.

In other words, we examine whether there exist an operator O (3.7) and constants c such

that the anomaly:

A
(s−2) :=

z−d

2

(

JM + J∂M + J
(c.t.)
∂M

)

, (3.14)

vanishes. In the last section, we have shown that J (c.t.)
∂M is given in terms of A(s) and C(s−4) .

Actually, the gauge variation JM + J∂M (2.68) can also be expressed in terms of these

invariants as

JM + J∂M = −Po ∂
2
uA

(s) − Po
z2

2

[

(u · ∂)2 − 4u · ∂
(

u · ∂ ∂2u + 3 ∂u · ∂
)

Tu2
]

C(s−4)

−
{

Po

[

s+ 2d− 1

2
(3d+ 8s− 18)u2 ∂2u + 4 ∂2u (u

2)2 ∂2u T

]

u2

+(d+ 2s− 5)
(

Pe u
2 + 3 (s− 2)u2 P′

o

)

}

C(s−4) . (3.15)

In order to see whether the anomaly can be canceled, let us first focus on the part of A (s−2)

proportional to the trace of A(s) , then we get

z−d
[

−1

2
+ c

(

d+ 2s− 6− z2
(u2 ∂u · ∂ + 3u · ∂) ∂u · ∂

6(d+ 2s− 5)

)]

∂2uA
(s) . (3.16)

For s > 2 where ∂u · ∂∂2uA(s) is not zero this term cannot be canceled by appropriately

choosing c , and it is independent of C(s−4) . Therefore, there is no boundary counterterm

which leads to the cancellation of this term implying that the symmetry under ǫ(s−2) cannot

be restored.

Although the counterterm cannot restore the gauge symmetries, it can modify the

anomaly A (s−2) . By focusing now on the part of A (s−2) proportional to C(s−4) , we get

− z−d+2

{

Po

[

1

4
(u · ∂)2 − u · ∂

(

u · ∂ ∂2u + 3 ∂u · ∂
)

Tu2
]

+2 (3u · ∂ + u2 ∂u · ∂)T(4u · ∂ + u2 ∂u · ∂)O
}

C(s−4)

− z−d

2

{

Po

[

s+ 2d− 1

2
(3d+ 8s− 18)u2 ∂2u + 4 ∂2u (u

2)2 ∂2u T

]

u2 (3.17)

+(d+2s−5)
(

Pe u
2+3 (s−2)u2 P′

o

)

+4
[

4(d+2s−6)u2+(u2)2 ∂2u
]

O
}

C(s−4) ,

where we have chosen c = 0 . Notice that in the last two lines, we can factor out a u2 so

that they can be recast as

− z−d

2
u2
[

4
[

4(d+ 2s− 6) + u2 ∂2u
]

O + (d+ 2s− 5)(d+ 2s− 7)Po +

+(d+ 2s− 5)P′
o

{

2(d+ 2s− 3)− (d+ 2s− 8)(3d+ 8s− 10)

+ 4u2 ∂2u − 4(d+ 2s− 7) ∂2u Tu
2
}]

C(s−4) , (3.18)

– 16 –



J
H
E
P
0
6
(
2
0
1
2
)
1
6
1

where we have used the definition of T as well as the identities presented in appendix C.

It is important to note that (3.18) can be cancelled with a suitable choice of the operator

O . In the latter case, the anomaly, that is the gauge variation of the action under ǫ(s−2) ,

is given by

A
(s−2) = − z−d

2
Po ∂

2
uA

(s) − z−d+2

{

Po

[

1

4
(u · ∂)2 − u · ∂

(

u · ∂ ∂2u + 3 ∂u · ∂
)

Tu2
]

+2 (3u · ∂ + u2 ∂u · ∂)T(4u · ∂ + u2 ∂u · ∂)O
}

C(s−4) , (3.19)

where the explicit form of O can be determined by requiring (3.18) to be zero. From the

definitions of A(s) and C(s−4) , one can see that the anomaly contains only terms proportional

to z−d+2 or z−d+3 :

A
(s−2) = z−d+2Aφ φ

(s) + z−d+3Aψ ψ
(s−3) . (3.20)

The absence of the terms proportional to z−d is due to the cancellation of (3.18), and this

will have important consequences later in analyzing the anomaly of the finite par of the

on-shell action.

Finally, the total action is given by

IM + I∂M + I (c.t.)
∂M =

= −
∫ ∞

zB

dz
z−d−1

2

〈〈

ϕ
∣

∣

(

1− 1

4
U2 ∂2U

)

F ϕ
〉〉

+ z−dB

[

1

2

〈〈

φ(s)
∣

∣P
′
e χ

(s)
〉〉

zB
+

1

4

〈〈

3 ∂ 2
u φ

(s−1) + φ(s−3)
∣

∣P
′
o χ

(s−3)
〉〉

zB

+
1

4

〈〈

∂ 2
u φ

(s) − φ(s−2)
∣

∣Po ζ
(s−2)

〉〉

zB
+

1

4

〈〈

ζ(s−2)
∣

∣P
′′
o ζ

(s,s−2)
〉〉

zB

+
〈〈

C(s−4)
∣

∣O C(s−4)
〉〉

zB
+
〈〈

φ(s)
∣

∣G(s)
〉〉

zB
+
〈〈

β(s−3)
∣

∣K(s−3)
〉〉

zB

]

. (3.21)

4 On-shell action

The AdS/CFT corespondance, in the semi-classical regime, is the identification between the

finite parts of the effective actionWΛ[h] of the CFT and the on-shell HS action SzB [h] . The

effective action, a functional of a spin s field h(s), is invariant under the gauge symmetry

δ h(s) = u · ∂ λ(s−1) and may be anomalous under the conformal transformation δ h(s) =

−u2 σ(s−2) . In this section, we shall use our previous results in order to evaluate the HS

action when the field is on-shell.

First, we have to make precise the AdS boundary conditions and how they are given

in terms of h(s). This not straightforward, since as we saw, in the bulk of AdS we have

the field φ(s−r), with r = 0, 1, 2, 3 subject to the gauge transformations (2.18). For s = 2 ,

the standard procedure is to fix the gauge to the radial one, that is φ(1) = φ(0) = 0 and

to identify h(2) as the boundary value of φ(2) at the origin. This prescription is not easily

generalized to higher spins. In fact, the gauge parameters can set to zero only φ(s−1) and

φ(s−2) but not the remaining one φ(s−3). So we have to proceed differently.
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Using the gauge transfomations and the equations of motion, it is possible to reach a

Coulomb-like (or synchronous-like) gauge, that is

∂2u φ
(s) = ∂u · ∂ φ(s) = 0 , φ(s−1) = φ(s−2) = φ(s−3) = 0 . (4.1)

In this gauge, the equations of motion simplify considerably and reduce to

[

(z ∂z)
2 − d z ∂z −m2

s − s+ z2�
]

φ(s) = 0 , (4.2)

which can be solved as

φ(s)(z, x) = z2−s U d+2s−4
2

(

z
√
−�

)

h
(s)
TT(x) , (4.3)

where h(s)
TT is a transverse and traceless d-dimensional spin s field:

∂2u h
(s)
TT = 0 , ∂u · ∂ h(s)

TT = 0 , (4.4)

and the Bessel-like function Uν(z) is defined in (C.3) of appendix C. So we obtain the

solution as a function of the boundary field h(s)
TT . The latter cannot be identified directly

with h(s) because of the transverse and traceless properties of h(s)
TT . Since h

(s) has a gauge

invariance, we can identify it with h(s)
TT up to a gauge and conformal transformation as

h
(s)
TT = h(s) − u · ∂ ρ̄(s−1)[h(s)] + u2 ρ(s−2)[h(s)] , (4.5)

where the traceless ρ̄(s−1)[h(s)] and ρ(s−2)[h(s)] are given in terms of the trace and the diver-

gence of h(s) as is shown in the appendix F.

The general solution can now be written by performing a general gauge transforma-

tion as

φ(s) = z2−s U d+2s−4
2

(

z
√
−�

)

h
(s)
TT + z (u · ∂) ǫ(s−1) − u2 ǫ(s−2) ,

φ(s−1) = (z ∂z + s− 1 + u2 ∂2u) ǫ
(s−1) + z (u · ∂) ǫ(s−2) ,

φ(s−2) = −z (u · ∂) ∂2u ǫ(s−1) +
[

2 (z ∂z + s− 2) + u2 ∂2u
]

ǫ(s−2) ,

φ(s−3) = −
[

3 (z ∂z + s− 3) + u2 ∂2u
]

∂2u ǫ
(s−1) − z (u · ∂) ∂2u ǫ(s−2) . (4.6)

Now, if we choose the gauge parameters as

ǫ(s−1) = z1−s U d+2s−4
2

(

z
√
−�

)

ρ̄(s−1)[h(s)] ,

ǫ(s−2) = z2−s U d+2s−4
2

(

z
√
−�

)

ρ(s−2)[h(s)] , (4.7)

then the solution can be expressed in terms of h(s) as

φ(s) = z2−s U d+2s−4
2

(

z
√
−�

)

h(s) ,

φ(s−1) = z2−s ∂z U d+2s−4
2

(

z
√
−�

)

ρ̄(s−1)[h(s)] + z3−s U d+2s−4
2

(

z
√
−�

)

u · ∂ ρ(s−2)[h(s)] ,

φ(s−2) = z2−s
(

2 z ∂z + u2 ∂2u
)

U d+2s−4
2

(

z
√
−�

)

ρ(s−2)[h(s)] ,

φ(s−3) = −z3−s U d+2s−4
2

(

z
√
−�

)

u · ∂ ∂2u ρ(s−2)[h(s)] , (4.8)

where we used the tracelessness of ρ̄(s−1)[h(s)] . Now, our proposition for S[h(s)] is to evaluate

I[ϕ] = I[φ(s), φ(s−1), φ(s−2), φ(s−3)] on the above solution which generates a functional of h(s) .

– 18 –



J
H
E
P
0
6
(
2
0
1
2
)
1
6
1

4.1 Symmetries and anomalies of the on-shell action

In this and the following subsections we examine the properties of the on-shell action:

SzB [h
(s)] :=

(

IM + I∂M + I (c.t.)
∂M

)[

φ(r)[h(s)]
]

. (4.9)

Let us first note that it has an expansion in zB :

SzB =

[d/2]
∑

n=3−s

z2n−dB Sn + Sfin + log(µ zB)Slog + o(zB) , (4.10)

where the logarithmic terms are given with a constant µ of mass dimension and they are

absent for odd dimensions, o(zB) vanishes for small zB faster than zB . Of particular impor-

tance are the finite (or renormalized) part Sfin and logarithmic part Slog . The CFT effective

action WΛ has a similar expansion in terms of the cut-off Λ, the renormalized part Wfin

should, by the holographic correspondence, be equal (up to possible local counterterms) to

Sfin . The AdS isometry (z′, x′) = (Ω z,Ωx), under which h(s) transforms as

h(s)(x) → h′(s)(x) = Ω2−s h(s)(Ω−1 x) , (4.11)

implies that SΩ zB [h
′(s)] = SzB [h

(s)] . Combined with (4.10), this in turn gives the dilatation

transformations of Sn as

Sn[h
′(s)] = Ω2n−d Sn[h

(s)] . (4.12)

For odd d , the relation holds also for Sfin , whereas for even d where logarithmic terms are

also present we get

Slog[h
′(s)] = Slog[h

(s)] , Sfin[h
′(s)] + log ΩSlog[h

′(s)] = Sfin[h
(s)] . (4.13)

Next, let us examine the transformation under the gauge symmetries. Under a gauge

transformation δ h(s) = u · ∂ λ̄(s−1) − u2 σ(s−2) , with arbitrary σ(s−2) and traceless λ̄(s−1) , we

have

δ ρ̄(s−1)[h(s)] = λ̄(s−1) , δ ρ(s−2)[h(s)] = σ(s−2) . (4.14)

Hence, from (4.7) one can find that the on-shell action is invariant under λ̄(s−1) as it should,

while under a conformal transformation by σ(s−2), we have

δσ SzB =
〈〈

ǫ(s−2)
∣

∣A
(s−2)

〉〉

zB
, (4.15)

where ǫ(s−2) = z2−s U d+2s−4
2

(

z
√
−�

)

σ(s−2) and A (s−2) (3.19) is now expressed in terms of

h(s) . Its explicit expression is rather cumbersome, let us just examine the zB dependence

of δσ SzB . In order to do that, we need the explicit dependence of A (s−2) on zB which we

write, from (3.20) and (4.8), as

A
(s−2) = z−d−s+4

B U d+2s−4
2

(

zB
√
−�

) (

A
(s−2)

φ + z2B A
(s−2)

ψ

)

, (4.16)

where A
(s−2)

φ and A
(s−2)

ψ are given from (3.20) by

A
(s−2)

φ = Aφ h
(s) , A

(s−2)

ψ =
1

2
Aψ (3 ∂u · ∂ + u · ∂ ∂2u) ρ(s−2)[h(s)] . (4.17)
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Collecting all terms depending on zB in (4.15) we get

δσ SzB = z−d−2s+6
B

〈〈

σ(s−2)
∣

∣

[

U d+2s−4
2

(

zB
√
−�

) ]2 (
A

(s−2)

φ + z2B A
(s−2)

ψ

) 〉〉

. (4.18)

Using the expansion of Uν(z) given in appendix C, we see that for odd d (that is for half

integer ν) there is no contribution proportional to (zB)
0 , similarly for even d (or integer

ν) there is no contribution proportional to log(µ zB) . We conclude that

δσ Sfin = 0 [ d : odd ] , δσ Slog = 0 [ d : even ] . (4.19)

Notice that this property is directly related to the counterm which removed the z−d-

independent part of the anomaly A (s−2) (3.19).

The explicit expression for the anomaly (4.17) in terms of h(s) simplifies for low spins,

for instance the s = 3 anomaly is easily obtained after we first determine ρ(1)[h(3)] as

ρ(1)[h(3)] = − 1

4(d+ 1)�

(

1− d− 2

3d

u · ∂ ∂u · ∂
�

)

∂2uFMd h(3) , (4.20)

the anomaly is then given by

A
(1)

φ = −1

2
∂2uFMd h(3) , A

(1)

ψ = − 1

4d(d+ 1)
u · ∂ ∂u · ∂ ∂ 2

u FMd h(3) . (4.21)

4.2 Spin 2 case

In this subsection, we give the explicit expression for the on-shell action as a functional

of the conformal field h(2) . We then compare it with the on-shell action computed in the

radial gauge. The two on-shell actions, as we will see, coincide.

As we showed in the previous section, the addition of a local couterterm allows the

recovery of the full bulk gauge symmetry if d > 2 . When expresssed in terms of the

transverse and traceless field h(2)
TT, the action reduces to

SzB = −z
−d
B

2

〈〈

φ(2)[h(2)
TT]
∣

∣ z ∂z φ
(2)[h(2)

TT]
〉〉

zB
+

z−d+2
B

2(d− 2)

〈〈

φ(2)[h(2)
TT]
∣

∣�φ(2)[h(2)
TT]
〉〉

zB
, (4.22)

where the traces and divergences of φ(2)[h(2)
TT] vanish so do not contribute, and the second

term comes from the counterterm (2.42). Using the explicit form of solutions (4.6) and the

identity (C.9), one gets

SzB = − z−d+4
B

2(d− 2)

〈〈

h
(2)
TT

∣

∣V d−2
2

(

zB
√
−�

)

�
2 h

(2)
TT

〉〉

, (4.23)

with

Vν(z) :=
1

z2
Uν+1(z) [Uν(z)− Uν+1(z)] = − 1

4 ν(ν − 1)
Uν+1(z)Uν−1(z) . (4.24)

The expression of h(2)
TT in terms of h(2) can be deduced as the general case presented in the

appendix F, or alternatively by applying first the Fronsdal operator to the definition (4.5)

to get

FMd h
(2)
TT = FMd h(2) +

[

u2�+ (d− 2)(u · ∂)2
]

ρ(0)[h(2)] , (4.25)
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and then taking the trace of the equation to determine ρ(0)[h(2)] as

ρ(0)[h(2)] = − 1

4(d− 1)�
∂2uFMd h(2) . (4.26)

Similarly, ρ(1)[h(2)] can be obtained by first taking the trace of (4.5) which determines

∂u · ∂ ρ(1)[h(2)] and then the divergence of (4.5) to get

ρ(1)[h(2)] =
1

�2

[

� ∂u · ∂ − 1

2(d− 1)
�u · ∂ ∂2u −

d− 2

2(d− 1)
u · ∂ (∂u · ∂)2

]

h(2) . (4.27)

Finally , h(2)
TT is expressed in terms of h(2) in the manifestly gauge invariant way as

h
(2)
TT = P (2)

TT h
(2) , P (2)

TT =

[

1− 1

4(d− 1)
u2 ∂2u −

d− 2

4(d− 1)

(u · ∂)2
�

∂2u

] FMd

�
, (4.28)

where P (2)
TT is the traceless and transverse projector of spin 2 field. Finally, the on-shell

action as a functional of h(2) can be deduced as

SzB = − z−d+4
B

2(d− 2)

〈〈

h(2)
∣

∣V d−2
2

(

zB
√
−�

)

C(2) h(2)
〉〉

, (4.29)

where C(2) is given by a local differential operator:

C(2) := �
2 P (2)

TT . (4.30)

Notice that, for d ≥ 4 , this result can be re-expressed in terms of the Weyl tensor C (2) by

making use of the identity:

〈〈

C
(2)
∣

∣C
(2)
〉〉

= 6
d− 3

d− 2

〈〈

h(2)
∣

∣ C(2) h(2)
〉〉

. (4.31)

We now compare with the radial gauge treatment which is valid for spin 2. The solution

can be readily determined as

φ(2) = U d
2

(

z
√
−H

)

h(2) , φ(1) = φ(0) = 0 , (4.32)

where

H :=

(

1− 1

4 (d− 1)
u2 ∂2u

)

FMd . (4.33)

The operator H satisfies

(∂u · ∂ − u · ∂ ∂2u)H = 0 , ∂u · ∂ H2 = 0 , ∂2u H2 = 0 ,

and, as a result:

Hn+2 = �
nH2 , [n ∈ N] . (4.34)

The on-shell action with the radial gauge solution (4.32) can now be determined as

SzB = −z
−d
B

2

〈〈

φ(2)[h(2)]
∣

∣

(

1− 1

2
u2 ∂2u

)

z ∂z φ
(2)[h(2)]

〉〉

zB

+
z−d+2
B

2(d− 2)

〈〈

φ(2)[h(2)]
∣

∣

(

1− 1

4
u2 ∂2u

)

FMd φ(2)[h(2)]
〉〉

zB
. (4.35)
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By making use of the z-derivative of the solution:

z ∂z φ
(2) =

1

d− 2
z2HU d−2

2

(

z
√
−H

)

h(2) , (4.36)

and the identity (4.34) and

〈〈

FMd h(2)
∣

∣

(

1− d

8(d− 1)
u2 ∂2u

)

FMd h(2)
〉〉

=
〈〈

h(2)
∣

∣ C(2) h(2)
〉〉

, (4.37)

one can show that the on-shell action agrees with (4.29).

Notice that this on-shell action (4.29) is invariant under gauge and Weyl symmetry,

δ h(s) = u · ∂ λ(s−1) − u2 σ(s−2) , and notice also that all the divergent terms in the small zB
limit are local. Of particular interest is the finite term for odd d and the logarithmical

divergent term for even d . Using the expansion of Uν(z) given in appendix C, the finite

part of the on-shell action for odd d is given by

Sfin =
π (−1)

d+1
2

24 Γ2(d2)

〈〈

h(2)
∣

∣

(

−1

4
�

)
d−4
2

C(2) h(2)
〉〉

, (4.38)

and the logarithmically divergent part for even d by

Slog =
(−1)

d+2
2

23 Γ2(d2)

〈〈

h(2)
∣

∣

(

−1

4
�

)
d−4
2

C(2) h(2)
〉〉

. (4.39)

4.3 General case

The on-shell action reduces, as before, to the boundary term I∂M + I (c.t.)
∂M (2.69) where

the fields should be replaced with the solution (4.8). The zB expansion of the action is

obtained from the expansion of Uν(z). The latter is of the form:

Uν(z) = Pν(z
2) + z2 ν

{

(−1)−
1
2
π
2 Qν(z

2) [ν ∈ N+ 1
2 ]

log z Qν(z
2) +Rν(z

2) [ν ∈ N]
(4.40)

where Pν , Qν and Rν are power series.

The HS-Weyl-invariant part of the on-shell action, that is Sfin for odd d and Slog for

even d , can be deduced easily from the one evaluated with the h(s)
TT solution (4.6) :

SzB [h
(s)
TT] =

z−d−2s+6
B

2(d+ 2s− 6)

〈〈

h
(s)
TT

∣

∣U d+2s−4
2

(

zB
√
−�

)

U d+2s−6
2

(

zB
√
−�

)

�h
(s)
TT

〉〉

. (4.41)

One can see from (4.40) that the finite part or logarithmically divergent part of (4.41) is

given by the Q d+2s−4
2

(0)P d+2s−6
2

(0) term. The finite part for odd d is

Sfin[h
(s)
TT] = Sfin[h

(s)] =
π (−1)

d+2s−3
2

22s Γ2(d+2s−4
2 )

〈〈

h(s)
∣

∣

(

−1

4
�

)
d−4
2

C(s) h(s)
〉〉

, (4.42)

and a similar expression for the logarithmically divergent term for even d :

Slog[h
(s)
TT] = Slog[h

(s)] =
(−1)

d+2s−2
2

22s−1 Γ2(d+2s−4
2 )

〈〈

h(s)
∣

∣

(

−1

4
�

)
d−4
2

C(s) h(s)
〉〉

, (4.43)
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where C(s) is a local differential operator given with the traceless and transverse projector

P (s)
TT (F.13) by

C(s) := (−�)s P (s)
TT . (4.44)

To derive the above results, we have used the fact that δσ Sfin = 0 for odd d and δσ Slog = 0

for even d . As in the spin 2 case, these results can be re-expressed for d ≥ 4 in terms of

the spin s Weyl tensor C (s) since

〈〈

C
(s)
∣

∣C
(s)
〉〉

∝
〈〈

h(s)
∣

∣ C(s) h(s)
〉〉

. (4.45)

See appendix F for more details.

For low spins the explicit expression is easily obtained. We give here the complete

expression for spin 3 in a manifestly gauge invariant way. The projector P (3)
TT is given by

P (3)
TT =

[

1− d

4(d+ 1)

(u · ∂)2
�

∂2u +
d− 2

12(d+ 1)

(u · ∂)3∂u · ∂
�2

∂2u −
1

4(d+ 1)
u2 ∂2u

+
1

4(d+ 1)
u2
u · ∂∂u · ∂

�
∂2u

] FMd

�
, (4.46)

and the on-shell action can be calculated using the solution (4.6) as

SzB =
z−dB
2d

〈〈

h(3)
∣

∣U d+2
2

(

zB
√
−�

)

U d
2

(

zB
√
−�

) 1

�2
C(3) h(3)

〉〉

+
z−d+2
B

8(d+ 1)

〈〈

∂2uFMd h(3)
∣

∣

[

U d+2
2

(

zB
√
−�

)

]2
(

1− d− 2

3d

u · ∂ ∂u · ∂
�

)

(

1 +
z2B u · ∂ ∂u · ∂
2d (d+ 1)

)

∂2uFMd h(3)
〉〉

. (4.47)

The first line is invariant under the conformal transformation and the second line reproduces

the anomaly.

Notice that the on-shell action SzB (4.47) is given by a linear combination of tensor

structures whose coefficients are functions of the form Uν(z)Uν′(z) with z = zB
√
−� . In

the expansion of the latter, only the terms compensating the overall power of zB con-

tribute to the finite or logarithmically divergent part. This pattern is general for arbitrary

spins, and one can see from (4.40) that Sfin (odd d) or Slog (even d) is determined by the

(−1)−
1
2
π
2 z

2ν Qν Pν′ or z
2ν log z Qν Pν′ term respectively. Therefore, they share the same

tensor structure differing only by a factor of (−1)−
1
2
π
2 , and they are both invariant as we

have shown in this section. In the case of Sfin for even d , the situation is rather different

and the relevant term in the expansion of Uν Uν′ is not only z
2ν log z Qν Pν′ but also Pν Pν′

and z2ν Rν Pν′ .
7 The latter two terms being associated with different tensor structures are

responsible for the anomaly. However, they give local contributions to the on-shell action

since they do not involve any term with log
√
−� or odd powers of

√
−� . Consequently,

the non-local part of Sfin (even d) has a similar form as (4.43) with an insertion of log
√
−� .

7The remaining terms z2(ν+ν′) log z Qν Rν′ and z2(ν+ν′)(log z)2 Qν Qν′ contribute to the on-shell action

with terms which vanish in the limit zB → 0 .
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5 Conclusion

In this paper we have determined the on-shell action for a free higher-spin gauge field

in AdS. In order to accomplish this we first determined the boundary terms which are

necessary to reproduce the equation of motion in the presence of a finite distance boundary.

We constrained the boundary terms with the requirement of invariance under the symmetry

transformations of the bulk equations of motion and showed that for spins larger than two

there is an anomaly: no local boundary term can reproduce all the gauge symmetry of

the bulk. Next, we have written the solution of the bulk equations of motion in terms of

a boundary higher-spin conformal field h(s), that is a d-dimensional field subject to gauge

and HS Weyl transformations. Using these two building blocks, the boundary action and

the boundary field, we determined the on-shell action SzB [h
(s)].

The key motivation of our investigation is the HS/CFT correspondence. Let us examine

how the on-shell action is described from the boundary CFT point of view. The boundary

CFT is the theory of N free massless complex scalars, φ = (φ1, · · · , φN ), in d dimensions.

The operators dual to the AdS HS gauge fields are the currents of higher ranks:

J̄ (s)µ1···µs =
s
∑

r=0

cr,s ∂
µ1 · · · ∂µrφ∗

· ∂µr+1 · · · ∂µsφ , (5.1)

where the coefficients cr,s’s are chosen such that these currents are conserved and traceless

when the scalar is on shell:

∂µ1 J̄
(s)µ1···µs ≈ 0 , ηµ1µ2 J̄

(s)µ1···µs ≈ 0 . (5.2)

The connected correlation functions of these currents can be generated by the effective

action WΛ[h̃
(0), h̃(1), · · · ] given by

e−WΛ :=

∫

Λ
Dφ exp

(

−
∫

ddx ∂µφ
∗
· ∂µφ+

∞
∑

s=0

〈〈

h̃(s)
∣

∣ J̄ (s)
〉〉

)

, (5.3)

where the (boundary) HS fields h̃(s) is the source for the currents J̄ (s), and Λ is the UV

regularization parameter of mass dimension. The effective action WΛ (5.3) is a functional

of the conformal HS fields h̃(s) . According to the HS/CFT ccorrespondence the finite

part of WΛ is given, in the semi-classical regime, by the finite part of the bulk on-shell

action. The traceless-ness and transversality of the currents (5.2) induce respectively the

diffeomorphism-like and the Weyl-transformation-like gauge transformations on h̃(s) :

δ h̃(s) = u · ∂ λ(s−1) − u2 σ(s−2) +O(h̃, λ) +O(h̃, σ) , (5.4)

where O(h̃, λ) and O(h̃, σ) are linear in h̃(s′), λ(r) and σ(r′) for any s′, r, r′ , and their explicit

expressions are given in [45] .

When h̃(s) is restricted to only spin 2 field, the transformations (5.4) reduce to the

diffeomorphism and the Weyl transformation. Here, it is important to note that the gauge

field h̃ and the gauge parameters λ and σ are not subject to any trace constraints, and also
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that the deformations of the linear gauge transformations are exact in the first order of h̃:

there is no O(h̃2) term. In [45] , it has been shown that WΛ is invariant only under the

λ-transformations while the σ-transformations are anomalous: δλWΛ = 0 and δσWΛ 6= 0 .

Further analysis was performed by expanding WΛ in Λ as

WΛ =

[d/2]
∑

n=−∞

Λ−2n+dWn +Wfin − log
Λ

µ
Wlog + o(Λ−1) , (5.5)

and it has been shown that

δσWfin = 0 [ d : odd ] , δσWlog = 0 [ d : even ] , (5.6)

which generalizes the case of the spin 2 Weyl anomaly. The explicit expressions of Wfin

and Wlog were determined perturbatively in the fields in ref. [45], the quadratic terms can

be expressed in terms of the on-shell action as

−Wfin[h̃] =
∞
∑

s=0

Sfin[Cs,d h̃
(s)] +O(h̃3) [d : odd] ,

−Wlog[h̃] =
∞
∑

s=0

Slog[Cs,d h̃
(s)] +O(h̃3) [d : even] , (5.7)

with

C2
s,d =

Γ2(d+2s−4
2 )

π
d−1
2 2d+s+1 Γ(d+2s−1

2 )
. (5.8)

Hence, the quadratic parts of the CFT effective action coincide with the on-shell actions

Sfin and Slog (4.42 , 4.43) up to field redefinitions with multiplicative constants. The same

is also true for the non-local part of Sfin for even d .

In this paper, we have shown that the AdS counterpart of the HS Weyl anomaly is due

essentially to the fact that the boundary term, which is necessary to obtain the classical HS

EOM, cannot be made invariant under the whole bulk gauge group. More precisely, the on-

shell action breaks the symmetries generated by the gauge parameters ǫ(s−2) or εdµ1···µs−2 .

At the quadratic level, the finite part of the on-shell action is anomalous only for an even

dimensional boundary and in this case the anomaly is due to local terms, thus contributing

with only contact terms to the two-point correlation function. More precisely, the non-local

part of the on-shell action is anomaly-free for any dimension and coincides with that of the

effective action determined in [45]. Consequently, the correlation function of two currents

〈J̄µ1···µs(x) J̄ν1···νs(x′)〉 obtained from the on-shell action by functional differentiation with

respect to the conformal HS fields coincides with the one obtained from the free boundary

CFT up to possible contact terms. The way to extract the correlation functions from the

effective action has been shown in [45]. The anomaly is expected to play a more important

role when considering higher orders since in the CFT side the generalized Weyl anomalies

arise starting from cubic orders (see [55, 56] for recent constructions of cubic interaction

vertices of AdS HS fields). A key problem for the future is to gain a better understanding

of the HS interactions in the metric form from the CFT effective action.
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Another important problem is to see via the AdS/CFT correspondence how the non-

Abelian deformation of the gauge transformation is realized in the bulk of AdS. In fact,

it was shown in [57] that the collection of all the HS fields can be grouped in a Hermitian

operator acting on the scalar field and that the transformations (5.4) arise from the leading

terms of respectively the Hermitian and anti-Hermitian transformations acting on the scalar

fields. The symmetry group of the CFT effective action is thus generated by the algebra of

Hermitian operators. An important issue is the bulk counterpart of this symmetry group. A

step in this direction was proposed by the correspondence which we made explicit between

the boundary conformal HS field and the bulk HS field. We hope to come back to this

issue in the future.
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A Linearized AdS Gravity

We linearize the action for the AdS Gravity. We first redefine the metric tensor as

GMN(x, z) =
ηMN + κMN(x, z)

z2
, (A.1)

and then expand the Hilbert-Einstein (HE) action IHE up to quadratic order in κMN . The

latter is related to the notation used in this paper as

ϕ(x, z;U) =
1

2
UM UN κMN(x, z) . (A.2)

We perform integrations by part to express IHE as

SHE[G] = IM[κ] + IHE

∂M[κ] +O(κ3) , (A.3)

where IM is the bulk action whose Lagrangian is proportional to the EOM and IHE
∂M the

resulting boundary term. Explicitly the bulk action is given by

IM[κ] = −1

4

∫ ∞

zB

dz

zd−1

∫

ddx

(

κMN FMN − 1

2
κM

M FN

N

)

, (A.4)

where the indices M,N are raised by the flat metric ηMN and the tensor FMN is the lin-

earization of −2 (RMN + dGMN) . The remaining part of (A.3) is the boundary term IHE
∂M ,

and it is given by

IHE

∂M[κ] =

∫

ddx

zdB

[

−z ∂z
(

κµµ −
3

8
κ2µν +

1

8
(κµµ)

2

)

+ 2

(

1 +
1

2
κµµ −

1

4
κ2µν +

1

8
(κµµ)

2

)

+
1

2
κdd z ∂z κ

µ
µ +

1

2
z
(

κµν ∂µ κνd + 2κµd ∂µ κdd + κµd ∂µ κ
ν
ν

)

− d

(

κdd − κ2µd −
3

4
κ2dd

)

− 1

4
(d+ 1)κdd κ

ν
ν

]

z=zB

. (A.5)
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The HE action should be complemented by the York-Gibbons-Hawking (GH) term. We

linearize the latter as SGH [G] = IGH
∂M[κ] +O(κ3) with

IGH

∂M[κ] =

∫

ddx

zdB

[

z ∂z

(

κµµ−
1

2
κ2µν+

1

4
(κµµ)

2

)

−2d

(

1+
1

2
κµµ−

1

4
κ2µν+

1

8
(κµµ)

2

)

−1

2
κdd z ∂zκ

µ
µ+κdd z ∂

µκµd+d

(

κdd−κ2µd−
3

4
κ2dd+

1

2
κdd κ

µ
µ

)

]

z=zB

. (A.6)

Besides the GH term, we may include an additional boundary term proportional to the

boundary volume V∂M[γ] = IV∂M[κ] +O(κ3) :

IV∂M[κ] =

∫

ddx

zdB

[

1 +
1

2
κµµ −

1

4
κ2µν +

1

8
(κµµ)

2

]

z=zB

. (A.7)

Finally we consider the following action for AdS Gravity :

SHE[G] + SGH [G] + c V∂M[γ] = IM[κ] + I∂M[κ] +O(κ3) , (A.8)

where I∂M is the sum of at most quadratic part of different boundary terms:

I∂M[κ] = IHE

∂M[κ] + IGH

∂M[κ] + c IV∂M[κ]

=

∫

ddx

zdB

[

− 1

8
z ∂z

(

κ2µν − (κµµ)
2
)

+ [c− 2(d− 1)]

(

1 +
1

2
κµµ −

1

4
κ2µν +

1

8
(κµµ)

2

)

(A.9)

+
1

2
κµν z ∂µκνd −

1

2
κµµ z ∂

νκνd +
1

4
(d− 1)κµµ κdd

]

z=zB

.

The choice c = 2 (d − 1) gives us a particularly simple result where the constant term as

well as the linear term in κ disappear.

B Radial decomposition of the Fronsdal operator

For an explicit analysis of the Fronsdal theory, it is useful to decompose the Fronsdal

operator as follows:

F =
2
∑

n=0

4
∑

m=0

vnFn
m ∂

m
v , (B.1)

where Fn
m are operators without v and ∂v given by

F0
0 = (z ∂z)

2 − d z ∂z −m2
s − s+ z2FMd − 1

2
u2 (z ∂z + u · ∂u) ∂2u ,

F0
1 = z u2 (∂ · ∂u) + z (u · ∂) (d− 2− z ∂z + u · ∂u − u2 ∂2u) ,

F0
2 =

1

2

[

z2 (u · ∂)2 + u2 (z ∂z − 2d− 3u · ∂u + u2 ∂2u)
]

,

F0
3 = −z u2 (u · ∂) , F0

4 =
1

2
(u2)2 ,

F1
0 = z (u · ∂ ∂2u − ∂ · ∂u)(z ∂z + u · ∂u − 2)
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F1
1 = −d− 2 s+ 3 + (z ∂z + u · ∂u) (d− z ∂z + u · ∂u)− u2 (z ∂z + u · ∂u) ∂2u ,

F1
2 = z (u · ∂) (z ∂z + u · ∂u + 1) ,

F1
3 = −u2 (z ∂z + u · ∂u + 1) , F1

4 = 0 ,

F2
0 =

1

2
(z ∂z + u · ∂u) (z ∂z + u · ∂u − 2) ∂2u ,

F2
1 = 0 , F2

2 = 1 +
1

2
(z ∂z + u · ∂u)2 , F2

3 = F2
4 = 0 . (B.2)

In (2.52), the gauge variation of the bulk Fronsdal action is given by two quantities:

∂v F ϕ(s)|v=0 and (∂2u − ∂2v)F ϕ(s)|v=0 . Here, we compute them explicitly. First we rewrite

them in terms of the decomposed operators Fn
m and then use the results of (B.2). Finally

the explicit expressions for these two quantities are

(

∂v F ϕ(s)
)

(x, z;u, 0) =

=
[

F1
0 −F0

3 (∂
2
u)

2
]

φ(s)(x, z;u) +
[

F0
0 + F1

1 −F0
4 (∂

2
u)

2
]

φ(s−1)(x, z;u)

+
[

F0
1 + F1

2 − 2F0
3 ∂

2
u

]

φ(s−2)(x, z;u) +
[

F0
2 + F1

3 − 2F0
4 ∂

2
u

]

φ(s−3)(x, z;u)

=
[

z (u · ∂ ∂2u − ∂ · ∂u)(z ∂z + s− 2) + z u · ∂ u2 (∂2u)2
]

φ(s)(x, z;u)

+

[

z2FMd − 3

2
u2 (z ∂z + s− 3) ∂2u −

1

2
(u2)2 (∂2u)

2

]

φ(s−1)(x, z;u)

+
[

(d+ 2s− 5) z u · ∂ + z u2
(

∂ · ∂u + u · ∂ ∂2u
)]

φ(s−2)(x, z;u)

+

[

1

2
z2 (u · ∂)2 − 1

2
u2
(

z ∂z + 2 d+ 5 s− 13 + u2 ∂2u
)

]

φ(s−3)(x, z;u) , (B.3)

and

(

(∂2u − ∂2v)F ϕ(s)
)

(x, z;u, 0) =

=
[

∂2u
(

F0
0 −F0

4 (∂
2
u)

2
)

− 2F2
0 +

(

F0
2 + 2F1

3 − 2F0
4 ∂

2
u

)

(∂2u)
2
]

φ(s)(x, z;u)

+
[

∂2uF0
1 − 2F1

0 + F0
3 (∂

2
u)

2
]

φ(s−1)(x, z;u)

+
[

∂2u
(

F0
2−2F0

4∂
2
u

)

−F0
0−2F1

1−2F2
2+
(

2F0
2+4F1

3−3F0
4∂

2
u

)

∂2u
]

φ(s−2)(x, z;u)

+
[

∂2uF0
3 −F0

1 − 2F1
2 + 2F0

3 ∂
2
u

]

φ(s−3)(x, z;u)

=
[

− 2 (d+ 2 s− 5) (z ∂z + s− 2) ∂2u − u2
(

2 z ∂z + 3d+ 8s− 25 + u2∂2u
)

(∂2u)
2

+ z2
[

2
(

� ∂2u − (∂u · ∂)2
)

+ u · ∂
(

∂u · ∂ + u · ∂ ∂2u
)

∂2u
]

]

φ(s)(x, z;u)

+ z
[

4 (d+ 2 s− 5) ∂u · ∂ − (3 z ∂z + d+ 5 s− 11)u · ∂ ∂2u

−u2 ∂u · ∂ ∂2u − 2u2 u · ∂ (∂2u)2
]

φ(s−1)(x, z;u)

+
[

z2 u · ∂
(

3 ∂u · ∂ + u · ∂ ∂2u
)

− (u2)2(∂2u)
2

− (5 d+ 10 s− 29)u2 ∂2u − 2 (d+ 2 s− 4) (d+ 2 s− 5)
]

φ(s−2)(x, z;u)

−z
[

u · ∂
(

z ∂z + 3 d+ 7 s− 17 + 2u2 ∂2u
)

+ 3u2 ∂u · ∂
]

φ(s−3)(x, z;u) . (B.4)

– 28 –



J
H
E
P
0
6
(
2
0
1
2
)
1
6
1

C Useful identities

In this section, we summarize the mathematical identities that has been used in the paper.

First, the P-operators introduced for the construction of boundary actions satisfy

Pe − Po = u2 P′
o ∂

2
u , Pe + P

′
e = u2 Po ∂

2
u ,

[

3 (d+ 2u · ∂u + 1) + u2 ∂2u
]

P
′
o = (d+ 2u · ∂u + 1)Po , (C.1)

and

∂u · ∂ P′
e = Pe

(

u · ∂ ∂2u − ∂u · ∂
)

, ∂2u P
′
e = (d+ 2u · ∂u − 1)Pe ∂

2
u ,

∂u · ∂ Pe = Po

(

u · ∂ ∂2u + ∂u · ∂
)

, ∂2u Pe = (d+ 2u · ∂u + 1)Po ∂
2
u ,

∂u · ∂ Po = P
′
o

(

u · ∂ ∂2u + 3 ∂u · ∂
)

, ∂2u Po = (d+ 2u · ∂u + 3)P′
o ∂

2
u . (C.2)

The Bessel-like function Uν(z) appears in the solutions of the Fronsdal equation. It is

a related to the modified Bessel function of second kind:

Uν(z) :=
2

Γ(ν)

(z

2

)ν
Kν(z) = 1 +O(z2) , (C.3)

and it satisfies the following Bessel-like differential equation:

[

(z ∂z − ν)2 − a z2 − ν2
]

Uν(a z) = 0 . (C.4)

In order to study the finite part or the logarithmically divergent part of the on-shell action,

we need the series expansion of this function:

Uν(z) =

nν
∑

k=0

(

z
2

)2k

(1− ν)k k!
+

(

z
2

)2ν

Γ(ν) Γ(ν + 1)

∞
∑

k=0

uν,k(z)

(

z
2

)2k

(1 + ν)k k!
, (C.5)

where nν is given by

nν =

{

∞ [ν − 1
2 ∈ N]

ν − 1 [ν ∈ N]
, (C.6)

and uν,k(z) by

uν,k(z) =

{

π (−1)ν+
1
2 [ν − 1

2 ∈ N]

(−1)ν
[

ψ(k + 1) + ψ(k + ν + 1)− 2 ln
(

z
2

)]

[ν ∈ N]
. (C.7)

The function Uν(z) enjoys several identities that can be proven from the identities of the

modified Bessel function Kν . For example, it satisfies the following recurrence identity:

Uν(z)− Uν−1(z) =
z2

4(ν − 1)(ν − 2)
Uν−2(z) . (C.8)

The derivatives of Uν can be again expressed in terms of Uν′ with a neighboring index:

z ∂z Uν(z) = − z2

2(ν − 1)
Uν−1(z) . (C.9)
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D Gauge variation of the bulk action and the boundary action

The variation of the bulk action under ǫ(s−2) gives

δǫ(s−2) IM =
z−dB
2

〈〈

ǫ(s−2)
∣

∣Po
1

2
(∂2v − ∂2u)F ϕ

〉〉

zB
=
z−dB
2

〈〈

ǫ(s−2)
∣

∣ JM

〉〉

zB
, (D.1)

where JM is given by

JM = Po

[

(d+ 2s− 5 + u2 ∂2u) ∂
2
u χ

(s) + z u · ∂ χ(s−3) + (d+ 2s− 4 + u2 ∂2u) ζ
(s−2)

− 1

2
z2 (∂2uB

(s) −B(s−2))− 1

2

(

3d+ 6s− 11 + 3u2 ∂2u
)

u2 ∂2u φ
(s)

+
1

2
(d+ 2s− 1 + u2 ∂2u)u

2 ∂2u φ
(s−2) + z u2 ∂u · ∂ ψ(s−3)

]

, (D.2)

where we used the gauge invariants:

B(s) := FMd φ(s) +
1

2
(u · ∂)2 φ(s−2) ,

B(s−2) := FMd φ(s−2) − 1

2
(u · ∂)2

[

(∂2u)
2 φ(s) + 2 ∂2u φ

(s−2)
]

. (D.3)

The variation of the boundary terms (2.69) under ǫ(s−2) gives

δǫ(s−2) I∂M =
z−dB
2

〈〈

ǫ(s−2)
∣

∣ J∂M

〉〉

zB
, (D.4)

where J∂M is given by

J∂M = Po

[

− (d+ 2s− 5 + u2 ∂2u) ∂
2
u χ

(s) − z u · ∂ χ(s−3) + (d+ s− 3) z u · ∂ ψ(s−3)

+ z2 u · ∂ (u · ∂ ∂2u + 3 ∂u · ∂)(ξ(s−2) + T ζ(s−2))

− z2
[

� ∂2u − (∂u · ∂)2 + 2u · ∂ ∂u · ∂ ∂2u + (u · ∂)2 (∂2u)2
]

φ(s)

−
(

s− 2 +
1

2
∂2u u

2 +
1

2
u2 ∂2u

)

ζ(s−2)

+
[

(2(s− 2) + u2 ∂2u)(3(d+ 2s− 5) + u2 ∂2u)− 2 ∂2u (u
2)2 ∂2u

]

(ξ(s−2) + T ζ(s−2))

]

− (d+ 2s− 5)
[

(3(s− 2) + u2 ∂2u)Pe ∂
2
u φ

(s) + z u · ∂ Po ψ
(s−3)

]

. (D.5)

E Counterterms

The ǫ(s−2)-variations of the counterterm I 2 (c.t.)
∂M (3.8) can be obtained by noticing first that

it depends on β(s−3) through γ(s−2)

γ(s−2) = z u · ∂ β(s−3) , (E.1)

so that

zdB
c

I 2 (c.t.)
∂M =

〈〈

φ(s)
∣

∣G(s)
〉〉

zB
−
〈〈

γ(s−2)
∣

∣A(s−2)
〉〉

zB

=
〈〈

φ(s)
∣

∣Gφφ φ
(s)
〉〉

zB
+
〈〈

φ(s)
∣

∣Gφγ γ
(s−2)

〉〉

zB

+
〈〈

γ(s−2)
∣

∣Gγφ φ
(s)
〉〉

zB
+
〈〈

γ(s−2)
∣

∣Gγγ γ
(s−2)

〉〉

zB
, (E.2)
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with

Gφφ = z2
[

�− u · ∂ ∂u · ∂ +
1

2
(u · ∂)2 ∂2u −

1

2
u2
(

� ∂2u − (∂u · ∂)2 −
1

2
u · ∂ ∂u · ∂ ∂2u

)]

,

Gφγ =
z2

2

[

u2
(

�+
1

2
u · ∂ ∂u · ∂

)

− (u · ∂)2
]

,

Gγφ = G†
φγ , Gγγ = z2

(

�+
1

2
u · ∂ ∂u · ∂

)

. (E.3)

Notice the selfadjoint-ness of the above operators:

G†
ij = Gji , (E.4)

so that under an arbitrary variation, we have

δ I 2 (c.t.)
∂M = 2 c z−dB

[

〈〈

δ φ(s)
∣

∣G(s−3)
〉〉

zB
+
〈〈

δ β(s−3)
∣

∣K(s−3)
〉〉

zB

]

. (E.5)

Using the ǫ(s−2)-variations:

δǫ(s−2) φ
(s) = −u2 ǫ(s−2) , δǫ(s−2) β

(s−3) = z T (u · ∂ ∂2u + 3 ∂u · ∂) ǫ(s−2) , (E.6)

we obtain (E.5).

F Traceless and transverse projection

The traceless and transverse part of field h(s) can be uniquely determined from the gauge

transformation:

δ h(s) = u · ∂ λ(s−1) − u2 σ(s−2) . (F.1)

Without loss of generality, we assume that the gauge parameter λ(s−1) is traceless: λ(s−1) =

λ̄(s−1) , since its trace part overlaps the divergent part of λ(s−2) . Then, the trace of σ(s−2)

is uniquely fixed by the double trace part of h(s) via

(∂2u)
2 h(s) +

[

4(d+ 2s− 6) + u2 ∂2u
]

∂2u σ
(s−2) = 0 . (F.2)

Then, we have a doubly traceless field ¯̄h(s) with two traceless parameters λ̄(s−1) and σ̄(s−2) .

Now, we use the equations of the traceless and transverse gauge conditions. First, the

traceless gauge condition determines σ̄(s−2) in terms of ¯̄h(s) and λ̄(s−1) as

σ̄(s−2) = − 1

2(d+ 2s− 4)

[

2 ∂u · ∂ λ̄(s−1) + ∂2u
¯̄h(s)

]

. (F.3)

By plugging in this solution into the transverse condition, we get the following equation

for λ̄(s−1) :
[

�+
d+ 2s− 6

d+ 2s− 4
u · ∂ ∂u · ∂ − 1

d+ 2s− 4
u2 (∂u · ∂)2

]

λ̄(s−1)

+

[(

1− u2 ∂2u
2(d+ 2s− 4)

)

∂u · ∂ − u · ∂ ∂2u
d+ 2s− 4

]

¯̄h(s) = 0 . (F.4)
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By acting a r-ple divergence of the above equation, we get (∂u · ∂)r λ̄(s−1) in terms of

(∂u · ∂)r+1 λ̄(s−1) , (∂u · ∂)r+2 λ̄(s−1) and ¯̄h(s) :

(∂u · ∂)rλ̄(s−1) =

1

(r + 1)(d+ 2s− r − 4)

[

(d+ 2(s− r)− 6)
u · ∂
�

(∂u · ∂)r+1λ̄(s−1) − u2

�
(∂u · ∂)r+2λ̄(s−1)

]

+
d+ 2s− 4

(r + 1)(d+ 2s− r − 4)

(∂u · ∂)r
�

[(

1− u2 ∂2u
2(d+ 2s− 4)

)

∂u · ∂ − u · ∂ ∂2u
d+ 2s− 4

]

¯̄h(s) .

(F.5)

Thus, one can solve iteratively the multiple divergences of λ̄(s−1) , and finally λ̄(s−1) itself.

This procedure is unique, and finally the gauge parameters λ(s−1) and σ(s−2) are uniquely

determined by the traceless and transverse gauge conditions on h(s) .

Second method: In fact it is possible to find a closed expression of h(s)
TT. First, we

project h(s) on its transverse part h(s)
T as

h
(s)
T (x, u) =

1

s!

(

u · ∂w − u · ∂ ∂w · ∂
�

)s
h(s)(x,w) =

(

∂ũ · ∂
�

)s

R
(s)(u, ũ) , (F.6)

where R(s) is the deWit-Freedman curvature [58]:

R
(s)(u, ũ) =

1

s!
(u · ∂w ũ · ∂ − u · ∂ ũ · ∂w)s h(s)(x,w) . (F.7)

It is also possible to express h(s)
T as

h
(s)
T (x, u) =

s
∑

n=0

(−1)n

n!

(u · ∂)n(∂u · ∂)n
�n

h(s)(x, u) = : e−
u·∂ ∂u·∂

� : h(s)(x, u) , (F.8)

where : : is the normal product. The projection to h
(s)
TT can be obtained by using the

identity:
[

u2 − (u · ∂)2
�

, ∂u · ∂
]

= 0 , (F.9)

and by taking successive traces of h(s)
T as

h
(s)
TT(x, u) =

∑

n

an

(

u2 − (u · ∂)2
�

)n
(∂2u)

n h
(s)
T (x, u) . (F.10)

Finally, by requiring the traceless condition, the constants an are determined as

an =
1

4n n! (−d+2s−5
2 )n

, (F.11)

and replacing h(s)
T by its expression and after some algebra, we get

h
(s)
TT(x, u) =

∞
∑

n=0

1

4n n! (s− 2n)! (12 − ν)n

(

u2 − (u · ∂)2
�

)n

×

×
(

∂2w − (∂w · ∂)2
�

)n
(

u · ∂w − u · ∂∂w · ∂
�

)s−2n
h(s)(x,w) . (F.12)
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The projector P (s)
TT can be deduced as

P (s)
TT =

[s/2]
∑

n=0

1

4n n! (−d+2s−5
2 )n

(

u2 − (u · ∂)2
�

)n

: e−
u·∂ ∂u·∂

� :

(

∂2u −
(∂u · ∂)2

�

)n

. (F.13)

Notice that �s P (s)
TT is a local operator.

Finally, the uniqueness of the gauge-fixing procedure under (F.1) enables us to eas-

ily obtain the contraction of the spin s Weyl tensors C (s).8 Since the latter is invariant

under (F.1), we first gauge fix h(s) to h(s)
TT . Then, taking into account that C (s) contains

s derivatives acting on h
(s)
TT, there exists only one possible expression for

〈〈

C (s)
∣

∣C (s)
〉〉

expressed in terms of h(s)
TT which is

〈〈

h
(s)
TT

∣

∣ (−�)s h(s)
TT

〉〉

up to an overall constant.
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[34] R. Manvelyan and W. Rühl, The Off-shell behaviour of propagators and the Goldstone field

in higher spin gauge theory on AdSd+1 space, Nucl. Phys. B 717 (2005) 3 [hep-th/0502123]

[INSPIRE].
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