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1 Introduction

There has been much progress in the study of supersymmetric gauge theories since Seiberg

and Witten discovered that the N = 2 supersymmetric gauge theories are exactly solv-

able [36, 37]. The prepotential which characterizes the effective action can be determined

by holomorphicity and monodromy in the moduli space. On the other hand, the instanton

contributions in the prepotential can be directly computed by Nekrasov partition func-

tion [30]. The Nekrasov partition function is parametrized by two parameters ǫ1 and ǫ2
which deform the R4 space. It can be shown by saddle point method that the leading order

contribution of Nekrasov function in small ǫ1, ǫ2 is equal to the Seiberg-Witten prepoten-

tial [31]. For more mathematical perspectives of the Nekrasov function see e.g. [8, 29].

Furthermore, the higher order contributions in ǫ1, ǫ2 expansion of the Nekrasov function

compute the gravitational coupling terms in the effective action, and is analogous to the

higher genus amplitudes in topological string theory which can be computed by the method

of holomorphic anomaly equation [6] and gap conditions in the moduli space proposed

in [18, 19]. The two parameters ǫ1, ǫ2 correspond to a refinement of the string coupling in

topological string theory, which was studied for certain toric Calabi-Yau manifolds in [22].
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The homomorphic anomaly equation and gap conditions can be extended to the refined

case and the higher order terms in SU(2) Nekrasov function are solved exactly [20, 21, 23].

The higher genus formulae are expressed in terms of quasi-modular forms such as Eisen-

stein series and Jacobi theta functions, and the formulae are exact in the sense that they

sum up all instanton contributions at a fixed genus.

The Nekrasov partition function can be also related to the correlation function of 2d

Liouville theory by the AGT (Alday-Gaiotto-Tachikawa) conjecture [4]. Recently there

have been many works in this direction. We hope our works can provide some ideas for

the AGT conjecture.

We will consider the so called Nekrasov-Shatashvili limit, also sometimes known as

the chiral limit, of the Nekrasov function, which sets one of the deformation parameter

ǫ2 = 0 and we expand the Nekrasov function for small ǫ ≡ ǫ1. Nekrasov and Shatashvilli

conjectures in this limit the N = 2 gauge theories are described by certain quantum inte-

grable systems [32]. The quantum integrable systems provides another way to compute the

Nekrasov function in the ǫ2 = 0 limit and has been considered in e.g. [2, 28]. In our previous

paper [21] we showed that the formulae we derived from holomorphic anomaly equation sat-

isfy the quantum equations in the sine-Gordon model for the pure SU(2) Seiberg-Witten

theory. Thus, if the quantum integrable system description of the Nekrasov-Shatashvili

limit is correct, our higher genus formulae in this limit would be exactly proven.

In this paper we study the approach of using the saddle point method to compute

Nekrasov function in the Nekrasov-Shatashvili limit. This is carried out quite explicitly in

the papers [14, 35], and seems to be on a more solid footing than the approach of using

quantum integrable systems mentioned above. Furthermore, the saddle point method is

readily applicable to the case of Seiberg-Witten gauge theory with matters and to higher

rank gauge group. We will show that our SU(2) higher genus formulae [20, 21] in the

Nekrasov-Shatashvili limit satisfy the saddle point equations in [14, 35]. Since these equa-

tions uniquely fix the higher genus contributions (up to some constants, which can be easily

checked), we would have proven our formulae exactly.

2 Review of the saddle point method

We will be interested in the small ǫ expansion of the logarithm of the Nekrasov partition

function, which is called the free energy

logZ(ǫ1, ǫ2, ai) =
∞
∑

g,n=0

(ǫ1 + ǫ2)
2n(ǫ1ǫ2)

g−1F (n,g)(ai) (2.1)

where ai (i = 1, 2, · · · , N) are the periods or flat coordinates for the SU(N) gauge theory,

satisfying
∑N

i=1 ai = 0. The leading term scales like 1
ǫ1ǫ2

and is characteristic of the saddle

point behavior in the small ǫ1,2 limit. The Nekrasov partition function are computed

by sums over Young tableaux, and in the small ǫ1,2 limit its logarithm is dominated by

the Young tableaux that have extremal contributions. It urns out the dominant Young

tableaux have the number of boxes scaling as 1
ǫ1ǫ2

in the ǫ1,2 → 0 limit. The leading term

F (0,0) can be computed by finding the dominant Young tableau shapes, and it was shown
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by this saddle point method that the leading term F (0,0) is equal to the Seiberg-Witten

prepotential [31].

It turns out the saddle point method also works when we send only one of ǫ’s, say ǫ2
to zero. In this limit we consider the expansion around ǫ ≡ ǫ1, and define the deformed

prepotential F as

F(ai, ǫ) =
∞
∑

n=0

ǫ2nF (n,0)(ai) (2.2)

The deformed prepotential can be again computed by finding the extremal Young tableaux

in the ǫ2 → 0 limit [14, 35]. Here we will not go into the details of the derivation but

simply quote the results in [14, 35]. For the case of SU(N) theory with Nf fundamental

matters, the saddle point equation is

qM(x− ǫ)w(x)w(x− ǫ)− w(x)P (x) + 1 = 0 (2.3)

The explanation of the notations follows. Here q is a power of the dynamical scale for

asymptotically free theories of Nf < 2N and the gauge coupling q = e2πiτ for the conformal

theory Nf = 2N . The power of the q parameter counts the number of instanton in the

contribution to the Nekrasov partition function. The w(x) is a spectral function that

encodes the dominant Young tableau configuration in the ǫ2 ∼ 0 limit. The P (x) is a

degree N polynomial, and M(x) is a degree Nf polynomial parametrized by the mass of

fundamental matters

P (x) =
N
∏

i=1

(x− bi), M(x) =

Nf
∏

i=1

(x+mi) (2.4)

Furthermore, the parameters bi in P (x) are related to the expectation value of the adjoint

scalar field φ in the N = 2 gauge multiplet

〈tr(φJ)〉 =
N
∑

i=1

bJi , (2.5)

and the deformed periods ãi can be computed by a residue formula

ãi = −
∞
∑

n=0

Resx=bi+nǫx∂x logw(x), (2.6)

where we use the tilde symbol to denote the period is deformed by ǫ parameter, as it turns

out that it is different from the usual period a in Seiberg-Witten theory. The instanton

parts of the deformed prepotential is computed by a generalized Matone relation [26]

2q
dFinst(ãi, ǫ, q)

dq
=

N
∑

i=1

ã2i − 〈tr(φ2)〉 =
N
∑

i=1

(ã2i − b2i ). (2.7)

We will see that at low orders, the amplitudes F (0,0) and F (1,0) may also have some simple

q-dependence in the classical and perturbative contributions, besides the main instanton

contributions.
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In this paper we consider the case of SU(2) Seiberg-Witten theory whose Coulomb

moduli space is described by a complex u-plane, where u is the expectation value u =
1
2〈tr(φ2)〉. It turns out that in order to ensure the SU condition ã1 = −ã2 ≡ ã, we can

choose the parameters b1 = −b2 ≡ b. So the modulus can be written u = 1
2(b

2
1 + b22) = b2,

and the polynomial P (x) = x2 − u. The residue formula and the generalized Matone

relation are

ã = −
∞
∑

n=0

Resx=b+nǫx∂x logw(x), q
dFinst(ã, ǫ, q)

dq
= ã2 − u (2.8)

The authors in [14, 35] use the saddle point equation (2.3) and formulae (2.8) to solve

the deformed prepotential F(ã, ǫ, q) perturbatively in q parameter and the solution is exact

in ǫ parameter. On the other hand, in order to make connection with the higher genus

formulae in our paper [20, 21], we need to instead solve the deformed prepotential exactly

in q parameter and but perturbatively in ǫ parameter. We will do this in the following

sections.

In [9], the authors show that the NS limit of Nekrasov function is equivalent to the

F-terms of certain two-dimensional supersymmetric gauge theories, by the analysis of the

corresponding saddle point equations. In [7], the relation to the quantum Hitchin system

is studied.

In [27] the authors showed it was quite simple to prove the AGT conjecture for SU(2)

theory in the Nekrasov-Shatashvili limit. This is due to the fact that the n-instanton contri-

bution in the Nekrasov partition function is dominated by only one pair of Young tableau

([1n], ∅) in this limit. In this paper we are interested in the logarithm of the Nekrasov

partition function, or the free energy. It is known that the n-instanton contribution of the

Nekrasov partition function has the leading singular behavior 1
(ǫ1ǫ2)n

in small ǫ1, ǫ2 limit.

When one computes the logarithmic free energy, the higher order singular terms cancel

out, and one finds that the leading singular term in the free energy is only 1
ǫ1ǫ2

. In order

to compute the leading order term of the free energy around ǫ2 ∼ 0, we actually need to

include some sub-leading terms in the partition function. So the Nekrasov-Shatashvili limit

of the free energy contains more information and is much more complicated than that of

the partition function.

3 Pure SU(2) theory

As a first step we consider the simple case of pure SU(2) theory without matter. In this

case the polynomial M(x) = 1 and the saddle point equation becomes

qw(x)w(x− ǫ)− w(x)P (x) + 1 = 0 (3.1)

We write the w(x) and the deformed period ã in small ǫ expansion as

w(x) =
∞
∑

n=0

wn(x)ǫ
n, ã =

∞
∑

n=0

anǫ
n (3.2)
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We plug the expansion of w(x) into the saddle point equation (3.1) and solve for wn(x)’s

to the few orders. With P (x) = x2 − u = x2 − b2, we find

w0(x) =
P (x)−

√

P (x)2 − 4q

2q
,

w1(x) =
x(P (x)−

√

P (x)2 − 4q)2

2q(P (x)2 − 4q)
,

w2(x) =
1

2q(P (x)2 − 4q)3
[P (x)5(P (x)−

√

P (x)2 − 4q)

−2qP (x)2(12x4 − 16ux2 + 4u2 + (3u− 11x2)
√

P (x)2 − 4q)

+8q2(10x4 − 12ux2 + 2u2 + (u− 4x2)
√

P (x)2 − 4q)] (3.3)

At leading order ǫ = 0, the equation for w0(x) is a simple quadratic equation. There

are two solutions for w0(x) and we choose the one with minus sign in front of the quadratic

discriminant. We will also use the sign convention P (x) > 0 when we expand the function

perturbatively around q ∼ 0. There are only rational functions of x in the perturbative

series expansion around q ∼ 0, so that the residue calculations are simple to do pertur-

batively. Our choice of convention for w0(x) and P (x) > 0 gives the correct sign for the

leading period a0 =
√
u+O(q).

Th deformed period ã can be computed perturbatively in ǫ parameter as residue around

b =
√
u,

ã = −Resx=bx∂x[log(w0(x)) +
w1(x)

w0(x)
ǫ+ (

w2(x)

w0(x)
− w1(x)

2

2w0(x)2
)ǫ2 +O(ǫ3)] (3.4)

Here in the ǫ ∼ 0 limit, all possible poles at x = b + nǫ in (2.8) collapse to x = b, so we

only need to compute the residue around x = b.

For an arbitrary function f(x), we can compute the derivative −xf ′(x) = (−xf(x))′+
f(x). If there is no branch cut for the function f(x) around the residue point in the complex

plane, we can ignore the total derivative and simplify the calculations of the residue

− Resx=bx∂xf(x) = Resx=bf(x). (3.5)

It turns out this simplification is valid for the higher order terms in (3.4) since there is

no logarithmic branch cut around the residue point. But for the leading term there is a

logarithmic cut log(w0(x)), so we can not use this formula.

Now we consider the leading order period a0 = −Resx=b
xw′

0(x)
w0(x)

, which can be computed

perturbatively to the first few orders around q ∼ 0. We assume P (x) > 0 and expand the

expression for w0(x) around q ∼ 0, and find

a0 = Resx=b[
2x2

P (x)
+

4x2

P (x)3
q +

12x2

P (x)5
q2 +O(q3)]

=
√
u(1− q

4u2
− 15q2

64u4
+O(q3)) (3.6)
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We realize the the leading order period is actually the conventional undeformed period

a ≡ a0 in Seiberg-Witten theory, which satisfies the Picard-Fuchs differential equation

4(4q − u2)∂2ua = a. This can be shown exactly

4(4q − u2)∂2ua− a = Resx=b
d

dx
[−2x3(x4 − 4ux2 + 3u2 + 4q)

(P (x)2 − 4q)
3
2

] = 0 (3.7)

The residue vanishes since it can be written as a total derivative and there is no branch

cut around the residue point x = b.

In general we find a contour integral or residue vanishes if the indefinite integral can

be performed nicely, and the result is expressed a rational function of x and the square

root
√

P (x)2 − 4qM(x), since there is usually no branch cut in the rational functions. We

have to be a little more careful if the indefinite integral involving logarithm, but this case

can be easily dealt with by taking account of the branch cut of the logarithm around the

contour. Otherwise, if the indefinitely integral can not be done nicely, which implies that

the integral is a generic elliptic integral, there will be branch cut around the contour and the

residue will not vanish. In this case we will to relate the integral to other known integrals

by adding some total derivatives of rational functions of x and
√

P (x)2 − 4qM(x), which

have no branch cut around the contour.

We compute the deformed periods to the next few orders. We find the odd terms can

be always written as a total derivative with no branch cut, so the residue vanishes. For

example, we find the indefinite integral

∫

w1(x)

w0(x)
dx =

1

4
log(P (x)2 − 4q)− 1

2
log[P (x) +

√

P (x)2 − 4q] (3.8)

so −x∂x(w1(x)
w0(x)

) = − d
dx [x

w1(x)
w0(x)

] + w1(x)
w0(x)

is also a total derivative. Around q ∼ 0 the leading

order behavior is w1(x)
w0(x)

∼ q, and since there is no branch cut in the logarithms in (3.8)

for small finite q, the residue at x = b vanishes a1 = 0. Similarly we find a3 = 0 as well

because the indefinite integral can be also performed nicely.

We compute the first non-vanishing sub-leading order contribution a2 to the deformed

period ã. First we can compute perturbatively and find

a2 =
1√
u
(− q

16u2
− 35q2

128u4
− 1155q3

1024u6
+O(q4)) (3.9)

Then after some trials we can identify the exact formula for a2 in terms of the leading

undeformed period a ≡ a0 as

a2 =
1

24
(∂ua+ 2u∂2ua) (3.10)

The exact formula can be proven by computing a2 − 1
24(∂ua+ 2u∂2ua), and one can again

show it is the residue of a total derivative of a rational function of x and the square root
√

P (x)2 − 4qM(x), therefore vanishes.
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Similarly we compute the ǫ4 order contribution. Due to the Picard-Fuchs equa-

tion (3.7), the expression can be written in some different forms

a4 =
1

5760
(75∂2ua+ 120u∂3ua+ 28u2∂4ua)

=
(60qu− u3)∂ua+ 2(300q2 + 153qu2 − u4)∂2ua

2880(u2 − 4q)2
(3.11)

So we find the few order expansion for the deformed period

ã = a+ a2ǫ
2 + a4ǫ

4 +O(ǫ6) (3.12)

= a+
ǫ2

24
(∂ua+ 2u∂2ua) +

ǫ4

5760
(75∂2ua+ 120u∂3ua+ 28u2∂4ua) +O(ǫ6)

It turns out the deformed period (3.12) is the same as in the sine-Gordon quantum

model studied in [21, 28]. One can probably prove the equivalence by some ingenious

changes of variables. In [21, 28] the deformed dual period ãD = ∂F(ã)
∂ã is used to determine

the equation for the deformed prepotential. Here we will follow a different procedure and

use the generalized Matone relation which has been derived from the saddle point approach

in [14, 35].

To simplify the analysis, we convert the derivative with respect to q in the Matone

relation to derivative with respect to a. Using dimensional analysis we see the instanton

parts of the Nekrasov partition functions can be written as functions of the dimensionless

combination q
a4

up to simple factors,

F
(n,0)
inst (a, q) =

1

a2n−2
fn

(

q

a4

)

. (3.13)

There are also perturbative contributions

F
(0,0)
pert (a, q) = a2 log

(

a4

q

)

, F
(1,0)
pert (a, q) =

1

24
log

(

a4

q

)

,

F
(n,0)
pert (a, q) ∼ 1

a2n−2
n ≥ 2. (3.14)

Taking into account these contributions, we can write the instanton contributions in terms

of the total contributions and convert the derivatives

q
dF

(0,0)
inst (a, q)

dq
=

1

2
F (0,0) − 1

4
a
∂F (0,0)

∂a
+ a2

q
dF

(1,0)
inst (a, q)

dq
= −1

4
a
∂F (1,0)

∂a
+

1

24

q
dF

(n,0)
inst (a, q)

dq
=

1− n

2
F (n,0) − 1

4
a
∂F (n,0)

∂a
, n ≥ 2 (3.15)
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We expand the generalized Matone relation by plugging the above equations in (2.2), and

use (3.12)

q
dFinst(ã, ǫ, q)

dq
−ã2+u= 1

2
F (0,0)(a)− 1

4
a
∂F (0,0)(a)

∂a
+u+

ǫ2

4

[

a2(aD+2πiτa)−a∂F
(1,0)(a)

∂a
+
1

6

]

+
ǫ4

2

[

− F (2,0)(a)− a

2

∂F (2,0)(a)

∂a
− a2

2
∂a(a

∂F (1,0)(a)

∂a
)

+
a4
2
(aD + 2πiτa) +

a22
4
∂a(aD + 2πiτa)

]

+O(ǫ6) (3.16)

Here the second derivative of the prepotential is the gauge coupling ∂2F (0,0)(a)
∂2a

= −2πiτ ,

and we use the notation of the dual period ∂F (0,0)(a)
∂a = aD. We note the definition of the

parameter τ is the same as the elliptic parameter of the Seiberg-Witten curve, and is twice

the convention used in [18, 21]. The parameter q is the 4th power of the asymptotically

free scale of the pure Seiberg-Witten gauge theory, and in the followings we will no longer

need to compute the derivative of q, so for convenience we will set q = 1, which can

always be easily recovered by dimensional analysis. The theory is then characterized by

one independent parameter, the modulus parameter u on the complex plane, and the other

parameters τ , a and aD are functions of the modulus u. We will write down the functional

relations between these parameters.

The leading order equation in (3.16)is the conventional Matone relation. Taking deriva-

tive with respect to the period a for the leading order Matone relation, we can find the

formula for the dual period in terms of period a and modulus u,

aD = −2πiτa− 4∂au (3.17)

The Seiberg-Witten curve for pure SU(2) gauge theory in the Weierstrass form is

y2 = 4x3 − g2(u)x− g3(u), where

g2(u) =
4

3
(u2 − 3), g3(u) =

4

27
u(9− 2u2) (3.18)

The relations between the period or flat coordinate a coupling τ , and modulus u are

J(τ) =
E4(τ)

3

E4(τ)3 − E6(τ)2
=

g2(u)
3

g2(u)3 − 27g3(u)2
, (3.19)

da

du
=

√

− 1

18

g2(u)

g3(u)

E6(τ)

E4(τ)
, (3.20)

see e.g. [20, 21]. In the case of pure SU(2) Seiberg-Witten, we can write explicit formulae

for u, a and also aD through (3.17), as Eisenstein series and Jacobi theta functions in terms

of the coupling τ ,

u =
θ42(τ) + θ43(τ)

θ22(τ)θ
2
3(τ)

,

a =
2E2(τ) + θ42(τ) + θ43(τ)

3θ2(τ)θ3(τ)
(3.21)
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It is straightforward to check that the formulae for u and a provide the solution for the

relations (3.19), (3.20), using the well known Ramanujan derivative identities for Eisenstein

series and Jacobi moduli forms. To compare with the formulae in the convention in [20, 21],

we can use the doubling formulae for Eisenstein series and Jacobi moduli forms, and find

u = 2
θ43(

τ
2 ) + θ44(

τ
2 )

θ42(
τ
2 )

,

a = 2
E2(

τ
2 ) + θ43(

τ
2 ) + θ44(

τ
2 )

3θ22(
τ
2 )

(3.22)

We see this is the same formulae as in [20, 21] except a factor of 2 difference due to our

convention for u and a here.

The dual period is defined by aD = ∂F (0,0)(a)
∂a , so it is also determined by the equation

daD
da

=
d2F (0,0)(a)

da2
= −2πiτ (3.23)

We check two things about the dual period aD, with quasi-modular formulae (3.21) and the

Ramanujan derivative identities. Firstly, we can check aD satisfy the same Picard-Fuchs

equation as period a with respect to u in (3.7). Secondly, we can verify the leading order

conventional Matone relation by taking a further derivative on both sides of (3.17) with

respect to a, and check with (3.23).

The equations from the deformed Matone relation (3.16) at order ǫ2 and ǫ4 are

a
∂F (1,0)(a)

∂a
− 1

6
=

1

24
(∂ua+ 2u∂2ua)(aD + 2πiτa) (3.24)

F (2,0)(a)+
a

2

∂F (2,0)(a)

∂a
= −a2

2
∂a

(

a
∂F (1,0)(a)

∂a

)

+
a4
2
(aD+2πiτa)+

a22
4
∂a(aD+2πiτa) (3.25)

In [21] we derive higher genus formulae from holomorphic anomaly and gap conditions.

The formulae for F (1,0) and F (2,0) are

F (1,0)(a) =
1

24
log(u2 − 4) ,

F (2,0)(a) = −u(45uX + 4u2 + 300)

8640(u2 − 4)2
. (3.26)

where X = E2(τ)E4(τ)
E6(τ)

g3(u)
g2(u)

.

Now we can check our higher genus formulae (3.26) satisfy these equations (3.24), (3.25)

derived from the saddle point method, using formulae (3.21) and the Ramanujan derivative

identities for Eisenstein series and Jacobi moduli forms. The checks are straightforward

but might become tedious if done manually, so one might resort to computer algebra

manipulations. Thus we have proven these higher genus formulae for F (1,0) and F (2,0).

3.1 The deformed dual period

The deformed period ã is the residue for contour integral (2.8) of −x∂x logw(x) of the

spectral function w(x). We can define a deformed dual period ãD as the contour integral
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of the same integrand but around a different B cycle

ãD = − 1

2πi

∮

B
x∂x logw(x) (3.27)

At leading order the dual period aD0 ≡ aD should satisfy the same Picard-Fuchs

differential equation so it is the conventional dual period in Seiberg-Witten theory. The

higher order contributions to the deformed dual period can be written as derivatives of

leading dual period aD, in the same way as the deformed period ã, since the derivation of

the formulae only depends on the integrand in the contour integral but not the contour.

We find the same formulae as (3.12)

ãD = aD + aD2ǫ
2 + aD4ǫ

4 +O(ǫ6) (3.28)

= aD +
ǫ2

24
(∂uaD + 2u∂2uaD) +

ǫ4

5760
(75∂2uaD + 120u∂3uaD + 28u2∂4uaD) +O(ǫ6)

We shall show that the deformed prepotential satisfies the relation with dual deformed

period

∂F(ã)

∂ã
= ãD (3.29)

This can be probably be done with arguments similar to those of Dijkgraaf and Vafa for

showing the equivalence of the prepotential of topological string theory on a Calabi-Yau

manifold with a corresponding matrix model in [10]. Since this relation can also determine

the higher order contributions of the deformed prepotential, we can prove our higher genus

formulae for F (n,0) by showing they satisfy the relation (3.29). This is done for pure gauge

theory in [21]. Here we show the formulae again for consistency of notation and prepare

for the study for the case of Seiberg-Witten theory with matters.

We expand the relation (3.29) with the formulae for deformed period (3.12) and the

dual deformed period (3.28)

∂F(ã)

∂ã
− ãD =

∂F (0,0)(a)

∂a
− aD + ǫ2(∂aF

(1,0)(a)− 2πiτa2 − aD2)

+ǫ4[∂aF
(2,0)(a) + a2∂

2
aF

(1,0)(a)− 2πiτa4 − πi(∂aτ)(a2)
2 − aD4]

+O(ǫ6) (3.30)

The leading order is the well known Seiberg-Witten relation for the prepotential. We can

again easily check that the higher genus formulae (3.26) satisfy the above equations at

order ǫ2 and order ǫ4, using formulae (3.21) and the Ramanujan derivative identities for

Eisenstein series and Jacobi moduli forms.

4 Seiberg-Witten theory with fundamental matters

The expansion (2.1) of the logarithm of Nekrasov partition function has only even power

terms in ǫ1,2. This is not actually true for the original Nekrasov function with matters.
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The situation can be remedied, since the odd terms can be mostly eliminated by a shift of

the mass parameters of the flavor matters [21, 24],

mi → mi +
ǫ1 + ǫ2

2
(4.1)

Our higher genus formulae in [21] for Seiberg-Witten theories with matters are derived

based on such a shift. In the following discussion we will also make such a shift in the

saddle point equation calculations to compare with the higher genus formulae. So the

saddle point equation is

qw(x)w(x− ǫ)

Nf
∏

i=1

(

x+mi−
ǫ

2

)

− w(x)P (x) + 1 = 0 (4.2)

where P (x) = x2 − u = x2 − b2.

As a main example we consider the case of one fundamental matter Nf = 1. The

calculations for the other cases Nf = 2, 3, 4 to be more complicated but similar to the

Nf = 1 case.

The calculations of Nf = 1 case are also quite similar to those of the pure Nf = 0

gauge theory except two technical complications. Firstly, for generic mass parameter m1

we don’t have close formulae for the modulus u and period a in terms quasi-modular forms

of the elliptic parameter τ of the Seiberg-Witten curve as in (3.21) for the Nf = 0 case. So

we have to directly deal with the functional equations (3.19), (3.20).

Secondly, because of the additional dimensional parameter m1, we can not simply

convert the derivative with respect to q in the deformed Matone relation (3.16) to the

derivative with respect to a. Here q is the third power of the dynamical scale in the

asymptotically free Nf = 1 theory. So when we use the deformed Matone relation to

compute the higher genus contributions F (n,0), we need to deal with derivatives with respect

to two independent variables, and the chain rule of taking derivative is more tricky in the

multi-variable situation. On the other hand, as in the Nf = 0 case, we will also use the

deformed dual period to compute the higher genus contributions. In this approach there

is no derivative with respect to q, so we can treat it as a dummy variable similarly as the

mass parameter m1, and we might set q = 1 for convenience.

We write the spectral function in small ǫ expansion w(x) =
∑∞

n=0wn(x)ǫ
n , and use

the saddle point equation (4.2) to solve for wn(x)’s to the few orders

w0(x) =
P (x)−

√

P (x)2 − 4q(x+m1)

2q(x+m1)
,

w1(x) =
(3x2 + 4m1x+ u)[P (x)−

√

P (x)2 − 4q(x+m1)]
2

8q(x+m1)(P (x)2 − 4q(x+m1))
,

· · ·

The deformed period is computed ã =
∑∞

n=0 anǫ
n = −Resx=bx∂x logw(x). The leading

order period a ≡ a0 can be computed perturbatively for small q,

a =
√
u− m1

4u
3
2

q +
3(u− 5m2

1)

64u
7
2

q2 +
35m1(u− 3m2

1)

256u
11
2

q3 +O(q4) (4.3)
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The Picard-Fuchs equation was known in [33] some time ago

2∆(u)(4m2
1 − u)∂3ua+ 2[2∆(u) + (4m2

1 − 3u)∂u∆(u)]∂2ua

+4(6u2 − 18m2
1u+ 8m4

1 + 9m1q)∂ua = 0, (4.4)

where ∆(u) is the discriminant

∆(u) = −16u3 + 16m2
1u

2 + 72m1qu− 64m3
1q − 27q2 (4.5)

We check the Picard-Fuchs equation exactly by showing the left hand side is the residue

of a total derivative without branch cut around the residue point, and therefore vanish.

We find the odd terms can be written as the residue of a total derivative without

branch cut around the residue point, and therefore vanish. We check this for a1 and a3
contributions. For example, we find the indefinite integral

∫

w1(x)

w0(x)
dx =

1

4
log[P (x)2 − 4q(x+m1)]−

1

2
log[

√

P (x)2 − 4q(x+m1) + P (x)] (4.6)

There are actually branch cut contributions in the logarithmic functions around the residue

point x = b =
√
u if q = 0, but they cancel out. We find

a1 = −Resx=bx∂x
w1(x)

w0(x)
= Resx=b

w1(x)

w0(x)
= 0 (4.7)

Similarly we find a3 = 0.

We identify the exact formulae for the non-vanishing sub-leading even terms in the

expansion of the deformed period ã =
∑∞

n=0 anǫ
n,

a2 =
(3u− 2m2

1)∂ua+ (6u2 − 4m2
1u− 9m1q)∂

2
ua

12(3u− 4m2
1)

, (4.8)

a4 =
1

(4m2
1 − 3u)∆(u)2

{

[288u6 + 480m2
1u

5 + 48m1(4m
3
1 − 159q)u4

+(8880m3
1q − 64m6

1 + 7290q2)u3 − 144m2
1q(89m

3
1 + 45q)u2

+6m1q(4254m
3
1q + 640m6

1 − 81q2)u− 15m3
1q

2(320m3
1 + 1269q)]

∂ua

180
+[+4608u7 + 7680m2

1u
6 + 768(4m4

1 − 267m1q)u
5

+16(21840m3
1q − 64m6

1 + 24705q2)u4 − 1008m2
1q(464m

3
1 + 933q)u3

+72m1q(28232m
3
1q + 2176m6

1 − 1323q2)u2 − 3q2(313200m3
1q + 361984m6

1

+149445q2)u+ 192m2
1q

2(−1341m3
1q + 1600m6

1 + 6804q2)]
∂2ua

1440

}

(4.9)

It takes some trials to identify the formulae. Due to the Picard-Fuchs equation (4.4),

it is sufficient to write the higher order period as a linear combination of ∂ua and ∂2ua,

and there is no need for higher derivatives. The formulae can be again easily proven by

subtracting the two sides of the equations and showing that the result is a contour integral

of a total derivative of a rational function of x and the square root
√

P (x)2 − 4qM(x),

without branch cut around the contour.
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The Seiberg-Witten curve in elliptic form is y2 = 4x3 − g2(u)x− g3(u), where

g2(u) =
4u2

3
− 4m1q, g3(u) =

8u3

27
+

4

3
m1qu− q2 (4.10)

To write the higher genus formulae, we introduce the elliptic parameter τ of the curve,

which is also related to the prepotential as ∂2aF
(0,0)(a) = −2πiτ . The relations between

the period a, coupling τ , and modulus u are captured by the functional equations similar

to the pure gauge theory,

J(τ) =
E4(τ)

3

E4(τ)3 − E6(τ)2
=

g2(u)
3

g2(u)3 − 27g3(u)2
, (4.11)

da

du
=

√

− 1

18

g2(u)

g3(u)

E6(τ)

E4(τ)
, (4.12)

The Picard-Fuchs equation (4.4) between a and u can be derived from these functional

relations.

The formula (3.17) for the dual period aD = ∂aF
(0,0)(a) in the pure gauge theory case

is no longer valid for the case of theories with matters here. The functional relation of aD
with the other parameters is determined by ∂aaD = ∂2aF

(0,0)(a) = −2πiτ . In terms of the

modulus u we can write

daD
du

= −2πiτ
da

du
= −2πiτ

√

− 1

18

g2(u)

g3(u)

E6(τ)

E4(τ)
(4.13)

The dual period aD satisfies the same Picard-Fuchs differential equation with respect to u

as the period a.

In [21] we derive the higher genus formulae from holomorphic anomaly equations and

boundary gap conditions. For example, we found

F (1,0) =
1

24
log(∆(u)/q2) (4.14)

F (2,0) =
1

540∆(u)2
{−45(6u2 − 4m2

1u− 9m1q)
2X + 72u5 + 624m2

1u
4

−(6372m1q + 64m4
1)u

3 + 216q(28m3
1 + 45q)u2

−12m2
1q(400m

3
1 + 567q)u+ 54m1q

2(184m3
1 − 189q)} (4.15)

where X = E2(τ)E4(τ)
E6(τ)

g3(u)
g2(u)

.

As we mentioned, in the saddle point method studied here, the higher genus contri-

butions can be calculated by two different ways: use the deformed dual period or use the

deformed Matone relation. We consider these two approaches respectively to prove our

higher genus formulae (4.14), (4.15).

4.1 Use the deformed dual period

This approach works similarly as the pure gauge theory case. We see that the sub-leading

order contributions to the deformed period and the dual can be computed by the same
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formulae

ã = [1 + ǫ2L2(u) + ǫ4L4(u) +O(ǫ6)]a,

ãD = aD + ǫ2aD2 + ǫ4aD4 +O(ǫ6)

= [1 + ǫ2L2(u) + ǫ4L4(u) +O(ǫ6)]aD (4.16)

where L2(u) and L4(u) are some differential operators involve derivatives with respect to

u, and can be found in the formulae (4.8), (4.9).

We can compute the higher genus contributions F (n,0)(a) in the deformed prepotential

F(a, ǫ) =
∑∞

n=0 F
(n,0)(a)ǫ2n by the relation

∂F(ã, ǫ)

∂ã
= ãD (4.17)

Similar to the pure gauge theory as in (3.30), we expand the equation for small ǫ, and find

the order ǫ2 and order ǫ4 equations

∂aF
(1,0)(a) = 2πiτa2 + aD2

∂aF
(2,0)(a) = −a2∂2aF (1,0)(a) + 2πiτa4 + πi(∂aτ)(a2)

2 + aD4 (4.18)

Using the functional relations (4.11), (4.12), (4.13) and Ramanujan derivative identities,

we check our higher genus formulae (4.14), (4.15) satisfy these equations.

4.2 Use the deformed Matone relation

The deformed Matone relation is

q
dFinst(ã, ǫ, q)

dq
− ã2 + u = 0 (4.19)

Here in the equation we write only the instanton contribution to the prepotential. On the

other hand, our higher genus formulae in (4.14), (4.15) include both the perturbative and

instanton contributions. For n ≥ 2, the perturbative part of the higher genus contributions

F (n,0) is independent of the parameter q ≡ Λ4−Nf , where Λ is the asymptotically free scale

of SU(2) Seiberg-Witten theory with Nf flavors, so it doesn’t affect the deformed Matone

relation whether we use the total or instanton contributions. However, for the low order

F (0,0) and F (1,0), the perturbative contributions have q dependence due to the logarithmic

functions and we need to take in account their contributions. Specifically, the perturbative

contributions are

F
(0,0)
pert (a, q) = −3

2
(4−Nf )a

2 +
3

2

Nf
∑

i=1

m2
i + 2a2 log(−4a2/Λ2)

−1

2

Nf
∑

i=1

{(a−mi)
2 log[(−a+mi)/Λ] + (a+mi)

2 log[(a+mi)/Λ]},

F
(1,0)
pert (a, q) =

1

12
log(−4a2/Λ2) +

Nf
∑

i=1

1

24
log[(−a2 +m2

i )/Λ
2], (4.20)
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where we add powers of Λ to cancel the mass dimension of the logarithm. We compute the

perturbative contributions

q
dF

(0,0)
pert (a, q)

dq
=

1

4−Nf
Λ
dF

(0,0)
pert (a, q)

dΛ
= −a2 + 1

4−Nf

Nf
∑

i=1

m2
i

q
dF

(1,0)
pert (a, q)

dq
=

1

4−Nf
Λ
dF

(1,0)
pert (a, q)

dΛ
= − Nf + 2

12(4−Nf )
(4.21)

We expand the deformed Matone relation (4.19) to the first few orders, taking account

of the perturbative contributions (4.21), and use (4.8), (4.9). We find

q
dFinst(ã, ǫ, q)

dq
−ã2+u (4.22)

=

[

q∂qF
(0,0)(a, q)− 1

4−Nf

Nf
∑

i=1

m2
i +u

]

+ǫ2
[

q∂qF
(1,0)(a, q)+

Nf + 2

12(4−Nf )
+a2q∂qaD

]

+ǫ4q[∂qF
(2,0)(a, q) + a2∂a∂qF

(1,0)(a, q) + a4∂qaD − a22∂q(πiτ)] +O(ǫ6)

where we have used aD = ∂aF
(0,0)(a, q).

In the conformal case Nf = 4 the parameter q = e2πiτ0 is related to the bare gauge

coupling τ0 and is dimensionless . We note here that the bare coupling τ0 is renormalized by

instanton contributions, and is different from the τ of the Seiberg-Witten curve in the func-

tional relations (4.11), (4.12). We see that if we naively set Nf = 4 in the expressions (4.21)

and (4.22), they become singular. This is a hint that as it turns out, the deformed Matone

relation is slightly modified in the Nf = 4 theory compared to the asymptotically free

theories. Here we consider the deformed Matone relation (4.22) for the asymptotically free

cases Nf ≤ 3, and leave the discussion of the Nf = 4 case to next section.

Our higher genus formulae (4.14), (4.15) for the Nf = 1 case are expressed in terms

of Eisenstein series En(τ) and modulus u. The partial derivatives of the these variables

and also the dual period aD with respect to period a can be found from the functional

relations (4.11), (4.12), (4.13). In order to check the higher genus formulae satisfy the

deformed Matone relation (4.22), we must also compute the partial derivatives with respect

to q parameter. To do this we first assume the validity of the leading order equation

in (4.22), and take the partial derivative with respect to a once and twice. We find

∂qaD(a, q) = −1

q
∂au = −2

q

(u2 − 3m1q)
1
4

E4(τ)
1
4

(4.23)

∂qτ(a, q) =
1

2πiq
∂2au =

8(u2 − 3m1q)

3q∆(u)E4(τ)

{

(8m2
1 − 6u)E2(τ)

+(9m1q + 4m2
1u− 6u2)

√

E4(τ)

u2 − 3m1q

}

(4.24)
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The partial derivative of u can be found by taking derivative with respect to q on both

sides of (4.11) and use (4.24) for ∂qτ . We find

∂qu(a, q) =
u

3q
− E2(τ)

3q

√

u2 − 3m1q

E4(τ)
(4.25)

In deriving the formulae (4.23), (4.24), (4.25) we use the leading order Matone rela-

tion q∂qF
(0,0)(a, q) − m2

1
3 + u = 0 in (4.22). We can turn around and make a check on

this equation by computing ∂2u(a,q)
∂a∂q in two ways. Firstly, we can compute the derivative

of q first using (4.25), then compute the derivative of a using (4.11), (4.12). Secondly,

we can compute the derivative of a first using (4.12), then compute the derivative of q

using (4.24), (4.25). We find the same result and therefore confirm the validity of leading

order equation in ((4.22).

We can now check the order ǫ2 and ǫ4 equations in (4.22). We first use the formu-

lae (4.23), (4.24), (4.25) to compute the derivatives with respect to q, then we compute

the derivatives with respect to a using the formulae (4.11), (4.12). We confirm our higher

genus formulae (4.14), (4.15) satisfy the ǫ2 and ǫ4 equations in (4.22). Therefore we prove

these higher genus formulae.

4.3 The results for Nf = 2, 3, 4

The studies of Nf = 2, 3, 4 cases are similar to the Nf = 1 case with the addition of

two technical points. Firstly, it turns out that the polynomial P (x) in the saddle point

equation (4.2) is no longer simply P (x) = x2 − u. Instead, the parameters are shifted by

the flavor mass in order to match the convention of Nekrasov function, which is also used in

our previous papers [19, 21]. The correct expressions for P (x) can be derived from the well

known Seiberg-Witten curves [36, 37]. Secondly, as we mentioned, the deformed Matone

relation (4.22) is slightly modified for the Nf = 4 case.

The SU(2) Seiberg-Witten curves can be written in either quartic form or the Weier-

strass form. In the quartic form, the curves are y2 = P (x)2 − 4qM(x), where q = Λ4−Nf

for Nf ≤ 3 and q = e2πiτ0 for Nf = 4 with τ0 the bare UV gauge coupling. The expressions

for P (x) in various cases are

Nf = 0, 1 : P (x) = x2 − u,

Nf = 2 : P (x) = x2 − u+
q

2
,

Nf = 3 : P (x) = x2 − u+ q
(

x+
p1
2

)

,

Nf = 4 : P (x) = (1 + q)x2 − u+ qp1x− 1

2
p21 +

(

1 +
q

2

)

p2, (4.26)

and we have used the symmetric polynomials pk for mass parameters in M(x) defined as

M(x) =

Nf
∏

i=1

(x+mi) ≡
Nf
∑

k=0

pkx
Nf−k. (4.27)
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We can transform any quartic curve y2 = c0x
4 + 4c1x

3 + 6c2x
2 + 4c3x + c4 into the

Weierstrass form

y2 = 4x3 − g2x− g3 (4.28)

where the expressions for g2 and g3 are

g2 = c0c4 − 4c1c3 + 3c22,

g3 = c0c2c4 + 2c1c2c3 − c0c
2
3 − c21c4 − c32 (4.29)

The g2 and g3 functions in the Weierstrass form of the Seiberg-Witten curve are used

in [19, 21] to provide the functional relations (4.11), (4.12) between various parameters

and to compute the higher genus formulae. When we transform the quartic curves y2 =

P (x)2 − 4qM(x) with P (x) given by (4.26) to the Weierstrass form according to (4.29),

we find they are the same curves used in [19, 21]. The curve for Nf = 4 is also the same

as the hyper-elliptic curve in [5] for SU(N) with Nf = 2N specializing to SU(2), after a

redefinition of the u parameter.

At the leading order ǫ = 0, the saddle point equation (4.2) is a simple quadratic

equation for the spectral function w(x). The discriminant y =
√

P (x)2 − 4qM(x) of the

quadratic equation is the same as the Seiberg-Witten curve in quartic form if we identify the

P (x) of the saddle point equation (4.2) with that of the Seiberg-Witten curve. Therefore

we see the formulae (4.26) for P (x) in the quartic Seiberg-Witten curves provide the correct

expressions for the polynomial P (x) in the saddle point equation (4.2) in various cases.

We compute the leading order period a using the residue formula

a = −Resx=bx∂x log(w0(x)) (4.30)

Here we note the residue point x = b is a root of P (x) = 0 for (4.26) and for Nf ≥ 2 cases

it is not simply
√
u but a little more complicated. We expand perturbatively around small

q ∼ 0 and check the asymptotic expansion of the period a is the same as that calculated from

the relations (4.11), (4.12). It should be straightforward to prove the equivalence exactly,

by deriving a Picard-Fuchs differential equation for a in terms of u from the elliptic integral

and show it is the same equation implied by the relations (4.11), (4.12). The Picard-Fuchs

equation for the Nf = 2, 3 cases were studied some time ago in [34].

Similar to the Nf = 1 case we find the odd terms a1, a3 vanish for Nf = 2, 3, 4, because

the corresponding indefinite integrals can be performed nicely in terms of simple functions.

We compute the non-vanishing sub-leading contributions a2, a4, and find the formulae

in terms of some differential operators acting on the leading order period a. it is too

complicated to write down all the formulae. Here as a sample, we provide formulae for a2
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in the simple case when only one of the hypermultiplets has non-zero mass m,

Nf = 2 : a2 =
1

12(4u2 − 6m2u− q2)
{2(4u2 − 3m2u− q2)∂ua

+ (16u3 − 12m2u2 − 4q2u+ 9m2q2)∂2ua}, (4.31)

Nf = 3 : a2 =
1

24(u− 2m2)
{2(5u− 4m2)∂ua

+ (20u2 − (16m2 + q2)u−m2q2)∂2ua}, (4.32)

Nf = 4 : a2 = − 1

24m2
{2(6u− 2m2 + qm2)∂ua

+ (24u2 + 2m2(2 + 5q)u+m4(−4 + 5q + q2))∂2ua}. (4.33)

Again the deformed dual period ãD are computed by the same formulae as the deformed

period ã =
∑∞

n=0 anǫ
n.

We note that there is no problem taking the massless limitm→ 0 in the asymptotically

free Nf ≤ 3 cases. However, for the Nf = 4 case, we see that the formula (4.33) for a2 is

singular in the massless limit m → 0. We encounter the same phenomenon in [21]. The

discriminant behaves like ∆ ∼ u6 in the Nf = 4 massless limit. All 6 discriminant points

in the u-plane collide at u = 0, and some mutually non-local charged particles become

massless at this point. We find the gap conditions break down, and we have to solve the

higher genus amplitudes by deforming away from the massless limit. Once we have the

higher genus formulae in the massive region, we can then take the massless limit for the

formulae which turns out to be non-singular. However since the formulae for the deformed

period, e.g. a2 in (4.33), is singular in the massless limit, we can not directly test our

massless higher genus formulae for the Nf = 4 theory using the saddle point method.

The formulae for F (1,0) is simple to write

F (1,0) =
1

24
log(∆)− Nf + 2

12(4−Nf )
log q (4.34)

where the discriminant of the Seiberg-Witten curve is ∆ = g32 − 27g23. We have added

a term of log(q) to cancel the mass dimension of ∆ inside the logarithm for the Nf ≤ 3

asymptotically free theories and it does not affects the equations (4.18) for deformed dual

period. This log(q) term will cancel the constant
Nf+2

12(4−Nf )
in the order ǫ2 equation in the

deformed Matone relation (4.22). The formulae for F (2,0) in the Nf = 2, 3, 4 cases are

similar to that of the Nf = 1 case (4.15) but more complicated to write down here.

We check the higher genus formulae for F (1,0) and F (2,0) for Nf = 2, 3, 4 theories

satisfy the order ǫ2 and ǫ4 equations (4.18) from the deformed dual period ãD. For the

asymptotically free Nf = 2, 3 theories, we also check the higher genus formulae satisfy the

order ǫ2 and ǫ4 equations in the deformed Matone relation (4.22).

Now we discuss the deformed Matone relation for the Nf = 4 theory. The gauge

coupling is renormalized and its formula for the massless case in terms of modular forms

is given in [16]. First we consider the leading order equation, and we find the equation is

modified as the following

q∂qF
(0,0)
inst (a, q)− a2 +

p21 − (2− q)p2
2(1− q)

+
u

1− q
= 0 (4.35)
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where we see the u term is modified by a factor of (1−q) compared to that of the asymptot-

ically free theories (4.22), and there is also a mass term. The modulus u can be expressed

as perturbative series of q in terms of period a, by the relations (4.11), (4.12) or by in-

verting the formula (4.30) for the period a0 ≡ a. We check the leading order Matone

equation (4.35) perturbatively using the Nekrasov instanton formula for the prepotential

F
(0,0)
inst (a, q) and the perturbative expansion for u(a, q).

Since for the Nf = 4 theory, the parameter q is dimensionless, we can not simply

recover q dependence in the perturbative contributions by dimensional analysis. Here we

will assume the q-dependence in the perturbative contributions only comes from F (0,0) and

F (1,0) and is rather trivial.

In addition to the perturbative and instanton contributions, there are also q-

dependence in the classical contributions in the Nf = 4 theory,

F
(0,0)
classical(a, q) = −2πiτ0a

2 = − log(q)a2 (4.36)

The classical contribution accounts for the −a2 term in (4.35). So the total contribution

for the prepotential F (0,0) satisfy the Matone relation

q∂qF
(0,0)(a, q) +

p21 − (2− q)p2
2(1− q)

+
u

1− q
= 0 (4.37)

The proposal for the deformed Matone relation is to replace the period a in the conven-

tional Matone relation (4.37) with the deformed period ã, and the prepotential F (0,0)(a, q)

with the deformed prepotential F(ã, q, ǫ) =
∑∞

n=0 F
(n,0)(ã, q)ǫ2n. We expand the deformed

Matone relation for small ǫ to find differential equations for the higher genus amplitudes

q∂qF(ã, q, ǫ) +
p21 − (2− q)p2

2(1− q)
+

u

1− q
(4.38)

=

[

q∂qF
(0,0)(a, q) +

p21 − (2− q)p2
2(1− q)

+
u

1− q

]

+ ǫ2q[∂qF
(1,0)(a, q) + a2∂qaD]

+ǫ4q[∂qF
(2,0)(a, q) + a2∂a∂qF

(1,0)(a, q) + a4∂qaD − a22∂q(πiτ)] +O(ǫ6)

We find that except for a constant at order ǫ2 equation, the higher order equations are

exactly the same as those of the asymptotically free case (4.22), since the modified u
1−q

term does not contribute in higher orders.

We can use the leading order Matone relation (4.37) to calculate the partial derivatives

of aD, τ, u parameters with respect to q, similarly as in the asymptotically free theories.

Taking partial derivative with respect to a once and twice on both sides of (4.37), we find

∂qaD(a, q) = − ∂au

q(1− q)
, ∂qτ(a, q) =

∂2au

2πiq(1− q)
, (4.39)

which differ from the the asymptotically free theories (4.23), (4.24) only by a factor of

(1 − q). As in the asymptotically free theories, the partial derivative of ∂qu(a, q) can be

found by taking derivative with respect to q on both sides of (4.11) and use (4.39) for ∂qτ .
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We check the higher genus formulae for F (1,0) and F (2,0) with the order ǫ2 and ǫ4

equations in the deformed Matone relation (4.38). For F (1,0) we use the formula

F (1,0) =
1

24
log(∆)− 1

12
log[q(1− q)4] (4.40)

We note that the − 1
12 log q(1 − q)4 term does not exactly match the Nekrasov instanton

partition function. In order to match Nekrasov’s formula, we would need to use the term

− 1
12 log q(1− q)−2. The slight difference of 1

2 log(1− q) can probably be explained by some

perturbative contributions to F (1,0). Other than this rather trivial term, we confirm our

higher genus formulae for F (1,0) and F (2,0) for the Nf = 4 theory satisfy the deformed

Matone relation.

5 Seiberg-Witten theory with an adjoint matter

We consider the SU(2) Seiberg-Witten theory with an adjoint hypermultiplet, known as the

N = 2∗ theory. The theory has N = 4 supersymmetry and is exactly conformal invariant

if the adjoint hypermultiplet is massless.

The saddle point equation in [14] looks quite different from the cases with fundamental

flavors. One difficulty is that the mass parameter of the adjoint multiplet appears in the

argument of the spectral function w(x) in the saddle point equation, making it difficult

to to solve the spectral function even in the leading order ǫ = 0. Instead, we propose to

use an alternative saddle point equation similar to those of Seiberg-Witten theory with

fundamental matters, by reverse engineering from the Weierstrass form of the Seiberg-

Witten curve that was used in [21] to solve the the higher genus amplitudes.

We find the quartic curve whose transformation according to (4.29) gives rise to the

Weierstrass curve for the N = 2∗ theory used in [21]. There are actually 3 solutions up

to the translation for the x parameter. We use the simplest quartic curve y2 = P (x)2 −
4qM(x), where

P (x) = (1 + q)x2 − 1 + q

2
m2 − u, M(x) = x2

(

x+
m

2

)(

x−m

2

)

. (5.1)

Here m the mass of the adjoint hypermultiplet, and q is related to the bare UV coupling

τ0 of the theory by Jacobi theta functions

q =
θ42(τ0)

θ43(τ0)
(5.2)

We note this is different from the Nf = 4 theory where the q parameter in Seiberg-Witten

curve is simply the exponential of the bare coupling τ0. We also use the notation q0 = e2πiτ0

for the N = 2∗ theory, and we can use either q0 or τ0 as the argument in theta functions

θi(q0) ≡ θi(τ0) (i = 2, 3, 4).
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The transformation of the quartic curve to Weierstrass curve according to (4.29) is

y2 = 4x4 − g2x− g3 where

g2 =
1

12
{m4(1− q2 + q4) + 4m2(2− q − q2 + 2q3)u+ 16(1− q + q2)u2},

g3 = − 1

432
{m6(2− 3q2 − 3q4 + 2q6) + 12m4(2− q − 2q2 − 2q3 − q4 + 2q5)u

+96m2(1− q − q2 − q3 + q4)u2 + 64(2− 3q − 3q2 + 2q3)u3}, (5.3)

which is exactly the curve used in [21]. The discriminant of the Weierstrass curve g32−27g23
is a perfect square. However unlike the theory with fundamental matters, the degenerate

roots here in the discriminant do not represent multiple charged massless particles at the

discriminant points [21]. For later convenience, we will define a new discriminant ∆ without

the square and drop some u-independent factors

∆ = (4u+m2)(4u+ qm2q)(4u+ (1 + q)m2) (5.4)

It turns out the normalization of the ǫ parameter differs by a factor of 2 from the

previous cases. Therefore we propose the following saddle point equation for the N =

2∗ theory

qw(x)w

(

x− ǫ

2

)

M

(

x− ǫ

4

)

− w(x)P (x) + 1 = 0, (5.5)

where P (x) and M(x) are the same as in the quartic curve (5.1).

The bare coupling is not renormalized in the massless N = 2∗, or N = 4 theory, but it

is renormalized by instanton effects in the Nf = 4 massless theory. In both theories the bare

coupling is renormalized in the massive case. The elliptic parameter τ of the Weierstrass

curve defined in (4.11) is the renormalized gauge coupling of the N = 2∗ theory. In

our convention it has the normalization with respect to the period and prepotential as

∂2aF
(0,0)(a) = −4πiτ , which differs from the normalization in theories with fundamental

matters by a factor of 2.

The calculations of the deformed period ã =
∑∞

n=0 anǫ
n is similar to the previous

cases. We expand w(x) =
∑∞

n=0wn(x)ǫ
n and solve wn(x) recursively by the saddle point

equation. We check the leading period a ≡ a0 = −Resx=bx∂x logw0(x) perturbatively as a

series expansion of small q is the same as implied by the relations (4.11), (4.12).

The odd terms in the deformed period vanish. We find the formulae for the non-

vanishing even terms a2 and a4. For simplicity we write only a2 formula

a2 =− 1

96m2
{(2[12u+(1+q)m2]∂ua+[48u2+16(1+q)m2u+(1 + 3q + q2)m4]∂2ua} (5.6)

Similar to the Nf = 4 theory, we observe that the formula is singular in the massless limit

m→ 0, therefore we can not calculate the deformed period directly in the massless limit.
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The higher genus formulae are derived in [21],

F (1,0) =
1

24
log(∆)− 1

8
log(1− q), (5.7)

F (2,0) =
1

8640∆2
{(37 + 33q − 39q2 − 33q3 − 39q4 + 33q5 + 37q6)m10

+48(12 + 5q − 12q2 − 12q3 + 5q4 + 12q5)m8u

+96(35− 2q − 35q2 − 2q3 + 35q4)m6u2

+512(17− 9q − 9q2 + 17q3)m4u3 + 8448(1− q + q2)m2u4

−90[(1 + 3q + q2)m4 + 16(1 + q)m2u+ 48u2]2X}, (5.8)

where X = E2(τ)E4(τ)
E6(τ)

g3
g2
. Here we add a log(1 − q) term in the F (1,0) formula besides the

discriminant. This term does not affect the equations for deformed dual period, but will

be needed for the deformed Matone relation. As similar to the Nf = 4 theory, this term

does not match Nekrasov’s instanton partition function, which is

F
(1,0)
Nekrasov =

1

24
log(∆)− 1

48
log

(1− q)2q2

q20
+ log θ3(q0) (5.9)

We again argue the difference is due to some perturbative contributions. In any case, this

subtlety will not appear at higher genus F (n,0) for n ≥ 2.

We expand the equation for deformed dual period to higher orders to find differential

equations for the higher genus amplitudes

∂F(ã)

∂ã
− ãD =

∂F (0,0)(a)

∂a
− aD + ǫ2(∂aF

(1,0)(a)− 4πiτa2 − aD2)

+ǫ4[∂aF
(2,0)(a) + a2∂

2
aF

(1,0)(a)− 4πiτa4 − 2πi(∂aτ)(a2)
2 − aD4]

+O(ǫ6) (5.10)

The difference with the previous cases (3.30), (4.18) is a factor of 2 in front of τ , due to

the different normalization ∂2aF
(0,0)(a) = −4πiτ here. We check that our higher genus

formulae (5.7), (5.8) satisfy the order ǫ2 and ǫ4 equations.

We also consider the Matone relation for the N = 2∗ theory. First after some trials,

we write the leading order Matone relation

q0∂q0F
(0,0)
inst (a, q0)− a2 + θ43(q0)u+ f0(q0)m

2 = 0 (5.11)

We check this relation perturbatively as series expansion around small q0, using Nekrasov

formula for F (0,0)(a, q0) and the expansion u(a, q) implied by the relations (4.11), (4.12).

The last term in the leading order Matone relation (5.11) are independent of period

a, so they are the integration constant in the formula ∂2aF
(0,0)(a) = −4πiτ , and can not

be determined by integrating twice the gauge coupling τ with respect to a. Although this

term is not important for higher order equations for the deformed Matone relation, we can

fix it with confidence by computing the Nekrasov partition function to some high instanton

numbers as

f0(q0) =
4

3
q0∂q0 log

[

θ22(q0)θ
2
3(q0)

θ4(q0)

]

− 1

12
(5.12)
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The classical contribution to prepotential F
(0,0)
classical = − log(q0)a

2 absorbs the −a2 term
in the Matone relation (5.11). We also note that ∂ log(q)

∂ log(q0)
=

θ44(q0)
2 according the (5.2) and

the well known derivative formulae for Jacobi theta functions. So we can write the Matone

relation for the total contribution to prepotential

q∂qF
(0,0)(a, q) +

2u

1− q
+

2f0(q0)

θ44(q0)
m2 = 0 (5.13)

We take derivative with respect to a once and twice to find the partial derivatives

∂qaD(a, q) = − 2∂au

q(1− q)
, ∂qτ(a, q) =

∂2au

2πiq(1− q)
, (5.14)

They are almost the same as the Nf = 4 theory except an extra factor of 2 for ∂qaD. Again

the partial derivative of ∂qu(a, q) can be found by taking derivative with respect to q on

both sides of (4.11) and use the above formula for ∂qτ .

We replace the period and prepotential with the deformed ones in the Matone rela-

tion (5.13), and expand to higher orders for small ǫ,

q∂qF(ã, q, ǫ) +
2u

1− q
+

2f0(q0)

θ44(q0)
m2 (5.15)

=

[

q∂qF
(0,0)(a, q) +

2u

1− q
+

2f0(q0)

θ44(q0)
m2

]

+ ǫ2q[∂qF
(1,0)(a, q) + a2∂qaD]

+ǫ4q[∂qF
(2,0)(a, q) + a2∂a∂qF

(1,0)(a, q) + a4∂qaD − a22∂q(2πiτ)] +O(ǫ6)

This is almost the same as that of the Nf = 4 theory (4.38) except a factor of 2 in

front of the τ parameter due to different normalizations. We check our higher genus

formulae (5.7), (5.8) satisfy the order ǫ2 and ǫ4 equations in the above deformed Matone

relation (5.15).

6 Derivation of the holomorphic anomaly equation

In the previous sections, we explicitly check our higher genus formulae satisfy the equations

from the saddle point method up to some low genus. It would be nice to directly show

the saddle point method is consistent with the holomorphic anomaly equation and gap

boundary conditions, and therefore prove the equivalence to all genera. This is considered

for the loop equations and topological recursion in matrix models in [11, 12]. In this section

we will show that under certain simple assumptions, the holomorphic anomaly equation in

the Nekrasov-Shatashvili limit can be derived from the equation ∂F(ã)
∂ã = ãD for deformed

dual period.

The generalized holomorphic anomaly equation is proposed in [20, 21, 23] to solve the

higher genus amplitudes of Seiberg-Witten gauge theory in general Ω background with

generic ǫ1, ǫ2 parameters. In the chiral or Nekrasov-Shatashvili limit, the second deriva-

tive term in the generalized holomorphic anomaly equation vanishes and the equation is

simplified as

∂E2F
(n,0) =

1

24

n−1
∑

l=1

∂aF
(l,0)∂aF

(n−l,0) (6.1)
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Here the amplitude F (n,0) is a polynomial of X = E2(τ)E4(τ)
E6(τ)

g3(u)
g2(u)

, and the coefficients of the

polynomial are rational functions of u. The partial derivative with respect to the second

Eisenstein series E2 is well defined, in the sense by regarding the other components E4, E6,

and u in F (n,0) as constants under the partial derivative.

The second Eisenstein series E2(τ) is holomorphic but not modular under SL(2,Z)

transformations. One can instead define a modular covariant but an-holomorphic quantity

by a shift Ê2(τ) = E2(τ) − 6i
π(τ−τ̄) , which is called an almost holomorphic modular form.

The holomorphic limit takes τ̄ → ∞ and we see Ê2(τ) → E2(τ) in this limit. It is well

known in the theory of modular forms that there is an isomorphism between the almost

holomorphic modular forms and the holomorphic limit [38].

In the saddle point method we are essentially working in the holomorphic limit where

higher genus amplitude is holomorphic but not modular. The holomorphic anomaly ap-

pears when we use the isomorphism with almost holomorphic modular forms and replace

expression in the holomorphic limit with the almost holomorphic modular counterpart. In

our case, only E2 is not modular covariant and needed to be replaced with the almost

holomorphic modular form Ê2. The an-holomorphic derivative can be related to ∂Ê2

∂̄τ̄ = (∂̄τ̄ Ê2)∂Ê2
=

6

πi(τ − τ̄)2
∂Ê2

, (6.2)

which is the origin of the appearance of ∂E2 in holomorphic anomaly equation (6.1) in the

holomorphic limit.

We will need to derive some formulae involving the operator ∂E2 . First we can

work in the holomorphic limit for some simple formulae. It is easy to see from the re-

lations (4.11), (4.12) that the expressions for the following derivatives have only E4, E6, u

but no E2, so

∂E2(∂aτ) = 0, ∂E2(∂ua) = 0. (6.3)

The E2 series starts to appear when we take one more derivative. We can compute

∂E2(∂
2
ua) =

πi

6
(∂uτ)(∂ua) (6.4)

We will assume the higher order contributions to the deformed period ã =
∑∞

n=0 a2nǫ
2n

can be written as a linear combination of ∂ua and ∂2ua. The dual deformed period has the

same formula. For n ≥ 1 we can write

a2n = g2n(u)∂ua+ f2n(u)∂
2
ua,

aD2n = g2n(u)∂uaD + f2n(u)∂
2
uaD (6.5)

where the coefficients g2n(u) and f2n(u) are rational functions of u. We have checked the

form (6.5)is valid up to second order, i.e. for n ≤ 2 for all models studied in this paper.

However, it seems difficult to find a rigorous proof of this assumption, and we leave for

future works. Heuristically, we can argue the derivatives of the flat coordinate a form a

linear complete basis for expanding the higher order periods a2n with rational function
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coefficients, and since the Picard-Fuchs equations are third order differential equations, we

know that the first and second derivatives suffice.

Using (6.3), (6.4) and ∂uaD = −2πiτ∂ua, we find

∂E2(a2n) =
πi

6
(∂uτ)(∂ua)f2n(u) = − 1

12
(2πiτa2n + aD2n) (6.6)

We obtain formulae for the higher order contributions in the deformed period

∂E2(ã− a) = − 1

12
[2πiτ(ã− a) + (ãD − aD)], (6.7)

∂E2 [2πiτ(ã− a) + (ãD − aD)] = 0 (6.8)

Our goal is to derive the holomorphic anomaly equation (6.1) from the equation for

the deformed period. We can expand the equation for the deformed period

∂F(ã, ǫ)

∂ã
− ãD = 0

=

∞
∑

n=1

∞
∑

k=0

∂k+1
a F (n,0)(a)

(ã− a)k

k!
ǫ2n +

∞
∑

k=0

∂k+1
a (−2πiτ)

(ã− a)k+2

(k + 2)!

−[2πiτ(ã− a) + (ãD − aD)] (6.9)

where we have separated the prepotential F (0,0) and use the formulae ∂aF
(0,0) = aD and

∂2aF
(0,0) = −2πiτ .

The order ǫ2 and ǫ4 equations in the above equation (6.9) have been written more

explicitly before in (4.18). We can use the equations to compute ∂aF
(n,0)(a) recursively if

we have the formulae for g2n(u) and f2n(u) in (6.5) for the higher order contributions in the

deformed period. Furthermore, by dimensional analysis we know the asymptotic behavior

of F (n,0) ∼ a2−2n for large a. So these equations determine F (1,0) up to a constant and

completely fix F (n,0) for n ≥ 2.

We would like to derive (6.1) recursively by induction. Taking the partial derivative

∂E2 on both sides of (6.9), we find

∞
∑

n=1

∂E2∂aF
(n,0)ǫ2n

= −
∞
∑

n=1

∞
∑

k=1

ǫ2n(∂E2∂
k+1
a F (n,0))

(ã− a)k

k!
−

∞
∑

n=1

∞
∑

k=1

ǫ2n(∂k+1
a F (n,0))

(ã−a)k−1

(k − 1)!
∂E2(ã−a)

+2πi
∞
∑

k=0

∂E2∂
k+1
a τ

(ã− a)k+2

(k + 2)!
+ 2πi

∞
∑

k=0

∂k+1
a τ

(ã− a)k+1

(k + 1)!
∂E2(ã− a), (6.10)

where we have used the equation (6.8). At each order ǫ2n, no F (l,0) with l ≥ n appears on

the right hand side. So by induction we can use (6.1) to compute the right hand side, and

we will complete the induction procedure by showing the left hand side also satisfies the

holomorphic anomaly equation (6.1).

It is clear that in order to do the computations, it is crucial to understand how ∂E2 and

∂a commute with each others. This is mostly conveniently done in the almost holomorphic
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modular forms, instead of the holomorphic limit. To preserve the almost holomorphic

modular structure, we need to use covariant derivatives with respect to the special Kahler

metric of the moduli space. There are two contributions to the connection in covariant

derivatives, one from the canonical line bundle and one from the Weil-Petersson metric.

In our case, the moduli space of the Seiberg-Witten theory is similar to that of a one-

parameter local Calabi-Yau space, and one can choose a gauge such that the contribution

from the canonical line bundle vanishes. So we only need to include the connection from the

Weil-Petersson metric. Furthermore, there is a flat coordinate a such that the connection

for the flat coordinate vanishes in the holomorphic limit. The metric and connection in the

flat coordinate a in Seiberg-Witten theory are well known, see e.g. [19],

Gaā ∼ (τ − τ̄), Γa
aa = (Gaā)

−1∂aGaā =
∂aτ

τ − τ̄
(6.11)

where we see the Christoffel connection indeed vanishes in the holomorphic limit τ̄ → ∞.

Suppose Fk is a tensor with k lower indices regarding to the metric of the moduli

space in flat coordinate a, and it may has an-holomorphic dependence in terms of Ê2. The

covariant derivative is then DaFk = (∂a − kΓa
aa)Fk. We can compute the an-holomorphic

derivative

∂̄τ̄DaFk = (∂a − kΓa
aa)∂̄τ̄Fk − k(∂̄τ̄Γ

a
aa)Fk (6.12)

We use (6.2) and then take the holomorphic limit to find the commutation relation

∂E2∂aFk = ∂a∂E2Fk −
kπi

6
(∂aτ)Fk (6.13)

The amplitude F (n,0) is a scalar in moduli space, and its derivative with ∂a is a tensor

with lower indices. We can compute the derivatives

∂E2∂
k+1
a F (n,0) = ∂k+1

a ∂E2F
(n,0) − πi

6

k
∑

l=1

l∂k−l
a [∂aτ∂

l
aF

(n,0)]

= ∂k+1
a ∂E2F

(n,0) − πi

6

k−1
∑

p=0

(

k + 1

p+ 2

)

(∂p+1
a τ)(∂k−p

a F (n,0)), (6.14)

where we have used the binomial identity
∑k−p

l=1

(

k−l
p

)

l =
(

k+1
p+2

)

. In particular, we note that

in the case of k = 0, the operators ∂E2 and ∂a commute when acting on F (n,0).

Similarly we derive the formula for τ = − 1
2πi∂

2
aF

(0,0), using the first formula in (6.3)

∂E2∂
k+2
a τ = −πi

12

k
∑

p=0

(

k + 4

p+ 2

)

(∂p+1
a τ)(∂k+1−p

a τ) (6.15)

Further using the equation for deformed dual period (6.9), the formula (6.7) can be

written without the dual period as

∂E2(ã− a) = − 1

12

∞
∑

n=1

∞
∑

k=0

∂k+1
a F (n,0)(a)

(ã− a)k

k!
ǫ2n

+
πi

6

∞
∑

k=0

(∂k+1
a τ)

(ã− a)k+2

(k + 2)!
(6.16)
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We can now compute the right hand side of (6.10), by plugging the formu-

lae (6.14), (6.15), (6.16) and then use (6.1) by induction. The calculation is quite lengthy,

but surprisingly we encounter a lot of cancellations which drastically simplify the expres-

sion. In particular, the dependence on (ã − a) cancels out, so we don’t need the specific

formulae for g2n(u) and f2n(u) in (6.5). We keep the left hand side of (6.10) and write the

final result of the calculations for the right hand side

∞
∑

n=1

∂a∂E2F
(n,0)ǫ2n =

1

12

∞
∑

n=1

ǫ2n
n−1
∑

l=1

∂aF
(l,0)∂2aF

(n−l,0) (6.17)

It is easy to check ∂E2F
(1,0) = 0, thus the above result proves the holomorphic anomaly

equation (6.1) for F (n,0) with n ≥ 2 up to an integration constant of a. From the asymptotic

behavior F (n,0) ∼ a2−2n for large a, the constant must be zero, so we have proven (6.1)

exactly by induction.

After the successful derivation of the holomorphic anomaly equation from the equation

for the deformed period, one may wonder whether it can be also derived from the deformed

Matone relation. However, there is one important difference between these two equations.

We have noted that the equation for the deformed period determines ∂aF
(n,0) recursively

and the asymptotic behavior F (n,0) ∼ a2−2n further fix the integration constant at a ∼ ∞ to

be zero for n ≥ 2. On the other hand, the deformed Matone relation determines ∂qF
(n,0)

recursively, and the integration constant here is the perturbative contribution to F (n,0)

at q = 0, which is independent of the instanton counting parameter q for n ≥ 2. The

perturbative contribution is crucial in summing together with the instanton contributions

into our higher genus formulae. Without this piece of information, we expect it is difficult

to derive the holomorphic anomaly equation (6.1) or the gap boundary condition from the

deformed Matone relation.

7 Topological string theory on local Calabi-Yau manifolds

The refined topological string invariants with two expansion parameters ǫ1 and ǫ2 can

jump in the complex structure moduli space, and are in general difficult to study. However

on certain local toric Calabi-Yau manifolds where there is no complex structure deforma-

tion, the refined topological string amplitudes can be computed by A-model method of

the refined topological vertex [22], or by the mirror B-model method with a generalized

holomorphic anomaly equation and the gap boundary conditions [20]. In this section we

consider applying the techniques developed in earlier sections for SU(2) Seiberg-Witten

theory to topological string theory on some local Calabi-Yau manifolds, in the chiral or

Nekrasov-Shatashvili limit where one of the ǫ parameters vanishes. Here there will be

no analog of deformed Matone relation as in the Seiberg-Witten theory, and we will only

consider the equation for deformed dual period

∂t̃F(t̃, ǫ) = t̃D (7.1)
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where F(t̃, ǫ) =
∑∞

n=0 F
(n,0)ǫ2n is the higher genus refined amplitudes in the Nekrasov-

Shatashvili limit, and t̃ and t̃D are the deformed period and dual period whose leading

order contributions in small ǫ are the usual period and dual period.

The Nekrasov-Shatashvili limit of the refined topological string theory has been con-

sidered in [2]. The novelties here are the following points. We will derive exact formulae for

the higher order contributions to the deformed period and dual period. Together with the

equation for the deformed period (7.1), these formulae enable us to write differential equa-

tions for the higher genus amplitudes F (n,0)(t). The differential equations compute ∂tF
(n,0)

recursively and determine F (n,0) up to a constant. We can then check the higher genus

formulae in [20] satisfy these differential equations exactly to all degrees of world sheet in-

stanton. Furthermore, similar to the gauge theory case, we can show that these differential

equations imply the generalized holomorphic anomaly equation in Nekrasov-Shatashvili

limit, thus taking another step toward elucidating the mirror symmetry between the A-

model and B-model.

The topological string amplitudes on Calabi-Yau manifolds have two contributions

when we expand around the large volume point in the moduli space, the constant map

contributions and the world sheet instanton contributions. The constant map contribution

in conventional topological string theory at a given genus is a constant related to the

Bernoulli numbers, and has been computed in [13, 15, 25]. The refined version of the

constant map is not quite clear here, and it is not determined in the A-model and B-model

methods in [20, 22] either. We will be agnostic about constant map contribution here as

well and our equations only fix the world sheet instanton contributions which vanishes in

the large volume limit t ∼ ∞.

The study for the topological string case is similar to that of the gauge theory case,

with the exception of two technical points. Firstly, the modular group generated by the

monodromy around the special points in the moduli space is in general not a subgroup of

SL(2,Z), so our formalism for SU(2) Seiberg-Witten theory in terms of Eisenstein series

would not be available. We will define certain (almost) modular generators, and the higher

genus topological string amplitudes and their derivatives can be written as rational func-

tions of these generators. We will need to find the derivative rules for these generators, in

place of the well known Ramanujan derivative identities for the Eisenstein series. Although

the formalism in terms of Eisenstein series and Jacobi theta functions is still available for

certain special Calabi-Yau models, such as the local P2 model, discussed in [1], we will not

resort to the formalism for the sake of generality.

Secondly, the period and dual period are a power series and a log series in the case

of SU(2) Seiberg-Witten theory, but they are a log series and a double log series in the

case of topological string on local Calabi-Yau manifolds. This can be easily seen in their

respective Picard-Fuchs differential equations satisfied by the period and dual period. We

can compute the period perturbatively by a contour integral or residue calculations. It turns

out the leading logarithmic term does not appear in the residue calculations of leading order

period, and needed to be added manually. For the higher order contributions to the exact

deformed period, the logarithmic term will resurface in the residue calculations.
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7.1 Local P2 model

The local Calabi-Yau 3-fold is a complex line bundle over CP
2, and is one of most well

studied models, see e.g. [17]. The local mirror geometry has one complex structure modulus

parameter z and can be reduced to the following curve

H(x, p) = −1 + ex + ep − zeǫ/2e−xe−p = 0, (7.2)

which is also used in [2] with a minus sign conventional difference for the parameter z. The

mirror curve can be treated as a quantum mechanical Hamiltonian and the coordinates x

and p are the conjugate parameters for position and momentum. We quantize the curve by

imposing noncommutativity relation [x, p] = i~ and use the notation ǫ ≡ −i~. We should

note that the factor eǫ/2 in the last term in the curve (7.2) does not appear at the classical

level, but emerges at the quantum level to compensate for the noncommutativity of e−x

and e−p in the last term.

The wave function of the quantum mechanical Hamiltonian can be written as

ψ(x) = exp

(

1

ǫ

∫ x

w(x)dx

)

(7.3)

We are interested in the eigenstate with zero energy Hψ(x) = 0, and we will solve for

w(x) perturbatively around small ǫ parameter in the WKB approximation. To do this

we should first understand how H and in particular ep act on the wave function. The

canonical representation of the momentum operator in quantum mechanics which fulfills

the noncommutativity relation is p = −i~∂x = ǫ∂x. It is easy to see

epψ(x) = ψ(x+ ǫ), e−pψ(x) = ψ(x− ǫ) (7.4)

The function w(x) appearing in the exponent in the wave function (7.3) has implicit

dependence on ǫ parameter. We expand the w(x) function as

w(x) =
∞
∑

n=0

w0(x)ǫ
n (7.5)

where wn(x) is independent of ǫ parameter. The conventional period t and dual period tD of

the mirror geometry are computed by the contour integral of the leading term as
∮

w0(x)dx.

The period t is the flat coordinate whose connection vanishes in the holomorphic limit and

its exponential Q = et ∼ z is the A-model expansion parameter in the large volume point

z ∼ 0 in our parametrization. We refer to the contour integral of w(x) including the higher

order contributions as the deformed or the quantized (dual) period, denoted as by tilde

symbol as t̃ and t̃D.

We can then expand the Schrodinger equation Hψ(x) = 0 for small ǫ and at each

order ǫn we find equation for wn(x) in terms of lower order terms. At the leading order the

w0(x) can be obtained by solving for p in terms of the x in the curve (7.2) at the classical

level. There are two solutions to the quadratic equation and their contour integrals have

opposite signs. We can choose the one with the right convention

w0(x) = log[−1

2
(ex − 1 +

√

(ex − 1)2 + 4ze−x) ] (7.6)
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The higher order functions wn(x) can be solved recursively, and we list them up to a few

orders

w1(x) =
−e3x + e2x + 2z

2ex(ex − 1)2 + 8z

w2(x) = −ex
2 [2e6x − 6e5x + e4x(6− 99z) + e3x(−2 + 157z)− 69e2xz

+exz(11 + 144z)− 16z2]/[24(ex(ex − 1)2 + 4z)5/2] (7.7)

· · ·

We can compute the contour integrals perturbatively around the large volume point

z ∼ 0. The expansion of wn(x) around small z gives rise to a series whose coefficients

are rational function of ex. The rational functions have a pole at ex − 1 or x = 0. It is

straightforward to compute the residue around x = 0, and it turns out that the period

corresponds to the residue at x = 0. On the other hand, the dual period corresponds to

the integral of a more complicated contour, but since many equations for the period are

also valid for the dual period, we will directly use these same equations and will not need

to do the more complicated contour integral here.

We denote the quantized (dual) period in terms of the expansion

t̃ =
∞
∑

n=0

tnǫ
n, t̃D =

∞
∑

n=0

tDnǫ
n, (7.8)

where the leading order terms are also denoted as t ≡ t0 and tD ≡ tD0. The residue of

w0(x) around x = 0 provides the power series in the leading period t, and after including

the correct factor of 3 and add the leading logarithmic term, we can write the period as

t = log(z) +
3

2πi

∮

x=0
w0(x)dx

= log(z)− 6z + 45z2 − 560z3 +
17325z4

2
− 756756z5

5
+O(z6) (7.9)

The exact series for leading period t are characterized by the Picard-Fuchs equation

Dt = 0, where the operator is

D = Θ3
z + 3z(3Θz + 2)(3Θz + 1)Θz, (7.10)

with the notation Θz = z∂z. The leading dual period tD has a double logarithmic leading

term (log z)2 and also satisfies the same Picard-Fuchs equation DtD = 0.

We can compute the higher order contributions to the quantized (dual) period in (7.9)

by the residue

tn =
3

2πi

∮

x=0
wn(x)dx, n ≥ 1 (7.11)

Here comparing with the case of n = 0 in (7.9), we do not need to manually include

an extra leading term besides the contour integral. For an odd integer n, the integrand

wn(x) can be written as a total derivative of simple functions. For the case of n = 1, the
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total derivative is a logarithmic function, and there is a rather trivial contribution of a

constant to the residue T1 = −3
2 . At higher orders with odd n > 1, the total derivative is

a rational function of ex, so there is no branch cut and the residue vanishes tn = 0. Since

the dual period has the same integrand, albeit a more complicated contour, the odd terms

in the quantized dual period also vanish tDn = 0, with possibly the exception of a trivial

contribution at the first order n = 1. The rather trivial contributions at n = 1 will not

affect our formalism. In the followings we will only need to consider the even power terms.

Similar to Seiberg-Witten theory, we find the non-vanishing even higher order contri-

butions to the quantized period t2n can always be written as a linear combination of the

first and second derivatives of the leading period t. Specifically, we find the exact formulae

t2 =
Θ2

zt

8
,

t4 =
2z(999z − 5)Θzt+ 3z(2619z − 29)Θ2

zt

640∆2
, (7.12)

t6 =
z

107520∆4

[

2(25690689z3 − 3140937z2 + 29031z − 7)Θzt

+ (176694291z3 − 27479655z2 + 363285z − 137)Θ2
zt
]

,

where Θz = z∂z and ∆ = 1 + 27z is the discriminant of the mirror geometry.

These exact formulae (7.12) are derived by showing the integrands in the relevant

contour integrals can be written as total derivatives with respect to x. It turns out that

there is a logarithmic piece in the total derivative, and the residue around x = 0 does not

completely vanish. Detailed calculations show that the contributions from this logarithmic

branch cut exactly accounts for the leading log(z) term in formula (7.9) for the leading

period t. We also check these formulae (7.12) perturbatively by computing the relevant

residues around x = 0 as series expansions around small z.

The dual period is defined by the same integrand as the period, albeit a more compli-

cated contour. The above arguments also works for the dual period, so the exact formu-

lae (7.12) are also valid for the dual period by simply replacing t with tD in the formulae.

It is well known that the prepotential is determined by the equation ∂tF
(0,0)(t) = tD.

Generalizing the equation to the quantum version, we can derive differential equations for

the higher genus amplitudes

∂t̃F (t̃, ǫ)− t̃D = 0

= ∂tF
(0,0)(t)− tD + ǫ2[∂tF

(1,0)(t) + t2∂
2
t F

(0,0)(t)− tD2] + ǫ4 [∂tF
(2,0)(t)

+t2∂
2
t F

(1,0)(t) +
(t2)

2

2
∂3t F

(0,0)(t) + t4∂
2
t F

(0,0)(t)− tD4] +O(ǫ6) (7.13)

At each order ǫ2n, we find an equation for the ∂tF
(n,0)(t) in terms of lower genus amplitudes

and the higher order contributions to the quantized (dual) period.

The equations can be simplified a little more by eliminating the dual period. We act the

operator Θz once and twice on the both sides of the leading order equation tD = ∂tF
(0,0)(t),
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and find

ΘztD = ∂2t F
(0,0)(t)Θzt,

Θ2
ztD = ∂2t F

(0,0)(t)Θ2
zt+ ∂3t F

(0,0)(t)(Θzt)
2 (7.14)

We notice the dual period only appears at the order ǫ2n equation as in the combination

t2n∂
2
t F

(0,0)(t) − tD2n. Suppose at order ǫ2n we have the exact formula for the period and

dual period

t2n = x1Θzt+ x2Θ
2
zt,

tD2n = x1ΘztD + x2Θ
2
ztD, (7.15)

where x1 and x2 are some rational functions of z. We can compute

t2n∂
2
t F

(0,0)(t)− tD2n = −x2∂3t F (0,0)(t)(Θzt)
2 (7.16)

So we can eliminate the dual period at each higher order in the equation (7.13), and

express ∂tF
(n,0)(t) in terms of lower genus amplitudes, the derivatives Θzt and Θ2

zt and

some rational functions of z which appear in the exact formulae (7.12) for the higher order

contributions to the quantized period.

One can already use these equations (7.13) to compute F (n,0) recursively as pertur-

bative series around the large volume point z ∼ 0, utilizing the asymptotic expansion of

period t around this point (7.9) and also the formulae (7.12) for higher order contributions.

The results can be compared with the A-model calculations by the refined topological ver-

tex, as considered in [2]. We would like to go a step further and check the higher genus

formulae in [20] exactly in all orders of the small z expansion.

The higher genus formulae in [20] are derived by holomorphic anomaly equation and

the gap boundary conditions near the conifold point. We quote the formulae in Nekrasov-

Shatashvili limit up to genus 3

F (1,0) =
1

24
log

(

∆

z

)

, (7.17)

F (2,0) =
10S + (1296z + 11)z2

11520z2∆2
,

F (3,0) =
1

69672960z6∆4
[280S3 + 420S2(108z − 1)z2 + 42S

(

209952z2 − 4212z + 5
)

z4

+
(

1167753024z3 − 29387448z2 + 355536z + 2269
)

z6]

where ∆ = 1 + 27z is the discriminant and S is an almost holomorphic generator similar

to the shifted second Eisenstein series in Seiberg-Witten theory, and its holomorphic limit

is an almost modular form.

We review some formulae for the generator S and special geometry for the local P2

model, which can be found in [20] and derived in details in [17]. In the holomorphic limit,

the metric in flat coordinate t is a constant up to an anti-holomorphic factor. So the metric

and Christoffel connection in the moduli space in the z coordinate are

Gtt̄ ∼ 1, Gzz̄ = |∂zt|2Gtt̄ ∼ ∂zt, Γz
zz = Gzz̄∂zGzz̄ = ∂tz∂

2
z t (7.18)
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The three point Yukawa coupling is

Czzz = DzDzDzF
(0,0) = − 1

3z3(1 + 27z)
(7.19)

The generator S ≡ Szz is a tensor, also known as the propagator, which satisfies the

following relations

Γz
zz = −CzzzS − 7 + 216z

6z∆
,

DzS = ∂zS + 2Γz
zzS = −Czzz(S)

2 − z

12∆
(7.20)

So the second derivative of flat coordinate t can be expressed in terms of first derive and

the propagator S,

∂2z t = −
(

CzzzS +
7 + 216z

6z∆

)

(∂zt)
2 (7.21)

We can express everything as rational functions of three independent generators, for

example we can choose z, ∂tz and S as independent generators. The derivatives of the three

generators can be again expressed as rational functions of themselves, similarly as in the

Ramanujan derivative identities for the Eisenstein series. So we can compute the higher

derivatives of higher genus formulae in terms of the three independent generators. As for the

genus zero case, we note that after we eliminate the dual period with (7.16), only the deriva-

tives ∂kt F
(0,0) with k ≥ 3 appear in the equations in (7.13), so we can start with the three

point Yukawa coupling ∂3t F
(0,0) = (∂tz)

3Czzz and compute higher derivatives recursively.

Utilizing these derivative relations, we check our higher genus formulae (7.17) satisfy

the differential equations exactly to all orders in z parameter, and up to order ǫ6 in (7.13).

We expect the derivation of the holomorphic anomaly from the equations in (7.13)

works similarly as in the Seiberg-Witten theory in section 6, with the generator S plays the

role of E2 there. Since S is the only an-holomorphic generator, the simplified holomorphic

anomaly equation in the Nekrasov-Shatashvili limit is

(∂tz)
2∂F

(n,0)

∂S
=

1

2

n−1
∑

l=1

∂tF
(l,0)∂tF

(n−l,0) (7.22)

Since everything can be written as rational functions of three generators z, ∂tz and S, the

partial derivative with respect to S is well defined by treating the other two holomorphic

generators z and ∂tz as constants under the partial derivative.

We will not go into further details of the lengthy calculations other than working out

the commutation relation of ∂S and ∂t acting on a tensor. This commutation relation is

crucial for the proof of holomorphic anomaly equation in section 6 from the equation for

deformed period. Again to derive the relation we should work with the almost holomorphic

modular structure. First we note that the propagator S is defined by its anti-holomorphic

derivative ∂̄z̄S = C̄zz
z̄ , where C̄zz

z̄ = C̄z̄z̄z̄(Gzz̄)
−2e2K is related to the complex conjugate of
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the three point Yukawa coupling. So the anti-derivative is related to the partial derivative

∂S by

∂̄t̄ = ∂̄t̄S∂S = (∂̄t̄z̄)C̄
zz
z̄ ∂S = (∂tz)

2C̄tt
t̄ ∂S (7.23)

In local Calabi-Yau geometry we can choose a gauge such that the holomorphic deriva-

tive of the Kahler potential K is trivial. The well known special geometry relation for the

moduli space in flat coordinate is simplified for the local case in the holomorphic limit

∂̄t̄(Γ
t
tt) = −CtttC̄

tt
t̄ (7.24)

Suppose Fk is a tensor with k lower indices in the flat coordinate t. We act the

anti-holomorphic derivative ∂̄t̄ on the covariant derivative DtFk = ∂tFk − kΓt
ttFk and find

∂̄t̄DtFk = Dt∂̄t̄Fk − k(∂̄t̄Γ
t
tt)Fk = Dt∂̄t̄Fk + kCtttC̄

tt
t̄ Fk (7.25)

We plug the equation (7.23) into the above equation (7.25) and then take the holomorphic

limit to cancel out the anti-holomorphic factor C̄tt
t̄ . We find the commutation relation

(∂tz)
2∂S∂tFk = ∂t[(∂tz)

2∂SFk] + (kCttt)Fk (7.26)

We apply the commutation relation to ∂kt F
(n,0) for higher genus amplitudes with n ≥ 1,

and ∂kt Cttt = ∂k+3
t F (0,0) for the genus zero amplitude. We obtain the analog of formu-

lae (6.14), (6.15) in Seiberg-Witten theory

(∂tz)
2∂S∂

k+1
t F (n,0) = ∂k+1

t [(∂tz)
2∂SF

(n,0)] +
k−1
∑

p=0

(

k + 1

p+ 2

)

(∂ptCttt)(∂
k−p
t F (n,0)),

(∂tz)
2∂S∂

k+1
t Cttt =

1

2

k
∑

p=0

(

k + 4

p+ 2

)

(∂ptCttt)(∂
k−p
t Cttt) (7.27)

where n ≥ 1 in the first formula, and we have used the holomorphicity of the three point

coupling ∂SCttt = 0 in the second formula. We check the formulae (7.27) explicitly up to

some finite integer k, using the higher genus formulae (7.17) and the derivative relations

between the three generators. Utilizing these formulae (7.27), it is then straightforward to

derive the simplified holomorphic anomaly equation (7.22) by induction from the equation

for quantized dual period (7.13).

We should mention that the first formula in (7.27) is valid even if we replace the

higher genus amplitude F (n,0) with any rational function of the two generators S and z,

but without ∂tz. This is because any rational function of the two generators S and z is a

scalar and modular invariant, so our arguments still apply.

7.2 Local P1 × P
1 model

The topological string amplitudes on local P1×P
1 Calabi-Yau is equivalent to the Nekrasov

function for the supersymmetric 5-dimensional SU(2) Yang-Mills theory compactified on a

circle. It turns out that although this model has two Kahler parameters, it is still somewhat
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similar to a one-parameter model due to the symmetry between the two parameters. The

study is therefore similar to the local P2 model in the previous subsection, and we would

not need to write too much details which have been described before.

The mirror curve for the model is

H(x, p) = −1 + ex + ep + z1e
−x + z2e

−p = 0 (7.28)

where z1 and z2 are the two complex structure parameters. The mirror map to the Kahler

parameters T1 ∼ log(z1) and T2 ∼ log(z2) near the large volume point z1 = z2 = 0 are

given by the solutions to the Picard-Fuchs equations L1f = L2f = 0 with the following

operators

L1 = Θ2
1 − 2z1(Θ1 +Θ2)(1 + 2Θ1 +Θ2),

L2 = Θ2
2 − 2z2(Θ1 +Θ2)(1 + 2Θ1 +Θ2), (7.29)

where Θi = zi
∂
∂zi

, i = 1, 2. The discriminant is z1z2∆ = 0 where

∆ = 1− 8(z1 + z2) + 16(z1 − z2)
2 (7.30)

The first few orders expansion for T1 and T2 are

T1 = log(z1) + 2(z1 + z2) + 3(z1 + 4z1z2 + z22) +O(z3),

T2 = log(z2) + 2(z1 + z2) + 3(z1 + 4z1z2 + z22) +O(z3) (7.31)

We see the power series in T1 and T2 are the same, which can be easily confirmed by

checking T1 − T2 = log(z1)− log(z2) is also a solution to the Picard-Fuchs equations with

the operators (7.29). For convenience, we will use the variables instead

t ≡ t+ =
T1 + T2

2
, t− =

T1 − T2
2

=
log(z1)− log(z2)

2
(7.32)

There are four linearly independent solutions to the Picard-Fuchs equations. Besides

the constant solution, T1 and T2, we denote the fourth solution as tD and it has the double

logarithmic asymptotic behavior tD ∼ log(z1) log(z2). It is related to the prepotential by

the differential equation

tD =
∂F (0,0)(T1, T2)

∂T1
+
∂F (0,0)(T1, T2)

∂T2
=
∂F (0,0)(t, t−)

∂t
, (7.33)

which can be checked by A-model calculations by topological vertex [3]. The prepotential

F (0,0) consists of the world-sheet instanton contributions and perturbative contribution.

The world-sheet instanton contributions are positive powers of Q1 = eT1 and Q2 = eT2 ,

while the perturbative contribution is the cubic polynomial

F
(0,0)
pert =

1

24
(T 3

1 − 3T 2
1 T2 − 3T1T

2
2 + T 3

2 ) (7.34)

As usual we generalize the differential equation (7.33) to quantum version

t̃D =
∂F(t̃, t−, ǫ)

∂t̃
(7.35)
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where the deformed prepotential is related to the higher genus amplitudes, and we have

also replaced the periods by their quantum deformations

F(t, t−, ǫ) =
∞
∑

n=0

F (n,0)(t, t−)ǫ
2n, t̃ =

∞
∑

n=0

tnǫ
n, t̃D =

∞
∑

n=0

tDnǫ
n (7.36)

The leading term in the deformed periods are t0 ≡ t and tD0 ≡ tD. We expect the higher

order contributions can be written as a linear combination of first and second derivatives

of the leading term with respect to zi, and the coefficients are rational functions of zi.

Since we have two complex parameters z1 and z2, there are more ways to write first

and second derivatives than the one-parameter case. However, as it turns out the situation

is simpler than expected, and we find only the derivative Θz = z1∂z1 + z2∂z2 appears in

the calculations. We will find the higher order contributions t2n can be always written as

linear combination of Θzt and Θ2
zt.

One may wonder whether the parameter t− is deformed as well. The higher order

contributions would be a linear combination of Θzt− and Θ2
zt−. It is easy to calculate

actually Θzt− = 0, so we see that the parameter t− is not deformed. It is a nice feature of

the local P1 × P
1 model that only one linear combination of the periods t = 1

2(T1 + T2) is

deformed quantum mechanically by small ǫ. Otherwise it would be rather difficult to work

with the quantum differential equation (7.35).

We will find that the quantum differential equation (7.35) determines the partial deriva-

tive of higher genus amplitudes ∂tF
(n,0)(t, t−) recursively. This is actually enough to com-

pletely fix the world-sheet instanton contributions, which consists of only positive powers

of Q1 = eT1 and Q2 = eT2 and therefore can not be a function of t− alone. For n ≥ 2,

the differential equation (7.35) fixes F (n,0)(t, t−) up to a constant which is the analog of

the constant map contributions in Gromov-Witten theory. For n = 1, the perturbative

contribution from the B-model calculations in [20] is F
(1,0)
pert = − 1

24T1T2 = − 1
24(t

2− t2−). We

see that in this case the term 1
24 t

2
− is not fixed by the differential equation (7.35).

We solve the zero energy quantum wave function with WKB expansion

H(x, p)ψ(x) = 0, ψ(x) = exp

(

1

ǫ

∫ x

w(x)dx

)

, w(x) =
∞
∑

n=0

wn(x)ǫ
n (7.37)

The quantum period is computed by the residue of w(x) around the pole x = 0. For the

leading order w0(x), the residue only captures the power series in t. The higher order

contribution tn for n ≥ 1 is given exactly by the residue of wn(x) around x = 0. We find

the exact formulae for the first few higher even order non-vanishing contributions to the

quantum period

t2 = −z1 + z2
6

Θzt+
1− 4z1 − 4z2

12
Θ2

zt

t4 =
1

360∆2

{

2[z21(1− 4z1)
3 + z22(1− 4z2)

3 + 4z1z2(8− 37z1 − 37z2 − 328z21 + 1528z1z2

−328z22+1392z31−1376z21z2−1376z1z
2
2+1392z32)]Θzt+ [−z1(1−4z1)

4−z2(1−4z2)
4

+4z1z2(69− 192z1 − 192z2 − 1712z21 + 6880z1z2 − 1712z22 + 5568z31 − 5504z21z2

−5504z1z
2
2 + 5568z32)]Θ

2
zt
}

(7.38)
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The dual period satisfies the same equations with t replaced by tD.

In [20] we find the formulae for higher genus amplitudes by holomorphic anomaly equa-

tions and the gap boundary conditions. Some examples of the formulae in the Nekrasov-

Shatashvili limit are

F (1,0) =
1

24
log

(

∆

z1z2

)

,

F (2,0) =
S

288z21∆
2

(

16z21 + 32z1z2 + 16z22 − 8z1 − 8z2 + 1
)

+
1

2880∆2
(−512z41

+9216z31z2 − 17408z21z
2
2 + 9216z1z

3
2 − 512z42 + 704z31 + 2880z21z2 + 2880z1z

2
2

+704z32 − 336z21 − 1568z1z2 − 336z22 + 68z1 + 68z2 − 5) (7.39)

Here as it turns out that the BCOV propagators Szizj (i, j = 1, 2) are not independent

and all propagators are related to one which we can choose as S ≡ Sz1z1 . The derivatives

of the higher genus formulae can then be written as rational functions of five independent

generators z1, z2, ∂z1t, ∂z2t and S, whose derivatives are rational functions of themselves.

The calculations of the derivative rules are provided by the formulae in [20]. We omit the

details here as it is similar to the local P2 model in the previous subsection.

With the derivative rules for the five generators, we expand the quantum differential

equation (7.35) for small ǫ and check our higher genus formulae (7.39) for F (n,0) (n ≥ 1)

exactly satisfy the equations at each order of the small ǫ expansion.

8 Conclusion

There are some questions for further study. The equation for the deformed dual period
∂F(ã)
∂ã = ãD should be derived more carefully, e.g. from the saddle point analysis for the

Nekrasov function in Seiberg-Witten theory and from the refined topological vertex in toric

Calabi-Yau models.

We have provided a derivation of the holomorphic anomaly equations in the Nekrasov-

Shatashvili limit from the differential equations for the deformed dual period. It would be

nice to also derive the gap boundary conditions from these differential equations.
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[22] A. Iqbal, C. Kozçaz and C. Vafa, The refined topological vertex, JHEP 10 (2009) 69

[hep-th/0701156].

[23] D. Krefl and J. Walcher, Extended Holomorphic Anomaly in Gauge Theory,

Lett. Math. Phys. 95 (2011) 67 [arXiv:1007.0263].

[24] D. Krefl and J. Walcher, Shift versus Extension in Refined Partition Functions,

arXiv:1010.2635 [INSPIRE].

[25] M. Mariño and G. Moore, Counting higher genus curves in a Calabi-Yau manifold,

Nucl. Phys. B 543 (1999) 592 [hep-th/9808131].

[26] M. Matone, Instantons and recursion relations in N = 2 SUSY gauge theory,

Phys. Lett. B 357 (1995) 342 [hep-th/9506102] [INSPIRE].

[27] A. Mironov and A. Morozov, Proving AGT relations in the large-c limit,

Phys. Lett. B 682 (2009) 118 [arXiv:0909.3531].

[28] A. Mironov and A. Morozov, Nekrasov Functions and Exact Bohr-Zommerfeld Integrals,

JHEP 04 (2010) 040 [arXiv:0910.5670] [INSPIRE].

[29] H. Nakajima and K. Yoshioka, Lectures on instanton counting, math/0311058 [INSPIRE].

[30] N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math.

Phys. 7 (2004) 831 [hep-th/0206161] [INSPIRE].

[31] N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions,

hep-th/0306238 [INSPIRE].

[32] N.A. Nekrasov and S.L. Shatashvili, Quantization of Integrable Systems and Four

Dimensional Gauge Theories, arXiv:0908.4052 [INSPIRE].

[33] Y. Ohta, Prepotential of N = 2 SU(2) Yang-Mills gauge theory coupled with a massive

matter multiplet, J. Math. Phys. 37 (1996) 6074 [hep-th/9604051].

[34] Y. Ohta, Prepotentials of N = 2 SU(2) Yang-Mills theories coupled with massive matter

multiplets, J. Math. Phys. 38 (1997) 682 [hep-th/9604059] [INSPIRE].

[35] R. Poghossian, Deforming SW curve, JHEP 04 (2011) 033 [arXiv:1006.4822].

[36] N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and

confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19

[Erratum ibid. B 430 (1994) 485-486] [hep-th/9407087] [INSPIRE].

[37] N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2

supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099].

[38] D. Zagier, Elliptic modular forms and their applications, in The 1-2-3 of Modular Forms,

1-103, Universitext, Springer, Berlin Germany (2008).

– 39 –

http://dx.doi.org/10.1088/1126-6708/2009/10/69
http://arxiv.org/abs/hep-th/0701156
http://dx.doi.org/10.1007/s11005-010-0432-2
http://arxiv.org/abs/1007.0263
http://arxiv.org/abs/1010.2635
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.2635
http://dx.doi.org/10.1016/S0550-3213(98)00847-5
http://arxiv.org/abs/hep-th/9808131
http://dx.doi.org/10.1016/0370-2693(95)00920-G
http://arxiv.org/abs/hep-th/9506102
http://inspirehep.net/search?p=find+EPRINT+hep-th/9506102
http://dx.doi.org/10.1016/j.physletb.2009.10.074
http://arxiv.org/abs/0909.3531
http://dx.doi.org/10.1007/JHEP04(2010)040
http://arxiv.org/abs/0910.5670
http://inspirehep.net/search?p=find+EPRINT+arXiv:0910.5670
http://arxiv.org/abs/math/0311058
http://inspirehep.net/search?p=find+EPRINT+math/0311058
http://arxiv.org/abs/hep-th/0206161
http://inspirehep.net/search?p=find+EPRINT+hep-th/0206161
http://arxiv.org/abs/hep-th/0306238
http://inspirehep.net/search?p=find+EPRINT+hep-th/0306238
http://arxiv.org/abs/0908.4052
http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.4052
http://dx.doi.org/10.1063/1.531764
http://arxiv.org/abs/hep-th/9604051
http://dx.doi.org/10.1063/1.531858
http://arxiv.org/abs/hep-th/9604059
http://inspirehep.net/search?p=find+EPRINT+hep-th/9604059
http://dx.doi.org/10.1007/JHEP04(2011)033
http://arxiv.org/abs/1006.4822
http://dx.doi.org/10.1016/0550-3213(94)90124-4
http://arxiv.org/abs/hep-th/9407087
http://inspirehep.net/search?p=find+EPRINT+hep-th/9407087
http://dx.doi.org/10.1016/0550-3213(94)90214-3
http://arxiv.org/abs/hep-th/9408099

	Introduction
	Review of the saddle point method
	Pure SU(2) theory
	The deformed dual period

	Seiberg-Witten theory with fundamental matters
	Use the deformed dual period
	Use the deformed Matone relation
	The results for N(f)=2,3,4

	Seiberg-Witten theory with an adjoint matter
	Derivation of the holomorphic anomaly equation
	Topological string theory on local Calabi-Yau manifolds
	Local P**2 model
	Local P**1 x P**1 model

	Conclusion

