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1 Introduction

The AdS/CFT correspondence [1–3] offers us a non-perturbative framework which re-

lates gravity theories to conformal field theories (CFTs) in remarkable ways. Usually, the

AdS/CFT is considered for a CFT defined on a manifold without any boundaries. However,

the properties of quantum field theories with boundaries are also very intriguing. They

are sensitive to their boundary conditions and thus a large variety of possible theories

are possible. Also in condensed matter physics, field theories with boundaries appear in

important systems such as the quantum Hall effects or topological insulators.

Recently, an extension of AdS/CFT to the cases where the CFT is defined on a manifold

with boundaries (AdS/BCFT) has been proposed in [4]. In specific examples, the same
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construction has been already mentioned in [5, 6]. In the paper [7], the partition functions in

AdS/BCFT have been computed and a holographic proof for the g-theorem [8, 9] has been

given with a proposal of its higher dimensional generalization. A string theory embedding

of the AdS/BCFT was also given in [7]. The AdS/BCFT has been analyzed in a three

dimensional gravity with higher curvatures in [10]. In [11], the AdS/BCFT is employed for

a holographic construction of the quantum Hall effect and its edges states. See also [12–

14] for other developments. A short review can be found in section 4 of [15]. For other

approaches to gravity duals of CFTs with boundaries, refer to [16–20].

The purpose of this paper is to explore the construction and properties of AdS/BCFT.

We especially focus on the logarithmically divergent terms in the Euclidean partition func-

tion of BCFTs. In even dimensional BCFTs, the coefficients of the log terms are related

to the Weyl anomaly and thus the central charges. In odd dimensions, on the other hand,

these coefficients lead to new quantities called boundary central charges cbdy. The logarith-

mic term in AdS4/BCFT3 is especially intriguing. The holographic analysis in [7] shows

that the corresponding boundary central charge, extended to the non-conformal theories

as a c-function, gets monotonically decreased under the RG flow:

dcbdy(r)

dr
≤ 0, (1.1)

where r is a length scale of the BCFT. This can be regarded as a higher dimensional

analogue of the g-theorem [8, 9]. A part of main results in this paper is to give a few

modest evidences for this property from quantum field theoretic calculations, based on

a perturbation theory and an explicit example. Finally, we conjecture this c-theorem in

arbitrary odd dimensional BCFTs.

So far, the examples of AdS/BCFT have been limited to the cases where boundaries

of BCFTs are either hyperplanes or round spheres. Therefore we would like to consider

the examples where the boundaries are general curved surfaces. We will show that the

coefficient of the logarithmic term in the AdS3/BCFT2 setup is topological (proportional to

the Euler number) and thus does not change under smooth deformations of the boundaries.

We will also independently confirm this by calculating the energy momentum tensor at the

boundary. Moreover, we will find that in higher dimensional setups, the construction of

solutions based on the standard Fefferman-Graham expansion does not work and instead

we will construct perturbative solutions by using the hyperbolic foliation of the AdS space

for AdS4/BCFT3.

This paper is organized as follows: In section 2, we will first give a brief overview of the

AdS/BCFT construction. Later we provide a careful treatment of the new codimension two

boundary term, which has been neglected previously and calculate the energy momentum

tensor localized at the boundary P . In section 3, we will examine AdS duals of two

dimensional BCFTs with general shape of boundaries based on the standard Fefferman-

Graham expansion and calculate the logarithmic term. In section 4, we present perturbative

solutions for AdS4/BCFT3 with general shape of boundaries. In section 5, we argue the

higher dimensional g-theorem in terms of boundary central charges and give some evidences.
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Only this section is purely field theoretical and does not employ the holography. In section

6, we summarize our conclusions and discuss future problems.

2 AdS/BCFT formulation and energy momentum tensor

Here we will first give a brief summary of the AdS/BCFT i.e. a holographic dual of CFT

defined on a manifold M with a boundary ∂M(≡ P ) [4]. Later we will provide a careful

treatment of the new codimension two boundary term, which has been neglected previously

and we will calculate the energy momentum tensor localized at the boundary P .

In AdS/CFT [1], a d+ 1 dimensional AdS space (AdSd+1) is dual to a d dimensional

CFT. The geometrical SO(d, 2) symmetry of AdS is equivalent to the conformal symmetry

of the CFT. When we put a d−1 dimensional boundary to a d dimensional CFT such that

the presence of the boundary breaks SO(2, d) into SO(2, d − 1), this is called a boundary

conformal field theory (BCFT) [21–23].

The construction of AdS/BCFT goes as follows1 (refer to figure 1). The holographic

dual of a BCFT (boundary conformal field theory) on a d dimensional manifoldM is defined

as a gravity on a d + 1 dimensional spacetime N . N is an asymptotically AdS space and

its AdS boundary coincides with M . We assume that M has a boundary ∂M and in the

gravity dual, ∂M is extended to a d dimensional manifold Q such that ∂N = M ∪Q. To

respect the SO(2, d− 1) symmetry of BCFT, N should be foliated by AdSd slices. We can

also generalize this construction into the non-conformal cases by relaxing the SO(2, d− 1)

symmetry. This is the basic setup of AdS/BCFT. Next we need to impose an appropriate

boundary condition on Q.

2.1 Neumann boundary condition

In the standard AdS/CFT, we impose the Dirichlet boundary condition at the boundary

of AdS and therefore we require the Dirichlet boundary condition on M . On the other

hand, we impose a Neumann boundary condition on Q [4]. The reason for this is that this

boundary should be dynamical from the viewpoint of holography and there is no natural

definite metric on Q specified from the data in the CFT side. Also this can be naturally

derived in the orientfold construction in string theory as in the example discussed in [7].

To make the variational problem sensible, we need to add the Gibbons-Hawking bound-

ary term [27] on the boundaries M and Q to the Einstein-Hilbert action:

I =
1

16πGN

∫

N

√
−G(R− 2Λ) +

1

8πGN

∫

Q

√
−hK +

1

8πGN

∫

M

√−γK. (2.1)

1One may think this construction of AdS/BCFT looks similar to the holographic entanglement en-

tropy [24–26]. However, they are crucially different because of the following reasons. To calculate the

holographic entanglement entropy, we pick up a codimension two minimal area surface and this exists in

any asymptotically AdS backgrounds. However, the surface Q in the AdS/BCFT is codimension one and

has more constraints due to the boundary condition (2.10) and there is no solution in a generic asymp-

totically AdS backgrounds. Therefore the boundary Q backreacts with the bulk spacetime and changes

its metric so that the boundary condition is satisfied. Mathematically, the minimal surface condition is

equivalent to the vanishing of the trace of the extrinsic curvature i.e. K = 0, while (2.10) constrains each

component of Kab.
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Figure 1. A schematic setup of AdS/BCFT. The CFT lives on M , which has the boundary

P ≡ ∂M . Its gravity dual is denoted by N and its asymptotically AdS boundary is M . The

boundary P is extended into the bulk AdS, which constitutes the boundary Q.

The metric of N is defined by Gµν , where the index µ runs the d + 1 coordinates; the

induced metric on Q and M are denoted by hab and γij , respectively, while a and i run the

d coordinates. For later convenience, we also define the induced metric on P (= ∂M = ∂Q)

to be Σαβ . We summarize these conventions in table 1.

K = habKab (or K = γijKij) is the trace of extrinsic curvature on Q (or M). The

extrinsic curvature Kab is defined by

Kab = ∇anb, (2.2)

where n is the unit vector normal to Q and here we implicitly assume a projection onto Q

from N . For example, in the Gaussian normal coordinate system, we have the following

metric

ds2 = dη2 + hab(η, u)du
adub, (2.3)

where Q is situated at η = η∗ and N is given by η ≤ η∗. In this setup, we can explicitly

calculate the extrinsic curvature as

Kab =
1

2

∂hab(η∗, u)

∂η
. (2.4)

Now let us consider the variation of metric in the above action. After a partial inte-

gration, we find

δI =
1

16πGN

∫

Q

√
−h(Kab −Khab)δh

ab +
1

16πGN

∫

M

√−γ(Kij −Kγij)δγ
ij . (2.5)

Notice that the terms which involve the derivatives of δhab and δγij cancel out thanks

to the boundary term. It is clear that the variation on Q is vanishing if we impose either

the Dirichlet boundary condition δhab = 0 or the Neumann boundary condition

Kab − habK = 0. (2.6)

As we mentioned, we choose the Neumann condition (2.6) on Q, while we do the Dirichlet

one on M .
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Manifold Dimension Metric Relations

N d+ 1 Gµν Gij =
gij
ρ

Q d hab

M d γij γij = Gij |ρ=ǫ

P d− 1 Σαβ Σαβ =
σαβ

ρ

Table 1. A summary of notations on the manifolds and their metrics in this paper. Notice that N

is the original spacetime where the gravity dual lives. M is its AdS boundary and Q is the other

part of the boundary of N . P is defined by P = ∂M = ∂Q.

It is also possible to add some matter fields localized on Q and consider a generalized

action by adding

IQ =

∫ √
−hLQ. (2.7)

This modifies (2.6) into

Kab − habK = 8πGNTQ
ab, (2.8)

where we defined the energy momentum tensor on Q

TQ
ab = − 2√

−h

δIQ
δhab

. (2.9)

In this paper we only consider the case where the boundary matter lagrangian LQ is

simply a constant LQ = − T
8πGN

. The constant T can be interpreted as the tension of the

‘brane’ Q. The boundary condition (2.8) for this system reads

Kab = (K − T )hab. (2.10)

By taking its trace, we obtain

K =
d

d− 1
T. (2.11)

The Euclidean formalism of AdS/BCFT is also useful especially for the evaluations of

the partition functions and we will mainly employ this formalism in the rest of this paper.

In the Euclidean formulation, the gravity action (2.1) in the Lorentzian signature is now

replaced by

IE = − 1

16πGN

∫

N

√
g(R− 2Λ)− 1

8πGN

∫

Q

√
h(K − T )− 1

8πGN

∫

M

√
γK, (2.12)

where we added the tension T contribution on Q. Note that in the actual calculations we

need to add the counter terms to (2.12) as in the standard holographic renormalization of

AdS/CFT [28–30].
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2.2 Simple examples

Here we briefly review the basic examples of AdS/BCFT, which are useful in our later

arguments. We only consider the d+1 dimensional pure gravity theory. The first example

is the BCFT on a half plane [4, 7]. The metric of AdSd+1 with the radius L can be rewritten

as follows:

ds2 = dη2 +
cosh2(η/L)

z2
(dz2 + d~x2), (2.13)

where ~x ∈ Rd−1. If we assume that η takes all values from −∞ to ∞, then (2.13) is

equivalent to the AdSd+1. To see this, define new coordinates w and ξ by

w =
z

cosh(η/L)
, ξ = z tanh(η/L). (2.14)

In this new coordinate system, (2.13) indeed coincides with the Poincare metric:

ds2 = L2

(

dw2 + dξ2 + d~x2

w2

)

. (2.15)

Note that the cosmological constant Λ is related to the AdS radius L by Λ = − (d−1)d
2L2 .

To realize a gravity dual of BCFT, we will put the boundary Q at η = η∗ and this

means that we restrict the spacetime to the region −∞ < η < η∗. The extrinsic curvature

on Q reads

Kab =
1

L
tanh

(η∗
L

)

hab. (2.16)

By imposing the boundary condition (2.10), we find the relation

T =
d− 1

L
tanh

η∗
L
. (2.17)

In this system, the AdS boundary M is given by the half place defined by ξ ≤ 0.

We can perform the conformal transformation so that the boundary P = ∂M is mapped

from the hyperplane to a round sphere [4, 7]. The holographic dual of a BCFT on a round

ball with radius rB is given by the following region in the Poincare AdSd+1 (2.15);

ξ2 + ~x2 + (w − rB sinh(η∗/L))
2 − r2B cosh2(η∗/L) ≤ 0. (2.18)

2.3 Codimension two boundary term

Moreover, strictly speaking, we need to add the boundary term on P (= ∂M = ∂Q) to the

gravity action IE in (2.12). This is because Q and M are joined non-smoothly on P with

cusp like singularities. In such a case, we need to add the following boundary term [31]

I
(bdy)
E =

1

8πGN

∫

P

√
Σ · (2θ − π), (2.19)

where 2θ is the angle between Q and M at P (the angle is measured from inside of N).

See the appendix A for an elementary derivation of (2.19). Σαβ is the induced metric on
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P . In other words, if we define nM and nQ are unit normal vectors toward the outside of

the gravity dual N , then we have

nM · nQ = cos(π − 2θ). (2.20)

Therefore the correct gravity action of AdS/CFT is given by (2.12) plus (2.19) i.e.

I
(tot)
E = IE + I

(bdy)
E + I

(c.t.)
E , (2.21)

where we also added the counter terms I
(c.t.)
E so that total action I

(tot)
E becomes finite.

Below we would like to examine how the calculations of Euclidean partition functions

are affected by this codimension two boundary term (2.19). We concentrate on the example

of the round disk partition function in AdS3/BCFT2. The holographic dual of a BCFT

defined on a round disk with the radius rB is given by the gravity on the manifold (2.18)

inside the Poincare AdS3. The main part IE has been already calculated in [4, 7]. In the

presence of the new boundary term I
(bdy)
E , the final result reads

IE+I
(bdy)
E =

L

4GN

[

−r2B
2ǫ2

− rB
ǫ

(

sinh
η∗
L
+arccosLT

)

+log
ǫ

rB
− 1

2
−arccosLT · sinh η∗

L
− η∗

L

]

,

(2.22)

where ǫ is the UV cut off, set by z > ǫ. To make the total action I
(tot)
E finite, we need to

add the counter terms

I
(c.t.)
E =

L

8πGN

∫

M

√
γ +

L

8πGN

∫

P

√
Σ− L

16πGN
· log ǫ ·

(
∫

M

√
γR+ 2

∫

P

√
ΣK

)

. (2.23)

This leads to

I
(tot)
E = − η∗

4GN
− L

4GN
− L

4GN
log rB. (2.24)

Therefore, the boundary entropy Sbdy, which is defined by the finite contribution to −I
(tot)
E

in the presence of the boundary P , is given by

Sbdy =
η∗

4GN
. (2.25)

This is the same as the conclusion in [4, 7], where I
(bdy)
E was not taken into account.

Indeed, (2.25) agrees with another calculation of Sbdy using the holographic entanglement

entropy [15, 24–26]. Notice also that the logarithmic term in (2.24), which is proportional

to the Weyl anomaly, is not affected by the new term I
(bdy)
E . In section 3, we will generalize

the calculation of the logarithmic term to the case where P is an arbitrary closed loop.

In this way, most of physical quantities do not change by the addition of the new

boundary term I
(bdy)
E . However, there is at least one exception, which is the boundary

energy momentum tensor, as we will discuss in the next subsection.

2.4 Holographic boundary energy momentum tensor

In the general setups of AdS/CFT, a convenient choice of coordinate is known as the

Fefferman-Graham coordinate and is defined by

ds2 =
L2

4ρ2
dρ2 +

1

ρ
gij(x, ρ)dx

idxj . (2.26)
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The special case gij = δij corresponds to the pure AdSd+1 and the coordinate ρ is related

to w in (2.15) via ρ = w2. The AdS boundary M is situated at ρ = 0 and thus the metric

of M in the gravity dual is given by γij = limρ→0
gij
ρ . The metric of M in the BCFTd is

given by limρ→0 gij = g
(0)
ij .

The energy stress tensor Tij is a useful physical quantity to characterize the property

of CFTs in such general setups. It is defined by the variation of the action ICFT with

respect to the metric g
(0)
ij

Tij = − 2
√

g(0)
· δICFT

δg(0)ij
. (2.27)

The holographic energy momentum tensor [29, 30, 32] is defined so that it is propor-

tional to the derivative of the total gravity action with respect to the AdS boundary metric

γij (called Brown-York tensor [33, 34]):

T
(AdS)
ij = lim

ρ→0

[

ρ1−
d
2

8πGN
(Kij − γijK) + (counter terms)

]

. (2.28)

Moreover, we would like to point out that in the AdS/BCFT setup we can also cal-

culate the boundary analogue of the energy momentum tensor Bαβ , which has been first

introduced in [35] from a field theoretic viewpoint. In BCFTs, this boundary energy mo-

mentum tensor is defined by taking the variation of the action IBCFT with respect to the

metric σαβ on ∂M

Bαβ = − 2√
σ
· δIBCFT

δσαβ
. (2.29)

In the gravity side, we argue the following holographic formula by taking the derivative

of (2.19) with respect to Σαβ (notice the relation limρ→0 ρ · Σαβ = σαβ)

B
(AdS)
αβ = lim

ρ→0

[

ρ
3
2
− d

2

8πGN
(2θ − π)Σαβ + (counter terms)

]

. (2.30)

We will later evaluate B
(AdS)
αβ explicitly in AdS3/BCFT2 and confirm that it plays the

crucial role on the consistency with the Weyl anomaly.

3 AdS3/BCFT2 with arbitrary boundaries and conformal anomaly

In previous examples, the AdS/BCFT has been constructed when the boundary ∂M of the

BCFT takes special shapes such as hyperplanes or round spheres. Therefore we would like

to generalize the AdS/BCFT construction and analyze the cases where ∂M take arbitrary

shapes. In this section we will employ the Fefferman-Graham coordinate (2.26) and mainly

focus on the AdS3/BCFT2.

In the near AdS boundary limit, we can expand [28, 30]

gij = g
(0)
ij + ρg

(2)
ij + ρ log ρ h

(2)
ij + · · ·. (3.1)

– 8 –
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The profile of the boundary Q in the AdS3 is described by the constraint (setting

x1 = x and x2 = y)

x = x(y, ρ), (3.2)

which is expanded as

x(y, ρ) = x(0)(y) +
√
ρ x(1)(y) + ρ x(2)(y) + · · ·. (3.3)

3.1 Einstein equation

The Einstein equation in the d + 1 dimensional Fefferman-Graham coordinate (2.26) can

be summarized as follows [28]

ρ(2g′′ij − 2g′ikg
klg′lj + gklg′klg

′
ij)− L2R(g)ij − (d− 2)g′ij − gklg′klgij = 0,

gjk(∇ig
′
jk −∇kg

′
ij) = 0,

gijg′′ij −
1

2
gijg′jkg

klg′li = 0, (3.4)

where R(g)ij is the d dimensional Ricci tensor for the metric gij , regarding ρ as a constant.

In the d = 2 case, by expanding the Einstein equations (3.4) about the powers of ρ,

we obtain

h
(2)
ij = 0,

g(0)ijg
(2)
ij = −L2

2
R(0), (3.5)

where R
(0)
ij is the Ricci tensor for g

(0)
ij . Note that g

(2)
ij is not completely fixed and this

ambiguity, for example, leads to black hole solutions with various temperatures.

3.2 Boundary condition

Next we would like to solve the boundary condition (2.10). We proceed by assuming that

the boundary metric g(0) is flat

g
(0)
ij = δij . (3.6)

In the leading order of ρ expansion, (2.10) leads to

x(1)(y) =
TL2

√

1 + (∂yx(0))2
√
1− L2T 2

. (3.7)

In the next order, we find

x(2)(y) =
L2
(

1 + L2T 2(∂yx
(0))2

)

(∂2
yx

(0))

2(1− L2T 2)(1 + (∂yx(0))2)
. (3.8)

It may be useful to consider the solutions with the Lorentzian signature so that they

describe holographic time-dependent backgrounds. For this, we can wick rotate the x

coordinates as x = it. This leads to the following solutions instead of (3.7) and (3.8):

t(1)(y) =
TL2

√

(∂yt(0))2 − 1
√
1− L2T 2

, t(2)(y) =
L2
(

1− L2T 2(∂yt
(0))2

)

(∂2
yt

(0))

2(1− L2T 2)(1− (∂yt(0))2)
. (3.9)
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3.3 Partition function

Now we would like to evaluate the Euclidean partition function (2.21). Since we are inter-

ested especially in the logarithmically divergent term, we need to evaluate the main part

IE , which can be simplified as follows

IE =
1

4πL2GN

∫

N

√
g − T

8πGN

∫

Q

√
h. (3.10)

We can expand IE with respect to ρ using the formula such as

√
g =

L

2ρ2

(

1 +
ρ

2
Tr[g−1

(0)g
(2)] + · · ·

)

. (3.11)

The boundary Q is described by a closed loop described by x = x(y, ρ) and it is

assumed to have two branches for a fixed y and ρ, which are denoted by x+(y, ρ) and

x−(y, ρ) such that we always have x+(y, ρ) > x−(y, ρ). The region inside Q is given by

x−(y, ρ) < x < x+(y, ρ). We define ∆x(y, ρ) = x+(y, ρ)− x−(y, ρ).

In the end we can evaluate the logarithmically divergent term in IE by introducing the

UV cut off as ρ > ǫ2:

SE =
1

4πL2GN

[

−L

2

∫

dy∆x(2)(y) · log ǫ2
]

+
T

8πGN
· log ǫ2

∫

dy ∆





2x(1)x(2) + L2(∂yx
(0))(∂yx

(1))

2
√

L2 + (x(1))2 + L2(∂yx(0))2





= − L

4πGN
· log ǫ ·

∫

dy∆

(

∂2
yx

(0)

2(1 + (∂yx(0))2

)

. (3.12)

Notice that the last term is topological because

∫

dy∆

(

∂2
yx

(0)

2(1 + (∂yx(0))2

)

= ∆

[

1

2
arctan(∂yx

(0))

]

. (3.13)

By extending this result to curved spaces using (3.5), we finally obtain

IE = log ǫ · L

16πGN
·
(
∫

M

√

g(0)R(0) + 2

∫

∂M

√

h(0)K(0)

)

=
c

6
χ(M) · log ǫ, (3.14)

where where we employed the well-known relation c = 3L
2GN

[36]; χ(M) is the Euler number

of M ; K(0) is the trace of extrinsic curvature of the curve x = x(0)(y), given by

K(0) = −
∂2
yx

(0)(y)

(1 + (∂yx(0)(y))2)3/2
. (3.15)

In this way we nicely reproduce the logarithmic term in the BCFT partition function,

which is expected from the Weyl anomaly.
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3.4 Analysis of boundary energy momentum tensor

The trace of the holographic (bulk) energy momentum tensor (2.28) for the flat space

BCFT (3.6) becomes trivial in our setup

g(0)ijT
(AdS)
ij = 0, (3.16)

as follows from (3.5). One may immediately wonder if this may contradict with the fact

that the logarithmic term (3.14) shows a non-vanishing trace anomaly. However, this is

not the case if we take into account the boundary energy momentum tensor Bαβ . Using

the holographic formula (2.30) we can evaluate as follows

B(AdS)
yy =

1

8πGN
lim
ρ→0

[
√
ρ (2θ − π + arccosT ) Σyy] , (3.17)

where the term proportional to arccosT is the counter term. By using the inner product

of the two unit normal vectors at the boundary P = ∂M = ∂Q:

nM · nQ = T +
x(0)

′′

(y)
√
1− T 2

(1 + (x(0)′(y))2)3/2
√
ρ+O(ρ), (3.18)

finally we obtain

By(AdS)
y =

1

8πGN

x(0)
′′

(y)

(1 + (x(0)′(y))2)3/2
= − c

12π
K(0). (3.19)

We can confirm that the total Weyl anomaly is consistent with (3.19) as follows. The

variation of the gravity action is given by

δIE = −1

2

∫

M

√
gTijδg

(0)ij − 1

2

∫

∂M

√
σBαβδσ

αβ , (3.20)

where note that σαβ is the same as h
(0)
αβ in (3.14). For the infinitesimal Weyl transformation

δgij = 2ǫgij and δσαβ = 2ǫσαβ , we find

δǫIE = ǫ

[
∫

M

√
gT i

i +

∫

∂M

√
σBi

i

]

= −ǫc

6
χ(M). (3.21)

This agrees with the logarithmic term in (3.14), which satisfies

rB
∂IE
∂rB

= − c

6
χ(M). (3.22)

3.5 Analysis in higher dimensions

One may think that we can generalize this analysis in higher dimensions d > 2 . However,

this is not the case as we will see below. For example, consider d = 3 case, where we can

expand the metric as

gij = g
(0)
ij +

√
ρg

(1)
ij + ρg

(2)
ij + ρ3/2 g

(3)
ij + · · ·. (3.23)
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and the Einstein equation (3.4) can be solved as

g
(1)
ij = 0,

g
(2)
ij = L2

(

Rij −
1

4
Rgij

)

,

g(0)ijg
(3)
ij = 0. (3.24)

The profile of Q can be specified by

x = x(y, z, ρ). (3.25)

We can analyze the boundary Einstein equation order by order in the ρ expansion.

The leading order relation determines x(1). However, the second order equations lead to

the constraints

∂2
yx

(0)
(

1 + (∂zx
(0))2

)

= ∂2
zx

(0)
(

1 + (∂yx
(0))2

)

,
(

1 + (∂zx
(0))2

)

∂y∂zx
(0) = (∂yx

(0))(∂zx
(0))(∂2

zx
(0)). (3.26)

This does not have any solutions2 except when the boundary Q is given by planes or

spheres, which are already known solutions as reviewed in section 2.2.

One may think that this shows that we cannot construct any gravity solutions dual a

BCFT on M for generic choice of the boundary ∂M . This is clearly paradoxical because

the BCFT side is well-defined for any ∂M , though the generic choice of ∂M breaks the

SO(2, d− 1) boundary conformal invariance. We will resolve this puzzle in the section (4)

soon later. The upshot is that the ρ expansion (3.23) breaks down at the boundary Q and

that we need to employ a different coordinate system.

4 AdS4/BCFT3 with arbitrary boundaries

Consider the AdS4/BCFT3 setup with the three dimensional boundary Q. We can choose

the Gaussian normal coordinate (2.3), where Q is situated at η = η∗ and N is extended in

the region −∞ < η < η∗. The extrinsic curvature is given by (2.4). The (vacuum) Einstein

equation is decomposed into the constraints

R(3) +K2 −KabK
ab = 2Λ

(

= −6/R2
)

,

∇a(Kab − hab ·K) = 0, (4.1)

and evolution equations of Kab with respect to η.

If we consider the boundary matter field, the boundary condition takes the general

form (2.8). The constraint (4.1) is equivalent to the conservation of boundary energy-

momentum tensor TQ
ab

∇aTQ
ab = 0. (4.2)

2To see this quickly, we can assume x(0) is infinitesimally small and then the linearized equations are

∂2
yx

(0)
− ∂2

zx
(0) = 0 and ∂y∂zx

(0) = 0. They allow only solutions which are linear or quadratic with respect

to y and z.
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On the other hand, (4.1) can be expressed as

R(3) − (TQ
ab)

2 +
1

2
(TQ)2 = 2Λ. (4.3)

Thus for any matter stress tensor TQ
ab which satisfies the conservation (4.2) and a

constraint (4.3), we can always construct a bulk metric by (numerically) solving the Einstein

equation without any obstruction.

4.1 Construction of perturbative solutions

We would like to construct perturbative solutions. We will set the AdS radius to be one

L = 1 in this section just for the simplification. We express the metric in (2.3) as follows

hab(η, x, y, z) =
cosh2 η

z2
δab + δhab(η, x, y, z), (4.4)

choosing the coordinates (u1, u2, u3) = (x, y, z). We treat δhab as a perturbation and keep

only the first order. Notice that the unperturbed four dimensional metric is the same

as (2.13) and thus coincides with the pure AdS4 (2.15) via the coordinate transforma-

tion (2.14).

Now, what we need to do is to solve the Einstein equation with the boundary condition

∂hab(η∗, x, y, z)

∂η
= T · hab(η∗, x, y, z). (4.5)

as follows from (2.10). Notice that the tension is related to η∗ via (2.17), which is given by

T = 2 tanh η∗ in the current setup.

The Einstein equation can be decomposed into the constraints (4.1) and the ab com-

ponents of the Einstein equation

Rab −
1

2
gabR+ Λgab = 0. (4.6)

We are interested in the metric perturbations δhab which depends on x and y. We only

work on the linear order of this perturbation theory and neglect higher orders. We will

perform the Fourier transformation with respect to x and y. By employing the rotation

on the x − y plane, we can set the wave vector for y to be vanishing. Therefore we only

consider the perturbation proportional to eikx:

δhab(η, x, y, z) = δhab(η, z, k) · eikx. (4.7)

Moreover, to solve the Einstein equation analytically, we also assume perturbative

expansions with respect to the coordinate z near the AdS3 boundary z = 0. Then the

perturbative solution to the three dimensional part of the Einstein equation (4.6) with the
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boundary condition (4.5) can be found to be

hxx(η, z, k) = axx
cosh2 η

z2
+

bxx(η)

z
+O(1),

hxy(η, z, k) = axy
cosh2 η

z2
+

bxy(η)

z
+O(1),

hyy(η, z, k) = ayy
cosh2 η

z2
+

byy(η)

z
+O(1),

hxz(η, z, k) = axz
cosh2 η

z2
+

bxz(η)

z
+O(1),

hyz(η, z, k) = ayz
cosh2 η

z2
+

byz(η)

z
+O(1),

hzz(η, z, k) = 0 +
bzz(η)

z
+O(1), (4.8)

where aab are arbitrary (small) constants. The functions bab(η) are defined by

bxx(η) = −2(q1 − iaxzk) cosh
2 η − q2 · cosh η (1 + (2(arctan(eη)− arctan(eη∗)) · sinh η) ,

bxy(η) = iayzk cosh
2 η +

q3 cosh η

arctan(eη∗)
(−2 + 4 (arctan(eη∗)− arctan(eη)) sinh η) ,

byy(η) = −2q1 cosh
2 η + q2 cosh η (1 + 2 (arctan(eη)− arctan(eη∗)) sinh η) ,

bxz(η) = q4 cosh
2 η,

byz(η) = q5 cosh
2 η,

bzz(η) = 2q1 cosh
2 η, (4.9)

where q1, q2, · · ·, q5 are arbitrary (small) constants. Finally we can also confirm that these

solutions satisfy the constraints (4.1). In this way, we can construct perturbative solutions

with several parameters.

4.2 Analysis of explicit solutions

To find a simplest non-trivial solution we would like to set

axx = axy = ayy = ayz = q3 = q4 = q5 = 0, (4.10)

with axz, q1 and q2 chosen to be arbitrary.

For large η limit (i.e. AdS boundary limit ξ ≫ w), they behave as

bxx(η) ≃ (2iaxzk − 2q1 + (2 arctan(eη∗)− π)q2)
ξ2

w2
,

byy(η) ≃ (−2q1 + (π − 2 arctan(eη∗))q2)
ξ2

w2
,

bzz(η) ≃ 2q1 ·
ξ2

w2
,

bxy(η) ≃ bxz(η) ≃ byz(η) ≃ 0, (4.11)
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where notice that eη ≃ 2ξ
w in the limit η → ∞.

We assume that q1 and q2 are imaginary and define

βxx = 2axzk − 2|q1|+ (2 arctan(eη∗)− π)|q2|,
βyy = −2|q1|+ (π − 2 arctan(eη∗))|q2|,
βzz = 2|q1|. (4.12)

By using the relation (2.14) or equally

z =
√

w2 + ξ2, sinh η =
ξ

w
, (4.13)

the total metric can be expressed as

ds2 =
1

w2

[

dw2+dξ2+dx2+dy2+
2axz cos(kx)
√

w2 + ξ2
(wdw + ξdξ)dx (4.14)

−βzz sin(kx)
√

w2 + ξ2
(wdw + ξdξ)2 − w2 sin(kx)|bxx(η)|

z
dx2 − w2 sin(kx)|byy(η)|

z
dy2

]

.

We perform the coordinate transformation

x → x− axz cos(kx)
√

w2 + ξ2.

(4.15)

Then the metric is rewritten as follows up to the linear order of the perturbation

ds2 =
1

w2

[

dw2 + dξ2 + dy2 +
(

1 + 2axzk sin(kx)
√

w2 + ξ2
)

dx2 (4.16)

−βzz sin(kx)
√

w2 + ξ2
(wdw + ξdξ)2 − w2 sin(kx)|bxx(η)|

z
dx2 − w2 sin(kx)|byy(η)|

z
dy2

]

.

4.3 Relation to Fefferman-Graham coordinate

We would like to rewrite the metric (4.16) in terms of Fefferman-Graham coordinate so

that we can analyze the structure of AdS boundary. For this purpose we perform the

coordinate transformation

ŵ = w −∆w(w, ξ, x), ξ̂ = ξ +∆ξ(w, ξ, x), (4.17)

where

∆w(w, ξ, x) =
βzz sin(kx)

4

[

w
√

w2 + ξ2 − ξ2 log
(

2
(

w +
√

w2 + ξ2
))]

,

∆ξ(w, ξ, x) =
βzz sin(kx)

4

[

wξ + 2wξ log
(

2
(

w +
√

w2 + ξ2
))]

. (4.18)

Then we find the metric takes the following Fefferman-Graham form in the new coordinate

ŵ, ξ̂ (we omit the symbol ˆ below):

ds2 =
dw2

w2
+

(1 +∆gξξ)dξ
2 + (1 +∆gxx)dx

2 + (1 +∆gyy)dy
2

w2
. (4.19)
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Here we defined

∆gξξ =
βzz sin(kx)

2

[

w

2
+

ξ2w

w2+ξ2+w
√

w2+ξ2
− 2ξ2
√

w2+ξ2
+w log

(

2
(

w+
√

w2+ξ2
))

]

,

∆gxx = sin(kx)

[

2axzk
√

w2 + ξ2 − w2

√

w2 + ξ2
|bxx(η)|

]

,

∆gyy = − sin(kx)
w2

√

w2 + ξ2
|byy(η)|, (4.20)

where we neglect terms with higher powers of w and ξ than the ones included in the above.

Notice that our perturbative solution (4.19) is only valid when ξ and w are small.

We define the three dimensional part of the metric ds2(3) from this metric (4.19) as

ds2 =
dw2 + ds2(3)

w2
. (4.21)

The metric of the AdS boundary is obtained from ds2(3) by taking the limit w → 0

ds2(3)

∣

∣

∣

w=0
= (1 + (2axzk − βxx) sin(kx)ξ) dx

2 + (1− βyy sin(kx)ξ) dy
2

+(1− βzz sin(kx)ξ) dξ
2, (4.22)

where we employed (4.11).

Now we would like to concentrate on the case where the AdS boundary becomes flat.

We find that this corresponds to the case

βyy = −2|q1|+ (π − 2 arctan(eη∗))|q2| = 0. (4.23)

Indeed, in this case, if we further perform the coordinate transformation

x = x̃+
(2axzk − βxx) cos(kx̃)

2k
ξ̃,

ξ = ξ̃ − sin(kx̃)

2

(

2axzk − βxx
k2

+
βzz
2

ξ̃2
)

, (4.24)

we find that the metric at the boundary w = 0 becomes flat:

ds2 ≃ dw2 + dξ̃2 + dx̃2 + dy2

w2
. (4.25)

On the other hand, the boundary Q, which is originally defined by ξ = 0 is now

described by

ξ̃ =
(2axzk − βxx) sin(kx̃)

2k2
=

2|q1|
k2

sin(kx̃). (4.26)

Thus the boundary of the BCFT is now a curved surface.

As we have seen in our construction of perturbative solutions, we encounter expansion

in terms of z =
√

w2 + ξ2. Thus the usual Fefferman-Graham coordinate with the w =
√
ρ

expansion breaks down at the boundary Q i.e. ξ = 0. This was the reason why we could

not find solutions with curved BCFT boundaries via the Fefferman-Graham expansion in

section 3.5.
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5 Towards higher dimensional g-theorems

In two dimensional CFTs, there is a famous Zamolodchikov’s c-theorem [37], which argues

that the central charges in CFTs are decreased under RG-flow. Moreover, we can construct

so called c-function which is monotonically decreasing under the RG-flow and which coin-

cides with the central charges at the fixed points. It is natural to expect something similar

in a BCFT3 i.e. a CFT on a three dimensional manifold M with a boundary ∂M . Here

we consider the boundary RG flow, while the three dimensional bulk is kept conformally

invariant. We assume that M is given by the three dimensional Euclidean round ball B3

with radius rB. Its boundary ∂M is a round S2 with the same radius. See figure 2 for this

setup. This radius rB can be regarded as the length scale under the RG flow. In this setup,

the idea of the boundary central charge cbdy was introduced in [7] and there a holographic

analysis based on AdS/BCFT showed that this quantity, extended to non-conformal theo-

ries in an appropriate way, is a monotonically decreasing function under the RG flow. The

boundary central charge (or c-function) cbdy at the length scale rB is defined by

cbdy(rB) = 3rB
d logZBCFT3

drB

(

= −3rB
dIBCFT3

drB

)

, (5.1)

in terms of the derivative of the partition function ZBCFT3 of the BCFT3 on M . The

normalization of cbdy is chosen such that this agrees with that of the standard central charge

in two dimensional CFTs if the bulk theory is completely decoupled from the boundary. If

we consider the bare partition function Z0, at the fixed point, cbdy is the coefficient of the

logarithmically divergent term

logZ0 = power divergences +
cbdy
3

log
rB
a

+ finite terms. (5.2)

We conjecture that in any quantum field theories cbdy (5.1) satisfies the monotonicity

property
dcbdy(rB)

drB
≤ 0. (5.3)

This can be regarded as a three dimensional version of the g-theorem [8]. An analogue

of c-theorem for three dimensional CFTs without boundaries has already been formulated

in [38–40] and is called F-theorem. It is straightforward to generalize (5.3) to much higher

dimensions as long as d is odd. By comparing with the c-theorems in higher dimensions [41–

44], we can conjecture

(−1)
d+1
2

d

drB

(

rB
d logZBCFTd

drB

)

≤ 0. (5.4)

Below we will give a few supporting evidences of these higher dimensional g-theorems.

5.1 Perturbative confirmation

We consider the case where the BCFTd on the round ball Bd for d odd. We perturb this

theory by a boundary operator O(x)

S = SBCFTd
+ λ0

∫

Sd−1

dxd−1
√
GO(x), (5.5)
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Figure 2. The setup of BCFT3 to calculate the boundary central charge cbdy.

where λ0 is a bare coupling constant. The boundary conformal dimension of O(x) is

defined to be ∆ = d − 1 − y and we assume the relevant perturbation which is nearly

marginal 0 < y ≪ 1.

The boundary conformal invariance constrains the two and three point function of a

boundary operator just as in the standard d− 1 dimensional CFT:

〈O(x)O(w)〉 =
1

|x− w|2(d−1−y)
,

〈O(x)O(w)O(z)〉 =
C

|x− w|d−1−y|w − z|d−1−y|z − x|d−1−y
, (5.6)

where x,w and z lives on the flat space Rd−1 and we need to perform an obvious conformal

transformation to obtain the two and three point functions on the Sd−1.

We define the dimensionless coupling by g(µ) = λ(µ) ·µ−y, where µ is the energy scale

which we identify µ = 1
2rB

. The initial condition is set by g(µ0) = λ0µ
−y
0 , where µ0 is the

UV cutoff. The β-function for the renormalized coupling g(µ) is given by [39, 41]

β(g) ≡ µ
dg(µ)

dµ
= −yg +

π
d−1
2

Γ(d−1
2 )

Cg2 +O(g3). (5.7)

By integrating this we obtain

λ0(2rB)
y = g +

Cπ
d−1
2

yΓ(d−1
2 )

g2 +O(g3). (5.8)

Now we evaluate the partition function. Using the results in [39], we finally obtain its

perturbative expansion w.r.t λ0, employing (5.6) and (5.8):

logZBCFTd
=

π
d−1
2

2d−1Γ(d−1
2 )

[

λ2
0

2
· (2rB)2y · π

d−1
2

Γ(−d−1
2 + 1)

Γ(y)

−λ3
0

6
· (2rB)3y · πd−1Γ(

y
2 )

3Γ(−d−1
2 + 3y

2 )

Γ(y)3Γ(d−1
2 )

· C
]

+O(λ4
0)

=
(−1)

d−1
2 πd− 1

2

Γ(d−1
2 + 1)Γ(d2)2

d−2

[

g2

2
+

1

9y

π
d−1
2

Γ(d−1
2 )

Cg3

]

+O(g4), (5.9)
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where we keep only the leading term assuming y is very small.

Up to this order we can find the boundary central charge as follows (remember d is an

odd integer)

(−1)
d+1
2 rB

d logZBCFTd

drB
=

πd− 1
2

Γ(d−1
2 + 1)Γ(d2)2

d−2

[

g +
1

3y

π
d−1
2

Γ(d−1
2 )

Cg2

]

· β(g) +O(g4)

=
πd− 1

2

Γ(d−1
2 + 1)Γ(d2)2

d−2

[

−yg2 +
2

3

π
d−1
2

Γ(d−1
2 )

Cg3

]

+O(g4). (5.10)

Finally, by taking the derivative of rB we obtain

(−1)
d+1
2

d

drB

(

rB
d logZBCFTd

drB

)

= − πd− 1
2

Γ(d−1
2 + 1)Γ(d2)2

d−2

[

−2yg + 2
π

d−1
2

Γ(d−1
2 )

Cg2

]

β(g) +O(g4)

= − 2πd− 1
2

Γ(d−1
2 + 1)Γ(d2)2

d−2
β(g)2 +O(g4). (5.11)

Therefore we manage to show the property (5.4) in this perturbation theory.

Notice that in this argument the dynamics of the bulk conformal field theory is not rele-

vant and this proof is essentially reduced to that of the perturbative proof of c-theorem [41].

5.2 An explicit example: massless scalar fields in BCFT3

We would like to evaluate contributions of boundary degrees of freedom to 1 loop parti-

tion functions of three dimensional scalar fields, which become exact for free scalar fields.

Since we are interested in CFTs in the bulk, we assume that they are massless scalars in

three dimension.

In general, the one-loop partition function is expressed as

Z =

∫

Dφ exp

(

−
∫

M

φi∆ijφ
j

)

. (5.12)

We assume {φi} (i = 1, 2, · · ·, n) is a n component bosonic field. ∆ij is a second order

differential operator on M and one can consider the heat kernel K̂ij(x, y; s) of the operator

(we will closely follow [46])

∆ijK̂jl(x, y; s) =
∂

∂s
K̂il(x, y; s). (5.13)

The logarithm of the partition function in three dimension is given by

logZBCFT3 =
1

2

∫ ∞

ǫ2

ds

s

∫

M

dx3trK̂(x, x; s). (5.14)

where ǫ is UV cut off (lattice spacing). One can asymptotically expand the heat kernel

near s = 0 ∫

M

trK̂(x, x; s) =
a0

s
3
2

+
a1
s

+
a2

s
1
2

+ a3 + · · · , (5.15)
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where ai s are heat kernel coefficients and can be written by geometric invariants such as

various curvatures of M . The index i denotes number of differentials they contain. By

substituting it to the partition function, we obtain

logZBCFT3 =
2

3

a0
ǫ3

+
a1
2ǫ2

+
a2
ǫ

− a3 log ǫ+ · · · . (5.16)

In this way one can manifest the divergent structure of the partition function. When we

consider a manifold without boundaries, aj vanish for all odd integers j since all geometric

invariants contains even numbers of differentials and thus there are no log term in the

partition function in three dimension. It is consistent with the fact that there is no trace

anomaly in three dimension. However, in three dimensional field theories with boundaries,

aj no longer vanishes for j odd and there is a logarithmically divergent term.

In general, we impose the following boundary condition at ∂M for {φi} of the form

Π−φ|∂M = 0, (∇n + S)Π+φ|∂M = 0, (5.17)

where Π− is hermitian projection operator of the φ such that Π2
− = 1 and Π+ = 1 −

Π−. Notice that the Π− and Π+ are the projections into the Dirichlet and (generalized)

Neumann boundary conditions, respectively. The differential operator ∆ij is chosen to be

the Laplacian of M for the massless scalars i.e. ∆ij = −δij ·gab∇a∇b. In this case, the heat

kernel coefficient a3 is given by the following formula as derived in [45, 46]:

a3 =
1

1536π

∫

∂M

√
σdx2 tr

(

16(Π+ −Π−)R− 8(Π+ −Π−)R
αn
αn

+(13Π+ − 7Π−)K
2 + (2Π+ + 10Π−)KαβK

αβ + 96SK + 192S2
)

, (5.18)

where the trace is with respect to the index i of φi; σ and Kαβ are the induced metric and

the extrinsic curvature of ∂M in M , respectively; Rαn
αn are components of curvature tensor

in M and n represents the normal direction for ∂M .

Now let us calculate the boundary central charges defined in (5.1). For this purpose we

assume the metric M is flat and ∂M is a round S2 with the radius rB. Then the boundary

central charge is given by cbdy = 3a3. By using the formula (5.18), for the Neumann and

the Dirichlet boundary condition,3 we obtain the following boundary central charges:

cbdy(Neumann) =
7

16
, cbdy(Dirichlet) = − 1

16
. (5.19)

Since it is clear that there is a RG flow from the Neumann to the Dirichlet just by

adding the mass term at the boundary of the form

λ

∫

∂M
dx2φ2, (5.20)

the relation

cbdy(Neumann) > cbdy(Dirichlet), (5.21)

is consistent with our conjectured property (5.3).

3The boundary condition (5.17) for non-vanishing S breaks the boundary conformal invariance and

cannot be a fixed point of boundary RG flows. Therefore we only consider S = 0 i.e. the (purely) Neumann

boundary condition here.
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6 Conclusions and discussions

In this paper, we studied the logarithmic terms in the partition functions of CFTs with

boundaries (BCFTs) by employing both field theoretic and holographic approaches. In

even dimensions, the coefficients of the log terms are related to the Weyl anomaly and

thus the central charges. In odd dimensions, on the other hand, these coefficients lead

to new quantities called boundary central charges cbdy. A previous holographic analysis

implies that cbdy are monotonically decreasing functions under the RG flows. This is

interpreted as an odd dimensional analogue of the g-theorem known for two dimensional

BCFTs. In this paper, we gave two evidences. One is that we showed this property in

a leading order perturbation theory. The other is that we confirmed this in an explicit

boundary RG flow for massless scalar fields. These are purely based on the field theoretic

calculations. It is certainly desirable to obtain an exact proof of this conjecture as well as

various explicit examples.

We also did a related holographic analysis for BCFTs based on the AdS/BCFT formal-

ism. In two dimensions, we gave an explicit holographic construction for an arbitrary shape

of boundary and calculated its logarithmic term, confirming its consistency with the Weyl

anomaly. We pointed out that we should add a codimension two boundary term in the

gravity action, which has been missing so far in AdS/BCFT. This enables us to compute

the energy momentum tensor Bαβ which is localized at the boundary. It is interesting to

note that when a BCFT is defined on a round disk, the bulk energy momentum tensor is

vanishing Tij = 0 because the gravity dual is given by a part of AdS3. Our result shows that

still this is consistent with the Weyl anomaly. The reason why we have Tij = 0 is because

we are considering the pure gravity theory where all solutions are locally AdS. Therefore

it is a very intriguing future problem to take into account back-reactions by considering a

gravity theory coupled to various matter fields such as scalars or gauge fields so that the

metric is no longer locally AdS.

We also gave perturbative solutions of gravity duals for the three dimensional BCFTs

with any shapes of boundaries. We find that the standard Fefferman-Graham expansion

breaks down for generic choices of BCFT boundaries. It is another interesting future

direction to explore more on this AdS/BCFT in higher dimensions such as the construction

of fully back-reacted solutions and calculations of energy momentum tensors.
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A Gibbons-Hawking term at non-smooth boundary

Here we explain the extra boundary term [31] added to the standard Gibbons-Hawking

term at a non-smooth boundary. We consider a boundary specified by x = x(y) in a three

dimensional flat space ds2 = dx2 + dy2 + dz2. Since the effect we are looking at is the one

localized at the non-smooth points, this simple example captures all the essential parts.

The unit normal vector reads

n = (nx, ny, nz) =
1

√

1 + 1
x′(y)2

(

− 1

x′(y)
, 1, 0

)

. (A.1)

Then the Gibbons-Hawking term for the region x− ≤ x ≤ x+ is evaluated as

∫ √
hK =

∫

dydz
x′′(y)

1 + x′(y)2
=

∫

dz
[

arctan(x′(y))
]x=x+

x=x−

. (A.2)

Thus if the curve given by y = − tan θ · |x|, we find

∫ √
hK =

∫

dz(π − 2θ). (A.3)

By covariantizing this expression, we finally obtain

∫

M∪Q

√
hK =

∫

M ′

√
hK +

∫

Q′

√
hK +

∫

M∩Q

√
Σ(π − 2θ), (A.4)

where M ∩Q is where the cusps are located; M ′ (and Q′) denote the points in M (and Q)

except those in M ∩Q. This reproduces (2.19) for the Euclidean action (2.12).

References

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity,

Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231]

[hep-th/9711200] [INSPIRE].

[2] S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

[3] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150] [INSPIRE].

[4] T. Takayanagi, Holographic dual of BCFT, Phys. Rev. Lett. 107 (2011) 101602

[arXiv:1105.5165] [INSPIRE].

[5] A. Karch and L. Randall, Locally localized gravity, JHEP 05 (2001) 008 [hep-th/0011156]

[INSPIRE].

[6] A. Karch and L. Randall, Open and closed string interpretation of SUSY CFT’s on branes

with boundaries, JHEP 06 (2001) 063 [hep-th/0105132] [INSPIRE].

[7] M. Fujita, T. Takayanagi and E. Tonni, Aspects of AdS/BCFT, JHEP 11 (2011) 043

[arXiv:1108.5152] [INSPIRE].

– 22 –

http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://inspirehep.net/search?p=find+J+Adv.Theor.Math.Phys.,2,231
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://arxiv.org/abs/hep-th/9802109
http://inspirehep.net/search?p=find+J+Phys.Lett.,B428,105
http://arxiv.org/abs/hep-th/9802150
http://inspirehep.net/search?p=find+EPRINT+HEP-TH/9802150
http://dx.doi.org/10.1103/PhysRevLett.107.101602
http://arxiv.org/abs/1105.5165
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.5165
http://dx.doi.org/10.1088/1126-6708/2001/05/008
http://arxiv.org/abs/hep-th/0011156
http://inspirehep.net/search?p=find+EPRINT+hep-th/0011156
http://dx.doi.org/10.1088/1126-6708/2001/06/063
http://arxiv.org/abs/hep-th/0105132
http://inspirehep.net/search?p=find+EPRINT+hep-th/0105132
http://dx.doi.org/10.1007/JHEP11(2011)043
http://arxiv.org/abs/1108.5152
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.5152


J
H
E
P
0
6
(
2
0
1
2
)
0
6
6

[8] I. Affleck and A.W. Ludwig, Universal noninteger ’ground state degeneracy’ in critical

quantum systems, Phys. Rev. Lett. 67 (1991) 161 [INSPIRE].

[9] D. Friedan and A. Konechny, On the boundary entropy of one-dimensional quantum systems

at low temperature, Phys. Rev. Lett. 93 (2004) 030402 [hep-th/0312197] [INSPIRE].

[10] Y. Kwon, S. Nam, J.-D. Park and S.-H. Yi, AdS/BCFT correspondence for higher curvature

gravity: an example, arXiv:1201.1988 [INSPIRE].

[11] M. Fujita, M. Kaminski and A. Karch, SL(2,Z) action on AdS/BCFT and Hall

conductivities, arXiv:1204.0012 [INSPIRE].

[12] M. Alishahiha and R. Fareghbal, Boundary CFT from holography, Phys. Rev. D 84 (2011)

106002 [arXiv:1108.5607] [INSPIRE].

[13] M. Setare and V. Kamali, Two point functions of BCFT, arXiv:1109.3849 [INSPIRE].

[14] M. Setare and V. Kamali, Anti-de Sitter/ boundary conformal field theory correspondence in

the nonrelativistic limit, arXiv:1202.4917 [INSPIRE].

[15] T. Takayanagi, Entanglement entropy from a holographic viewpoint, arXiv:1204.2450

[INSPIRE].

[16] O. Aharony, D. Marolf and M. Rangamani, Conformal field theories in Anti-de Sitter space,

JHEP 02 (2011) 041 [arXiv:1011.6144] [INSPIRE].

[17] O. Aharony, L. Berdichevsky, M. Berkooz and I. Shamir, Near-horizon solutions for

D3-branes ending on 5-branes, Phys. Rev. D 84 (2011) 126003 [arXiv:1106.1870]

[INSPIRE].

[18] M. Chiodaroli, E. D’Hoker, Y. Guo and M. Gutperle, Exact half-BPS string-junction

solutions in six-dimensional supergravity, JHEP 12 (2011) 086 [arXiv:1107.1722] [INSPIRE].

[19] M. Chiodaroli, E. D’Hoker and M. Gutperle, Simple holographic duals to boundary CFTs,

JHEP 02 (2012) 005 [arXiv:1111.6912] [INSPIRE].

[20] A.M. Garcia-Garcia, J.E. Santos and B. Way, Holographic description of finite size effects in

strongly coupled superconductors, arXiv:1204.4189 [INSPIRE].

[21] J.L. Cardy, Conformal invariance and surface critical behavior,

Nucl. Phys. B 240 (1984) 514 [INSPIRE].

[22] D. McAvity and H. Osborn, Conformal field theories near a boundary in general dimensions,

Nucl. Phys. B 455 (1995) 522 [cond-mat/9505127] [INSPIRE].

[23] J.L. Cardy, Boundary conformal field theory, hep-th/0411189 [INSPIRE].

[24] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,

Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

[25] S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy,

JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].

[26] T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview,

J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].

[27] G. Gibbons and S. Hawking, Action integrals and partition functions in quantum gravity,

Phys. Rev. D 15 (1977) 2752 [INSPIRE].

[28] M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023

[hep-th/9806087] [INSPIRE].

– 23 –

http://dx.doi.org/10.1103/PhysRevLett.67.161
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,67,161
http://dx.doi.org/10.1103/PhysRevLett.93.030402
http://arxiv.org/abs/hep-th/0312197
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,93,030402
http://arxiv.org/abs/1201.1988
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.1988
http://arxiv.org/abs/1204.0012
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.0012
http://arxiv.org/abs/1108.5607
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.5607
http://arxiv.org/abs/1109.3849
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.3849
http://arxiv.org/abs/1202.4917
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.4917
http://arxiv.org/abs/1204.2450
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.2450
http://dx.doi.org/10.1007/JHEP02(2011)041
http://arxiv.org/abs/1011.6144
http://inspirehep.net/search?p=find+J+JHEP,1102,041
http://dx.doi.org/10.1103/PhysRevD.84.126003
http://arxiv.org/abs/1106.1870
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.1870
http://dx.doi.org/10.1007/JHEP12(2011)086
http://arxiv.org/abs/1107.1722
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.1722
http://dx.doi.org/10.1007/JHEP02(2012)005
http://arxiv.org/abs/1111.6912
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.6912
http://arxiv.org/abs/1204.4189
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.4189
http://dx.doi.org/10.1016/0550-3213(84)90241-4
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B240,514
http://dx.doi.org/10.1016/0550-3213(95)00476-9
http://arxiv.org/abs/cond-mat/9505127
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B455,522
http://arxiv.org/abs/hep-th/0411189
http://inspirehep.net/search?p=find+EPRINT+hep-th/0411189
http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://arxiv.org/abs/hep-th/0603001
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,96,181602
http://dx.doi.org/10.1088/1126-6708/2006/08/045
http://arxiv.org/abs/hep-th/0605073
http://inspirehep.net/search?p=find+J+JHEP,0608,045
http://dx.doi.org/10.1088/1751-8113/42/50/504008
http://arxiv.org/abs/0905.0932
http://inspirehep.net/search?p=find+J.Phys.,A42,504008
http://dx.doi.org/10.1103/PhysRevD.15.2752
http://inspirehep.net/search?p=find+J+Phys.Rev.,D15,2752
http://dx.doi.org/10.1088/1126-6708/1998/07/023
http://arxiv.org/abs/hep-th/9806087
http://inspirehep.net/search?p=find+EPRINT+hep-th/9806087


J
H
E
P
0
6
(
2
0
1
2
)
0
6
6

[29] V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity,

Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

[30] S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and

renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595

[hep-th/0002230] [INSPIRE].

[31] G. Hayward, Gravitational action for space-times with nonsmooth boundaries,

Phys. Rev. D 47 (1993) 3275 [INSPIRE].

[32] R.C. Myers, Stress tensors and Casimir energies in the AdS/CFT correspondence,

Phys. Rev. D 60 (1999) 046002 [hep-th/9903203] [INSPIRE].

[33] J.D. Brown and J.W. York, Quasilocal energy and conserved charges derived from the

gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [INSPIRE].

[34] J.D. Brown, S. Lau and J.W. York, Action and energy of the gravitational field,

gr-qc/0010024 [INSPIRE].

[35] D. McAvity and H. Osborn, Energy momentum tensor in conformal field theories near a

boundary, Nucl. Phys. B 406 (1993) 655 [hep-th/9302068] [INSPIRE].

[36] J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic

symmetries: an example from three-dimensional gravity,

Commun. Math. Phys. 104 (1986) 207 [INSPIRE].

[37] A. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D Field

Theory, JETP Lett. 43 (1986) 730 [Pisma Zh. Eksp. Teor. Fiz. 43 (1986) 565] [INSPIRE].

[38] D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-theorem: N = 2 field

theories on the three-sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [INSPIRE].

[39] I.R. Klebanov, S.S. Pufu and B.R. Safdi, F-theorem without supersymmetry,

JHEP 10 (2011) 038 [arXiv:1105.4598] [INSPIRE].

[40] H. Casini and M. Huerta, On the RG running of the entanglement entropy of a circle,

arXiv:1202.5650 [INSPIRE].

[41] J.L. Cardy, Is there a c theorem in four-dimensions?, Phys. Lett. B 215 (1988) 749

[INSPIRE].

[42] D. Freedman, S. Gubser, K. Pilch and N. Warner, Renormalization group flows from

holography supersymmetry and a c theorem, Adv. Theor. Math. Phys. 3 (1999) 363

[hep-th/9904017] [INSPIRE].

[43] R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions,

JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].

[44] Z. Komargodski and A. Schwimmer, On renormalization group flows in four dimensions,

JHEP 12 (2011) 099 [arXiv:1107.3987] [INSPIRE].

[45] T.P. Branson, P.B. Gilkey and D.V. Vassilevich, The asymptotics of the laplacian on a

manifold with boundary. 2, Boll. Union. Mat. Ital. 11B (1997) 39 [hep-th/9504029]

[INSPIRE].

[46] D. Vassilevich, Heat kernel expansion: user’s manual, Phys. Rept. 388 (2003) 279

[hep-th/0306138] [INSPIRE].

– 24 –

http://dx.doi.org/10.1007/s002200050764
http://arxiv.org/abs/hep-th/9902121
http://inspirehep.net/search?p=find+EPRINT+hep-th/9902121
http://dx.doi.org/10.1007/s002200100381
http://arxiv.org/abs/hep-th/0002230
http://inspirehep.net/search?p=find+EPRINT+hep-th/0002230
http://dx.doi.org/10.1103/PhysRevD.47.3275
http://inspirehep.net/search?p=find+J+Phys.Rev.,D47,3275
http://dx.doi.org/10.1103/PhysRevD.60.046002
http://arxiv.org/abs/hep-th/9903203
http://inspirehep.net/search?p=find+EPRINT+hep-th/9903203
http://dx.doi.org/10.1103/PhysRevD.47.1407
http://arxiv.org/abs/gr-qc/9209012
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9209012
http://arxiv.org/abs/gr-qc/0010024
http://inspirehep.net/search?p=find+EPRINT+gr-qc/0010024
http://dx.doi.org/10.1016/0550-3213(93)90005-A
http://arxiv.org/abs/hep-th/9302068
http://inspirehep.net/search?p=find+EPRINT+hep-th/9302068
http://dx.doi.org/10.1007/BF01211590
http://inspirehep.net/search?p=find+J+Comm.Math.Phys.,104,207
http://inspirehep.net/search?p=find+J+JETPLett.,43,730
http://dx.doi.org/10.1007/JHEP06(2011)102
http://arxiv.org/abs/1103.1181
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.1181
http://dx.doi.org/10.1007/JHEP10(2011)038
http://arxiv.org/abs/1105.4598
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.4598
http://arxiv.org/abs/1202.5650
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.5650
http://dx.doi.org/10.1016/0370-2693(88)90054-8
http://inspirehep.net/search?p=find+J+Phys.Lett.,B215,749
http://arxiv.org/abs/hep-th/9904017
http://inspirehep.net/search?p=find+J+Adv.Theor.Math.Phys.,3,363
http://dx.doi.org/10.1007/JHEP01(2011)125
http://arxiv.org/abs/1011.5819
http://inspirehep.net/search?p=find+J+JHEP,1101,125
http://dx.doi.org/10.1007/JHEP12(2011)099
http://arxiv.org/abs/1107.3987
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.3987
http://arxiv.org/abs/hep-th/9504029
http://inspirehep.net/search?p=find+EPRINT+hep-th/9504029
http://arxiv.org/abs/hep-th/0306138
http://inspirehep.net/search?p=find+EPRINT+hep-th/0306138

	Introduction
	AdS/BCFT formulation and energy momentum tensor
	Neumann boundary condition
	Simple examples
	Codimension two boundary term
	Holographic boundary energy momentum tensor

	AdS(3)/BCFT(2) with arbitrary boundaries and conformal anomaly
	Einstein equation
	Boundary condition
	Partition function
	Analysis of boundary energy momentum tensor
	Analysis in higher dimensions

	AdS(4)/BCFT(3) with arbitrary boundaries
	Construction of perturbative solutions
	Analysis of explicit solutions
	Relation to Fefferman-Graham coordinate

	Towards higher dimensional g-theorems
	Perturbative confirmation
	An explicit example: massless scalar fields in BCFT(3)

	Conclusions and discussions
	Gibbons-Hawking term at non-smooth boundary

