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1 Introduction

The standard procedure to extract the pion-nucleon σ term σπN , the nucleon form factor

σ(t) of the scalar current m̂(ūu + d̄d) at vanishing momentum transfer t = 0 (here m̂ =

(mu + md)/2 denotes the average mass of the light quarks), from πN scattering data

involves the venerable low-energy theorem that relates the Born-term-subtracted isoscalar

πN scattering amplitude at the Cheng-Dashen point to σ(2M2
π) [2, 3]. Later on, it was

shown that the corrections to this low-energy theorem are very small, in particular they are

free of chiral logarithms at full one-loop order in chiral perturbation theory (ChPT) [4, 5].

The extraction of σπN itself thus requires knowledge of the difference

∆σ = σ(2M2
π)− σπN , (1.1)

which can be determined by means of a dispersive representation of σ(t) [6]. The leading

contribution to the imaginary part originates from ππ intermediate states, so that, upon

neglecting higher terms in the spectral function, Imσ(t) can be expressed in terms of the
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scalar pion form factor FSπ (t) and the ππ → N̄N S-wave f0+(t). Relying on the results

of [7] for FSπ (t) and of [8] for f0+(t) led to the estimate [6]

∆σ = (15.2± 0.4)MeV , (1.2)

where the error only includes the uncertainty in the parameterization of the ππ phase

available at that time. In particular, one should note that the contributions from K̄K

intermediate states in the determination of f0+(t) and the unitarity relation for σ(t) were

neglected, while being included in the calculation of FSπ (t). Although the dominant effect

may indeed be expected in the pion form factor, such a treatment is strictly speaking

inconsistent and leads to an additional uncertainty in (1.2) that is difficult to quantify.

Moreover, the result for f0+(t) from [8] corresponds to particular values of πN subthreshold

parameters and the πN coupling constant. Especially the value g2/4π = 14.28 used for

the coupling constant cannot be reconciled with more recent determinations [9–12].

In this article we perform an updated dispersive analysis of the scalar form factor of the

nucleon. Based on Roy-Steiner (RS) equations for pion-nucleon scattering [1], we determine

the ππ → N̄N and K̄K → N̄N S-waves as solutions of a two-channel Muskhelishvili-

Omnès (MO) problem and repeat the calculation of the scalar pion and kaon form factors

for our input of ππ and ππ → K̄K partial waves. Taking everything together, we then

analyze the spectral function of the scalar form factor of the nucleon fully including the

effects from K̄K intermediate states, and provide an updated value for ∆σ as a function

of πN subthreshold parameters and the πN coupling constant.

The paper is organized as follows. In section 2 we consider a generic two-channel MO

problem with finite matching point and develop a method to construct the corresponding

Omnès matrix, which we apply to the coupled system of ππ → N̄N and K̄K → N̄N

S-waves in section 3. In section 4 we first present our results for the scalar pion and kaon

form factors, which are then used as input for the dispersive analysis of the scalar form

factor of the nucleon. We offer our conclusions in section 5. Several technical details of the

calculation are relegated to the appendices.

2 Two-channel Muskhelishvili-Omnès problem

We consider the generic coupled-channel integral equation

f(t) = ∆(t) +
1

π

tm
∫

tπ

dt′
T ∗(t′)Σ(t′)f(t′)

t′ − t
+

1

π

∞
∫

tm

dt′
Im f(t′)
t′ − t

, (2.1)

where bold-faced quantities are two-dimensional vectors in channel space, representing pion

and kaon intermediate states,1 and the imaginary part of f(t) is assumed to be known above

the matching point tm. In particular, f1(t) and f2(t) can be thought of as the ππ → N̄N

and K̄K → N̄N S-waves, respectively, although the following discussion can be carried

1Throughout this work, we neglect 4π intermediate states, which are phenomenologically irrelevant at

low energies. In fact, the effective onset of 4π inelasticities marks the breakdown of the present two-channel

model, cf. section 3.
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out for general angular momentum J . The function ∆(t) contains at most left-hand cuts

and is therefore real for t ≥ tπ = 4M2
π . The unitarity relation is written in the form

Im f(t) = T ∗(t)Σ(t)f(t) , (2.2)

with T -matrix T (t) and phase-space factor Σ(t) parameterized as2

T (t) =





η(t)e2iδ(t)−1

2iσπt q
2J
t

|g(t)|eiψ(t)

|g(t)|eiψ(t) η(t)e2i(ψ(t)−δ(t))−1

2iσKt k
2J
t



 , Σ(t) = diag
(

σπt q
2J
t θ
(

t− tπ
)

, σKt k
2J
t θ
(

t− tK
)

)

,

(2.3)

with pion, kaon, and — for later use — nucleon t-channel momenta

qt =

√

t

4
−M2

π =

√
t

2
σπt , kt =

√

t

4
−M2

K =

√
t

2
σKt , pt =

√

t

4
−m2 =

√
t

2
σNt , (2.4)

and the two-kaon threshold tK = 4M2
K . The scattering phases δ(t) and ψ(t) are required

as input for tπ ≤ t ≤ tm, where Watson’s theorem [14] demands ψ(t) = δ(t) for t ≤ tK .

Moreover, the modulus of the ππ → K̄K S-wave g(t) is needed in the full range tπ ≤ t ≤ tm,

and thus has to be analytically continued into the pseudophysical region tπ ≤ t ≤ tK .

Finally, the inleasticity parameter η(t) can be related to |g(t)| via

η(t) =
√

1− 4σπt σ
K
t (qtkt)2J |g(t)|2θ

(

t− tK
)

, (2.5)

and the relation between S- and T -matrix reads

S(t) = 1+ 2iΣ1/2(t)T (t)Σ1/2(t) . (2.6)

2.1 Formal solution

We define the Omnès matrix Ω(t) by

{

ImΩ(t) = T ∗(t)Σ(t)Ω(t)
ImΩ(t) = 0

}

for

{

tπ ≤ t ≤ tm
otherwise

}

(2.7)

and choose the normalization Ω(0) = 1. Writing

F(t) = f(t)−∆(t) = Ω(t)G(t) , (2.8)

it follows that for t ≥ tπ

(

1− 2i T ∗(t)Σ(t)
)

Ω(t+)
(

G(t+)−G(t−)
)

= 2i T ∗(t)Σ(t)∆(t) , (2.9)

where t± = t± iǫ and the physical limit is given by t+. Using unitarity in the form

(

1− 2i T ∗(t)Σ(t)
)−1

= 1+ 2i T (t)Σ(t) , (2.10)

2The masses of nucleon, pion, and kaon are denoted by m, Mπ, and MK , respectively, and defined by

the charged-particle masses as given in [13].
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which in particular holds for t ≤ tK by virtue of Watson’s theorem, we find

G(t+)−G(t−) = 2iΩ−1(t)T (t)Σ(t)∆(t) , (2.11)

and thus

f(t) = ∆(t) +
Ω(t)

π

tm
∫

tπ

dt′
Ω−1(t′)T (t′)Σ(t′)∆(t′)

t′ − t
+

Ω(t)

π

∞
∫

tm

dt′
Ω−1(t′)Im f(t′)

t′ − t

= ∆(t)− Ω(t)

π

tm
∫

tπ

dt′
ImΩ−1(t′)∆(t′)

t′ − t
+

Ω(t)

π

∞
∫

tm

dt′
Ω−1(t′)Im f(t′)

t′ − t
. (2.12)

The problem is such reduced to finding a matrix Ω(t) that fulfills (2.7). For tπ ≤ t ≤ tK
we have

Ω(t+) =
(

1+ 2i T (t)Σ(t)
)

Ω(t−) . (2.13)

Taking the determinant on both sides yields, again using Watson’s theorem for t ≤ tK ,

detΩ(t+) = e2iψ(t) detΩ(t−) , (2.14)

and thus [15]

detΩ(t) = exp

{

t

π

tm
∫

tπ

dt′
ψ(t′)

t′(t′ − t)

}

. (2.15)

Although the determinant allows for an analytic solution in the same way as in the single-

channel case [16], there is in general no analytic solution for the Omnès matrix itself even

for an infinite matching point, which therefore has to be calculated numerically, either by

an iterative procedure [7] or a discretization method, i.e. solving a matrix equation [15, 17]

(for a mathematician’s point of view see [18]). Similarly to the single-channel case, we

expect a cusp at tm, which has to be taken into account in the numerical evaluation of the

integrals in (2.12) (see [1, 19]). Indeed, for t→ tm the determinant behaves as

detΩ(t) ∼ |tm − t|x , x =
ψ(tm)

π
. (2.16)

Accordingly, we write for t→ tm from below

detΩ(t) = det Ω̄(tm)e
iπx|tm − t|x , Ωij(t) = Ω̄ij(tm)e

iδij(tm)|tm − t|xij , (2.17)

and from above

detΩ(t) = det Ω̄(tm)|tm − t|x , Ωij(t) = Ω̄ij(tm)|tm − t|xij , (2.18)

since Ω(t) is real above tm. Here, we have assumed that the (real) functions Ω̄ij(t) are

continuous at tm. The strength of the cusp in each component Ωij(t) of the Omnès matrix

is determined by the numbers xij , whose relation to the S-matrix parameters will be

established in the following sections. Throughout this paper we will consider the case

0 < xij < 1, which is relevant for the coupled-channel S-wave system of ππ and K̄K

intermediate states. The extension to arbitrary values of xij can then be done along the

lines described in [19, 20].
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2.2 Dispersive representation of the Omnès matrix

For 0 < xij < 1 we may write down a dispersive representation

Ω(t) =

(

1− t

tm

)

1+
t(t− tm)

π

tm
∫

tπ

dt′
T ∗(t′)Σ(t′)Ω(t′)
t′(t′ − tm)(t′ − t)

, (2.19)

where the subtraction constants have been fixed in such a way that Ω(0) = 1 and Ω(tm) = 0.

In particular, we can investigate the limit t → tm to obtain information on xij . Using

the asymptotic form of the integrals [19] (the dash denotes the principal-value part of

the integral)

|tm − t|x
π

−
tm
∫

tm−ǫ

dt′

(t′ − t)|tm − t′|x
ǫ→0, t→tm−→ 1

π
−
∞
∫

0

dv

vx(1− v)
= − cotπx ,

|tm − t|x
π

tm+ǫ
∫

tm

dt′

(t′ − t)|tm − t′|x
ǫ→0, t→tm−→ 1

π

∞
∫

0

dv

vx(1 + v)
=

1

sinπx
, (2.20)

we obtain for t→ tm from below3

Ω̄11|tm − t|x11eiδ11 = Ω̄11|tm − t|x11eiδ11 eiπx11

sinπx11

1− ηe−2iδ

2i

+ Ω̄21|tm − t|x21eiδ21 eiπx21

sinπx21
|g|σKtme

−iψ ,

Ω̄12|tm − t|x12eiδ12 = Ω̄12|tm − t|x12eiδ12 eiπx12

sinπx12

1− ηe−2iδ

2i

+ Ω̄22|tm − t|x22eiδ22 eiπx22

sinπx22
|g|σKtme

−iψ ,

Ω̄21|tm − t|x21eiδ21 = Ω̄11|tm − t|x11eiδ11 eiπx11

sinπx11
|g|σπtme

−iψ

+ Ω̄21|tm − t|x21eiδ21 eiπx21

sinπx21

1− ηe−2i(ψ−δ)

2i
,

Ω̄22|tm − t|x22eiδ22 = Ω̄12|tm − t|x12eiδ12 eiπx12

sinπx12
|g|σπtme

−iψ

+ Ω̄22|tm − t|x22eiδ22 eiπx22

sinπx22

1− ηe−2i(ψ−δ)

2i
, (2.21)

and for t→ tm from above

Ω̄11|tm − t|x11 = Ω̄11|tm − t|x11 eiδ11

sinπx11

1− ηe−2iδ

2i
+ Ω̄21|tm − t|x21 eiδ21

sinπx21
|g|σKtme

−iψ ,

Ω̄12|tm − t|x12 = Ω̄12|tm − t|x12 eiδ12

sinπx12

1− ηe−2iδ

2i
+ Ω̄22|tm − t|x22 eiδ22

sinπx22
|g|σKtme

−iψ ,

3We consider the case J = 0 for simplicity. The general case can always be recovered by introducing the

correct phase-space factors according to σπt → σπt q
2J
t and σKt → σKt k2J

t .
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Ω̄21|tm − t|x21 = Ω̄11|tm − t|x11 eiδ11

sinπx11
|g|σπtme

−iψ + Ω̄21|tm − t|x21 eiδ21

sinπx21

1− ηe−2i(ψ−δ)

2i
,

Ω̄22|tm − t|x22 = Ω̄12|tm − t|x12 eiδ12

sinπx12
|g|σπtme

−iψ + Ω̄22|tm − t|x22 eiδ22

sinπx22

1− ηe−2i(ψ−δ)

2i
,

(2.22)

where we have suppressed the evaluation at tm wherever possible. If we assume that

g(tm) 6= 0 and Ω̄ij(tm) 6= 0 (which can always be achieved by choosing the matching point

appropriately), we can conclude from the first line of (2.21) that x21 ≥ x11, since otherwise

g or Ω̄21 would have to vanish at tm. Conversely, the third line requires x21 ≤ x11 by

the same argument, and hence x11 = x21. Similarly, we find x12 = x22. Moreover, as

the determinant behaves according to (2.16), we can conclude that x11 + x12 = x, again

provided that det Ω̄(tm) 6= 0. Dividing the first line of (2.21) by the first line of (2.22),

we find

eiδ11
(

1− eiπx11

sinπx11

1− ηe−2iδ

2i

)

= eiπx21
(

1− eiδ11

sinπx11

1− ηe−2iδ

2i

)

, (2.23)

which for x21 = x11 reduces to

eiδ11 = eiπx11 , (2.24)

and thus πx11 = δ11 up to integer multiples of 2π. Arguing analogously for x12, these

results can be summarized as

x11 = x21 , x12 = x22 , xij =
δij
π
, x11 + x12 = x . (2.25)

By virtue of (2.25), (2.21) and (2.22) take the form





eiπx11
sinπx11

1−ηe−2iδ

2i − 1 eiπx11
sinπx11

|g|σKtme−iψ
eiπx11
sinπx11

|g|σπtme−iψ eiπx11
sinπx11

1−ηe−2i(ψ−δ)

2i − 1









Ω̄11

Ω̄21



 = 0 ,





eiπx12
sinπx12

1−ηe−2iδ

2i − 1 eiπx12
sinπx12

|g|σKtme−iψ
eiπx12
sinπx12

|g|σπtme−iψ eiπx12
sinπx12

1−ηe−2i(ψ−δ)

2i − 1









Ω̄12

Ω̄22



 = 0 . (2.26)

To ensure the existence of non-trivial solutions the determinants of the coefficient matrices

must vanish. This leads to

cosπ(2x11−x)−η cosπ(2y−x) = 0 , cosπ(2x12−x)−η cosπ(2y−x) = 0 , y =
δ(tm)

π
.

(2.27)

These conditions are invariant under x11 → x− x11, i.e. there is an ambiguity between x11
and x12. However, demanding that x11 coincide with x in the single-channel limit yields

x11 =
1

2

{

x+
1

π
arccos(η cosπ(2y−x))

}

, x12 =
1

2

{

x− 1

π
arccos(η cosπ(2y−x))

}

. (2.28)
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Finally, (2.26) together with (2.28) and

sinπx11 = sin
πx

2

√

1+z

2
+ cos

πx

2

√

1−z
2

, cosπx11 = cos
πx

2

√

1+z

2
− sin

πx

2

√

1−z
2

,

sinπx12 = sin
πx

2

√

1+z

2
− cos

πx

2

√

1−z
2

, cosπx12 = cos
πx

2

√

1+z

2
+ sin

πx

2

√

1−z
2

,

z = η cosπ(2y − x) , (2.29)

can be used to derive constraints on Ω̄ij . We find

Ω̄21

Ω̄11
=

N

2|g|σKtm
,

Ω̄12

Ω̄22
= − N

2|g|σπtm
, N=

√

1−η2 cos2 π(2y − x)− η sinπ(2y−x) . (2.30)

In the single-channel case one can show that, using the integrals (2.20), the solution for

f(t) is automatically continuous at tm [19]. In fact, the same statement holds true also

in the two-channel case. The relations (2.30) are essential in the proof, as demonstrated

in appendix A.

2.3 Construction of the Omnès matrix

2.3.1 Infinite matching point

Our construction of the two-channel Omnès matrix with finite matching point will heavily

rely on the solution for its infinite-matching-point analog Ω∞(t), whose defining property

can be stated as
{

ImΩ∞(t) = T ∗(t)Σ(t)Ω∞(t)

ImΩ∞(t) = 0

}

for

{

t ≥ tπ
otherwise

}

. (2.31)

For its calculation we follow [15] and discretize the unsubtracted dispersion relation

ReΩ∞(t) =
1

π
−
∞
∫

tπ

dt′
ImΩ∞(t′)
t′ − t

(2.32)

on a set of Gauß-Legendre integration points. Note that an unsubtracted dispersion relation

converges provided that the phase-shift at infinity is positive. In the one-channel case this

can be directly deduced from the explicit solution

Ω∞(t) = exp

{

t

π

∞
∫

tπ

dt′
δ(t′)

t′(t′ − t)

}

, (2.33)

which behaves as

Ω∞(t) ∼ t−
δ(∞)
π (2.34)

for large t. The unitarity condition (2.31) can be rewritten as

ImΩ∞
i =





η sin(2δ−ψ)+sinψ
η cos(2δ−ψ)+cosψ

2|g|σKt θ(t−tK)
η cos(2δ−ψ)+cosψ

2|g|σπt
η cos(2δ−ψ)+cosψ − η sin(2δ−ψ)−sinψ

η cos(2δ−ψ)+cosψ



ReΩ∞
i , i ∈ {1, 2} , (2.35)

– 7 –
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with

Ω∞
1 =

(

Ω∞
11

Ω∞
21

)

, Ω∞
2 =

(

Ω∞
12

Ω∞
22

)

, (2.36)

which below the two-kaon threshold reduces to

ImΩ∞
i =

(

tan δ 0
|g|σπt
cos δ 0

)

ReΩ∞
i . (2.37)

The details of the numerical solution of the corresponding integral equation for ReΩ∞
i are

described in [15, 17].

2.3.2 Finite matching point, single-channel case

An Omnès function with a finite matching point does not allow for an unsubtracted dis-

persion relation, since the solution (2.15) tends to a constant for t→ ∞, and consequently

one picks up contributions at infinity. Moreover, the cusp at the matching point renders

both the discretization method and an iterative procedure involving subtracted dispersion

relations inappropriate, as neither is able to accurately reproduce the analytic behavior

around tm. For this reason, the aim of this section is to establish a method that relies on

the known solution in the infinite-matching-point scenario.

We first observe that the function

ξ(t) =

(

tm − t

tm

)x(t)

=

∣

∣

∣

∣

tm − t

tm

∣

∣

∣

∣

x(t)

e−iπx(t)θ(t−tm) (2.38)

has the correct properties to cancel an imaginary part above tm. Indeed, the function

Ω(t) = Ω∞(t)ξ(t) , (2.39)

with Ω∞(t) from (2.33), fulfills
{

ImΩ(t) = T ∗(t)Σ(t)Ω(t)

ImΩ(t) = Ω∞(t)|ξ(t)|
(

ei(πx(t)−δ(t)) sin δ(t)− sinπx(t)
)

}

for

{

tπ ≤ t ≤ tm
t ≥ tm

}

, (2.40)

and with the choice
{

x(t) = δ(tm)
π

x(t) = δ(t)
π

}

for

{

t ≤ tm
t ≥ tm

}

(2.41)

the defining property (2.7) holds. Since we know the analytic solution, we can study the

properties of this construction in more detail

Ω(t) = exp

{

t

π

tm
∫

tπ

dt′
δ(t′)

t′(t′ − t)

}

exp

{

t

π

∞
∫

tm

dt′
δ(t′)− πx(t)

t′(t′ − t)

}

. (2.42)

The first term coincides with the expected result for the single-channel case, while the

second factor is new. It is indeed real, and thus preserves all defining properties, in partic-

ular the normalization Ω(0) = 1. This example shows that we would exactly recover the

result (2.15) if we did not know the solution for a finite matching point, constructed it ac-

cording to (2.39), and chose δ(t) = δ(tm) for t above the matching point. Obviously, (2.42)

implies that “the” Omnès function is not unique. The derivation of (2.12), however, only

relies on the defining properties and is therefore independent of such modifications.
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2.3.3 Finite matching point, two-channel case

To generalize the preceding considerations to the two-channel case we define a matrix

ξij(t) = ξ̄ij(t)

(

tm − t

tm

)xij(t)

(2.43)

with real functions ξ̄ij(t). In view of the results of the previous section we take phases and

inelasticities constant above tm and thus can ignore the t-dependence of xij and ξ̄ij , which

in the following will always be understood to be evaluated at tm. It is straightforward to

show that
{

Ω(t) = a(t)Ω∞(t)ξ(t)

Ω(t) = a(t)(Ω∞)T (t)ξ(t)

}

for

{

t ≤ tm
t ≥ tm

}

, (2.44)

with infinite-matching-point solution Ω∞(t) and a real matrix a(t), fulfills (2.7) pro-

vided that

Im ξT (t) + ξT (t)T (t)Σ(t) = 0 for t ≥ tm ,
[

a(t), T ∗(t)Σ(t)
]

= 0 for t ≤ tm . (2.45)

Imposing x11 = x21 = x− x12 = x− x22, the first condition corresponds to





eiπx11
sinπx11

1−ηe−2iδ

2i − 1 eiπx11
sinπx11

|g|σπtme−iψ
eiπx11
sinπx11

|g|σKtme−iψ eiπx11
sinπx11

1−ηe−2i(ψ−δ)

2i − 1









ξ̄11

ξ̄21



 = 0 ,





eiπx12
sinπx12

1−ηe−2iδ

2i − 1 eiπx12
sinπx12

|g|σπtme−iψ
eiπx12
sinπx12

|g|σKtme−iψ eiπx12
sinπx12

1−ηe−2i(ψ−δ)

2i − 1









ξ̄12

ξ̄22



 = 0 . (2.46)

Non-trivial solutions of (2.46) again exist for x11 and x12 given by (2.28), while the com-

ponents of ξ(t) are related by

ξ̄21
ξ̄11

=
N

2|g|σπtm
,

ξ̄12
ξ̄22

= − N

2|g|σKtm
. (2.47)

For definiteness, we take

ξ̄11 = 1 , ξ̄22 =

(

1 +
N2

1− η2

)−1

, (2.48)

which ensures that

det ξ(t) =

(

tm − t

tm

)x

, (2.49)

and thus, by the results of the previous section, would preserve the form (2.15) of the

determinant of the Omnès function if det a(t) = 1. The condition (2.45) on a(t) requires

a21 = a12
σπt
σKt

, a22 = a11 − a12
η sin(2δ − ψ)

|g|σKt
, (2.50)

while a11 and a12 can be chosen freely.
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Finally, Ω(t) should fulfill the normalization Ω(0) = 1, which can be achieved by

modifying the normalization in the calculation of Ω∞(t) appropriately. Assuming a(0) = 1,

the corresponding condition

Ω∞(0)ξ(0) =





ξ̄11
(

Ω∞
11(0) +

N
2|g|σπtm

Ω∞
12(0)

)

ξ̄22
(

Ω∞
12(0)− N

2|g|σKtm
Ω∞
11(0)

)

ξ̄11
(

Ω∞
21(0) +

N
2|g|σπtm

Ω∞
22(0)

)

ξ̄22
(

Ω∞
22(0)− N

2|g|σKtm
Ω∞
21(0)

)



 = 1 (2.51)

leads to

Ω∞(0) =

(

1 +
N2

1− η2

)−1
(

ξ̄−1
11 ξ̄−1

11
N

2|g|σKtm
−ξ̄−1

22
N

2|g|σπtm
ξ̄−1
22

)

. (2.52)

The above construction (2.44) ensures that Ωij(t) has the expected behavior for t → tm,

that the factors of (1 − t/tm)
xij factorize in (2.46) (which have therefore already been

canceled there), and that det Ω̄(t) is continuous at tm. However, in general, Ω̄ij(t) itself

will not be continuous at tm and the condition (2.30) will be violated.

In order to remove these shortcomings we make use of the freedom in choosing a(t).

In fact, a particular choice of a(t) can enforce continuity of either Ω̄1(t) or Ω̄2(t), but not

of both simultaneously. This impediment can be circumvented by noting that (2.44) may

be regarded as separate equations for Ω̄1(t) and Ω̄2(t). We can thus derive an Ω̄
(1)
1 (t) from

a construction with an a1(t) tailored for this component (discarding Ω̄
(1)
2 (t) in this case),

Ω̄
(2)
2 (t) from a different a2(t) (discarding Ω̄

(2)
1 (t)), and finally join these two vectors into

the final Omnès matrix Ω(t) =
{

Ω̄
(1)
1 (t), Ω̄

(2)
2 (t)

}

.

Below the two-kaon threshold we take a1(t) = a2(t) = 1, while for t ≥ tK

a1(t) =





1 N(t)
2|g(t)|σπt

f(t)
N(t)

2|g(t)|σKt
f(t) 1− f(t) + N2(t)

1−η2(t)f(t)



 ,

a2(t) =





1 −2|g(t)|σKt
N(t) f(t)

−2|g(t)|σπt
N(t) f(t) 1− f(t) + 1−η2(t)

N2(t)
f(t)



 , (2.53)

with

N(t) =
√

1− η(t)2 cos2(2δ(t)− ψ(t))− η(t) sin(2δ(t)− ψ(t)) , (2.54)

cf. (2.30), and a function f(t) fulfilling f(tK) = 0, f(tm) = 1, proves adequate. This

construction makes sure that Ω̄ij(t) is continuous at tm and that the relations (2.30) hold.

As we have seen in the previous section, the Omnès function is not unique, and therefore

there is a priori no reason why the determinant of the resulting Ω(t) should match the

single-channel expectation: we can always multiply Ω̄i(t) with a real function g(t) with

g(0) = 1 without vitiating the above construction. Since the unitarity condition in its form

analogous to (2.35) alone implies that

detΩ =
2eiψ

η cos(2δ − ψ) + cosψ

(

ReΩ11ReΩ22 − ReΩ12ReΩ21

)

, (2.55)
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and thus ensures the correct phase, this could be used to make the modulus of the deter-

minant coincide with (2.15). We simply take

f(t) =

(

t− tK
tm − tK

)6

. (2.56)

This choice of the exponent ensures that f(t) decreases rapidly below tm, but not so fast as

to cause numerical problems in the matching-point region. In this way, the single-channel

result for the determinant is accurately reproduced except for the energy region close to tm.

3 Application to pion-nucleon and kaon-nucleon scattering

The ππ → N̄N and K̄K → N̄N S-waves f0+(t) and h
0
+(t), respectively, fulfill the unitarity

relations (cf. [1] and appendix B)

Im f0+(t) = σπt
(

t00(t)
)∗
f0+(t) θ

(

t− tπ
)

+
2√
3
σKt
(

g00(t)
)∗
h0+(t) θ

(

t− tK
)

,

Imh0+(t) = σKt
(

r00(t)
)∗
h0+(t) θ

(

t− tK
)

+

√
3

2
σπt
(

g00(t)
)∗
f0+(t) θ

(

t− tπ
)

, (3.1)

where t00, g
0
0, and r

0
0 denote the ππ, ππ → K̄K, and K̄K S-waves with t-channel isospin

It = 0. Since by virtue of unitarity in the ππ/K̄K system we may identify

t00(t) =
η(t)e2iδ(t) − 1

2iσπt
, g00(t) = |g(t)|eiψ(t) , r00(t) =

η(t)e2i(ψ(t)−δ(t)) − 1

2iσKt
, (3.2)

the unitarity relation (3.1) reduces to

Im f(t) = T ∗(t)Σ(t)f(t) , f(t) =

(

f0+(t)
2√
3
h0+(t)

)

, (3.3)

and with RS equations providing a dispersion relation of the form

f(t) = ∆(t) + (a+ bt)(t− tN ) +
t2(t− tN )

π

∞
∫

tπ

dt′
Im f(t′)

t′2(t′ − tN )(t′ − t)
, (3.4)

where tN = 4m2, the discussion in section 2 applies. We consider here only the twice-

subtracted version of the RS equations for πN scattering derived in [1]. The corresponding

inhomogeneity for the πN system reads

∆1(t) = ∆̃0
+(t) = N̂0

+(t) + ∆̄0
+(t) , (3.5)

∆̄0
+(t) =

1

π

∞
∫

W+

dW ′
∞
∑

l=0

{

G̃0l

∣

∣

2-sub
(t,W ′) Im f+l+(W

′) + G̃0l

∣

∣

2-sub
(t,−W ′) Im f+(l+1)−(W

′)
}

.

Here, N̂0
+(t) denotes the nucleon pole term, f Il±(W ) the s-channel partial waves with total

angular momentum j = |l ± 1/2| and isospin index I = ±, and W+ = m+Mπ. Moreover,
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we have already neglected the contributions from higher t-channel partial waves, which

were shown to be insignificant in [1]. In fact, the corresponding equation for ∆2(t) is very

similar, as long as we restrict ourselves to combinations of isospin and angular momentum

that couple to ππ (cf. appendix B): the nucleon pole terms need to be replaced by the

hyperon-pole contributions (B.10), Mπ by MK , and the Clebsch-Gordan coefficients in

the relation between the s-channel amplitudes in I = ± and Is = 0, 1 bases are different

from πN (where Is = 1/2, 3/2). In particular, the kernel functions G̃0l(t,W ) require no

further modification besides Mπ → MK . Finally, the subtraction constants a1 and b1 can

be related to standard πN subthreshold parameters

a1 = − 1

16π

(

g2

m
+ d+00 + b+00

M2
π

3

)

, b1 = − 1

16π

(

d+01 −
b+00
12

)

(3.6)

(see [1] for precise definitions), and similarly for a2, b2, and KN subthreshold parameters.

Starting from the dispersion relation (3.4), the solution for f(t) can be derived along

the lines that led to (2.12). In addition, we may use the spectral representation of the

inverse of the Omnès matrix

Ω−1(t) = 1+
t

π

tm
∫

tπ

dt′
ImΩ−1(t′)
t′(t′ − t)

= 1− t Ω̇(0) +
t2

π

tm
∫

tπ

dt′
ImΩ−1(t′)
t′2(t′ − t)

(3.7)

to perform the integrals involving a and b explicitly (Ω̇ denotes the derivative with respect

to t). In this way, we arrive at

f(t) = ∆(t) + (t− tN )Ω(t)(1− t Ω̇(0))a+ t(t− tN )Ω(t)b (3.8)

− t2(t− tN )

π
Ω(t)

tm
∫

tπ

dt′
ImΩ−1(t′)∆(t′)
t′2(t′ − tN )(t′ − t)

+
t2(t− tN )

π
Ω(t)

∞
∫

tm

dt′
Ω−1(t′)Im f(t′)

t′2(t′ − tN )(t′ − t)
.

To obtain the corresponding numerical results for f0+(t) and h0+(t) we now collect

the various input needed for the explicit evaluation of (3.8). We take the ππ phase and

inelasticity from the extended Roy-equation analysis of [21, 22] and the ππ → K̄K partial

wave from [19], where, in the pseudophysical region tπ ≤ t ≤ tK , the modulus |g(t)|
was determined as the solution of RS equations for πK scattering, while above the two-

kaon threshold phase-shift solutions [23, 24] were used.4 The two-channel approximation

in terms of ππ and K̄K intermediate states should work well at lower energies where

the f0(980) resonance dominates, but will break down once inelasticities arising from 4π

intermediate states become important, which are expected to set in around
√
t0 = 1.3GeV.

Evidently, this still leaves a large part of the ππ → N̄N pseudophysical region tπ ≤ t ≤ tN
where intermediate states besides those considered here may contribute significantly to

the spectral function. However, two subtractions should already appreciably suppress the

sensitivity to this high-energy regime, which we will examine in more detail below.

4We are indebted to Bachir Moussallam for providing a version of the solution for g(t) consistent with

the ππ phase shift of [21, 22].
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In view of the remaining uncertainties in the pseudophysical region we refrain from

including information on f0+(t) even above tN from a phase-shift solution [25], but just

put Im f = 0 above tm. Due to continuity of the MO solution at tm this implies that the

solutions for f0+(t) and h0+(t) will vanish at tm as well (unless the phases happen to pass

an integer multiple of π at tm). We take advantage of the fact that for kinematic reasons

f0+(t) and h0+(t) have a zero at the physical threshold tN and choose the matching point

accordingly as tm = tN , which should allow for a reasonably smooth matching.

Next, to evaluate the inhomogeneities ∆i(t) we need the imaginary parts for the s-

channel partial waves of πN and KN scattering. As discussed in [1], we rely on the GWU

solution [26, 27] for W ≤ Wa = 2.5GeV in the πN case, summing up all partial waves up

to lmax = 4, and on the Regge model [28] for W > Wa. Similarly, ∆2 is evaluated based

on [27, 29], integrating the partial waves with l ≤ 4 up to 2GeV.

In the remainder of the paper we will consider three variants of the input described

above. First, we take δ and ψ to be constant above t0 (“RS1”), second, we guide δ and ψ

smoothly to 2π above t0 by means of [15]

δ(t) = 2π + (δ(t0)− 2π)f̂
( t

t0

)

, f̂(x) =
2

1 + x3/2
, (3.9)

keeping the phase constant above tm (“RS2”), and third, we modify RS1 in such a way that

∆2 = 0 (“RS3”). In all three cases, |g(t)| is led smoothly to zero above tm by a prescription

similar to (3.9). The choice of these variants is motivated as follows. As indicated above,

the model for the ππ/K̄K S-matrix is only meaningful roughly up to t0, and ideally our

results should be insensitive to variations of this input above t0, the simplest choice of

course being to keep the phases constant. However, to ensure the correct asymptotic

behavior for the scalar meson form factors, the phase ψ must tend to an asymptotic value

of 2π [15], which, phenomenologically, also suggests to guide δ to 2π. Thus, RS1 and

RS2 are convenient choices to assess the sensitivity to the high-energy input for the phase

shifts. The results for the Omnès matrix corresponding to these two scenarios are depicted

in figure 1. In addition, we compare the results for detΩ(t)/(1− t/tm)
x to the analytically

known results in figure 2. As expected, the only deviations occur in the proximity of tm,

where the modifications originating from f(t) according to (2.56) set in. Note that the

difference between RS1 and RS2 appears slightly exaggerated here, since x differing in

both cases leads to a different factor being divided out.

Finally, we use the reference point [8]

g2

4π
= 14.28 , d+00 = −1.46M−1

π , d+01 = 1.14M−3
π , b+00 = −3.54M−3

π , (3.10)

although we will display the dependence of ∆σ on each of these parameters explicitly in the

end. In contrast, we are not aware of reliable input for the KN subthreshold parameters,

and simply put a2 = b2 = 0. In fact, this approximation gives reason to investigate RS3,

since the results from the πN sector show that the contributions from the corresponding

parameters will certainly not be larger than the sum of KN Born terms (conventions for

masses and couplings of the hyperons are given in appendix B) and s-channel integrals.
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Figure 1. Results for real and imaginary part of the components of the Omnès matrix for the

input phases RS1 and RS2 as described in the main text.

Figure 2. Comparison between numerical and analytical result for the determinant of the Omnès

matrix.

The difference between RS1 and RS3 thus serves as an estimate of the uncertainty induced

by neglecting the KN subthreshold parameters.

The results for f0+(t) and h
0
+(t) are shown in figure 3. In the case of f0+(t) the agreement

between the different parameter sets is very good up to 1GeV. It is striking that the
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Figure 3. Results for real and imaginary part of f0+(t) and h0+(t). The solid, dashed, and dot-

dashed lines refer to the input RS1, RS2, and RS3 as described in the main text. For f0+(t) the

black crosses indicate the results of [8].

difference between RS1 and RS2 is much larger than between RS1 and RS3, which indicates

that the results are much more sensitive to the choice of the phases beyond t0 than to the

details of theKN amplitude. The real part of h0+(t) exhibits two distinct divergences below

1GeV that correspond to the pole-term contributions from the Λ (large peak at 0.82GeV)

and Σ (small peak at 0.73GeV) hyperon, strictly analogous to the nucleon pole in f0+(t)

that emerges slightly below tπ. These poles, which disappear in RS3 by construction, do

not pose a problem in practice, since h0+(t) only contributes to the spectral function of

the scalar form factor of the nucleon above tK . Apart from these poles below the two-

kaon threshold the conclusion is very similar to f0+(t): the uncertainty in the phase shifts

outweighs the uncertainty in the KN input.

4 Scalar form factors

4.1 Scalar pion and kaon form factors

We define the scalar pion and kaon form factors as

FSπ (t) = 〈π(p′)|m̂(ūu+ d̄d)|π(p)〉 , FSK(t) = 〈K(p′)|m̂(ūu+ d̄d)|K(p)〉 , t = (p′ − p)2 .

(4.1)
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In the two-channel approximation they fulfill the unitarity relation [7]

ImFS(t) = T ∗(t)Σ(t)FS(t) , FS(t) =

(

FSπ (t)
2√
3
FSK(t)

)

, (4.2)

and thus

FS(t) = αΩ∞
1 + βΩ∞

2 , (4.3)

with the infinite-matching-point Omnès solutions Ω∞
i defined in (2.36). The phases δ and

ψ are guided smoothly to their assumed asymptotic value of 2π according to (3.9). Using

the normalization Ω∞(0) = 1 of the Omnès matrix to pin down the coefficients α, β,

we find

FSπ (t) = FSπ (0)Ω
∞
11(t) +

2√
3
FSK(0)Ω

∞
12(t) ,

FSK(t) =

√
3

2
FSπ (0)Ω

∞
21(t) + FSK(0)Ω

∞
22(t) . (4.4)

The form factors at t = 0 can be determined via the Feynman-Hellmann theorem [30, 31]

FSπ (0) = m̂
∂

∂m̂
M2
π , FSK(0) = m̂

∂

∂m̂
M2
K , (4.5)

from the quark-mass dependence of the meson masses. For the pion form factor the result

at O(p4) in the chiral expansion reads [32]

FSπ (0) =M2
π − M4

π

32π2F 2
π

(l̄3 − 1) = (0.984± 0.006)M2
π , (4.6)

where we have used l̄3 = 3.2± 0.8 [33]. The leading-order result for the kaon form factor

FSK(0) =
M2
π

2
(4.7)

is subject to potentially large SU(3) corrections, which in the isospin limit amount to [34]

FSK(0) =
M2
π

2

{

1 +
M2
η

32π2F 2
π

log
M2
η

µ2
+

M2
K

72π2F 2
π

(

log
M2
η

µ2
+ 1

)

− M2
π

32π2F 2
π

log
M2
π

µ2

+
8(2M2

K −M2
π)

F 2
π

(

2Lr
8 − Lr

5

)

+
32M2

K

F 2
π

(

2Lr
6 − Lr

4

)

}

, (4.8)

where Mη is the mass of the η, Fπ the pion decay constant, and µ the renormalization

scale. Varying the low-energy constants in the range [33]

2Lr
8 − Lr

5 = (−0.35 . . .+ 0.1) · 10−3 , 2Lr
6 − Lr

4 = (0 . . .+ 0.2) · 10−3 , (4.9)

corresponds to FSK(0) = (0.4 . . . 0.6)M2
π . In the following, we will restrict FSK(0) to lie

within these boundaries, while adopting FSK(0) =M2
π/2 as our central solution.

The corresponding results for the form factors are depicted in figure 4. The phase of

FSπ coincides with δ below tK , as required by unitarity, cf. (2.37) and (4.4). Above tK ,
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Figure 4. Modulus (left) and phase (right) of the scalar pion and kaon form factors. The solid,

dashed, and dot-dashed lines refer to FS

K
(0) = M2

π/2, 0.4M
2
π , and 0.6M2

π . The phases of FS
π and

FS

K
are compared to δ and ψ, respectively, as indicated by the dotted lines.

the behavior of the phase actually depends on the assumption for FSK(0), it either largely

follows δ or abruptly drops by π. The appearance of the first scenario is surprising in

view of the results of [35] (see also [36]), where only the second behavior is mentioned (the

assumption for FSK(0) agrees with our central solution). The reason for this discrepancy

can be understood as follows. The S-matrix used in [35] involves a phase δ that fulfills

δ(tK) < π. In this case, the phase δt of the full ππ partial wave t00 itself displays the

characteristic drop above tK , reflecting the fact that the phase arrives at the two-kaon

threshold immediately before completing a full circle in the Argand diagram. However, in

recent years, it seems to have become consensus that δ(tK) > π is more likely [21, 22, 37, 38],

which implies that δt by no means exhibits a sharp drop above tK . We conclude that the

behavior of the phase cannot simply be deduced from the phase of t00, it crucially depends on

the relative strength FSπ (0)/F
S
K(0) in the superposition of the two terms involving different

components of the Omnès matrix as given in (4.4), thus attesting to the inherent two-

channel nature of the problem.5 From this point of view, it is not surprising that the phase

5One immediate consequence is that an effective single-channel Omnès description of FSπ in terms of the

phase of FSπ will only be applicable for certain ranges in FSπ (0)/F
S
K(0), unless the phase is supplemented

by hand with an additional term −πθ(t− tK).
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FSK(0) 0.4M2
π M2

π/2 0.6M2
π

〈r2〉Sπ [ fm2] 0.575 0.584 0.592

〈r2〉SK [ fm2] 0.835 0.710 0.626

Table 1. Dependence of the scalar pion and kaon radii on FS

K
(0).

may behave differently if FSK(0) is varied. In contrast, the phase of FSK(t) roughly follows

the shape of ψ for all three solutions. Note that in this case (2.37) does not impose any

additional constraints on the phase below tK .

Finally, we can express the scalar radii in terms of the form factors at t = 0 and the

derivative of the Omnès matrix

〈r2〉Sπ = 6

{

Ω̇∞
11(0) +

2√
3

FSK(0)

FSπ (0)
Ω̇∞
12(0)

}

,

〈r2〉SK = 6

{
√
3

2

FSπ (0)

FSK(0)
Ω̇∞
21(0) + Ω̇∞

22(0)

}

. (4.10)

In this way, the derivative of the Omnès matrix, e.g. for our central solution

Ω̇∞(0) =

(

2.31 0.32

1.26 0.89

)

GeV−2 , (4.11)

leads to the results for the scalar radii summarized in table 1. Our results for the scalar pion

radius are in good agreement with 〈r2〉Sπ = (0.61±0.04) fm2 from [39] and the range 〈r2〉Sπ =

(0.583 . . . 0.653) fm2 found in [15]. Albeit attached with a fairly large uncertainty, the values

for 〈r2〉SK lie systematically higher than its ChPT expectation 〈r2〉SK ∼ 0.3 fm2 [40] (for a de-

tailed comparison of the dispersive and the ChPT result as well as the role of O(p6) correc-

tions see [41]). In both approaches the uncertainties are substantial, either due to the large

sensitivity to the specific input in the dispersive calculation or due to insufficient knowl-

edge of low-energy constants and higher-order corrections. As the precise value of the scalar

kaon radius is irrelevant for the present study, we do not consider this issue any further.

4.2 Scalar form factor of the nucleon

The scalar form factor of the nucleon is defined as

σ(t) =
1

2m
〈N(p′)|m̂(ūu+ d̄d)|N(p)〉 , t = (p′ − p)2 . (4.12)

It fulfills the once-subtracted dispersion relation

σ(t) = σπN +
t

π

∞
∫

tπ

dt′
Imσ(t′)
t′(t′ − t)

, (4.13)

where the pion-nucleon σ term σπN = σ(0) acts as subtraction constant. In this way,

evaluation at t = 2M2
π gives access to ∆σ (as defined in (1.1)), provided that the imaginary
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Figure 5. Real and imaginary part of Imσ(t) for our full solution (top) and with h0+(t) set to

zero (bottom). The solid, dashed, and dot-dashed lines refer to the input RS1, RS2, and RS3 as

described in section 3.

part is sufficiently well constrained to perform the dispersive integral. Generalizing the

result quoted in [6] by including K̄K intermediate states, the spectral function becomes

Imσ(t) = − 1

p2t
√
t

{

3

4
qt
(

FSπ (t)
)∗
f0+(t) θ

(

t− tπ
)

+ kt
(

FSK(t)
)∗
h0+(t) θ

(

t− tK
)

}

. (4.14)

The corresponding results using the input RS1, RS2, and RS3 as discussed in section 3

as well as our central solution for the scalar pion and kaon form factors are depicted in

figure 5. We also show a variant of the spectral function where the second term in the above

unitarity relation (4.14) due to K̄K intermediate states is neglected. While the impact on

the real part is moderate, we see that the spectral function develops an imaginary part

starting at tK . In contrast, our full solution stays real as long as the input for the phases is

treated in the same way in the calculation of the meson-nucleon partial waves and the scalar

meson form factors. For this reason, the results for RS1 and RS3 become complex around

t0, while RS2 is real in the full energy range (apart from some numerical noise at the two-

kaon threshold). These findings emphasize the importance of treating inelastic channels

consistently in all contributions to the unitarity relation, in particular the necessity to

explicitly include the intermediate states that are responsible for the inelasticities.

The dependence of ∆σ on the cutoff Λ of the dispersive integral is shown in figure 6.

We see that the dispersion relation converges quickly and the results hardly change above
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Figure 6. ∆σ as a function of the integral cutoff Λ. Line code as in figure 5.

(FSK(0), Λ) (0.4M2
π , 1.3GeV) (M2

π/2, 1.3GeV) (0.6M2
π , 1.3GeV) (M2

π/2, 2m)

RS1 13.81 13.86 13.91 13.65

RS2 13.75 13.89 14.04 13.56

RS3 13.92 14.00 14.09 13.80

Table 2. Results for ∆σ in MeV for various combinations of FS

K
(0), integral cutoff Λ, and input.

1GeV. We quote the outcome for Λ =
√
t0 and input RS2 as our final result, estimating the

uncertainty by the variation induced by changing the cutoff to 2m and varying the input

set or the assumption for FSK(0) (cf. table 2). Moreover, f0+(t) and h
0
+(t) depend linearly

on the πN parameters (3.10), so that the corresponding corrections for changing these

parameters can be determined straightforwardly. Putting everything together, we find

∆σ=(13.9± 0.3)MeV

+ Z1

(

g2

4π
− 14.28

)

+Z2

(

d+00Mπ + 1.46
)

+Z3

(

d+01M
3
π − 1.14

)

+Z4

(

b+00M
3
π + 3.54

)

,

Z1 = 0.36MeV , Z2 = 0.57MeV , Z3 = 12.0MeV , Z4 = −0.81MeV . (4.15)

These results are in reasonable agreement with [6], and remarkably close to the O(p4)

ChPT analysis of [42] (for earlier work in ChPT on ∆σ see [43–46])

∆σ = 14.0MeV + 2M4
π ē2 , (4.16)

where ē2 is an O(p4) low-energy constant.6 The potentially largest correction in (4.15)

originates from d+01, e.g. taking d
+
01 = 1.27M−3

π from [47] increases ∆σ by 1.6MeV. In

contrast, adjusting the coupling constant to g2/4π = 13.7 [11, 12] only leads to a correction

of −0.2MeV. Indeed, this result is not surprising, as it is d+01 that controls the slope of

the scalar form factor of the nucleon.

6In fact, ē2 contributes to the chiral expansion of d+01.
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5 Conclusion

We have presented a method to construct two-channel Omnès functions for a finite-

matching-point setup, and applied this formalism to solve a coupled-channel integral equa-

tion for the ππ → N̄N and K̄K → N̄N S-waves, which can be derived from Roy-Steiner

equations for πN and KN scattering. We have also repeated the conventional two-channel

Muskhelishvili-Omnès calculation for the scalar pion and kaon form factors, which together

with the meson-nucleon partial waves determine the spectral function of the scalar form

factor of the nucleon fully including the effects of K̄K intermediate states. Based on

these results, we have updated the dispersive analysis of the correction ∆σ that relates the

pion-nucleon σ term to the πN amplitude at the Cheng-Dashen point. Throughout the

calculation we have investigated the sensitivity to various pieces of the input in detail, in

particular, we give our final result for ∆σ as a function of πN subthreshold parameters

and the πN coupling constant. Our result essentially confirms the result of [6], however,

using modern phase-shift input and with uncertainties due to K̄K effects much better

under control.

Besides its implications for the scalar form factor of the nucleon, the present calculation

of the ππ → N̄N S-wave in a full two-channel treatment completes the solution of the t-

channel part of the Roy-Steiner equations derived in [1], and is also a key ingredient to

pin down the πN amplitude at the Cheng-Dashen point [5, 6, 8]. Moreover, the formalism

developed here should prove valuable for other systems requiring finite-matching-point two-

channel Omnès solutions as well, e.g. for including K̄K effects into the Roy-Steiner analysis

of γγ → ππ [20].
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A Continuity at the matching point

To prove the continuity of f(t) at tm, we rewrite (2.12) in terms of a principal-value inte-

gral as

f(t)=
(

1+i T (t)Σ(t)
)

∆(t) +
Ω(t)

π
−
tm
∫

tπ

dt′
Ω−1(t′)T (t′)Σ(t′)∆(t′)

t′ − t
+
Ω(t)

π

∞
∫

tm

dt′
Ω−1(t′)Im f(t′)

t′ − t
.

(A.1)
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We only consider the case t → tm from below (continuity from above can be proven

in a similar way). In this limit, the whole mass of the integral is concentrated at tm.

Using (2.17), (2.18), (2.20), and (2.25), we find

f(tm) =
(

1+ i T (tm)Σ(tm)
)

∆(tm) +
e−iπx

det Ω̄(tm)

(

II III
IIII IIV

)

T (tm)Σ(tm)∆(tm)

− 1

det Ω̄(tm)

(

ĨI ĨII
ĨIII ĨIV

)

Im f(tm) , (A.2)

with

II = −
(

Ω̄11Ω̄22 cotπx11 − Ω̄12Ω̄21 cotπx12

)

eiψ ,

III = Ω̄11Ω̄12

(

cotπx11 − cotπx12

)

eiψ ,

IIII = −Ω̄21Ω̄22

(

cotπx11 − cotπx12

)

eiψ ,

IIV = −
(

Ω̄11Ω̄22 cotπx12 − Ω̄12Ω̄21 cotπx11

)

eiψ ,

ĨI = −Ω̄11Ω̄22
eiδ11

sinπx11
+ Ω̄12Ω̄21

eiδ12

sinπx12
,

ĨII = Ω̄11Ω̄12

{

eiδ11

sinπx11
− eiδ12

sinπx12

}

,

ĨIII = −Ω̄21Ω̄22

{

eiδ11

sinπx11
− eiδ12

sinπx12

}

,

ĨIV = −Ω̄11Ω̄22
eiδ12

sinπx12
+ Ω̄12Ω̄21

eiδ11

sinπx11
. (A.3)

For the continuity condition (A.2) to be fulfilled, in particular all terms depending on∆(tm)

must cancel amongst themselves. Putting the coefficients of ∆i(tm) in each component fi
to zero yields four constraints on II–IIV, which can be inverted to obtain

II = i det Ω̄ eiπx
A− e2iπxA∗

A+ e2iπxA∗ , IIV = i det Ω̄ eiπx
B − e2iπxB∗

A+ e2iπxA∗ ,

III =
σKtm
σπtm

IIII = 4det Ω̄ e2iπx
|g|σKtm

A+ e2iπxA∗ , (A.4)

where

A = ηe2iπ(x−y) − 1 , B = ηe2iπy − 1 . (A.5)

Similar considerations apply to ĨI–ĨIV. By means of Im f = T ∗Σf , the remaining pieces

of (A.2) can be expressed as linear combinations of f1 and f2, which altogether again

amounts to four constraints. The solutions are

ĨI = −2i det Ω̄ e2iπx
A∗

A+ e2iπxA∗ , ĨIV = −2i det Ω̄ e2iπx
B∗

A+ e2iπxA∗ ,

ĨII =
σKtm
σπtm

ĨIII = IIIe
−iπx . (A.6)
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Based on (2.29) it is straightforward to show that (A.4) and (A.6) hold as long as the

following relations are fulfilled

√

1− z2
(

Ω̄11Ω̄22 + Ω̄12Ω̄21

)

= η sinπ(2y − x) det Ω̄ , (A.7)
√

1− z2Ω̄11Ω̄12 = −|g|σKtm det Ω̄ ,
√

1− z2Ω̄21Ω̄22 = |g|σπtm det Ω̄ .

In this way, the properties (2.30) of the Omnès matrix finally ensure continuity at the

matching point.

B Conventions for kaon-nucleon scattering

In general, we follow the notation and conventions for πN scattering of [1]. In this appendix,

we briefly collect the additional formalism necessary to arrive at a closed system for πN

and KN scattering.

We define the kaon states

|K+〉 =
∣

∣

∣

∣

1

2
,
1

2

〉

, |K0〉 =
∣

∣

∣

∣

1

2
,−1

2

〉

, |K̄0〉 =
∣

∣

∣

∣

1

2
,
1

2

〉

, |K−〉 =
∣

∣

∣

∣

1

2
,−1

2

〉

, (B.1)

with crossing properties

C|K+〉 = −|K−〉 , C|K0〉 = |K̄0〉 , (B.2)

and choose the isospin decomposition of the amplitude as

T = T+ − τN · τKT− = T+ − 2
(

Is(Is + 1)− 3

2

)

T− , (B.3)

which leads to

T Is=0 = T+ + 3T− , T Is=1 = T+ − T− ,

T Iu=0 = T+ − 3T− , T Iu=1 = T+ + T− ,

T It=0 = 2T+ , T It=1 = 2T− . (B.4)

In these equations Is, It, and Iu denote s-, t-, and u-channel isospin, respectively, and τN

and τK are the Pauli matrices associated with the nucleon and kaon isospin operators. In

particular, we have

TK
±p = TK

±p→K±p = T+ ∓ T− . (B.5)

In complete analogy to πN scattering, the amplitude for the process K(q) + N(p) →
K(q′) +N(p′) can be decomposed as

T I = ū(p′)

{

AI +
/q′ + /q

2
BI

}

u(p) , I ∈ {+,−} . (B.6)
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The Born-term contributions due to hyperon pole diagrams are7

AK
+p =

∑

Y=Λ,Σ

g2KNY
mY −m

u−m2
Y

, BK+p =
∑

Y=Λ,Σ

g2KNY
u−m2

Y

,

AK
−p =

∑

Y=Λ,Σ

g2KNY
mY −m

s−m2
Y

, BK−p =
∑

Y=Λ,Σ

g2KNY
s−m2

Y

, (B.7)

and hence

A± =
∑

Y=Λ,Σ

g2KNY
mY −m

2

(

1

s−m2
Y

± 1

u−m2
Y

)

,

B± = −
∑

Y=Λ,Σ

g2KNY
2

(

1

s−m2
Y

∓ 1

u−m2
Y

)

. (B.8)

The K̄K → N̄N partial waves can be obtained from the invariant amplitudes by means of

the projection formula (with the t-channel scattering angle zt = cos θKNt )

hJ,It=0,1
+ (t) = − 1

8π

1
∫

−1

dztPJ(zt)

{

p2t
(ptkt)J

A±(t, zt)−
m

(ptkt)J−1
ztB

±(t, zt)

}

,

hJ,It=0,1
− (t) =

1

8π

√

J(J + 1)

2J + 1

1

(ptkt)J−1

1
∫

−1

dzt
(

PJ−1(zt)− PJ+1(zt)
)

B±(t, zt) . (B.9)

The main difference to the πN t-channel partial-wave projection [49] originates from the

fact that due to the lack of Bose symmetry in the K̄K system a partial wave with given

angular momentum J couples to both It = 0 and It = 1 (corresponding to + and − on

the right-hand side of (B.9)). In the following, we are only interested in the combination

where even/odd J corresponds to It = 0, 1, respectively, since only these partial waves can

occur as intermediate states in ππ → N̄N , and will therefore suppress the isospin index.

In these conventions, the Born terms are given by

hJ+(t) =
∑

Y=Λ,Σ

g2KNY
8π

1

(ptkt)J

{

(pt
kt
(mY −m) +mỹ

)

QJ(ỹ)−mδJ0

}

,

hJ−(t) =
∑

Y=Λ,Σ

g2KNY
8π

√

J(J + 1)

2J + 1

1

(ptkt)J
(

QJ−1(ỹ)−QJ+1(ỹ)
)

, (B.10)

with

ỹ =
t− 2M2

K + 2(m2
Y −m2)

4ptkt
. (B.11)

The partial waves in the partial-wave expansion of the K̄K scattering amplitude

RIt(s, t) = 16π
∞
∑

J=0

(2J + 1)rItJ (t)PJ(cos θ
K̄K
t ) (B.12)

7We use mΛ = 1.116GeV, mΣ = 1.193GeV [13], and g2KNΛ/4π = 15.55, g2KNΣ/4π = 0.576 [48] for the

masses and couplings of the hyperons, respectively.
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obey the unitarity relation

Im rItJ (t) = σπt

∣

∣

∣
(qtkt)

JgItJ (t)
∣

∣

∣

2
θ
(

t− tπ
)

+ σKt

∣

∣

∣
rItJ (t)

∣

∣

∣

2
θ
(

t− tK
)

+
tσNt
8k2t

1

(cKNJ )2

{

∣

∣

∣HJ
+(t)

∣

∣

∣

2
+
∣

∣

∣HJ
−(t)

∣

∣

∣

2
}

θ
(

t− tN
)

, (B.13)

where gItJ (t) denotes the ππ → K̄K partial waves, the K̄K → N̄N amplitudes fulfill

HJ
+(t) =

kt
pt
(ptkt)

J 2√
t
hJ+(t) , HJ

−(t) =
kt
pt
(ptkt)

JhJ−(t) , (B.14)

and cKNJ = 1/2 is an isospin factor that emerges from the conversion between the It = 0, 1

and the I = ± basis (cf. (B.4)). With the S-matrix elements

[

SItJ (t)
]

K̄K→K̄K
= 1+i

4kt√
t
rItJ (t) θ

(

t−tK
)

,
[

SJ±(t)
]It
K̄K→N̄N

=
i

cKNJ

√

pt
kt
HJ

±(t) θ
(

t−tN
)

,

(B.15)

we finally obtain the unitarity relation

ImhJ±(t) = σKt
(

rItJ (t)
)∗
hJ±(t) θ

(

t− tK
)

+
cKNJ√
2 cJ

σπt q
2J
t

(

gItJ (t)
)∗
fJ±(t) θ

(

t− tπ
)

, (B.16)

with ππ → N̄N partial waves fJ±(t) and isospin factors cJ for πN scattering (see [1] for

precise definitions).
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