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ABSTRACT: Starting from hyperbolic dispersion relations, we derive a closed system of
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required for the lowest partial waves. In order to suppress the dependence on the high-
energy regime we also consider once- and twice-subtracted versions of the equations, where
we identify the subtraction constants with subthreshold parameters. Assuming Mandel-
stam analyticity we determine the maximal range of validity of these equations. As a first
step towards the solution of the full system we cast the equations for the 77 — NN partial
waves into the form of a Muskhelishvili-Omnes problem with finite matching point, which
we solve numerically in the single-channel approximation. We investigate in detail the role
of individual contributions to our solutions and discuss some consequences for the spectral
functions of the nucleon electromagnetic form factors.
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1 Introduction

Pion-nucleon scattering is one of the most basic and fundamental processes in strong-
interaction physics. Even though a large data basis exists and numerous investigations
based on a cornucopia of methods (dispersion relations, quark models, resonance models,
chiral perturbation theory, just to name a few) have been performed for many decades, the
pion-nucleon (7N) scattering amplitude is still not known to sufficient precision in the low-
energy region.! This becomes most obvious in the scalar-isoscalar sector, which features
the so-called pion-nucleon o term oy, i.e. the scalar form factor of the nucleon at zero
momentum transfer. Its value is a measure of the light quark contribution to the nucleon
mass (and it can also be related to its strange quark contribution), see e.g. the classical
paper [5]. The o term has gained renewed interest as it parameterizes the spin-independent
cross section for possible dark matter candidates scattering off nuclei [6, 7] (for a recent
review cf. [8]). In principle, lattice QCD would be the method of choice to pin down the

!The exceptions are the S-wave scattering lengths, which can be extracted with high precision from the
beautiful data on pionic hydrogen and pionic deuterium, see [1-4].



o term — however, a direct computation of the scalar form factor necessarily involves
disconnected diagrams, which is not yet under sufficient control. Similarly, the indirect
extraction of o,y from the derivative of the nucleon mass is still hampered with systematic
uncertainties related to the chiral extrapolations utilized, see e.g. [9]. Therefore, in this
paper we follow a different path, namely setting up the powerful machinery of Roy-Steiner
(RS) equations that will ultimately allow for a precise determination of the pion-nucleon
scattering amplitude at low energies.

More specifically, RS equations are based on hyperbolic dispersion relations (HDRs),
a particular kind of dispersion relations along hyperbolae in the Mandelstam plane. Dis-
persion relations are a widely used tool that is built upon very general principles, such
as Lorentz invariance, unitarity, crossing symmetry, and analyticity. There are multiple
uses of dispersion relations — they can be used to stabilize extrapolation of experimen-
tal data to threshold and allow for a continuation into unphysical regions, as it is e.g.
required for the extrapolation of the pion-nucleon scattering amplitude to the so-called
Cheng-Dashen point [10], which is crucial for the extraction of the o term. We notice that
unitarity constraints can most conveniently be formulated in terms of partial-wave ampli-
tudes. The resulting partial-wave dispersion relations (PWDRs) together with unitarity
constraints allow to study processes at low energies with high precision. We just men-
tion a few examples. The most prominent example is of course pion-pion (77) scattering,
which is intimately linked to the spontaneous and explicit chiral symmetry breaking in
QCD. The Roy equations [11] are the appropriate PWDRs, which have been extensively
studied in the last years [12-17], leading to a determination of the fundamental 77 scat-
tering amplitude with unprecedented precision. The pion-pion system, however, is special
as all channels are identical. This is different for the simplest scattering process in QCD
involving strange quarks, namely pion-kaon (7 K) scattering, which has been investigated
in [18, 19]. As far as crossing symmetry and isospin quantum numbers are concerned, the
pion-kaon system is similar to the pion-nucleon case considered here. Crossing symmetry
relates the s-/u-channel (1N — mN) and the t-channel (77 — NN) amplitudes, with
the s-channel amplitudes relevant e.g. for o-term physics, while the ¢-channel amplitudes
feature prominently in the dispersive analysis of the nucleon form factors. The final aim
of solving the full (subtracted) RS system for N scattering is a precise determination
of the lowest partial-wave amplitudes in the low-energy (physical and unphysical) region
as well as the pertinent low-energy parameters, such as the 7N coupling constant and
the so-called subthreshold parameters, and to provide reliable theoretical errors for the
fundamental pion-nucleon scattering amplitude for the first time.

In the low-energy region, the pion-nucleon amplitude is well represented by its S- and
P-wave projections. Due to the spin of the nucleon, one has in total six partial waves in
the s- and w-channel, commonly denoted as fgir, fljfr, fli_, where the superscript I = +
refers to the isospin, [ € {0,1} in the subscript to the orbital angular momentum, and
the £ to the total angular momentum j = [ 4+ 1/2. Similarly, there are three ¢-channel
S- and P-waves, called f_?_, fi, where the superscript refers to total angular momentum
J and the +/— to parallel/antiparallel antinucleon-nucleon helicities, such that there is
one wave with even and two with odd isospin (due to Bose symmetry). It was pointed



out in [20] how to generalize the Roy equations for 77 scattering to the mN system based
on fixed-t dispersion relations. These amount to coupled integral equations for the nine
partial waves, where the effect of the higher partial waves is encoded in the respective
kernels of these integral equations. Here, we follow a somewhat different path by utilizing
hyperbolic dispersion relations as pioneered by Hite and Steiner a long time ago [21]. The
main advantage of HDRs is that they combine the s- and the ¢-channel (i.e. all three)
physical regions, which is obviously not true for e.g. usual fixed-t dispersion relations. It is
known that a reliable continuation to the subthreshold region in dispersion theory can only
be made by using input information also from the ¢-channel, cf. e.g. [22-25]. Furthermore,
the knowledge of the absorptive parts in the dispersion relations is needed only in regions
where the corresponding partial-wave expansions converge, and HDRs are considered the
best choice fulfilling these requirements that yields still manageable angular kernels [21].
In addition, the underlying hyperbolic relation (s — a)(u — a) = b (with a, b real-valued
parameters) also respects s <> u crossing symmetry of the 7N amplitude. Due to the
tunable parameters a, b, better convergence properties can be achieved with HDRs and
they are found to be especially powerful for determining the o term [22]. The derivation
of the RS equations for the 7N system is given by a series of steps: first, one expands
the s-/t-channel absorptive parts of the HDRs in s-/t-channel partial waves, respectively.
Second, one projects the full, partial-wave-expanded HDRs onto both s- and ¢-channel
partial waves, resulting in what we will refer to as the s- and t-channel part of the RS
system in the following. The resulting system of equations exhibits the following general
structure: it features the nucleon-pole-term contributions, integrals over the imaginary
parts of the s-(and u-)channel as well as integrals over ¢-channel absorptive parts, both from
the corresponding threshold to infinity. The generic properties of the equations are then
determined by the integral kernels. In the equation for each partial wave, the corresponding
kernels consist of the self-coupling, singular Cauchy kernel and an analytic remainder that
in addition involves the coupling to all other partial waves. In particular, these kernel
functions automatically incorporate the analytic properties expected for a given partial
wave: the Cauchy kernel corresponds to the right-hand cut, while the remainder contains
all left-hand-cut contributions.

Another important issue is the possibility to subtract dispersion relations. This can
be advantageous for various reasons: first, in some cases the asymptotic behavior of the
integrand is such that subtractions have to be performed to ensure convergence of the dis-
persive integral. Similarly, if the high-energy behavior is not known, it can be subsumed
in subtraction constants, which are a priori unknown. In some cases, these subtraction
constants can be related to phenomenology or the parameters of a low-energy effective
field theory like e.g. chiral perturbation theory (ChPT). Second, one can even introduce
subtractions that are not necessarily required by the asymptotic behavior in order to lessen
the dependence on high-energy input, however, at the expense of introducing the corre-
sponding subtraction polynomials. Third, subtracting the dispersion relations is especially
useful in the N case, since subtracting at the so-called subthreshold point allows for a
relation to the subthreshold expansion and is convenient for the continuation to the Cheng-
Dashen point. In addition, such subtractions are well suited for the ¢-channel problem to
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Figure 1. Flowchart of the solution strategy for the Roy-Steiner system for 7N scattering.

High-energy region
Imfl, t>tn

be discussed later. In what follows, we will consider unsubtracted as well as subtracted
versions of the RS equations.

Next, we will outline the strategy to solve the RS equations, as depicted in fig-
ure 1: first, one solves the t-channel part of the RS system, which takes the form of a
Muskhelishvili-Omnes (MO) problem [26, 27] (using rather well known s-channel partial
waves and 7 phase shifts as input). Then, one uses the t-channel MO solutions to solve
the s-channel part, and finally the procedure is repeated (iterated) until self-consistency
of the partial waves and parameters is reached and the results have converged, cf. figure 1.
In both the s- and t-channel part of the system one actually solves the equations in the
low-energy region and for the lowest partial waves, while the amplitudes in the high-energy
region as well as higher partial waves are needed as input. The separation between both
energy regions occurs at the so-called matching points s, and ¢y, in the s- and ¢-channel,
respectively. Due to the complexity of the full problem, we will not yet solve the whole
set of RS equations in this article, but concentrate on the ¢t-channel part of the system as
a first step. The solution of this ¢-channel subproblem is interesting by itself, as it fea-
tures in the dispersive analysis of the nucleon electromagnetic form factors as well as the
scalar form factor, which is, in turn, essential for the extraction of the o term. At present,
in the unphysical region only the KH80 solution [28, 29] has been used. It is, however,
well-known that this solution does not include more recent and precise data and that the
mIN coupling constant used there differs significantly from more modern determinations.



Furthermore, no analysis of the theoretical uncertainties is performed (apart from an it-
eration uncertainty, cf. section 5.3.2), which is an absolute requirement for any modern
theoretical investigation. Therefore, a new t-channel solution is needed as a first step for
solving the full system. Finally, a consistent set of partial-wave amplitudes for all channels
is especially important as far as the o-term extraction is concerned, and it has been pointed
out that the KH80 solution seems to suffer from internal inconsistencies [22, 25, 30], which
emphasizes the necessity of a full system of PWDRs.

The original Roy equations for w7 scattering [11] were solely based on fixed-¢ dispersion
relations. This approach fails for processes involving non-identical particles, since crossing
symmetry intertwines different physical processes. For this reason, a combination of fixed-t
and hyperbolic dispersion relations was used in [18, 19] to construct integral equations for
mK scattering for the partial waves of both s- and ¢-channel, which are therefore referred to
as Roy-Steiner equations. In this work, we solely consider HDRs, a path that has already
proven useful in the construction of RS equations for vy — 7w [31]. Our solution strategy
for the t-channel MO equations follows [19], however, there is a major difference between
7 — KK and mm — NN as far as inelasticities in the unitarity relation are concerned,
since the pseudophysical region in the 7N case is much larger due to the large nucleon
mass. In both cases, the first non-negligible contribution besides w7 intermediate states
originate from K K, which play an important role for the S-wave in view of the occurrence
of the fo(980) resonance. For 7w — KK the inelasticities can simply be accounted for
by using phase-shift solutions for the corresponding partial waves, while physical input for
nm — NN is only available above the two-nucleon threshold. Once the t-channel problem
is solved, the remaining equations take the form of the conventional 77w Roy equations,
such that known results concerning existence and uniqueness of solutions [32, 33] may be
transferred to the s-channel RS equations as well.

This work is organized as follows: in section 2 we specify our conventions and review
HDRs for the invariant amplitudes of 7N scattering. In sections 3 and 4 we derive a closed
system of RS equations as well as a once- and twice-subtracted version, and show how the
t-channel equations can be cast into the form of a MO problem. Section 5 is devoted to the
explicit solution of the ¢-channel MO problem: we first review the MO problem with a finite
matching point and state the explicit solution for the 7N t-channel amplitudes. Then we
collect the necessary input and discuss the numerical results. Finally, we briefly discuss the
application to nucleon form factors before concluding in section 6. The explicit derivation
of the s- and t-channel RS equations is described in full detail in appendices A and B,
respectively. In appendix C we determine the range of convergence of our equations, while
appendix D contains a discussion of the asymptotic regions in the dispersion integrals.

2 Preliminaries

2.1 Kinematics

We take the s-channel reaction of 7N scattering to be m(q) + N(p) — 7(¢") + N(p') and
the t-channel reaction to be 7(q) + m(—¢') — N(—p) + N(p') with the usual Mandelstam



variables
8:(p+q)27 t:(p_p,)2’ u:(p_q/)27 (21)
which fulfill
s+t+u=2m?+2M2 =%, (2.2)

where m and M, denote the nucleon and pion mass, respectively. We will use the masses
of [34], with the isospin limit defined by the charged particles, i.e. My = M,+ and m = m,,
(later also Mg = M+ for the kaon mass). Unless stated otherwise, u is always to be
understood as a function of s and ¢

u(s,t) =X —s—t. (2.3)
We define the generic kinematical Kéllén function
A9 =Nz, Mp, M3) = [z — (Mp — Mq)?| [z — (Mp + Mg)?] , (2.4)
and for the equal-mass case

/\PP 2
Ufza(x,Ml%):%: 1—%. (2.5)

Furthermore, we introduce the general definitions?

s—u  2s+t—X  2(s—sg)+t

¥ =2sp, v(s,t) =

)

4dm 4m 4dm
_ 2 - 2
W2:s, VB(t):is+u 2m :t 2M:

_ _ 2
i e v(s=m"t), (2.6)

with W as the total center-of-mass-system (CMS) energy, as well as the abbreviation

Ao = MV = Na,m?, M2) = [z —s_] [z — s3] , se=W2=(m+M)*, (2.7

xT

where W_ and W denote the (s-channel) pseudothreshold and threshold energies, respec-
tively. Additional related useful definitions and relations are

Yy=mP+M?, < Bi=s, X =W,W_, X2=55, Y=s5,+s5_.
(2.8)
The CMS kinematics of the elastic s-channel reaction 7N — 7N above threshold
(i.e. for s > s;) with CMS momentum ¢ = |q|, nucleon energy F, and scattering angle
zs = cos s are then given by

_ [ — sz StX-
als) =/ BEW) = /m? + ¢ = 5o = £B(V).
s+u—3% t »?
ZS(S7t):1_2U7q2:1+ﬁv 4q228—2+? (29)

2For more on N kinematics and for mN' conventions in general we refer to [29]. Note that the convention
for v therein and which we have adopted here differs from the choice v = s — u of e.g. [21].



For the t-channel reaction 77 — NN with CMS momenta ¢; for the pions and p; for
the nucleons and scattering angle z; = cos 6, the CMS kinematics above threshold (i.e. for
t > 4m?) read

t Vit . /
q(t) = 1 M2 = —at = +ig_ , —m? = —at = +ip_

s—u 2s+t—X% muv

zi(s,t) = = = — 2.10
(s.9) Aprqr Aprqr Peqr (2.10)
where below the corresponding two-particle thresholds ¢, and ¢y one has to use the quan-
tities
t 2 g L 2
q—(t) =/ M2 — 120 Vit <tp=4M: p_(t) = m—ZZO Vt <ty =4m
(2.11)
whose phases are constrained in general to prqx = —p_qg_ and fixed here by convention.

Relations valid in all kinematical ranges can be written down by relying on the quantities

t—1r
4

! _4tN =—p2 (1), (2.12)

gi (1) = =—2(t), p(t)=

from which roots in the corresponding regimes may be taken.?
The physical regions for the s-, t-, and u-channel reactions are restricted to kinematical
regions where the Kibble function ® [35] is non-negative. For 7N scattering we have

d
7 T Su- 32 = dsq®(1 4 z,) = dpigi(1 - 27) (2.13)

such that the boundaries are given by

0= sfu- 2= [u- =]

— i[t — (Z —24/(2mv)? — Z%)] [t - (E +24/(2mv)2 — E%)} =0, (2.14)

and the corresponding physical regions are shown in figure 2.

wN scattering in the isospin limit can be described by the four Lorentz-invariant am-
plitudes A*(s,t) and B*(s,t), as well as the related amplitudes D*(s,t) convenient for
low-energy theorems (all to be defined in section 2.2). These amplitudes are real inside
the Mandelstam subthreshold triangle defined by the lines s = s4, u = sy, and t = t,, i.e.

3We use the non-cyclic convention ¢ x¢ for a reaction a + b — ¢ + d in order to stick to the usual 7N
conventions of [29], rather than the cyclic convention gxf that leads to symmetric kinematical relations for
the s-, t-, and u-channel and is therefore sometimes used in the literature. While the cyclic convention is
especially favorable when all four particles are identical like e.g. in the case of 7w scattering, it leads to
different sign conventions for the CMS scattering angles and also to different isospin crossing matrices (cf.
section 2.2). The non-cyclic convention, however, is well-suited for s <+ u crossing symmetric situations like
e.g. mN scattering, with ¢ = 0 corresponding to an undeflected pion (i.e. forward scattering) in both the s-
and u-channel and thus zs(t = 0) = 1 = z,(t = 0) rather than z,(t = 0) = 1 = —z,(¢t = 0) for the cyclic
convention.
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Figure 2. Physical regions for s-, t-, and u-channel reactions of 7N scattering (shaded) and the
subthreshold triangle (dot-dashed) enclosing the subthreshold lens.

below the thresholds for the physical s- and u-channel reactions and below the 77 thresh-
old,* including in particular the small on-shell but unphysical lens-shaped low-energy region
(subthreshold lens) close to (v = 0,t = 0) depicted in figure 2.

The analytic structure of the invariant amplitudes governs the analytic structure of
both the s- and ¢-channel partial-wave amplitudes, for details we refer to [29] and references
therein. Here, we only mention the different analytic structures of the s-channel 7N
scattering invariant amplitudes (in the complex s-plane)

e right-hand cut (RHC): physical s-channel cut along s > s,
e nucleon pole: at s = m? from the s-channel nucleon-exchange pole term 1/(s —m?),

e crossed cut: along s < s_ as combination of the u-channel cut s < s_ and the
t-channel cut s < =% _|

e left-hand cut (LHC): collective name for all cuts in the unphysical region, i.e. for

Re{s} < sy.
In addition, the mapping between the complex s- and ¢-planes involves a circular cut
in the complex s-plane at [s| = ¥ = s)s._), where s.1y(¢°) and s_y(¢?) are the two
solutions
s(+)(6%) = 26 + 21 £2V/( + m?)(¢? + M) (2.15)

4Note that t < 0 is necessary for both the s- and u-channel reaction to be physical.



for a given ¢* (note the cut for —m? < ¢ < —M2) with 5(;(0) = sy and s_y(0) = s_.
This circular cut becomes relevant once amplitudes are considered as functions of ¢ rather
than s, e.g. for the partial waves. The additional analytic structures of the s-channel
partial-wave amplitudes due to the partial-wave projection are

e kinematical cuts: for s < 0 from terms depending on W = /s in the partial-wave
projection formula,

e short nucleon cut:® along Y2 /m? < s < m? + 2M? from evaluating the u-channel
nucleon-exchange pole term 1/(u(s, z5) — m?) for zg = +1,

e circular-cut contributions: from ¢-channel exchange of particles with mass m; > 2M,,
i.e. evaluating 1/(t(s, zs) — m?) for z; = +1 and m? = t,,

e crossed-cut contributions for s < 0 and singularities at s = 0: from partial-wave
projection of the aforementioned u- and t-channel exchanges.

Finally, we mention some kinematical points of specific interest (cf. e.g. [29, 37]): the
Cheng-Dashen point at (s = u = m?t = 2M2) = (v = 0,vp = 0) is pivotal for 7N
o-term physics, since the Born-term-subtracted amplitude D* (v = 0,t = 2M2) = At (v =
0,t = 2M2) — g?/m is related to the o term by a low-energy theorem [10, 20, 38-40].

The subthreshold point at (s = u = so,t = 0) = (v = 0,up = —M2/(2m)) serves
as expansion point for the subthreshold expansion, while the (s-channel) threshold point
(s = s4,t = 0,u = s_) = (v = My,vg = —M2/(2m)) is relevant for the threshold

expansion/parameters (e.g. scattering lengths).

2.2 Isospin structure

The most general Lorentz-invariant and parity-conserving T-matrix element for the process
7(q) + N(p) — 7°(¢’) + N(p') with isospin indices a and b is given in terms of Lorentz-
invariant amplitudes A, B, and D according to

Th (5,8) = S 7 T YT (5,0) + 3 [, 7T (5, 0) = BT (5,0) + e T (5,1)

T]{i(s,t) = Uf(p/){AI(S,t) + uBl(s,t)}ui(p)
= )] 06500~ L ) )

DI (s,t) = Al(s,t) +v(s,t)Bl(s,t), Ie{+,-}, (2.16)

where we have introduced the isospin index I = +/— for the part that is even/odd under
interchange of a and b. Furthermore, the N scattering amplitudes A have definite crossing

® Actually, there are two short nucleon cuts as discussed in the appendix of [36]. The second one, however,
is situated on an unphysical sheet.

Note that since 2P = z4(m?,2M2) = — M2 /(4m*— M2) ~ —5.56 x 10~ is close to zero, the amplitudes
at the CD point are dominated by the (s-channel) S-wave.



properties under interchange of s and u for fixed ¢, i.e. under change of sign of v, such that
one can work with amplitudes

A(v,t) if A(v,t) = +A(—v,t),

AW t) =
(v*,t) {A(V,t) £ A t) = —A(0t) |

v

(2.17)

which are even functions of v and thus free of kinematical square root branch cuts in the
complex t-plane originating from p; or ¢;. Explicitly, the above amplitudes fulfill

AT (v, t) = £ AT (—v,t), B (v,t) = FBE(—1,t) . (2.18)

The amplitudes of all ten w/N scattering reactions can be written in terms of only
two independent matrix elements with total s-channel isospin index I, € {1/2,3/2}. In
agreement with [29] (i.e. using the usual Condon-Shortley phase convention for the Clebsch-
Gordan coefficients [34], but the non-cyclic kinematical convention according to section 2.1)
we assign the isospin-doublets of both the nucleons and antinucleons according to the
fundamental representation of the Lie-algebra of SU(2)

W=l33) W=lzp-z) m=|pz). W=|p-z). e

and the isospin-triplet of the pions according to
7y =11, 7)) =11L0),  |7)=11,-1), (2.20)
which leads to the following properties under charge conjugation C
Cly=1p), Clmy=~In), Clr5)=~lz"), Clr°)=I"). (2.21)

Thus, the relations between the spherical and the Cartesian components of the pion-
multiplet are

1 .
) = HFE(IWO tilm)),  7°) = |ms) (2.22)

By decomposing the initial and final isospin states of the /N system into linear combina-

|7

tions of s-channel isospin eigenstates, e.g.

,ﬁmz“& 3> !FP>=\/T’3 _1>_\/5’1 _1> |ﬂon>:\ﬂ3 _1>+f'1 _1>
272/’ 3127 2 3127 2/ 3127 2 3127 2/

(2.23)
we can readily obtain the relations between the 7N isospin amplitudes

Ar=ArTp—rip)=Alnn— 7 n)=A" — A~ =432,

A = Alrp—rp) = Alrtn—ntn) = AT 4 A~ = %(ml/? + A3y

Ao =A(r"p—7°n) = A(xtn —» %) = -V24" = _?(,41/2 YL
A% — 1%) = A(n"n — 7%n) = AT = %(Al/Q +243/2)
At 4247 = AV2. (2.24)
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From these we can infer the so-called isospin triangle relation
Ay — A =3, (2.25)

and the relations for the isospin even/odd amplitudes with I = 4+/— and the amplitudes
in the s-channel isospin basis Iy € {1/2,3/2} can be summarized in matrix notation as

At AL/2 Al/2 At 1 1(1 2
(A_> B - <A3/2> ’ <A3/2> N CSV (A_> ’ CVS N gCSV N g (1 1) '
(2.26)

The s-channel isospin amplitudes with I, € {1/2,3/2} and the corresponding u-channel
isospin amplitudes with I,, € {1/2 = N,3/2 = A} can be shown to obey the s > u crossing

Al 1(-14
us<A3/2)7 Csu—cus—3<21>a

(2.27)

isospin relations

A1/2 AN AN
AS/Q = Csu AA ? AA =

and combining this with (2.26) yields

AT AN (12 . 1 -2
<A) - Cl/u (.AA> ) Cyu - CVSCS'IL - g (_1 1) ] Cuu - Cyu - <1 1 > .

(2.28)
For the t-channel reactions, the |NN) isospin states are superpositions of the states
’It = 1, (It)3> and ’It = 0,0>

1
|ﬁp>:|111 ) 77L’I?,>:7 |1a0 + 070> ) |]§p> —= (/1 O> |0a0 ) |ﬁn>:|1a_1>>
b= (110) +10.0) . 1) = 5(1.0) - 0.0)
(2.29)
from which we can deduce’
1 1
1,0) = —(lan) + |pp)),  10,0) = —(|an) — |pp)) , 2.30
1,0) \@O ) + |pp)) 10,0) \/i(‘ ) — |pp)) (2.30)
whereas the decomposition of the |m7) isospin states reads
1 1 1
) = —=(12,1) +1,1)) , [mmT) = —=12,0) + —=11,0) + —=]0,0)

7 NG V2 V3
1 2 1
) = (2,1~ 1L -1), MWFng—ﬁmm (2.31)

By strictly using the non-cyclic kinematical convention together with the properties under
charge conjugation (2.21) we can obtain the t-channel amplitudes from the s-channel ones
via crossing

As = —A(pp — naT) Ao = A(ntn — 7%) = —A(ap — 777°) = A(mp — »°77) ,

(2.32)

"Note that (2.29) and (2.30) are in perfect agreement with the usual Clebsch-Cordan coefficients [34], but
differ from [29] wherein different conventions are used in these and corresponding equations. In particular,
the analog of (2.33) in [29] seems to (exceptionally) follow the cyclic kinematical convention. Nevertheless,
all other relations, especially the crossing matrix (2.34) and the important relations (2.35), are identical.
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which together with the s-channel isospin relations (2.24) on the one hand and the t-
channel isospin decompositions above on the other hand yields the following relations for
the reactions with a proton as target particle

1 1
Alpp = nhr7) = — A4 = AT+ A" = A2 = —76./40 + 5./41 )
1 1 1
= -y - S Y 1/2 3/2y _ _ 0_ g1
Alpp =~ 7") A_ AT —A 3(2A + A%%) —\/6/1 2A ,
_ _ \/5 1
+.0y _ _ _ Va2 o43/2y 1
Aap — o170 = — Ay V2A 3 (A A3/2) —ﬁA ,
1 1 1
A(pp — n°nV) = g (A +A) = At = g(,41/2 +24%2) = %AO . (233)

Thereby we can easily deduce the s <+ t crossing isospin relations

A1/2 A0 19 A0 A1/2 9 \ﬁ NG
=C; , Cg= Vo ) =Cis , Crs=73 2 )

<A3/2 t Al t % _ Al t A3/2 ts— 3 1 _1
(2.34)
and the fact that AT and A~ have well-defined quantum number I; = 0 and I; = 1,

respectively,
At AP y
(A_> =Cy <A1> , Cp = C,sCyq = (xgé . (2.35)

Glr) = —|n) = Glrm) = |7m), (2.36)

N[ =

)

D=

Since

the antinucleon-nucleon initial state in the reaction NN — 77 has to be an eigenstate of
G-parity with eigenvalue +1, i.e. it can only couple to states with an even number of pions.
The result for charge conjugation of an antifermion-fermion or antiboson-boson pair

Clffy = (0)M5(1f) . Clob) = (=1)"[bb) , (2.37)

yields
GINN) = (-1)’*|NN) , (2.38)

from which we can conclude that for reactions with a two-pion final state (i.e. G = +1)
only the combinations (J even, I; = 0) and (J odd, I; = 1) are allowed. The same
combinations arise from the symmetry properties of the symmetric isosinglet for I = 0
and the antisymmetric isotriplet for I; = 1 due to the fact that the exchange of two pions
in an orbital state with total angular momentum .J = L yields a factor of (—1)”. According
to (2.35) this leads to the following selection rules for the partial-wave decomposition of
the t-channel amplitudes: the partial-wave expansion of the amplitudes A/=1/~ or AL=0/1
contains only partial waves with even/odd J, respectively, and the transition between the

two sets of amplitudes involves the isospin crossing coefficients ¢y with

if J is even ,

(2.39)
if Jis odd.

CjJ] —

—
-
=)
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2.3 Hyperbolic dispersion relations

In [21] it was shown how to construct HDRs for the mN scattering amplitudes, using
hyperbolae in the Mandelstam plane of the form

(s—a)(u—a)=0b, (2.40)

with hyperbola parameter b and asymptotes s = a and u = a. They obey the relation

b

s—a

t=— +X—-s—a, (2.41)

and

s(t;a,b) = %(Z —t+4mv(t;a,b)) .  Amu(t;a,b) =\/(t -+ 2a)? — 4b,
u(t;a,b) = %(E —t—4dmu(t;a,b)) ,  ta)(via,b) =X —2a£2y/(2mr)2+b.  (2.42)

In the following b is considered as a function of s and t for a given value of a,
b(s,t;a) =(s—a)(X—s—t—a), (2.43)

and hence for given s and a one considers a family of hyperbolae wherein all members are
uniquely defined by ¢. Under the assumption that no subtractions are necessary (cf. ap-
pendix D), the HDRs for the 7V scattering Lorentz-invariant amplitudes can be written as

[e.e] [ee]
1 1 1 1 1 Im A* (¢, 1)
AT (s, t;a) == [ ds — Im At (s, ¢ /dt/’
(s,t5a) 7T/S|:8/—S+S/—u s’—a]m (s )+7r t—t
Sy tr
17 1 1 T vImA~(s.¢
t
A" (s, t;a) = /ds' - Im A~ (s',t') + /dt' yImA7(s,t) ,
us s'—s s —u s v t—t
S+ t7r
17 1 1 T vImB*(s,t)
+ o) — N + v lm st
B (S7t7a)*N (S7t)+7T/dsl I:S’—S_Sl—u:|ImB (3/7t) W/dt/M’
S4 t7r
I Im B~ (s', ¢
_ _ 1 1 1 1 _ m
B~ (s,t;a) =N (s,t;a)-i—Tr/ds/ L/ — s+s’ — T a]ImB (s', )+ w/dt/t—t
S+ tr
(2.44)
where we have defined the abbreviation
28’ +t' =%
" t)=v(t) = ——— 2.45
() = ol 1) = D (2.45)
and under the integrals one has to use
b(s,t;
t'(s,s,t;a) = —M—I—E—s'—a,
soa (2.46)

1
st s, t;a) = = { —t' + \/ — X+ 2a)? — 4b(s, t;a)| ,
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since the external kinematics (s,t,u) and the internal kinematics (s',t',u') are related by
(s—a)(u—a)=b= (s —a)(u' —a), s+t+u=YX=s+t+u . (2.47)

Only the amplitudes B* contain the Born-term contributions N* due to the nucleon poles
given by (cf. [29] for NT)

_ _ 1 1 g v
N*t(s,t) = NT(s,t Nt (s,t) = ¢* - S -
(51) (5:%) (s:1) =9 m2—s m?—u muvg —v?’
2 2
. o g - 2 1 1 g _ B
N~ (s,t;a) = N~ (s,t) — N~ (s,1) = —L_7B
(s, t;a) (s:%) m?2—a’ (s8) =g [m2—8+m2—u] muvg — v
(2.48)

where the usual pseudoscalar 7N coupling constant g and the pseudovector 7N coupling

constant f are given by®
g2 B 4m?2 f2

4t M2

~13.7. (2.49)

In order to express the integrands in terms of the corresponding CMS scattering angles
according to

X(s',25) = X(s',1) ;o X)) = X(s,1) . Xe{ArB*},
t/:t/(s/vzfe) S/:S/(tlvzt)
(2.50)
we define
z/(slt/)—z(s/t,)—l—i-i /( /)_ (/)
S 9y - S ) - 2q/2 bl q 8 - q S )
I, //mV/ . N 1yl 1/l N A
Zt(87t):zt(s7t)zﬁ7 pt(t):pt(t):pr(t)v qt(t):qt(t):u]f(t)7
t41t
(2.51)
which leads to the relations
b(s,t;a)
t(s,2) = =2¢%(1 = 2}) | Z(s' s, t5a) = 1 — 57 S =Ytat o),
1 1
Y= L E—t tplgfe]) . A stia) = /(7 D 27 db(s. fra)
D4y

(2.52)

Note that b is linearly related to z/ for the s-channel, but only to zj> for the ¢-channel,
which will have important consequences in appendix C, where it will be shown that the
HDRs (2.44) incorporate contributions from the direct as well as from the crossed channels,
but not from double-spectral regions, provided the parameters are chosen appropriately.
Furthermore, one can check explicitly that AT and B~ are indeed functions of 2, while A~

and BT are proportional to v. Since moreover 4mv’ = 4pjq;z; = s’ — ' is always real, one

$Note that [29] quotes a value of 14.28 based on [41]. For more information on conventions as well as
the current value see [3, 4, 42, 43].
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may also write the above HDRs (2.44) in terms of reduced amplitudes A~ /v and B /v,
respectively. This fact will be used in section 4 and appendix D.3.
In contrast, for usual fixed-¢ dispersion relations external and internal kinematics are
related by
t=t", s+tttu=Y=s+t+u. (2.53)

It is remarkable that the HDRs have the simple form of (2.44) and (2.48), which by ne-
glecting the terms depending on a (or equivalently for |a| — co) reduce to fixed-t dispersion
relations, provided, however, that the t-channel integrals are discarded. Moreover, the hy-
perbolae then reduce to fixed-t lines, and thus we will refer to the limit |a| — oo as “fixed-t
limit” in the following.”

3 Roy-Steiner system for pion-nucleon scattering

In this section, we first collect the results for the partial-wave hyperbolic dispersion relations
(PWHDRs) that follow from the HDRs (2.44) via partial-wave expansion in and projection
onto both s- and t-channel partial waves as explained in detail in appendices A and B, in
order to state the closed system of RS equations for 7V scattering. Then, we elaborate on
the corresponding partial-wave unitarity relations for the s- and especially the ¢-channel.
Finally, we use the threshold behavior of the t-channel partial waves f{(¢) in order to cast
the t-channel part of the RS system in the form of a MO problem, whose solution will be
the subject of section 5.

3.1 Partial-wave hyperbolic dispersion relations

The s-channel partial-wave amplitudes are conventionally denoted by flIi(W) with isospin
(i.e. crossing) index I € {4, —} and total angular momentum j = [+ 1/2 = [+, where the
orbital angular momentum can take the values [ > 0 for j = [+ and [ > 1 for j = [—.
Using a shorthand notation for the zs-projections of the invariant amplitudes

1

I _ I

X} (s) = / dzs Pi(z) X (8’t)‘t:t(s,zs):_ngu_zs) for X € {A4,B},  (3.1)
21

the well-known s-channel partial-wave projection formula reads [44]

1

1 _
frz(W) = 6

{(B+m) [A] (8)+(W=m) B ()] +(E=m) [~ Alu (5)+ (W4+m) By (s)] |
(3.2)

By construction, the ff (W) obey the MacDowell symmetry relation [45] in the complex

W-plane

W) = =fin- (W) VI>0, (3.3)

due to which only half of the complex W-plane is actually needed. Alternatively, this
relation can be used the other way around to derive the partial waves with j = [— from

9As explained in appendix C.2, only the limit a — —oo is compatible with range-of-convergence consid-
erations.
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the ones with j = [+. Expanding the absorptive parts of the HDRs (2.44) into s-channel
and t-channel partial waves, respectively, and subsequently projecting the full HDRs onto
the s-channel partial waves flIi(W) yields the s-channel PWHDRs of [21]

[e.o]

1 o0
fe W) = Nl W)+~ / aw’ Z{K{l,(w, W)t £}, (W) + Kh (W, ~W')Im £, +1)_(W’)}
Wy I'=0

+1 / At 3" Gua (Wt T L) + Hog (W, ) Ton 2t}
h J

—flhy_ (W) Viz0, (3.4)

which constitutes the s-channel part of the full RS system. Here, NlIi(W) represent the
contributions due to the nucleon pole terms in the amplitudes B as given in (2.44). Each s-
channel partial wave fl]i(W) is coupled to the absorptive parts of all other s-channel partial
waves via the kernels K7, (W, W’), which contain the usual Cauchy kernel responsible for
the physical cut and an analytically known remainder (denoted by dots below) containing
only left-hand cut contributions

Kﬁ,(W,W’):%+... Vi,'>0, (3.5)
as well as to the absorptive parts of the ¢-channel partial waves fj‘:’(t) via the kernels
Gy (W,t') and H;;(W,t'), where the lower index + denotes parallel(+) or antiparallel(—)
antinucleon-nucleon helicities and the total (¢-channel) angular momentum J can take the
values J > 0 or J > 1, respectively. Due to Bose statistics (i.e. crossing symmetry), the
summations over J in (3.4) run over even/odd values of J for the crossing even/odd partial
waves (upper index I = +/—), respectively, as explained in section 2.2. For the sake of
completeness and convenience, in appendix A the different contributions to (3.4) will be
discussed along the lines of [21, 46-48] (correcting several typographical errors, adjusting
the conventions, and partially extending the presentation therein at the same time).

For the t-channel partial-wave projection, by virtue of s <+ u crossing symmetry it is
possible to use only half the interval in the cosine of the t-channel CMS scattering angle
and thus the projection can be written as [49]

1
2
F =5 [ PJ(Zt){<pZt>JAI(S’t)
0

1

dz P zt) — P (Z )] BI(S t)
—1 / t J— 1 t J+1\~t )
tht 0

2Bl (s,1)

J-1

o m } VJ >0,
s=s(tz)  (Peqr)? ™ s=s(t,2t)

1 J(J+1)
Ar 2 +1

F(t) =

VI > 1,

s=s(t,zt)
(3.6)

where again [ = +/ if J is even/odd, such that the integrands are always functions of
the squared angle z2. These formulae are valid literally only for ¢ > t,, but can actually
be used for all kinematical cases, cf. the discussion following (A.73). For a closed system
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of RS equations we need to derive the analog of (3.4) for the t-channel partial waves f{(t),
cf. [11, 19, 31]. The result takes the form

o0

FH@ = N0+~ [ WS {Gut. W) 5L V) + Gt~ W) I £ ()}
W, =0
jr /dt Z [R) () ] () + K3 (0.0 i f7 (1} v >0,
() = / S B W o g (W) + W) T ) (W) )
W =0
;/dt’ZKJJ/tt)I Iy vJI>1, (3.7)
tr

where again I = +/— if J is even/odd and the sum over J’ runs over even/odd values
of J"if J is even/odd (cf. section 2.2). As for the s-channel case, the kernels for the
corresponding t-channel partial waves can be split into the Cauchy kernel and well-defined
remainders

~ 5 ! ~ 5 !
K}J,(t,t’):t/‘]_‘]t+... vJ,J >0, K§J,(t,t'):t,f’t+... VJ,J >1, (3.8)

but, in contrast to the s-channel case, only higher ¢-channel partial waves can couple to
lower ones, since K }},3( t') = 0 for all J" < J, which will be a key ingredient in reducing
the t-channel part (3.7) of the RS system to a MO problem in section 3.3. The technical
details of the derivation of the different contributions to (3.7) are relegated to appendix B.

There are three aspects of convergence in the RS system of PWHDRs constructed
in appendices A and B: first, the question of convergence of the integrals in the high-
energy regime is linked to the number of necessary subtractions of the dispersion relations,
which will be discussed in section 4. Moreover, for the full system of RS equations to be
valid, the convergence of both the partial-wave expansion of the imaginary parts inside
the integrals and the s- and ¢-channel partial-wave projection of the full HDR equations
needs to be shown. Analyzing these two constraints yields the ranges of convergence in s
and t for (3.4) and (3.7), respectively. As explained in detail in appendix C, the hyperbola
parameter a can actually be tuned in order to obtain the largest possible domain of validity.
For the s-channel part (3.4) of the RS system the combined analysis of s- and ¢-channel
constraints leads to an optimal value of a and a corresponding range of convergence in s
of (cf. appendix C.3)

a=-2319M? = s€[sy=(m+M,)* 9730 M2] < We[W,;=1.08GeV,1.38GeV],
(3.9)
where s = 59.64 M2, while for the t-channel part (3.7) we find (cf. appendix C.4)

a=-2T1M? = tc[t,=4M220545M?] < Vte|[Vt; =0.28GeV,2.00GeV].
(3.10)
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Note that different choices of a for the s- and ¢-channel partial-wave projections are per-
fectly justified, as we may start from different sets of HDRs. However, the choice of a
is not only crucial for the ranges of convergence, but also influences the high-energy be-
havior of the imaginary parts, whose estimation via Regge asymptotics is discussed in
appendix D. For this purpose one splits the corresponding integration ranges s4 < s < 0o
and t, <t < oo of the HDRs (2.44) at some appropriate values s, = W2 and t,, respec-
tively, in order to describe the asymptotic s- and ¢t-channel contributions to the invariant
amplitudes in terms of Regge amplitudes. The remaining non-asymptotic parts are then
given by the corresponding integrals over s, < s’ < s, and t, <t < t,, respectively, plus
the nucleon pole terms N’(s,t) for the amplitudes B (s,t). However, eventually the high-
energy region is of only little practical relevance, in particular if subtractions are performed
in order to suppress the dependence on higher energies (cf. section 4).

In order to use partial-wave unitarity relations that are diagonal in the s-channel
partial waves, we have to work in the s-channel isospin basis Iy € {1/2,3/2} rather than
in the isospin even/odd basis I = +/— (as will be explained in section 3.2), and therefore
in analogy to (2.26) we define

x1/2 x+ X+
x| =G| x| X

and the abbreviation
KPR W) = KNPV, W) + KO (W, W) = 2G5 (W, W) + K (W, W) . (3.12)
The full closed RS system of PWDRs for both s- and t-channel partial waves in the cor-

responding isospin bases Is € {1/2,3/2} and I; € {0,1} that follows from rewriting (3.4)
and (3.7) reads'?

Wy = NP w)

x1/2
vs | ya/2 | for X € {fi+, Nix, K} ,
(3.11)

I+

1 [e.9]

+W/dw’23{ I (W, W) T /2 (W) 4 203 (W, W) T 2 (W)
W, 1'=0

R (W) T (W) 4 2B, W) T [/, (W) |

- / ar’sS BV 6wt w1100 + W) m (0}
; J=0

W) = NP+

1 o0
ﬂ/dW’Zg{ Kol (W, W) T f/ (2 OF) Ky (W, W) T 22 (W)
W, 1'=0
3/2 1/2 / 1/2+43/2 3/2 /
KW, =W T f )+ KR - T (v
/ 31 {6 W) i 1) + Hua Ot 0}

10A]l sums run over both even and odd values, and the formulae for the f(Il +1)— are given explicitly for
convenience.
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FH2 (W) =N (W)

(1+1) (I+1)—
1 ©0 < q 3/2
‘ﬂ/dw’Zg{ Ky (<W. W) T fy 2 OW') 4 28/ (< W, W) T f2 (W)
Wy =
K (W =W I (W) 28GR (W =W ) I S (W)

1 / 3_<_1) / / / /
7T/dt JZO2{GJJ(—Wt)Imfi{(t)+H1J(—W,t)1mfi(t)},

filiy- (W) = N ()

(4+1)— (14+1)—
B 17dW’ oo 1{]{3/2( W, W Im f1/2( N K22 W f3/2( W)
T l/703 i 174
W =
KW =W T f (W) KPR W g2, ()
=2 [t S0 {Gu- Wt ) + (W 1 ()}
7 =0
(3.13)
together with
. RS I , o 143(-1
j(t):zvj(t)+7r/dw ZS{GJz(t,W)[ImfZT(WH*é) m f72 )]
Wy =0
- 1+3
+ Gt )[I 2w+ L g )}
+% dt’ 1+ ( 21)J+J {K’}J,(t,t’) Im f7'(t') + K%, (t,t') Im fi’(t’)} vJ >0,
tr J'=J
£ = N2+ © / aw’ S 2 A, ) [m fl1+/2(wf)+1+3§_1) m 320
W 1=0
- 1+3
e, W) [tm 172, )+ g2 )}
+71T/dt’ 3 H(_;)H]f(?}y(t?t’)lmff/(t’) V=1, (3.14)

tﬂ— J/:J

Note that in the above t-channel part (3.14) the sums over J' are limited to J' > J due
o (B.46).

,19,



3.2 Partial-wave unitarity relations

From the unitarity of the S-matrix S = 1 4+ 47T one can easily obtain the general unitarity
relation by taking matrix elements and inserting a complete set of intermediate states

Il — (Tt =i S / A (£ G (3.15)
{7}

where dH%? denotes the nj-particle Lorentz-invariant phase space (LIPS) for intermediate
state j, which in the case of n; identical intermediate particles implicitly includes an
additional symmetry factor l/S,(LJ]'.) = 1/n;! in order to avoid multiple counting in the
phase space integral. Imposing overall 4-momentum conservation 5(4)(Z‘pf — Yp;) and
using time-reversal invariance of the strong interactions immediately yields the generalized
optical theorem for the dimensionless invariant amplitudes T'f;

1 , .
Im Ty; = 5 > / A1) (2m) 6™ (Sp; — Spi) T, Ty - (3.16)
{5}
Under the additional assumption of hermitian analyticity of the S-matrix (i.e. the ampli-

tudes T}; obey the Schwarz reflection principle T7%;(s) = T;(s*) and are real on part of the
real axis) it follows

DiscTy;(s) = ll_}r% [Tyi(s +ie) — Tyi(s — ie)] = 2i lg% Im Ti(s + ie) , (3.17)

for the physical limit corresponding to the s-channel process, and hence (3.16) may also
be proven in the framework of perturbation theory to all orders. By normalizing the 4-
momentum states according to (p/|p) = 2E,(27)26®) (p’ —p) for both bosons and fermions,
for generic two-by-two scattering ab — c¢d with one particular intermediate 2-particle state
J = j1j2 (with CMS 3-momentum modulus p;) and after partial integration of the 2-particle
LIPS the optical theorem (3.16) takes the form

11 2p; [d A2
= [ S, =
sO 16x /s | ax s B 15

(3.18)

leading to the usual form of the differential cross section (with p; and p; in analogy to p;)

Ty
8m+/s

A partial-wave decomposition of the invariant amplitudes T’; allows for a reduction

dogi _ pgpidogi  py

ds2 T dt  p;

2
. (3.19)

of the unitarity constraint (3.18) to unitarity relations for each partial wave separately.
In the presence of spin the T" operator for two-by-two scattering can be diagonalized by
using the eigenstates of total angular momentum J as basis, which can be achieved most
easily in the CMS via the helicity formalism [50]. With Ap denoting the helicity of the
corresponding particle, one can take the T-matrix elements in the basis of single particle
momenta and helicities and by applying the respective phase space integration in the CMS,
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the corresponding invariant helicity amplitudes T;‘;’)‘d;’\“’)"’

can be written in terms of states
of relative motion for both incoming and outgoing particle pairs. Thereby, the differential
cross section for a reaction with a given set of helicities can be derived in full analogy
to (3.19). With the usual angular conventions of [29, 50] and the azimuthal angle ¢ set
to zero, the partial-wave expansion of these helicity amplitudes in the helicity basis then

reads

AcsAdsAasA
Tre e (s, 8) = /87816 Y (27 + DT 3 ,onwn (583, -y aen(0) 5 (3.20)
J

where di@m' (0) are the Wigner d-functions!! and the sum runs over integer/half-integer
values of J for an even/odd number of half-integer spins present in the initial or final
state. In the case of spinless particles with df,(#) = Pj(cos) and J = [ the expansion
simplifies to

Tyi(s,t) = \/sfsimwi(w + 1)T},(s)Py(cosb) . (3.21)
J=0

Note that we have added here explicit symmetry factors S; and Sy to the partial-wave
expansion of [50] in order to take care of identical particles in the initial and final state in a
symmetric fashion. This normalization reproduces the standard normalizations for spinless
processes as well as for tN — 7N, and furthermore ensures that no symmetry factors occur
in the elastic unitarity relations for the partial waves, since they always cancel with the
symmetry factor implicitly included in the LIPS (cf. (3.18)). We will explicitly demonstrate
the effect of this convention for the symmetry factors on the extended unitarity relation for
7w — NN partial waves by considering 77 — 77 with KK and NN intermediate states
below.

Due to the invariance of strong interactions under time reversal and parity, the helicity
partial waves obey the symmetry properties

J J J
TAa,Ab;Am)\d(s) = TAcJ\d;Aa,)\b(S) = T*Acﬁ/\d;*/\a,*)\b(s) : (3'22)

If the particles are spinless or if the matrix T (s) in helicity space is diagonal in some
appropriate basis (as it is e.g. for TN — 7NV in the s-channel isospin basis Iy € {1/2,3/2}),
the unitarity relation (3.18) for partial waves of generic elastic scattering ab — ab (i.e.
f=j=1) reads

2p 2
Im Tf;(s) = %‘T}Ii(s)‘ : (3.23)
which is solved by a parameterization of T]‘c]i(s) via the real phase shift 5%2.(5)
Tfi(s) = Vs sin 5}7,;(3)85%1'(8) : (3.24)

2p

where (3.23) and (3.24) are valid for each diagonal element 7' J;]Z(s) of T7(s). For s above
the lowest inelastic threshold sine these equations have to be modified by introducing real

A comprehensive review on Wigner functions, in particular a comparison of different angular conventions
used in the literature, is given in [51].
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inelasticities 0 < nfi(s) < 1 according to

.5‘].
) g VI -
FAT ™ op 2i ’

2p 2 /s 2
T (s) = 2| T (9) +%[1—(m{i(s)) | 325)
with nﬁ.(s) < 1 for s > sjpe due to additional intermediate states contributing in (3.15).
These partial waves are then related to the diagonal elements of the corresponding S-

matrix via 4
2i67, . XD
Si(s) = nfi(s)e¥nl) =1 4 zﬁT}Ji(s) . (3.26)
After these general remarks, we now turn to w/N scattering: the reduced s-channel
partial-wave amplitudes f{_(W) in the s-channel isospin basis I, € {1/2,3/2} are conven-
tionally normalized according to (cf. (3.25) and e.g. [20, 29])

s s '618 1 s
(S iy =1 L (W) — 1w sin G2 (W) gt
21 q 29

o) =

Q| =

(3.27)
where for the elastic form we have used the fact that the lowest inelastic intermediate
state is 7w N and thus nle[(W) = 1 below the inelastic threshold Wi,e = W + M. The
s-channel partial-wave unitarity relation corresponding to the normalization given above
reads

1— (nfy(W))*

Im f2 (W) = g fE W) O(W = W) + 4q

O(W — Winal) , (3.28)
leading to the branch cut for W > W..

For the (necessarily inelastic) ¢-channel partial-wave unitarity relations one needs the
dimensionless partial-wave amplitudes t? (t) of elastic wm scattering. They are convention-
ally defined from the dimensionless isospin amplitudes of 7w — 77 via (with ¢-channel
isospin I; € {0,1,2}, total angular momentum J = [, and symmetry factors m =2
for identical pions, cf. (3.21) and [12, 20])

TT(s,t) = 32w > (2] + 1)t} (£)Py(cos677) , (3.29)
J=0

that are normalized according to

2

40t smn _ ‘Tlt(s’t)’ . (3.30)

dQ 871'\/7?

The corresponding elastic unitarity relation then takes the form

Tm () = o7 |th (1) 0 e Y 1
mtf(t) =of |t} (1) 0(t —tx) d=g=\TT (3.31)

and hence the partial waves can be parameterized as

I _ Iy (4 216 (¢ o sT

t{;(t) _ i [Sjt (t)]mr.—ﬁrﬂ 1 _ inf(t)e 2 J (t) -1 77?(;):1 Sin 5Jt(t) eiéét(t) . (3.32)

™ ™ ™
o] 21 o 21 o
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The reduced t-channel mN partial-wave amplitudes f{(¢) are related to 7N helicity
amplitudes F},(s,t) and dimensionless partial waves F{(¢) via (cf. [29, 49])

A/t >

Fii(s,t)= F__(s,t)= > (27 + 1)F(t)Py(cosby) ,

qt =0
Fi_(s,t)=—-F_ 47“/ Z \/21]{]%11F‘7 (t) sin 6, P’ (cos 0) ,
Fl(t) = ; (pear)” %mt), F£<t>=]%t<ptqt> (), (3.33)

and they are normalized according to

F)\A(svt)r _ % {
87/t

qt

d6—7r7r—>NN Dt

df2 B at

F++(87t) ‘2
8w/t

Fy (s,t)*| _ 4p} dGxn snm
8w/t ‘ g A

(3.34)

The general formulae (3.33) and (3.34) are also valid for isospin even/odd parts F{A(s,t)

with crossing index I = +/— and J even/odd, accordingly. Note that when referring

to the t-channel isospin basis I; € {0,1} as in the following, the isospin crossing coeffi-
cients ¢y of (2.39) need to be included. In general, the ¢-channel partial waves may be
parameterized as

= [FL()|e’® = Re f{(t) + iTm f{(t) . (3.35)

By considering only 77 intermediate states in the region ¢t < (4M;)? (which is elastic with
respect to w7 scattering, but unphysical with respect to the 7N t-channel) in the general
unitarity relation (3.15) for NN — mr, the f{(¢) can be shown to obey the “elastic”
t-channel unitarity relation

Im f{(t) = of (t5 () fL(t)0(t —tz) Vi E [tr, 16M2) (3.36)

(where the coefficients c¢; cancel), which leads to the branch cut for ¢ > t,. Since the
imaginary part Im f{(¢) itself must be real, from (3.36) together with (3.32) and (3.35) one
can immediately infer

— OO Vie [ty 16M2), (3.37)

i.e. the phases of the t-channel partial waves f/(¢) are given by the phases of the 7w
partial waves t? (t) modulo 7 (by convention we choose the phases to coincide exactly),
which is also known as Watson’s final state interaction theorem [52]. It is common practice
to assume that the contributions due to 47 and other intermediate states can safely be
ignored for ¢ < 40M2 =~ 0.78 GeV? (see e.g. [29, 40]). However, as demonstrated in [53] in
the context of the scalar pion form factor, this is certainly only true in the S-wave below
the threshold tx = 4M}2( ~ 0.97 GeV? for the production of KK intermediate states, while
in the P-wave inelasticities effectively start to set in around the 7w threshold at 0.85 GeV?2.

It is crucial to note that (3.36) is invariant under rescaling of f{(t) with real factors,
whereas elastic unitarity relations as (3.28) (for W < Wiye1) and (3.31) are always nonlinear
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in the corresponding partial wave. Hence, fixing the normalization of all different partial
waves that are needed in extended ¢-channel unitarity relations (i.e. allowing for additional
intermediate states) in a consistent manner can only be done resorting to the corresponding
elastic reactions, as we will now demonstrate for a system of coupled-channel equations with
7, K, and N degrees of freedom. Writing 711 = Trr—rr 112 = Tk —snm> 113 = TN N rr
etc. for the T-matrix elements and using the invariance of strong interactions under time

reversal, the general unitarity relation reads in terms of matrix elements
S}'Z].Sji:dﬁ , SfiZ(Sfi—l—ini:(Sif—i—iﬂf:Sif . (3.38)

In particular, one can read off the extended elastic unitarity relation for 7m — 77 and the
extended unitarity relation for NN — 7w with 77, KK, and NN intermediate states

(511 =1= ’511’2 =+ ’512‘2 + ‘513‘2 , (513 =0= Siklslg + Sik2523 + Sik3533 R (3.39)

and thus, by dropping the NN intermediate states in the second relation (since we are
finally interested in the extended ¢-channel unitarity relation of 7N scattering in the region
below the NN threshold), we obtain

2ImTy, = ‘T11|2 + |T12‘2 + ‘T13’2 s 2ImTi3 = T1*1T13 -+ T1*2T23 . (340)

Introducing now the reduced ¢-channel partial waves gﬁt (t) of mK scattering (with isospin
I; = 0/1 corresponding to J = [ even/odd due to Bose symmetry in 77, symmetry factors
\/SSi = v/2 and the partial waves defined from dimensionless isospin amplitudes, cf. (3.21)
and [19])
= Vi
G (5,1) = 16mv/2 3 (27 + 1) (k) g ()P (cos 075, ky = 2 - Mp = ok
= (3.41)
the first relation of (3.40) may be decomposed into partial waves, and performing the
angular integrations of the phase space integrals leads to the partial-wave unitarity relation
for 7 scattering with 77, KK, and NN intermediate states

It _ v It 2
Imt} (t) = o] tJ(t)‘ 0(t —tx)

kgl o )] 0 — tx) +1(th2f{\pﬂo\i‘pz(t)f}a(t .
’ (3.42)

For t < tg (orif I; + J equals an odd number) this reproduces the elastic unitarity relation
for 7 scattering (3.31), which corresponds to the relation (cf. (3.32))

[SH®)] ., =1+ z’fj%tf; ) Ot —tx) - (3.43)

Comparing (3.42) with the elastic unitarity relation for the partial waves (cf. (3.39))

2

T 120) SRR 2| EXI0) K Y [ 10 N
(3.44)

[E0) —
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for the cases t < ty and t > ty successively then allows to fix the normalization of the
partial-wave S-matrix elements of the inelastic channels (both in the natural ¢-channel
isospin basis I; € {0,1}) to'?

I Aka)™*2 i
(S5 (t)]TrW*)KK:ZTth (t)0(t—tx), [SL(t )]WHNN 2 Fﬂ:( )0(t—1tn).
(3.45)
These S-matrix elements indeed reproduce the correctly normalized differential cross sec-
tions
doy' gk _ ke |GM(s )| (3.46)
df2 q | 8w/t '

and (3.34), respectively. Furthermore, from the unitarity bound of the ¢-channel partial-
wave S matrix of 7N scattering only (cf. (3.44)) together with its explicit form (3.45) and
the relations (3.33) to the corresponding partial waves f{ we can deduce that the partial
waves fall off asymptotically at least as fast as (cf. [29])

fFly~t7rs )y~ for t— o0, (3.47)

i.e. f{(t) = 0 for t — oo by unitarity at least for all J > 0 ; this asymptotic vanishing is
usually assumed to hold for the S-wave as well. By virtue of similar considerations, the
normalization of the remaining partial waves in the second relation of (3.40) can be fixed.
We may introduce the reduced ¢-channel partial waves h:(t) of KN scattering in analogy
to the 7N case via dimensionless helicity amplitudes (cf. (3.33) and [54])

471'\/% > kt

Hys ) =0 S 27 + DL (0 Prleos8f ™) 10 =2 k! 20,
J=0
Ho (s 4”2 J%Hﬂt)smef“z)}(cosef%, 1 (0= ) 1 0).

(3.48)

where it is important to note that, in contrast to w/N scattering, also the combinations
I; = 0 with odd J and I; = 1 with even J are allowed due to lack of Bose symmetry in

KK. In order not to bloat the notation, we refrain from using an additional index for

J=even/odd . (J=even/odd,[;=0/1)

I3, and in the following e.g. A’y is always to be understood as h ,

(J= odd/evenlt 0/1)

respectively, and not by , since only the former can couple to the t-channel

process mm — NN. The normalization is fixed by

dQ k‘t 5\)\ 871'\/1?

dogr NN Pt Z Hy,(s,1)

87T\/7€ - ?? dQ2 ’
(3.49)

? _ 2p || Hiy (s t) ’
ky 8w\t

Hy (s,t) ’2} P doyN_ ki

2Note that our symmetric normalization of the hehc1ty partial waves (3.20) together with (3.33)
and (3.34) leads to an additional factor of 1/v/2 to [S{(t )]
I
7rt7r—>NN

oy 0 comparison with [29, 49], where

one should read in addition [S (¢ )]m—>NN = c;[SL(1)]
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so that the dimensionless partial-wave amplitudes Hi(t) are related to the diagonal ele-
ments of the corresponding S-matrix according to
i
[Si( )}KK—>NN A

1
tHi()H(t—tN), o = 5 Y- (3.50)

Plugging the partial-wave matrix elements into the partial-wave projection of the second
relation of (3.40) for either parallel or antiparallel antinucleon-nucleon helicities yields the
extended t-channel unitarity relation for the ¢-channel partial waves f(t) (extending (3.36)
for KK intermediate states)

Im f(t) = o (t4 () FL(t) 0(t — tx) + 2csV2h ol (g7 (1)) hL() O(t — tr) . (3.51)

Finally, we can use (3.44) to derive the inelasticities 7 f (t) of the 77 scattering ampli-
tude that are consistent with (3.51). Below the NN threshold, inserting (3.32) and (3.45)
into (3.44) leads to

2
nl(t \/1 — 40T ol (keqr)® | g™ (17 O(t — tic) - (3.52)
3.3 From Roy-Steiner equations to the Muskhelishvili-Omneés problem

3.3.1 Threshold behavior of the t-channel partial waves

The asymptotic behavior of f{(¢) for p; — 0 and ¢; — 0 (which is equivalent to ¢ —
ty = 4m? and t — t, = 4M?2, respectively) can be derived directly from the partial-wave
projection (3.6). Since A!(t,2;) and BI!(t,2) have definite symmetry properties under
s <> u and since s — u = 4mv = 4piq 2z, we can write down the expansions

Al(t, ) = Z(tht)JIPJ'(Zt)aJ' (t), Bl(t,z) = Z(tht)J,PJ'(Zt)bJ/ (t) (3.53)
J 7

where only even/odd values of .J' contribute according to the symmetry properties of A’ and
B! (i.e. even J' for A*, B~ and odd J’ for A=, BY). Let us first consider the limit p; — 0,
i.e. the behavior of fj{(t) at the t-channel threshold ty. As far as the leading asymptotic
behavior is concerned, the functions a/(t) and b/ (t) can be evaluated at ¢t = tx and will
thus be considered as constant coefficients in the following. Inserting these expansions
into (3.6) (where J even/odd corresponds to I = +/—), we find for J = 0 that

fLt = tn) = O(}) (3.54)
at the physical threshold, while for J > 1 we obtain

1

mby_ mby_ J 2
Flt = ty) = == / daPy ()2 Pra(2) + O0)) = =g = 5557 1 + O
1
ITTD
£t tn) = 877 L / 2Py 1(2)Py1(21) + Op2)
br_ J(J+1 2
b VIR 2 b (3.55)

8t 2J+1 2J-1
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such that
flt—ty)=001), flt—ty)=01), VJI>1. (3.56)

However, the linear combination

J
() = O >1 .
) =my| T - Fl) V> (3.57)
vanishes at threshold (cf. [29, 55, 56])
It —ty)=0@p) VYJ>1. (3.58)

The same reasoning may be applied to the limit ¢; — 0 as well, but as A’ contributes at
the same order as B’ in the expansion of fﬁ (t), no relation between the threshold values
of different amplitudes may be inferred for ¢ — 0

flt—t:)=0(1) VJ>0, flft—=ty)=0(1) VJ>1. (3.59)

In fact, the properties of f{(¢) at the ¢-channel threshold are crucial to ensure conver-
gence in the RS equations. From the partial-wave expansion (A.73) we can easily derive
the leading contributions to the invariant amplitudes (given explicitly for J < 2)

At (v,t) L) 15 5 JT2(t) 5 4 . A~ (v,t) ()
Bt (v,t) 15 9 B~ (v,t) 3 .

(3.60)

demonstrating how the threshold behavior (3.54) and (3.58) ensures that the partial-wave
expansion does not introduce spurious kinematical poles at p; — 0 into the expansion of
the invariant amplitudes and thereby into the HDRs (2.44). To illustrate the consequences
of this point, we briefly comment on the several places in our RS system (3.4) and (3.7)
where the threshold behavior of f{(t) features:

1. Although Gy ;(W,t') and Hy;(W,t') diverge as p}~2 for t' — tx according to (A.92),
the relation

[ J
Res [HU(VV, t/),t/ = tN} = —-m Ji—kl Res [GZJ(I/V, t,), t/ =tN (3.61)

together with (3.54) and (3.58) ensures that the corresponding integrals in (3.4) are
well defined. We have checked that the explicit expressions in (A.89) fulfill this
equation.

2. The p,~? divergence (B.51) of K}, (t,t') and K2 ,,(t,t') for ' — tx cancels in (3.7)
provided that

_ 7! _
Res | K2, (t,t),t = tN] = ‘m”m Res [K}J,(t,t’),t’ = tN] . (3.62)
This relation can easily be verified for the kernels given in (B.48) and (B.50), cf. (B.49).
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3. Based on the asymptotic forms (B.8) of the pole-term projections Ni(t), one may
check their threshold behavior to be analogous to (3.54) and (3.58). Note that in this
special case the relations hold for ¢ — 0 as well, since A does not contribute to the
pole terms:

Ng(pt% —0) = O(p}q;) ,

J - -
m mNi(ptqt —0)— Nl(pgp — 0) = O(piq}) VYJ>1. (3.63)

3.3.2 Muskhelishvili-Omneés problem for the t-channel partial waves

Using the properties of the kernel functions for t-channel exchange as given in appendix B.3
together with the threshold behavior of the partial waves as discussed in section 3.3.1, we
can rewrite the t-channel part (3.7) of the (unsubtracted) RS system as

£ =A%) — ﬂ/dflmf#f') 1/dt’mf?“(t/)7

t—ty o ow t—t

\/ T Im‘]t'—Im x m £ (¢
£t = AL + /d’m /= Fi®) 1/dt’1f+(t) V>,

t—tn s
® J (4!
) = AL (t) + % /dt’hnt;f:(tt) VJ>1, (3.64)

tr

where we have defined the abbreviations

AL(t) = Ni(t) + AL(t)

1
s

/ S Gnle W T (W) + G, W I ) (9}
Wy =0

/ 2 y eyt {RY (6, #) I 7 () + K300, T £ ()}

J+2 2
V>0,
o0 o0
A (t) =+ / AW S LB W) T (W) + B, W) T gy ()}

W, =0

o0

1 / }oo: 1+ <_1)J+J/ 3 / J (4t
™
b =T

for the inhomogeneities A7 (t), which besides the t-channel projections N7 (t) of the nucleon
pole terms contain the coupling to all s-channel partial waves as well as to the higher ¢-
channel partial waves. Note that AJ(¢) only contains the left-hand cut and therefore is
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real for all ¢ > ¢, . By virtue of (3.57) and the analogous definition

J
AL(t) = my| ——=AL(t) — A (¢t :
1) = my [ 72 A% (0 - A%, (3.66)
the equations (3.64) can be cast into the form of a MO problem for f9(¢), f7(t), and the
linear combinations I'/(¢)

t—t Oo, Im fO (¢
FL(t) = A% () + N/dt(t S ()

T T—tN)(t —t)
tr
Tien AT t—tN7, Im T (#) -
P (t) = AL + — dt(t,_tN)(t,_t) VJ>1,
tr
17 Imfl
ff(t):A{(t)er/dt’H;f:i) VJI>1, (3.67)
tr

where for f{(¢) and I'/(¢) combining the integrals effectively yields one subtraction at the
threshold ¢y and the additional roots at ' = ¢ in the denominators are canceled by the
threshold behavior of the numerators. The solution for f i(t) can then easily be recovered
via (3.57).

How these equations (or their subtracted analogs derived in section 4.4) can be used
to determine f9(¢), f1(t), and f2(t) with the help of MO techniques will be described in
the following sections. Note that such an easy rewriting scheme is not possible for the
s-channel part (3.4) of the RS PWHDRs, since in the corresponding s-channel integrals
also 0 < I’ <l contribute.

4 Subtracted Roy-Steiner system for pion-nucleon scattering

The Froissart-Martin bound [57, 58] limits the number of subtractions necessary for the
convergence of the integrals in the high-energy regime to 2, since the total cross section does
not increase faster than log? s for s — 00.!® The influence of the high-energy contributions
to dispersion integrals may be reduced by means of suitable subtractions for the trade-off
of introducing corresponding subtraction polynomials with subtraction constants that are
a priori unknown. For the MO integrals in (3.67) subtracting in ¢ at subtraction points
below ¢, with the additional constraint s = w in order to preserve crossing symmetry is
favorable. A particularly useful choice is the subthreshold expansion, which amounts to
subtracting in t at zero: first, it is very convenient for extrapolation to the Cheng-Dashen
point in order to elaborate on the 7N ¢ term (cf. section 2.1); second, subtracting at the
subthreshold point facilitates matching to chiral perturbation theory, which is expected to

13While the original Froissart bound assumes validity of the Mandelstam representation for the scattering
amplitude, the result by Martin is based on somewhat less restrictive assumptions.
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work best in the subthreshold region.!* To this end, we first briefly review the subthreshold
expansion of the scattering amplitudes and then discuss its application in order to write
down both the once- and twice-subtracted form of the HDRs (2.44).

4.1 Subthreshold expansion

The subthreshold expansion refers to the expansion of Born-subtracted amplitudes around
the subthreshold point (s = u = so,t = 0) = (v = 0,t = 0) (cf. section 2.1), where the
nucleon pole terms are subtracted since they are rapidly varying in this kinematical region.
Subtracting the pseudovector Born terms (indicated by bars) yields

2

- _ 1 1
At(s,t) = AT(s,t) = L | B(s,t) = B (s,t) — ¢ -
(s,0) =A%) =0 B(s) =BY(s.t) —g" | o5 — 5l

A (s,t) = A™ (s,t), B~ (s,t) = B~ (s,t) — ¢* [ ! + ! ] + g (4.1)

m2—s m2—u 2m?2 "’

while for the pseudoscalar Born-subtracted (indicated by tildes) amplitudes A* and B* the
terms —g?/m and +¢?/2m? need to be dropped (cf. 2.48). Due to the crossing symmetry of
the amplitudes (2.18) (similarly for HDRs (2.44)) one can write the subthreshold expansion
generically for crossing-even amplitudes as (cf. [29])

- A1- B+ Bt - D-
X, )= 3 o (v2)", X e {Zﬁ, an A A BB g g prp P D} ,
ot v v v v v’ v
(4.2)
and thus explicitly for the pseudovector Born-subtracted amplitudes as
oo [e.e]
At (v, t) = Z ab v Bt (v,t) = Z bh A
m,n=0 m,n=0
oo o
A~ (t) = > ap B (vt)= Y by, (4.3)
m,n=0 m,n=0

where the corresponding subthreshold parameters of the amplitudes D* = A* + vB* are
related by

d;ir_m = aj?_zn + brt:,—l,n ’ d;%n = a;m + b’;zn . (44)
Note that due to bflm = 0 in particular
ds, = ag, . (4.5)
From the expansions
1 1 dmuy
- = O 37 t )
s — g s —u (8’—50)2+ (V V)
1 1 2 t
= — O V2, V2, 12) 4.6
8’—s+s’—u s’ — s (s’—so)zjL (vv ) (46)

"For the application of heavy-baryon ChPT to 7N scattering in the subthreshold region see [59]. Con-
versely, analyticity and unitarity are used in [60] to stabilize the extrapolation of 7N partial waves derived
from ChPT amplitudes in the subthreshold region into the physical region, thus enabling the determination
of the chiral parameters by matching to experimental information in terms of s-channel phase shifts.
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one then can read off the subthreshold expansions of the Born-unsubtracted amplitudes up
to and including first order

2
At 1) =L o dg + g, t+ OV )

_ _ dmy
A (V,t) = I/aoo + O(V ,Vt) ; B+(V,t) = ng + ngo + O(V3, I/t) N
- 2 2 t g9 - 2 2, 2
B (v,t)=g i ) —2m2+b00+b01t+(9(u NERSN (4.7)

4.2 Sum rules for subthreshold parameters

Subtracting simultaneously at sp = 3/2 < s; and ty = 0 < t, corresponds to the sub-
threshold expansion around (v = 0,¢ = 0) and thus allows for the determination of sum
rules for the subthreshold parameters. Matching the expansions (4.7) to the corresponding
expansions of the HDRs (2.44) by equating the coefficients (where it is crucial to keep track
of all implicit dependencies in the expansions) together with introducing the abbreviation

ho(s) = ——— — (4.8)

s'—sy s —ua

then yields the following sum rules for the lowest subthreshold parameters

2 F /
g dt
dly = == o /ds ho(s') [Tm AT(s',20)] ) W/ t [T AT, 21)] ) -

it tr

00
2 2

) g p 1 B dt/
b = EAM /dsl ho(s') [Im B (s/’z;)](om + 7T/ t [Im B~ (t’,zg)](o,()) ;
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o0

dt’ 1
+ 71_/ 7 { [&tlm AT, zt)] 00 " [Im A+(t/7z£)}(0,0) } ,

tr
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The subscript (0,0) indicates that 2. and 2] in the s- and ¢-channel integrals, respectively,
are to be evaluated at (v = 0, t = 0), which according to (2.52) and (2.43) amounts to
using

! 2
’ _ (s —s0) , _ sp—a
oo =1 o —a) 9200 = 327 —a)
t'(t' —4(so — a)) t'da — tyt S0 — a
12 _ _ ™ 12 _
[Zt }(070) - 16p£2q£2 =1+ W 5 [atzt ](070) = W s (410)

where again we have used the fact that the ¢-channel integrands depend on the squared
angle 22 only. Note that these sum rules as such are valid independent of the choice of
a, but in practice one will incur an a-dependence once approximations are made (such
as truncation of the partial-wave expansion, approximation of the high-energy region by
Regge theory, etc.).

4.3 Subtracted hyperbolic dispersion relations

A single subtraction at (v = 0,¢ = 0) only affects A" (v,t) and B~ (v, t), since both A~ (v, t)
and BT (v,t) are proportional to v. Based on the unsubtracted HDRs (2.44), the explicit

subthreshold expansions (4.7), and the corresponding sum rules (4.9), we obtain the once-
subtracted HDRs

2 7 2y [Im AT, 2))]

g 1 Im A*(t, 2 [ » 2t)1(0,0

A+(s,t;a):m+d3;)+7r/dt’{ o ) _ t, (00
tr

|s'—=s s —u s —a

1 [ 1 1 1
+ — /dsl{ + _ ]Im A"‘(s”z;) — hO(S’) [ImA+(5/,Z;)](O,O) } s

oo
_ o1 1 @2 1 ImB~(t',2)) [ImB~(t, )]
B t _ 2 o b - dt/ ) ~t _ )
(s,t;0)=g _m2s+m2u} 2m2+ 00+7r/ { t—t t
tr
oo -
el L (s 2 — hols) [Im B (s, 2))]
T 3 |s'—s s —u s —a o % ots) [ 5%/l 00)
S

(4.11)

together with the unaltered equations (2.44) for A~ and B™. Note that the dependence
on a of the Born-term contribution N~ is canceled by the sum rule (4.9) for by,, which is
why the subtraction constants are formally included in the subtracted nucleon pole terms
in the following for convenience (i.e. preserving the generic form of the HDRs (2.44)).
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Similarly, a second subtraction at (v = 0,¢ = 0) yields the twice-subtracted HDRs

At (s, t;a) = 97_|_d + dg;
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tr
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sS4
where A~ and B™ can also be written as
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These subtractions require a modification of the nucleon-pole-term projections and the
kernel functions for both the s- and ¢-channel contributions calculated in appendices A
and B as well as the asymptotic contributions given in appendix D. The differences on
the right-hand side of the once-/twice-subtracted HDRs (4.11)/(4.12) compared to the
unsubtracted HDRs (2.44) are the sources for the necessary modifications which are derived
in appendices A.5, B.5, and D.3 for the s-channel kernels and pole terms, their ¢-channel

analogs, and the asymptotic contributions, respectively.

4.4 Subtracted t-channel Muskhelishvili-Omneés problem

Using the subtracted kernels and pole terms as derived in appendix B.5 leads to the sub-
tracted analogs of the unsubtracted ¢-channel MO problem (3.64), which we will state
explicitly in the following for J < 2 (the equations for J > 3 are unaltered for up to two
subtractions). For one subtraction we may write

I 0 (4 o0 0 /4
7o) = A9 - L / qrmSel) / LA

T vt —ty)  w 't —t)
tr i
su tv [ ZIm L) —Im L) T mm L
FL(E) = AL () + N/dt’ 2 : +/dt’mf+( ),
m t'(t —tN) m t(t —t)
tr ™

FL) = AL ) + % / ) 1_ )

AZ lsub m\[lmfz t/ —Imf+( ) 1 3 ,Imf_%_(t,)
2t L [

2
() t—tn T t—t
tr tr
2 2 1-sub 1 /IIn fE (t/)
t)=A t — | dt'——= 4.14
£y =82+ - far= = (414)
tr

while two subtractions yield

£20) = AP ) */MHM%U ﬂ/&mwwv

wtﬁ t2(t —t ) ™ / t2(t —t) ’

£ = AL )+t];t/d,fImJt”;Et)_—;n)afi(t’)+tj “dt,m’

tr tr
FLt) = AL ) + f_ ?dt’m ,

tr
=i+ Ja RO B 1 Tt

i g
F2(t) = A2 7 () + ;/oodt’m . (4.15)

tr
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It is important to note that S- and D-waves are coupled, as Ag_ contains contributions from
J = 2 according to (3.65). While the integrands containing the Cauchy kernel in (4.14)
and (4.15) for J = 0 and J = 1 clearly show the corresponding number of subtractions at
to = 0, for J = 2 there is always one subtraction less or no subtraction at all. Note that the
integrands containing linear combinations of the partial waves are proportional to ¢y /t’
(if affected by the subtractions at all), which results in a suppressed internal high-energy
dependence inside the integral due to division by # without an increased external high-
energy dependence due to multiplication with ¢y rather than ¢ as for a usual subtraction
at zero.

The un- (3.64), once- (4.14), and twice-subtracted (4.15) equations are of the original
form of the (subtracted) MO problem with integrals of the absorptive parts times the
Cauchy kernel, if the remaining ¢-independent integrals (which may, however, come with ¢-
dependent prefactors) are absorbed into a redefinition of the inhomogeneities A% (¢). This
problem is well defined due to the threshold behavior of the partial waves at ¢t = ty.
However, the price for taking advantage of the convergence properties of the integrals this
way is that reasonable approximations for the starting values for the partial waves are
needed as input, since the solutions can only be found iteratively.

Therefore, we prefer to utilize the threshold behavior of the partial waves and use the
linear combinations I'/(¢) in order to rewrite the equations in analogy to (3.67), i.e. to
modify the original form of the (subtracted) MO problem in a well-defined manner. The
general n-times subtracted (with n € {0, 1,2}) versions of the MO equations (3.67) for all
J then read

n-su "t — T / Im f9 (¢
£2.8) = 29 () + L) tN)/dttm( L)

T t—tn)( —t)
tr
(n=)0(n—J) (4 _ 7 Ty
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() = Ap[T ) + . W — e -1 7=
tr
(n—J+1)8(n—J) F T £ (¢
Jip\ _ AJ |nsub t / m [ (t')
1) = A0 + — /dt TR (7 1) VJ>1, (4.16)

ir

where the Heaviside step function is to be understood in its right-continuous form, i.e.
0(0) = 1. Again, the equations for f7(¢) and I'/(¢) exhibit one additional subtraction
at ty, such that the combined number of subtractions for all J > 0 can be given as
(n—J+1)0(n — J). For convenience, we explicitly show the terms in A (¢) that couple
the D- to the S-waves

—tNn ImI2(t) m

7 { [+t~ (tn +tx )+6a]t,_m+\/61mfz(t')}+m ’

AEHO 5ub t)

su 5 t—tn d tNt ImT2(t) m
AL = — — |t T ———L fte—=Im f2 (¢
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) 5t—ty [df (1 ImI2(#') m
AO 2-sub _ N/ + - - - I 2 (4
U = 5 | = 2[( +t)tnte — (N + tr)] ST +tt 7 m f2(t)

tr

T (4.17)

which converge for ' — tx due to the threshold behavior of I'? and vanish for ¢t — ¢y due
to the exceptional behavior of the (n-times subtracted) kernel K2, (cf. (B.52) and (B.68));
the respective remainder denoted by dots above is then given by

Y Im f () + K2,

S ) T f7 (t’)} .

/dt Z ! + {KOJ,
(4.18)

Note that this D- to S-wave coupling becomes independent of a by subtracting once or
twice, while the corresponding F- to P-wave coupling also depends on a in the once-
subtracted case (cf. (B.67)).

5 Solving the t-channel Muskhelishvili-Omnes problem

In this section the solution of the MO problem for the lowest ¢-channel partial waves f{(t)
with J € {0,1,2} will be discussed. First, the explicit analytical solutions will be stated.
Then, the numerical input needed will be collected. Finally, the numerical results will be
discussed.

5.1 Muskhelishvili-Omneés problem with finite matching point

We assume to know the imaginary part of the t-channel partial waves f(¢) above the finite
matching point ¢, as well as the scattering phases 5? (t) of the wm partial waves t{} (t) for
4M? = t, <t < ty, which in the elastic region are also the phases of the f{(¢) due to
Watson’s final state theorem, cf. (3.37). All inelastic contributions will be neglected. Under
these assumptions, we have to solve equations of the MO type [26, 27]

tm
U [T / Jm f(t')
t) = A(t dt' —t—~ dt' ——~ 5.1
R R R R (51)
tr tm
for f(t) in the range tr < t < t; with finite ¢, [19], where the physical values of the
integrals are obtained in the limit ¢ — ¢ + i€ and the discontinuity of f(t) across the right-
hand cut is given by unitarity (cf. hermitian analyticity (3.17) and the elastic ¢-channel

unitarity relation (3.36))

Disc f(t)

2~ £() = T S0 0t — ) | (5.2)
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where the inhomogeneity A(t) contains potential left-hand cut contributions to f(t) (i.e.
it is real for ¢, < t) and the elastic amplitude T'(t) is given by

T(t) = sin6(t)e®® (5.3)
We briefly review the result of [19, 27] in the following sections.

5.1.1 General solution

To begin with, we consider the homogeneous problem for a function fo(t) with non-
vanishing imaginary part only for ¢, <t < t,,. The solution can then be written as

fo(t) = Q) Xo(?) , (5-4)

with the Omnes function®®

Q(t) = exp {t / Az’ o(t) } = [9(0) exp {8(00(t — t)0(tm 1) } . Q(0) =1,

) ¢t —t
tr
Fat o) (1)
t t t _ t
U R _ e _ o)
(1) exp{ﬂ 15 t,_t} 19200) s — 11 o) =
tr
) - =0 (4 Far s — o)
1Q2(t)] = E(t_tﬂ) xpy— | = (> (5.5)
tr

where we have analytically separated the endpoint singularities of the principal value in-
tegral. By assuming the reasonable asymptotic behavior fy(t) — 0 for t — oo (cf. (3.47)),
the only analytic structures of ¥o(t) allowed by fo(t) and Q(t) are poles at the endpoints
t =tr and t = t,,. Since (t) is regular at ¢, due to d(tr) = 0, the regularity of fo(t)
excludes poles at t = t; and restricts the order of the poles at ¢t = ¢, to

n=|x|, x = 9(tm) (5.6)

s
(|z] denotes the largest integer < x). In this way, we find
Prn_1(t)

(tm — )"

where P,,_1(t) is an arbitrary real polynomial of degree n — 1 that introduces n free pa-

To(t) = (5.7)

rameters to the Omnes problem. For n = 0 the homogeneous solution vanishes according
to P_1(t) = 0 and no free parameter enters the problem.
The general solution reads

B Poa(t) 1 AW@)sins() 1T, Tmf(t)
f@—A“)*Q“){MH/dtmww—wH/dfmww—w}’ o

™ m

5Note that for a finite matching point it is not mandatory to work with a subtracted Omnes function.
However, subtracting once at ¢ = 0 ensures the usual normalization (0) = 1.
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which may also be written in terms of a principal value integral as

ft) =

. Puat) | 1] A@snd) 1T tmpe) ] s
Alteostlt) + 2 ’{ 17" 72][ R GICEDR ”t/ e H |

(5.9)

in accordance with [27] for ¢, — oo. Note that due to Watson’s theorem (3.37) the
prefactor in square brackets can be identified with the modulus |f(¢)|, and since the phase
d(t) is known, we only need to solve the MO problem for this modulus for ¢, <t < ty,.

5.1.2 Subtractions

If > 1, suitable subtractions need to be performed in (5.9) to ensure integrability for
t' — tym. Let us begin with the case 1 < x < 2, i.e. n = 1. We may write

00 , Im f(t) 1 miﬂlmf(t’) miﬂtm—tllmf(t/)

m m m

where the second integral is now convergent. The first integral is still divergent, of course,
but it does not depend on ¢ any more and can thus be absorbed into a redefinition of the
(constant) polynomial Py in (5.9) due to the common prefactor (t, — t)~!. For higher
values of x this subtraction and redefinition prescription needs to be iterated, whereby all
n parameters contained in the polynomial receive corresponding contributions. Applying
this reasoning to both integrals of (5.9) for general z and using the highest number of
subtractions allowed by the degree of the polynomial, the result is given by

|f(t)] = A(t) cosd(t) + W{pﬂ_l(t) + 7:][ ;1/7:: (trgl(—t;;,’)n A(tlt)lsinj(t’)

™

i T dt! (b — )" Tm f(t)
w/t’” Qe -t (-

tm

(5.11)

In order to reduce the influence of the high-energy contributions on the Omnes inte-
grals, subtractions may also be introduced already right from the beginning (5.1). With !
such subtractions, the analog of (5.11) becomes

! n Py — " A(t") sin § (¢
()] = At cosot) + M{mlu) . ’;][ I

m ) tnt Q)] v —t

. t"/ dt’ (tm — t’)”Imf(t’)} | (5.12)

m

This constitutes the final general result, which for = 1 and n € {0,1} reduces to the
results quoted in [19].
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5.1.3 Numerical treatment

The asymptotic behavior of the Omnes function |Q(t)| for t — t,, requires some care in
the numerical evaluation of the integrals in (5.12). Although by construction the singu-
larities for ¢ — t,, are integrable, the corresponding cusps generate large contributions to
the integral and a fully numerical treatment would require a very careful distribution of
mesh points in order to catch the effect. In the following, we will demonstrate how these
endpoint singularities can be separated analytically (cf. the appendix of [19]). For the
sake of simplicity, we discuss here the case of n = [ = 0, which already displays all relevant
features; the generalization is then straightforward. To this end, we split the integrals close
to the matching point t,, and approximate |Q(¢)| by its asymptotic form in the proximity
of ty

It ~ tw)| = |Qtw)| [tm — t* . (5.13)
For 7 — 0", we may thus rewrite the integrals above the matching point as
0 00 tm+T
Jar IO [ g i) nfen)
Q@[ —1) eI =) ()| / [t — ¢'[*(" — 1)

- / dt Q=1 00t — t)er(t) : (5.14)

tm+T

and similarly below the matching point either for ¢, <t <ty — 7

tm tm—T
][ JA(E) sind(t) / dt’ (A)sind(t')  A(t)sind(t)
dt —————=~ = _
Q)| — 1) t—t ()] [2()]
A(t)sind(t), tm—7—t  A(tm)sind(tm)
log - 1_(t), 5.15
0] A TN [ ERC R
orforty, —7<t<ty
tm tm—T
A(t') sind(t") / dt! A(t)sind(t')  A(tm)sind(tm) -
dtf —————— L — = I _(t). 5.16
f o emie—n= | 7= Wt e 610
The substitution v(t') = (¢ — tm)/(tm — t) leads to the integrals (with z € (0,1))
7(t) q ~(t)1—:(: 7(t) L
v T v _ T
Ii(t)_/vw(liv)_ 11—z :F/dvlj:v’ =i
0 0
7(t) q ~(t)1—x 7(t) - .
- v . 7 vl™% —
0 0

Separating the singularities as shown above, the remaining integrals can be solved by using
standard integration routines. For sufficiently small 7 (i.e. if 7 is of the same order of
magnitude as the discretization error of the integration routine), the above approximations
are well justified and this procedure allows for a stable numerical evaluation of the Omnes
integrals.
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5.1.4 Continuity at the matching point

The continuity of the Omnes solution f(t) at the matching point ¢, is analytically ensured
by the asymptotic form of the corresponding integrals of (5.17) (with 0 < x < 1, cf. the
appendix of [19])

o0
/ 1—i—v = T cosecT ][ "1 =) = —mcotmx . (5.18)
0 0

Taking equation (5.9) in the limit ¢ — ¢, from below, plugging in these asymptotic expres-
sions for the integrals, and using (5.6) indeed reduces the square bracket to |f(¢m)|. This
analytical equality may also be used as a check of the numerical evaluation.

However, the continuity of the first and higher derivatives is not ensured in a similar
manner. Since the solution must not depend on the value of the matching point, an unphys-
ical cusp or non-smooth behavior of the modulus of the solution at the matching point only
indicates that the input in terms of the absorptive part is not precise enough; moreover,
the physical condition of a smooth behavior at the matching point ensures the uniqueness
of the solution [32]. Physically consistent input given, this smoothness constraint may
actually be used in order to tune/estimate/fit the subtraction constants (cf. [19]).

5.2 Explicit solution of the t-channel Muskhelishvili-Omneés problem

Here, we will give the explicit solutions for the n-times subtracted t-channel MO prob-
lem (4.16) using the general results of section 5.1. The crucial ingredient for the following
discussion is Watson’s theorem (3.37), which states that below the onset of inelasticities
the phases 7 (t) of the t-channel partial waves f{(t) are given by the corresponding 77
scattering phases 5{} (t) with I € {0,1}, i.e. explicitly for J € {0, 1,2}

L) =00t =0do(t),  wi(t)=061(t)=d(t),  ¢L(t)=8(t)=8(). (5.19)

These identities enter the solutions at two places: first, in this kinematical region we can
use the same Omnes function Q; for both f{ and thus also for the linear combination I'/.
Second, in this range of ¢ the linear relation (3.57) is also valid for the moduli such that
after solving for ‘I‘J ‘ we can recover

——| )] - T’ @)]. (5.20)

0] = my

Using once-subtracted Omnes functions in the convention (cf. (5.5)),

Q,(t) :exp{ /i’f ‘z;’( >} = Q)] exp {0, ()6 (t—t)0(tm—1)} , 2s(0) =1,

tr
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T

JCJ(t) t

tr

t
}Qj(t”:'l_tm t t—t

™
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the general n-times subtracted (n € {0,1,2}) solutions of (4.16) for ¢ € [tr,tn] and
|07 (tm)/m] = 0 read

n-su "t — i ’ AO resub ') sin 6o (¢
F2(0) = AL () + QO(t)t(tth){ / & tm(tﬂ— tN)(’QZ(t,N(OtE ’ )

tr
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T I(n—J+1)0(n—J) |QJ(7§’)|( —t)
tr
7 Im f7(¢')
/
+t/ dt T 100 (0] — 1) VJ>1. (5.22)

Now, we can use the spectral representations of the inverse of the Omnes functions in the
un-, once-, and twice-subtracted form

tm tm
1 ImQ; (Y i !
Q;l(t) _ /dt, m s ( ) _ 1 /d/ Sln(s](t)

T v —t | (| —t)
t K ,  sindy(t) t2 7 ,  sindy(t)
—1- 1 [ ey~ 10 - [ g e (69)
with the derivative of the Omnes function'®
. d Fs)
0,0 = G| = / a2 (5.24)
tr

in order to explicitly perform the integrals over terms that are either constant or come with
appropriate factors of ¢’ or p/?, i.e. all terms involving the subthreshold parameters as well
as the term proportional to d;;/(m? — a) for the unsubtracted case. For this purpose we
define Ai(t) via removing all constant or subthreshold-parameter contributions from the
inhomogeneities A7 (¢) (cf. (3.65) and (B.61))

Ai‘n_SUb(t) _ Ai‘n—sub(t) . ANi‘n_SUb(t) _ Ni( +Ai|n sub : (525)

15Note that for t,, — oo (and neglecting inelasticities in the single-channel approximation) this quantity

is closely related to the pion vector radius for J = 1: limy, oo 1 = 2(r?)Y .
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and thereby we obtain
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tm
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Note that also in the unsubtracted case the explicit dependence on a cancels.!”

17 Actually, this has to be the case: e.g. the constant term proportional to (m2 —a)~! in the nucleon

pole terms (2.48), which was introduced to the dispersion relations via the hyperbolic kinematical relations
and which can be thought of as a contribution of the contour integral from the circle with infinite radius,
leads to constant pole-term contributions to the partial waves (cf. (B.6) and (B.62)). These (unphysical)
contributions do not vanish asymptotically, generate an unphysical behavior on a, and thus they must
cancel in any (physical) solution. Hence, the dispersion integrals for the unsubtracted case both for the
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Finally, due to Watson’s theorem (3.37) we can separate the unknown moduli from
the known 77 phases and solve the MO problem for the moduli directly
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/
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tm

On the one hand, the subtraction-independent pole terms Ni are real for t >t —(M2/m)?
and grow rapidly with J for ¢ in the vicinity of ¢, as discussed in appendix B.1. On the
other hand, in the elastic region the phases 0 are given by the corresponding w7 scattering
phases such that §;(¢,) = 0 and thus Im f{(¢,) = 0. Since furthermore phenomenologically
the 77 phases grow slower for higher J, we thus expect the partial waves f{ (and thereby
also their moduli |f{|) to be increasingly dominated by the pole terms for increasing .J
and t — t,. However, we do not solve for f i directly but for the linear combination I'”,
for which, in turn, the pole-term contributions Ni cancel at t,, cf. appendix B.5. The
pole-term domination of | fi | enters when calculating these parallel helicity moduli from
the solutions for the |T'/| and the (pole-term dominated) antiparallel helicity moduli |f”|
via (5.20), where in addition the relative importance of the latter increases with J due to
the factor \/.J/(J + 1). Both the pole-term domination and the dependence of |f/| on |f7|
will be explicitly demonstrated in section 5.4.

Omnes solution and the spectral representation of the Omnes function are strictly speaking not correct:
there should be contributions from the contour at infinity. However, this problem can be solved most easily
by removing all “dangerous” parts of the inhomogeneities via (5.23), which ensures that all these potential
contributions from the contour at infinity cancel.
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5.3 Input

In this section we will discuss all input that is needed to solve the (elastic) ¢t-channel MO
problem (5.28) as given in section 5.2.

5.3.1 Pion-pion phases and Omnes functions

We use 77 scattering phase shifts 5? (t) of [15, 16] for J € {0,1,2} with I; € {0,1} (I;
even/odd for J even/odd) which are constructed for vt € [2M,,1.15 GeV].!® Schenk-like
parameterizations [12, 62]

te — 1Y
tan 6% (1) = o7 2’ {Agt + B Cligh 4. }% , (5.29)
g

where the parameter rﬁt denotes the point where the corresponding phase shift passes
through 7/2 and the Schenk parameters Aﬂt etc. may be related to the coefficients of the
threshold expansion, ensure both the vanishing at threshold (59 (tr) = 0 as well as the
correct square-root-power behavior above threshold. Thus, 58 is linear, (5% cubic, and 58
quintic in of.

In figure 3 we show the moduli |2;] of the resulting once-subtracted finite-matching-
point Omnes functions according to (5.21) for J € {0,1,2}, where the choice /t;, =
0.98 GeV ensures that z;(t) € (0,1) and hence ny = |z;(tm)] = 0 for t € [tr,tm]. There-
fore, all functions are normalized to unity at ¢ = 0, finite for all ¢, and vanish at ¢ = ¢,
due to the finite-matching-point prefactor |t — t|xJ(t). Furthermore, for J = 0 the Omnes
function exhibits a cusp (i.e. a discontinuity of the derivative) at the physical w7 threshold
tr and decreases approximately linearly over a wide range in ¢, for J = 1 it is fully dom-
inated by the p(770) peak, and for J = 2 it is almost flat (equaling one again roughly at
the end of the KH80 energy range at 0.88 GeV and dropping rapidly above).

Using instead the parameterization of the 77 phases as given in [14] for the numerical
evaluations leads to deviations in these Omnes functions, and thereby the solutions of the
MO problem (5.28), that, however, are much smaller than the effects of the alterations
described in section 5.4.19

5.3.2 General remarks on existing pion-nucleon partial-wave analyses

Before summarizing the input from 7N partial-wave analyses that will be used in the fol-
lowing, some general remarks are in order: first of all, we will use the Karlsruhe-Helsinki
dispersive partial-wave analysis KH80 [28, 29] both as input for s-channel partial waves
as well as subthreshold parameters and as reference for our MO t-channel partial-wave

8For 7m scattering the validity of the Roy equations can be shown rigorously for t, < t < 60M2
based on axiomatic field theory [11]. Assuming Mandelstam analyticity, this range can be extended to
te <t < 68M2 [61], which corresponds to 2M, < v/t < 1.15GeV, by reasoning along the lines of appendix C
for 7w scattering.

Y9As stated in [29], the Karlsruhe-Helsinki dispersive partial-wave analyses KH78 and KHS80 (see sec-
tion 5.3.2 for more details) use as input the 77 phase shifts of [63], which are based on Roy-equation fits.
In principle, the differences between these phase shifts and the recent results [14-16] are sources of discrep-
ancies between the KHS80 results and the solutions of the MO problem. However, this point is of minor
importance for the results discussed in section 5.4.
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Figure 3. Moduli |Q;| of the lowest once-subtracted finite-matching-point Omnes functions for
Vim = 0.98 GeV.

solutions, since KH80 is still the only consistent analysis for all the partial waves and
parameters entailed in our RS framework. KHS80 is based on 7N — 7N data only (and
isospin invariance) and uses Pietarinen’s expansion method [64] in combination with con-
formal mapping techniques, aided in particular by fixed-t analyticity. Its solutions for
both channels are given as tables in [29].2° Moreover, an iteration uncertainty of about
3% for the iterative KH80 procedure is stated, which, however, cannot replace a thorough
analysis of the systematic uncertainties. The subsequent Karlsruhe analysis KA84 [65] im-
proves on KH80 especially for higher partial waves by using a modified PWDR framework
and thereby smoothing KH80, but no consistent subthreshold parameters are derived in
this framework.?2!’ The same holds true for the continuously updated VPI/GWU(SAID)
s-channel analyses, see e.g. [43, 67-69], for which at most the 7N coupling constant and
some of the necessary subthreshold parameters are determined. For the ¢-channel partial
waves in the unphysical region ¢ € [t, tn], there also exists an unpublished solution [56] ex-
tending the KH80 energy range v/t € [2M,,V/40M, = 0.88 GeV] to roughly 1 GeV. While
this solution is compatible with KH80 within the aforementioned range, it seems to suffer
from internal inconsistencies for higher energies.?? For the t-channel partial waves in the

20Tn [29] the results for the t-channel partial waves are quoted as KHT78 solution, but according to [23]
these tables are actually calculated from the KH80 s-channel solutions. Thus we will speak of the ¢-channel
partial waves in [29] as KH80 solution as well. In general, KH80 is an update of KH78 including more
recent data and improved fixed-t analyticity constraints.

2'For a comparison of KH80 with KA84 and also an improvement of the formalism outlined in [46],
see [66].

*2There are e.g. rather obvious outliers (corresponding to unphysical jumps) in the phases.
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physical region ¢ > ¢y, however, there exists a partial-wave analysis [70], which at least in
principle could be used as input. Finally, a partial update of the KH80 analysis including
new data and using more computational power was reported in [71], but so far only results
for forward 7N scattering have been published [72].

5.3.3 s-channel partial waves

We use the KH80 solution for the s-channel partial waves from [29] for W, < W < W, =
2.5 GeV. On the one hand, this is roughly the same energy range as for the continuously
updated GWU “current solution” [69] such that we are able to compare between KHS80
and GWU solutions as input. However, the effect of taking the GWU solution (or the
“smoothed” KH80 solution [69]) instead as input for the ¢-channel Omnes problem (i.e. the
corresponding inhomogeneities Ai) turns out to be much smaller than the effects discussed
in section 5.4. On the other hand, at W, = 2.5 GeV a reasonable transition from the trun-
cated sum of partial waves below W, to the Regge model for the full invariant amplitudes
above W, can be achieved as we will demonstrate now. Summing up all partial waves with
[ < 5 would encompass all 4-star resonances of [34], but of both [ = 5 4-star resonances,
N(2220) as Hy9 and A(2420) as Hs 11, especially the latter is mostly out of this energy
range due to its broad width of roughly 700 MeV. Hence we expect the best agreement
with the Regge model [73], which is based on differential cross section and polarization
data for 7N backward scattering with W > 3 GeV as discussed in appendix D.1, for [ < 4
and a scattering angle of z; = —1 corresponding to backward scattering. Since deviations
between summing up contributions for [ < 3, [ < 4, and [ < 5 start to show up around
1.5 GeV and we are interested in the matching to the Regge model at the end of the GWU
range of validity around 2.5 GeV, only this region is shown in figure 4 (in the spirit of [19]).
Note that only [ < 4 yields the correct sign compared to the Regge contribution in all four
cases. Moreover, it turns out that for [ < 5 the agreement is even worse than for [ < 3.
Hence, in the following all higher partial waves with [ > 5 will be neglected below Wj.

5.3.4 t-channel partial waves

The assumption of elastic unitarity breaks down in the S-wave as soon as the K K channel
opens, which manifests itself in the appearance of the fy(980) resonance. In principle,
there are several ways how this phenomenon may be accommodated in a single-channel
description.

First, inelastic contributions could be included directly in the solution of the MO
equations along the lines discussed in [74, 75] provided that the inelasticities are well
known. However, in the case of fﬂ this would in particular require knowledge of the
KK — NN S-wave, but it is unclear how reliable input for this partial wave could be
obtained independently from the present approach.

Second, one could retain a rather low matching point ¢y, but try to model the energy
region above t,, by means of a resonance description in order to establish a more meaningful
matching condition. This strategy proved quite successful in vy — 77 [31], where the
input above the matching point is dominated by the f2(1270). However, in the case of the
f0(980) this strategy is subject to several difficulties: its pole position is very close to the
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Figure 4. Matching of the s-channel absorptive parts between KH80 partial-wave contributions
for 1 <3,1<4, and [ <5 and the 7N backward scattering Regge model [73].

two-kaon threshold, such that the subtle interplay between the 77 and KK channels can
certainly not be approximated by a simple Breit-Wigner description. To circumvent this
problem, one would be compelled to further decrease the matching point and include the
f0(980) dynamics by hand using a Flatté-like parameterization [76], which is a modified
relativistic version of the Breit-Wigner differential mass distribution. However, while the
form coupling constant has been thoroughly investigated [77] based on the recent dispersive
analysis [14] (which yields phases that are basically consistent with the phases of [15, 16]),
the foNN coupling constant is only very poorly known, with different meson-exchange
models disagreeing significantly on the strength of the coupling and the continuation to
the physical pole [78-81]. We conclude that including the f,(980) in our approach reliably
as well as extending the energy range of our representation for f_? beyond the two-kaon
threshold will require a full solution of the underlying two-channel Omnes problem [82]. In
this work we will content ourselves with the single-channel approximation.

Since therefore we can solve the single-channel MO problem in the elastic region only
and furthermore iteration with the s-channel RS solutions (for which, in turn, accurate MO
solutions are needed as input) as well as a consistent determination of the 7N coupling and
the subthreshold parameters is necessary to finally arrive at precise quantitative results for
the partial waves of both channels, here we will only give qualitative results for the t-channel
partial waves by comparing with KHS80.
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KH80  St(KA84) St(SP98)  Oa(KH80)  Oa(SP98) Fe(KA84)
dgo [M7'] —1.464+0.10 —1.39+£0.02 —1.32+0.02 —1.4640.04 —1.29+0.02 -1.58
dgy [M73] 1144002 1.14+0.01 1.15+0.02 1.154+0.11 1.23+0.04 1.36
agy [M;?] —8.83+£0.10 —8.82+£0.04 —8.97+0.01 —9.26+0.17 —8.92+0.07 —8.47
blo [M;?] —3.54+£0.06 —3.49+0.03 —3.48+0.02 —3.56£0.10 —3.4240.04 —17.90
boo [M;?] 10.36+£0.10 10.35+0.02 10.45+0.01 10.84+0.18 10.3740.08 10.34
boy [M7*] 024+£0.01 0224001 024+£0.01 026+0.22 0.26+0.10 0.14

Table 1. Subthreshold parameter values as given by KH80/Hohler [29], Stahov [24], Oades [83, 84],
and Fettes (heavy-baryon ChPT) [85]. See main text for details.

Hence, in the following all ¢-channel absorptive parts above t, are set to zero. Con-
sequently, all t-channel Regge contributions are omitted (since ty, < t,; cf. the discussion
of the t-channel asymptotics in appendix D.2). Note that otherwise one would have to
avoid double counting of the asymptotic regions of the t-channel partial waves in the MO
problem. Finally, also all higher partial waves with J > 3 are neglected.

5.3.5 Subthreshold parameters

To precisely determine the subthreshold parameters is not an easy task, since there simply
is no experimental data available to analyze the ¢-dependence of the amplitudes close to
t = 0 and thus means of analytic continuation or extrapolation are needed. Accordingly,
in the literature there are only few determinations of all parameters that enter the sub-
tracted RS system. The KHS80 results (cf. [29], wherein the error estimates are quoted
to be “based on deviations from the internal consistency” and the total uncertainty to be
“somewhat larger”) and all more recent dispersion theoretical analyses that we are aware of
are collected in table 1 (cf. [20]). Note that there are several determinations of only some
of these parameters, which are therefore not listed in table 1. In [24] the subthreshold
parameters are determined by means of interior dispersion relations together with fixed-t
dispersion relations, and by using as input the s-channel partial waves of both KA84 and
VPI/SP98 [67, 86] as well as the t-channel partial waves of KH80 (and those of [56] in
the consistent energy range).?® In contrast, finite-contour dispersion relations are used
in [83] to derive subthreshold parameter values — again for both KH80 and VPI/SP98
input (amongst others).?*

The subthreshold parameters are the standard expansion parameters for the Lorentz-
invariant amplitudes, but neither these amplitudes nor the kinematical variables v and
t are natural for heavy-baryon ChPT, and hence values obtained in analyses using this

Z3These are most probably the “new subthreshold parameters” mentioned in [87], where no explicit
reference is given.

#Note that some of the results of [83] are corrected in [84], where also a modified version of the finite-
contour dispersion relations together with conformal mapping techniques is applied (it is mentioned therein
that the subthreshold parameters do not change substantially). Since the applied fitting procedure does
not respect the exact analytic equality of the parameters dgn and aaLn, however, the (corrected) values agree
only within the given errors, but not exactly.
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framework are not very satisfactory, cf. [84]. However, for comparison we also state the
corresponding values for a third-order calculation [85, 88] as given in [85] (Fit 1 therein
corresponding to KA84); note that according to [85, 89] some of the parameter values even
deteriorate when calculated up to fourth order.

As can be seen already from the deviations between the different determinations of
subthreshold parameters in table 1, the errors on the central values are in general unreal-
istically small (i.e. only statistical fit errors for specific input in a given framework, thus
neglecting systematic errors). Hence we can conclude that there is no precise and con-
sistent determination of the subthreshold parameters including realistic errors. Since we
want to compare our MO results with the KH80 solutions, for consistency we use the KH80
subthreshold parameters as given in table 1 as well as the outdated KH80 7 N pseudoscalar
coupling value of 14.28 instead of the new value of 13.7 as given in (2.49).2°

5.4 Results

The numerical results that will be presented in this section are to be understood as a qual-
itative “KH80 consistency check” in order to show that the t-channel RS-MO machinery
works, and as a first step towards a numerical analysis of the full RS system. In particular,
by variation of either the coupling or the subthreshold parameters we can alter the results
significantly, since these variations produce the most sizable effects on the MO solutions
compared to the other variation that will be discussed in the following. However, it is by no
means clear a priori what the parameter values or their errors are, and only a self-consistent
determination of all parameters and partial waves in a second step will allow for reliable
quantitative results. Therefore, the necessary first task in this program is to check our
method and the internal consistency of the KH80 results by using KH80 input as described
in section 5.3 and comparing our t-channel MO results with those of KH80. Moreover, we
will investigate different systematic effects on the (subtracted) MO solutions |f{|, which
should prove valuable for the solution of the full system: after discussing exemplarily the
importance of the different contributions to the MO inhomogeneities A7 (t), we will also
discuss both the connection to the “fixed-t limit”?% @ — —oo and the effect of changing
the matching point ¢,,. Except for the a — —oo results, we will always use the optimal
hyperbola parameter value of a = —2.71 M? as obtained in appendix C.4.

5.4.1 Contributions to Muskhelishvili-Omneées inhomogeneities

In figures 5, 6, and 7 we show the different contributions to the MO inhomogeneities A ()
exemplarily for AS)F for the un-, once-, and twice-subtracted case, respectively, from the 7
threshold t,; up to 1.15GeV, also indicating the upper limit of the KH80 solution as well
as the KK threshold tx as the uppermost limit of approximate elasticity for J = 0. We
choose the S-wave for the following reasons: for J = 0 the nucleon pole term is zero at

#Note that the 7N coupling and the subthreshold parameters are related, as the difference dgy, —g*/(2m)
is given by an integral over a total cross section, cf. [20].

26 Accordingly, the s-channel integral of the HDRs reduces to the fixed-t result, cf. section 2.3. However,
even in this limit the HDRs contain additional information as compared to fixed-t dispersion relations, since
those do not provide equations for the t-channel partial waves in the first place.
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Figure 5. Contributions to the unsubtracted S-wave MO inhomogeneity Ag
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Figure 6. Contributions to the once-subtracted S-wave MO inhomogeneity Ai
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t. and does not dominate all other contributions as it does for the higher partial waves;
in addition, for the S-wave we can also show the coupling of the D-wave as the leading
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Figure 7. Contributions to the twice-subtracted S-wave MO inhomogeneity Ag_|2_SUb.

example for the coupling of higher partial waves. The pole term NR is independent of both
the number of subtractions and a and thus serves as reference in all three plots (double-
dashed). The s-channel contributions are shown separately for the sum of all partial waves
with [ < 4 in the range W € [W,, W,] (dashed) and the Regge contributions of the full
invariant amplitudes for W > W, (dot-dashed). Even in the unsubtracted case both the
s-channel Regge as well as the t-channel D-wave contributions (dotted) are very small and
almost negligible in comparison to the other parts. From this it is also clear that the
coupling of higher t-channel partial waves (e.g. F-wave contributions to P-waves) can be
completely omitted. The solid line denotes the sum of all these contributions and we have
checked for J € {0,1,2} and n € {0, 1,2} that the expected threshold behavior according
to (3.54) and (3.58) (as for the corresponding partial waves) is indeed fulfilled. While all
results are given for the optimal value of a unless stated otherwise, for comparison we
also show the non-Regge s-channel contributions in the “fixed-t limit” ¢ — —oo. Since
this is a very drastic alteration (the RS system is not strictly valid in this case as will
be explained below), the difference of this contributions for the two a values gives a very
ample bound on the dependence on a. While the Regge contributions vanish for a — —oco
as discussed in appendix D.1, the D-wave coupling is not even well defined for a — —oo
in this framework as can be seen from the explicit a-dependence in the unsubtracted case
leading to an infinite contribution, cf. (4.17). By comparing the three plots it is clearly
seen that in the once-subtracted case all contributions except the pole term are suppressed,
while in the twice-subtracted case an additional t-dependence is introduced such that they
are strongly suppressed at t;, but at least the s-channel partial-wave contributions are
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Figure 8. MO solutions for the S-wave.

comparable to the pole term around 0.75 GeV. For small ¢, the differences between the two
a values are also suppressed by each subtraction as expected.

5.4.2 Muskhelishvili-Omnes solutions: comparison with KH80

We will compare our un-, once-, and twice subtracted MO solutions for |f{(t)| with J €
{0,1,2} for ¢ € [tr,ty] with the KH80 results given as tables in [29]. Note that for J > 2
the un- and once-subtracted solutions coincide. The a-dependence (which is fully contained
in Ai) can be used as a crude measure for the systematic uncertainties due to neglecting
t-channel input above t;, (i.e. “non-analytic” input), since the physical result must be
independent of a. Thus, for the five lowest ¢t-channel partial waves we show our “KHS80
consistency MO solution” for the un-, once-, and twice-subtracted case, each for both the
optimal value of @ and a — —oc in figures 8, 9, and 10. Here, we have chosen to use the same
value of \/t;,, = 0.98 GeV for all considered partial waves, which in principle is not necessary
(the effect of varying t,, will be considered explicitly below). As discussed in sections 5.3.1
and 5.3.4, this choice is mainly motivated by the S-wave phase, which is just below 7 at
this energy (reaching 7 around the K K threshold v/fx = 2My = 0.987 GeV) such that no
additional subtractions are necessary in the MO scheme. In general, neglecting any input
above the matching point enforces |f{(tm)| = 0 on the MO solutions. Nevertheless, even
for the S-wave we expect reasonable agreement with KH80 for this choice of t,,, since both
KHS80 and [56] suggest that the modulus |f{| has a minimum or even an approximate zero
between 0.9 GeV and /Ix.

In general, the solutions are fixed on both ends of the solution interval [t,,¢y]: on
the left due to the pole term and on the right due to the input above t,,. In our case
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Figure 9. MO solutions for the P-waves.

the solutions are forced to go to zero at the matching point since the input above t, is
set to zero. With increasing J the pole term becomes larger and thus more dominating.
Therefore, the differences between the n-subtracted solutions and also the different a values
decrease close to t;. As they furthermore agree very well with the KH80 solution in the
respective pole-term-dominated regions, we only show the remaining regions. Since the D-
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Figure 10. MO solutions for the D-waves. For J > 2 one subtraction has no effect.

wave coupling for the unsubtracted case depends on a, this contribution is omitted for the
a — —oo limit (and thus the solutions for the two a values do not coincide at t,). Obviously,
the occurrence of a negative modulus (i.e. the unsubtracted | f?_\ for optimal a and the once-
subtracted | f}| for @ — —oo) only indicates that too much input information is missing in
this particular case in order to yield a reasonable solution — a problem that can be cured
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by subtractions. The general pattern is as expected: the effect of varying a is suppressed
by both the subtraction procedure and higher J. Furthermore, the agreement with the
KHSO0 solution is strongly aided by subtracting. This is clear since each subtraction power
on the one hand suppresses the lacking input above t,, and on the other hand introduces
additional consistent information via the subthreshold parameters as subtraction constants.
Hence, the twice-subtracted solution for optimal a is our central “consistency result”. The
S-wave shows a nice convergence behavior in n, but around 0.8 GeV it starts to deviate
from KHS80, which is not surprising as the f;(980) is expected to have an important impact
(cf. section 5.3.4). As far as the P-waves are concerned, the numerical results confirm
the analytic expectation that |f1| is much less well determined or constrained than |f1|:
basically, the MO equations for | f_H effectively contain one low-energy subtraction less.
Moreover, in the necessary intermediate step of solving the MO problem for |T'!| the pole-
term contributions Ni cancel at t, (as discussed in appendix B.5) as for the S-wave, and
thus the solution for | f}] is less pole-term dominated and hence more sensitive to the values
of the subthreshold parameters. Furthermore, the uncertainties of | f!| propagate into | f1|
when calculating the latter from |T'| via (5.20). All this leads to a rather slow convergence
behavior in n for fixed a as well as the loss of the expected convergence pattern in n of
the differences between the two a values (note especially the crossing of the unsubtracted
solutions for different a values and the negative once-subtracted modulus). However, our
central twice-subtracted result for | f1| agrees rather well with KH80 especially in the p(770)
peak, even though our result for | f1| (which enters | f1|) seems to be systematically smaller
than KH80. Since this underestimation might be due to forcing the solution to go to zero
at ty, we will investigate the effect of using a higher value for ¢, below. Nevertheless, the
a — —oo variant of the twice-subtracted solution for |f!| agrees well with KH80 in the p
peak (though the agreement with KH80 becomes worse for |f1| in this limit). The D-wave
results are systematically smaller than KH80. The change from one (or equivalently zero)
to two subtractions towards KHS80 is roughly one third of this discrepancy and furthermore
approximately of the same absolute size for both partial waves, which is probably due to
calculating |f%| by using the result for |f2| together with the fact that xg = 0 for all
J # 1. For both |f?| and |f?| the accordance with KH80 (which is based on fixed-t
dispersion relations) in the “fixed-¢ limit” a — —oo is striking, the effect of varying a being
much larger than the effect of subtractions.

5.4.3 Muskhelishvili-Omneés solutions: variation of the matching point

Up to now we have used the S-wave-motivated value /t,, = 0.98 GeV for all considered
partial waves. The effect of changing \/t;, to e.g. 1.1 GeV is shown in figures 11 and 12 for
the un-, once-, and twice-subtracted solutions for J € {1,2}. Again, for J > 2 the un- and
once-subtracted solutions coincide. For J =1 it is generally assumed that 47 contributions
can safely be neglected up to the ww threshold around 0.92 GeV; however, the 77 scattering
P-wave inelasticity is small even above that energy and hence the impact of neglecting it
(for both values of ¢,) should be smaller than the effect of changing ¢,,. For J = 2 we do not
expect sizable deviations from elasticity, since the 7w D-wave is essentially elastic in this
energy range. The P-wave solutions exhibit the expected behavior: the differences between
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Figure 11. MO solutions for the P-waves with v/t,, = 1.1 GeV.

the two matching-point values become smaller with each subtraction, but the convergence
behavior in 7 is again less good for | f_H, where a higher value of ¢, does not lead to a
better agreement with KH80, while for |f!| already one subtraction in combination with
the higher matching point yields a description of the KH80 solution that is even better than
the twice-subtracted version for a — —oo discussed before. Therefore we conclude that on
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Figure 12. MO solutions for the D-waves with /t,, = 1.1 GeV. For J > 2 one subtraction has no
effect.

the one hand the KH80 solution for |f!| can be reproduced well with a higher matching
point already in the once-subtracted case, but on the other hand the KH80 solution for
| fL] calls for a second subtraction and is hard to be accommodated in our MO scheme
for energies above roughly 0.8 GeV. The D-wave solutions, however, are hardly affected
at all in the KH80 energy range by changing t,,. As discussed in section 5.2, they are
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expected to be dominated by the pole terms Ni, which for comparison are also shown in
figure 12. While for |f?| the KHS80 solution indeed agrees rather well with the pole term
itself throughout the whole KH80 energy range, for | f_%| there are sizable (with respect to
the scale) deviations between KH80 and the pole term in this region, which again fits the
picture that the partial wave with parallel helicity is both analytically and numerically less
well constrained. Together with figure 10 we can conclude that in the limit a — —oo for
| f2| the net effect of adding the dispersive integrals to the pole term is very small, while for
| /2] the corresponding dispersive contributions (which thus are not mainly induced by | f2|
in this limit) are crucial for the agreement with KH80. For optimal a (and independent
from the choice of ty,), though, these contributions deteriorate the agreement with KH80
(with respect to the pole term) for | 2|, whereas improving the agreement for | f2|; in this
case the corrections to | f?| are effectively due to |f2|.

5.4.4 Application to nucleon form factors

The t-channel partial waves considered in the previous sections are not only an integral
part of any closed system of dispersion relations for w/N scattering fully consistent with
crossing symmetry, but also an essential ingredient to dispersive analyses of nucleon form
factors. The contributions to the isovector spectral functions by two-pion intermediate
states?” in the case of the electromagnetic Sachs form factors read [55] (cf. [29, 90] for
precise definitions and [91] for a recent application)

3 3

v 4 Vo) pl v 4 V) * £l
Im G2 (t) = FY(t 00t —t:), ImGHEt) = —(FY @) fL(t)0(t — ts) |
mGH() = L (Y 0) L0t~ 1) . ImGip(t) = S5 (Y () 7L 0 6(t ~ 1)
(5.30)
while the imaginary part of the scalar form factor is determined by [92]
3 x
tmo(t) = 5 (F20) 0 00— t) (5.31)
i

with the scalar and vector pion form factor F2(t) and FY (t), respectively. In the case
of the scalar form factors the approximation by 77 intermediate states breaks down as
soon as the two-kaon threshold opens, and effects from K K intermediate states are known
to be important for a dispersive description of F(t) [53, 93]. In contrast, the two-pion
contribution dominates in the vector channel, where inelasticities set in more smoothly.
It is thus instructive to investigate the impact of our results for |f1(¢)| on the spectral
functions of the Sachs form factors. To illustrate the corresponding effects we approximate
the vector pion form factor by a simple twice-subtracted Omnes representation®® (cf. [95]

2T@-parity dictates that intermediate states of an even (odd) number of pions only contribute to the
isovector (isoscalar) spectral functions; cf. section 2.2.

Z8This representation ensures that FY fulfills Watson’s theorem, such that the phases in (5.30) cancel.
Strictly speaking, using any representation that goes beyond the two-pion approximation would be incon-
sistent unless the corresponding inelasticities are accounted for in the determination of f1 and the unitarity
relation (5.30) as well, as exemplified by the breakdown of Watson’s theorem and the spectral functions’
becoming complex. Moreover, the precise value of (1"2)7‘: is immaterial in the present context, since we
merely wish to convey how the uncertainties in |f1| propagate into the spectral functions. The present

choice ensures a decent description of form-factor data, cf. [94].
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Figure 13. Two-pion-continuum contribution to Im G (¢) and Im Gy (¢).

and references therein)

2,V 2 Ty s (4
Voo (r#) t4 [ dt’ 61(¢)
E} (t) = exp {G”t + gl e T (5.32)
tr
using (r?)Y = 0.435 fm?. The results for the once- and twice-subtracted versions of |f1|

together with the comparison to KH80 are depicted in figure 13. As expected from the
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discussion in sections 5.4.2 and 5.4.3, the relative uncertainty in Im Gy is much larger
than in Im Gy}, which is a result of the effectively lower number of subtractions in the
calculation of | f}r| and its enhanced subthreshold-parameter dependence. However, since
Im Gy is much larger than Im G, the absolute deviations between the individual curves
are actually of comparable size in both cases. We conclude that a new determination of
the subthreshold parameters from a full solution of our RS system should lead to improved
central values and associated uncertainties for the two-pion contribution to the spectral
functions of both form factors.

6 Conclusion

In this article we have derived a closed system of Roy-Steiner equations for 7N scattering
and analytically calculated the kernel functions for the lowest s- and t-channel partial
waves. Furthermore, we have constructed the corresponding unitarity relations in detail,
including inelastic contributions from K K intermediate states in the ¢t-channel reaction. To
pin down the optimal value of the free hyperbola parameter a, we have analyzed the domain
of validity of the full system (assuming Mandelstam analyticity) and determined a for both
the s- and t-channel equations such that the range of convergence is maximized. We have
introduced subtractions at the subthreshold point in order to suppress the dependence on
the high-energy region and derived the corresponding once- and twice-subtracted versions of
our Roy-Steiner system as well as sum rules for the subtraction constants and the necessary
corrections to the kernel functions.

Casting the t-channel equations into the form of a Muskhelishvili-Omneés problem with
finite matching point, we have then solved the equations for the ¢-channel numerically in
the single-channel approximation. We have assessed the numerical importance of different
input contributions for the Muskhelishvili-Omnes problem and its solutions and examined
the behavior of the Muskhelishvili-Omnes solutions for the lowest ¢-channel partial waves
(J € {0,1,2}) with respect to varying both the input and/or the framework in many ways,
including their sensitivity to the w7 phase shifts, the number of subtractions (n € {0,1,2}),
variation of the matching point ¢,,, and taking the hyperbola parameter a to —oc. In
general, we find consistency with the KH80 solutions. However, our analysis shows that
the structure of the equations renders the t-channel partial waves fi systematically less
well determined than their counterparts f7 both due to an enhanced sensitivity to the
subtraction constants and an effectively lower number of subtractions. Finally, we have
briefly discussed some consequences for nucleon form factors, in particular our analysis
gives a first indication where the largest uncertainties in the spectral functions are to be
expected.

The next step in the solution of our system of Roy-Steiner equations will be the incor-
poration of K K intermediate states in a full two-channel Muskhelishvili-Omnes treatment
of the t-channel S-wave, which will have immediate consequences for the extraction of the
mN o term via the scalar form factor of the nucleon [82]. Having then solved the ¢-channel
part of the system, the s-channel equations are solvable with techniques similar to those
employed in the context of wm Roy equations, and finally the iteration of the full system
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should determine the lowest partial waves as well as the subtraction parameters. We are
confident that the framework proposed in this article will allow for a reliable extrapolation
to the Cheng-Dashen point and thus for an accurate determination of the 7N ¢ term.
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A Partial-wave projection for the s-channel amplitudes

In this appendix, the different contributions to the s-channel part (3.4)of the RS system
are discussed.

A.1 Nucleon exchange

The useful general definitions

s {e+:+1, B 1+el {1, - {O, {I:+orJeven,
€= €+ = y €+ = €~ = for

e =—1, 2 0, 1, I=—orJ odd,
(A1)
can be identified with
1+ (=1)
EI = (_1)J ) gi = (2 ) y (AQ)

for the cases where the crossing-symmetry constraint applies (i.e. J even/odd for I = +/—).
Projecting the HDR Born terms N'(s,t) of (2.48) onto s-channel partial waves via (3.2)
leads to MacDowell-symmetric nucleon pole contributions

2

A R | L e |

+(E=m)(W +m) {61@212(9)] }

=Nl (W) ¥ixzo0, (A-3)
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which, by defining the abbreviation??

2
+(E—m)(W+m) {61 le;(y) +T232li_1’(;] } (A.4)

for later convenience, can also be written in the form

9> (E+m)(W —m)

+ _ o+ - _ -
NL(W) =N, NG (W) =N -5 i . Vi>0,
v G (E=m)(W+m) dn
NtW) =Nt N =N - 9 I>1, (A
Fw) =N, Npwy =N - SEEIUEE sy ()
and where we have defined
2
-
s) = 1= RS (st = m) = (s = m?) (4.6)

(zs(s,s") will be introduced in (A.21)). @Q;(z) denotes the Legendre functions of the second
kind.

The Q;(z) obey a recursion relation similar to the one for the usual Legendre polyno-
mials P(z) (for I > 0)
(1 + 1)Pia(2) +1P1(2) = (20 + 1)2Pi(2)
(1 +1)Qu1(2) +1Qi-1(2) = (20 + 1)2Qu(2) — dio , (A7)

which, together with @Q; = P, = 0 for [ < 0, leads in particular to (cf. (A.56) for the general
formula)

3 522 2
Q1(2) = Pi(2)Qo(2) =1, Q2(2) = Pa(2)Qo(2) — 52, Q3(2) = P3(2)Qo(2) — —- + 3
(A.8)
From the Neumann integral representation for general complex argument z [96]
1
1 P(x
@) =5 [ar 2 = g, (A9)
-1
one can read off the lowest function for general real argument y
1
‘ 1 dz 1 I+y|_.m 9
Qo(y = ie) Q/y_%ii6 20g‘1_y’¢229( ) (A.10)

-1

We also need the analytic continuation for purely imaginary argument z = iy, e.g. for y > 1

1 ] 1 1 141
Qo(iy) = = log i L lo T zg =1 (arctany - g) =—Qo(—1y). (A.11)

2 %%y 1 2 %14y

Functions with [ > 1 may then be obtained via either the recursion relation (A.7) or the
reduction formula (A.56).

290f course, also this form of the nucleon pole terms obeys the MacDowell symmetry relation (3.3), since
the term proportional to d;41,0/d10 vanishes for Ny as a consequence of I starting at 0/1, respectively.
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A.2 s- and u-channel exchange

By introducing a convenient matrix notation via

I
o(f) elf) e

the crossing properties of the even and odd invariant amplitude combinations (2.18) read

A t)= oy Al(—it),  o4— ((1) _01) . (A.13)

While the s-channel partial-wave projection (3.2) can be rewritten as

1
£1(W) = / dz RUW, z,)A! (s,t)’t:t(sz . (A.14)
4

where the projection kernel matrix is given by

]_:{l(‘/v7 Zs) — RlllJrl Rl21+1 7
RH—l l RH—l l

RE(W,20) = 1o (B m) Pu(zy) = (B = m)Pa(z0) } = ~Rlu(-W,2)
B2, (W, 25) = o (B m) (W —m) Pyas) 4 (B—m) (W ) Pa(25) b =~ B2 (- W, 24)

(A.15)
the s-channel partial-wave expansion, i.e. the inversion of (A.14), takes the form [97]

(s,1) L . ):Zsl W, 20§ (W), (A.16)
82’5 l:O

with the expansion kernel matrix

SHW, z,) = (SZ;H’Z _Sél+1> ,

Sl—i—ll _Sl I+1

W +m W —m
St ) = tn{ T Pl ) 4 P () b = S
1
S?nWV’Zs):“”{m Pi(zs) - E_P’<zs>}=—sik<—w,zs>. (A17)

In accordance with the matrix form of the MacDowell symmetry relation (3.3)

1
F W) = —oif (- W), o1 = (‘1) 0) , (A.18)
these kernels obey the symmetry relations
R'(W,z) = —o RN (=W, 2,), S (W, z) = =S (W, z)o1 . (A.19)
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With the definitions (2.51) the s- and u-channel terms of the HDRs (2.44) thus can be cast
into the matrix form

o0

s+u 1
Al(s 1) = /ds' hl[s, s 2] Im Al(s',t) ,
t=t(s,2s)=—2q%(1—2s) s t'=t'(s',2})=—2q"2(1—21)
St
(A.20)
where the HDR kernel matrix h! is given by
I / I 10
hy(s,s;2z5) = hiog — € haos oo=1y = 01
1 1 1 1 1 1 1
h "= - = h 2s) = — =
1(s,%) s'—s 2s—a’ 2(8, 3 %) 2¢? x5 —zs 28 —a’
s+5—X%
rs(s,8") =1— TR (A.21)

and [s, ; z] indicates that the whole integrand is to be understood as a function of these
variables, which can be achieved using
2 / !
qg- s—a , s§—5s5+s %
—1—a—

) /8(87 S ) o s —a 2q/2
(A.22)

By expanding the absorptive part of the s- and u-channel HDR terms given in (A.20) into

Z;(S,S,;Zs) =azs+ 6, a(s,s/) = psl_a

s-channel partial waves via (A.16) and projecting out s-channel partial waves again by
means of (A.14), we arrive at the partial-wave dispersion relations

£/ (W)

stu 1 [ I

=_ / dw’ > KW W) Im £ (W) (A.23)

m
W, '=0

where the s- and u-channel kernel matrix is defined by

1
KY LW, W'y = 2w’ / dzs RYW, zo)hl[W, W'; 28" (W', 21) . (A.24)

-1

Due to the symmetry relations
— o KW (—w, W' = KY (W, W) = KW, - W ey (A.25)

which follow from the relations (A.19), the s- and u-channel kernel matrix can be written
with only one kernel function according to
KA (~W, W) — K, (~ W, —W")

K”/’I(W,W')=< Ky (W, W') Ky, (W, =W") >

r7s

1
KL (w, W'y = 2w’ / dz, {RZ(W, zo)h (W, W', 2,8V (W' z')}l o (A.26)
—1

)
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where the subscript denotes the 1, 1-th element of the matrix in the brackets. The PWDRs
(A.23) then take the form already stated in (3.4)

o0

s+u 1 °°
[ =~ / aw' S { K (W, W) T i (W) + K (W, =W T (W)
W+ llZO
I stu
= —fip1)-(=W) (A.27)
Defining the structure
W/
@ [arn oW, W] = T {0V, =W )t + BV W )k 11
(W, =W )i+ =W, W i o (A28)

where ag,(s,s’) is to be understood as a function invariant under sign changes in W and
W', and introducing the kinematical abbreviations

N E+m / Jota /
E+m
o(W.W') = (W' = W - 2m]
1 E+m
I AN / I / _ ~ / ~ -
(W, W) = 2[5(W,W)+e g(W,W)} E,+m[e+(W +m) +E_(W m)], (A.29)

as well as the angular kernels

1 1
1 1 Pi(zs) P} (=
Up(s,s) == /dzs Pi(z5) P (ZL) Vir(s,s') = = /dzs Pilze) P (z) , (A.30)
2 2 Ts — Zs
—1 -1
the general s- and u-channel kernel function can be written as
1
I e (Vw | Uw
Kp (W) = hug [0 507,)] = oo T+ o)
o[Up|s(W,W"]  ;o[Viw|loW, W] o[Up|s"(W,W")]
= —€ - . (A.31)
s —s 2q> s’ —a

Since ¢[ag, |b(W, W')] encodes the MacDowell symmetry (3.3) for both pairs (k, W) and
(n, W'), we can decompose it in two ways
@l apn|[b(W, W) = o1 [arn| bW, W')] — @1 [arg1n|b(=W, W] ,
= @2 [an |b(W, W] = pa[akni1|b(W, —W")] ,

W/
@1 |[p(W. W] = 5 { OV, =W )ags -+ W, W )i |
W/
02 [arn (W, W')] = W{b(W, W ag, + b(—=W, —W’)akﬂ,n} , (A.32)
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and with the definitions

_ i (U [6(W, W")] g Vi [o(W, W")] i [Unr |5 (W, W)]

s’ —s 2q? s’ —a

Ky (W, W) i€{1,2},

(A.33)

the kernels exhibit the following interrelations
/ / 1,1 ! 1,1 ! 1,2 ! 1,2 /

that may be used to write down explicit expressions of the kernels in a compact form.
However, for numerical evaluations a different prescription is preferable. The part of (A.31)
that contains the s-channel cut can be decomposed according to

U [d(W,W")] (W, W) 1 W (E+m E—-m
; = ; ; 1\ Ur — — U141 ¢ s
s’ —s wr—w W+W W |E'—m E'+m
W' (E+m E—-m
Y (W, W/) = w {MUl,l'H - E,_mUlH,l'} . (A.35)

Using the identity

1
[ @z P [Pa) - 202)] = 22 { l jl} , (A.36)
]

we can easily calculate its residue at the pole W/ = W (where o = 1, 8 = 0, and thus

2h = z)

!
Res ['Yll (W, w’)

W/ W ,W, = W] = ’y”/(W, W) = Ul,l’+1<3; S) — Ul+17l/(8, 8) = (5”/ y (A.37)

which together with the decompositions

Uy (W, W') = Upr (W, W) + (W' = W)Uy (W, W')

W' E+m (W +W)E_ £+ 2mWW’
TEEM W W, W') = A.
WEim T - Wes, (W) OW/(E' £ m)s o (A38)
leads us to the alternative form of the kernels K}, (W, W)
o _
I u I
Kll/(W, W/) - m + Kll/(VV, W/) 5
KL (W, W' = Upypa (W, W) = Uy (W, W) + e Upprgr — e-Upp
1 W {(E+m E—-m
W B Bl
Vil o(W, W' Uy | (W, W'
_6180[ l Q( ):| . SO[ l « ( )] , (A39)

2q? s'—a

where the first term is the usual Cauchy kernel for the s-channel cut (contributing only for
[ = U') and the kernels K}, (W, W’) contain only the left-hand cut. In order to derive explicit
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expressions for the angular kernels Uy (W = /5, W’ = /') from (A.30) and subsequently
their regular parts Uy (W, W') from (A.38), we use the following expansion [96]

! A
_ ) r_ (DM _1—z
Py(zs) = /\Zoa,\x L S SV T AL A R (A.40)
and hence
= L | 1 (a+f)
FHE) = =5 D N Dahea™ = mwar,  wles) = o
(A.41)
together with the binomial theorem and the Saalschiitz identity [96]
l al . (n1)? I A 49
= (— > .
)\z::o,u—i-)\—i—l ( )(u—l)!(,u—kl—kl)! (n=z1), ( )
to arrive at the general expression for the angular kernel Uy
AR R B (u!)? ,
Un (s, s) = ( N+ 1)ab, W TRt A.43
ll( ) 2 )\,Zl( ) )\"‘1% M (N_l)'(ﬂ+l+1)' ( )
These kernels show the following asymptotic behavior:
Up ~¢? for ¢q—0, Uy ~ q’_Ql/+2 for ¢ —0, Up ~ ¢~ for ¢ = o0,
(A.44)
and, in particular, the lowest kernels are given by (note that Ujg = 0 and Uj; = dj9)
Uyp =0 for <1 , U1 = o , Uiy2 = (20 + 3)50/ ,
!
Q
Upiis = 5{(21 +5)[0? + (20 +3)82] — (21 + 3)} . (A.45)

From (A.43) and (A.30) we can easily deduce for W/ =W

-1
/ 0 forl!<lorl —1Ieven,
Ull/(W, W) = Z ul/\l/ = ,
N=i 1 forl'—1odd,
, (=1)HN (1 4+ N +1)!
Wy = = — ,_(, — i (A.46)
2SIV + )l — N — DIV — DI+ N + 1)
which again yields Uy y41 (W, W) — Upyq1 (W, W) = §ypr. By defining
q> , N W W E2
ﬁzl'*‘(W_W)dla dl(WaW):W Q_l ;
— W'+ W
ST (W= W)dy,  de(WW) = —— (A.47)
s'—a s'—a
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we can rewrite the powers of « according to (note that by = 0)

p—1 K
N / N H / k) k+1 [ S @ k+1
at =1+(W'-W)b,, , bM(VV,W)—kEO (kz—l—l) (W'—=w) {dl <8’—a> +ds } ,

(A.48)
which together with the definitions
- B W 4+Ws+s —32
W= (W/ - W)w > W(I/Vv W/) = 4q/2 s —a
) i pamgy OV (u!)? ,
Uy (W, W') = =T N +1)d), N=l=ngi (A49
Il ( 9 ) 9 >\Z_:l( + )a/\ +1 — m ( l)‘(/la‘f‘l‘i‘l)'w ar, ( )

allows us to give the explicit form of the regular part Uy of the angular kernel Uy as

-1
U (W, W') = > ujyeby + U (A.50)
A=l

from which we can easily obtain the lowest Uy (note that Ujg = 0 = Up;)

Ull’ =0 for I'<1 , Ul,l+1 =10, Ul,l+2 =—(21+ 3){bl+1 — b+ Q(DCMZ} ,
Uiips = 20+ 5)(20 +3)4 (1 +2) bz | by w1 —a+B)p. (AS51)
’ 2043  2l+5

The angular kernels Vj;» can be expressed by the kernels Uy as follows: from the integral
representation of Uy (A.30) we can deduce that

-1

Pi(z) =) (2n+ 1)UnyPa(2s) (A.52)
n=>0

and inserting this into the integral representation of Vi (A.30) yields

-1

zs ]Dl zs)
Vip = § 2n + 1)Upp dz, . A.53
i ( n+ I / e (A.53)
By using the identity
1 i P, P
5 / o TOP@) b v for <, (A.54)
z— X

we can write

-1
Vi = Qu(zs) Pl (2)) — Z (2n + 1)Unl’{Pn($S)Ql(xS) - B@S)Qn(l"S)} )
n=Il+1
s+s—X%

507 = x4(5, 5) (A.55)

zi(s,s) =azs+B=1-
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(note that the sum vanishes for I’ < [ 4+ 1), and with the aid of W;_1(2), which is a
polynomial of degree [ — 1 in z defined by [96]

Qu(z) = Qo(2)Pi(2) = Wi—a(2), W1 =0, (A.56)

leading to the integral representation

1
1 P(z)— P(x
Win() = 5 [ ar HEZHE (A57)
-1
the angular kernels V}; take the general form
Vir(s,s') = Quzs) Py () — Vi
) -1
Virls,s) = 3 (2n+ 1)Unl/{Pl(xS)Wn_1(x5) - Pn(xS)Wl,l(a;s)} . (A.58)
n=Il+1
The Vj; only contribute for I > [ + 2
Vig=0 for ' <l+1, (A.59)

and we can immediately read off

-1
V=0, Va=Quz), Vor=Qolxs)Pi(}) = 2n+1)UuwW,_1(zs), (A.60)

n=1

where the second equation can also be seen directly by comparing (A.30) with (A.9).
Furthermore, one easily obtains the asymptotic behavior

Vir ~ %2 for ¢q—0, Vipr ~ q'_Ql/+2 for ¢ =0, Vie ~ ¢ 272 for ¢ = 0.
(A.61)
From (A.57) or from Christoffel’s formula for [ > 1 [96]
5] l
— (2 A+ 1) V—IJ 5—1 forl>2even,
44 P z), — | =
-1 Z:: 2)\+1) =) (7) 2 L forl>1odd,
(A.62)
both yielding (also in agreement with (A.8) and (A.56)) besides W_; =0
2
Wo=1, Wi(z) = ;z , Way(z) = gz2 ~ 3 (A.63)

where it is useful to note that W;(z) like P;(z) contains only even/odd powers of z for [
even/odd, respectively, we can immediately deduce the non-vanishing angular kernels Uy,
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Uy, and Vip for I/ <3

Un = o » Uiz = adiy + 3Bd ,

Uiz = a?8j2 + 5a B + %{5@2 +38% —3}dp ,

Ui = b10p — 3{b1 + 20} 80 ,

Ui = babia + 5{b1 — by — 2war}é;1 — 5{3b1 — 2by + 3w(1 — a + B3) } oo ,
Vin = Qi(xs) , Viz = 32,Qi(xs) — 3ady ,

) 15
Vi = P3(2)Qu(zs) — 5042511 - ?a{aﬂfs + 28} , (A.64)

that are needed for the kernels K}, (W, W’) for all combinations (I > 0,I’ < 2) according
to (A.39)

r 1 W s (W, W)
KhVW) = { g o= G g f
e w! , .
W oW, W"Qi(xs) + o(=W, W) Qi1 (zs) ¢
_ 1 W' (E+m
K (W,W') = {W’—W +b1+a0+}511+{3[b1+2wﬂ0+] + W’—I—WW(E’—m
E_m 61 W/ / / / /
_ aM) }510 - MW{ ~ Bao(W, W')do + [3cLo(W, W) + o(W, ~W")| Qi(x.)
+ [slal W) 4 oW Qris o)
- K’{qu W')d + 385 (W, W) + 5! (W, =) + ase! (=W, W) 6o |
s —aW 3 11 4 y 1 s ax ; 00
_ « W' ([ E+m
KL(W, W) = {W,_W +b2+a2c+}512—|— {5[1;1 — by — a(20 — fei)] + W’+WW<E’—m
E—-—m B 1 5 )
— o) o+ { = 2(8b = 5bo) = 150(1 — @+ B) + 3 (5[a” + 36%] = B)ey

B8 W /([ E+m E—-m

—ac_ + — 3E’—m_5aE’—|—m d10

e W’ @ , W5 ,
~ s { —a[15{ G+ Yem ) 4 3007 W)+ Sal- o

5
— 2 02(W, W )ous + [Py oW, W) + 82, o(W, ~ W) Q)
+ [Pt Wv) + 3ol W) ] Qua (o)}

1w

- W{QQZI(VV, W2 + « {56%1(1/1/, W) 4 2L (W, =W') + asd (-W, W’)} dn

+ [%(5[042 +36%) = 3)sL (W, W) + 38 (W, -W")

+ 5afsx (=W, W') + asx! (=W, —W’)} 510} . (A.65)
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From Kj,(W,W’) in the form according to (A.31)

KL(W,W') = 2‘14/%{@ +m) [(W + W’)S,%—_ZOS +edWw-w - 2m)qu(fs)]
+ e (BE—m)(W + W' + 2m)Ql+ql,§:”5)
—(E+m) [mw’ ) + e (W — m)] 3/2(2(]@ } . (A66)
we can deduce that the nucleon pole terms (A.3) are reproduced by
NL(W) = —fPKfp(W,=W' =m) = =Nj, ;) (-W)  VI>0. (A.67)

The explicit formulae for the additional non-vanishing angular kernels Uy, Uy, and Vi
for (I < 2,4 < I'” < 6) needed for calculating the additional higher kernels Klll, for
(1 < 1,3 <" <5) via (A.39) are displayed in appendix A.4. Furthermore, we give
the asymptotic behavior of the general kernel function K}, (W, W’), which can be inferred
from the asymptotic behavior of the angular kernels (A.44) and (A.61),

for ¢ — 0 KL (W, W' ~ ¢, KL (=W, W') ~ ¢?+2
for ¢ —0 KL (W, W' ~ ¢~ K (W, =W') ~ =22,
for ¢ = KL(W, W' ~ ¢ ~21 (A.68)

in agreement with the MacDowell symmetry relation (3.3). From (A.67) we can then read
off the asymptotic behavior of the nucleon pole terms

NL (W) ~ Njyy (W) ~¢* forg—0. (A.69)
A.3 t-channel exchange

With definitions (2.51) and relations (2.52) the ¢-channel terms of the HDRs (2.44) can be

written as
o

t 1
Al(s,t == [ d¢ hifs,t'; 2] Im AL (s ¥ A.70
(87 ) t:t(&zs) 7-[-/ t[S) 7Z] m (87 ) 51:5’(15/721/5) ’ ( )

where the HDR kernel matrix h/ is given by

11 Moo t
hI t/, - 1 t/ — 1 R t/
t(Sa 725) 2q2 Tr — 24 ( ) fEt(S, ) + 2 D) ZS(Sa ) )

0 M q
L py e ' 0
AL (8,8 25) = (7) (with 2°=1 V), (A.71)

and the integrand is to be understood as a function of [s,t’; z5] by using

/

2
mrur S—a
dotim) = = TE, (=D

i 2p°q;
=Y +2a)2 —4(s—a)2¢2+ X — s —
(S(S,t/):( + a) (S 202( q + S CL) .
16pi*q;
(A.72)
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The t-channel partial-wave expansions of the invariant amplitudes, i.e. the inversion of (3.6),

read [49]

47 m
Al = 2J + 1) () Py(z)) fL(t)) — ——2 Pz ()
O, g = 5 ST+ DG PO — Bt P )
B[(S/ t/) § : 2J+1 / / J—lP}(z/)fJ(t/) (A73)
9 s’:s’(t’,z) / J+ 1 t — J
where it is crucial that the sums only run over even J for I = 4 and odd J for I = — due to

Bose symmetry. Taken literally, the form (A.73) of the partial-wave expansions is only valid
for ¢ > ty, since below the two-particle thresholds ¢y and ¢, the CMS momenta pj of the
nucleons and ¢; of the pions become purely imaginary and one has to use p’_ and ¢’ instead,
respectively (cf. (2.11) and [29]). In particular, in the unphysical range ¢’ € [tr,tx) that we
are interested in as the low-energy part of the integration range ¢’ € [t;, 00), we have ¢; € R
but p}, 2, € iR. However, the squares pj> and ¢> are always real (albeit not necessarily
positive, cf. (2. 12)) and since the combination plqz; = mv' = m(2s' + ¢ — X)) is always
real as well, so is z/2. Due to the fact that the Legendre polynomials and their derivatives
have definite parity Pj(—z) = (—1)’P;(z) and P}(—z) = (—=1)771P/(2), a closer look at
the expansions (A.73) shows that in all cases only powers of the real combinations p;q;z;
and additional factors of powers of the likewise real squares p}? and q;> appear. Therefore,
we can symbolically use these formulae for all kinematical ranges and factor out powers of
the real squared momenta whenever necessary in order to form explicitly real quantities.

By introducing the t-channel partial-wave amplitudes into the matrix notation via3°

i (ﬁ) , (A.74)

the expansions (A.73) can be rewritten as

Al t) =Y T/, ) (¢ A5
0y = ST (A7)
where the expansion kernel matrix is given by
uy v _
T/ (¢, 2) = (s <OJ J) : Cr(t') = 4m(2J + 1) (pla)” ",
wg
Q{S / ro m Qt /
us(t', z)) = =L Ps(z), vyt z) = ——m—=— 2P
(.2 = = Po(a) (,2h) = L ARG
1
wy(t', z) = ————=P(z}) . A.76
I 3h) = e PG (A76)
As the sum only runs over even J for I = + and odd J for I = — and thus the full

information on the crossing properties is already contained in the index J, we can redefine

(-t

M, b z5) = N (5,1 25) = <5/> : (with 2° =1 Va), (A.TT)

30In order to accommodate the fact that there is no f° to the matrix notation, we define f° = 0 and in
the following all corresponding quantities (e.g. integral kernels) are also understood to vanish.
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and omit the index I in favor of J in the following. If we expand the imaginary part of
the t-channel HDR terms in (A.70) into ¢-channel partial waves via (A.75) and project out
s-channel partial waves again by use of (A.14), we can obtain the following PWDRs

to1 T
o) =2 / a3 G (W) Im £ (¢) (A.78)
tr J

where the t-channel kernel matrix is defined by
1
GY Wt = /dzs RY W, z)hl[s, t'; 2| T/ (¢, 2}) . (A.79)
—1

Due to the symmetry relation
GY(-w,t) = —o1GY (W, 1) , (A.80)

which follows from (A.19) and is in accordance with the MacDowell symmetry (A.18), the
t-channel kernel matrix can be expressed by two kernel functions

Guy(W,t")  Hy(W,t) )

~Gy (=W, t') —Hy;(-=W,t') (A.81)

GIJ(I/V, t/) _ (

where in accordance with 0 = 0 for the matrix notation we set Hjy = 0, and the PW-
DRs (A.78) take the form already given in (3.4)

)| =2 a3 {Guve) m (1) + Hu(W.t) T £}
b J

t
= Sy (=W . (A.82)
With the definitions
2+ 1 (piq)’

w[akn|d(W)] = d(W)akn + d(_W)a’k—i-l,n 5 77](”/7 t/) — 4Wq2 p? ) (A83)
and by introducing the angular kernels
1 1
1 Py(z5)Py(z1) 1 Py(zs)P(z1)
A AN ) JLI\~s t B N — / . J J\~t
usit) = 5 [ de a HEITIED, usnt) = 5 [z ag T
—1 —1
1 i P 1P (2
Ciy(s,t') = 2/dzS /\‘{W =JA + B -1, (A.84)
t— <s

-1

we can write the kernel functions as

Gu(W,t') = —nsp[Ay|E + m] VJ=>0,
HU(W,t/):\/%{zf [BU\(W—m)(Eer)]+m¢[C,J\E+m]} VJ>1.
t

(A.85)
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If we use the decomposition

v 1 o pe 1 , ¢ N 25+t =32

— = — 4 = s,t) = $,1) = —————

o T — 25 Zé + Zé T — 24 ; Nl( ) ) 2p£q£ ) MZ( ) ) 4p;q£ )
(A.86)

we find for the angular kernels for even J

1
1 Py(24) Py (%!
AlJ(S,t/) = § /dZS 71(2: ) J(Zt)

Tt — Zg

-1

1 1
P/ / P o P/ / /
BlJ(S,t/) 2 /dZS -Pl(zs) J(Zt) 4 m/dzs 1(2’) J(Zt)/zt ’ (AS?)
-1

Tt — Zs

and for odd J

1 1
! P P /
Aig(s, t 'L;/dzs Pi(zs) Zt) + W/dzs 1(25)Py(21) /2

Tt — Zs

1
P(zs)
Bl] S, t /dZS l : zt) s (A.88)
-1

Tt — Zs

l\’)\r—t

from which we can infer that only even powers of z; occur and hence a square-root depen-
dence on zg is avoided. We now can work out the kernel functions explicitly, here given for
all combinations (I > 0,J < 2)
G W) = e { (-4 m)Qu(a0) = (F = m)Quaw)}
3 , N~ E+
Gun(W,t') = 4{(25 +t = )Gp(W,t) + WP 550}

Hyy (W, ) = 1{3ZI(W75) mGn(Waf/)}v

\f
Gr(W,t) = 1‘2{ [63(3 F D)+ (¢ %)%+ 223}G,O(W, )+ 3 E +$L§j —9) 510} :
Hip(W,#) = 16136{(25 = D) Z(W, ) — mlds(s + ¢ — %) + (¢ — 2] Guo(W, 1)
. 2E;/m [m(‘;; 9 4w m] 510} , (A.89)
where we have defined
4 = 5o {(B+m) (W = m)Qi(w) + (E = m)(W +m)Qua(z)} . (A.90)

From the expansion

242 I+1 242 I+2 1 9202
Qi(xy) = < z > +0 <z> for = Tq’ —0, (A.91)
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we can finally deduce the asymptotic behavior of the non-vanishing general kernel func-

tions (A.85)

for q—=0  Giy(W,t') ~ Hy(W,t') ~ ¢* Gry(=W,t') ~ Hyy (W, ') ~ g2,
for ¢y =0 Gu(W,t') ~Hy(W,it')~1,

for p; =0 G(W,t') ~ Hj(W,t') ~ p;_Q ,

for t' — oo G (W,t') ~ Hy(W,t') ~t'/7172 (A.92)

in accordance with the MacDowell symmetry relation (3.3).

A.4 Higher kernel functions

Here, we display the explicit form of the additional angular kernels Uy, Uy, and Vy for
(I <2,4 <1’ <6) that are required for calculating the additional higher kernels K}, for
(1 <1,3 <l <5) via (A.39) needed to incorporate higher resonances in the s-channel
integrals. From (A.43) we obtain

Uos = gﬁ{m? 7% - 3} , Uy = %a{7a2 +356% — 5} . Usi=Ta%8,
U = 2{15 —70(a? + 36%) +63(a’ + 55" + 100262 } ,
Us = gaﬁ{QaQ 1582 — 5} L Upy = %&{9@2 16352 — 7} ,
Uos = %15{5 ~30(a? + #%) +11(3a* + 38" + 100262 } ,
U = éa{% —126(a? + 54%) +33(3a" + 358" + 420742 } ,
Uss = %a2ﬁ{33a2 . 21} , (A.93)
and (A.50) yields
Uos = —5{7b3 — 14by + 9by + @[4 — 1a(1 — a) + 78(1 — o + B)]} ,
U4 = 21bs — 35bs + 150 — 350a(l — a + ),  Usy = —7{b3 - 2wa2} :
Uos = 7{18b4  5(9bs — 8by + 3by) — ?@(1 —a+B)[(1-3a)2 + 3ﬂ2]} :
U5 = —7{121;4 — 27by + 20by — 5by + @a[2(5 — 150 + 1202) + 158(1 — a + 6)]} ,

Uss = 36by — 63b3 + 28by — 63wa’(1 — a4 3) ,
Ugs = —21{22(55 — 3by) + 5(15b3 — 8ba + 2b1) + @[2(1 —9a +31a% — 22&3(2 — )

+ g(l —a+ B)(3 — 11a(6 — 13a) + 3357)] } ,
UIG = 66(5b5 — 14()4) + 35(27()3 — 12by + le) — 2741421(1(1 — o+ B) [(5 — 110()2 + 55ﬁ2] ,

U — —3{11(5b5 — 12by) + 7(15bg — 4by) + a2 [56 — 22a(7 — ba) + T78(1 — a + B)] } .
(A.94)
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From (A.58) it follows that

Voa = §a{21(a;ﬂs)2 + 638 (axs) + 7o’ + 635% — 9} , Via = §a2{(ams) + 36} , Vou= za?’ ,
6 6 3
- 1
Vos = %a{?)(axs)?’ +128(axs)? + (o + 188 — 2) (o) + 48(a® + 358% — 1)} ,
- 7 _ 21
Vis = §a2{15(cwcs)2 + 603 (axs) + 90 + 9057 — 10} , Vos = Za?’{(a%) + 45} )
_ 1
Voo = i—oa{165(aﬂcs)4 + 82583(ax,)® + 5(11a” + 3308° — 30) (azs)?
+258(11a” + 663% — 18) (o) + 25 — 50a” + 33a* + 50(11a* — 9) 8% + 82564} ,
21
Vie = J50?{55(az,)" + 2758(aw,)? + (330” + 55057 — 50) (aw,) + 55(330” + 1108% — 30) } ,
Vag = %a {77(@335)2 + 38583 (axs) + 2(33a” + 3853 — 35)} . (A.95)
We refrain from explicitly spelling out the form of b,(W, W’) for higher values of y, as
these functions follow directly from their definition (A.48).
A.5 Subtracted kernel functions

Finally, we summarize the changes that are necessary if the subtracted versions of the
HDRs are used for the s-channel projection.
The modified pole terms are given by

n-sub - n- sub n- sub
N{, (W) = N, (W) + AN/, | (W) = =N )| (=),
= 2-sub 510 g b+
AN, W) = oWV {(E +m) {2<m +ddy — 2q2da'1> + (W =m)(s —s0— ¢°) ;;?
E— Add, — (W bio u_ g C (yat + (W bio
—( m)3 o — (W + ) +167TW( + ) o1+ ( —m)ﬁ
1-sub é-lO 92 +
2-sub 1) Qo 92 _
AN [T (W) = 167erI/V {(E +m) {(5 — S0~ qQ)% +2(W - m)( 52 b0 — 2q2b01>}
¢ g - on 7 g —
— (E—m)g o —4(W + m)bgy, +167TW(E+m)§ g + 4(W —m)by,
1-sub 510 92 _
— W (E+m)(W —m)| — oz +boo | s (A.96)

where for convenience we have defined non-vanishing corrections also for the unsubtracted
case according to (cf. (A.5))

2 (E + m)(W - m) (510

Osub ):_g ER
TAm 2W m? —a

0-sub
AN/, | ——AN(ZH) T =w) L (A9T)

The additional contributions to the s-channel kernels that fulfill the MacDowell sym-
metry relation (3.3) in both (W,1) and (W’,l') can be written for all (I > 0,1’ > 0) in the
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symmetric form

" . NI 1
AKj (W W') = AK;;, (W, W') — AKy (W, =W') + AK), (W, W') = AK, (W, =W')

)}
—WI/I///{%I(W’ W) ho(s") + (W w’) (S( — 85(;)2 }Pl/’-l-l ([ ] 0,0) )5;0
w { (W, W')(s' + s — 2s0) + ! p(W.W)(s' — s)

w

(s’ —s0)?

(W, W)
T g, }Pl//—i-l ( [Z;](o,o) )5l0

s —a
1-sub w’
=8 o (W W ko) Pl (120 )0

2-sub WI € p(W WI)
(W, w') = —2612{(5,30)131'+1 ( [Zg](o,o) )

w
= o (W, W ho(s') 10,20 0.0) P ([ 0 ) }510 =0, (A98)

1(——1 R ,
T3 AKy (=W, W') = AKy (=W, =W')
— 7 — 1T
—AK;_ (W, w') + AK; (W, W’

2-sub

— T
AK”/

(W, W') =

T
AKll/

where we have used that et/ = +¢!. Note that for I = 0 the term proportional to (s’ —a)™*
cancels against the corresponding term in Kj (W, W’) of (A.65) as for the nucleon pole
terms (cf. the relation (A.67)).

The additional contributions to GG;; and H;; may be written as
AGL (W, ') = AG (W, t') — AGi (W, t') V(1>0,J>0),
AH; (W, t') = AH;(W,t') — AH 4 5 (=W, t') V(I>0J>1), (A.99)
where for even J

E+m (iq))”
W (2J + 1) t/p? [PJ(Z{)] (0,0) 510

—2¢° <tl, [Ps(z)] 00 T [0:P3(=4)] (0,0) ) <510 551) }

1sub B+ m (pgqé)J
- W (2J+ 1) t/p? [PJ(ZD}(O,O) 510 ,

<= (2su E 2J +1  (piq)? -
AT ‘2 b(Wt) E4m 27+ (ptat) {(W m

QW \[I(J+1) tp? 2q?

W —m [Ph(z
+m [z P}(2))] 0.0) )6l0 — 2q2< [ 7 ( t)L |
0,0

ZZT, ‘2 sub(W t)

2 7
4qy 2t

e Ll, (2P} (2])] oo+ [8t(z£P}(z£))](07o) D (510 - 6;)}

b Etm 2041 (phg))”

/P/ /
2W\/I(T+1) tp? m [ P3 )] 00)
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and for odd J

su E /7 INJ—1 1 TP / u
ROty = X o 4 1) ) { J(zt)} {(s—sO—q)élo+q25“}1—‘fo,
(0,0)

2w tp? 2 2 3

2-sub E+m 2J+1 (piq)’ ! m
Ky [P ) = - Zpit 2 O 8 (5200 =)+ B = 50)) 1P B

2 (420V = ) [ 3 1P Dl + 0P Dl |

I % [P7(2)) 0,0) > <5l0 6il’>1> }

1-sub _E +m 2J +1 (tht)J !
W I+t

Note that again only even powers of momenta and z; occur.

(W —m) [Pﬁ(zg)](o,o) 00 - (A.101)

B Partial-wave projection for the t-channel amplitudes

In the following, we will discuss the different contributions to the t-channel part (3.7) of
the RS system.

B.1 Nucleon exchange

In order to carry out the projection integrals (3.6) we rewrite s and u as functions of ¢ and
24 via,

1 1
s(t,z) = 5(2 —t+4Apiqize) u(t,z) = 5(2 —t —4Aprqize) (B.1)

which allows us to cast the nucleon pole terms of the HDRs (2.44) into the form

1 1 1+£1 1 1 1 1+£1
=+ — = — F - } — y B2
{m2 —s m?—u 2(m? —a)} (t:24] 2ptqt{y—zt (—9) — 2 2(m?2 —a) (B-2)
where the upper/lower sign corresponds to even/odd J (i.e. to I = +/—) and we have
defined, in analogy to (A.6),

5 t— 2M7% mrpg

g(t) = —; =
Dtqe Peqt
(24(t, s") will be defined in (B.13)). By noting that the orthonormality of the Legendre

polynomials yields

= z(s =m? t) = &4(t, s = m?) (B.3)

1 1
1+1 1) 1F1
/dz Pj(2)P—om(2) = ST ‘H = ;F /dz Pj(2)P—on+1(2) Y J,l(m,n € Np) ,
0 0
(B.4)
the nucleon pole terms of the PWDRs (3.7) can be written as (in analogy to (A.3))
~ 2 9Q (g 1 o5
Ny 9 [99s0) s 1 8y V>0
O R R =0
N VI HD) [Quoi(9) —Qua(§)  dn
N 9 +1\Y) VJ>1 B.5
=) At 2J+1 { (peqr)” mQ—a} - (B-5)
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which for later convenience may be expressed as (in analogy to (A.4))

2 2 ~ ~
VI = NIy 9o on o 90 [9Qu(G) -
W) = M-S W = T g, ¥J20,
B R 2 R 2 1 () — ~

Ar 3 m? —a dr  2J +1 (peqr)?

(B.6)

Note that for ¢ € (tr,ty) due to p, € iR also § € iR and hence we need the ana-
lytic continuations of @Q;(z) as discussed in appendix A.l. However, the pole-term pro-
jections (B.5), (B.6) are real for all ¢ above the logarithmic branch point singularity at
tr — (M2/m)? a 3.98M2 of the nucleon cut (which is the left-hand cut for ()% < 1 along
the real axis due to the z;-projection of the nucleon pole terms), since §/(piq:) and the
squares p? and 7 are always real, and thus we can rewrite the projections solely in terms
of real quantities due to the defined parity (A.9) of the @ (7). Finally, we comment on the
asymptotic behavior for p;q; — 0, particularly including the vicinity of the aforementioned
logarithmic singularity. The ostensible poles in (B.5) are canceled by the asymptotics of
Q(y) for § — oo. In this limit, we may abort the series representation of Q;(z) valid for
|z| > 1 [96]

Qi(z) =

2'(11)? L0+ | ((+ 1)+ 2)2_(z+3)+(l + D +2) (1 +3)(1+ 4)z—(z+5)+‘ -
(20 +1)! 2(21 + 3) 2(21 + 3) 421+ 5)

(B.7)
after the first term and obtain the leading contributions

N‘](t)—ﬁ AR 4 J—& __On +O(p2?) VJ>0
T Am (27 + 1) t —2M2 JOT e, Py >0,

S 2 \/J7+1 4 T 5,
N = - 2q >1. (B.
=0 dm 2T+ D)V T {(t—2M3> m?_a}+0(tht> VJ2> (B.8)

In particular, it follows that the leading contribution to N9 (t) vanishes, such that N9 ()

even involves zeros for p;q; — 0. However, higher orders need to be taken into account
in the approximations (B.8) in order to obtain precise numerical results in particular for
gt — 0, since the pole terms vary rapidly in the vicinity of ¢;. Note that (B.5) and (B.8)
reduce to the results given in [29] and [56] if the terms containing the hyperbola parameter
a (that only contribute for J = 1 anyway) are dropped.

B.2 s- and u-channel exchange
We may rewrite the ¢-channel partial-wave projection (3.6) in matrix form as
1
£7(1) / dzy T (1, 2) AL (s, 1) , (B.9)

s=s(t,zt)
0
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where the projection kernel is given by

~ ~ (uy v - 1

TJ(ta Zt) = CJ (Z:)J :;)f]) ) C](t) = W )
uy(t,z) = —%PJ(%% 0y(t, 2e) = mz Py (z),

wott2) = Y D [y ) — Priata)]. (B.10)

For the following, we need the matrix form of both s- and u-channel HDR terms (2.44)
according to
1 o0
= — d / hI t /. I A[ / t/
s=s(t,zt) T / S S[ S 7Zt] m (S , )
S+

Ss+u
Al(s )

(B.11)

t'=t'(s',2%) ’

where the kernel matrix h! is given in (A.21), and [t, s’; z;] indicates that the whole inte-
grand is to be understood as a function of these variables, which can be done by using (B.1)

1 1 1+1
mEho}| = + -
{ L [t,s;2¢] {5’ -5 §—u 2(s— a)} [t,5524]

1 1 1 1+1
= — F = — . B12
2pigy { Ty—z  (=T) — Zt} 2(s" —a) ( )

The upper /lower sign corresponds to even/odd J and we have defined in analogy to (A.21)

and thereby

_t+25’72

Bi(t,) = == = (). (B.13)

According to (A.72), the relation between 2, and z; in (B.11) is given by

2_5 /2(3/—61)
Altsiz) = 2 F(ts) = L5 = (),
° 5 2p7q}
~ t—Y+42a)2 —4(s —a)(2¢*+ X — s —
5('5,8’) _ ( + a) (816 262( q + S a) _ 5(Sl,t) ‘
Di q;
(B.14)

Expanding the absorptive parts of (B.11) into s-channel partial waves via (A.16) and
projecting onto ¢-channel partial waves by means of (B.9) leads us to the PWDRs for the
t-channel partial waves

oo 00

s+u 1 ~
) =-— / dw’ > G, W) Im £/ (W) (B.15)
ﬂ—W+ =0
with the kernel matrix
1
G W) = 2 / dzy T (1, 2Bl [t W' 2SI (W, 21 . (B.16)
0
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As a remnant of the MacDowell symmetry, (A.19) induces the symmetry property
G7lt,—w") = GTY(t, W) , (B.17)
such that the parameterization with two kernel functions

Gru(t, W' Galt, —W’))

Hy(t, W) Hy(t,—W") (B.18)

é‘]l(t, W/) _ <

is justified, where again according to 0 = 0 we set Hy = 0 for the matrix notation. This
reproduces the s- and u-channel part of (3.7)

o0

s+ 1 s ~ ~
o) =- / AW’ S~ { Gt Wt [ (W) + G, W) ) (W)} ¥ >0,
1=0
1 ! / I / ] ! I /
= dW Hﬂ(t,w Y f, (W) +H o (t, ~W')Im £, (W )} VI>1.
W, -
(B.19)
If we introduce the abbreviations (cf. (A.83))
T ! / ! ~ / 2w’
O [arn|[dW")] = dW )agps1 + d(=Wag, , iyt W) = )T (B.20)
we find for the kernel functions
Pt 7| 1 m " 1
= —=—|A Bj|=—— >
Gut,W') { th[ Jl E’+m]+ w[ Jl E’—i—m]} VJ=>0,
JJ+1) -7+ 1
_ > .
HJl(tW) 57 +1 ¢|:le E’+m] vVJ>1, (B.21)

where the angular kernels are given by

An(t,s) = [ dz PyCzo){m ¥ b} P (20)

Y
[t75/§zt}

Bu(t,s) = [ dz PJ(zt)zt{hl + hg}Pl’(z;)

— O~

’
[tvs,§zt}

O\.—- o

Cu(t,s) = [ dz [Pj—l(zt) — PJ+1(Zt)] {h1 + h2}Pf(Z§) =Aj1,—Ayy .
[t,8";2¢]
(B.22)
Decomposing these kernels according to
~ 1 B B _ ~ 1 L B _
An(t,s') = —P(Z:)Qs(Z1) - Anl(t,s') B(t,s') = — P (25)2:Q (%) — B(t, s')
tht biqe
Cult,s) = 7131( )| Qu-1(E) = Qry1(Z)| — Cult,s) (B.23)

ptat
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with the real quantity

S
Ty —0 t ,
5 =1+ 27 = z5(s', 1) (B.24)

Zs(t,s") =

and polynomial parts defined by

1
i 1 1 Pl(z) - Pl(z)) 1+1
Ayt s dz P 275 P/ (%
it ) = 2/1 o) { ST E )

1] 1 #P/(3) - 2P(z) 1F1
— Tt Zs Zt z F
Bji(t, s dz P L o P/(z
q(t,s') = 2/1 Zt J(Zt){ptqt P — 2 +2(8’—a)2t l(zs)} )

1 | PG - P 11
Cu(t,s) == [ dz [Pyi(z) - P T T il T p
o) = & / st [Proaen) = Praae)] { o BTy SF o pry

= Ay 10— Asg, (B.25)

the kernels Gj; and H may be written in a recursive fashion

Gt W’)—c‘; (W) = Gria(t,-W'),  Gj_1=0, VJ>0,

HJl(t W' = Hy(t,W') — Hl]’l_l(t,_W/) , HJ,_1:0, vVJ>1
Gut,Ww') = 12 {PZ/H(ZS) [—pt(W' +m) + mit} Q.(T)
E'+m | pa q

p _ _
+ j(W' +m)Aji41 — mBJ,l+1} ,
t

i J(J+1) (P2 A
(e = A NIIED I G, @) @ra(e] - Corn | . (B26)

keeping Cj; just for convenience. Note that since 7;/(ptq:) and the squares p? and 77 are
always real, Aj is real/imaginary for J even/odd and the other way around for Bj; and
Cj;. Therefore, we can conclude that the functions G, Hj; and hence the kernels G,
Hj; are real for t > t; — (M?2/m)?, cf. the discussion following (B.6). The kernels for all
combinations (J > 0,1 < 2) explicitly read

UEE B O 10,3 — pe W
GJU(t W' = E’+m{ptqt ([ qt(W —|—m)+mxt}@](:ﬁt) m5J0)+Qt o

s JUJ+1)( 1 . - o
Hyo(t,W') = Fo— Y {M[QJA(%)—QJH(%)}— T }v

Gt W) = —Coyolt,— W) + —1 {?’Z ( [ P oy mgzt} Qs (7)) — m5J0>

E' +m | piq qt
{30+ (1-3d)s}]

g (G-}

W'+
po TP [ {511 +3517t510}
Y gt [ Ptqt

m| 1
- = [ { dgo + T4051 + 5J0}
v Lpeqr

= GJl(t,W ) — GJo(t, —W’) ,
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ﬁjl(t, W/) = 7131(]0(72 *W’) +

B e T\ e |@r1(E) — Qi ()]

oo aman}+ o a() - )an)]

=Hpn(t,W') = Hyo(t,-W'),

i J(J+1){325

N TR V- cA T2 o TR
GJQ(t,W)— Gjl(t7 W)+E/_|_m{ Peqe |: qt(W'i_m)'i‘mxt}QJ({Iit) md o

Wi+mp [ 1 < 15_ /1
| 75J3+xt5J2+ ( . 25)5J1+ i <3+xt—25>5J0

1{215J4+2<§ >5J2+*( ~>5JO}:|
_ ;;[qut{ﬂ(mﬁ S0+ (g +£§—25)5J2+g(§+@§ —25) (:zt5ﬂ+5m)}

1 (20 3,10 < 5(3 6: = 72
I = _9 Bl 2_
+s'—a{2315"5+7(9 5>5J3+2(7 50190 5)6‘”}]}

= GJQ(ta Wl) - GJl(tv 7W/) )

iy VI +1) | P3(E)
E'4+m 2J+1 DGt

Hya(t, W) = —Hp (t, - W) + |Qu1(@0) = Quia ()]

_ 2 [ L { 6J4+xt5J3+2(3+5:§—28)512+12—5@(%+£§—28)5Jl}

3% [ pea
oo 2§ =)o+ 53 -2 5 -] |
= Hyo(t, W') — Hy (t,—W') . (B.27)

The explicit formulae for the polynomial parts Ay, By, and Cy; for (J < 2,1 < 6)
needed for calculating these kernels and furthermore the additional kernels G and Hy,
for (J < 2,3 <1< 5) via (B.26) are given in appendix B.4.3! As a check of our calculation
we can reproduce the nucleon pole terms (B.5) by (cf. (A.67))

NI(t) = —f*Gp(t,~W' =m) YJ>0, NI(t)=—f*Hplt,~-W =m) VJI>1.
(B.28)
The asymptotic behavior of the general kernel functions (B.21) can be deduced to be

for pigg — 0  Gu(t, W)~ Hy(t, W) ~
for ¢ =0 Gut, W)~Hut, W)~q?, Gult,~W')~Hy(t,-W') ~q %2,
for ¢ =00 Gut,W')~ Hyt,W)~q 2. (B.29)

In particular, these kernels are finite for p;q; — 0 and their precise form in this limit may
be worked out in close analogy to the discussion of the pole terms in appendix B.1 based

31Note that for |a| — oo, of all polynomial parts only By, does not vanish completely and hence f9
receives polynomial contributions from the kernels Goi. These remaining contributions, however, are just
those that cancel with the leading terms of the S-wave pole terms (B.5), cf. the discussion following (B.8)
as well as the explicit kernels (B.27).
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(B.26). Note that both (B.28) and (B.29) obey the MacDowell symmetry relation (3.3)

as they should.

B.3 t-channel exchange

We need the t-channel HDR terms (A.70) in the form
(B.30)

o0
t 1
Al(s, 1) ! / dt’ bl [t,1'; 2] Tm AL (s, ) ,
s=s(tze) T s'=s'(t',21)
lr
where the kernel matrix h! is given in (A.71), and the integrand can be written as a

function of the variables [t,t’; z;] by noting that

B 1 v
[t,t";2¢) t—t’ v

PtQt 2t (B.31)

)

PtQt Zt

1 1

2(]2 Ty — Zs [t,t";2¢]

and that z; and z;, are related by (cf. (A.22))

2
2 (t,t 2) =\ az? + ﬁ , a(t,t') = ,
i ! Piqp
vt )
(t+t —2YX+4a). (B.32)

Btt) = —575
( 16pq;?

If we expand the absorptive part of (B.30) into ¢-channel partial waves by using (A.75)
and project onto ¢t-channel partial waves again via (B.9), we obtain the following PWDRs

for the t-channel partial waves
o0
(B.33)

t ~ ! ’
fJ(t)’ = 1/dt’ S Kt ) Im 7 (¢)
T

tr J!

where the summation runs over even/odd values of J' for even/odd values of J, accordingly,

and the kernel matrix is defined by

1
/d T (t, z)hl[t, t'; )T (¢, (B.34)
0

JJ'
K7 (t,t) = AR

Calculating this kernel matrix shows that it can be written with three kernel functions as

’) _ G (UJJ’(tat/) UJJ’(t’t/)>

K/'(t,¢) = K1) Kot
' 0 K3, (t,t) t—t 0 wypt,t)
J' -1

Gt ) = (2 + 1) LIS (B.35)
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where we have defined different angular kernels for even J and J’

1

Py
qtPy J

1
Pt 212 Pf]/(zé)

vy = /dZtPJ 2t {qz —qrz } ;
NAL J’+1 ) 4:D}q; (=i = d= z

L J(J+1) p / Pl ()
' d P P B.
I =551\ T 1) ) ) ze (Pri(z) - J+1(Zt)} . (B.36)
and for odd J and J’
: 1
u —ﬁ dz; Py(z PJ/(Z) Y L — 1—ﬁ dz; Py(ze) 2Py (2;)
JJ = p;z / t J t Z{g ) JJ = J/(J/ n 1) p? / t L J\<t)<tL g \~¢)

1 [ JJ+1)
wyy = 27 11 J’(J’ /dzt PJ 1(Zt) PJ+1(Zt)}PJ/(Zt) (B.37)

In this way, we recover the form of the t-channel part given in (3.7)

t ]_ y ~ ! ~ !
f;{(t)’ = 7r/dzt’z:{K}J,(t,zt’) Im f"(¢') + K3, (t,¢') Tm (t’)} VJ>0,
tr J!

100 ~ /

== [at"y K3, (t¢)Im >1, (B.
- PSRRI VIz1, (B3S)
tr

and according to f° = 0 we set f(S’J, =0= f(?]o .
From the projection integrals (B.36) and (B.37) together with the definitions (B.32) and
2 /
pt_t_t 2 2 /2/2_75—t 1
_ pTQ — 4p’2 , qrzi — gz = 4p 4qt zt 4(75 +t' —2¥ +4a) p (B.39)
one can see that the off-diagonal term v is proportional to ¢’ — ¢, as it should be. Note
also that only even powers of z; and z; occur in the projection integrals. Therefore, the

kernel functions f(} g f(?] g, and K ? g are always real, since the prefactors contain only
even powers of momenta. The integrals can be performed with the help of [96]

1 =1

2 2
2) =) asi2?, Z LR (B.40)

A=0 A=0

for even and odd values of [, respectively, where
v <—>awﬂ—n Lol (D7 (22 + D)
Al — ’ Al — )
2l—1(§ . )\)!(/\ +i- 1)!(2)\)! 2l—1<l—71 - A)!()\ + %)l(m +1)!

(B.41)
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which also follow from reordering the expansion

l
5 l
2l 2 [ 5 f [,
B Z )! 42 A or even
— 2 Al( l = )N =2A)! 2 lTl for odd [ .

In this way, the required non-vanishing integrals may be written for even J and J’ as

1 I ’
2 A /
N\ L anep-
/d Pjy(z)Pyi(2)) a;fvj,z( )M@ nasy,
0

(B.42)

ds P 2.2 212 P}'(Zt) B Z I ev
Zt J(Zt) G2y — 4t % 5 — 2)\ Ay gt
0

p N1 oY
2 L T A e 2 < AN — s
D N L TR M WL

p=max{ % —1,0}

1

P, (2
/dzt Pr_i(z) PJ+1(Zt)}Zt JZ( 2 =
0

/
t
g

2 i N -1
. L T S e
> WaF, ) ( M )a“B M

)\’:max{%,l} ,u:rnax{%—l,O}

e = (N -1\ ..~
- > 2A’aw,z< ) )aﬂ,@klﬂaﬁlyw, (B.43)
N=241 =%

and for odd J and J’ as

1 J -1 /
Py (z 2 A N\ s,
[ i 3 gty Y ()@ rag,
0 S
1 J’2_1 N )\/
/dzt Py(2t) 2Py (2;) = (2N + 1)asf, Z ( > arpr RS
0 N=J=L _J-1 H
2 2
1
[ e {Pratn) = Praeo b P (ap) =
0
od X N
Z 2>\l+1 CL)\/J/ Z " a“,@ 7”@] 1,
N=I71 p=Igt
J’2_1 v )\/
- > @Y +Das Y ( )MﬁA A, (B.44)
N=Jt1 M_ﬂ K
2 2
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with the definitions (for even and odd values of .J, respectively)3?

J
oy _i VIR (s ) LCD L (2u)! (M
P (A NHL T (= 3)@utJ+ )l 2 = DI 2pt 1)
J-1
ol — 22: UVIRNYE s ) O g VIO (2p — 1) (u
o2+ (n—Zp+0)! 2u—1—)N2u+J)!

We can conclude that the following kernels vanish:
K/ (t,¢y=0 VJ <J,

and by using the identities

(2J + 1)ae%V7J&eJ"’% =1, Ja‘?}’ff}dl% =1, for even J ,
(2J+ )aJ1J~JdJ+1:17 Ja/JlJ?]l‘] —1, fOdedJ,

it follows that the non-vanishing kernels for J' = J take the form

ptl 1 1t 1 oty 1

Kistt) = PRt —t _t—tN v vy 770
m

R3,(t0) =)+ = — vJ>1

7. J+14p’2 J+1t’—tN =

K3 5(t8) = — VJI>1,

from which one can immediately read off the relation (valid for all J)

K3;(tt)=m Tr1 {K?}J(t,tl) - K’}J(t,t’)} .

This together with

- 5 p ~ om p2
1 Py 2 t 2
Ko (t,t') = 6 p {t+t' — 2% —|—6a} , Kop(t,t') = 16\/62922{4%
Kl / 7 pt /
13t t") = 48 t+t —2X 4+ 10a; ,
~ 9 , 7m 1 ,
Rt t) = 50 ,2{8]9 P —t)(t+t —22+5a)},
. 7
Kzlg3<t,t/) = %{t‘f’t —22+5a} y

32These identities are similar to the Saalschiitz formula (A.42) employed in [46].
(=Dt =0=1.
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(B.47)

(B.48)

(B.49)

—3(t+t’—22+4a)},

(B.50)

Note that



completes the calculation of the t-channel kernels with (J < 3,J" < 3). Finally, from (B.43)
and (B.44) we may infer the asymptotic behavior of the non-vanishing kernels

for pr =0 Kjy(t.) ~f . K2,(tt) ~ K3, (t,4) ~ 1,
for ¢¢ —0 KL, (t,t) ~ J,(t,t’)wkﬁJ,(t,t’)Nl,
for t »o00 Kb, (t,t) ~K2.(t,t) ~t"7 K3t ) ~ /=771
for pp =0 Kju(t,t') ~ Kjp(t,t") ~pi 2, K5 p(t,t) ~1,
for qf =0 KL (t,t") ~ K2, (t,t") ~ K3, (t,t)~1,
for ' = o0 K, (tt) ~ ’J' J=2 K2, (t, ) ~ K3, (t, )~ =771
(B.51)
Note that the kernel K’gQ (t,t') exceptionally has better convergence properties
K2, (t,t") ~p? for py —0, KL (t,t)~1 for t' — oo (B.52)

B.4 Higher kernel functions

The explicit form of the polynomial parts Ay, B Jls and C 7 from (B.25) for (J < 2,1 <6)
that are needed in order to calculate the kernels G j; and H; for (J < 2,1 < 5) via (B.26)
explicitly read

_ 1 . 3[ & 1 (1 -
A = Agy = 2| =1 -5 B.
0= ST 02 ‘y[ptqt+s’—a{3 H, (B.53)
I [ F [, 1 s 1 f1-5 25 o
403 = 55 _tht{xt+3 25}+s’—a{ 5 30l
. 3502 (4 of1 .=\ 1 3., <« .
Agy = — | =L S35 ) 4= 232 -5+38
04 2:5/3 | peqe {xt +xt <3 3 > + 5 77 +3
L1 () 2 g
+s,_a{7 7(1 35) 5406234
P S K Y 132 7_l2_§+§g2 +i_f 1 5 9
057 934 | ppgr | 4 P\ 12 t\20 6 3 2 28 3 \6 5
62 1 1 A2/1 32 2. - 5 3 PR
— — L (=-L_z S40%) — 24224
+ } s’a{36 6(5 14 3+> 7770 51|

3465 [ & (3 (1 A% 6w\ o1 A1\ 68
Agg = 2200 Tt — T 005 SR (Y ) A
06 = 455 {ptqt{lO—i—xt 50 11 6 0 )T 70 11\3 073
6 ~2 =2 N T2 <3 $4
) GRS WS S Gl (S A ST~ 2 N S M
+2(15 5>+9o 11<5 6 O ) uty 3T
72

1 1 #2121 2\ 3+ = = 5 62 & 5t P
(L2 =0) =S4 - e —— — —
+s’—a{110 11<7 6(3 > 50T 87 576 10/

_ _ 11 - 1 5 3 -
A1 =0, Apg=—=, Az =—— 552+—25}, B.54
H - Pear vy v Ptqt 272{ ! 5 ( )
- 1 i 1 2\ 1-72
LT Y A B Sl A 1Y
Peqe 273 | 3 5 7 5
. 1315028 (1 8\ (1 # 4§ &
= a2 {2“% 20 3)"T"M \m B 52
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B.5 Subtracted kernel functions

Here, we give the modifications of the nucleon-pole-term projections and the kernel func-
tions for the ¢t-channel projection, that are required by the subtractions performed in sec-
tion 4.3.

To start with, the n-times subtracted nucleon-pole-term projections may be written as

N () = N (¢) + ANQ"'S“b(t) ,

AN () = ff;( * dio + i, bo*oqf>5f0
_1_17;;( 2922+b00+b01t nfz)%l—k;g 072
2 B (oo
s B 3

where in analogy to the s-channel projection we have defined unsubtracted corrections
(cf. (B.6))

i 2V2 6
ATt 3 m?2—a

which are constant and non-zero only for J = 1, in order to split off all terms that are either
constant or contain subthreshold parameters. Note that for both one and two subtractions
the full nucleon-pole-term projections fulfill the threshold relations (3.63) for p, — 0, but
no longer for ¢ — 0. However, the subtraction-independent parts of the pole terms Ni
still fulfill the relations (3.63) for p;q; — 0.

The necessary update of the s-channel kernels G 2i(t,W') and H 21(t, W) may be
achieved by adding

AA l‘25ub £ o) = {(ho(s')— W)]D/([z;](w)) +ho(s") t[0ez) 0.0y B ([ ) (0.0) )}5.10
+
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ABJl‘Q_Sub(t,s’) = {(ho(s’) — W)B’([z;]mm) + ho(s") t[O42; J0,0 P ([ ](0 o))}(s;l
+

%&P/( [Zg](o 0) ) (5Jo + 5J2)

(s —50)?
e ho(S/)Pz/( AR 0))% ;
Al (1.8 = { (ho(e) = oz ) P (Bl ) + o) 0000 P (00 )
*%(s/]ﬁqﬁo)zﬂ'([ oo )32
= () F ([ 0y )0 (B.63)

respectively, to Az, B, and Cj; at the pertinent places in (B.26), leading to corresponding
AGj; and AHj. Note that also in both the once- and twice-subtracted case AC); =
AAj_1;— AAjyiqy is still valid (for J > 1, here actually ACy; = AAj_q).

The additional contributions to the t-channel kernels K/7' (t,t') amount, for even J
and J', to

-, 2-sub D. 1 t
AR 0t) =~ + 06 Lo L (14 £) oGl + 0P Do) Jin

1 sub J’ pt

1
(QJ’ +1)(p iq{) p/2 m [Py (Zt)](oo djo

=9 |2-sub n o 2J" +1 J pt ol
AKG | (t,t") = m(? R 7 (0P} (20)) 0,0y + 10 (24 P (240))) 0,0 |70
] o 20
3a2 L 2 Joo 5 piai
1sub  2J +1 FPEM
—— P, 1)
— T+ 1) (Ptar) p/2 m [2:P) (Zt)](op) Jo 5
o -S 2Jl+1 4 fl P//(ZI) 1-sub
ARE 75y = -2 T "J—Q{J ¢ S %0 B.64
5] (t,t) T T 1)(1%%) 57 P J2 ( )

while for odd J and J’ one finds

2-sub

AKS |7 (1) = — (20" + 1) (pg)” ! pt ekt [P"Z(,Zé)] % =0,
t (0,0)
AK?,, Q_SUb(tvt/) = m(pQQQ)Jllzr’L{(li’ngt > [PJ’(Zt)](O 0Tt [atPJ’<Zt)](O ())}(Sg1
b —i:I(i;_j ) (P q; )J/_thn [ J! (Zé)](o,o) % )
ARG [P0 = =ty 2 (14 5 ) 195 Gl + 105 Do) } 5
e —M(p qi )J, ! \t( [PJ'(Zt)](op) % : (B.65)

Furthermore, AK””" = 0 for J > 2 or J' < .J, the latter being in agreement with (B.46). In
all cases only even powers of z; and the primed momenta occur, and hence the additional
kernel terms are always real. Here, we refrain from explicitly expanding the Legendre
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polynomials using (B.40) as in appendix B.3, but only give one example to demonstrate
this point (for even J and J')

)\ 1
[0 (21)] 0.0 = 2[00 (0.0 Zaw, Jon) - (B.66)

For later convenience, we explicitly state all those subtracted kernels with 0 < .J’ < 3 that
differ from their unsubtracted form

2sub ’ t2 1 /
Koo’ tt):t* oo(t, 1) — ) = *Ku(tt)

2-sub ) pt t tNtﬂ— t l-sub O pt tNtr
K, (t, ¢t 1+ — - = — t
02| ) =355 {( YY) T w62\t e J

~ -su 7 p 3f/Nt 1-sub
KL[Z ¢y = L Pt )y m | Lsub g
13 (t, 1) 48p —+ o Lt 1),

1 sub T 2- bub 1 sub

Koo(t t'), K11| Kiy(t,t),

. } t tn =
K[ 1) = tngll(t,m RN @), KR = TR (1) T R, (11)
~ - 5m p q tN 1-sub om p tTF
2 |Fsub 1) = 14t L-su} Py L
02’ ( ) 4\[ p/2 t’ 8\[]?

~o |2-sub ™ | p; 9 tntr t\tntr t
K13 (t7t/)16\/§{,2|:2qt —t— 4t/ :| + |:<1+t/ Tt/iyso
1sub ™m ’ 151\[t7r
22 — (t -4 )] ¢ ,
16\[{ [qt + S0 + ba +[+ 4t’}}

1§ub t

2-sub 1- iub

- o t ~
K131 (t,t’) Kll(t t) Kll(t t) K22| t t/) = §K§2(tvt)

s (2-sub 7 t tNtW t ) s 7 tnte
K13 (t,t/) = 8\/6{ (1 4+ t/) Tt/ — ?50 — % t+ At s (B67)

still obeying the threshold-behavior relation (3.62). Note that at the level of two sub-
tractions all these kernels are independent of a (which is, however, not true for only one

K(t.t)

subtraction and J > 3 or without subtracting), and that the exceptionally safe behavior of
K2,(t,t') at ty is preserved (cf. (B.52)):

n-sub

K™t —tn,t)=0@®]) ¥Yn=>0. (B.68)

C Ranges of convergence

In this appendix, we will analyze both the convergence of the partial-wave expansion of
the imaginary parts inside the integrals and the convergence of the partial-wave projection
of the full HDR equations. For the rest of this section we may work as if no subtractions
were necessary.

C.1 Boundaries of the double spectral regions

The following analysis is performed in the spirit of [19, 29, 31].33 The basic assumption
is that the T-matrix element (and hence the scattering amplitudes {A(s,t), B(s,t)}

33Note that the authors of [19] corrected their discussion of the boundaries of the double spectral regions
in [98].
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Figure 14. Box graphs constraining the boundaries of the double spectral regions. Solid lines
denote nucleons and dashed lines denote pions.

T(s,t)/(16m)) fulfills Mandelstam analyticity [99], i.e. that it can be written in terms of
double spectral density functions pgy, pru, and pg according to3?

_i 13,0 psu(S/U // , ptut u)
= 2//dsdu (5 — 5)(w — ) + dt'du N — )

s

The integration ranges are determined by those regions in the Mandelstam plane where the

corresponding double spectral densities have support. The boundaries of these so-called
double spectral regions will be the central objects of the following discussion.

The three double spectral densities can be derived by studying the consequences of
unitarity in the 2-intermediate-particle approximation. We consider the corresponding
lowest-lying intermediate states as depicted in figure 14 (as unitarity diagrams, i.e. with
on-shell intermediate particles), where the inelastic (referring to the intermediate state of
the s-channel process) diagram (I) and the elastic diagram (II) yield the boundary of the
support of pg (from which, due to s <> u crossing symmetry, the result for p,; directly
follows), while (III) and (IV) are relevant for calculating the boundary of the support of
psu- This leads to boundary functions (cf. [29])

bi(s,t) = (t —AMZ)X\(s,m* AM2) — 16M7 (s +3%_) ,
bur(s,t) = (t — 16M2) A\ — 64M s (C.2)

for the boundary of pg and thus by(u,t) and byj(u,t) for the boundary of p,;, as well as
biri(s, 1) = AA(s, m2, AM2) — 1602 [m2su — 52 (m? - t(s,u))] ,
brv(s,u) = )\S)\(u,mQ,ZLMZ) — 16M? [mQSu -2 (m2 - t(s,u))} (C.3)

for the boundary of pg,, where we only need to consider byi(s, u) = bry(u, s) due to s <> u
symmetry. The whole support of all three double spectral densities is then given by the

34Mandelstam analyticity can at any rate be justified in the framework of perturbation theory [99-101].
While for 77 scattering the validity of the Mandelstam representation can even be shown rigorously in a
finite region [102, 103], for 7N scattering (involving unequal masses and spin) at least the uniqueness of
amplitudes satisfying this representation is ensured by the MacDowell symmetry [104, 105].
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union of the regions allowed by the non-trivial constraints that the corresponding boundary
functions be non-negative. Furthermore, trivial constraints arise from the lower kinematical
bounds of the corresponding physical regions that are given by the asymptotes of the
boundary functions in question, e.g. for the inelastic diagram (I) we find the asymptotes
s = (m+2M;)? and t = (2M,)? = t, and for the elastic diagram (II) we obtain s =
(m + M;)? = s, and t = (4M,)%. Therefore, by defining the following abbreviations for
the solutions of the implicit equations

!

bru(s,t) =0 = t="Tyu(s), s=5Syu), (C.4)

the boundary of the support of e.g. pg is described by

) Ti(s for s, < s < (m+2M;)?,
Tu(s) = min{Ti(s), Tu(s)) = 4 P maM T )
min{71(s), Tii(s)} for (m+2M;)* < s,
with the functions
AM2(s — m? — 2M2)?
Ti(s) = —= T > 4M? Vs> 2M;)? .
I(S) )\(5, m27 4M7%) ™ S (m + )
16M2(s —%_)°
Ti(s) = (s ) > 16M2 Vis>sg, (C.6)

As

again limited by the physical constraints, such that by definition Ty (s) > 4M2 for s > 5.
The boundaries of all three double spectral regions are shown in figure 15. The asymptotes
of ps are s = s and ¢ = t; and hence those of p,; are u = sy and t = ., while the
symmetric asymptotes of pg, are s = s; and u = sy.

C.2 Lehmann ellipse constraints

The boundaries of the double spectral regions limit the range of validity of the HDRs in

two ways:

1. The partial-wave expansions of the imaginary parts inside the HDR integrals (inter-
nal/primed kinematics) in the unphysical regions for both s- and ¢-channel partial
waves converge only for CMS scattering angle cosines 2z’ within the corresponding
large Lehmann ellipses [106]. These ellipses are the largest ellipses in the complex 2’
plane, centered at the origin with foci at 2z’ = #+1, that do not reach into any double
spectral region.

2. For a given value of the parameter a, the hyperbolae (s — a)(u — a) = b with asymp-
totes s = a and v = a must not enter any double spectral region for all values of
the parameter b that are necessary for the partial-wave projections of the full HDR
equations (external/unprimed kinematics) in given kinematical ranges. Trivial geo-
metrical constraints on a arise already from the asymptotes of the double spectral
regions.
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Figure 15. Double spectral regions for 7N scattering (shaded) and boundaries of pg; and py;
reflected in the corresponding scattering angle (dot-dashed).

In this section we will show how the (large) Lehmann ellipse constraint can be translated
for a given a into a constraint on b, each for both the expansions in s- and ¢-channel partial
waves. For any allowed fixed a, the allowed values of b are those fulfilling both of the above
requirements, and the (limited) freedom in the choice of a in the construction of the HDRs
can be used in order to optimize the convergence properties of the PWHDRs. In the two
subsequent sections we will investigate numerically how these limits on b (for given a) yield
the ranges of convergence of the full RS system via the restrictions that are necessary for
both the projections onto s- and ¢-channel partial waves to converge.

For the partial-wave expansion of the s-channel contributions, the Lehmann ellipse
constraint states that the expansion converges for angles 2. (s, ') = 142s't' /Ay (cf. (2.51))
inside the ellipse

(Re 2.)? . (Im 2)? 1
A3 B? ’

(C.7)

with foci at 2, = +1 (corresponding to the physical constraint —1 < z/ < 1), i.e. semimajor
and semiminor axis A and By are related by

A2 -B?=1. (C.8)

Since for given t' the angle 2/ is always real in the integration range s’ > sy, the maximal
value of 2. for given s’ not entering the support of pg follows from the corresponding
maximally allowed value of ¢’ (according to (C.5) for the internal (primed) variables) and
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thus reads 0y
2N (g = 1 4 Ai:rst(s’) =4, Vs >s,. (C.9)

From the geometrical condition — A < 2. < Ay then follows

— 20 <l < Vs > sy, (C.10)

S

and the lower bound due to this reflection in 2/ is actually stronger than the restrictions im-
posed by pg, as shown by the dot-dashed line in figure 15, where the z.-reflected boundary
of the support of pg for v > 0 is given by

2

u(s,t(s, —2(s,t = Tst(s))>) = % + Ta(s) (C.11)

with the asymptote u = 4M2 for s — oo due to Ty(s). Furthermore, due to s <> u
symmetry p,; yields exactly the same constraints as pg; (including the 2/ -reflected boundary
for v < 0), and hence we only need to consider the latter.>® The possible values of ¢’ for
given s’ are then restricted by (cf. [29])

As!

3/

—Tg(s) <t < Ty(s) Vs >s,. (C.12)

Via the linear relation (2.43) for the internal kinematics this range for ¢’ can be translated
into a range of allowed values of b(s',t';a) for given a according to (cf. (C.11))

by (s',a) <b<bf (s, a) Vs >sy>a,
by (s',a) = (s — a)(E — s —Tqu(s) — a) ,
b+ / 0 / )\s/ / T 2% /

(s a) = (s —a)(z—s +?+T5t(s)—a) — (s —a){sl—kTst(s)—a} . (C.13)
where we have used that from the asymptotes s = s and u = s; of the double spectral
regions it is geometrically clear from figure 15 that the allowed values of the hyperbola’s
asymptotic parameter a are trivially limited to a < sy (independent of b), and hence we
have s’ > a for all s > s,. By invoking the asymptotes s = t, and u = t, of the 2/-
reflected boundaries of pg and pys (cf. (C.11)) we can deduce that the allowed range of
a is actually geometrically limited by a < ¢, which is the reason why the “fixed-¢ limit”
la| — oo actually reduces to a — —oo. Now, we may define the highest lower and the
lowest upper bound

5,

s

(a) = max b; (s',a),  bF(a) = min bf (s a), (C.14)

s'>s4 s'>s4

as the maximum /minimum value of bs_/ +(s’ ,a) within the integration range s’ > s, which
then finally determines the allowed values of b for given a by

by (a) <b<bl(a) Vs >sy>a, (C.15)

for the s-channel parts of the HDRs.

35Note that both the s- and u-channel physical regions fit well in between pst, pu:, and their reflected
boundaries.
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The Lehmann ellipse constraint for the partial-wave expansion of the ¢-channel contri-
butions limits the convergence of the expansion to angles z;(s',t') = mv'/(piq;) (cf. (2.51))
inside an ellipse similar to (C.7) centered at the origin with foci at z; = +1

(Rez))?  (Imz))?

2 2
A% 5 =L A2 _B2=1. (C.16)

The argument for the t-channel contributions is more intricate, since inside the integration
range t' > tp the angle z; becomes purely imaginary for t, < t' < tx, and hence no
relations similar to (C.10) are possible. However, as the relation between z; and b is non-
linear anyway (cf. (2.52))

(t' — ¥ +2a)? — 4b(s',t';a)
22 = — , (C.17)
16pi“q;

where all squares are real but not necessarily positive, we are interested in the resulting
Lehmann ellipse constraint for /2. By squaring equation (C.16) for general complex z| we
arrive at
1\2 2
(Re £} = 1) (m{p))°
A B}

1, (C.18)

which corresponds to an ellipse in the complex z/? plane shifted to the right by (A? —
B?)/2 = 1/2. Hence, it is centered at (1/2,0) with the semimajor and semiminor axes

- A? 4+ B? 1 ~
At:%:“‘?_i’ Bi= ABi = Anf42 -1, (C.19)

given by

such that the foci are at 1/2 F /A2 — B2 = 1/2 F 1/2 (corresponding to the physical
constraint 0 < z/2 < 1). Since for # > ¢, we have 2/?> = Re {2/?}, the geometrical condition

1/2 — A, < 2?2 <1/2+ A, leads to the analog of (C.10)
1—-A?=-Bf <22 < A7, (C.20)

where it is important to note that on the right-hand side the relation between z; and A,
is not fixed due to the squares, while the reflection bound on the left-hand side is again
more restrictive than the corresponding bound due to ps,, and hence we only have to look
at the boundaries of the support of pg. For the following it turns out to be advantageous
to rewrite the boundary functions by 1(s,t) of (C.2) in terms of (v,t), since the quantity
v(ze,t) = prqrze/m is always real

!

1
bi(v, ) = (t=4M2){ § (t=am + 6M2)* ~16m* 02} + 8MH t—4mv—3—65_| <0,

bri(v,t) = (¢ — 16Mﬁ){i(t —dmw)? —am? M2} + 32M{t —dmy -z} 20 (C21)
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Solving these implicit quadratic equations for v(t) yields the physical solutions (cf. [29])

(t = 2M2) (t + AM2) + 8Mev/f [ (£ — AMZ)m? + M

— 2 _
vi(t) = dm(t— 402) >0 Vt>4AM: =t,,
(t = 8Mz)? + AMo /iy /(£ — 16M2)m? + 16 M2
vi(t) = >0 Vit > 16M?2 = 4t, ,
4m(t — 16M32)
(C.22)

again limited by the physical constraints, where each sign of the root is fixed by z;(v,t) =
mv/(peq:) < +v and hence z"** = +mv™* /(p;q;) in the physical ¢-channel region ¢ >
4m? = ty. Defining the (positive) combined upper bound on v according to

Net(t) = min{ui(t), v (t)} = {”(t) for tx <t < dtr (C.23)

min{vi(t),vin(t)} for 4t <t

and resorting to the geometrical constraints of the original ¢-channel Lehmann ellipse (C.16)
for 2}, the maximally allowed value of the real angle z; = Re z; for given ¢’ > ¢ty not entering
the support of pg is given by

sy = DN () =4, Vi >ty (C.24)
P4y

and thus (C.20) in this case leads to

m? N2 2 m? N2 /
1-— 5 /stt(t) <z <5 /2Nst(t) Vi >ty . (C.25)
o P4y

In contrast, for t, < ¢’ < ty we have p, = ip/_ with real p’ . Accordingly, for the purely
imaginary angle z; = iIm 2 it follows from (C.16) that

mv' m m?
}Im Z;(t/)‘ = '_p’_qé S ]T(]éNSt(tl) =B = Bt2 = _WNSt(t/)2 Vi < t <tn,
(C.26)
which plugged into (C.20) yields
m? N2 2 m? N2 /
Py aqy t di

However, from both (C.25) with p/2 > 0 for all ¥ > ty and (C.27) with p{? < 0 for all
tr <t <ty we arrive at the same constraints on /2 for given t' > t, (cf. [29])

12 12
Pt 4y

m2

— Ng(t)2 <2< Ng(t)? Vit >t,. (C.28)
By virtue of the linear relation (cf. (2.42))

16m*? = (t' — % +2a)? — 4b , (C.29)
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this range for /2 can then be translated into a range for b(v/2,t'; a) according to

b, (t',a) <b<bf(t'a) VYt >tr>a,
1
b, (t',a) = Z(t/ — ¥ +2a)% — 4m> Ny (t)?
1
bi (' a) = Z(t’ — 2+ 2a)? — 4pP¢? + 4m> Ny (t)? = (' — D)a + a® + 22 +4m> Ny (t')? |

(C.30)

where we have included the geometrical constraint on a as discussed below equation (C.13).
Defining again the highest lower and the lowest upper bound
b; (a) = maxb; (t,a), b (a) = min b} (¥, a) (C.31)

t' >ty t' >ty

as the maximum/minimum value of b, / T(s', a) within the integration range t > t,, we can
finally give the range of allowed values of b for given a by

by (a) <b<bi(a) VYt >tr>a, (C.32)

for the t-channel parts of the HDRs.

C.3 s-channel partial-wave projection

As mentioned before, it turns out that the constraints due to p,+ and pg, are equal to or
weaker than the restrictions due to pg. Therefore, we only need to consider the correspond-
ing constraints for the s-channel partial-wave projection of both the s-channel partial-wave
expanded and the t-channel partial-wave expanded HDR parts. However, the strategy to
find the optimal value of a and the corresponding range of convergence in s is the same in
both cases: from the Lehmann ellipse constraint it follows that all allowed values of b must
obey?36

67

s,t

(a) <b< l;;ft(a) , (C.33)

for all s > sy and t' > ., i.e. within the corresponding integration ranges, respectively.
The limits —1 < z; < 1 of the scattering angle for the physical s-channel reaction translate
into
2 As
—4gF=—-—<1t<0 Vs>s,, (C.34)
S

and hence for given a < sy < s the bounds on b due to the s-channel partial-wave projection
are given by (cf. (C.13))

bR (s,a) < b < b (s, a) Vs>sy >a,
bl;nin(sv CL) = (5 - CL)(E — 5= CL) )

b;nax(s,a):(s—a)<2—s+%—a) :(s—a){_—a}. (C.35)

36Note that the lower bounds coincide: b; (a) = b; (a) for all a < s.
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The maximally allowed value of s for given a, s (a), is then the largest value of s such that

for given a both b™"(s, a) and b™*(s, a) lie within the ranges [E;t(a), Eit(a)], respectively.
Equating the boundary values of b from both the s- and ¢t-channel partial-wave expansions
and the s-channel partial-wave projection yields

(s, a) = by, (a) = s=s5,(a),

)

(s q) = bF(a) = s=s5,(a), (C.36)

where s, and sjt denote the corresponding maximal solutions for given a, leads to two
equations for the two wanted unknowns s77* and a3, defined by

Sgp = max s?‘f‘x(a) = s?lfx(ai ‘) - (C.37)
a<sy

Explicitly, they follow from equating the maximal solutions

= a=ay,, sg(a5)= S;F,t(dg,t) = Sot s

(a)

{ ), st+)(a)}a
%) (a) % \/ % —b5,(a) ,

[

sT®(a { +32 —bfy(a )] - \/[&2 + %2 — B;t(a)r - 4a222_} : (C.38)

S CL

S a =

(++)

where for s > s > %/2 we have s, = s.;' and for in addition e.g. @ < 0 we have
Sit = :t(_)- The maximum value of the two other (i.e. minimal) solutions for a,; then

yields the highest lower bound on s and thus we can write
52“7;“ = max {s+, sgg_)(&;t), s:£+)(&§7t)} for s > sy anda <0. (C.39)

For the s-channel parts, solving the equations numerically for all allowed a < sy leads

to the following optimal value of a and corresponding range of convergence in s > s =
59.64 M2 = (1.08 GeV)?

aS=—12830 M2, s, <s<3M™*=106.09 M2, b (a)=26860 M2 bf(as)=34388 M2,
(C.40)
in agreement with the unpublished appendix E of [21].37
For the t-channel parts, this procedure results in

a;=—2319M?, s, <s<3dX=9730M2, b;(aj)=2202M2*, bS(a})=5212 M2,
(C.41)
In conclusion, the s-channel constraints are weaker than the t-channel ones, which can
also be deduced from figure 16, where the situation for a; = —23.19 M2 is shown: for this a

37 Appendix E of [21] deals with finding the optimal values for the s-channel partial-wave projection of
the s-channel partial-wave expanded absorptive parts of the HDRs only and follows a similar scheme. The
quoted results are 3% > 105 M2 for a$ ~ —117 M2.
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Figure 16. Allowed ranges of b for s-channel partial-wave projection with a = @ = —23.19 M?2

for s-channel (left) and ¢-channel (right) partial-wave expansion. Horizontal lines correspond to
b, (a) = 2202 M? (solid) and b, (a) = 5212 M (dashed).

the range of b limited by b, (@) and b, (a) for the t-channel partial-wave expansion also lies
within the allowed range of b for the s-channel partial-wave expansion, and hence for the
interval of s given in (C.41) this range of b covers the interval [b2" (s, af), b2 (s, af)] that
is needed for the s-channel partial-wave projection. By construction, the resulting family of
hyperbolae does cross neither any double spectral region nor their z’-reflected boundaries
as depicted in figure 18(left), and thus (C.41) corresponding to v/3™ax = /97.30 M, =
1.38 GeV constitutes the result for the s-channel partial-wave projection, in agreement
with [29].38

C.4 t-channel partial-wave projection

The relation between the range of b permitted by the Lehmann ellipse constraint (C.33) and
the corresponding range of convergence in t for the projection of the HDR equations onto
t-channel partial waves for given a is most easily established on the basis of the squared
t-channel scattering angle zZ2, which must cover the range

_ 2 _ — 2 _
(t—X+2a)"—4b (t—X+2a)°—4b 1 (C.42)

< 2} (t,a,b) = =
A 77 7 C— it —tn)

for both the s-channel and ¢t-channel partial-wave expanded parts, since (as discussed after
the t-channel partial-wave projection formulae (3.6)) the integrands are always functions
of the real square th even between the thresholds ¢, and ty. Furthermore, 0 < zt2 <l1is
not only a necessary condition for 0 < z; < 1 but also equivalent to —1 < z; < 1, which
in turn is already sufficient to perform the partial-wave projections in our case (cf. the
discussion in appendix B). Therefore, the range (C.42) of z? constitutes the necessary and
sufficient condition not only for the physical region ¢ > ¢y, but for all kinematical regions.

Obviously, for t, < t < ty and given a, 22 can only be non-negative for b non-negative and

38 As combined result for both s- and ¢-channel contributions, the numbers §* = 97 M2 for ¢° = —23 M2
are quoted in [29] without further explanation and giving only a vague reference for these numerical values,

which is most probably meant to be [107]. However, roughly the same numbers are also given more recently
in [25].
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large enough. Translating (C.42) into ranges for b while taking care of the signs of p? and
¢? in the different kinematical regions yields (cf. (C.30))

bRt a) <D< BP(ta)  Vie<t<ty,
B (ta) <b < bM(t,a)  Vit>ty (ort<tr),
1

Bt 0) =

1
b (t,a) = Z(t — Y +2a)? —4pi? = (t—D)a+a® + %2, (C.43)

where the superscripts min/max refer to both the (at least partially) unphysical kinematical
range t > t, needed in our RS system as well as the corresponding min/max values 0/1 of
zf. Solving these equations for ¢ yields (cf. ¢(4)(v = 0;a,b) of (2.42))

~ : 1
5 (@, bi0) = % — 20 £ 20 /b | 4 (a, ) =X —a + : [bgﬂax _ 23} L (C.44)

and the range of convergence in t for given a is the kinematical range in which all values

between b (¢, a) and b"**(t, a) are covered by both intervals [bs4(a), Ezt(a)]. Between the
thresholds (i.e. for t; < t < ty) this amounts to the conditions l;;t(a) < b (¢,a) and
b (t,a) < l;:t(a), while below or above the thresholds (i.e. for t < t; or ty < t) we have
I;;t(a) < b (¢, a) and b (1, a) < B:t(a).39 Equivalently, we can demand that for given a
the band 0 < z2(¢,a,b) < 1 must be fully covered by the area between z2(t, a, B;t(a)) and
22(t,a, l;:t(a)) in order to determine the range of validity in ¢. The situation that results
from using the set (C.41) of optimal parameters for the s-channel partial-wave projection
derived in the previous section is shown in figure 17(left): the ¢-channel projection is then
valid for —5.63 M2 < t < 44.92 M? (denoted by the shaded area of coverage), and the
reason for this rather low upper bound on ¢ is that the curve for B; = 2202 M2 changes
sign between the thresholds and thus enters the critical band 0 < z? < 1, which is hence
no longer fully covered by the allowed area. Indeed, the range of convergence can be

significantly improved if 22 (¢, a, ~;t(a)) < 0 (and of course also 22(t, a, l;:t(a)) >1) for all ¢
between the thresholds. From (C.42) it is clear that for t € (t,,ty) we have 22(t,a,b) <0
if and only if b < (t — ¥ + 2a)?/4, such that the curves for the lower limits B;t(a) of b will
be tangent to the zero axis provided that B;t(a) = 0. Solving this numerically yields

!

by(a)=1b; (a)=0 = a=al,=-2T1M2, (C.45)

which is unambiguous since it turns out that B;t(a) > 0 for a < al,; as well as B;t(a) <0

t

for ag,

< a < s4 (where we have used the numerical equality of the lower bounds for
both s- and t-channel partial-wave expansion). Furthermore, the curves for Ej’t(a) start
to enter the critical band due to change of sign at ¢y for a > 2.58 M2 and a > 9.17 M2,
respectively (however, the geometrical constraint a < ¢, is partially tighter anyway). Thus,

dg,t is the smallest value of a such that the critical band is fully covered between the

39 Accordingly, at the thresholds the respective min/max values are identical: by (t,,a) = bi**(tx,a) =
(a— Z_)2 >0 and b (tx,a) = b (tn,a) = (a+ E_)2 > 0.
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Figure 17. Ranges of convergence in t for t-channel partial-wave projection from full coverage

(shaded area) of the physical band 0 < 27 < 1 for a = aj = —23.19 M7 (left) and a = a’, =
—2.71 M2 (right). Vertical lines indicate thresholds ¢, and ty.

thresholds, which is shown in figure 17(right). From this figure and equation (C.44) it is
clear that in this case we can deduce the corresponding upper and lower bounds mm(a)
and t3§*(a) on t by the intercepts té )(a, b:t( ) of 22(t, a, bjt( )) with the zero axis below
and above the thresholds, respectively. Since moreover both 5*(a) = t(()+)(a, B;t(a)) are
strictly decreasing in the allowed ranges of a, the minimal allowed value a = @, is also

the optimal one yielding 2" = t((] )( St,l;;rt(d’;t)) and {max t(ﬂ( Slt,bJr( t+)). This
procedure results in
bf(al,) =2897T M} =
bf (al,) = 3509 M7 =

—9.84 M? < t < 205.45 M2 |

—20.67 M2 <t < 216.28 M2 | (C.46)

where the s-channel Lehmann ellipse constraint proves slightly more restrictive, and thus
the final result for the ¢-channel partial-wave projection reads

bo(at,) =0, bi(a

s

b, =271 M}, tp<t<ir™ =20545M}, L) = 2897 M},

(C.47)
which corresponds to Vimax = /205.45 M, = 2.00 GeV. Again, ascertaining that the
resulting family of hyperbolae does enter neither any double spectral region nor their z’-
reflected boundaries, which is shown in figure 18(right), completes the derivation of the
final result (C.47) for the t-channel partial-wave projection. It is interesting to note that
the domain of validity in ¢ is much bigger as the one in s, which is reflected by the possibility
to use only the positive half 0 < z; < 1 of the range of the scattering angle due to Bose
symmetry in the ¢-channel; in particular the range of convergence connects the physical
regions for the s- and u-channel reactions, where ¢ < 0, with the t-channel physical region
t >ty

The complicated interplay between a, Bit(a), and z2(t, a,b) in the different kinematical
regions is the reason why it is not possible to treat the t-channel projection in analogy to the
s-channel projection in the previous section: equating again the corresponding boundary
values of b from both the s- and ¢t-channel partial-wave expansions and the t-channel partial-
wave projection, and subsequently equating the corresponding maximal solutions in order
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Figure 18. Double spectral regions and limiting hyperbolae for s- and ¢-channel partial-wave
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(dashed). Right: for a = a’, = —2.71 M2 with b, (a) = 0 (solid) and bf (a) = 2897 M, (dashed).

to obtain E?X as the maximal upper limit on ¢ for ¢t > ¢ leads to entering or even crossing

the critical band between the thresholds.

D Asymptotic regions and Regge theory

The asymptotic s- and ¢-channel contributions of the HDRs (2.44) to the invariant am-
plitudes are defined by splitting the corresponding integration ranges sy < s’ < oo and

tr <t < oo at some appropriate values s, = W2 and t,, respectively, which yields the
following asymptotic contributions

[ee] o0
1 ! 1 1 1 Im At (¥, 21)
+ _ / +rd ! ) At
A ‘asym(s’t)_ﬂ’/ds _s’—s+s’—u_s’—a]ImA (S’Z)+7T/dtt’—t’
Sa
[0.9]

1 1 1 ImA= (¢, 2
A~ (s,t) = ds’ — ImA™ — v (t, )
asym

T s'—s s —u Yo v v—t
Sa
VIR 1 Im B+ (#/
- t
BY| (s,t)= ds’ — Im BT (s, 2}) g2t (t, Zt),
asym T |5’ —s s —u s — ! th—t
Sa
o r I B (/ /)
_ 1 01 1 1 _ m t, 2
B ‘asym(87t):7r/d8 5’—5+5’—u_5’—a]ImB (S,Z) ﬁ/dtt—t’
Sa - ta

(D.1)

and the remaining non-asymptotic parts are given by the corresponding integrals over
s; <8 < s, and t; <t <t,, respectively, plus the nucleon pole terms N7 (s, t) for the
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amplitudes B'(s,t). The internal (primed) kinematics are given by (cf. section 2.3 and
especially (2.42))

s'(t’;a,b):%( —t —1—\/ — ¥ + 2a)? 4b), t'(s';a,b):—s,_a—i-Z—s'—a,
W(t0,0) = 3 (Bt — T~ 5 1 207 ) | (D2)
where the parameter b is fixed by the external (unprimed) kinematics as
(s—a)(X—s—t—a)=b= (s —a)(u —a), (D.3)
such that )
s'(u'ya,b) = p +a, u'(s'5a,b) = s +a. (D.4)

Thus (for given a and finite b), for the s-channel integrals we need the asymptotic behavior
in the limit
=00 = t'—-0c0, u—a, (D.5)

while in the t-channel integrals the asymptotic behavior is determined by
t' 00 = u—>-00, §—a. (D.6)

From (D.1) the asymptotic parts of the s- and t-channel partial waves may then be
deduced by the projection formulae (A.14) and (B.9) as

1
fl[—f—‘asym (W) /sz{Rl l+1(W ZS) AI’asym (VV’ Zs) + Rl271+1(W’ Zs) BI’asym (W ZS)} )
1

1

(W) = /dZS{Rll+1,l(VV7 Zs) Al‘asym (W, 25) + Riq (W, ) Bl‘asym (W, ZS)} ’
1

deef s (t, 1) A| y (6:20) + 5t 20) B, (8200}

P |y ) = G () [ dzedy(t,20) BY| . (8 20) (D.7)

asym

o oY~ _

where for the ¢-channel partial waves we have again I = +/— for even/odd J. Note that for
these asymptotic contributions we do not expand the absorptive parts inside the integrals
in order to take into account the high-energy behavior of the full invariant amplitudes as
given by Regge theory [108]. Therefore, also for the so-called driving terms (i.e. the sums
of all higher partial waves that are not taken into account explicitly [12, 19] as well as the
asymptotic contributions of the lower partial waves treated dynamically) the integration
ranges are limited by s, and t, in order to avoid double counting of the asymptotic regions.
This procedure follows [12, 19], motivated by the observations that, first, for higher and
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higher energies one would be forced to explicitly use higher and higher partial waves as
well in order to ensure the validity of the partial-wave expansion, and second, no available
information in the asymptotic regime is lost without need. In section 5.3 we explicitly
demonstrate the matching of the Regge model to truncated sums of the lowest partial
waves with [ < lyax for Imax € {3,4,5}.

In the following, the contributions from the asymptotic regions in both channels will
be examined in the framework of Regge theory. For a general introduction see e.g. [109].

D.1 s-channel asymptotics

First of all, contributions from ¢-channel Regge trajectories, i.e. the leading Pomeron (I; =
0) trajectory ap(t') ~ agg) = 1 (roughly independent of ¢ but with exponential residue
function Bp(t') = opexp bPTtl, where op represents the asymptotic total-cross-section value
for w7 scattering and bp is the width of the diffraction peak, cf. [12, 19]) as well as the p
(It = 1) and f (I; = 0) trajectories a,(t') = 04520) + a,(,l)t’ (and ay(t') in analogy) should be
negligible, since due to (D.5) they will behave as

Im A(s', ) ~ Bp(t')s' Pt ~ e B s e ,

/

’ (0) 4 4, (1)
Tm A(s', 1) ~ B,(t')s"% (1) ~ g0 Htan  g/=s (D.8)
for s’ — oo, leading to an exponential suppression.
Let us briefly review the u-channel-exchange contributions to the s-channel reactions

of backward N scattering as discussed in [73]. The invariant amplitudes can be parame-
terized according to (cf. also [29])

SR

)

N

)
BN () 7\ oi(u')—
B(s' ) — MK@)(S) 7 D.9
) = 2 et - 1) \on (o5)
where both sums run over the four trajectories i € {Nq, Ny, As,Ag}, and the Regge

propagators (;(u’) are given by

(o) = L + i exp (—im[ai(w) — 5])
Cz( ) - sin (71' [Oéi(ul) - %])

(D.10)

Besides the scaling factor sp = 1 GeV?, the following Regge residues ﬁf / B(u’ ) and Regge
trajectories «;(u') are employed:

,BA(U/) =a; + biu' , IBB(UI) =c + diu' s Oéi(u/) = 04(0) + o' R (Dll)

[ 7 7

i.e. both the residues and the trajectories are linearly parameterized, and for the latter an

(1)

identical slope ;' = @' is used for all 7. The signature S; = (—1)‘]1'_% of the trajectory

i is positive for N, and Ag and negative for N, and As. Since Im (;(v') = —S;, we may
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N, N, As Ag
a [GeVT'] —60.68  47.22 —75.15 1419.99
b [Gev™?] 32652 —215.84 —138.75 3052.84
¢ [GeV™?] 546.40 —101.11 64.16 —192.64
d[GeV™"] 30742 —128.04 86.77 —695.81
) —-0.36  —0.62 0.03  —2.65
o [GeV?] 0.908

Table 2. Regge-model parameter values for backward mN scattering as given in [73].

conclude that the imaginary parts of the invariant amplitudes in the u-channel isospin basis
I, € {1/2= N,3/2 = A} can be written as

_ PANCHUSES
Im AN (5", u) = Z BA(W) <> ,

i€{Nqa,N,}

a;(u)-1

AN AN A DA/ 1 i, ) 2
iG{A(g,AB}

with the abbreviations
SiBt ()
F(ai(u’) — %) ’

and analogously for the B amplitudes. Using now the isospin crossing relations (2.28), we

Bi) =~ (D.13)

finally obtain the absorptive parts

ImAJr(s’,u’(s’,t’)):% Z BA(W)
i€{Na,Nv}

2 SAs 1 S
L2 A
zG{Ag,Aﬁ}

ImA_(s’,u’(s’,t’)):—% > B % > B?(u’)(s | :

(&)
(&)
(&)

1 /
1 - : 2 . s\ @i
+ _ B B
Im BT (s, 4/ (s, 1)) —473 E BP ()| — + 3 E B (u) > \

i€{Na,N~}
B (s (s, ) = S AP (S
(D.14)

where the dependence on (s',t') can be translated into dependencies on (s',2.) for the
s-channel integrals and (¢, z;) for the ¢-channel integrals via (2.52). For convenience we
also give the numerical values of [73] for the 21 real parameters in table 2.

As a byproduct, we can use these relations to infer the high-energy behavior of the
HDR s-channel integrals: from the trajectory parameters given in table 2 it follows that
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the high-energy tail of the integrals will be governed by the Ay trajectory. Explicitly, the
integrands for AT and B~ will behave as

§'7188 fora=—23.19 M2,

(D.15)
s'7192 fora = —2.71 M2,

_ 1 ! q—
s lslaAts(a) 3 — glda 1.47:{

for ' — a, whereas the integrands for A~ and BT fall off faster by one power in s’
(cf. (D.1)). We thus conclude that the s-channel part of the (unsubtracted) HDRs (2.44)
converges in principle for a < 26.57 M2. Note that in order to investigate the behavior
of these asymptotic contributions in the “fixed-t limit” a — —oo (as discussed in ap-
pendix C.2) it is important to take the limits in the correct order, since u’ — a only after
s' — oo. Since a;(u') — % < —1 for sufficiently large and negative a, the s-channel Regge
contributions vanish in the limit s’ — oo for such values of a. As shown in section 5.4,
these asymptotic contributions are numerically small for the optimal value of a (and a
reasonable choice of s,), and thus they can be safely neglected for a — —oo, regardless of
the pathological behavior of the Regge model due to the Gamma function in this case.

D.2 t-channel asymptotics

Similarly to the previous section one could use Regge theory to describe the t-channel
asymptotic region. However, the significance of these contributions in view of the corre-
sponding low-energy region differs strongly from the s-channel: while contributing crucially
to the dispersive integrals, the pseudophysical region t, < ¢t < t5 cannot be constrained
from experiment, but requires an analytic continuation. Within our system of RS equations
this task naturally takes the form of a MO problem, as explained in sections 3 and 5. The
solution of these equations becomes rather involved once intermediate states other than 77
are energetically allowed, which happens around 1GeV (especially KK above 2M[ ). In
view of the ensuing uncertainty of the ¢-channel partial waves even below the NN thresh-
old it is clear that the inclusion of phase-shift solutions above ¢ty [70], and even more so
the modeling of the high-energy region, will be of little practical relevance. Moreover, as
shown explicitly in section 5.4, already the s-channel Regge contributions are numerically
immaterial, in particular if subtractions are performed, which provides evidence that also
the high-energy region in the t-channel can be safely ignored. For these reasons, we will
not consider the t-channel asymptotic region any further.

D.3 Subtracted asymptotics

Here, we show how to incorporate the effects due to subtractions into the Regge description
of the asymptotic parts of the corresponding subtracted HDRs (4.11) and (4.12). However,
according to appendix D.2 all asymptotic ¢-channel contributions will be neglected.

For the high-energy tail s’ > s, of the s-channel integrals, according to appendix D.1
the absorptive parts may generically be written as sums of Regge-trajectory contributions

/

ai(u)—3
Im X7 (s, 0/ (s, ) = Y B (u) ( ) for X € {A, B}, (D.16)

s
SR
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with summands of the generic form (i.e. dropping the indices X and i for the time being)

R(n,! S ' / / / /1
Bu') = _F(a(ﬁu’()u—)é) ) B(u') = BO 4 gMy/ | a(u') = o o/ (D.17)

While the evaluation of the Regge contributions is straightforward in the un- and once-
subtracted case, for two subtractions one furthermore needs the derivative

1

. / a(u’)—% S s oz(u’(s’,t’))—§
&4 Bu’ <S) H — [ot' ()
[ t{ (u) SR 00 [0 ](0,0) F(a(u,(sl7t/)) _ %> SR o)

X [5@ +a/Bu(s, 1)) {log SSR ~w(a(w(s,) - 1) H o (D.18)

where U(z) denotes the digamma function defined as the logarithmic derivative of the
gamma function

d I'(2)
V(2) = - logl'(z) = D.1
(2) = 18 T=) = 115 (D.19)
To this end, one may use u'(s’,#') =X — s’ — ' and (cf. (4.10))
(8/ — 50)2 So—a
oy =—"F—4 > [0]0n=7—" (D.20)

After utilizing the crossing relations in order to rewrite the Regge contributions in the
I € {+,—} isospin basis and expressing t' as well as the corresponding kernel functions in
terms of (¢, z), we can perform the partial-wave projections of the s-channel contributions
onto both s- and t¢-channel partial waves according to (D.7), where again the implicit
kinematical dependencies have to be taken into account accordingly.

Finally, we demonstrate the projection onto the lowest ¢t-channel partial waves with
J < 2 explicitly. The n-times subtracted versions of (D.7) immediately lead to

/ -sub
- 1 BF|sub 2
HOE 4/d2t pf{ AT zt)+4mqut2M ’

m " Aprqs 2t
L _ n-sub
n-sub 1 A ’asym (t7 zt) _ |n-sub
P )= 77 f ds { P g T e 20
0

1—2} -
dZt i B_‘NSUb (ta Zt) )

1 |n-sub . 1
f—‘ (t) A \/§ asym

asym 4

3

L O O —

1
47

n-sub
f+‘abym (t) =

q} asym Aprqrz

-sub
322 -1 ) BT (¢, 2
dz Z; { —AﬂnSUb (t, z) + 4mqi2? —|asym (t, 2 ,
¢

B+ ’n—sub (t, Zt)

asym

Apqrz

n-su ]-
f%‘asyn? (t) = 47T/dzt 2/6 zf(l — zf)

0

(D.21)
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again written in terms of quantities that are always real since 4p,q:z; = 4mv. Here, the
asymptotic s-channel contributions to the invariant amplitudes for e.g. the twice-subtracted
case read (i.e. as functions of (¢, z;), cf. (B.14) for z.(t,s; z))

[e.o]

-su 1 2(s" —s0) + ¢ 1
PEE :/d’ B o A (o o
R e | =] R
t
— <h0(8/) - (s’—so)2> [Im AT(s, z{s)}(o,o) — ho(s')t [athn AT(s, z;)] 0.0) } ,
_|2-sub [e'S) B
A |s—asym(t’ #t) _ 1/(18, Im A~ (s', 27) _ [fm A (S,’Z;)](Ovo) (D.22)
Aprqize m (s —s0+ %)2 — 4dp?q?z? (s' — s0)? ’ '

Sa

and analogously for B~ (¢, z) and B (¢, z:)/(4ptq:2t). Note that again only real squares
of momenta and z; occur and hence these formulae are valid in all kinematical regions.
Furthermore, by rewriting the general ¢-channel partial-wave projections (3.6) for both
even and odd J in terms of real quantities (i.e. v-even amplitudes and squares of momenta
as well as squares of z;) as above, the partial waves exhibit ostensible poles at ¢, for all J > 2
and in addition at ¢y for all J > 3, while from the discussion of their threshold behavior in
section 3.3.1 we know that these poles are immaterial. The reason for this behavior can be
understood by first noting that for p;q; — 0 the asymptotic (s-channel) contributions (D.22)
no longer depend on z;. The orthogonality of the Legendre polynomials Pj(z;) for even
J > 2 and odd J > 3 then balances the poles and leads to the expected finite (but non-
vanishing) values of the partial waves at both the pseudothreshold ¢, and the threshold ¢y
(cf. the explicit case for f%(t) in (D.21)).
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