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1 Introduction

Using perturbation theory in any renormalizable quantum field theory comes with the

price that the parameters of this theory, e.g. the couplings and masses, in general depend

on the renormalization scale µ. The precise description of the evolution of these param-

eters with the energy scale is an important task in any model. This is done by means of

the Renormalization Group functions, that is the β-functions and anomalous dimensions.

The knowledge of the three-loop contributions to the β-functions for the Standard Model

(SM) and its extensions is important for physics at the very high energy frontier and for

cosmology. Here are some examples: The running of the gauge couplings plays an im-

portant role for the construction of Grand Unified theories of the strong and electroweak

interactions. The β-functions for the scalar self-interaction and for the top quark Yukawa

coupling constant are important for the analysis of Higgs-inflation in the SM [1–4]. The

current investigations of these issues are based on the two-loop approximation. The inclu-

sion of the next order could be essential. Further, in a recent work [5], the possibility has

been discussed that the SM, supplemented by the asymptotically safe gravity could play

the role of a fundamental, rather than effective field theory. Within this framework the

mass of the Higgs boson has been predicted to be approximately 126GeV. The theoretical

uncertainty of the prediction is about 2GeV.

Recent exciting evidence from several SM-like Higgs search channels at both the CERN

Large Hadron Collider and the Fermilab Tevatron [6–8] point to the possibility of a SM

Higgs boson with a mass in the vicinity of 125GeV which is in truly remarkable agreement

with the aforementioned prediction.1 This calls for more precise calculations, in particular

of β-functions, in the SM.

1Note that the boundary condition λ(MPlanck) = 0, leading to the prediction of the Higgs mass close

the the experimental evidence, has been also discussed recently in [9].
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In the present paper we are particularly interested in the evolution of the Higgs self-

coupling as well as the top-Yukawa coupling in the SM.

The underlying gauge group of the SM is an SUC(3) × SU(2) × UY (1) which is spon-

taneously broken to SUC(3) × UQ(1) at the electroweak scale. As the renormalization

constants for fields and vertices do not depend on masses and external momenta in the

MS-scheme, we will perform our calculations in the unbroken phase of the SM.

The most important contributions to the running of the Higgs self-coupling λ arise

from the top-Yukawa coupling and the strong sector. All other Yukawa couplings are

significantly smaller due to to the smallness of the respective quark masses. From the top

mass Mt ≈ 172.9GeV we get the Yukawa coupling at this scale yt(Mt) =
√
2Mt

v
≈ 1 where

v ≈ 246.2GeV is proportional to the vacuum expectation value of the scalar field Φ from

which results the Higgs field after the spontaneous symmetry breaking: |〈Φ〉| = v√
2
.

The next Yukawa coupling to be considered would be yb =
√
2Mb

v
≈ 0.02. The strong

coupling at the scale of the Z boson mass is gs(MZ) ≈ 1.22 whereas the electroweak cou-

plings g1(MZ) =
√
4πα

cos θW
≈ 0.36 and g2(MZ) =

√
4πα

sin θW
≈ 0.65 give much smaller contributions

which are further suppressed by the isospin and hypercharge factors. For this reason we

will consider a simplified version of the SM or — as one could also see it — a minimal

extension of QCD by setting g1 = g2 = 0 in our calculation. For a Higgs mass of 125GeV

the value of the Higgs self-interaction would be λ(MH) ≈ 0.13 at the scale of the Higgs

mass. The relevance of this parameter will be examined in section 2.

The outline of the work is as follows. In the next section we discuss the main definitions

and the general setup of our work. Section 3 deals with the technical details, including

the treatment of γ5. In sections 4 and 5 we present our results for the β-functions of the

top-Yukawa, the strong and the Higgs self-couplings and the relevant field anomalous di-

mensions. The numerical influence of the computed three-loop corrections on the evolution

of the quartic Higgs coupling is discussed in section 6. For this analysis we will include

the already known contributions with g1 and g2 at one-loop and two-loop level. Finally,

section 7 contains our conclusions and acknowledgements.

All our results for β-functions and anomalous dimensions can be retrieved from

http://www-ttp.particle.uni-karlsruhe.de/Progdata/ttp12/ttp12-012/.

2 General setup

The Lagrangian of our model consists of three pieces:

L = LQCD + Lyt
+ LΦ. (2.1)

The QCD part is defined by

LQCD =− 1

4
Ga

µνG
aµν − 1

2(1− ξ)
(∂µA

aµ)2 + ∂µc̄
a∂µca + gsf

abc ∂µc̄
aAb µcc

+
∑

q

{
i

2
q̄
←→
/∂ q + gsq̄ /A

a
T aq

} , (2.2)
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where q runs over all quark flavours, the gluon field strength tensor is given by

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gsf

abcAb
µA

c
ν (2.3)

and fabc are the structure constants of the colour gauge group with the generators T a:
[

T a, T b
]

= ifabcT c. (2.4)

The complex scalar field Φ and the left-handed parts of the top and bottom quarks tL and

bL are doublets under SU(2):

Φ =

(

Φ1

Φ2

)

, QL =

(

t

b

)

L

. (2.5)

Setting all Yukawa couplings to zero except for the top coupling yt the Lagrangian for the

Yukawa sector is given by

Lyt
= −yt

{

t̄RΦ
† cQL + Q̄LΦ

ctR

}

= −yt

{

t̄R (Φ2,−Φ1) ·
(

t

b

)

L

+
(
t̄, b̄
)

L
·
(

Φ∗
2

−Φ∗
1

)

tR

}

= −yt

{
(t̄PRt) Φ

∗
2 + (t̄PLt) Φ2 −

(
b̄PRt

)
Φ∗
1 − (t̄PLb) Φ1

}
.

(2.6)

Finally, we have the scalar sector of the model

LΦ = ∂µΦ
†∂µΦ−m2Φ†Φ− λ

(

Φ†Φ
)2

. (2.7)

The indices L and R indicate the left- and right-handed part of the fields as obtained by

the projectors

PL =
1

2
(1− γ5) PR =

1

2
(1 + γ5) . (2.8)

This model is renormalized with the counterterm Lagrangians

δLQCD =− 1

4
δZ

(2g)
3

(
∂µA

a
ν − ∂νA

a
µ

)2 − 1

2
δZ

(3g)
1 gsf

abc
(
∂µA

a
ν − ∂νA

a
µ

)
Ab

µA
c
ν

− 1

4
δZ

(4g)
1 g2s

(

fabcAb
µA

c
ν

)2
+ δZ

(2c)
3 ∂µc̄

a∂µca + δZ
(ccg)
1 gsf

abc ∂µc̄
aAb µcc

+
∑

q

{
i

2
q̄
←→
/∂
[

δZ
(2q)
2,L PL + δZ

(2q)
2,R PR

]

q + gsq̄ /A
a
T a
[

δZ
(qqg)
1,L PL + δZ

(qqg)
1,R PR

]

q

}

(2.9)

for the QCD part,

δLY ukawa = −δZ(tbΦ)
1 yt

{
(t̄PRt) Φ

∗
2 + (t̄PLt) Φ2 −

(
b̄PRt

)
Φ∗
1 − (t̄PLb) Φ1

}
(2.10)

for the Yukawa part and

δLΦ = δZ
(2Φ)
2 ∂µΦ

†∂µΦ−m2 δZΦ2Φ†Φ+ δZ
(4Φ)
1

(

Φ†Φ
)2

(2.11)
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for the Φ-sector. Note that in general the left- and right-handed parts of quark fields and

quark-vertices are renormalized differently.2 So the renormalization constant for the strong

gauge coupling gs can be obtained for example from

Zgs =
Z

(ttg)
1,L

Z
(2t)
2,L

√

Z
(2g)
3

=
Z

(ttg)
1,R

Z
(2t)
2,R

√

Z
(2g)
3

(2.12)

or the renormalization constant for yt from

Zyt =
Z

(tbΦ)
1

√

Z
(2t)
2,L Z

(2t)
2,RZ

(2Φ)
2

. (2.13)

Here the renormalization constants have been defined in a minimal way as

Z = 1 + δZ, (2.14)

with δZ containing only poles in the regulating parameter ε = (4−D)/2 of the dimensional

regularization and D being the engineering space-time dimension. The Higgs self-coupling

λ is related to the Higgs mass at tree level MH via

λ =
M2

H

2v2
, (2.15)

which for MH = 125GeV yields λ(MH = 125GeV) ≈ 0.13. For the running of the top-

Yukawa coupling the contribution from λ is negligible compared to the top-Yukawa and

strong coupling. The corresponding four-Φ vertex is nevertheless needed for the renor-

malization at three-loop level, namely to kill the subdivergence from the fermion loop in

diagrams like figure 1(d). The β-function for a coupling X is defined as

βX = µ2 dX

dµ2
=

∞∑

n=1

1

(16π2)n
β
(n)
X (2.16)

and is given as a power series in all couplings of the model, namely gs, yt and λ. Note that

the β-functions βgs and βyt
are proportional to gs and yt respectively whereas βλ has one

part proportional to λ and one part proportional to y4t with no λ-dependence at all. The

anomalous dimension of a field f is defined as

γf

2 = −µ2dlnZ
−1
f

dµ2
=

∞∑

n=1

1

(16π2)n
γ

f (n)
2 , (2.17)

where Zf is the field strength renormalization constant for the respective field.3 The β-

functions for all couplings are independent of the gauge parameter ξ whereas the anomalous

dimensions of the fields are not.
2In our case this is true for the quark fields participating in the Yukawa sector. As we do not consider

the electroweak interaction here and neglect all Yukawa couplings except for yt the light quark fields u,d,s

and c have the same renormalization constant for the left- and right-handed part.
3For an n-point vertex V or a mass m the anomalous dimension is defined as γV

n = −µ2 dlnZV

dµ2 or

γm = −µ2 dlnZm

dµ2 . For a field we take the inverse renormalization constant.

– 4 –
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3 Calculation

As we are interested in β-functions it is enough to compute the UV divergent part of all

diagrams in order to determine the necessary renormalization constants. In the MS-scheme

the latter depends only polynomially on external momenta and masses. Therefore most of

our renormalization constants could be computed from massless propagator-like diagrams

using the FORM 3 [10] version4 of the package MINCER [11]. In some diagrams, e.g.

with four external Φ-fields where two external momenta are set to zero, this leads to IR

divergences which mix with the UV ones in dimensional regularization. Another convenient

method to compute renormalization constants has been suggested in [12] and elaborated

in the context of three-loop calculations in [13]. The idea is an exact decomposition of all

propagators using an auxiliary mass parameter M2:

1

(q + p)2
=

1

q2 −M2
+
−p2 − 2q·p−M2

q2 −M2

1

(q + p)2
, (3.1)

where p is a combination of external and q of internal momenta. This can be done re-

cursively until the power in the denominator of the last term is high enough for this

contribution to be finite, e.g.

1

(q + p)2
=

1

q2 −M2
+
−p2 − 2q·p
(q2 −M2)2

+
(−p2 − 2q·p)2
(q2 −M2)3

− M2

(q2 −M2)2

+
M2(M2 + 2p2 + 4q·p)

(q2 −M2)3
+

(−p2 − 2q·p−M2)3

(q2 −M2)3
1

(q + p)2
.

(3.2)

As the result is independent of M2 we can omit the contributions ∼ M2 in the above

decomposition as long as we introduce counterterms into the Lagrangian to cancel M2-

dependent subdivergences. In our case only a term M2

2 δZ
(2g)

M2 Aa
µA

aµ and M2

2 δZ
(2Φ)

M2 Φ†Φ are

possible.5 The first one is not gauge invariant but this does not matter as it is only used

for the cancellation of subdivergences which works nevertheless. This method effectively

amounts to introducing the same auxiliary mass parameter M2 in every denominator of

propagators and all possible M2-counterterms. We expand in the external momenta6 and

arrive at massive tadpole diagrams with one scale M . Due to the auxiliary mass no IR

divergences can appear while the UV counterterms which we are interested in (that is the

ones without any dependence on the auxiliary mass M) will stay untouched.

For the calculation of massive tadpoles we have used the FORM-based program

MATAD [14]. Where possible, i.e. for the propagators and three point functions, we have

employed both the MINCER and the MATAD setups which served as an extra check. To

generate the diagrams we used QGRAF [15] and to compute the colour factors the FORM

package COLOR [16].

4The program can be downloaded from

http://www.nikhef.nl/̃form/maindir/packages/mincer/mincer.html.
5Counterterms∼ M that would arise for fermions cannot appear because we have noM in the numerators

of propagators. The ghost mass term M2

2
δZ

(2c)

M
2 c̄aca does not appear because of the momentum dependence

of the ghost-gluon-vertex.
6This method also works in massive theories. In this case we expand in the physical masses as well.
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An important aspect of calculations such as these is the proper treatment of γ5. As is

well known, a naive treatment of γ5 can be applied if it only appears in an external fermion

line. In fermion loops we have to be more careful. In four dimensions we define

γ5 = iγ0γ1γ2γ3 =
i

4!
εµνρσγ

µγνγργσ with ε0123 = 1 = −ε0123. (3.3)

In figure 1 to 5 we show a few diagrams that had to be calculated for the various ingredients

of our final result. In order to have a contribution from a fermion loop with one γ5
in it at least four free Lorentz indices or momenta on the external lines of the minimal

subgraph containing this fermion loop are required. These can be indices from the gluon

vertices or the internal momenta from other loops which act as external momenta to the

minimal subgraph containing the fermion loop in question. External momenta of the

whole diagram can be set to zero as the renormalization constants in the MS-scheme do

not depend on those.

Consider for example one of the fermion loops in figure 2(c). The momenta on the

two external Φ-legs can be set to zero. Then we have two indices from the gluon lines

attached to our fermion loop and one loop momentum going through the two gluons and

acting as an external momentum to the subgraph containing only our fermion loop. This

is not enough to have a non-naive γ5 contribution from this graph.

For this reason diagrams like figure 1(a,b,c,d), figure 2(a,b,c), figure 3(a,b), fig-

ure 4(a,b,c), figure 5(a,b) can be treated naively. Figure 3(c) has enough indices and

momenta but no γ5 in it. Diagrams like figure 1(c,e), figure 2(b), figure 3(b), figure 4(a,c),

figure 5(a,c) are zero because of an odd number of γ-matrices in at least one fermion loop.

And diagrams like figure 1(b), figure 2(b), figure 3(a), figure 4(b), figure 5(b) are zero be-

cause of their colour structure. The only problematic type is figure 1(f) which fortunately

only contributes a 1
ε
pole and can therefore be treated as described in [17]. We use the

fact that γ5 anticommutes with every other γ-matrix in four dimensions and that γ25 = 1.

Then we apply relation (3.3) for the case when one γ5 remains on each fermion line. The

two εµνρσ can be rewritten as a combination of metric tensors which can be handled in

dimensional regularization. The error we make with this treatment is of order ε and does

therefore not affect the pole part of our result.

4 Results for the β-functions

First we give the results for the three-loop β-functions of couplings λ, yt and gs with the

general gauge group factors for the strong interacting sector. Below CF and CA are the

quadratic Casimir operators of the quark and the adjoint representation of the correspond-

ing Lie algebra, dR is the dimension of the quark representation, TF is defined so that

TF δ
ab = Tr

(
T aT b

)
is the trace of two group generators of the quark representation.7 For

QCD (colour gauge group SU(3)) we have CF = 4/3 , CA = 3 , TF = 1/2 and dR = 3.

7For an SU(N) gauge group these are dR = N , CA = 2TFN and CF = TF

(

N −
1
N

)

.

– 6 –
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t t

Φ
(a)

t t

Φ
(b)

t t

Φ
(c)

t t

Φ
(d)

t t

Φ
(e)

t t

Φ
(f)

Figure 1. Some diagrams contributing to Z
(tbΦ)
1 .

Φ Φ

Φ Φ

(a)

Φ Φ

Φ Φ

(b)

Φ Φ

Φ Φ

(c)

Figure 2. Some diagrams contributing to Z
(4Φ)
1 .

g g

(a)

g g

(b)

g g

(c)

Figure 3. Some diagrams contributing to Z
(2g)
3 .

Furthermore we denote the number of fermions by nf = nl + 1.

β
(1)
λ = 12λ2 + 2dR y2t λ− dR y4t ,

β
(2)
λ = − 156λ3 − 24dR y2t λ

2 − 1

2
dR y4t λ+ 5dRy

6
t

+ 10CFdR g2s y
2
t λ− 4CFdR g2s y

4
t ,

– 7 –
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Φ Φ

(a)

Φ Φ

(b)

Φ Φ

(c)

Figure 4. Some diagrams contributing to Z
(2Φ)
2 .

t t

(a)

t t

(b)

t t

(c)

Figure 5. Some diagrams contributing to Z
(2t)
2,L/R.

β
(3)
λ = λ4 (3588 + 2016ζ3) + 291dR y2t λ

3 + y4t λ
2

(
789

2
dR + 252ζ3dR − 36d2R

)

(4.1)

+ y6t λ

(

−1881

8
dR − 66ζ3dR + 80d2R

)

+ y8t

(
13

2
dR − 12ζ3dR −

195

8
d2R

)

+ g2s y
2
t λ

2 (−306CFdR + 288ζ3CFdR) + g2s y
4
t λ

(
895

4
CFdR − 324ζ3CFdR

)

+ g2s y
6
t

(

−19

2
CFdR + 60ζ3CFdR

)

+ g4s y
2
t λ

(

− 119

2
C2

FdR + 77CACFdR − 16nfTFCFdR + 72ζ3C
2
FdR − 36ζ3CACFdR

)

+ g4s y
4
t

(
131

2
C2

FdR + 48TFCFdR −
109

2
CACFdR

+ 10nfTFCFdR − 48ζ3C
2
FdR + 24ζ3CACFdR

)

.

The purely λ-dependent parts of eq. (4.1) have been known for a while [18, 19], the full

one-loop and two-loop result are in agreement with [20, 21] (for an SU(3) colour gauge

group). It has also been a useful check for our setup to see that the same result can be

derived from the four-Φ1 vertex, the four-Φ2 vertex and the (Φ∗
1Φ

∗
2Φ1Φ2) vertex.

β(1)
yt

yt

= y2t

(
3

4
+

1

2
dR

)

− 3CF g2s ,

β(2)
yt

yt

= 3λ2 − 6 y2t λ+ y4t

(
3

4
− 9

4
dR

)

+ g2s y
2
t

(

6CF +
5

2
CFdR

)

+ g4s

(

−3

2
C2

F −
97

6
CACF +

10

3
nfTFCF

)

,

– 8 –
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β(3)
yt

yt

= − 18λ3 + y2t λ
2

(
285

8
− 45

4
dR

)

+ y4t λ

(
63

2
+

45

2
dR

)

(4.2)

+ y6t

(

−345

32
+

9

4
ζ3 +

107

32
dR +

3

2
ζ3dR +

39

16
d2R

)

+ 6CF g2s y
2
t λ− g2s y

4
t

(
57

2
CF +

81

8
CFdR

)

+ g4s y
2
t

(
471

16
C2

F −
119

8
C2

FdR + 25TFCF +
717

16
CACF +

77

4
CACFdR −

33

4
nfTFCF

−4nfTFCFdR − 27ζ3C
2
F + 18ζ3C

2
FdR −

27

2
ζ3CACF − 9ζ3CACFdR

)

+ g6s

(

−129

2
C3

F +
129

4
CAC

2
F −

11413

108
C2

ACF + 46nfTFC
2
F

+
556

27
nfCATFCF +

140

27
n2

fT
2
FCF − 48ζ3nfTFC

2
F + 48ζ3nfCATFCF

)

.

The one-loop and two-loop part of this result have been found before in [20, 22] (for dR = 3,

TF = 1
2) and the contributions of order g2s , g

4
s , y

2
t g

2
s and g4s yt to Zyt have been successfully

checked against [23]. In this reference the calculation of ZMt has been performed in the

broken phase of the SM with a massive top quark. When comparing these two results one

has to take into account that in the broken SM the top quark mass is to be renormalized

as a product yt (Φ2+Φ†
2) so the corresponding top quark mass renormalization constant is

ZMt = Zyt Z
(2Φ)
2 =

Z
(tbΦ)
1

√

Z
(2t)
2,L Z

(2t)
2,R

.

Again the setup could be checked for consistency by using the renormalization of the

four different vertices t-t-Φ2, t-t-Φ
∗
2, t-b-Φ1, t-b-Φ

∗
1 for the calculation.

β(1)
gs

gs

=g2s

(

−11

6
CA +

2

3
nfTF

)

,

β(2)
gs

gs

=− 2TF g2s y
2
t + g4s

(

−17

3
C2

A + 2nfTFCF +
10

3
nfCATF

)

,

β(3)
gs

gs

=+ g2s y
4
t

(
9

2
TF +

7

2
TFdR

)

− g4s y
2
t (3TFCF + 12CATF )

+ g6s

(

−2857

108
C3

A − nfTFC
2
F +

205

18
nfCATFCF +

1415

54
nfC

2
ATF

−22

9
n2

fT
2
FCF −

79

27
n2

fCAT
2
F

)

.

(4.3)

In the case of yt = 0 this is in agreement with the well-known result [24, 25]. The

one-loop and two-loop parts of eq. (4.3) are known from [26–31], the term ∝ g4s y
2
t can be

found in [23] and the full three-loop result has been computed in [32] (for dR = 3, TF = 1
2).

The β-function describing the running of the “mass” parameter m2 in eq. (2.7) can

be computed from the renormalization constant of the local operator O2Φ := Φ†Φ. An
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insertion of O2Φ into a Green’s function, e.g. with two external Φ-fields, is renormalized as

[O2Φ] = ZΦ2O2Φ where [O2Φ] is the corresponding finite operator. From [O2Φ] = Zm2Obare
2Φ

and Obare
2Φ = Z

(2Φ)
2 O2Φ it follows that

Zm2 =
(

Z
(2Φ)
2

)−1
ZΦ2 . (4.4)

This yields the following contributions to βm2 :

β
(1)

m2

m2
= 6λ+ dR y2t ,

β
(2)

m2

m2
= − 30λ2 − 12dR y2t λ−

9

4
dR y4t + 5CFdR g2s y

2
t ,

β
(3)

m2

m2
= 1026λ3 +

99

2
dR y2t λ

2 + y4t λ

(
333

4
dR − 18d2R + 72ζ3dR

)

+ y6t

(

−617

16
dR + 24d2R + 15ζ3dR

)

(4.5)

+ g2s y
2
t λ (−153CFdR + 144ζ3CFdR)

+ g2s y
4
t

(
447

8
CFdR − 90ζ3CFdR

)

+ g4s y
2
t

(

−119

4
C2

FdR +
77

2
CACFdR − 8nfTFCFdR + 36ζ3C

2
FdR − 18ζ3CACFdR

)

.

The one-loop and two-loop parts of this result are in agreement with [20] where they have

been computed before. The purely λ-dependent part can be found in [18, 19]. For dR = 3

and TF = 1
2 (QCD) we get the following results:

β
(1)
λ =12λ2 + 6 y2t λ− 3 y4t ,

β
(2)
λ =− 156λ3 − 72 y2t λ

2 − 3

2
y4t λ+ 15 y6t + 40 g2s y

2
t λ− 16 g2s y

4
t ,

β
(3)
λ =λ4 (3588 + 2016ζ3) + 873 y2t λ

3 + y4t λ
2

(
1719

2
+ 756ζ3

)

+ y6t λ

(
117

8
− 198ζ3

)

− y8t

(
1599

8
+ 36ζ3

)

+ g2s y
2
t λ

2 (−1224 + 1152ζ3)

+ g2s y
4
t λ (895− 1296ζ3) + g2s y

6
t (−38 + 240ζ3)

+ g4s y
2
t λ

(
1820

3
− 32nf − 48ζ3

)

+ g4s y
4
t

(

−626

3
+ 20nf + 32ζ3

)

.

(4.6)

To get an idea of the size of these contributions and therefore the significance of our

calculation we evaluate βλ at the scale µ = MZ (with an assumed Higgs mass of 125GeV

and nf = 6) which yields a value of βλ ∼ (−0.01) at one-loop level. The two and three-loop

contributions change this result by ∼ 1% and ∼ (−0.04)% respectively. To estimate the

importance of the individual terms we introduce the labels

G =
gs

gs(µ = MZ)
, Y =

yt

yt(µ = MZ)
, L =

λ

λ(µ = MZ)
(4.7)
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and get

βλ|µ=MZ
=



−1.7Y 4
︸ ︷︷ ︸

1 loop



 10−2 +



5.0LY 2
︸ ︷︷ ︸

1 loop

+1.5L2
︸ ︷︷ ︸

1 loop



 10−3

+



−8.5G2Y 4
︸ ︷︷ ︸

2 loop

+5.0Y 6
︸ ︷︷ ︸

2 loop

+3.1G2LY 2
︸ ︷︷ ︸

2 loop



 10−4

+



7.9G2Y 6
︸ ︷︷ ︸

3 loop

−4.8Y 8
︸ ︷︷ ︸

3 loop

−5.3L2Y 2
︸ ︷︷ ︸

2 loop

−3.1G2LY 4
︸ ︷︷ ︸

3 loop

−2.5G4Y 4
︸ ︷︷ ︸

3 loop

+2.6G4LY 2
︸ ︷︷ ︸

3 loop

−1.7L3
︸ ︷︷ ︸

2 loop



 10−5

+



−7.5LY 4
︸ ︷︷ ︸

2 loop

+7.8L2Y 4
︸ ︷︷ ︸

3 loop

−6.6LY 6
︸ ︷︷ ︸

3 loop

+1.1G2L2Y 2
︸ ︷︷ ︸

3 loop



 10−6

+



5.7L3Y 2
︸ ︷︷ ︸

3 loop

+5.9L4
︸ ︷︷ ︸

3 loop



 10−7.

(4.8)

We see that the decrease of the effective four-Φ coupling with increasing energy is induced

by top quark loops. Without quarks there would be an increase. It is also worth noting

that the individual contributions at three-loop level are much larger than the overall effect

due to huge cancellations. Consider for example the five numerically largest three-loop

terms at µ = MZ :

(
7.9G2Y 6 − 4.8Y 8 − 3.1G2LY 4 − 2.5G4Y 4 + 2.6G4LY 2

)
10−5.

The total contribution from these terms is by almost two orders of magnitude smaller than

the size of the largest one.

For the top-Yukawa β-functions we find

β(1)
yt

yt

=
9

4
y2t − 4 g2s ,

β(2)
yt

yt

= 3λ2 − 6 y2t λ− 6 y4t + 18 g2s y
2
t + g4s

(

−202

3
+

20

9
nf

)

,

β(3)
yt

yt

= − 18λ3 +
15

8
y2t λ

2 + 99 y4t λ+ y6t

(
339

16
+

27

4
ζ3

)

+ 8 g2s y
2
t λ−

157

2
g2s y

4
t + g4s y

2
t

(
4799

12
− 27

2
nf − 114ζ3

)

+ g6s

(

−1249 + 2216

27
nf +

140

81
n2

f +
160

3
ζ3nf

)

.

(4.9)

As has already been mentioned above the λ-corrections are negligible here. Evaluating

βyt
at the scale µ = MZ (with an assumed Higgs mass of 125GeV and nf = 6) we get a
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value of ∼ (−0.023) at one-loop level which means a decrease of yt and therefore the top

mass with increasing energy. This is due to the QCD corrections. In the absence of QCD

the opposite would be the case as we can see from the term ∝ y2t in
βyt

yt
. The two and

three-loop corrections are ∼ 16.6% and ∼ 0.7% with respect to the one-loop result and so

quite high compared e.g. to the case of βgs discussed below. We use again the labels (4.7)

to get an impression of the individual terms:

βyt
|µ=MZ

=



−3.7Y G2
︸ ︷︷ ︸

1 loop

+1.3Y 3
︸ ︷︷ ︸

1 loop



 10−2 +



−4.7Y G4
︸ ︷︷ ︸

2 loop



 10−3

+



9.8Y 3G2
︸ ︷︷ ︸

2 loop

−2.5Y G6
︸ ︷︷ ︸

3 loop

−2.1Y 5
︸ ︷︷ ︸

2 loop



 10−4

+



9.3Y 3G4
︸ ︷︷ ︸

3 loop

−3.1LY 3
︸ ︷︷ ︸

2 loop

−2.5Y 5G2
︸ ︷︷ ︸

3 loop



 10−5

+



6.0Y 7
︸ ︷︷ ︸

3 loop

+3.0LY 5
︸ ︷︷ ︸

3 loop

+2.3L2Y
︸ ︷︷ ︸

2 loop



 10−6

+



3.9LY 3G2
︸ ︷︷ ︸

3 loop



 10−7 +



−1.2L3Y
︸ ︷︷ ︸

3 loop



 10−8 +



8.5L2Y 3
︸ ︷︷ ︸

3 loop



 10−9.

(4.10)

For the strong coupling we get

β(1)
gs

gs

=g2s

(

−11

2
+

1

3
nf

)

,

β(2)
gs

gs

=− g2s y
2
t + g4s

(

−51 + 19

3
nf

)

,

β(3)
gs

gs

=
15

2
g2s y

4
t − 20 g4s y

2
t + g6s

(

−2857

4
+

5033

36
nf −

325

108
n2

f

)

.

(4.11)

In order to numerically compare the higher order corrections to the above β-functions

we also give the evaluation of βgs at the scale µ = MZ and with nf = 6. The one-loop

contribution is ∼ (−0.04) to which the two and three-loop calculations give corrections of

∼ 3.7% and ∼ (−0.02)% respectively. Very small λ-corrections to βgs do not appear until

four loops. With eq. (4.7) and the above assumptions we get

βgs |µ=MZ
=



−4.0G3
︸ ︷︷ ︸

1 loop



 10−2 +



−1.4G5
︸ ︷︷ ︸

2 loop



 10−3

+



−6.9Y 2G3
︸ ︷︷ ︸

2 loop

+1.7G7
︸ ︷︷ ︸

3 loop

−1.3Y 2G5
︸ ︷︷ ︸

3 loop



 10−5 +



3.1Y 4G3
︸ ︷︷ ︸

3 loop



 10−6.

(4.12)

– 12 –



J
H
E
P
0
6
(
2
0
1
2
)
0
3
3

The running of the m2 parameter is given by

β
(1)

m2

m2
= 6λ+ 3 y2t ,

β
(2)

m2

m2
= − 30λ2 − 36 y2t λ−

27

4
y4t + 20 g2s y

2
t ,

β
(3)

m2

m2
= 1026λ3 +

297

2
y2t λ

2 + y4t λ

(
351

4
+ 216ζ3

)

+ y6t

(
1605

16
+ 45ζ3

)

+ g2s y
2
t λ (−612 + 576ζ3)

+ g2s y
4
t

(
447

2
− 360ζ3

)

+ g4s y
2
t

(
910

3
− 16nf − 24ζ3

)

.

(4.13)

Again we evaluate βm2 at the scale µ = MZ (with an assumed Higgs mass of 125GeV and

nf = 6) and get a value of ∼ (+0.023) at one-loop level which means an increase of m2 at

higher energy scales. The two and three-loop corrections are ∼ 2.9% and ∼ 0.32%. With

the labels (4.7) we can estimate the contributions of the individual terms:

βm2

m2
|µ=MZ

=



1.8Y 2
︸ ︷︷ ︸

1 loop



 10−2 +



5.3L
︸ ︷︷ ︸

1 loop

+1.1G2Y 2
︸ ︷︷ ︸

2 loop



 10−3 +



−2.4Y 4
︸ ︷︷ ︸

2 loop

−1.9LY 2
︸ ︷︷ ︸

2 loop



 10−4

+



9.4G4Y 2
︸ ︷︷ ︸

3 loop

−7.0G2Y 4
︸ ︷︷ ︸

3 loop

+3.3Y 6
︸ ︷︷ ︸

3 loop

−2.4L2
︸ ︷︷ ︸

2 loop

+1.1LY 4
︸ ︷︷ ︸

3 loop



 10−5 (4.14)

+



4.0G2LY 2
︸ ︷︷ ︸

3 loop



 10−6 +



7.1L3
︸ ︷︷ ︸

3 loop

+7.0L2Y 2
︸ ︷︷ ︸

3 loop



 10−7.

5 Results for the anomalous dimensions

In this section we give the anomalous dimensions of the physical fields in this setup. Note

that because of the SU(2) symmetry Φ1 and Φ2 must have the same anomalous dimension

γΦ
2 . The same holds for the left-handed part of top and bottom quarks: γt

2,L = γb

2,L. For the

quark flavours q which do not participate in the Yukawa interaction there is no difference

between the left- and right-handed part as they are renormalized by the same Z-factor:

γq

2 ≡ γq

2,L = γq

2,R. This also applies to the right-handed part of the bottom quark: γb

2,R = γq

2.

All these relations have been tested explicitly during our calculation which provides a nice

additional check.

γ
q (1)
2 = g2s CF (1− ξ) ,

γ
q (2)
2 = g4s

(

−3

2
C2

F +
17

2
CACF − 2nfTFCF −

5

2
ξCACF +

1

4
ξ2CACF

)

,

γ
q (3)
2 = 6TFCF g4s y

2
t + g6s

(
3

2
C3

F −
143

4
CAC

2
F +

10559

144
C2

ACF + 3nfTFC
2
F (5.1)

−1301

36
nfCATFCF +

20

9
n2

fT
2
FCF + 12ζ3CAC

2
F −

15

2
ζ3C

2
ACF −

371

32
ξC2

ACF

+
17

4
ξnfCATFCF −

3

2
ξζ3C

2
ACF +

69

32
ξ2C2

ACF +
3

8
ξ2ζ3C

2
ACF −

5

16
ξ3C2

ACF

)

.
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For yt = 0 this is in agreement with the well-known QCD result [25]. The renormalization

constants for t,b and q can also be found in [23] up to order g6s and g4s y
2
t where the

calculation has been performed in the broken phase of the SM.

γ
t (1)
2,L = γ

q (1)
2 +

1

2
y2t ,

γ
t (2)
2,L = γ

q (2)
2 − y4t

(
1

4
+

3

4
dR

)

− 2CF g2s y
2
t ,

γ
t (3)
2,L = γ

q (3)
2 − 33

4
y2t λ

2 + 6 y4t λ+ y6t

(

−3

2
+

29

8
dR −

3

8
d2R +

3

2
ζ3

)

(5.2)

+ g2s y
4
t

(
13

2
CF +

5

8
CFdR + 6ζ3CFdR

)

+ g4s y
2
t

(

−51

8
C2

F +
31

8
CACF −

3

2
nfTFCF + 6ζ3C

2
F − 15ζ3CACF

)

.

γ
t (1)
2,R = γ

q (1)
2 + y2t ,

γ
t (2)
2,R = γ

q (2)
2 − y4t

(
1

4
+

3

2
dR

)

− 4CF g2s y
2
t ,

γ
t (3)
2,R = γ

q (3)
2 − 33

2
y2t λ

2 + 12 y4t λ+ y6t

(

−33

16
+

53

8
dR −

3

4
d2R + 3ζ3

)

(5.3)

+ g2s y
4
t

(

5CF +
5

4
CFdR + 12ζ3CFdR

)

+ g4s y
2
t

(

−51

4
C2

F +
31

4
CACF − 3nfTFCF + 12ζ3C

2
F − 30ζ3CACF

)

.

γ
Φ (1)
2 = dR y2t ,

γ
Φ (2)
2 = 6λ2 − 9

4
dR y4t + 5CFdR g2s y

2
t ,

γ
Φ (3)
2 = − 36λ3 − 45

2
dR y2t λ

2 + 15dR y4t λ (5.4)

+ y6t

(

−25

16
dR + 6d2R + 3ζ3dR

)

+ g2s y
4
t

(
15

8
CFdR − 18ζ3CFdR

)

+ g4s y
2
t

(

−119

4
C2

FdR +
77

2
CACFdR − 8nfTFCFdR + 36ζ3C

2
FdR − 18ζ3CACFdR

)

,

The purely λ-dependent part of this has been computed before in [18, 19].

γ
g (1)
2 = g2s

(

−5

3
CA +

4

3
nfTF −

1

2
ξCA

)

,

γ
g (2)
2 = − 4TF g2s y

2
t + g4s

(

−23

4
C2

A + 4nfTFCF + 5nfCATF −
15

8
ξC2

A +
1

4
ξ2C2

A

)

,
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γ
g (3)
2 = g2s y

4
t (9TF + 7TFdR)− g4s y

2
t

(

6TFCF +
25

2
CATF

)

(5.5)

+ g6s

(

−4051

144
C3

A − 2nfTFC
2
F +

5

18
nfCATFCF +

875

18
nfC

2
ATF −

44

9
n2

fT
2
FCF

−76

9
n2

fCAT
2
F +

3

2
ζ3C

3
A + 24ζ3nfCATFCF − 18ζ3nfC

2
ATF −

127

16
ξC3

A

+2ξnfC
2
ATF −

9

8
ξζ3C

3
A +

27

16
ξ2C3

A +
3

16
ξ2ζ3C

3
A −

7

32
ξ3C3

A

)

.

This is also in agreement with [25] for yt = 0 and with [24] for yt = 0, ξ = 0. For dR = 3

and TF = 1
2 (QCD) these results are as follows:

γ
q (1)
2 =

4

3
(1− ξ) g2s ,

γ
q (2)
2 = g4s

(
94

3
− 4

3
nf − 10ξ + ξ2

)

, (5.6)

γ
q (3)
2 = 4 g4s y

2
t + g6s

(

+
24941

36
− 1253

18
nf +

20

27
n2

f − 26ζ3 −
1113

8
ξ

+
17

2
ξnf − 18ξζ3 +

207

8
ξ2 +

9

2
ξ2ζ3 −

15

4
ξ3
)

,

γ
t (1)
2,L = γ

q (1)
2 +

1

2
y2t ,

γ
t (2)
2,L = γ

q (2)
2 − 5

2
y4t −

8

3
g2s y

2
t ,

γ
t (3)
2,L = γ

q (3)
2 − 33

4
y2t λ

2 + 6 y4t λ+ y6t

(

6 +
3

2
ζ3

)

(5.7)

+ g2s y
4
t

(
67

6
+ 24ζ3

)

+ g4s y
2
t

(
25

6
− nf −

148

3
ζ3

)

.

γ
t (1)
2,R = γ

q (1)
2 + y2t ,

γ
t (2)
2,R = γ

q (2)
2 − 19

4
y4t −

16

3
g2s y

2
t ,

γ
t (3)
2,R = γ

q (3)
2 − 33

2
y2t λ

2 + 12 y4t λ+ y6t

(
177

16
+ 3ζ3

)

+ g2s y
4
t

(
35

3
+ 48ζ3

)

+ g4s y
2
t

(
25

3
− 2nf −

296

3
ζ3

)

,

γ
Φ (1)
2 = 3 y2t ,

γ
Φ (2)
2 = 6λ2 − 27

4
y4t + 20 g2s y

2
t , (5.8)

γ
Φ (3)
2 = − 36λ3 − 135

2
y2t λ

2 + 45 y4t λ+ y6t

(
789

16
+ 9ζ3

)

+ g2s y
4
t

(
15

2
− 72ζ3

)

+ g4s y
2
t

(
910

3
− 16nf − 24ζ3

)

,
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γ
g (1)
2 = g2s

(

−5 + 2

3
nf −

3

2
ξ

)

,

γ
g (2)
2 = − 2 g2s y

2
t + g4s

(

−207

4
+

61

6
nf −

135

8
ξ +

9

4
ξ2
)

,

γ
g (3)
2 = 15 g2s y

4
t −

91

4
g4s y

2
t (5.9)

+ g6s

(

−12153

16
+

7831

36
nf −

215

27
n2

f +
81

2
ζ3 − 33ζ3nf −

3429

16
ξ

+9ξnf −
243

8
ξζ3 +

729

16
ξ2 +

81

16
ξ2ζ3 −

189

32
ξ3
)

.

6 The evolution of the quartic Higgs coupling

The quartic Higgs coupling λ is of special interest as it is directly related to the Higgs mass

MH . If we assume that the SM is valid up to some high energy scale Λ, then the value of

MH should meet the constraints

mmin < MH < mmax.

Here the upper limit is related to the well-known fact that the running Higgs self-coupling

develops a Landau pole8 if MH is large [33–35]. For Λ = MPlanck = 1018GeV the estimated

value of mmax is around 175GeV [33–36], which is already excluded by experiments carried

out at the LHC and the Tevatron.

The lower limit mmin follows from the requirement of the vacuum stability [37–39].

In order to find mmin one should construct the effective Higgs potential V [φ] including

radiative corrections and sum possible large logarithms using the standard method of the

Renormalization Group (for a review see, e.g. [40]). Once this has been done, the condition

that the potential V [φ] does not develop a deeper minimum in addition to the standard

one for all values of φ < Λ fixes mmin.

In our analysis we will use a simplified approach for finding mmin, namely the require-

ment that the running coupling constant λ(µ) stay non-negative for all µ less than Λ. It

has been shown in [34, 41] that the simplified approach is essentially equivalent to the one

based on the use of the effective potential provided the instabilty of V [φ] can only happen

at φ≫MZ .

In this section we investigate the effect of the three-loop result β
(3)
λ on the running

of λ and therefore its effect on the stability of the electroweak vacuum in the SM. For

this we also include the electroweak contributions up to the two-loop level. The two-loop

β-functions for the SM gauge couplings have been derived in [28–31]. The two-loop results

for the Yukawa-couplings and λ can be found in [20–22]. Now we add the three-loop results

derived in the previous section and investigate the effect this has on the evolution of our

couplings (for a recent similar analysis, using the two-loop running, see, e.g. [42, 43]).

8This is true in the one-loop approximation. At two loops the Landau pole is replaced by an ultraviolet

metastable fixed point with the resulting fixed point value of λ being outside the weak coupling region.
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To find starting values for the running of the couplings we should account for the fact

that the physical parameters (e.g. pole masses) are related to the ones in the MS-scheme

in a non-trivial way (see e.g. [44–46]). For example eq. (2.15) is only valid at tree level.

For the higher order corrections we take the electroweak ones at one-loop and the QCD

ones at two-loop level from [44, 45]. These matching relations depend on the exact values

of αs(MZ) and the pole mass Mt of the top quark and of course the mass of the Higgs

boson MH . For the latter we consider the cases MH = 124GeV and MH = 126GeV. For

the other two we use the values

αs(MZ) = 0.1184± 0.0007 and Mt = 172.9± 0.6± 0.9 GeV [47]. (6.1)

One should also keep in mind that the matching relations themselves receive contributions

from not yet known higher order corrections . The corresponding uncertainty in mmin has

been estimated in [4, 42] and found to be about 2GeV.

Figure 6 shows the evolution of λ in this framework up to the Planck scale. To estimate

the dependence of the λ-running on the parameters αs(MZ) and Mt we give the shifted

curves for λ(µ) when we change these parameters by ±σ as given in eq. (6.1).9 As the two-

and three-loop curves are very close together we zoom in on the region where λ crosses

over to negative values in figure 7. In this plot we give the αs-uncertainty for the two- and

three-loop curves to compare between this uncertainty and the shift from two to three loops.

Note that there is a considerable difference between MH = 124GeV and

MH = 126GeV which means that the evolution of λ is very sensitive to the value of the

Higgs mass. Given a fixed value for MH the largest uncertainty lies in the exact value

of the top mass. The second largest uncertainty comes from αs. The total effect due to

the three-loop part of the β-functions is somewhat smaller than latter as can be seen best

in figure 7. Still, it is worthy of note that the three-loop corrections to the β-functions

presented here enhance the stability of the SM electroweak vacuum.

The smallness of the three-loop correction to βλ seems to be somewhat coincidental

as the aforementioned cancellations of individual terms in β
(3)
λ depend strongly on the

value of MH . Finding a Higgs with a mass of 124 to 126GeV would therefore mean an

excellent convergence of the perturbation series for βλ. Another intriguing consequence

of a Higgs mass in that region is the uncertainty whether λ becomes indeed negative

at high scales or not. If we take e.g. MH = 126GeV and αs = 0.1184 and decrease10

the top mass from Mt = 172.9GeV to Mt = 171.25GeV (Mt = 171.16GeV without the

three-loop corrections), then λ stays positive up to the Planck scale MPlanck in our frame-

work. The same effect can be achieved for MH = 126GeV and Mt = 172.9GeV by in-

creasing αs = 0.1184 by 6.5σαs (7σαs without the three-loop corretions). A combined

scenario for MH = 126GeV would be a shift of Mt = 172.9GeV by −1σMt = −1.5GeV

and of αs = 0.1184 by +1σαs = +0.0007GeV which would also make λ positive up to the

Planck scale.

9In order not to make the plot too crowded these shifted curves are only given for the two-loop result.

The difference to the three-loop result is similar to the one between the two- and three-loop curves for

αs(MZ) = 0.1184 and Mt = 172.9GeV.
10Smaller values for Mt or larger values for αs increase the stability of the vacuum.
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Figure 6. Evolution of λ with the scale µ: 2 loop (dashed, blue) and 3 loop (continuous, red)

results; Uncertainties with respect to the two-loop result: ±1σαs
, ±1σMt

(dotted).

Thus, we conclude that at present no definite answer can be given to the question

whether the SM vacuum is stable all the way up to the Planck scale or not. If indeed

a SM Higgs boson is found with a mass of 124 to 126GeV, this is a good motivation

for determining αs(MZ) and Mt as accurately as possible as well as calculating the SM

β-functions to the highest achievable accuracy.
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Figure 7. Evolution of λ with the scale µ: 2 loop (dashed, blue) and 3 loop (continuous, red)

results; Uncertainties with respect to the two- and three-loop results: ±1σαs
(dotted).

7 Conclusions

We have computed the three-loop corrections to the evolution the top-Yukawa coupling,

the strong coupling and the quartic Higgs self-coupling in the unbroken SM with the nu-
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merically small gauge coupling constants g1 and g2 and all Yukawa couplings except for yt

set to zero.

The implications of our calculation on the stability of the electroweak vacuum in the

SM can be summarized as follows:

• The total effect of the three-loop terms is relatively small which is not self-evident

as the individual terms in β
(3)
λ are much larger than the final value due to significant

cancellations for a Higgs mass in the vicinity of 125GeV.

• The evolution of λ is very sensitive to the values of the Higgs mass, the top mass and

αs(MZ). If we take e.g. MH = 126GeV and decrease the top mass by about 1.7GeV,

then λ stays positive up to the Planck scale (a similar observation has been made

in [42]). This is a very good motivation for high precision measurements of αs(MZ)

and Mt. With the latter values known more precisely, the account of the the three-

loop effects in the evolution of the quartic Higgs self-coupling would be essential in

considering the problem of the stability of the electroweak vacuum in the SM.

• In this context it may also be useful to calculate both the electroweak contributions to

β
(3)
λ and β(3)

yt
at three-loop level as well as the matching of experimentally measurable

on-shell parameters and MS-parameters to a higher accuracy.
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