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1 Introduction

The stabilization of the electroweak scale is one of the most significant open questions in

theoretical physics. Low-energy supersymmetry provides an elegant solution, but super-

symmetry must be broken, and the experimental signatures are principally governed by

the supersymmetry-breaking soft terms. In the most plausible scenarios, supersymmetry is

broken in a hidden sector and this breaking is mediated to the visible sector by some form

of interaction. The structure of the resulting soft terms is largely controlled by the nature

of the mediating interaction, motivating efforts to study the mediation of supersymmetry

breaking without making reference to the details of the hidden sector.

Naturalness suggests that the visible and hidden sectors should be coupled by non-

renormalizable operators induced by integrating out new interactions near the Planck scale.

In the celebrated gravity mediation scenario, these couplings provide the leading interaction

between the two sectors, and give rise to soft scalar masses of order the gravitino mass m3/2.

Unfortunately, extremely little is known about Planck-scale interactions, yet some detailed

properties of these interactions — at least, as encoded in the structure of the effective

theory below the Planck scale — are required in order to make predictions. For instance,

strong bounds on flavor violation force the fermion and sfermion mass matrices to be

diagonal in the same basis, to high accuracy. It has proved difficult to justify symmetries

of a Planck-scale theory that can enforce such a flavor structure. This supersymmetric

flavor problem is a serious obstacle to successful phenomenology in high-scale mediation.

The flavor problem in gravity-mediated supersymmetry breaking could be ameliorated

if the soft masses in the visible sector were parametrically suppressed compared to m3/2. In

this case it is possible for scalar mass contributions from some other mediation mechanism,

e.g. anomaly mediation, to give rise to visible sector masses with acceptable flavor structure.

In such a situation, one says that the source of supersymmetry breaking is sequestered from

the visible sector [1].

Sequestering amounts to a suppression of the soft terms compared to the natural level

induced by ‘generic’ Planck-suppressed operators coupling the hidden and visible sectors.

This state of affairs is unnatural unless it is enforced by a symmetry or other structure in the

Planck-scale theory, e.g. extradimensional locality, and the success or failure of sequestering

depends very sensitively on Planck-scale interactions. This strongly motivates studying

sequestering in string theory, where such contributions can in principle be computed.

Randall and Sundrum originally proposed that sequestering could arise as a result of

geometric separation in an internal space [1]: locality in the extra dimensions, where only

gravity was assumed to propagate, severely restricted the form of the lower dimensional
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effective theory. At first sight the extradimensional construction in [1] appears amenable

to a realization in string theory, but on closer examination the mechanism of spatial sep-

aration does not manifestly extend to string compactifications with moduli: light moduli

could easily mediate interactions of gravitational strength, while sequestering requires far

feebler interactions. Indeed, Anisimov et al. [2] have argued that for precisely this reason,

sequestering is difficult to obtain in certain classes of string compactifications, while Kachru

et al. [3] observed that even stabilized moduli are very generally too light to decouple in

the manner required.

Nevertheless, it was shown in [4] that sequestering of a large class of operators is natural

in certain highly-warped string compactifications: this is the gravity dual of conformal

sequestering [5] (see also earlier work in [6]). In the language of the dual approximately-

conformal field theory, a contribution to the soft terms of the visible sector fields C mediated

by a coupling of the form ∫
d4θ C†C O∆ , (1.1)

where O∆ is an operator of dimension ∆ in the CFT, is suppressed by a factor

M2 ∼
(

ΛIR

ΛUV

)∆−4

m2
3/2 , (1.2)

with ΛIR,ΛUV the infrared and ultraviolet scales, respectively, in the CFT. In gravity

language, supersymmetry breaking is mediated by perturbations to the supergravity back-

ground, and in suitable warped throat solutions — e.g., a Klebanov-Strassler throat at-

tached to a compact space — these perturbations decay rapidly away from the source,

sequestering the breaking of supersymmetry.

Crucially, the analysis of [4] was performed in the no-scale limit, i.e. with the complex

structure and dilaton stabilized by fluxes, but with the Kähler moduli unstabilized. One

should therefore ask whether the sequestering observed in [4] persists upon stabilization

of the Kähler moduli. More specifically, the absence of superpotential cross-couplings be-

tween the visible and hidden sectors is a requirement for sequestering, as we shall review

in more detail in section 2; by nonrenormalization of the superpotential it is straight-

forward to arrange that no such coupling arises in perturbation theory. However, such

cross-couplings are likely to arise at the nonperturbative level. Nonperturbative super-

potentials for the Kähler moduli T can induce new contributions to the soft masses via

interactions of the form

∆W = Ovis e−aT , (1.3)

where a is a constant and Ovis is a gauge-invariant chiral operator composed of visible

sector superfields, which to cubic order in the MSSM fields can be written as

Ovis = µHuHd + λu
ijQ

iujHu + λd
ijQ

idjHd + λl
ijL

iejHd . (1.4)

We have used the standard notation for the chiral superfields of the MSSM, the indices

i, j = 1, 2, 3 run over families, and µ and λu,d,l
ij are constants that are not necessarily related

to the tree-level µ term and Yukawa matrices, respectively (cf. section 4.3).
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One might be tempted to ignore nonperturbatively-small interactions, but this is not

consistent in vacua for which nonperturbative effects play a critical dynamical role. In

particular, when the Kähler moduli are stabilized by a nonperturbative superpotential,

one must ask whether this superpotential also spoils sequestering. Answering this question

is the primary goal of the present paper.

In brief, we shall find that in very simple toy models of sequestering in KKLT vacua,

the nonperturbative superpotential for the Kähler moduli induces soft B terms of order

m3/2 in a D3-brane ‘visible sector’, spoiling sequestering, as expected from the above

arguments. In more realistic models, the gauge symmetry of the MSSM partially protects

the sfermions from superpotential de-sequestering, and the flavor structure depends on

the moduli stabilization scenario. In KKLT vacua with a single volume modulus, the

sfermions receive flavor-diagonal masses that are suppressed with respect to the gravitino

mass, as well as highly suppressed A-terms. On the other hand, the Higgs and Higgsino

masses receive corrections of order m3/2.
1 For multiple Kähler moduli, these conclusions

remain true as long as the Kähler potential is of the sequestered form. We note that the

Higgs sector is very sensitive to the details of the global compactification and is thus in no

sense sequestered. We then argue that for certain parameter regimes in the Large Volume

Scenario, the corrections to the masses of the sfermions are larger, and can introduce

significant flavor violation.

The outline of this paper is as follows. In section 2 we critically review arguments for

sequestering in supergravity and in string compactifications. In section 3 we incorporate

nonperturbative stabilization of a Kähler modulus in a simple and explicit string theory

toy model. In section 4 we consider nonperturbative superpotential contributions to the

soft masses of a more realistic, MSSM-like, visible sector. We close with conclusions in

section 5. In appendix A we show that warped sequestering survives the relaxation of a

technical assumption made in [4], and in appendix B we give details of the calculation of

soft masses in our explicit example.

2 Sequestering in supergravity and string theory

2.1 Sequestering from barren extra dimensions

In [1], Randall and Sundrum argued that locality in a higher-dimensional spacetime strongly

constrains the soft terms observed in a lower-dimensional world. Their observation has

three key ingredients. First of all, assuming that only the gravity multiplet propagates

in the bulk, higher-dimensional locality restricts the form of the Kähler potential, the

superpotential and the gauge kinetic function. In [1], this was demonstrated by considering

an off-shell formulation of supergravity in which the field Φ = 1+ θ2FΦ houses some of the

auxiliary degrees of freedom for the supergravity multiplet. The relevant portion of the

Lagrangian is given by

1√−g
L =

∫
d4θf(C†, e−V C,X†,X)Φ†Φ +

∫
d2θ

(
Φ3W (C,X) + τ(C,X)Wα

2
)

− 1

6
f(c̃∗, c̃, x∗, x) (R + . . .) . (2.1)

1Higgs sector masses of this form were considered in [7].
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Here the visible sector chiral superfields are collectively denoted by C and the hidden sector

fields are denoted by X, with lowest components c̃ and x, respectively. The visible sector

vector multiplets are collectively denoted by V , with Wα the gauge field strength super-

fields, and τ the corresponding gauge kinetic functions, while R is the four-dimensional

Ricci scalar. The f function is related to the Kähler potential by

f = −3M2
Pl e−K/(3M2

Pl). (2.2)

The assumption that the visible sector communicates with the hidden sector only

through the gravity multiplet implies that in the supersymmetric flat space limit, the

visible and hidden sectors must decouple. Formally, in this limit R = 0 and Φ = 1, so

that one finds

f(C†, e−V C,X†,X) = fhid(X
†,X) + fvis(C

†, e−V C) , (2.3)

W (C,X) = Whid(X) + Wvis(C) , (2.4)

τ = τhid(X) + τvis(C) . (2.5)

We will refer to these conditions collectively as separability. The condition (2.3) is equiva-

lent to the statement that the Kähler potential takes the special form

K = −3M2
Pl ln

(
−fvis + fhid

3M2
Pl

)
. (2.6)

The second observation in [1] concerns the vanishing of the tree-level soft terms. Let

us define as usual the Bµ term, the trilinear A terms Aabc, and the soft masses M2
ab̄

of the MSSM as

Lsoft = M2
ab̄C

aC̄ b̄ +

(
1

2
BabC

aCb +
1

6
AabcC

aCbCc + h.c.

)
, (2.7)

where the visible sector fields Ca include the Higgses, and in the MSSM Bhuhd
= Bµ is the

ordinary Bµ term. Then for superpotentials and Kähler potentials of the form2 (2.3)–(2.4),

one can verify that Aabc = M2
ab̄

= 0.3 Summarizing, the separable structure (2.3)–(2.4)

combined with the absence of supersymmetric visible sector masses leads to sequestering,

in that the hidden sector does not induce any soft terms in the visible sector at tree level

in supergravity.

When the Planck-scale theory does not respect any flavor symmetry, acceptable flavor

structure in the low-energy theory requires suppression of the gravity-mediated soft terms.

Sequestering due to extradimensional locality provides a promising mechanism for such

suppression, but does not constitute a complete mediation scenario. Instead, sequestering

clears the way for small contributions to the soft masses — which would be overwhelmed

2We will see in section 2.4 that separability to all orders in the visible sector fields is an unnecessarily

strong requirement, and in fact a weaker condition is sufficient to suppress the soft terms.
3The separable structure of (2.3)–(2.4), already noticed in [8], does not automatically imply that the Bµ

term is small, but does ensure the vanishing of gravity-mediated Bµ terms in the absence of supersymmetric

mass terms for the visible sector fields.
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by gravity-mediated contributions if the latter were present — to dictate the visible sector

spectrum. The third key ingredient in [1] was the proposal that anomaly mediation could

yield satisfactory soft terms in sequestered configurations. The goal of the present paper

is to investigate the possibility of sequestering in string compactifications, leaving for the

future the task of constructing a mediation scenario, and so we will not have more to say

about anomaly mediation.

2.2 Corrections from moduli-mediated interactions

A key requirement for the argument of [1] is that the extra dimensions must be barren,

with only the gravity multiplet propagating in the bulk. The proposal was that any fields

not in the gravity multiplet would obtain masses at least as large as the Kaluza-Klein scale,

m &
1

R
, (2.8)

with R a typical length scale of the compactification. This would lead to an e−mR Yukawa

suppression of the real-space propagator of these fields, which in turn would give rise to a

large suppression of any effect these fields might have on the soft terms of a visible sector

separated from the hidden sector by a distance R.

In practice, barren extra dimensions are quite rare, both in string compactifications

and in more general extradimensional model-building: compactification moduli typically

induce new gravitational-strength interactions that mediate supersymmetry breaking and

hence spoil sequestering. The authors of [2] examined a variety of string theory models

with calculable Kähler potentials, and found that the special form (2.6) does not seem

to be generic in M-theory or string theory with branes, despite the manifest extradimen-

sional locality of such models. The unwanted couplings arise from the exchange of bulk

supergravity fields, particularly moduli.

Along the same lines, the authors of [3] gave a general argument showing that the

assumption of barren extra dimensions does not hold in string compactifications, even

after stabilization of the moduli. In any compactification for which moduli stabilization

can be described in the four-dimensional effective theory, the moduli masses will be no

larger than the cutoff scale of the four-dimensional effective theory, and in particular will

not exceed the Kaluza-Klein scale, so that mR ≪ 1. Thus, the effects transmitted by

massive, stabilized moduli cannot be neglected in general.

The importance of moduli stabilization for sequestering was first emphasized by Luty

and Sundrum in [9]. They considered five-dimensional supergravity compactified on S1/Z2

and asked whether supersymmetry breaking on the hidden orbifold boundary gave rise to

sequestered supersymmetry breaking for matter fields on the visible brane. Prior to stabi-

lization of the radion controlling the interval size, the Kähler potential took a sequestered

form. To stabilize the radion, they invoked gaugino condensation in a bulk gauge group

and in a boundary gauge group, yielding a superpotential

W = c + b e−aT , (2.9)

for constants a, b, c, and with T the radion. Luty and Sundrum then showed that with this

superpotential, sequestering survives the stabilization of the radion.

– 5 –



J
H
E
P
0
6
(
2
0
1
1
)
1
3
4

In string theory, the situation is somewhat more complicated, for several reasons.

To assist the reader in navigating the remainder, we briefly sketch these complications.

First, even before stabilization of the moduli, the Kähler potential for an unwarped string

compactification does not generically take the sequestered form (2.6), as we have just re-

viewed. However, strong warping ameliorates some of the moduli-mediated interactions,

as we shall explain in section 2.3. Moreover, a criterion weaker than (2.3) for the suppres-

sion of Kähler potential couplings appears well-motivated in certain unwarped examples,

and may allow effective sequestering even in compactifications violating (2.3) (section 2.4).

Most importantly, nonperturbative stabilization of the Kähler moduli introduces new in-

teractions that violate (2.4) and spoil sequestering, even in the presence of warping, as we

will explain in section 2.5.

2.3 Sequestering in warped compactifications

Although moduli-mediated interactions render sequestering non-generic in unwarped string

compactifications [2], some of the problematic effects are suppressed by strong warping [4].

Suppose that the supersymmetry-breaking sector is localized at the bottom of a warped

throat. From the ten-dimensional perspective, the mediation of supersymmetry breaking

to a visible sector some distance up (or even outside) the throat will proceed through

perturbations of the supergravity fields sourced in the infrared, i.e. from the bottom of the

throat. Taking the throat to be a warped Calabi-Yau cone with Sasaki-Einstein base X5,

the bulk fields ϕ can be expanded in eigenmodes on X5, so that schematically one has

ϕ =
∑

α

cαr−∆αYα(Ψ). (2.10)

Here α indexes the quantum numbers under the isometries of X5, cα are constants, r is

the radial coordinate, Ψ denotes the angular coordinates on X5, Yα is an angular har-

monic on X5, and ∆α is the dimension of the operator that is dual, via AdS/CFT, to the

corresponding supergravity mode. Couplings between a supersymmetry-breaking sector

located at the tip of the throat and a visible sector located at the top of the throat are

suppressed by powers of the hierarchy of scales in the throat. When all operators induc-

ing cross-couplings have ∆ > 4, the gravity-mediated soft terms are highly suppressed,

and the system experiences warped sequestering , which is the gravity dual of conformal

sequestering [5].

2.3.1 Warped sequestering in the Klebanov-Strassler throat

Let us briefly review and clarify the results of [4], which analyzed the mediation of super-

symmetry breaking from an anti-D3-brane to a D3-brane by normalizable profiles of the

supergravity fields in a Klebanov-Strassler throat region of a no-scale compactification. The

leading effects arose from the lightest Kaluza-Klein modes on T 1,1 — and correspondingly

the lowest-dimension operators in the Klebanov-Witten theory [10] — with two proper-

ties: the mode must be sourced by an anti-D3-brane, and it must induce supersymmetry-

breaking masses for the D3-brane fields. A particular supergravity field, denoted by Φ− in

the conventions of [11] (their equation (2.5)), controls D3-brane scalar masses, and so the

– 6 –
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task was to determine the lowest modes in the spectrum of Φ− excitations that are sourced

by an anti-D3-brane.4

In [4] (to which we refer for explanation of our notation) it was argued, following [14],

that the lowest-dimension operator dual to a normalizable mode of Φ− is a non-chiral

operator O√
28 with quantum numbers (3,3,1) under the SU(2) × SU(2) × U(1) global

symmetry, and with dimension ∆ =
√

28 ≈ 5.29. However, upon comparing to the result

of [15] for the Coulomb potential between a D3-brane and an anti-D3-brane in a warped

throat, the authors of [4] found that this mode is apparently not sourced by an anti-

D3-brane, and the leading mode of Φ− in the actual solution is dual to the non-chiral

singlet O8 =
∫

d4θ tr

(
WαWαW β̇W

β̇
)

with dimension ∆ = 8. This result, which was

subsequently confirmed in [16, 17], might lead one to expect that there exists a different

supersymmetry-breaking state (potentially preserving different global symmetries) in which

the apparently more relevant operator O√
28 obtains an expectation value and leads to less-

sequestered soft terms.

This expectation would be erroneous: although the operator O√
28 is indeed present in

the Klebanov-Witten theory, the vev of O√
28 is not dual to a normalizable perturbation

of Φ−, and moreover the lowest-dimension operator whose expectation value is dual to a

normalizable perturbation of Φ− is precisely the operator O8 induced by an anti-D3-brane.

Therefore, the anti-D3-brane activates the most relevant Φ− perturbation available in the

theory, and moreover this mode is a singlet, as one would expect at leading order in a

multipole expansion.

To correct the assignments of operators to supergravity modes, we refer to the discus-

sion in section 3.3 of [11]. There it was observed that a mode of Φ− dual to the vev of an

operator with dimension ∆ has a radial profile δΦ− ∝ r4−∆, which differs by a factor r4

from the result for a scalar field in AdS5 with the standard normalization. As a result, a

given operator in the Klebanov-Witten theory whose expectation value is dual to a normal-

izable mode of Φ− will have its source dual to a non-normalizable mode of an independent

supergravity field [11], which we denote Φ+. In particular, as explained in [11], the sim-

plest operators dual to normalizable Φ− profiles are of the form Tr
(
WαWαW β̇W

β̇
(AB)k

)
,

with k a non-negative integer. The lowest operator in this tower is the ∆ = 8 singlet

described above.

What of the operator O√
28? Its expectation value is dual to a normalizable mode of Φ+

(while a source for this operator is dual to a non-normalizable mode of Φ−). Therefore, a vev

of this operator does not induce soft terms for a D3-brane visible sector in the ultraviolet.

However, there is a mode with much lower dimension that could potentially induce

soft terms at the nonlinear level: this is a mode of flux dual to the chiral operator O5/2 =∫
d2θ tr(AiBj) with quantum numbers (1

2
, 1

2
,−1) and dimension ∆ = 5/2 (cf. [18]). In

appendix A we demonstrate that this mode does not alter the conclusions of [4].

In conclusion, for anti-D3-brane supersymmetry breaking in the Klebanov-Strassler

solution, the lowest-dimension operator mediating soft terms to a D3-brane ‘visible sector’

has ∆ = 8, so that the sequestering is very strong.

4We implicitly assume that the anti-D3-brane configuration corresponds to a supersymmetry-breaking

state of the cascading gauge theory, as in [12], but it would be valuable to confirm or exclude this along the

lines of [13].
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The considerations described above are directly applicable only to a noncompact

Klebanov-Strassler throat. For a finite throat region attached to a compact space, there

is at least one new light degree of freedom, the Kähler modulus T controlling the overall

volume. Because T is not part of the CFT, it is natural to expect that T will mediate

soft terms that are not suppressed by the hierarchy of energy scales in the throat. In sec-

tion 2.5 we will observe that nonperturbative superpotentials for the Kähler moduli indeed

generically spoil warped sequestering. However, we first describe a weaker criterion for

sequestering which is applicable in certain cases with a well-localized visible sector.

2.4 Sort-of sequestering

We have reviewed how extradimensional locality and the assumption of barren extra di-

mensions imply the separability of W and f , as in (2.3) and (2.4), and how (2.3) and (2.4)

in turn imply sequestering of supersymmetry breaking. Because light moduli in string

compactifications violate (2.3), it is reasonable to ask whether a weaker assumption might

suffice to ensure suppression of the soft masses in comparison to m3/2.

To identify this weaker condition, we expand a general Kähler potential and superpo-

tential in powers of the visible sector fields Ca as

K = K̂(X, X̄) + K̃ab̄(X, X̄)CaC̄ b̄ +
[
Z(X, X̄)HuHd + h.c.

]
. . . (2.11)

W = Ŵ (X) + µ(X)HuHd +
1

6
Yabc(X)CaCbCc + . . . (2.12)

and then require the separability of the f function only at leading order5 in the visible

sector fields [19]. This condition, which is related to the “extended no-scale structure”

in [19], reads

K̃ab̄ = e
bK/3M2

Plκab̄ , (2.13)

with Fm∂mκab̄ = 0, i.e. κab̄ does not depend on the moduli that get non-vanishing F-term

vevs. In particular this means that one can always rotate and rescale6 the Ca such that

κab̄ → δab̄. Using (2.13) and the standard supergravity formulae [20–22] it is easy to verify

that a series of cancellations leads to the following result for the soft terms of the MSSM

fields (not yet canonically normalized, which we emphasize with the hats):

M̂2
ab̄ =

2

3

V0

M2
Pl

K̃ab̄ ≃ 0 , (2.14)

Âabc = e
bK/2M2

PlFm∂mYabc , (2.15)

Bµ̂ = e
bK/2M2

Plµ

[
Fm

(
∂m log µ − Ŵm

3Ŵ

)]
+ µ

V0

3Ŵ
+ O(Z) , (2.16)

5In terms of the notation of section 2.1 this means that f can have a part fmix involving both the hidden

sector fields and the visible sector fields as long as it satisfies ∂afmix(X, X̄, C, C̄) = ∂a∂̄b̄fmix(X, X̄, C, C̄) = 0.
6For a generic moduli dependence, it is possible to diagonalize K̃ab̄(X, X̄) only at a single point in the

moduli space. As computing the soft terms (4.6)–(4.8) requires differentiating with respect to the moduli,

this is not sufficient.
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where V0 is the vacuum energy at the minimum of the F-term potential, which we are as-

suming is negligibly small, and O(Z) stands for terms proportional to Z and its derivatives,

which we omit for simplicity. It is clear from (2.15) that in order to ensure the absence

of gravity/moduli mediated A terms7 one needs to assume the separability (2.4) of the

superpotential, such that Fm∂mYabc = 0.

As for the all-orders separability in (2.3) and (2.4), the leading-order separability con-

dition (2.13) is also not generically satisfied in string compactifications. Nevertheless, there

are arguments that (2.13) might be valid, at least approximately. In fact, in [23] it was

argued that the combination of locality and holomorphicity enforces a special form of the

metric on the visible sector moduli space. Their argument, which we will review in section

4.2, suggests that Kab̄ ∼ eK/3M2
Plκab̄ with κab̄ independent of the Kähler moduli. When

all other moduli have only small or vanishing F-terms then interesting suppressions of the

soft terms as in (2.14) and (2.15) might arise.

2.5 Superpotential de-sequestering

Even when the separability (2.3) of f can be justified in a scenario with barren extra di-

mensions, or when the weaker criterion (2.13) follows from locality and holomorphicity, the

separability (2.4) of W is necessary to prevent flavor violation in the soft trilinear A terms.

We now make a critical observation: the separability of W , (2.4), is generically violated

in string compactifications stabilized by nonperturbative effects, and the resulting soft

terms therefore require careful study. This is one of the main goals of the present paper.

The best-understood scenarios for complete moduli stabilization in type IIB string

theory [24–26] incorporate nonperturbative contributions to the superpotential, e.g. from

gaugino condensation on a stack of D7-branes wrapping a four-cycle, to lift the Kähler

moduli. Consider a visible sector residing on (possibly fractional) D-branes in a compacti-

fication of type IIB string theory. Suppose that a Kähler modulus T describing the volume

of some four-cycle Σ is stabilized by gaugino condensation in a super Yang-Mills sector

on Nc D7-branes wrapping Σ. Even if Σ is distant from the D-branes constituting the

visible sector, strings stretching between the hidden and visible D-branes carry charges

under both sectors. Integrating out these strings will generically induce couplings between

the sectors. This computation has been performed explicitly in toroidal orientifolds (i.e.

without warping), with the result that D-branes distant from the hidden sector give un-

suppressed threshold corrections to the nonperturbative superpotential [27]. An important

question is whether these stretched strings can be massive enough to decouple if the hidden

and visible sectors are well-separated along a warped direction. A precisely analogous ques-

tion arises in D3-brane inflation, in which significant contributions to the inflaton potential

arise from strings stretched between the inflationary D3-brane and the D7-branes whose

strong gauge dynamics stabilizes the Kähler moduli. Explicit computation of the nonper-

turbative superpotential has revealed that the induced cross-couplings are not negligible,

even in strongly warped backgrounds [28]. The physical explanation for this was provided

7For Bµ even the separability of both f and W is not sufficient to ensure sequestering. Instead one needs

to make further assumptions, e.g. the absence of supersymmetric visible sector masses, i.e. µ = Z = 0.
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in [29], which showed that in any warped throat with Sasaki-Einstein base, the mass of a

string stretching up the throat is small compared to the four-dimensional Planck mass.

We therefore expect that nonperturbative stabilization of the Kähler moduli can induce

new contributions to the soft masses via superpotential interactions8 as in equation (1.3),

∆W = Ovis e−aT .

Nonperturbative stabilization of the radion was also considered in [9], and was found

to be compatible with sequestering. The critical difference between [9] and the present

work is that we allow couplings to the visible sector in the nonperturbative superpotential

for the Kähler moduli, so that b in (2.9) would be a gauge-invariant combination of visible

sector fields, cf. (1.4), rather than a pure constant. Clearly, this dramatically changes

the physical outcome. Let us stress that the superpotential (2.9) of [9] does follow upon

assuming the absence of couplings between the hidden and visible sectors. However, in

string compactifications for which the hidden and visible sectors are composed of D-branes,

one invariably has a spectrum of massive strings stretching between these D-branes, and

integrating out these strings induces cross-couplings of the form (1.3).

3 The effects of moduli stabilization: a toy model

We have argued above that in a compactification whose Kähler moduli are stabilized by

a nonperturbative superpotential, superpotential cross-couplings (1.3) between the visible

sector and the Kähler moduli induce soft supersymmetry breaking in the visible sector.

To assess the form of the resulting soft terms, we turn to a string theory toy model with

stabilized moduli in which the resulting soft terms can be computed explicitly.

3.1 Supersymmetric vacuum for a D3-brane

As in [4], we consider a D3-brane in a Klebanov-Strassler throat [30]. The D3-brane will

serve as a proxy for the visible sector, not because its low-energy effective theory gives a

good approximation to the phenomenological features of the standard model, but because

it is a simple but nontrivial case where one can test the warped sequestering proposal.

First, in section 3.1.1, we recall the essentials of KKLT moduli stabilization [24] and then,

in section 3.1.2, we obtain a supersymmetric vacuum9 for a D3-brane in the conifold.

The soft terms induced by supersymmetry breaking are then obtained in section 3.2 and

evaluated in section 3.3. In section 3.4 we extract a few lessons from the toy model.

3.1.1 The KKLT scenario

In warped compactifications of type IIB string theory on conformally Calabi-Yau three-

folds with flux and O-planes, the four-dimensional effective theory contains complex struc-

ture moduli, Kähler moduli, and the axio-dilaton, as well as open string moduli due to

8We remark that perturbative nonrenormalization cannot forbid nonperturbative couplings of this form.

Moreover, as long as T is not charged under the symmetries of the Standard Model, these symmetries also

cannot forbid the couplings (1.3).
9The solution that we will investigate in detail was first noticed in [31], but we mention in section B.2.1

how this extends to a broader class of solutions.
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branes. For simplicity, we will consider the case of a single Kähler modulus T , and a single

spacetime-filling D3-brane whose position is parameterized by three complex scalars φi,

i = 2, 3, 4. Three-form flux generates a classical superpotential for the axio-dilaton and

complex structure moduli,

W0 =

∫
G3 ∧ Ω, (3.1)

providing these moduli with reasonably large masses. After integrating out the massive

moduli10 and introducing a nonperturbative superpotential from gaugino condensation on

n D7-branes, the N = 1 effective theory for the Kähler modulus and D3-brane matter

fields takes the form:

K = −3M2
Pl ln

(
T + T̄ − γk(φ, φ̄)

)
≡ −3 ln U, (3.2)

W = W0 + Wnp = W0 + A(φ)e−aT , (3.3)

where k(φ, φ̄) is the Kähler metric on the Calabi-Yau manifold, γ = 1
3M2

Pl
, U = T + T̄ −

γk(φ, φ̄) = V2/3, and a = 2π
n .

Before delving into the particulars of explicit models, we readily observe that the

nonperturbative effect responsible for the stabilization of the D3-brane and the Kähler

modulus involves a direct cross-coupling between these two sectors, as in equation (3.3).

If the D3-brane is regarded as a toy visible sector, a large F-term for T would indeed

violate the separability condition (2.4) for sequestering. We now turn to quantifying this

contribution to the D3-brane soft mass.

3.1.2 Supersymmetric D3-branes in the conifold

To incorporate moduli stabilization explicitly, we follow [28, 34] and embed a stack of n

D7-branes in the throat region, along a divisor z2 = µ [35]. Here µ is a complex constant

that encodes the D7-brane location, and we are using the standard coordinates in which

the deformed conifold is defined by the locus

4∑

A=1

z2
A = ǫ2 (3.4)

in C
4. Gaugino condensation on the D7-branes then yields the nonperturbative superpo-

tential [28, 36]

Wnp = A0

(z2 − µ

µ

)1/n
e−aT , (3.5)

10The Kähler potential including the complex structure moduli and dilaton is not of the form (2.6),

and thus one might be tempted to conclude that these models do not sequester. However, in the case

that the complex structure moduli and axio-dilaton do not obtain large F-terms after supersymmetry

breaking [32, 33], these moduli are not part of the supersymmetry-breaking hidden sector, and the condition

(2.6) need not apply to these moduli for sequestering to work.
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where A0 is a constant with dimensions of (mass)3. Before incorporating the effects of

supersymmetry breaking, we obtain a supersymmetric AdS solution by solving the F-

flatness equations for the ansatz (3.2), (3.3):

DT W = 0 , (3.6)

DiW = 0 . (3.7)

Using (3.6), the F-flatness conditions (3.7) for the three independent D3-brane coordinates

zi, i = 2, 3, 4, can be written as

∂i

[
ln

(
z2 − µ

µ

)]
− anγki = 0 , (3.8)

which, we observe, does not depend on T . This makes it convenient to first find the position

of the D3-brane, and then feed this information into (3.6). Each solution has a two real-

dimensional moduli space, consistent with the residual SO(2) symmetry of the solution.

We now expand in |z2
µ | ≡ 1

B , keeping only the leading term, to obtain a solution in

which the D3-brane is at much smaller radial position than the D7-brane, but is still far

above the tip. As we will demonstrate in section 3.3, this leads to the hierarchy of scales

0 ≈
∣∣∣∣
ǫ

µ

∣∣∣∣≪
∣∣∣∣
z2

µ

∣∣∣∣≪ 1, (3.9)

and we can consistently set ǫ = 0. We choose to study a D3-brane localized at a specific

point in this moduli space, which to this order is defined by z3 = z4 = 0 and

z2 =
|µ|
B

=
1

4
(

4πγ
3

)3
|µ|3

, (3.10)

where we have taken z2 real. In this class of solutions we have r3 = 2|z2|2, and z1 = ±iz2 is

purely imaginary. In our discussion of the masses we will consider the upper sign. Once the

location of the D3-brane is found, (3.6) becomes a single-variable transcendental equation,

which can be solved numerically. We now turn to the effects of supersymmetry breaking

on this vacuum.

3.2 Soft masses for the D3-brane

We will break supersymmetry, as in KKLT, by adding an anti-D3-brane at the tip of the

throat, which contributes the ‘uplift’ potential

Vup =
D

(T + T̄ − γk(z, z̄))2
, (3.11)

where the constant D is determined by requiring the approximate cancellation of the cos-

mological constant. The results of [4] ensure that higher-order terms in the expansion of

the brane-antibrane potential are negligible.

The supersymmetry-breaking contribution (3.11) to the potential for T and φi will in

general induce shifts in the vevs. Let us use ZM to denote the vevs of T, T̄ , zi, z̄i, with ZM
0
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denoting the vevs in the supersymmetric solution, and ZM
⋆ ≡ ZM

0 +δZM denoting the vevs

in the supersymmetry-breaking solution. We will be interested in configurations for which

δZM ≪ ZM
0 , i.e. the shifts induced by the uplifting are small. In this approximation, we

can obtain the shifts δZM by solving

0 = ∂M (VF + Vup) Z⋆ ≈ ∂MVupZ0 + δZN [∇N∇M (VF + Vup)] Z0 . (3.12)

This amounts to inverting the total mass matrix evaluated at the supersymmetric point,

δZM = − (∂N∂M (VF + Vup))−1
Z0∂NVupZ0. One finds (see section B.4 for details, including

justification for dropping covariant derivatives) that the volume modulus shifts to a slightly

larger value. However, the D3-brane remains at the point where it was supersymmetrically

stabilized, to leading order in 1/B and to quadratic order in 1
aU , despite the fact that Vup

depends on the D3-brane coordinates.

We can now obtain the mass matrix for the supersymmetry-breaking vacuum in a

Taylor expansion around the supersymmetric point: at leading order we find

∇M∇N (Vtot) Z⋆ = ∂2
MN (VF + Vup) Z⋆ (3.13)

= ∂2
MN (VF + Vup) Z0 + δZP ∇P ∂2

MN (VF + Vup) Z0. (3.14)

In fact, the contribution proportional to δZT turns out to be negligible in this example:

explicit evaluation of

(∆M2
tot)MN = δZP ∇P ∂2

MN (VF + Vup) Z0 (3.15)

shows that these contributions are suppressed by at least one power of 1/(aU) or 1/B with

respect to the zeroth-order contribution in the expansion of the mass matrix. Thus, to

lowest order in 1/B, 1/(aU), the mass matrix is given by the full mass matrix evaluated at

the supersymmetric point,

∂2
MN (Vtot) Z⋆ ≈ ∂2

MN (Vtot) Z0 . (3.16)

We refer the interested reader to section B.4 for the full details.

Now, the scalar masses at the supersymmetric point (DAW = 0) are easily obtained

by differentiating the F-term potential (B.1) twice,

∂a∂b̄VF Z0 = eK/M2
Pl

(
KAB̄∂a(DAW )∂b̄(D̄B̄W ) − 2

|W |2
M4

Pl

Kab̄

)
, (3.17)

∂a∂bVF Z0 = −eK/M2
PlW

M2
Pl

∂aDbW. (3.18)

The holomorphic masses in (3.18) would not be present in unbroken rigid supersymmetry,

where holomorphic masses only appear in the form of soft B terms. In local supersymmetry,

however, these terms can be nonzero without breaking supersymmetry, as discussed in
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e.g. [37]. The ordinary masses in equation (3.17) are better understood when considered

in conjunction with the fermion masses evaluated at the supersymmetric point,

mab

∣∣∣
Z0

= e
K

2M2
Pl ∂aDbW , (3.19)

m2
3/2Z0 = eK/M2

Pl
|W |2
M4

Pl

, (3.20)

so, expressed in terms of fermion masses evaluated at the supersymmetric point, we have

∂a∂b̄VF Z0 = Kcd̄macmb̄d̄ − 2m2
3/2Kab̄ . (3.21)

The uplift potential (3.11) induces supersymmetry-breaking masses of the form

∂2
MNVup =

2Vup

3M2
Pl

(
KMN +

2

3M2
Pl

KMKN

)
, (3.22)

where M,N can be either holomorphic or antiholomorphic. Using that VtotZ0 = (VF +

Vup)Z0 ≃ 0, we can write

∂2
ab̄VtotZ0 = Kcd̄macmb̄d̄ +

4

3

m2
3/2

M2
Pl

KaKb̄ , (3.23)

∂2
abVtotZ0 = m2

3/2

[
Kab +

4

3M2
Pl

KaKb −
M2

PlWab

W

]
. (3.24)

The fermion mass-squared now appears in the expression for the nonholomorphic scalar

mass-squared, which will be useful when we consider mass splittings.

3.3 Evaluated soft masses

In section B.4, we express our results for the mass matrix in terms of VF , aU , and B. While

the first two of these quantities are determined completely once A0,W0 and a = 2π
n are

specified, the latter is a parameter of the solution describing the position of the D7-brane

in the throat. In this section, we explicitly evaluate the mass matrices for a particular

set of values for W0,A0, n and B. We caution the reader not to attach undue weight

to the precise numbers presented here, which serve only to allow comparison of various

contributions to the soft masses.

We will consider the case |A0| = M3
Pl, |W0| = 10−13M3

Pl, and a = 2π
32 , for which

aU ≈ 66. The gravitino mass is then given, to lowest order in 1/(aU) and in 1/B, by

m2
3/2

∣∣∣
Z∗

≃
∣∣∣∣
W0

M2
Pl

∣∣∣∣
2

eK/M2
Pl

∣∣∣
Z0

≈ 1.3 · 10−31M2
Pl ≈ (867GeV)2 . (3.25)

We now specialize to the case11 B = 400, still using aU ≈ 66 as above, so that working to

lowest order in an expansion in these two quantities provides sufficient accuracy.

The eigenvalues of the full scalar mass-squared matrix at the previously supersym-

metric point are (aU)2m2
3/2 ≈ 4400 m2

3/2 with multiplicity two, corresponding to the real

11See section B.5 for consideration of microphysical upper bounds on B.
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and imaginary parts of the Kähler modulus. There are two flat directions, which in this

case are in the imaginary z3, z4 directions. The corresponding real directions both have

masses 2m2
3/2. The last eigenvectors are almost aligned with the real and imaginary parts

of the z2 direction. While the imaginary direction has a mass of 3
4m2

3/2, the real part

is tachyonic with a mass-squared of −1
4m2

3/2. Several tachyons with mass-squared above

the Breitenlohner-Freedman bound were present in the AdS vacuum, but most of these

obtained nonnegative masses after uplifting. It is possible that this last tachyon is cured in

regions of parameter space that are not accessible to our perturbative expansion in 1/(aU)

and 1/B, but as our primary goal is to understand the transmission of soft masses rather

than to construct a fully realistic model, we will not consider this point further.

The masses of these real fields will be interpreted in part as supersymmetric masses

in Minkowski space, and in part as soft masses. We identify the soft part of the ordinary,

non-holomorphic, masses as the mass splittings between bosons and fermions in Minkowski

space, while any holomorphic mass term is regarded as a soft B term mass. Evaluating

the normalized soft masses, we obtain

M2
ab̄

∣∣∣
Z∗

= ∂2
ab̄(VF + Vup)

∣∣∣
Z0

− mabK
bc̄mc̄b̄

∣∣∣
Z0

=
4m2

3/2

3M2
Pl

KaKb̄

∣∣∣
Z0

(3.26)

= 4m2
3/2

(
δρρ̄
ab̄

−
√

3

2(πUB)1/2
(δρ2̄

ab̄
+ δ2ρ̄

ab̄
) +

3

4πUB
δ22̄
ab̄

)
(3.27)

= 4m2
3/2




1 −1.3 · 10−3

−1.3 · 10−3 1.8 · 10−6

0

0


 . (3.28)

The normalized soft B terms are evaluated to

Bab ≡ ∂abVtot

∣∣∣
Z∗

= m2
3/2

[
Kab +

4

3M2
Pl

KaKb −
M2

PlWab

W

]
(3.29)

= m2
3/2

(
aUδρρ

ab −
√

3a

2

(
U

πB

)1/2

δρ2
{ab} −

1

2
δ22
ab + δ44

ab + δ33
ab

)
(3.30)

= m2
3/2




66 −8.8 · 10−2

−8.8 · 10−2 −1
2

1

1


 . (3.31)

For completeness, we also list the F-term vevs at the non-supersymmetric solution to

the lowest non-vanishing order in the perturbative expansion,

FaZ⋆ = DaW Z⋆ = DaW Z0 + δZM∇MDaW Z0 (3.32)

= δXT

(
∂T DaW +

KT̄ a

M2
Pl

W

)
Z0. (3.33)
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For the canonically normalized volume modulus, we obtain |FT |1/2 ≈
(√

3U
a m3/2MPl

)1/2
≈

5.8 · 1011 GeV. In the visible sector, the canonically normalized field corresponding to z2

gets an F-term with |F2|1/2 ≈
(
m3/2MPl

3
2a

1√
πB

)1/2
≈ 2.1 · 1010 GeV.

3.4 Lessons from the toy model

Our explicit computation demonstrates that when including the effects of moduli stabi-

lization, even a ‘visible sector’ separated from the supersymmetry breaking by a highly

warped region can acquire substantial soft masses, primarily through B terms induced by

the nonperturbative superpotential.

We now briefly show how the supersymmetry-breaking mass splittings in the visible

sector can be interpreted as stemming from an array of different effects. The divisions

presented here are somewhat artificial, but can be helpful in tracing the origin of the soft

masses; we will give a unified treatment in section 4. First, supersymmetric Bose-Fermi

mass splittings in AdS4 will be incompatible with Minkowski-space supersymmetry, so

that the uplift transforms AdS-supersymmetric mass splittings into non-supersymmetric

Minkowski mass splittings.

Second, the uplift induces small shifts of the vevs; in particular, the shift of the (lowest

component of the) Kähler modulus superfield results in a nonvanishing vev for the corre-

sponding F-term FT . Then, nonperturbative superpotential couplings between the visible

sector and the Kähler modulus T of the form (1.4) give rise to soft masses in the visible

sector of the form

δLsoft = −aOvis e−aT FT + c.c. . (3.34)

Finally, direct communication through the bulk can induce non-holomorphic masses, which

in the four-dimensional theory arise from Kähler potential couplings of the form

δK =

∫
d4θ Q†QX†X , (3.35)

with X a spurion for hidden-sector supersymmetry breaking. However, as we have re-

viewed, [4] demonstrated that couplings of this third type are suppressed in warped back-

grounds, by the gravity dual of conformal sequestering.

In our explicit example, the leading contribution arose from soft masses of the first

kind, i.e. AdS-supersymmetric mass splittings transposed to Minkowski space. Soft masses

of the second kind, i.e. soft masses arising from F-terms induced by uplifting, turned out

to be subleading in 1/(aU), 1/B, cf. the discussion surrounding (3.15), but we expect that

in more general models these masses will not be negligible. We now turn to applying these

considerations to a more realistic model.

4 Soft terms in realistic models

The results of the preceding sections have shown that in a simple string theory toy model

for the visible sector — a single D3-brane — soft masses of order m3/2 are induced by

superpotential cross-couplings. This model differs from the MSSM in two very important
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respects. First, the ‘visible sector’ scalar superfields, i.e. the superfields whose lowest

components are the D3-brane coordinates zi, appeared in a rather complicated way in the

superpotential (3.5). Of course, in the MSSM, gauge invariance and R-symmetry severely

restrict the form of the superpotential, and the only allowed terms up to cubic order in the

visible fields are those in (1.4). As we will see, the structure in (1.4) provides the squarks

and sleptons with some degree of protection from superpotential de-sequestering, but the

Higgs sector enjoys no such protection a priori.12

Second, while some visible sector fields in the model in section 3 obtained significant

vacuum expectation values and F-terms, this is not a desired feature of a realistic visible

sector (before electroweak symmetry breaking). In the models that we will consider sub-

sequently, the vanishing of the visible sector F-terms will be an assumption, while in a

complete string theory construction it should be the outcome of a computation.

In this section we instead assess the effect of superpotential cross-couplings for MSSM-

like models that we assume are embedded in a string compactification through an oth-

erwise unspecified D-brane construction. The details of the moduli stabilization scenario

have important consequences for the resulting soft terms. In section 4.1 we study the

KKLT model [24], assuming that the supersymmetry-breaking sector is localized far down

a warped throat, so that the Kähler potential is of the form (2.6), while in section 4.2 we

study the Large Volume Scenario (LVS), where extended no-scale has been argued to imply

a special form of the metric on the visible sector moduli space, as discussed in section 2.4. In

both cases, soft masses can be computed within a general framework that we now outline.

Along the lines of [20], let us consider a supergravity theory containing visible sector

fields Ca and a modulus field T . (We will consider multiple moduli fields later.) In

an expansion around zero vacuum expectation values for the visible sector scalars, the

superpotential and Kähler potential can be expanded as

W = Ŵ (X) + µ(X)HuHd +
1

6
Yabc(X)CaCbCc + . . . , (4.1)

K = K̂(X, X̄) + K̃ab̄(X, X̄)CaC̄ b̄ + . . . , (4.2)

where we are assuming that no holomorphic or anti-holomorphic terms such as

Z(X, X̄)HuHd + h.c. are present.13

As discussed in section 3.2, a supersymmetry-breaking Minkowski vacuum is obtained

by adding an additional uplift contribution to the scalar potential. This uplift potential is

in general dependent on both the visible sector fields and the Kähler moduli.

Then in order to compute the soft scalar masses [38] (not yet canonically normalized,

which we indicate with the hats) in (2.7) one has to expand the total potential Vtot =

VF + Vup (where the standard supergravity F-term potential VF is given in (B.1)),

Bµ̂ = ∇hu∇hd
(VF + Vup)

∣∣
C=0

, (4.3)

M̂2
ab̄ = ∇a∇b̄(VF + Vup)

∣∣
C=0

− mabK
bc̄mc̄b̄

∣∣
C=0

, (4.4)

Âabc = ∇a∇b∇c(VF + Vup)
∣∣
C=0

. (4.5)

12It is conceivable that a mechanism that solves the tree-level µ-problem could also protect the Higgs

sector against superpotential de-sequestering, but this is highly model-dependent.
13The effects of Z 6= 0 are discussed e.g. in [21].
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Here mab denotes the fermion masses, which in general are given by equation (B.5) and are

not corrected by the uplift potential. The contributions to the un-normalized soft terms

from VF were obtained a long time ago [20–22], and in this notation can be written as

∇hu∇hd
VF = e

bK/2M2
Plµ

[
Fm

(
∂m log µ +

K̂m

M2
Pl

− Γhu
mhu

− Γhd
mhd

)
− Ŵ

|Ŵ |
m3/2

]
, (4.6)

∇a∇b̄VF − mabK
bc̄mc̄b̄ =

(
FmKmn̄F̄ n̄

M2
Pl

− 2m2
3/2

)
K̃ab̄

−F m̄Fn
(
∂n∂̄m̄K̃ab̄ − Γd̄

m̄āKcd̄Γ
c
nb

)
, (4.7)

∇a∇b∇cVF = e
bK/2M2

PlFm

[
∂mYabc+

K̂m

M2
Pl

Yabc−
(
Γd

ma Ydbc+(a ↔ b)+(a ↔ c)
)]

, (4.8)

where every expression is to be evaluated at C = 0 and we have specialized to Minkowski

space. The gravitino mass is given by m3/2 = |W |
M2

Pl
eK/2M2

Pl and we have also defined14

Fm = eK/2M2
PlKmn̄D̄n̄W for m,n taking values over all relevant moduli fields. Notice

that corrections to the µ and Y terms in the superpotential (2.12) lead to corrections in

the holomorphic quadratic and cubic terms (4.6) and (4.8), but not in (4.7). Turning our

attention to the uplift potential, we will assume, as we did in section 3.2, a term of the form

Vup = De
2K

3M2
Pl =

D

U2
, (4.9)

where D is a constant, corresponding for example to supersymmetry breaking by an anti-

D3-brane. The vanishing of the visible sector vevs together with the absence of visible

sector gauge-invariant linear terms in the Kähler potential implies that Ka = 0 (note that

this is quite different from the toy model we considered earlier), so the only contribution

to the soft terms from the uplift potential is to the soft scalar masses:

∇a∇b∇cVup = ∇a∇bVup = 0 , (4.10)

∇a∇b̄Vup =
2K̃ab̄

3M2
Pl

Vup . (4.11)

In order to proceed further we need to specify a scenario for Kähler moduli stabilization.

4.1 KKLT stabilization

Soft terms in the KKLT scenario have been previously studied by a number of authors [7,

33, 39]. In this section we investigate the effects of superpotential de-sequestering for a

MSSM-like visible sector. To be concrete, in a theory with one volume modulus T and

visible sector chiral superfields Ca ≡ Qi, ui, di, Li, ei, Hu, Hd, the separability of the f

14With this definition of F m, care is needed in lowering and raising indices, since Fm ≡ DmW =

e−K/2M2

PlKn̄mF̄ n̄.
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function (which can be justified e.g. by warped sequestering [4]), implies that the lowest-

dimension terms in the Kähler potential are (again omitting purely holomorphic terms,

as in (4.2))

K = −3M2
Pl ln

(
T + T̄ − 1

3M2
Pl

∑

a

CaC̄a

)
= −3M2

Pl ln U. (4.12)

The Peccei-Quinn symmetry of the axion field which is the imaginary part of T is only

broken by nonperturbative effects, so the leading superpotential terms consistent with

Standard Model gauge symmetry and with the PQ symmetry are

W = W0 + W tree +

+A0

(
1+

µ̂

M2
Pl

HuHd+
λu

ij

M3
Pl

QiujHu+
λd

ij

M3
Pl

QidjHd+
λl

ij

M3
Pl

LiejHd

)
e−aT . (4.13)

The detailed structure of the tree-level superpotential,

W tree(C) = λu,tree
ij QiujHu + λd,tree

ij QidjHd + λl,tree
ij LiejHd + W tree(Hu,Hd) , (4.14)

is dependent on the exact realization of the visible sector, but it is generally true that W tree

does not depend on the modulus T . We also remark that A0 may in general depend on

additional hidden sector fields, but for our purposes it suffices to treat A0 as a constant.

For a discussion of the sizes of the couplings µ̂ and λu,d,l
ij , see section 4.3. Let us consider

in turn the various soft terms.

4.1.1 Bµ term

The leading contribution to the Bµ term comes from the F-term potential because of (4.10).

Since K is of the sequestered form (4.12), only the first and the last terms in (4.6) con-

tribute, to leading order in 1/U . The first term is of the form expected from global

supersymmetry as the T modulus obtains a non-vanishing F-term vev, while the last term,

which is proportional to the gravitino mass, can be interpreted in KKLT as an uplifted,

previously AdS-supersymmetric B term. In a perturbative expansion around the super-

symmetric solution, we find FT ≈ δXT ∂2
TT W Z0 = −3aW

U δXT , where δXT is the shift in

the real part of the volume modulus due to the uplift. Since KT T̄ = U2

3M2
Pl

, we find that

F T = eK/2M2
PlKT T̄ F̄T̄ = −3a

U

U2

3M2
Pl

δXT eK/2M2
PlW = −aU

W

|W |m3/2 δXT . (4.15)

The leading contribution to the shift in the vacuum expectation value of T is given by

δT = −∂NVup(∂2
TNVtot)

−1, which in the case of vanishing visible sector vevs evaluates to

δT = 2
a2U

for the dimensionless modulus. It follows that the dimension one F-term F T is

F T = − 2

a2U
aU

W

|W |m3/2 = −2

a

W

|W |m3/2. (4.16)
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Neglecting a possible contribution to the µ term from the tree-level superpotential15 W tree,

we have ∂T log µ(T ) = −a, and the un-normalized Bµ term, Bµ̂, becomes

Bµ̂ ≃ eK̂/2M2
Plµ

(
Fm∂m log µ − m3/2

W

|W |

)
= eK̂/2M2

Plµ m3/2
W

|W |

= −m2
3/2

3µ̂

aU
. (4.17)

After canonically normalizing the Higgs field kinetic terms, the physical Bµ term becomes

Bµ ≃ −3µ̂

a
m2

3/2. (4.18)

We emphasize that this µ̂ is the coefficient in the nonperturbative contribution 4.13.

4.1.2 Soft non-holomorphic masses

The soft masses receive contributions both from the F-term potential (4.7) and from the

uplift potential (4.11). If the uplift had been achieved purely through the F-term vevs

of the moduli fields, so that FmF̄ n̄Kmn̄ = 3m2
3/2M

2
Pl, the first line of the right-hand side

of (4.7) could have been written simply as +m2
3/2K̃ab̄ in Minkowski space. In KKLT,

however, the uplift is obtained by adding an explicit uplift potential, so for the F-terms in

equation (4.16) we instead find

F T KT T̄ F̄ T̄ =
4

(aU)2
· 3m2

3/2M
2
Pl. (4.19)

These terms are then a priori subleading with respect to the contribution proportional to

m2
3/2. However, after adding the contribution from the uplift potential as in (4.11),

∇a∇b̄Vup =
2Vup

3M2
Pl

K̃ab̄ = 2m2
3/2K̃ab̄ , (4.20)

the leading contribution to the sfermion and Higgs un-normalized soft masses cancels pre-

cisely. Retaining the first subleading term, one finds

M̂2
ab̄ ≃

[
2 − 2 +

8

(aU)2

]
m2

3/2K̃ab̄ . (4.21)

The leading-order contribution shows an exact cancellation between two terms of very

different physical origin. While the negative contribution to the soft masses can be inter-

preted as mass splittings that were supersymmetric in AdS, the positive contribution is a

direct effect of the supersymmetry-breaking uplift potential. The exact cancellation is a

consequence of the fact that the uplift potential for an anti-D3 brane is given by D
Un for

n = 2.16 For n 6= 2 — as can be expected for uplifts corresponding to objects extended in

the internal dimensions — the soft masses would be of the order of m3/2. In conclusion, for

15A tree-level µ term of O(v) would result in corrections to this estimate of the order of v

U1/2m3/2

.
16The uplifting was described in terms of a spurion superfield in [39], where the cancellation for n = 2

was also noticed. An off-shell formulation of this sort is not required for our purposes.
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the Kähler potential in (4.12), the superpotential in (4.13) and for anti-D3-brane uplifting,

we find that the total soft mass for the normalized visible sector fields can be written as

M2
ab̄ =

8

(aU)2
m2

3/2 δab̄ , (4.22)

which is flavor-universal and does not induce additional flavor-changing neutral currents.

4.1.3 A terms

Finally, let us consider the soft trilinear A terms. We first note that KT = −3M2
Pl/U , Γc

Ta =

−δc
a

1
U , and the Yukawa coupling can be written as Yuij = A0/M

3
Ple

−aT λu
ij + λu,tree

ij for the

up-type quark superfields and similarly for the down-type quarks and for the leptons. Using

this in the expression (4.8) for the un-normalized A terms results in an exact cancellation

of everything but the first term, as expected from the extended no-scale discussion in

section 2.4. Thus, the un-normalized scalar trilinear A term is given by

Âuij = eK̂/2M2
PlFm∂mYuij

= − 6

aU

m3/2

MPl
m3/2 λu

ij . (4.23)

After electroweak symmetry breaking 〈H0
u,d〉 ≡ vu,d, the A terms will contribute to the

sfermion masses. Unless A is real and has very special flavor structure, this will induce

FCNC and CP violation. A useful quantity for which model-independent experimental

constraints are available [40] is δ ≡ ∆ab/M
2
soft, where ∆ab is the flavor-off-diagonal contri-

bution to the propagator of the sfermions in the basis in which the couplings to neutral

gauginos are flavor diagonal, and Msoft is the average sfermion mass. In principle the soft

terms we compute are valid at some high supersymmetry breaking scale and should be

run down to the scales where experiments are performed using RG equations. The largest

running appears in the third-generation quarks because of the large top Yukawa coupling.

Since the experimental data we focus on does not involve the third generation, we ignore

the effects of RG running.

E.g. for canonically normalized up-type squarks we find

δ ≡ ∆ab

M2
soft

= −6U1/2

a

(
m3/2

MPl

)(
m3/2vu

M2
soft

)
λu

ij . (4.24)

For a numerical estimate, as in section 3.3, we take m3/2 ∼ aUMsoft [7, 39], aU ∼ 66 and

a = 2π
32 . We find

δu,d ∼ 10−11
( vu,d

100GeV

)
λu,d

ij , (4.25)

which for |λu,d
ij | ∼ 1 is at least four orders of magnitude away from any experimental

constraint from FCNC and CP violation [40].
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4.1.4 Summary of KKLT phenomenology

In sum, in the single volume modulus KKLT scenario, flavor diagonal squark masses of the

order of 1
(aU)m3/2 are induced, resulting in negligible flavor violation [7, 39]. For multiple

Kähler moduli, this conclusion holds as long as the Kähler potential is of the sequestered

form (2.6). Superpotential de-sequestering in the Higgs sector can lead to a significant Bµ

term of order m2
3/2, and to supersymmetric masses of order m3/2, which can create serious

problems for electroweak symmetry breaking.

We note that as the vacuum expectation value of FT becomes important for the soft

terms, sequestering breaks down severely, in that modifications to the compactification

located far from the visible sector in the internal dimensions can have a significant impact

on FT , which in turn affects the physics of the visible sector. For instance, the value of FT

in section 3.3 where the effects of a nearby D3-brane are taken into account is exactly half

of that for the KKLT scenario in the absence of the D3-brane, cf. the discussion around

equation (3.33). Regarding the D3-brane as a part of the hidden sector, we note that

this reduction in FT leads to a cancellation of the leading-order Bµ term (4.17). Instead of

being of order m2
3/2, the Bµ term will in this case enter at O(m2

3/2/U). A similar sensitivity

to the global compactification — though perhaps not as striking — is a general feature of

the contributions proportional to FT that are induced by superpotential de-sequestering.

4.2 The large volume scenario

So far we have only discussed the effects of superpotential de-sequestering in KKLT com-

pactifications, but we expect significant effects whenever a nonperturbative superpotential

plays an important role in the stabilization of the moduli. We illustrate this point by

turning to the Large Volume Scenario (LVS), one of the most promising areas for suc-

cessful phenomenology from string compactifications17 [25]. In LVS, α′ corrections to the

Kähler potential are included in addition to the the same nonperturbative superpoten-

tial as in KKLT (4.13), both effects breaking no-scale. For Calabi-Yau manifolds of the

Swiss-cheese type,18

V ≃ τ
3/2
b − τ3/2

s , (4.26)

a non-supersymmetric AdS vacuum exists where the overall volume V is exponentially

large, V ≃ τ
3/2
b ≃ eaτs , with τ ≡ (T + T̄ )/2. Hence in W only the nonperturbative terms

for the small volumes τs are relevant. So we have

W = W0 + W tree +

+A0

(
1+

µ̂

M2
Pl

HuHd+
λu

ij

M3
Pl

QiujHu+
λd

ij

M3
Pl

QidjHd+
λl

ij

M3
Pl

LiejHd

)
e−aTs . (4.27)

It is important to notice that LVS crucially requires at least two Kähler moduli, in which

case, as opposed to the case of a single overall volume, the separability (2.3) of f into

17Additional investigations of soft terms in the Large Volume Scenario include e.g. [41].
18To avoid cluttering our notation with another index we write formulae for a single Ts. The generalization

to many Ts’s is straightforward. Moreover, adding a vanishing four-cycle Ta as in [19, 42] would not change

our discussion.
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hidden and visible sector contributions is far from established. Despite this fact, the milder

condition of extended no-scale discussed in section 2.4 has been argued to hold at least to

leading order in four-cycle volumes. Let us review the argument given in [23]. Recall that

for a diagonal visible sector matter metric, K̃ab̄ = K̃aδab̄ (no sum), the physical Yukawa

couplings in supergravity are given by

Y phys
abc = eK/2M2

Pl
Y hol.

abc√
KaKbKc

, (4.28)

and can be computed from first principles in a given localized model by computing the

overlap of the corresponding normalized wavefunctions. In [23], it was argued that locality

implies that the physical Yukawa couplings should be independent of the volume modulus

to leading order in perturbation theory. Since the holomorphic Yukawa couplings are

independent of the volume modulus to all orders in perturbation theory by holomorphy

combined with the Peccei-Quinn symmetry, this requirement enforces a special form of

the metric on the visible sector moduli space: K̃a ∼ e
bK/3M2

Pl . This leads to the structure

studied in section 2.4 [19],

K̃ab̄ = e
bK/3M2

Plκab̄ , (4.29)

with Fm∂mκab̄ = 0, i.e. κab̄ does not depend on the moduli that get non-vanishing F-

term vevs. In [32], the virtue of this condition was emphasized in the context of LVS.

Volume-suppressed violations of this form generically lead to non-universal soft masses, as

discussed in [43].

Superpotential cross-couplings induce corrections to the Bµ terms and A terms but

not to the nonholomorphic sfermion masses M2. Given (4.10), the corrections δBµ and δA

can be computed from the first term on the right hand side of (4.6) and (4.8), respectively.

We now consider these contributions in turn.

4.2.1 Bµ term

We want to compute the contribution to the Bµ term from superpotential cross-couplings,

which is given by the first term in (4.6). To canonically normalize the visible sector fields

we need K̃ab̄. For our purposes, it is sufficient to know it at leading order in the large

volume expansion, since there are no precise cancellations that make the subleading orders

important. We can hence use the extended no-scale relation [23] and rotate and rescale

the fields to have K̃ab̄ = e
bK/3M2

Plδab̄. Then we find the correction from superpotential

cross-couplings to the canonically normalized Bµ term to be

δBµ = e
bK/6M2

PlFm∂mµ (4.30)

= − a

V1/3
F Tse−aτs

A0µ̂

M2
Pl

. (4.31)

For an estimate, we assume |A0| ∼ M3
Pl, |µ̂| ∼ 1 (we will discuss this assumption in

section 4.3), and use the facts that in LVS, the volume at the minimum of the potential is

V ≃ eaτs and |F Ts | ≃ m3/2. Keeping track only of volume factors we find

δBµ ∼ M2
Pl

V7/3
. (4.32)
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For successful electroweak symmetry breaking, Bµ should not be far from the weak scale.

Hence, unless this contribution is absent, (4.32) puts a strong lower bound on the size of

the overall volume: V & 1014 in string units.

4.2.2 A terms

Now let us turn to the contribution to the soft A terms from superpotential cross-couplings.

This is given by the first term in (4.8). After canonically normalizing the visible sector fields

using K̃ab̄ = e
bK/3M2

Plδab̄ [23] at leading order (since again there is no relevant cancellation

for the terms we are computing), we have

δAuij = e−
bK/2M2

Ple
bK/2M2

PlFm∂mYuij

= −
A0λ

u
ij

M3
Pl

aF Tse−aτs , (4.33)

and similarly for δAdij and δAlij . As we saw in section 4.1.3, an efficient way to estimate

the phenomenological effect of this correction,19 e.g. in terms of FCNC and CP violation,

is to compute the parameter δ defined in (4.24). Using eaτs ≃ V as above, we write

δ =
A0λij

M3
Pl

a

V
vF Ts

M2
soft

. (4.34)

Let us focus just on the scaling with the overall volume, neglecting factors of a and Ts and

setting |F Ts | ≃ m3/2. The size of Msoft, being the average value of the relevant soft terms,

is still a matter of debate [19, 44, 45], so we parameterize it as

M2
soft ∼

m2
3/2

Vn
, (4.35)

where n has been claimed to be {0, 1/3, 1 or 2} in [19, 44, 45] respectively. Putting things

together we find

δ ∼ Vn10−16
( v

100GeV

)( A0

M3
Pl

)
λij . (4.36)

One of the strongest experimental constraints on δ comes from bounds on µ → eγ and gives

|(δl
12)LR| < 2 · 10−6 [40]. Other strong constraints arise due to the CP violation induced

by Im δ, e.g. from electric dipole moments. Figures of merit are |Im(δd
11)LR| < 3 · 10−6,

|Im(δu
11)LR| < 6 · 10−6 and |Im(δl

11)LR| < 4 · 10−7.

Unless the nonperturbative correction is real and respects flavor (more on this point

in section 4.3), we find the following upper bound on the size of the overall volume in LVS:

V < 1010/n

(
100GeV

v

)1/n

. (4.37)

For a crude estimate, here we have assumed |λij | ∼ 1 and A0 ∼ M3
Pl. For n = 0, 1/3, as

claimed in [44, 45], respectively, this bound is irrelevant. On the other hand, in the case

19Again, for the quantities of interest here we expect the RG evolution to give only negligible corrections.

– 24 –



J
H
E
P
0
6
(
2
0
1
1
)
1
3
4

considered in [19] for |λij | ≈ 1 and A0 ≈ M3
Pl one finds the upper bounds V < 1010 and

V < 105 for n = 1 and n = 2, respectively. Since in [19] it was argued that the smallest

possible volume is V ∼ 106−7 in string units, for n = 2 there might already be some

tension with experiments due to superpotential de-sequestering. A careful analysis keeping

track of all O(10) factors neglected in the above estimate would be desirable. Finally,

notice that this bound is in contradiction with the one obtained from the size of the Bµ

term (4.32), leading to an inconsistency unless one of the two contributions is forbidden

by some additional mechanism. Summarizing, the bound (4.37) shows that data on CP

violation and FCNC could be used to rule out an interesting region of parameter space.

4.3 On nonperturbative corrections to visible sector superpotentials

Our discussion so far has assumed that because nonperturbative superpotential couplings

between the visible sector and the Kähler moduli are not forbidden by known symmetries,

these couplings are in fact present, and are not simply proportional to the tree-level Yukawa

couplings. That is, if the visible-sector superpotential includes terms of the form20

Wvis = λu,tree
ij QiujHu + λu

ijQ
iujHu e−aT , (4.38)

then our working assumption has been that λu,tree
ij and λu

ij are not proportional.

This assumption is strongly supported by the abundance of examples in the literature

in which string instantons or D-brane instantons give rise to Yukawa couplings that are

forbidden in perturbation theory (see [46] for a comprehensive review in the context of

intersecting D6-branes in type IIA orientifolds, and [47] for a discussion of D-brane instan-

tons stretched between the visible and hidden sectors.) In F-theory GUT models, con-

tributions from nonperturbative effects on D7-branes have been argued to solve the ‘rank

problem’ of the tree-level Yukawa couplings [48], which obviously requires an adjustment

of the flavor structure. Thus, flavor violation by nonperturbative effects is well-attested in

string-theoretic realizations of the MSSM.

It would be interesting to obtain further details on the form of nonperturbative super-

potential couplings by direct computation in string models. A full treatment of this point

is beyond the scope of the present work, but we now outline what needs to be done to

evaluate this.

4.3.1 A terms

To acquire a more detailed picture of nonperturbative contributions to A terms in type

IIB compactifications, we now examine an analogous computation for adjoint open string

fields [27]. There, the moduli-dependent string S-matrix of D7-brane gauge field vertex

operators VAµ was considered:21

〈VAµVAν 〉background φ = function of moduli S, T, U, φ . (4.39)

20To simplify our expressions, in this section we will focus on u-type quarks; the extension to the remaining

fermions is trivial.
21To be precise, the string S-matrix is only obtained as an explicit function when the worldsheet moduli

are integrated over, as in [27]. See also recent related work in [49].
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From this string correction to the physical gauge couplings one extracts a correction to the

holomorphic gauge kinetic function of gauge fields on D7-branes:

f1−loop = −2 ln ϑ1(φ,U) + . . . (4.40)

where the omitted terms are independent of φ and ϑ1(φ,U) is a Jacobi theta function.

Now, substituting f1−loop in the nonperturbative superpotential on D7-branes,

W = Ae−a(ftree+f1−loop) , (4.41)

we obtain

W = A(φ)e−aT , (4.42)

where

A(φ) = (ϑ1(φ,U))2a . (4.43)

This is a toy model, but it was shown in [28] that analogous expressions appear in the

backgrounds of interest. The key point here is simply that A inevitably depends on φ, and

the dependence is not in any way negligible.

We expect a similar calculation to be feasible also for chiral matter fields, though more

challenging. In that case, one would expand the function A in gauge-invariant operators,22

A(φi) = A0 + Au
ijQ

iujHu + . . . , (4.44)

where it is understood that these are small fluctuations around the final, nonsupersymmet-

ric, minimum.23 We cannot turn on a background for chiral fields, so this coupling needs

to be probed by the S-matrix due to the following five-point function:

〈tr(VAµVAν )tr(Vφi
Vφj

Vφk
)〉 , (4.45)

where the traces are over the respective gauge groups. This is a double trace operator and

so will appear at loop level. The vertex operators Vφi
for chiral fields are given by the

usual vertex operators for open string scalars φ but with boundary changing operators σ

that change boundary condition from one brane stack i to the next stack j. The cylinder

diagram one needs to compute is shown in the left panel of figure 1. As shown in the right

panel, this can factorize onto some closed string field, call it X.24 If the field X appears

in the moduli-dependent superpotential as Au
ij(X)QiujHu (this is sometimes described as

X “carrying flavor”), the resulting coupling will be problematic in general, as we do not

expect λu,tree
ij ∝ λu

ij.

22A variation on this is quite common in D-brane models: T may be charged under an anomalous U(1),

so that A(φ) must also transform under the U(1). To exclude this possibility, we will assume any anomalous

U(1)’s are broken near the string scale, as is often the case.
23Another example of charged fields analogous to (4.44) is [50].
24Because of the PQ symmetry, X cannot be T .
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Figure 1. D7-branes on the left of cylinder (in red), D3-branes on the right of cylinder (in blue).

Left panel: Five-point function analogous to the two-point function considered in [27]. Right panel:

the factorized limit. The flavor structure of λu
ij may in principle be determined by that of the

tree-level (disk) three-point function.

However, let us mention a possible mechanism by which the nonperturbative contribu-

tions might respect the flavor symmetry preserved by the tree-level couplings. In intersect-

ing brane models, and for some models with branes at singularities (e.g. O(−3)P2 ∼ C
3/Z

3)

the Yukawa couplings arise as triple intersections between three brane stacks. Consider the

D3-brane part of the right panel of figure 1; without the closed string insertion X, the tree-

level three-point diagram is what generates Yukawa couplings yij in the first place. It is

possible that in the low-energy limit, the coupling λu
ij that is generated could satisfy

λu
ij = c λu,tree

ij (4.46)

for some constant c, so that no new flavor-changing effects are induced. However, a much

more detailed investigation would be required to establish a mechanism along these lines.

In some circumstances, a mechanism ensuring the smallness of the tree-level Yukawas

can also control the structure of λu
ij , but it remains an open question to embed such a

mechanism in a string model. We conclude that there is no evidence that the couplings

in (4.44) should vanish, nor is there currently a compelling argument that these couplings

should generically preserve the tree-level flavor structure.

4.3.2 µ terms

It is not inconceivable that whatever physics causes the vanishing of the tree-level µ-term

also requires a large suppression of the constant µ̂ of (4.13). The µ term is often prohibited

at a high scale by a continuous PQ symmetry that leaves a remnant discrete symmetry. In

such a case, one should ask whether T is charged under the PQ symmetry: if not, then the

PQ symmetry forbids nonperturbative corrections to the (prohibited) tree-level µ term.

If instead T carries a PQ charge, one would have to explain why the moduli-stabilizing

superpotential itself is not forbidden (see also [51]). This question depends in some detail

on the particular realization of the MSSM, and as such is beyond the scope of this work.
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5 Conclusions

Higher-dimensional locality provides a promising organizing principle for the suppression

of the phenomenologically dangerous flavor-violating soft terms of gravity-mediated super-

symmetry breaking. Although locality in barren extra dimensions leads to sequestering,

moduli-mediated couplings in the Kähler potential prevent sequestering in generic un-

warped compactifications of string theory [2], even after moduli stabilization [3]. Strong

warping suppresses Kähler potential couplings [4] via the gravity dual of conformal seques-

tering, but we have shown that nonperturbative stabilization introduces new superpotential

couplings between the Kähler moduli and the visible sector. As analogous couplings are

known to violate tree-level flavor symmetries in many examples, it is reasonable to expect

flavor violation in this case as well. In a very simple and explicit toy model involving a

D3-brane in a conifold region of a KKLT compactification, we showed that some of the

soft scalar masses induced by the superpotential cross-couplings are of order the gravitino

mass. Therefore, supersymmetry breaking in this model does not sequester, in contrast

to the positive result obtained by [4] for the corresponding configuration before Kähler

moduli stabilization.

Our considerations also apply to more realistic visible sectors. In a KKLT compact-

ification with an MSSM-like sector assumed to be supported on a collection of D-branes

separated from the supersymmetry-breaking sector by warping, there are flavor-universal

contributions to the sfermion masses of the order of m3/2/(aU). In the Higgs sector, nonper-

turbative superpotential cross-couplings induce µ and Bµ terms of order m3/2 and m2
3/2,

respectively, with a detailed sensitivity to the global compactification. Thus, in KKLT

compactifications, the sequestering described in [4] does not survive moduli stabilization.

However, the corrections due to superpotential de-sequestering are rather mild: depending

on the full mediation scenario, the corrections to the squark and slepton masses due to

superpotential de-sequestering can be made sub-dominant, while for the Higgs sector the

nonperturbative superpotential contributions to the µ and Bµ terms are not necessarily

fatal but must be properly incorporated, as in [7].

In the case of the Large Volume Scenario — in which the supersymmetry breaking

sector is in no way geometrically separated from the visible sector — ten-dimensional

locality can still result in a significant suppression of the soft masses with respect to the

gravitino mass [19]. However, the nonperturbative superpotential is an essential ingredient

in the moduli stabilization, and we found that in certain parameter regimes, soft trilinear

A terms induced by nonperturbative superpotential couplings can be dangerously large,

so that precision results from flavor physics constrain the model parameters. Intuitively,

scenarios with large hierarchies between m3/2 and Msoft are the most vulnerable to small

corrections from nonperturbative superpotential cross-couplings, and indeed we found a

flavor and CP problem only in the scenario of [19], where such a hierarchy is present, while

non-negligible corrections to the Bµ term are to be expected in essentially all scenarios.

Our work sharpens the criteria for sequestered supersymmetry breaking in a string

compactification: examination of the Kähler potential alone is insufficient when nonper-

turbative superpotential terms control the stabilization of moduli. Two additional tasks
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are required: one should provide a mechanism that controls nonperturbative contributions

to Bµ, and one must ensure that any flavor-violating nonperturbative contributions to the

A terms are consistent with experiment.

A very interesting task for the future is the construction of an explicit, realistic visible

sector in string theory for which the soft masses are sequestered.
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A Smeared sources and warped sequestering

In this appendix we show that warped sequestering in the no-scale setup of [4] survives

the relaxation of an assumption made for technical simplicity in [4]: smearing of the

supersymmetry-breaking anti-D3-brane around the S3 tip of the warped deformed conifold

is not required for the basic conclusion to hold.

DeWolfe, Kachru and Mulligan [16] considered a D3-D3 pair smeared around the S3

tip of a Klebanov-Strassler throat, and obtained a supergravity solution at large radius in

which all fields were invariant under the SU(2)L × SU(2)R isometry.25 However, it is clear

that a brane placed at a particular position on the S3 will break some of the symmetries

of the system, and can be expected to source modes that are not global symmetry singlets.

One can ask whether such modes will, at the nonlinear level, induce Φ− perturbations, and

hence D3-brane soft terms, that compete with those mediated by O8. That is, one should

ask whether soft masses computed in the smeared solution of [16] are in fact the leading soft

masses in a full, unsmeared solution. We will now argue that a solution describing a single

anti-D3-brane placed at the tip of the deformed conifold enjoys an SU(2) symmetry in

SU(2)L ×SU(2)R and that this residual symmetry forbids the ∆ = 5/2 operator tr(AiBj) ,

which might otherwise be expected to induce problematic soft masses.26

The deformed conifold can be defined as the a subset of C
4 satisfying

det W = −ǫ2

2
, (A.1)

25See [13, 17, 52] for further work on supergravity solutions for antibranes in the background of [30].
26See [18] for a setting in which nonlinear effects of this operator indeed give the dominant contribution

to the D3-brane potential.
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with

W =

(
−w3 w2

−w1 w4

)
=

−1√
2

(
z3 + iz4 z1 − iz2

z1 + iz2 −z3 + iz4

)
. (A.2)

The radius r is given by

trW †W =
∑

i

|zi|2 = r3. (A.3)

In the matrix representation of the coordinates of a point p, it is easy to convince oneself

that SU(2)L × SU(2)R acts transitively on the T 1,1 base of the cone as

σ(W (p), g) → L(g)W (r)R(g)† , (A.4)

g ∈ SU(2)L × SU(2)R. (A.5)

This means that we can choose an origin, W0, and specify all other points by SU(2)L ×
SU(2)R transformations away from this point. It is standard to choose

W0 =

(
ǫ√
2

√
r3 − ǫ2

0 − ǫ√
2

,

)
, (A.6)

and then any point on T 1,1 at this radius can be obtained through

W = LW0R
†. (A.7)

The background geometry and the smeared solution are symmetric under all these rota-

tions. The subset of these rotations that are still symmetries once an anti-D3-brane is

placed at a specific point p is by definition the stabilizer H(p). Since T 1,1 is a coset space

of the above SU(2)L × SU(2)R action, the stabilizer is (cf. e.g. [53]),

H(p) =

{
U(1) r3 > ǫ2

SU(2) r3 = ǫ2 .
(A.8)

We denote the stabilizer of our chosen origin W0 by SU(2)S , and we must impose the

SU(2)S symmetry on any solution corresponding to perturbing the supergravity solution

by placing an anti-D3-brane at p. Clearly, for this specific W0, the stabilizer is the subgroup

of SU(2)L × SU(2)R that leaves σ3 invariant.

Now, because deti,j tr(AiBj) = 0, tr(AiBj) cannot be a singlet under SU(2)S . Geomet-

rically, this is the natural outcome of the fact that AiBj can be thought of as coordinates

on the singular conifold. Thus, the operator tr(AiBj) has an interpretation as a point on

the conifold (far) away from the tip. Such a point has a U(1) stabilizer, and thus cannot

be invariant under a full SU(2) in SU(2)L × SU(2)R . We conclude that the corresponding

supergravity mode will not be turned on even in an unsmeared solution.

B A D3-brane on the conifold

In this appendix we give a detailed treatment of the toy model of section 3, after collecting

the relevant supergravity formulas in section B.1.
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B.1 General strategy

We first assemble some well-known expressions pertinent for the evaluation of mass matrices

for general chiral superfields. As in the bulk of the paper, we will work with the Kähler

potential K and the superpotential W for some chiral superfields in fixed Kähler gauge.

The F-term scalar potential is

VF = eK/M2
Pl

(
KAB̄DAWDB̄W − 3

|W |2
M2

Pl

)
, (B.1)

where the Kähler covariant derivative is DAW = (∂A + KA

M2
Pl

)W . We are interested in

expressions for the masses Taylor expanded around a supersymmetric point denoted Z0,

for which FA ≡ DAW Z0 = 0, for all values of the index A. The scalar mass matrices at

this point are given by

∇a∇b̄VF |Z0 = ∂a∂b̄VF |Z0 = eK/M2
Pl

(
KAB̄∂a(DAW )∂b̄(D̄B̄W ) − 2

|W |2
M4

Pl

Kab̄

)
, (B.2)

∇a∇bVF |Z0 = ∂a∂bVF |Z0 = −eK/M2
PlW

M2
Pl

∂aDbW, (B.3)

where we have used that ∂VF Z0 = 0 to replace the covariant derivatives with partial

derivatives. The first-order corrections from the F-term potential, δZM∇M∂2
ab̄

VF and

δZM∇M∂2
abVF , are obtained by taking three derivatives on the F-term potential:27

∂ab∂c̄VF |Z0 = ∂{a(e
K/M2

PlKcd̄)∂b}(Fc)∂c̄(F̄d̄) + ∂{a(e
K/M2

PlKcd̄)∂c̄(Fc)∂b}F̄d̄+

+ ∂{a(Fc)∂b}(F̄d̄)∂c̄(e
K/M2

PlKcd̄)+

+ eK/M2
PlKcd̄

[
∂2

ab(Fc)∂c̄F̄d̄ + ∂2
c̄{a(Fc)∂b}(F̄d̄)+

+∂{a(Fc)∂
2
b}c̄(F̄d̄) + ∂c̄(Fc)∂

2
ab(F̄d̄)

]
− 3

[
eK/M2

Pl
W

M2
Pl

∂2
abF̄c̄

]
. (B.4)

The fermion masses are

mab = eK/2M2
Pl

[
∂aDbW +

Ka

M2
Pl

DbW − Γd
abDdW

]
, (B.5)

where the Christoffel symbol is constructed out of the Kähler metric, Γd
ab = Kdc̄Kac̄b.

In an expansion around Z0, we will be interested in the first-order corrections to the

supersymmetric masses, which are given by

mabZ⋆ = mabZ0 + δZM (∇Mmab)Z0 , (B.6)

where M runs over both holomorphic and anti-holomorphic indices. The lowest-order

contribution is then

mab|Z0 = e
K

2M2
Pl ∂aDbW. (B.7)

27Since the expressions turn out to be slightly lengthy, only the terms with two holomorphic indices and

one anti-holomorphic index are worked out here. To obtain the complete set of corrections it is necessary

to also work out the case when all indices are holomorphic.
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The vanishing of the F-terms implies that ∂aDbW Z0 = ∂bDaW Z0.

The gravitino mass is given by m2
3/2 = eK/M2

Pl

∣∣∣ W
M2

Pl

∣∣∣
2
. At the supersymmetric mini-

mum, m2
3/2Z0 = |VF |

3M2
Pl

, and to linear order in the expansion around this minimum,

m2
3/2 = m2

3/2

∣∣∣
Z0

+ δZM∂M

(
eK/M2

Pl

∣∣∣∣
W

M2
Pl

∣∣∣∣
2
)∣∣∣

Z0

= m2
3/2

∣∣∣
Z0

, (B.8)

where the last step follows from F-flatness at Z0. The small mixing terms between the

gravitino and the chiral fermions are proportional to eK/2M2
Pl

Fa

M2
Pl

, and will henceforth be

neglected.

Specializing to the KKLT scenario with Kähler potential K = −3M2
Pl ln U and an

uplift potential of the form Vup = D
U2 = 3m2

3/2M
2
Pl, the masses from the uplift potential

can be written as

∂2
MNVup =

2Vup

3M2
Pl

(
KMN +

2

3M2
Pl

KMKN

)
. (B.9)

To obtain the first-order correction to the mass matrix, following the logic for corrections

from VF above, we take three derivatives of the uplift potential,

∂3
MNP Vup =

2|VF |
3M2

Pl

[
KMNP +

2

3M2
Pl

(KMKNP + cycl.perm.) − 16

(3M2
Pl)

2
KMKNKP

]
.

(B.10)

We will discuss the role of the first-order corrections in section B.4.2. Adding the lowest-

order contributions to the scalar masses from VF and Vup, we obtain

∂2
ab̄VtotZ0 = Kcd̄macmb̄d̄ +

4

3

m2
3/2

M2
Pl

KaKb̄ , (B.11)

∂2
abVtotZ0 = m2

3/2

[
Kab +

4

3M2
Pl

KaKb −
M2

PlWab

W

]
. (B.12)

Equation (B.12) gives the lowest-order contribution to the B terms, while the mass split-

tings between the scalars and fermions are given by

M2
ab̄

∣∣∣
Z∗

=
4

3

m2
3/2

M2
Pl

KaKb̄ , (B.13)

to this order in perturbation theory.

B.2 Vacua for a D3-brane on the conifold

We remind the reader that the four-dimensional effective theory we are studying is given by

K = −3M2
Pl ln U = −3M2

Pl ln(T + T̄ − γk) , (B.14)

W = W0 + Wnp = W0 + A0e
−ξ . (B.15)
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Here ξ = aT + ζ, ζ = − 1
n ln f(z), and k = r2. The number n of D7-branes determines a =

2π/n, and f is the dimensionless embedding function of the four-cycle responsible for the

nonperturbative superpotential. Since we will need to be careful about the dimensions, it is

worth mentioning that the volume modulus T is dimensionless, and γ has mass dimension

−2. One can introduce fields with canonical dimension 1, e.g. ZT = λT , Zi = σizi where

dimensionful constants [λ] = 1, [σi] = −1/2 have been introduced. These constants are

fixed by the kinetic terms, by requiring canonically normalized fields at the supersymmetric

minimum, as discussed in section B.3.

B.2.1 Supersymmetric AdS solution

As discussed in the bulk of the paper, we find supersymmetric AdS vacua by solving the

F-term equations. The equation (3.6) for the volume modulus can be written as

W = −aU

3
Wnp , (B.16)

which, upon defining ξ = aT +ζ, with ζ = − 1
n ln f(z), leads to an algebraic, transcendental

equation for U

(
1 +

aU

3

)2

e−aU−aγk−ξ−ξ̄ =

∣∣∣∣
W0

A0

∣∣∣∣
2

. (B.17)

Equation (3.6) also determines the axionic, imaginary part of T ,

ℑ(T ) = −1

a
arg

(−W0e
ζ

A0

)
. (B.18)

In a chart where we use z2, z3 and z4 as independent complex coordinates on the conifold

and for the Kuperstein embedding f(z) = z2−µ
µ , equation (3.8) becomes

− 1

n(z2 − µ)
+

2aγ

3r

(
z̄2 −

z̄1z2

z1

)
= 0 , (B.19)

2aγ

3r

(
z̄3 −

z̄1z3

z1

)
= 0 , (B.20)

2aγ

3r

(
z̄4 −

z̄1z4

z1

)
= 0 , (B.21)

after using that k = r2 far from the tip of the conifold, and that ∂iz1 = − zi
z1

for i = 2, 3, 4

in this chart. The radius is related to the standard complex coordinates on the conifold by∑4
a=1 |za|2 = r3. Writing zA = |zA|eiηA , equations (B.20), (B.21) imply that η1 = η3 = η4,

but they do not restrict the norms of z3, z4. Equation (B.19) on the other hand can be

written as

1

(|z2| ± |µ|)3
= 4

(
4πγ

3

)3

|z2| . (B.22)

The different signs come from choosing either η2 = ηµ for the upper sign or η2 = ηµ +π for

the lower, reflecting the fact that there are two distinct supersymmetric loci for the D3-

brane: one located just above the D7-branes, and the other located far down the throat.
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Since the norms of z3 and z4 are undetermined, we have a two-dimensional moduli space.

We choose to do our analysis for the point where z3 = z4 = 0 and z2 is real by choice of

the phase of µ.

B.2.2 Other D7-brane embeddings

As an illustration of the fact that our supersymmetric solutions are generic for a large

class of D7-brane embeddings, we derive the kindred solution for the Ouyang embed-

ding [54] specified by the embedding function f(w) = w2−µ
µ when written in terms of the

w-coordinates of equation (A.2). The solution has a moduli space consisting of two isolated

points satisfying the equation

ω

ω ± µ
=

2anγ

3
ω4/3 , (B.23)

One of these solutions is located at ω & µ, while the other is at ω & 0. In this notation

w2 = ωeiη, where the phase η is fixed to be the phase of µ — possibly up to a phase

difference π, and here r = ω2/3. This illustrates that supersymmetric solutions are generic,

and that the pairing of solutions that we have commented upon may be a feature of a wide

variety of D7-brane embeddings.

B.3 Canonical normalization

In order to correctly assess the scaling of the masses, we obtain the canonically normalized

fields. With the Kähler potential (B.14), the Kähler metric is given by

Kab̄ = 3M2
Pl

[
UaUb̄

U2
− Uab̄

U

]
. (B.24)

We find that, in our case, the diagonalization of this metric is essentially captured by

choosing the constants λ, σi appropriately:

λ :=

(
3M2

Pl

U2

)1/2

, (B.25)

σ2 :=

(
M2

Pl

U

[
B

πµ2
0

])1/2

, (B.26)

σ3 :=

(
3M2

Pl

U

[
B

4πµ2
0

])1/2

. (B.27)

This normalization gives KT 2̄ = −
√

3
2(πUB)1/2 . Thus, this entry is suppressed by O( 1√

UB
)

with respect to the other entries in the metric, and does not affect the determinant of the

metric to the order that we are working. A completely diagonal metric may be chosen

by performing a unitary transformation after specifying the constants λ, σ. However, en-

couraged by the relative smallness of the off-diagonal metric elements — for the values of

U and B discussed in section 3.3, the off-diagonal metric elements are of order 10−3 —

we will not perform this unitary transformation that would mix the hidden sector Kähler

modulus with our proxy D3-brane visible fields. To be explicit, taking two derivatives on
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the Kähler potential and evaluating it at the supersymmetric point with this definition of

λ and σi for the canonically normalized fields gives

KMN = δT T̄ ,z2z̄2,z3z̄3,z4z̄4

MN −
√

3

2(πUB)1/2

(
δT 2̄
{MN} + δT̄ 2

{MN}

)
+ (B.28)

+

[
δTT,33,44
MN − 1

2
δ22
MN −

√
3

2(πUB)1/2
δT2
{MN} + c.c.

]
. (B.29)

Here, a δ-function with two indices is a shorthand for two delta functions. The curly braces

correspond to symmetrization, without a factor of 1
2 , i.e. δPQ

{MN} = δP
MδQ

N + δP
NδQ

M . As

usual, only the holomorphic+antiholomorphic derivatives correspond to metric elements.

The inverse Kähler metric is given, to leading order in 1/B and to second order in 1/(aU),

by Kab̄ = δab̄ +
√

3
2(πUB)1/2 δab̄

T 2̄,2T̄
. It is well-known and easy to verify that the Kähler metric

is no-scale, KAB̄KAKB̄ = 3M2
Pl, and that KAB̄KA = −λU δB̄

T̄
, by using

KM = −
√

3MPlδ
T
M +

3MPl

2(πUB)1/2
δ2
M + c.c. (B.30)

B.4 Details of the mass matrix

Using equation (B.29) and the fact that

∂aDbW = − W

M2
Pl

(
(aU + 2)δTT

ab +
1

2
δ22
ab − δ33,44

ab −
√

3(aU + 2)

2(πUB)1/2
δT2
{ab}

)
, (B.31)

the AdS supersymmetric masses (B.2) and (B.3) are easily evaluated. We find that in

our case, the AdS supersymmetric B terms, denoted Bab to distinguish them from the

Minkowski space B term, turn out to be real. Thus, the mass matrix separates into two

blocks when written in terms of real fields, Za = Xa + iY a, as VF ⊃ (M2
tot)ab̄Z

aZ̄ b̄ +
1
2 (BabZ

aZb + h.c.) = M2
XaXbX

aXb + M2
Y aY bY

aY b, with

M2
XaXb =

(
(M2

tot)ab̄ + Bab

)
, (B.32)

M2
Y aY b =

(
(M2

tot)ab̄ − Bab

)
. (B.33)

Here Bab = ∂a∂bVF |Z0 , and (M2
tot)ab̄ = ∂ab̄VF |Z0 denotes the total AdS scalar mass. After

the canonical normalization discussed in section B.3, the resulting scalar mass matrices are

most transparently written in terms of real fields for which we have — to leading order in
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1/B and to second order in 1/(aU) — the supersymmetric masses:

∂2
MNVF Z0 =




m2
TT̄

+m2
TT m2

T 2̄
+m2

T2

m2
T 2̄

+m2
T2 m2

22̄
+m2

22

m2
33̄

+m2
33

m2
44̄

+m2
44

m2
TT̄

−m2
TT m2

T 2̄
−m2

T2

m2
T 2̄

−m2
T2 m2

22̄
−m2

22

m2
33̄
−m2

33

m2
44̄
−m2

44




=
|VF |
2M2

Pl




2
3
(a2U2+5aU) − a2U2+5aU

√
3(πUB)

1
2

− a2U2+5aU
√

3(πUB)
1
2

a2U
2πB

− 5
6

− 4
3

− 4
3

2
3
(a2U2+3aU) − a2U2+3aU

√
3(πUB)

1
2

− a2U2+3aU
√

3(πUB)
1
2

a2U
2πB

− 3
2

0

0




. (B.34)

Here VF = VF Z0 = ΛAdSM
2
Pl = −3m2

3/2M
2
Pl. From this expression, it is evident that there

are several tachyonic directions at this AdS vacuum. The stability of the solution requires

masses larger than the Breitenlohner-Freedman mass, which in AdS4 is M2
BF = −3

2
|VF |
M2

Pl
.

The eigenvalues of matrix (B.34) are |VF |
M2

Pl

[
1
3(a2U2 + 5aU),− 5

12 ,−2
3 ,−2

3 , 1
3(a2U2 + 3aU),

−3
4 , 0, 0

]
, to leading order in 1/B and to second order in 1/aU , so as expected there is no

instability. The supersymmetric mass-splittings can be read off from equation (3.26),

M2
ab̄

∣∣∣
Z0

= −2eK/M2
Pl
|W |2
M4

Pl

Kab̄ = −2 m2
3/2Kab̄ (B.35)

at the AdS supersymmetric point, while the B term masses are proportional to the fermion

masses,

Bab|Z0 = ∂2
abVF

∣∣∣
Z0

= −eK/M2
PlW

M2
Pl

∂aDbW (B.36)

=
|VF |
3M2

Pl

{
(aU + 2)δTT

ab +
1

2
δ22
ab − δ33,44

ab −
√

3(aU + 2)

2(πUB)1/2
δT2
{ab}

}
. (B.37)

B.4.1 Mass matrix after uplift

After incorporating the supersymmetry breaking by adding the uplift potential to the F-

term potential, the vacuum expectation values of the moduli get slightly modified. In

this section we confirm that this shift in vevs is indeed small, and we demonstrate the

surprising fact that the D3-brane does not move upon uplifting to this order in pertur-

bation theory. To compute the shift we need the inverse of the total mass matrix at the
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supersymmetric point,28

δZM = − (∂N∂M (VF + Vup))
−1

Z0∂NVupZ0. (B.38)

It is easy to see that ∂NVup = 2
3
|VF |
M2

Pl
KN = 2m2

3/2KN , while two derivatives on the uplift

potential can be written as in equation (3.22). Together with the contribution from the

F-term potential and expressed in the real basis, the full mass matrix at Z0 is

∂2
MN (Vtot) |Z0 =

|VF |
2M2

Pl




2
3
(a2U2+5aU) − a2U2+5aU

√
3(πUB)

1
2

− a2U2+5aU
√

3(πUB)
1
2

a2U
2πB

− 1
6

+ 4
3

+ 4
3

2
3
(a2U2+3aU) − a2U2+3aU

√
3(πUB)

1
2

− a2U2+3aU
√

3(πUB)
1
2

a2U
2πB

+ 1
2

0

0




.

(B.39)

Inverting, we find that to this order the only shift is in the real part of T and is given

by 1
2 (δZT + δZ̄ T̄ ) =

√
3MPl

aU(aU+5) . To order 1/(aU)2, 1/B the fermion mass matrix at Z0 is

obtained by evaluating (B.7),

mab

∣∣∣
Z0

= eK/(2M2
Pl)

W

M2
Pl

{
−(aU + 2)δTT

ab − 1

2
δ22
ab + δ33,44

ab + (aU + 2)

√
3

2(πUB)1/2
δT2
{ab}

}
.

(B.40)

The prefactor eK/2M2
Pl

W
M2

Pl
is just m3/2Z0. The gravitino mass is unchanged to this order

from its value in AdS,

m2
3/2 =

|VF ||Z0

3M2
Pl

. (B.41)

The mass splittings between the scalars and fermions in the Minkowski solution are, to

this order,

M2
ab̄|Z⋆ = M2

ab̄|Z0 + ∂2
ab̄Vup|Z0 = (B.42)

= 4m2
3/2




1 −
√

3
2(πUB)1/2

−
√

3
2(πUB)1/2

3
4πUB

0

0




. (B.43)

28This formula applies to all coordinates except Y 3 and Y 4. In these directions there is no shift to this

order by the vanishing of the mass matrix and first derivative on the uplift potential.
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The B terms are, to this order,

Bab ≡ ∂abVtot|Z⋆ = Bab|Z0 + ∂abVup|Z0 = (B.44)

= m2
3/2




aU −
√

3a
2 ( U

πB )1/2

−
√

3a
2 ( U

πB )1/2 −1
2

1

1


 . (B.45)

B.4.2 Corrections to the mass matrix due to the shift in the volume modulus

We determine the relative importance of the different contributions by computing the first-

order correction to the mass matrix in perturbation theory. The contribution from the

uplift potential comes from evaluation of equation (B.10). Three derivatives on the Kähler

potential, evaluated at Z0, can be written as

KMNP |Z0 =
1

MPl

{
(πUB)1/2

(
2

9
δ222
MNP +

2

3
δ332̄,442̄
MNP − 4

3
δ332,442
MNP − 1

3
δ222̄
MNP − 1

3
δ33̄2,44̄2
{MN}P

)
−

− 1√
3

(
δ22̄T,33̄T,44̄T
{MN}P +

2

3
δTTT
MNP + 2δTT T̄

MNP − 1

2
δ22T
MNP − 1

2
δ22T̄
MNP + δ33T,44T

MNP + δ33T̄ ,44T̄
MNP

)
+

+
1

2(πUB)1/2

[
5

2
δTT2
MNP + 2δTT 2̄

MNP + 2δT T̄ 2
{MN}P

]
+ c.c. + perm(M,N)↔P

}
.

(B.46)

After taking perm(M,N)↔P into account we read off that e.g. K222 = 2
√

πUB
3MPl

. Remembering

that the shift is only in the direction of the volume modulus, we can immediately estimate

the size of the contributions to the mass matrix from equation (B.10). Recall from equations

(B.29), (B.30) that KMN is no larger than O(1) and that KM is no larger than O(1). With

one index being canonically normalized T or T̄ , equation (B.46) gives that KMNP is no

larger than O(1). All together, ∂3Vup is no larger than O( |VF |
M3

Pl
), but the shift in the real

part of the Kähler modulus scales like δXT ∼ MPl
(aU)2

. The contribution to the mass matrix

from the uplift potential will therefore scale like δXT ∂3VupZ0 ∼ |VF |
M2

Pl

1
(aU)2

. The smallest

non-vanishing entry in ∂2VtotZ0 ∼ 1, so we conclude that the first-order correction from

the uplift potential will come in at a subleading order in 1/(aU) and can consistently

be dropped. By direct evaluation we find that δm2
33̄

= δB33, which means that the flat

directions are not lifted by the uplift potential.

The first-order correction from the F-term potential is more tedious to obtain, but

follows from straightforward evaluation of equation (B.4) and the corresponding equation

for all holomorphic indices. These terms also do not contribute before order 1/aU .

Finally, the magnitude of the F-terms for the canonically normalized fields can be

found to linear order by contracting equation (B.31) with the shift (B.38).

B.5 A bound on B

Requiring that both the D3-brane and D7-brane are located in the warped region gives a

bound on B. Since we are considering only solutions in which the D3-brane lies deeper
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down in the throat than the D7-brane, B is bounded from below: B > 1. The upper bound

comes from considering the arguments in [29] and [34], in which a bound on k is obtained

in terms of N , the number of D3-branes that make up the throat before we add our toy

visible sector:

γk

T + T̄
≤ 2

3

1

N
. (B.47)

For the D7-brane to extend down the throat, the bound (B.47) should apply if evaluated

at the point of lowest descent of the D7-brane into the throat. We have γkD7 = 3
4πB1/3,

which follows from direct evaluation of B. It follows that

B ≤
(

8π

9

)3(T + T̄

N

)3

. (B.48)

In this case U = T + T̄ − γkD7 = T + T̄ − 3
4π B1/3. If 43U3 ≫ B, then the above bound

can be written as

B ≤ L3 . (B.49)

Together these bounds imply that 1 < B ≤ L3. In particular, a consistent solution requires

that L > 1, from which it follows that

L =
8π

9

U

N
≈ 2.79

U

N
> 1 . (B.50)
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