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1 Introduction

Recently, a holographic duality for superconformal Chern-Simons-Matter theories in 2+1

dimensions with N = 6 and N = 8 supersymmetry was proposed [1, 2]. These field

theories have U(N)k ×U(N + l)−k product gauge symmetry (where the subscripts refer to

the Chern-Simons level associated with each gauge group) and bifundamental matter fields.

In the large N limit, the field theory has a dual gravity description in terms of M-theory

as N M2-branes on the orbifold C4/Zk (where the orbifold acts by rotating each of the

complex planes by an angle 2π/k simultaneously) and l fractional branes. The supergravity

solution corresponding to this brane system is AdS4 × S7/Zk, and the quantum number l

is encoded in the discrete torsion of the H3(Z) = Zk homology group of S7/Zk.

The M-theory background can also be described in type IIA supergravity by dimen-

sionally reducing along the Hopf-fiber of S7/Zk. In this description, the geometry has the

form AdS4 ×CP 3 and is the effective description when 1 ≪ N ≪ k5. Homologically, CP 3

is very different from S7/Zk, particularly in that CP 3 has no discrete torsion cycles, but

it does possess integral homology. Even for this simple example, the relationship of the

spectrum of charges and fluxes in the M-theory and the type IIA descriptions is subtle.
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One way to gain some perspective on the physical meaning of the defining data of the

gravity side of these correspondences is to realize the superconformal field theory as either

the UV or IR fixed point of a holographic renormalization group flow. For example, a

superconformal Chern-Simons theory can arise as the IR fixed point of an RG flow from a

Chern-Simons-Yang-Mills-Matter theory [3, 4]. Several related realizations have also been

considered [5]. These renormalization group flows are dual to transverse geometries which

differ from R8, and many of these constructions have the interesting property that the

dual geometry admits a normalizable 4-form. In M-theory, this allows one to introduce a

nontrivial 4-form flux. The freedom of tuning the 4-form flux has a specific interpretation

in terms of tuning the parameters of the dual field theory, and in some examples, one can

explore dynamical features such as phase transitions in the low energy effective field theory

from the geometry of the supergravity dual [4, 5].

In this article, we investigate the duality of N = 2 Chern-Simons quiver theories

dual to AdS4 × V5,2/Zk where V5,2 is a homogeneous Sasaki-Einstein seven-manifold. This

duality was originally considered by Martelli and Sparks in [6]. On the field theory side, it

generalizes the model of ABJM by adding a chiral multiplet in the adjoint representation

to each factor of the U(N)k ×U(N+ l)−k gauge group. The gravity dual description can be

deformed in the IR, giving rise to a geometry known as the warped Stenzel metric. At the

moment, little is known about the field theory interpretation of this IR deformation. In

order to facilitate its interpretation, it is useful to enumerate the discrete and continuous

parameters associated with this system. This is related to the problem of quantizing charges

and fluxes in the gravity dual.

In type IIA (and IIB) supergravity, there is a well-known subtlety in imposing charge

quantization, which arises in the example studied in this paper. The V5,2/Zk geometry,

reduced to IIA along the U(1) isometry along which the Zk acts, is a space M2 which

has the same homology structure as CP 3 [6]; in particular there is a nontrivial 4-cycle.

Now, one might want to quantize the four-form flux through this cycle, but the natural

gauge-invariant four-form

F̃4 = dA3 +H3 ∧A1 (1.1)

is not closed, and therefore its integral through the 4-cycle is not conserved and cannot be

quantized. A similar issue arises in the flux of ∗F̃4 through M2. These apparent difficulties

have also appeared in earlier examples considered in [4, 5] and their resolution is well

understood. The four-form flux satisfies a modified Bianchi identity,

dF̃4 = −H3 ∧ F2 (1.2)

so to define a conserved charge we should not integrate F̃4 but a modified flux which is

chosen to be closed:

QPage
4

=
1

(2πls)3gs

∫

(−F̃4 −B ∧ F2) . (1.3)

This new charge, known as the Page charge, is one of the three subtle notion of charges

identified by Marolf [7]. The three charges being referred here are the Maxwell charge,

brane charge, and the Page charge, and they can take distinct values in gauge theories
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involving Chern-Simons terms as is the case for type IIA supergravity. Each of these

charges respects some, but not all, of the properties commonly associated with charges

in simpler contexts: gauge invariance, conservation, localization, and integer quantization.

Page charge turns out to respect conservation, localization, and integer quantization, but

fails to be invariant with respect to large gauge transformations which shift the period of

B2. This ambiguity is precisely what is required to interpret the Hanany-Witten brane

creation effects in the brane construction of these models and is intimately connected to

the duality of the field theory.

In this article, we will analyze the quantization of fluxes in AdS4 × V5,2/Zk geometry

and its Stenzel deformation from the type IIA perspective, and relate the gauge ambiguity

to Hanany-Witten brane creation effects along the lines of [4, 5]. In [6], it was argued that

the Stenzel deformation is incompatible with the presence of discrete torsion which gives

rise to a non-vanishing value of l in U(N)k × U(N + l)−k. On the contrary, we find that

some values of l are allowed, and explain the source of this apparent discrepancy. We will

also examine the compatibility of the IIA and the M-theory perspectives.

2 Stiefel, Stenzel, and the N = 2 Chern-Simons-Quiver theory

In this section, we briefly review the construction of N = 2 Chern-Simons-Quiver theory,

its gravity dual, and its Stenzel deformation. We closely follow the presentation of [6].

2.1 Stiefel cone

The starting point is a non-compact Calabi-Yau 4-fold

zn
0 + z2

1 + z2
2 + z2

3 + z2
4 = 0 (2.1)

where we take n = 2. This geometry is a cone whose base is a Sasaki-Einstein seven

manifold V5,2, also known as the Stiefel manifold. Had one taken n = 1, the geometry of

the Calabi-Yau 4-fold would have been R8 which is formally a cone over S7. For n > 2,

the geometry is not a cone over a Sasaki-Einstein manifold [6].

When M2 branes are placed at the tip of the cone, we obtain a warped geometry

AdS4 × V5,2. The base Y2 = V5,2 has a torsion 3-cycle H3(Y2, Z) = Z2.

The Zk orbifold is taken on the U(1)b isometry which rotates

(z0, z1 + z2, z3 + z4, z1 − z2, z3 − z4) (2.2)

with weights (0, 1, 1,−1,−1). On Y2/Zk, this changes the torsion group from Z2 to

H3(Y2/Zk, Z) = Z2k, so
1

(2πlp)3

∫

Σ3

C3 =
l − k

2k
(2.3)

for Σ3 which generates H3(Y2/Zk). Here we have shifted l by k compared to what is written

in (3.26) of [6]. Both l and k are integers so this shift is a matter of convention in describing

the supergravity background.
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When reduced to IIA along the U(1)b direction parametrized by γ, the Sasaki-Einstein

space Y2/Zk decomposes into

ds2(Y2/Zk) = ds2(M2) +
w

k2
(dγ + kP )2 (2.4)

and the IIA string frame metric becomes

ds2 =
√
w
R3

k

(

1

4
ds2(AdS4) + ds2(M2)

2

)

(2.5)

with

F2 = kgslsΩ2, Ω2 = dP . (2.6)

Since

C3 = A3 +B2 ∧ dγ (2.7)

with this dimensional reduction, B2 turns out to have the period

1

(2πls)2

∫

B2 =
l

2k
− 1

2
. (2.8)

2.2 Brane construction and the Hanany-Witten effect

The field theory dual is conjectured in [6] to arise from the low energy limit of a network

of D3-branes, an NS5-brane and a (1, k) 5-brane in type IIB on R1,2 × S1 ×R2 ×C2. The

D3-branes wind along R1,2 × S1. The NS5 is extended along R1,2, one of the R in R2 and

along the curve w1 = −iw2
0 where C2 is parametrized by (w0, w1). The (1, k) 5-brane is

extended along R1,2, a line at an angle relative to the NS5-brane in R2, and along w1 = iw2
0

in C2. There may also be fractional D3-branes stretching between the NS5 and the (1, k)

5-brane at (w0, w1) = (0, 0).

In a brane configuration of this type, the Hanany-Witten brane creation effect occurs

when one of the 5-branes are moved around the circle S1 keeping the other 5-brane fixed. If

there were N integer and l fractional branes to start with, moving the 5-brane once around

the circle will give rise to a shift

N → N + l

l → l + 2k . (2.9)

2.3 Stenzel deformation

In this subsection, we will briefly review the IR deformation of the Stiefel cone. As an

algebraic curve, it amounts to deforming (2.1) to

z2
0 + z2

1 + z2
2 + z2

3 + z2
4 = ǫ2 . (2.10)

The tip of the cone is blown up by an S4 parametrized by

4
∑

i=0

(Rezi)
2 = ǫ2, Imzi = 0 (2.11)
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and the full geometry can be viewed as the cotangent bundle over S4. This geometry is

also known as the Stenzel geometry [8] and admits an explicit metric [9]. In the notation

adopted in [10], the metric takes the form

ds2 = c2(dr2 + ν2) + a2

3
∑

i=1

σ2
i + b2

3
∑

i=1

σ̃2
i (2.12)

where

a2(r) = 3−1/4λ2ǫ3/2(2 + cosh 2r)1/4 cosh r,

b2(r) = 3−1/4λ2ǫ3/2(2 + cosh 2r)1/4 sinh r tanh r

c2(r) = 33/4λ2ǫ3/2(2 + cosh 2r)−3/4 cosh3 r (2.13)

and ν, σi, and σ̃i are left-invariant one-forms of the coset SO(5)/SO(3) (for which a nice

explicit basis appears in [10].)

At r = 0, the geometry collapses to an S4. At large r, the geometry asymptotes to

a cone over V5,2. Formally, this geometry is similar to the deformed B8 space [11] which

collapses to an S4 near the tip, and asymptotes to cone over a squashed 7-sphere, but

there are a few important differences. One is the fact the Zk orbifold along the U(1)b of

the Stenzel geometry has fixed points at antipodal points of S4 at r = 0. We will comment

on other differences below.

One important feature of the Stenzel geometry is that it admits a self-dual 4-form

which can be written, explicitly, as

G4 = m

{

3

ǫ3 coth4 r
2

[

a3cν ∧ σ1 ∧ σ2 ∧ σ3 +
1

2
b3cdr ∧ σ̃1 ∧ σ̃2 ∧ σ̃3

]

+
1

2ǫ3 coth4 r
2

[

1

2
a2bcǫijkdr ∧ σi ∧ σj ∧ σ̃k + ab2cǫijkν ∧ σi ∧ σ̃j ∧ σ̃k

]

}

. (2.14)

Because the four-form is self-dual, and the background geometry is Calabi-Yau, one can

turn on this flux in eleven-dimensional supergravity without breaking supersymmetry [12].

Moreover, it gives rise to a solution where the background geometry is unmodified except

for the presence of a warp factor H, as in the standard warped product ansatz

ds2 = H−2/3(−dt2 + dx2
1 + dx2

2) +H1/3ds28
F4 = dt ∧ dx1 ∧ dx2 ∧ dH̃−1 +mG4 . (2.15)

The warp factor itself can be determined by solving the four-form field equation,

d ∗G =
1

2
G ∧G , (2.16)

where in general there can be additional source terms due to the presence of explicit M2-

branes.
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3 Quantization of fluxes in Stiefel cones and Stenzel space

Let us now consider the quantization of fluxes in the warped Stiefel cones and Stenzel

geometries in order to identify the discrete parameters characterizing the background.

There are two guiding principles which we follow in carrying out the quantization. One

is that quantized fluxes should be invariant under deformation of Gaussian surfaces unless

the discrete unit of charge crosses the surface. The other is for the quantization condition

to be invariant under string dualities.

3.1 Review of Maxwell, brane, and Page charges

We begin by considering the quantization of fluxes for the Stenzel geometry in the IIA

description. While the IIA description of the Stenzel geometry is singular near the core,

one still expects Gauss law considerations to lead to a consistent picture far away from the

core region, where the geometry looks essentially like the warped Stiefel cone.

The relevant fluxes to consider then are the flux of F̃4 through the generator of

H4(M2, Z) and the flux of ∗F̃4 through the six cycle M2. As we mentioned earlier, however,

these fluxes depend on the radius r at which we identify the base M2 for the background

in consideration.

The resolution to these apparent difficulties is the realization that one is dealing with

a situation where the Maxwell, brane, and Page charge are distinct from one another, and

that care is required in applying quantization conditions on the appropriate charge.

Let us recall the specific definition of three charges. In type IIA supergravity, the four

form F̃4 = dA3 +H3 ∧ A1 is gauge invariant and well defined but is not closed and does

not respect Gauss’ law. One can nonetheless compute the period of F̃4 on the generator of

H4(M2, Z) in the r → ∞ limit. This defines the Maxwell charge. In contrast, the period

of Page flux −(F̃4 + B2 ∧ F2) on H4(M2, Z) is independent of r, although it is ambiguous

with respect to large gauge transformation of B2. This quantity defines the Page charge.

Finally, the amount of charge carried by a brane source through its Wess-Zumino couplings

defines the brane charge. Brane charge includes the contribution of lower-brane charges

from the pull-back of the NSNS 2-form in the Wess-Zumino coupling. Therefore, if the

background contains a non-uniform NSNS 2-form B2, the brane charge is not conserved

with respect to changes in the position of the branes. Some of these subtleties appeared

originally in [13].

The triplet of charges exists for the other forms, e.g. the six form F6 = ∗F̃4 and are

summarized in appendix B of [4]. For the flux of F6 = ∗F4, is is also useful to introduce

the notion of bulk charge Qbulk which is the total charges carried by the bulk fields

Qbulk
2 =

∫

Y2

1

2
G4 ∧G4 . (3.1)

Then, the bulk charge can be understood as being related to the brane and Maxwell

charges via

QMaxwell
2 = Qbrane

2 +Qbulk
2 . (3.2)

To correctly quantize the supergravity solution, one should impose the discreteness condi-

tion on the Page charges, and not on Maxwell, brane, or bulk charges.
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3.2 Quantization on the Stiefel cone

To illustrate the integrality of Page charges and the non-integrality of the other charges,

let us first carryout the quantization procedure for the Stiefel cone.

First, consider the flux of F̃4. The Stiefel geometry has vanishing fourth Betti number,

so there is no G4 to consider in M-theory, and after dimensional reduction, the IIA flux

F̃4 also vanishes. We are not done yet, however, because we still have to consider the

Page flux (1.3), which contains a term B2 ∧ F2, and F2 is nonvanishing in the dimensional

reduction of the orbifolded Stiefel cone. Requiring the Page flux to be integer quantized

imposes the quantization condition

∫

B2 = − l

2k
+

1

2
(3.3)

which we inferred independently from M-theory considerations earlier in section 2.1.

Next, we consider the quantization of flux of D2 charge through M2. We are interested

in determining the Maxwell charge when the Page charge is set to N . One finds

QMaxwell
2 = N − l(l − 2k)

4k
(3.4)

which can essentially be viewed as the sum of a contribution from N M2-branes and

a contribution from the discrete torsion, along the lines of [14]. The Maxwell charge

QMaxwell
2 has several notable features. First, it is not necessarily integer valued. Second,

it is invariant under

N → N + l, l → l + 2k . (3.5)

This is consistent with the property of Maxwell charge that it is conserved under continuous

deformations corresponding to moving one of the 5-branes around the S1 in the type

IIB brane construction. Finally, QMaxwell
2

can go to zero or negative for some range of

(N, l, k). This suggests that the entropy of the superconformal field theory is going to zero

or negative, signaling a phase transition. The condition that QMaxwell
2 is positive is also

related to the condition necessary for supersymmetry to be unbroken as was highlighted

in related contexts in [4, 5].

3.3 Quantization in the Stenzel geometry

Let us now extend our analysis of flux quantization to the case where the Stiefel cone is

deformed into the Stenzel geometry, as described in section 2.3. To keep a general set of

charges under consideration, we will study the case where the Stenzel manifold has been

quotiented by a Zk orbifold action.

The most important feature of the geometry in the deep IR is its singularity structure

after the orbifold has been taken. At the tip of the deformed orbifolded cone, the geometry

has the local structure (R4×S4)/Zk, and in particular it has two fixed points which we can

think of as the north and south poles of the S4/Zk. At each of the fixed points, the local

geometry is R8/Zk [6]. This geometric feature has a nice implication. The supersymmetry

of the deformed Stenzel cone is consistent with adding some mobile M2-branes, and we are

– 7 –



J
H
E
P
0
6
(
2
0
1
1
)
1
2
4

free to move some number of them to either of the orbifold fixed points. Then the theory

on the M2-branes in the deep IR should simply be two copies of the ABJM theory.

At any finite excitation energy the theory should feel the effects of curvature and the

self-dual four-form flux in the background which break the supersymmetry from N = 6

to N = 2. However, for issues such as charge quantization, we should be able to work in

the extreme low energy limit and use our intuition from the ABJM case. In particular one

might expect that it is possible to turn on discrete torsion at each singularity, and we will

see that this is correct, although the torsion will be subject to some global constraints.

First we will consider the type IIA reduction of this geometry. This geometry develops a

dilaton and curvature singularity near the tip. However, because the geometry asymptotes

to the Stiefel cone away from the tip, and because quantization of Page fluxes in type

IIA description appropriately respects Gauss law/localization of charge sources, we are

able to partially constrain the discrete parameters of the supergravity ansatz. We will

then continue to consider the geometry and fluxes near the core region from the M-theory

perspective, and identify additional constraints which further restrict the parameters of

the ansatz.

The Stenzel manifold admits the self-dual four form flux (2.14) which can be derived

from a three-form potential C3 [10]

C3 = mβ + αΩ2 ∧ dγ (3.6)

β =
ac

ǫ3 cosh4 r
2

[

(2a2 + b2)σ̃1 ∧ σ̃2 ∧ σ̃3 +
a2

2
ǫijkσi ∧ σj ∧ σ̃k

]

, (3.7)

where Ω2 and γ are as defined in [6].1 Here we have added an exact term proportional to

α, which does not affect the gauge invariant four-form flux. This exact term is present in

the AdS4 × V5,2/Zk system with discrete torsion [6] which is the UV limit of the Stenzel

solution.

In quantizing the flux of the type IIA Page flux through the four cycle of M2, we

impose the condition (see appendix A)

∫

S4

G4 + nk

∫

S̃3/Zk

C3 = (2π)nα = −(2πlp)
3(l − k), n = 2 (3.8)

which constrains α. Note that in the asymptotically conical limit, the torsion is Z2k-valued,

and so l takes integer values in the range 0 ≤ l ≤ 2k − 1.

In addition to this, the flux of G4 through S4/Zk is independently quantized to be

integral. This implies
∫

S4/Zk

G4 =
8π2

3
√

3k
m = (2πlp)

3q (3.9)

for integer q. This constraint has no counterpart in the Stiefel cone as neither the S4 cycle

nor the self-dual 4-form exist in that case.

1For the interested reader, γ is the angular coordinate which is quotiented by the orbifold action, and

Ω2 is proportional to the geometric flux associated with γ.
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Now let us consider the quantization conditions that arise from considering M-theory

near the orbifold fixed points; we will show that the expected charges at the singularities

are compatible with the IIA calculations. At the north pole of S4/Zk, the pull-back of G4

on the R4/Zk fiber was computed in [6]:

1

(2πlp)3

∫

R4/Zk

G4 =
q

2
≡ M̃

2
= M (3.10)

where M and M̃ are the variables used in [6]. This means that the integral of C3 (including

both the nontrivial flux and the discrete torsion contribution) on S3/Zk at the north pole is

1

(2πlp)3

∫

S̃3/Zk

C3 = − l

2k
+

1

2
− q

2
. (3.11)

Suppose that at the north pole we impose the condition that the system is described

by charges as in the ABJ case with lN units of discrete torsion (including a shift by 1/2 a

unit as discussed in [4].) This is compatible with (3.11) provided that

− lN

k
+

1

2
= − l

2k
+

1

2
− q

2
(3.12)

or equivalently

lN =
l + kq

2
. (3.13)

At the south pole, the computation is very similar, except that the flux quantum q

appears with a minus sign:

lS =
l − kq

2
(3.14)

The difference in the pull-back of C3 between the north and the south pole is just the total

flux q, while the discrete torsion contribution must be the same at the north and south

poles because the torsion has no associated flux.2

How should we interpret the formulas (3.13) and (3.14)? The first thing to note is

that lN and lS are equal mod k, so if they had described decoupled systems we would have

said that they were equivalent up to a large gauge transformation. However, they are not

decoupled, and there is no large gauge transformation that sets them equal to each other.

Instead, the picture that has emerged is that lN and lS locally appear to describe the same

torsion, but globally there is a topologically nontrivial twist relating them, and the winding

number of the twist is just the number of units of G4 flux in S4/Zk.

The second thing to note is that in the local ABJ models at the north and south poles,

lN and lS should themselves be integers, or in other words l−kq must be even. This means

that for a given q and k, l must take either only even or only odd values. In the undeformed

theory, l described a Z2k-valued discrete torsion, but we see that our local considerations

2In the coordinates of [10, 15], the U(1)b quotient as defined in [6] is imposed on the angular coordinate

φ2. With this choice of U(1) action, the poles of the S4/Zk are located at (τ = 0, α = π/2, ψ = 0, π).

In the vicinity of the poles, one can check that the one-forms σ̃i differ by a sign, σ̃i(N) = −σ̃i(S), so the

three-form β in (3.7) also changes by a sign from the north pole to the south pole.
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at the tip of the Stenzel geometry remove half of the possible values of l, and the discrete

torsion in the deformed case is Zk-valued. This phenomenon is reminiscent of the deformed

conifold; the “singular” conifold admits a Z2-valued discrete torsion which is not present

in the deformed conifold [16].

We can now examine the quantization of the six form flux though M2 in IIA or the

7-form flux through V5,2 in M-theory which measures the charge of D2/M2 branes in this

background.

One way to approach this issue is to first examine the brane charges present in this

setup. Before adding any explicit 2-branes, there are 2-brane charges arising from the

discrete torsion at the Zk fixed points at north and south poles [14]. These should have

the same form as what was computed in [4], so we find

Qtorsion
2 =

(

− l
N

k
+

1

2

)

+

(

− l
S

k
+

1

2

)

= − l(l − 2k)

4k
− kq2

4
. (3.15)

If, in addition, we were to introduce N 2-branes which can be at any point in the Stenzel

geometry, there will be an additional contribution of N to the brane charge

Qbrane
2 = N − l(l − 2k)

4k
− kq2

4
. (3.16)

Since Maxwell charge is the sum of brane charge, and since the bulk charge is given by

Qbulk
2 =

1

(2πlp)6

∫

M8

1

2
G ∧G =

211m2vol(V5,2)

(2πlp)636
=
kq2

4
(3.17)

we infer that

QMaxwell
2 = N − l(l − 2k)

4k
. (3.18)

It also follows that the Page charge QPage
2

= N .

This result is gratifying for several reasons. First, this result reflects the accounting of

all identifiable charge sources in an otherwise consistent and smooth M-theory background

aside from the orbifold fixed point. The final answer is the same as what we inferred for

the undeformed Stiefel cone (3.4). It then follows that the gauge invariant Maxwell charge

is invariant under the shifts

N → N + l, l → l + 2k (3.19)

which arises naturally from several perspectives mentioned earlier.

The only additional constraint imposed by the Stenzel deformation is the restriction

on the parity of l so that l is congruent to kq mod 2. This is far milder than what was

found in [6].

4 Discussion

In this article, we reviewed the quantization of fluxes in warped Stiefel cone and its Stenzel

deformation which is conjectured to be the holographic dual of N = 2 Chern-Simons matter
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(a) (b) (c)

Figure 1. Potential V (ψ) for p anti D3-brane blowing up to an NS5-brane wrapping an S2 of fixed

latitude in ψ in S3 at the tip of the Klebanov-Strassler solution. (a), (b), and (c) corresponds to

p/M = 0.03, p/M = 0.08, and p/M = −0.03, respectively. These figures originally appeared in

figure 2 of [17].

theory in 2+1 dimensions. We described the subtle difference between several different

yet related notions of charges, and recovered a structure compatible with the pattern of

Hanany-Witten brane creation effects and duality cascades.

There are a number of interesting features which one can infer from the structure of

the gravity solution. Qbrane
2

is a measure of the number of degrees of freedom in the deep

infrared of this system. When Qbrane
2

is zero or negative, we expect the system to break

supersymmetry and flow to a different universality class of vacuum as was the case for

many related system [4, 5]. It would be very interesting to better understand the nature of

the effective low energy physics when the system is in this new phase. This question can

be addressed in the simple context of k = 1 where there are no Zk orbifold fixed points,

and by taking q to be even, we can even set l = 0 and disregard the contribution from the

discrete torsion.

One way to probe the fate of pushing the system which is slightly perturbed into this

new phase is to start with a background with q large but Qbrane
2 = 0 (which can easily be

arranged for q even and k = 1). Consider now adding p≪ q anti M2-brane as a probe. This

setup is very similar to adding anti D3-brane in warped deformed conifolds [17] which has

received a lot of attention (and controversy) as a possible prototype as a gravity dual of a

metastable vacua [18–20]. For the Stenzel manifold, the effective action of the brane probe

undergoing a KPV-like transition [17] works essentially in the same way as is illustrated in

figure 1. However, from the point of view of the bound Qbrane
2 > 0, one expects the stable

supersymmetric minima not to exist when p anti M2-branes are introduced.

Tentatively, we interpret these facts as follows. The computation of the potential

V (ψ) neglected the backreaction of the anti-branes, and when the number of anti-branes is

parametrically small (p≪ q) this probe approximation is valid. In particular, the existence

of the non-BPS local minimum in 1.(a) is a robust prediction in this limit. However, when

the state in the metastable false vacuum illustrated in figure 1.(a) tunnels to the putative

“true” vacuum, the amount of charge carried by the probe grows to q − p which is not

parametrically small compared to q. The backreaction due to this charge can be significant,

and so the computation of the tunneling potential is (at least) not obviously self-consistent.

It is tempting to speculate that the supersymmetric vacuum might actually be spurious and
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that the non-BPS local minimum is the global minimum which characterizes the dynamics

in the Qbrane
2

< 0 phase of these theories up to corrections suppressed by p/q.

Similar considerations apply to the BPS domain wall one constructs for p < 0 for which

the KPV potential has the form illustrated in figure 1.(c). This domain wall can also be

viewed as arising from wrapping an M5-brane on S4 at the tip of the Stenzel manifold. A

5-brane wrapped on a 4-cycle is effectively a string, and in 2+1 dimensions, a string forms

a domain wall. It would be very interesting to understand the nature of vacua separated

by these domain walls. Since M5-brane wrapped on S4 with q units of flux must have q

additional M2-branes ending on it to cancel the anomaly, some quantum numbers of the

vacuum must shift to reflect this. Nonetheless, one expects the Maxwell charges QMaxwell
2

and QMaxwell
4

to be invariant as one crosses the domain wall, as these charges are conserved.

Making complete sense of these expectations requires taking the full back reaction of the

M5-brane and the q anomalous M2-branes into account. Unfortunately, q M2-branes can

not be treated reliably as a probe, making systematic analysis of these issues a challenge.

Let us also mention that similar issues of stable/metastable non-BPS vacua, domain

wall, and low energy effective field theories can be discussed in the closely related B8 system

building on the analysis of [5] and [21]. Quantization of charges and the enumeration of

brane, Maxwell, and Page charges for this system was carried out in [5]. Here, however, we

encounter one additional puzzle. It was argued in [21] that the 4-form flux through S4 at

the tip of the B8 cone is half integral as a result of the shift originally due to Witten [22].

This would appear to require half integer units of M2-branes to end on the domain wall

made by wrapping the M5 on the S4. Of course, the number of M2’s ending on an M5 is

constrained to be an integer. Perhaps this is indicating that odd number of M5-branes are

forbidden from wrapping the S4. Alternatively, this paradox is another manifestation of

not systematically taking the back reaction of the domain wall into account.

Finally, let us emphasize that for the time being, the concrete field theory interpretation

of the Stenzel deformation and the quantum number q is not known. The gravity dual

suggests that the parameter q is important for both the IR and the UV physics. At

large radius, q is related to the total number of units of M2-brane charge generated by

the cascade, which in turn affects the UV gauge symmetry. Near the tip of the Stenzel

geometry, the G4 flux is nonvanishing so q should also appear in the data of the IR field

theory. Of course, q can only be nonzero when the geometry is deformed. Martelli and

Sparks conjectured that this deformation was related to turning on a particular mass term

on the field theory side. One can indeed see that the null geodesic can travel from boundary

at infinity to the core in finite field theory time, and so the spectrum of glueball-like states

will exhibit a discrete structure whose scale is set by the deformation. If this conjecture

is correct, it would suggest that the field theory confines because of a mass deformation

(reminiscent of the N = 1∗ theory in d = 4 [23] and the mass deformed ABJM theory [24–

27]) rather than as a dynamical effect, as is the case in the Klebanov-Strassler system [28].

It should be very interesting to understand this theory better.
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A Charge quantization and duality transformations

One of the subtle features arising in quantizing the supergravity background in this article

is the fact that some fluxes lifts or dualizes to a quantity encoded not by the period of a

field strength, but by a quantity like the discrete torsion which is the period of a potential

field. In this appendix, we illustrate several examples, in a simpler context, giving rise to

similar subtleties.

A.1 Charge quantization for duals of TN × S1

The KK-monopole, also known as the Taub-NUT space, is a well known Ricci-flat gravi-

tational background. The metric for TN × S1 has a simple form

(

1 +
R1

2r

)

(dr2 + r2(dθ2 + sin2 θdφ2)) +
R2

1
(

1 + R1

2r

)

(

dψ +
1

2
cos θdφ

)2

+R2
2dη

2 . (A.1)

We take φ, ψ, and η to have period 2π, and 0 ≤ θ ≤ π. R1 and R2 are the radius of S1

parametrized by ψ and η, respectively.

Being Ricci flat, this metric can easily be embedded in M-theory. Reducing to IIA

along η will give rise to a KK5-brane in type IIA string theory. Reducing to IIA along ψ

will give rise to a D6 brane extended along η.

Consider a general linear transformation on the coordinates ψ and η

η = aη′ + bψ′, ψ = cη′ + dψ′ . (A.2)

This will modify the last two terms of (A.1) to

R2
1
R2

2

(c2R2
1
+ a2R2

2
V )

(

(ad− bc)dψ′ − a

2
cos θdφ

)2

+

(

a2R2
2 +

c2R2
1

V

)

(

dη′ +A1

)2
(A.3)

with

A1 =

(

cR2
1

a(c2R2
1

+ a2R2
2
V )

+
1

(ad− bc)

b

a

)

(

(ad− bc)dψ′ +
a

2
cos θdφ

)

− 1

(ad− bc)

b

2
cos θdφ .

(A.4)

At the level of classical supergravity, this is a solution generating transformation, but

not all of the solutions obtained in this fashion are sensible backgrounds of string theory.

Rather, there is a certain discrete subset of these solutions which is consistent with charge

quantization.
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A.2 Twisted Zp orbifold

One example of such a discrete subset is to take
(

a b

c d

)

=

(

1 q/p

0 1/p

)

(A.5)

and impose the periodicity η′ = η′ + 2π and ψ′ = ψ′ + 2π. This can be viewed as a twisted

Zp orbifold of TN × S1 as outlined in (3.4) of [29]. When reducing to IIA, one finds a RR

1-form potential

A1 =

(

q

p
dψ′ +

q

2
cos θdφ

)

− q

2
cos θdφ =

q

p
dψ′ . (A.6)

Upon further T-dualizing this background along the ψ′ direction, we obtain a supergravity

solution for a (p, q) 5-brane3 smeared along the ψ′ direction. This can easily be seen from

the RR 2-form potential

A2 = −q
2

cos θdφ ∧ dψ̃′ (A.7)

and the NSNS 2-form potential

B2 = −p
2

cos θdφ ∧ dψ̃′ (A.8)

which one finds from the duality transformation. The 3-form field strength is closed and

naturally encodes the flux through S2 × S1 parametrized by θ, φ, and ψ̃′ for arbitrary r.

The issue stems from attempting to understand the q units of D6 charge from the IIA

description prior to taking the T-duality along the ψ′ direction. One expects the D6 charge

to be encoded by the flux of the RR 2 form field strength

F2 = dA1 (A.9)

but this vanishes for the background (A.6) under consideration. For this example, the

hint for where the quantum number of the D5 charge is encoded in the IIA description is

staring at our face in equation (A.6). It is the fractionally valued vector potential arising

as a result of the non-trivial twist, q, in the Zp. This may be thought of as the simplest

example illustrating the point that charge is sometimes encoded in the period of a potential,

i.e. a Wilson line, rather than the field strength.

A.3 SL(2, Z) dual of TN × S1

Let us now consider a different example, where we take the SL(2, Z) subset of the general

linear transformation (A.2). In this case, we have ad− bc = 1, simplifying (A.4) to

A1 =

(

cR2
1

a(c2R2
1
+ a2R2

2
V )

+
b

a

)

(

dψ′ +
a

2
cos θdφ

)

− b

2
cos θdφ . (A.10)

Once again, T-dualizing on ψ′ will give rise to a RR 2-form

A2 = − b
2

cos θdφ ∧ dψ̃′ . (A.11)

3The p and q are switched from what is in [29] so that p counts the number of NS5-brane and q counts

the number of D5-brane in the dual IIB description.
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In fact, if we take a = p and b = q, the IIB 5-brane charges are identical to the example

in the previous section although the background differs in the asymptotic value of the

axiodilaton.

The puzzle, once again, is the status of the D6 charge in the IIA frame. This time,

the RR 2-form field strength does not vanish, so one might try to define a D6-brane charge

by integrating F2 over a suitable 2-cycle. However, no such nonsingular 2-cycle exists.

For example, integrating on the natural S2 parametrized by θ, φ would give a charge that

depends on the radius r. This apparent failure of the Gauss law can be traced to this S2

not actually being a well-defined 2-cycle.

Notice that in the ordinary IIA reduction of (A.1) on the circle parametrized by ψ,

the procedure of integrating F2 on the S2 at fixed radius is the correct one for counting

the number of D6 branes. On the other hand, for the IIA reduction on η (or in M-theory)

the integrality of the D6 brane charge follows from demanding that the KK5 metric does

not have a singularity. In a generic duality frame, such as the one given by reduction on

ψ′, neither condition is correct.

Instead, one might try to define a modified flux quantization condition that mixes the

flux and geometry in such a way as to obtain a conserved charge. This can be done by

considering the combination

QD6 =
1

2π

(
∫

S2

F2 +
a

ad− bc

∫

S1

A1

)

=
b

ad− bc
(A.12)

where S2 is the 2-sphere parametrized by (θ, φ), and S1 is the circle parametrized by ψ′.

Note that this reduces to the same prescription as in the previous subsection if F2 happens

to vanish. In fact, one could have also considered applying the prescription of reading off

the period of A1 precisely at the radius r = 0 where F2 would have vanished.

Formally, this procedure is equivalent to considering

Q6 =
1

2π

∫

S2

(F2 + f ∧A1) (A.13)

discussed briefly in appendix A of [4] based on the language of [30–33]. Although the

procedure of computing the period of this “modified” flux will give the correct answer, it is

somewhat unsettling that the procedure is not generally covariant. The aim of this article

is to identify the origin of this charge from discrete data of the potential.

A.4 Quantization of gravity duals of field theories in 2+1 dimensions

Let us now examine the quantization of fluxes in gravity duals of various 2+1 dimensional

field theories and compare their features with the example of the previous section.

We will begin by reviewing the case of ABJM and ABJ for which the gravity theory is

M-theory on AdS4×S7/Zk [1, 2]. The transverse S7/Zk has a torsion 3-cycle on which one

can wrap l M5-branes in the range 0 ≤ l < k. These M5-branes will not source M-theory

4-form flux. Instead, they give rise to discrete torsion parametrized by a flat C3 in the

background, supported on the S3/Zk. This is quite similar to the case of the one form
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potential (A.6) in the case of twisted Zp orbifold of TN × S1 we described in section A.2

and A.3. There are two refinements to this story.

One is that the quantization condition for the discrete torsion has an anomalous shift

due to the Freed-Witten anomaly, and reads

k

∫

S3/Zk

C3 = l − k

2
. (A.14)

The presence of Freed-Witten anomaly was inferred in the IIA description of this back-

ground in [4]. At the moment, it is not clear how one understands this shift strictly in the

M-theory perspective, but since it is required in the IIA reduction, we will adopt it in the M-

theory lift as well. One can simply view this as an overall shift in the charge lattice. As we

will see below, this shift turns out to be consistent with a rather non-trivial consistency test.

The second refinement concerns the relation between the M2 charge and the radius

of anti de Sitter geometry. In the absence of discrete torsion, the radius of anti de Sitter

space is directly proportional to the number of M2 branes giving rise to the near horizon

AdS4 × S7 geometry. In the presence of discrete torsion, however, the relation receives a

correction. This issue was investigated originally in [14] which left out the contribution

from the Freed-Witten anomaly. Taking the Freed-Witten anomaly into account [4], one

finds that

R4 = (25πl4p)
Q2

k
(A.15)

where

Q2 = N − l(l − k)

2k
+Qcurv (A.16)

with

Qcurv = − 1

24

(

k − 1

k

)

(A.17)

is the contribution from the C3 ∧R4 correction to the M-theory action.

In the IIA reduction along the Hopf fiber of S3/Zk, the Q2 can also be written

Q2 =

(

N +
k

8

)

+

(

l − k

2

)

b+
1

2
kb2 +Qcurv, b = − l

k
+

1

2
(A.18)

where b is the pull-back of B2 on S2 level surface of R4/Zk reduced on S1. This expression

makes the interpretation of Q2 as including the contribution from the B-field in the Wess-

Zumino term for k D6-brane and l − k/2 D4-branes, including the Freed-Witten shift,

manifest. There is also a fractional shift in the D2 charge by k/8 and from Qcurv. The k/8

shift can be viewed as following from the Freed-Witten anomaly.

Recently, in a very impressive paper [34], the planar free energy of the ABJM/ABJ field

theory was computed in the strong coupling limit on the field theory side using localization

and matrix model techniques. They found that up to numerical constants (which they also

compute), the free energy is proportional to Q
3/2

2
. This is a rather non-trivial test for the

consistency of the details of the shifts in curvature due to discrete torsion, including the
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detailed form of the effects of Freed-Witten anomaly. They in fact confirm specifically the

presence of a shift in the D2 charge by k/8 − k/24 = k/12 units.4

Let us also comment in passing that the positivity of the anti de-Sitter radius (ex-

cluding the contribution from the curvature) is equivalent to the condition for preserving

supersymmetry implied by generalized s-rule [4, 5].

Finally, let us discuss the generalization of (A.14) when the background supports non-

trivial G4, as is the case for the Stenzel geometry. In this case, the pull-back of C3 can

vary in such a way that can be cancelled by the pull-back of G4. By subtracting this

contribution, one arrives at (3.8) which can be interpreted as the M-theory lift of the Page

charge (1.3).
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