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1 Introduction

The AdS/CFT correspondence [1–4], a duality between gravity (AdS) and gauge field

theory (CFT), also called the gauge/gravity duality, sets up connections between gravity

theory in a certain bulk spacetime and field theory on the boundary of that spacetime.

It has been widely recognized that the gauge/gravity duality provides powerful tools for

studying dynamics of strongly coupled field theories and physics in the real world. Re-

cently, investigations on applications of the AdS/CFT correspondence to condensed mat-

ter physics (AdS/CMT for short) have, due to its great interest, increased enormously [5–

9]. For instance, gravity backgrounds which possess non-relativistic symmetries were con-

structed in [10–12].

One crucial quantity characterizing charge transport properties of condensed matter

systems is the conductivity, which can be evaluated via the current-current correlation

function of the bulk U(1) gauge field in the dual gravity side. It was found in [13] that the

conductivity in the three-dimensional field theory side at zero momentum was a constant

with no frequency dependence. The authors of [13] attributed this remarkable result to the

electro-magnetic duality of the four-dimensional bulk Einstein-Maxwell theory. Recently in

order to acquire a better understanding of this self-duality, Myers, Sachdev and Singh [14]

considered a particular form of new higher derivative corrections which involves couplings

between the gauge field to the spacetime curvature. The higher order corrections to the

conductivity were obtained and they found that although the electro-magnetic self-duality

was lost in the presence of higher order corrections, a simple relation between the transverse

and longitudinal components of the current-current retarded correlation function and those

of the ‘dual’ counterparts still held.
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Since many condensed matter systems possess non-relativistic symmetries, it is desir-

able to study the conductivity in such non-relativistic backgrounds and to see if the ‘duality’

relation for the current-current correlation functions still holds. In this paper we consider

charge transport properties at Lifshitz fixed points. The background is a domain wall ge-

ometry, where the metric becomes a Lifshitz black hole in the IR and an asymptotically

AdS spacetime in the UV. The action for the bulk U(1) gauge field contains the ordinary

Maxwell term, as well as coupling between the Weyl tensor and the field strengths. First we

work in four dimensions and calculate the conductivity via the membrane paradigm, which

reduces to the one obtained in [14] when the dynamical exponent z = 1. Next we evaluate

the conductivity from Kubo’s formula, which precisely matches the result obtained via

the membrane paradigm. Moreover, we find that the relation between the transverse and

longitudinal components of the current-current retarded correlation functions and those

of the ‘dual’ counterparts still holds, irrespective of the IR geometry. We also comment

on the conductivity at extremality. Generalizations to higher-dimensional spacetimes are

also obtained.

The rest of the paper is organized as follows: we give a brief review on relevant back-

grounds in section 2. Then we focus on charge transport properties in four dimensions

in section 3. Firstly we calculate the conductivity using the membrane paradigm in sec-

tion 3.1, where we find that although the Weyl corrections do not contribute in the z = 2

case, it is indeed a coincidence which can be seen by considering more general actions. Next

in section 3.2 we reconsider the conductivity by evaluating the retarded current-current cor-

relation functions and find precise agreement with the result obtained in section 3.1. A

simple relation between the transverse and longitudinal components of the current-current

retarded correlation functions and those of the ‘dual’ counterparts is derived in section 3.3,

which agrees with that obtained in [14]. In section 3.4 conductivity at extremality is in-

vestigated. Higher-dimensional generalizations are evaluated in section 4 and discussions

on other related issues are given in section 5.

2 Preliminaries

In this section we review some relevant backgrounds before proceeding. First of all,

the starting point in [14] was the four-dimensional planar Schwarzschild-AdS4 black

hole [15–17],

ds2 =
r2

L2
(−f(r)dt2 + dx2 + dy2) +

L2dr2

r2f(r)
, (2.1)

where f(r) = 1 − r30/r
3. On the other hand, after integrating by parts and imposing

the identities ∇[aFbc] = R[abc]d = 0, the most general four-derivative action contains the

following terms,

I4 =

∫

d4x
√−g[α1R

2 + α2RabR
ab + α3(F

2)2 + α4F
4 + α5∇aFab∇cFc

b

+ α6RabcdF
abF cd + α7R

abFacFb
c + α8RF

2], (2.2)

where F 2 = FabF
ab, F 4 = F a

bF
b
cF

c
dF

d
a. If we focus on the conductivity, which means

that only the current-current two-point functions are relevant, we can just consider the

– 2 –



J
H
E
P
0
6
(
2
0
1
1
)
1
2
2

effects of the α6, α7 and α8 terms. Furthermore, after taking a particular linear combination

of these three terms, the effective action for bulk Maxwell field turns out to be

Ivec =
1

g2
4

∫

d4x
√−g[−1

4
FabF

ab + γL2CabcdF
abF cd], (2.3)

where Cabcd denotes the Weyl tensor. One advantage of taking this particular combination

is that the asymptotic geometry will not be modified, as the Weyl tensor vanishes in pure

AdS space. Then the DC conductivity in the presence of higher order corrections is given by

σDC =
1

g2
4

(1 + 4γ). (2.4)

We shall consider the following domain-wall geometry

ds2 = −g(r)e−χ(r)dt2 +
dr2

g(r)
+
r2

R2
0

(dx2 + dy2), (2.5)

where R0 denotes certain length scale. The IR region is described by a Lifshitz black hole

(see, e.g., [18–28]),

ds2IR = −r
2z

L2
f(r)dt2 +

L2dr2

r2f(r)
+
r2

L2
(dx2 + dy2), f(r) = 1 − rz+2

0

rz+2
, (2.6)

where z is the dynamical exponent. The above background possesses the following Lifshitz

scaling symmetry at extremality when f(r) = 1,

t→ λzt, r → r

λ
, ~x→ λ~x. (2.7)

Generically, such solutions are always accompanied by various matter fields and the form

of f(r) is determined by the matter fields. However, here we just write down the metric as

above so that it becomes Schwarzschild-AdS4 when z = 1. Combining (2.5) and (2.6), we

can find that

e−χ(r) = r2z−2, g(r) =
r2f(r)

L2
, R0 = L. (2.8)

The UV geometry is chosen to be AdS so that it will not be modified by the higher order

corrections (2.3) and we can still perform calculations in the context of AdS/CFT. Such a

domain-wall geometry holographically describes a RG flow towards a nontrivial IR Lifshitz

fixed point.

In this paper the action for the Maxwell field is still given by (2.3) and the equation

of motion reads

∇a[F
ab − 4γL2CabcdFcd] = 0. (2.9)

We also list the non-vanishing components of the Weyl tensor for later convenience

Ctrtr =
e−χ(r)

12r2
F (r), Ctitj = −e

−χ(r)

24R2
0

g(r)F (r)δij ,

Crirj =
1

24R2
0

F (r)

g(r)
δij , Cijkl = − r2

12R4
0

F (r)δikδjl, (2.10)

where i, j, k, l = x, y and

F (r) = r[−g′(r)(4 + 3χ′(r)) + 2rg′′(r)]

+g(r)(4 + 2rχ′(r) + r2χ′2(r) − 2r2χ′′(r)). (2.11)
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3 Charge transport in four dimensions

We study charge transport properties in a four-dimensional domain-wall background, which

is the most interesting case. In section 3.1 we calculate the conductivity using the mem-

brane paradigm and verify the result via Kubo’s formula in section 3.2. A simple relation

between the longitudinal and transverse parts of the current-current correlation functions

and those of the ‘dual’ counterparts is derived in section 3.3. In addition, we briefly discuss

the conductivity at zero temperature in section 3.4.

3.1 DC conductivity from the membrane paradigm

In this subsection, we calculate the DC conductivity via the membrane paradigm, following

[29, 30]. Such a prescription can be seen as a generalization of the analysis in [31, 32] to

incorporate the following general action

I =

∫

d4x
√−g(− 1

8g2
4

FabX
abcdFcd), (3.1)

where the tensor Xabcd possesses the following symmetries Xabcd = X [ab][cd] = Xcdab. For

our particular example,

Xab
cd = Iab

cd − 8γL2Cab
cd, (3.2)

where

Iab
cd = δa

cδb
d − δa

dδb
c, (3.3)

so that the above action reduces to the conventional Maxwell action when γ = 0.

Extensions to the general action (3.1) are straightforward. We still define the stretched

horizon at r = rH , where rH > r0 and rH − r0 ≪ r0. The corresponding conserved current

is given by

ja =
1

4
nbX

abcdFcd|r=r0
, (3.4)

where na is an ourward-pointing radial unit vector. According to Ohm’s law at the stretched

horizon, the DC conductivity reads

σ =
1

g2
4

√−g
√

−XtxtxXrxrx|r=r0
. (3.5)

Plugging (2.10) and (2.11) into the above expression, we can arrive at

σ =
1

g2
4

[1 − 4

3
γ(z2 − 4)]. (3.6)

When z = 1, the conductivity turns out to be

σ =
1

g2
4

[1 + 4γ] , (3.7)

which agrees with that obtained [14].

It can be easily seen that when z = 2, σ = 1/g2
4 , which means that the conductivity

is not corrected by the higher order terms. One may wonder if this fact implies some
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underlying physics or just a coincidence. To answer this question, we can consider a more

general form of corrections

Ĩvec =
1

g2
4

∫

d4x
√−g[−1

4
FabF

ab +γL2(c1RabcdF
abF cd+c2RabF

acF b
c +c3RF

abFab)], (3.8)

where ci, i = 1, 2, 3 are constants. Now the tensor Xabcd becomes

X̃abcd = (gacgbd − gadgbc) − 8γL2

[

c1R
abcd +

c2
4

(Racgbd −Radgbc +Rbdgac −Rbcgad)

+
c3
2
R(gacgbd − gadgbc)

]

, (3.9)

and the conductivity is given by

σ̃ =
1

g2
4

√−g
√

−X̃txtxX̃rxrx|r=r0
=

1

g2
4

[1 + 2γ(z + 2)(2c1 + (c2 + 4c3)(z + 1))]. (3.10)

It can be seen that z = 2 also leads to nontrivial higher order corrections for general ci’s. In

particular, when c1 = 1, c2 = −2, c3 = 1/3, the tensor X̃abcd = (gacgbd−gadgbc)−8γL2Cabcd,

and the conductivity is given by

σ̃ =
1

g2
4

[

1 − 4

3
γ(z2 − 4)

]

, (3.11)

which agrees with (3.6). Hence the ‘non-renormalization’ of the conductivity is just due to

our particular choice of the higher order corrections.

The membrane paradigm also determines the charge diffusion constant

D = −√−g
√

−XtxtxXrxrx|r=r0

∫ ∞

r0

dr√−gXtrtr
. (3.12)

However, here we cannot evaluate the charge diffusion constant in a similar way, as we

are studying the domain-wall geometry and we only explicitly know the IR and the UV

geometries. It can be seen that the r → ∞ limit of (2.6) leads to Lifshitz metric rather

than AdS metric, which means that we cannot calculate the charge diffusion constant by

naively applying this formula.

3.2 DC Conductivity from Kubo’s formula

In this subsection, we reconsider the DC conductivity by making use of Kubo’s formula,

which can be seen as a check of consistency for the result obtained via the membrane

paradigm. According to Kubo’s formula, in the hydrodynamic limit the conductivity can

be determined in terms of the retarded current-current correlation function

σDC = − lim
ω→0

1

ω
ImGR

xx(ω,~k = 0), (3.13)

where

GR
xx(ω,~k = 0) = −i

∫

dtd~xeiωtθ(t)〈[Jx(x), Jx(0)]〉. (3.14)
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Here Jx denotes the CFT current dual to the bulk gauge field Ax. In this subsection we

also introduce a new radial coordinate u, in which the domain wall metric can be written as

ds2 = −g(u)e−χ(u)dt2 +
du2

g(u)
+
R2

0

u2
(dx2 + dy2). (3.15)

The IR geometry can be expressed as

ds2IR = − r2z
0

L2u2z
f(u)dt2 +

L2du2

u2f(u)
+

r20
L2u2

(dx2 + dy2), f(u) = 1 − uz+2, (3.16)

where the horizon locates at u = 1. Notice that u = 0 does not correspond to the asymptotic

boundary. Comparing the above two metrics we can find

e−χ(u) =
r2z
0

u2z+2
, g(u) =

u2f(u)

L2
, R0 =

r0
L
. (3.17)

The non-vanishing components of the Weyl tensor are given as follows

Ctutu =
e−χ(u)

12u2
F (u), Ctitj = −R

2
0e

−χ(u)

24u4
g(u)F (u)δij ,

Cuiuj =
R2

0

24u4

F (u)

g(u)
δij , Cijkl = − R4

0

12u6
F (u)δikδjl, (3.18)

where i, j, k, l = x, y and

F (u) = u[g′(u)(4 − 3uχ′(u)) + 2ug′′(u)]

−g(u)(4 + 2uχ′(u) − u2χ′2(u) + 2u2χ′′(u)), (3.19)

Consider gauge field fluctuations of the following form

Aa(t, u, x) =

∫

d3q

(2π)3
e−iωt+iqxAa(u, q), (3.20)

where we have chosen the three-momentum vector qµ = (ω, q, 0) and the gauge Au(u, q) =

0. From (3.13), it can be seen that to calculate the conductivity, it is sufficient to set q = 0

in subsequent calculations. The y-component of the generalized Maxwell equation reads

A′′
y +

M ′(u)

M(u)
A′

y +
eχ(u)

g(u)2
ω2Ay = 0, (3.21)

where

M(u) = (1 − γL2

3u2
F (u))e−χ(u)/2g(u). (3.22)

On the other hand, the boundary action is given by

Iy = − 1

2g2
4

∫

d3x
√−gguugyy(1 − 8γL2Cuy

uy)Ay∂uAy|u→ub
, (3.23)

where ub denotes the boundary, as the u→ 0 limit of (3.16) also leads to Lifshitz geometry

rather than AdS. Therefore the corresponding retarded Green’s function is given by [33]

GR
yy = − 1

g2
4

√−gguugyy(1 − 8γL2Cuy
uy)

Ay(u,−q)∂uAy(u, q)

Ay(u,−q)Ay(u, q)

∣

∣

u→ub

. (3.24)
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It can be easily seen that

√−gguugyy(1 − 8γL2Cuy
uy) = M(u), (3.25)

As argued previously, since we do not know the explicit domain-wall metric, we cannot

obtain concrete forms of the correlation functions. However, as noted in [34, 35], there exists

a shortcut to calculate the conductivity. First of all, for a general second order differential

equation

Y ′′(u) +A(u)Y ′(u) +B(u)Y (u) = 0, (3.26)

there exists a conserved quantity

Q(u) = e
R

A(Ȳ ∂uY − Y ∂uȲ ). (3.27)

For our case, the conserved quantity Q(u) is given by

Q(u) = M(u)(Āy∂uAy −Ay∂uĀy), (3.28)

thus the imaginary part of the correlation function turns out to be

ImGR
yy = − 1

2ig2
4

Q(u)

|Ay(u)|2
|u→ub

, (3.29)

where again ub denotes the boundary. The solution for Ay can be written as

Ay(u) = (1 − u)−
iω

4πT y(u), (3.30)

where the exponent −iω/(4πT ) is determined by solving (3.21) in the near horizon region

and imposing the incoming boundary condition. Since Q(u) is a conserved quantity, we

can evaluate it at the horizon u = 1. Therefore

ImGR
yy = − ω

g2
4

(

1 − 4

3
γ(z2 − 4)

) |y(1)|2
|y(ub)|2

. (3.31)

Moreover, in the low frequency limit, the solution to (3.21) is simply y(u) = const. Finally

we arrive at

σ = − 1

ω
ImGR

yy =
1

g2
4

[

1 − 4

3
γ(z2 − 4)

]

, (3.32)

which agrees with that obtained before.

3.3 EM duality in four dimensions

In this subsection we discuss electro-magnetic duality in our domain-wall background,

which can be seen as extensions of [14] to more general cases. Generally speaking, current

conservation and spatial rotational invariance fix the following general structure of the

retarded Green’s functions

GR
µν(q) =

√

q2(P T
µνK

T (ω, q) + PL
µνK

L(ω, q)), (3.33)
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where qµ = (ω, qx, qy), q2 = [(qx)2+(qy)2]1/2,q2 = q2−ω2. Here P T
µν and PL

µν are orthogonal

projection operators given by

P T
tt = P T

ti = P T
it = 0, P T

ij = δij −
qiqj
q2

, PL
µν =

(

ηµν − qµqν
|q|2

)

− P T
µν , (3.34)

where i, j are spatial indices and µ, ν denote the whole spacetime indices. Let us choose

qµ = (ω, q, 0) for simplicity, then we have

GR
yy(ω, q) =

√

q2 − ω2KT (ω, q), GR
tt(ω, q) = − q2

√

q2 − ω2
KL(ω, q) (3.35)

It was observed in [13] that at the leading order level, i.e. in the standard four-dimensional

Maxwell theory, KT and KL satisfied the following simple relation

KT (ω, q)KL(ω, q) = const,

which signifies self-duality of the theory. As a result, the conductivity was a fixed constant.

Following [14], we introduce a Lagrangian multiplier Ba

I =

∫

d4x
√−g

(

− 1

8g2
4

FabX
abcdFcd +

1

2
εabcdBa∂bFcd

)

, (3.36)

where εabcd is the totally antisymmetric tensor with ǫ0123 =
√−g. After integrating by

parts in the second term and some other manipulations, the action can be written as

I =

∫

d4x
√−g

(

− 1

8ĝ2
4

X̂abcdGabGcd

)

, (3.37)

where Gab ≡ ∂aBb − ∂bBa denotes the new field strength, ĝ2
4 ≡ 1/g2

4 and

X̂cd
ab = −1

4
εab

ef (X−1)ef
gh
εgh

cd. (3.38)

Here and in the following the hatted quantities denote those in the ‘dual’ theory. The field

strengths Fab and Gab are related by

Fab =
g2

4
(X−1)ab

cd
εcd

efGef , (3.39)

In standard Maxwell theory, the two actions and the corresponding equations of motion

for Aa and Ba are identical, which means that the Maxwell theory is self-dual. Moreover,

the duality relation between Fab and Gab is the usual Hodge dual.

In general X̂ 6= X, which means that self-duality is lost. The corresponding equations

of motion are given by

∇a(X
abcdFcd) = 0, ∇a(X̂

abcdGcd) = 0. (3.40)

It can be seen that in the small γ limit

(X−1)ab
cd

= Iab
cd + 8γL2Cab

cd +O(γ2). (3.41)
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Furthermore, using traceless properties of the Weyl tensor, we obtain

X̂cd
ab = (X−1)ab

cd
+O(γ2), (3.42)

Introducing index pairs A,B ∈ {tx, ty, tu, xy, xu, yu} we write

XA
B = diag(X1,X2,X3,X4,X5,X6), (3.43)

and

X̂B
A = diag

(

1

X6
,

1

X5
,

1

X4
,

1

X3
,

1

X2
,

1

X1

)

. (3.44)

The relation between Fab and Gab (3.39) becomes

FA = g2
4(X−1)A

B
εB

CGC . (3.45)

Here our background is shown in (3.15) and the non-vanishing components of the

Weyl tensor are given in (3.18). Furthermore, fluctuations of gauge field are still presented

in (3.20). Therefore the Maxwell equation ∇a(X
abcdFcd) = 0 reads

∂u

(

eχ(u)/2

u2
X3A

′
t

)

− eχ(u)/2X1

R2
0g(u)

(ωqAx + q2At) = 0, (3.46)

A′
t +

e−χ(u)g(u)u2

R2
0

qX5

ωX3
A′

x = 0, (3.47)

∂u(e−χ(u)/2g(u)X5A
′
x) +

eχ(u)/2

g(u)
X1(ω

2Ax + ωqAt) = 0, (3.48)

∂u(e−χ(u)/2g(u)X6A
′
y) +

eχ(u)/2

g(u)
X2ω

2Ay −
e−χ(u)/2u2

R2
0

X4q
2Ay = 0. (3.49)

The equations of motion for Ba can be simply obtained by replacing Aa → Ba andXi → X̂i.

In addition, the components of the ε tensor are listed below

εtx
yu = e−χ(u)/2g(u), εtu

xy = −e−χ(u)/2g(u),

εtu
xy = e−χ(u)/2 u

2

R2
0

, εxy
tu = −eχ(u)/2R

2
0

u2
,

εxu
ty =

eχ(u)/2

g(u)
, εyu

tx = −e
χ(u)/2

g(u)
. (3.50)

Then we can explicitly work out the relation between Fab and Gab,

Ftx = g2
4

e−χ(u)/2

X1
g(u)Gyu, Fty = −g2

4

e−χ(u)/2

X2
g(u)Gxu,

Ftu = g2
4

e−χ(u)/2u2

R2
0X3

Gxy, Fxy = −g2
4

R2
0e

−χ(u)/2

u2X4
Gtu,

Fxu = g2
4

eχ(u)/2

g(u)X5
Gty , Fyu = −g2

4

eχ(u)/2

g(u)X6
Gtx. (3.51)
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The boundary action can be written as follows

Ib =
1

2g2
4

∫

d4x

(

eχ(u)/2R
2
0

u2
X3AtA

′
t−e−χ(u)/2g(u)X5AxA

′
x−e−χ(u)/2g(u)X6AyA

′
y

)

|u→ub
.

(3.52)

Thus the retarded Green’s functions are given by [33]

GR
tt =

R2
0

g2
4

eχ(u)/2X3

u2

δA′
t

δAb
t

|u→ub
, (3.53)

GR
xx = − 1

g2
4

e−χ(u)/2g(u)X5
δA′

x

δAb
x

|u→ub
, (3.54)

GR
tx =

1

2g2
4

[

eχ(u)/2

u2
X3

δA′
t

δAb
x

− e−χ(u)/2g(u)X5
δA′

x

δAb
x

]

|u→ub
, (3.55)

GR
yy = − 1

g2
4

e−χ(u)/2g(u)X6

δA′
y

δAb
y

|u→ub
. (3.56)

Let us focus on the yy-component of the retarded Green’s function. The solution for

Ay(u) can be written in an abstract form Ay(u) = ψ(u)Ab
y , where Ab

y denotes its boundary

value. Therefore it can be easily seen that ψ(ub) = 1 and

GR
yy = − 1

g2
4

e−χ(ub)/2g(ub)X6(ub)ψ
′(ub). (3.57)

Recall that

Fxy = − g2
4

X4
eχ(u)/2R

2
0

u2
Gtu , (3.58)

therefore

B′
t = C1u

2e−χ(u)/2X4ψ(u), (3.59)

where C1 is some undetermined constant. Moreover, the equation for Bt can be deduced

from (3.46),

∂u

(

eχ(u)/2

u2
X̂3B

′
t

)

− eχ(u)/2X̂1

R2
0g(u)

(ωqBx + q2Bt) = 0, (3.60)

which leads to

C1 =
eχ(ub)/2(ωqBb

x + q2Bb
t )

R2
0g(ub)X6(ub)ψ′(ub)

, (3.61)

where we have used the fact that X̂3 = 1/X4 and X̂1 = 1/X6. Then the retarded Green’s

function for Bt is given by

ĜR
tt =

R2
0

ĝ2
4

eχ(u)/2X̂3

u2

δB′
t

δBb
t

=
g2
4e

χ(ub)/2q2

g(ub)X6(ub)ψ′(ub)
. (3.62)

Finally we arrive at

ĜR
ttG

R
yy = −q2, ⇒ KT (ω, q)K̂L(ω, q) = 1, (3.63)

while we can also obtain KL(ω, q)K̂T (ω, q) = 1 in a parallel way. Our results indicate thus

that such a simple duality relation still holds in our domain-wall geometry, irrespective of

the IR near horizon geometry.
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3.4 DC conductivity at zero temperature

Up to now we have discussed the conductivity at finite temperature, while the conductivity

at extremality can be studied in a somewhat different way. In this case the asymptotic

geometry is still AdS, but the near horizon geometry is Lifshitz metric. Notice that the

Weyl tensor vanishes in AdS spacetime, so the asymptotic solution of the gauge field is

still given by

Ay = A(0)
y +

A
(1)
y

rd−1
. (3.64)

It was observed in [38] that the equation of motion for Ay can be recast into a Schrödinger

equation

−Ay,ss + V (s)Ay = ω2Ay , (3.65)

where s denotes some redefinition of the radial coordinate. The conductivity can be ex-

pressed in terms of the reflection coefficient R

σ =
1 −R
1 + R . (3.66)

The general strategy can be summarized as follows: we solve the Schrödinger equation

in the near horizon region and the asymptotic region respectively and then match the two

solutions in certain intermediate region. Thus the reflection coefficient can be determined

and the conductivity is obtained. In our specific background, let us consider the four-

dimensional case as an example. Recall that the equation of motion for Ay is given by

∂r[e
−χ(r)/2g(r)G(r)A′

y ] +
eχ(r)/2

g(r)
G(r)ω2Ay = 0, G(r) = 1 − γL2

3r2
F (r).

By introducing
∂

∂s
= e−χ/2g

∂

∂r
, Ψ =

√

G(r)Ay, (3.67)

the above equation turns out to be of Schrödinger form

− ∂2
sΨ + V (s)Ψ = ω2Ψ, V (s) =

1
√

G(r)
∂2

s

√

G(r). (3.68)

However, it can be seen that

G(r)IR = 1 − 1

3
γL2, G(r)UV = 1, (3.69)

which leads to a trivial potential V (s) = 0. Therefore we can easily obtain R = 0 and σ = 1.

4 Charge transport in higher dimensions

In this section we calculate the conductivity in a general (d + 2)-dimensional spacetime,

where we apply the same techniques adopted in section 3. It was observed in [36] that in

general (d + 2)-dimensional background, the electrical conductivity and charge suscepti-

bility are fixed by the central charge in a universal manner. However, due to our lack of
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understanding on the conformal field theory side, the relations between the conductivity

and the central charge are still unclear. Furthermore, conductivity in asymptotically Lif-

shitz spacetimes was also studied in [37], where the focus was on the leading order effective

action. In addition, since higher-dimensional electro-magnetic duality is not so powerful as

its four-dimensional counterparts, we will not consider it.

4.1 DC Conductivity from the membrane paradigm

Considering the following (d+ 2)-dimensional domain-wall geometry

ds2 = −g(r)e−χ(r)dt2 +
dr2

g(r)
+
r2

R2
0

d
∑

i=1

dx2
i , (4.1)

whose IR near horizon metric is given by

ds2IR = −r
2z

L2
f(r)dt2 +

L2dr2

r2f(r)
+
r2

L2

d
∑

i=1

dx2
i , f(r) = 1 − rz+d

0

rz+d
. (4.2)

It becomes Schwarzschild-AdSd+2 when z = 1. It can be seen that here we still have

e−χ(r) = r2z−2, g(r) =
r2f(r)

L2
, R0 = L, (4.3)

The UV geometry is still fixed to be AdS. In the background (4.1), the non-vanishing

components of the Weyl tensor are given as follows

Ctrtr =
(d− 1)e−χ(r)

4(d+ 1)r2
F (r), Ctitj = −(d− 1)e−χ(r)

4d(d + 1)R2
0

g(r)F (r)δij ,

Crirj =
d− 1

4d(d + 1)R2
0

F (r)

g(r)
δij , Cijkl = − r2

2d(d + 1)R4
0

F (r)δikδjl, (4.4)

where i, j, k, l = x1, · · · , xd and F (r) is still given by (2.11). Following the procedures

exhibited in section 3, we obtain the conductivity

σ =
1

g2
d+2

√−g
√

−XtxtxXrxrx|r=r0
,

=
1

g2
d+2

(r0
L

)d−2
[

1 − 4(d− 1)γ

d(d+ 1)
(2z(z − 1) + d(z − d− 2))

]

. (4.5)

This reduces to (3.6) when d = 2.

4.2 DC Conductivity from Kubo’s formula

To evaluate the conductivity from Kubo’s formula, we introduce a new radial coordinate u,

ds2 = −g(u)e−χ(u)dt2 +
du2

g(u)
+
R2

0

u2

d
∑

i=1

dx2
i . (4.6)
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The IR metric can be written as follows in the u-coordinate

ds2IR = − r2z
0

L2u2z
f(u)dt2 +

L2du2

u2f(u)
+

r20
L2u2

d
∑

i=1

dx2
i , f(u) = 1 − uz+d, (4.7)

where the horizon locates at u = 1. Comparing the two metrics we can obtain

e−χ(u) =
r2z
0

u2z+2
, g(u) =

u2f(u)

L2
, R0 =

r0
L
, (4.8)

The corresponding non-vanishing components of the Weyl tensor are given by

Ctutu =
(d− 1)e−χ(u)

4(d+ 1)u2
F (u), Ctitj = −(d− 1)R2

0e
−χ(u)

4d(d+ 1)u4
g(u)F (u)δij ,

Cuiuj =
(d− 1)R2

0

4d(d + 1)u4

F (u)

g(u)
δij , Cijkl = − R4

0

2d(d + 1)u6
F (u)δikδjl, (4.9)

where i, j, k, l = x, y and F (u) is still given by (3.19). Hence the generalized Maxwell

equation in (d+ 2)-dimensions reads

A′′
y +

M ′
d+2(u)

Md+2(u)
A′

y +
eχ(u)

g(u)2
ω2Ay = 0, (4.10)

where

Md+2(u) =

(

1 − 2γ(d− 1)L2

d(d+ 1)u2
F (u)

)

e−χ(u)/2

ud−2
g(u). (4.11)

On the other hand, the retarded Green’s function turns out to be

GR
yy = − 1

g2
4

√−gguugyy(1 − 8γL2Cuy
uy)

Ay(u,−q)∂uAy(u, q)

Ay(u,−q)Ay(u, q)

∣

∣

u→ub

. (4.12)

Therefore one can find that

√−gguugyy(1 − 8γL2Cuy
uy) = Rd−2

0 Md+2(u), (4.13)

For our general (d+ 2)-dimensional case, the conserved quantity in (3.27) is given by

Q(u) = Md+2(u)(Āy∂uAy −Ay∂uĀy), (4.14)

which leads to the following expression for the retarded Green’s function

ImGR
yy = − Rd−2

0

2ig2
d+2

Q(u)

|Ay(ub)|2
. (4.15)

Furthermore, the general solution to Ay can still be written as

Ay(u) = (1 − u)−
iω

4πT y(u). (4.16)

Thus we can obtain

ImGR
yy = −ωR

d−2
0

g2
d+2

[

1 − 4(d− 1)γ

d(d+ 1)
(2z(z − 1) + d(z − d− 2))

] |y(1)|2
|y(ub)|2

. (4.17)

– 13 –



J
H
E
P
0
6
(
2
0
1
1
)
1
2
2

Finally, in the low frequency limit the solution to (4.10) is simply y(u) = const, which

results in

σ = − 1

ω
ImGR

yy =
rd−2
0

g2
d+2L

d−2

[

1 − 4(d − 1)γ

d(d+ 1)
(2z(z − 1) + d(z − d− 2))

]

. (4.18)

It can be seen that once again this result agrees with the one obtained via the membrane

paradigm.

5 Summary and discussion

The full background geometry is required when calculating the retarded Green’s func-

tions via AdS/CFT. However, we can still acquire some knowledge about the transport

coefficients from a domain-wall geometry. In this paper we computed conductivity in the

presence of Weyl corrections in a domain-wall background, whose near horizon IR geome-

try is Lifshitz black hole and asymptotic geometry is AdS. We obtained the conductivity

via both the membrane paradigm and Kubo’s formula. By making use of a shortcut, the

conductivity derived from Kubo’s formula can be solely expressed in terms of quantities

at the horizon. The results obtained via both approaches precisely match in four as well

as in higher dimensions. Moreover, it was shown in [14] that in four dimensions, although

self-duality was lost in higher derivative theories, a simple relation for the longitudinal and

transverse components of the current-current correlation functions and those of the dual

counterparts, KL(ω, q)K̂T (ω, q) = 1, still held. Here we show that this simple relation also

holds in our domain-wall background, irrespective of the IR near horizon geometry.

Similar backgrounds were also investigated in [39] and [40], where the authors consid-

ered charged dilaton black branes in Einstein-Maxwell-Dilaton theory, whose near horizon

geometry was Lifshitz metric and asymptotic geometry was AdS. One crucial difference was

that due to the nontrivial background U(1) gauge field, the potential in the Schrödinger

equation was also nontrivial, which lead to a universal conductivity Reσ ∼ ω2 in four dimen-

sions. If we want to consider Weyl corrections to the conductivity in such a background, it

would be necessary to work out the perturbed metric, as the nontrivial background gauge

field would back-react on the leading order solution. Holographic properties of charged

black holes in higher derivative theories were studied in [41–43] and transport properties

in extremal charged black hole backgrounds were considered in [44–48].

One can also consider the following type of higher order corrections instead

I ′vec =
1

g̃2
4

∫

d4x
√−g

[

−1

4
FabF

ab + αL2(RabcdF
abF cd − 4RabF

acF b
c +RF abFab)

]

, (5.1)

which arises from the Kaluza-Klein reduction of five-dimensional Gauss-Bonnet gravity.

It was observed in [14] that by combining the Einstein equation in the neutral black hole

background Rab = −3/L2gab and the definition of the Weyl tensor, the action (5.1) becomes

I ′vec =
1 + 8α

g̃2
4

∫

d4x
√−g

[

−1

4
FabF

ab +
α

1 + 8α
L2CabcdF

abF cd

]

. (5.2)
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It can be easily seen that the resulting action is equivalent to (2.3) with the following

identifications

g2
4 =

g̃2
4

1 + 8α
, γ =

α

1 + 8α
. (5.3)

Therefore the charge transport properties are identical. However, here the Einstein equa-

tion in the IR Lifshitz black hole background cannot have such a simple expression and

thus the two actions are generically not equivalent. It would be interesting to study charge

transport coefficients in a different theory e.g. (5.1) and to see the effects of higher order

corrections on the conductivity.
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