
J
H
E
P
0
6
(
2
0
1
1
)
1
1
8

Published for SISSA by Springer

Received: April 15, 2011

Accepted: May 25, 2011

Published: June 27, 2011

From correlators to Wilson loops in Chern-Simons

matter theories

Marco S. Bianchi,a,b Matias Leoni,c,d Andrea Mauri,c,d Silvia Penati,a,b

CarloAlberto Rattia,b and Alberto Santambrogiod

aDipartimento di Fisica, Università di Milano-Bicocca
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1 Introduction

In the last few years, AdS/CFT correspondence and stringy-inspired technologies for com-

puting scattering amplitudes have led to the discovery of new remarkable properties of

supersymmetric Yang-Mills theories in four dimensions.

For planar N = 4 SYM theory, a duality between MHV scattering amplitudes and

light-like polygon Wilson loops has been found first at strong coupling [1, 2] and successively

tested at weak coupling by a perturbative field theory approach [3]–[9]. On the field

theory side this duality is related to the emergence of a new hidden symmetry, the dual

superconformal symmetry [10, 11], which corresponds at strong coupling to the invariance

of the type IIB string theory on AdS5 × S5 under a suitable combination of bosonic and

fermionic T-dualities [12]. The dual superconformal generators are part of the infinite set

of generators of the Yangian symmetry of the theory [13], thus being intimately related to

its integrability [14, 15]–[17].

More recently, a novel duality has been discovered [18] which involves correlation func-

tions of gauge invariant BPS scalar operators of N = 4 SYM theory. An n-point correlation

function Cn in the limit where adjacent points become light-like separated should be equal
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to a light-like n-polygon Wilson loop in the adjoint representation of the gauge group. The

precise identification

lim
x2

i,i+1
→0

Cn

C tree
n

= 〈TradjP exp
(

ig
∫

Γn
dzµAµ(z)

)

〉 (1.1)

has been tested perturbatively up to two loops in a number of cases [18].

While this new duality is still lacking a proof in the string theory regime, in field theory

a physical explanation can be given in terms of an infinitely fast moving scalar particle

interacting with a low energy gluon. In the light-like limit, in fact, the scalar particle

flowing around the loop becomes infinitely energetic compared to the gluon it interacts

with. As a consequence, its propagator becomes an almost free propagator, except for an

eikonal phase P exp
(

ig
∫

Γn
dzµAµ(z)

)

which arises as the result of a path integral saddle

point approximation. According to this explanation, the connection between correlators

and polygonal Wilson loops should be true not only for N = 4 SYM but also for general

conformal gauge theories in any dimensions [18].

Since Wilson loops are dual to planar scattering amplitudes, a direct duality between

n-point correlation functions and n-point scattering amplitudes must exist. This has been

investigated in [19, 20], where this duality has been established at one-loop for generic n

and proved at two loops for n = 4, 5, 6.

It is interesting to investigate whether the amplitudes/WL/correlators dualities and the

existence of underlying hidden symmetries extend to class of theories in different dimensions

for which a string dual description is known.

In this paper we concentrate on the class of N = 2, U(N)k1
× U(M)k2

Chern-Simons

matter theories in three dimensions with generic (k1, k2) CS levels and generic superpoten-

tial. It includes, as particular cases, the N = 6 ABJM theory [21, 22] dual to a IIA string

theory on AdS4 ×CP3, the N = 8 BLG theory [23–25] describing the low-energy dynamics

of M2-branes in M-theory and N = 2, 3 superconformal theories [26, 27] for which a dual

description in terms of deformed backgrounds has been conjectured [28, 29].

For the ABJM theory, preliminary results are already available in the literature. At

tree level, scattering amplitudes exhibit dual superconformal symmetry [30, 31] whose

generators are the level-one generators of a Yangian symmetry. Invariance under Yangian

symmetry has been explicitly proved at tree level for four and six-point amplitudes [32] and

argued in general through the construction of a generating function [33]. These symmetries

suggest that string theory on AdS4×CP3 should be self-dual under a suitable combination

of bosonic and fermionic T-dualities. Efforts in this direction are complicated by the

emergence of singularities [34]–[38].

A first indication of a duality between scattering amplitudes and Wilson loops comes

from the fact that both the one-loop four-point amplitude [39] and the light-like square

WL [40] vanish.

In this paper we move one step further in the direction of establishing ampli-

tudes/WL/correlators dualities, by studying correlation functions of gauge invariant BPS

scalar operators.
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For generic N = 2, two-level Chern-Simons matter theories we compute the n-point

correlator at one-loop. We prove that in the light-like limit its expression, divided by the

corresponding tree level correlator, coincides with the one-loop expression for a light-like

n-polygon Wilson loop, once the Feynman combining parameters of the correlator integral

are identified with the affine parameters which parametrize the light-like edges of the WL

polygon. Remarkably, we find that both quantities can be expressed in terms of a five

dimensional two-mass-easy box integral.

While in the ABJM case, and whenever K2 = −K1 and M = N , the identification

gets trivialized by the fact that both the correlator and the Wilson loop are proportional

to a vanishing color factor, in the more general cases the color factor in front is not zero

and a non-trivial identification emerges.

We manage to compute the five dimensional box integral analytically and prove that,

once plugged back into the correlation function/WL, it gives a vanishing result.

Our final statement is then

lim
x2

i,i+1
→0

C 1−loop
n

C tree
n

= 〈Wn〉1−loop = 0 , for any n (1.2)

This identity is true for any value of the CS levels and for N,M finite (no planar limit

is required). It holds for the whole class of theories under study, independently of their

degree of supersymmetry. This is a consequence of the fact that at the order we are

working, the superpotential does not enter the calculation. Note that at one loop they are

all superconformal theories, being the beta-functions trivially zero [26, 27]. We expect that

theories with different number of supersymmetries and with or without superconformal

invariance will undergo a different destiny starting from two-loops [45].

We stress that in the general case the identification between correlators and Wilson

loops is valid independently of the fact that they both eventually vanish. Therefore, our

result is a first non-trivial indication of a correlator/WL duality at work and supports the

conjecture of [18] which states that this duality should hold for generic conformal gauge

theories in any dimensions.

For N > 4, four-point scattering amplitudes have been proved to vanish at one

loop [39]. Therefore, for the special case n = 4, our result completes the ampli-

tudes/WL/correlators duality for theories with a number of supersymmetries greater than

four.

We prove that the n-polygon Wilson loop is zero at first order for any value of the CS

levels and independently of the chiral couplings. Thus, the proof is true also for pure Chern-

Simons theories, just set matter fields and one of the two gauge fields to zero. Therefore,

our result provides the analytical proof of the conjecture made in [40] according to which

one-loop light-like Wilson loops should vanish in pure Chern-Simons theories.

The paper is organized as follows. In section 2 we introduce the class of CS matter

theories we are interested in and list the corresponding gauge invariant chiral operators.

Working in N = 2 superspace, we classify different theories according to the particular

choice of the coupling constants in the superpotential. In section 3 we focus on the evalu-

ation of n-point correlators for dimension-one chiral operators. In particular, we evaluate
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the building block which enters one-loop calculations and discuss its representation in terms

of a 5d two-mass easy box integral. In section 4 we prove that in the light-like limit, the

expression for the one-loop correlator divided by its tree level counterpart is identical to

the first order contribution to a light-like n-polygon Wilson loop. This identification holds

independently of the value of the couplings and even before computing the actual Feynman

integrals. In section 5, equipped with the exact result for the 5d box integral, we give the

analytical proof that correlators and Wilson loops vanish at this order. In section 6 we

prove that our results for dimension-one BPS operators extend to correlation functions of

operators with arbitrary dimension. Conclusions with a discussion of future perspectives

follow, plus appendix A which contains our conventions and appendix B where we present

a detailed discussion of the unexpected emergence of a 5d box integral.

2 N = 2 Chern-Simons matter theories

In three dimensions, we consider a N = 2 supersymmetric U(N) × U(M) Chern-Simons

theory for vector multiplets (V, V̂ ) coupled to chiral multiplets Ai and Bi, i = 1, 2 in the

fundamental representation of a global SU(2)A × SU(2)B . The vector multiplets V, V̂ are

in the adjoint representation of the gauge groups U(N) and U(M) respectively, while Ai

are in the (N, M̄ ) and Bi in the (N̄ ,M) bifundamental representations.

In N = 2 superspace the action reads (for superspace conventions see appendix A)

S = SCS + Smat (2.1)

with

SCS =

∫

d3x d4θ

∫ 1

0
dt
{

K1Tr
[

V D
α (
e−tVDαe

tV
)

]

+K2Tr
[

V̂ D
α
(

e−tV̂ Dαe
tV̂
) ]}

Smat =

∫

d3x d4θ Tr
(

Āie
VAie−V̂ + B̄ieV̂Bie

−V
)

+

∫

d3xd2θ Tr
[

h1(A
1B1)

2+h2(A
2B2)

2+h3(A
1B1A

2B2)+h4(A
2B1A

1B2)
]

+ h.c.

(2.2)

Here 4πK1, 4πK2 are two independent integers, as required by gauge invariance of the

effective action. In the perturbative regime we take K1,K2 ≫ N,M .

For generic values of the couplings, the action (2.1) is invariant under the following

gauge transformations

eV → eiΛ̄1eV e−iΛ1 eV̂ → eiΛ̄2eV̂ e−iΛ2 (2.3)

Ai → eiΛ1Aie−iΛ2 Bi → eiΛ2Bie
−iΛ1 (2.4)

where Λ1,Λ2 are two chiral superfields parametrizing U(N) and U(M) gauge transforma-

tions, respectively. Antichiral superfields transform according to the conjugate of (2.4).

The action is also invariant under the U(1)R R-symmetry group under which the Ai and

Bi fields have charges 1
2 .
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For special values of the couplings we can have enhancement of global symmetries

and/or R-symmetry with consequent enhancement of supersymmetry.

For K1 = −K2 and h1 = h2 = 0 we have N = 2 ABJM/ABJ-like CFT’s [26]. In this

case the theory is invariant under two global U(1)’s

U(1)A : A1 → eiαA1 , U(1)B : B1 → eiβB1

A2 → e−iαA2 , B2 → e−iβB2 (2.5)

If, in addition, we choose h3 = −h4 ≡ h, the global symmetry becomes U(1)R × SU(2)A ×
SU(2)B and gets enhanced to SU(4)R for h = 1/K [21, 41]. For this particular values of

the couplings we recover the N = 6 superconformal ABJ theory [22] and for N = M the

ABJM theory [21].

In the more general case K1 6= −K2, setting h1 = h2 = 1
2 (h3 + h4) the corresponding

superpotential reads

Spot =
1

2

∫

d3x d2θ Tr
[

h3(A
iBi)

2 + h4(BiA
i)2
]

+ h.c. (2.6)

This is the class of N = 2 theories studied in [28, 29] with SU(2) invariant superpotential,

where SU(2) rotates simultaneously Ai and Bi.

When h3 = −h4, that is h1 = h2 = 0, we have the particular set of N = 2 theories

with global SU(2)A×SU(2)B symmetry [28, 29]. This is the generalization of ABJ/ABJM-

like theories to K1 6= −K2. For particular values of the couplings [27] the theory is

superconformal invariant.

Finally, another interesting fixed point corresponds to h3 = 1
K1

and h4 = 1
K2

. The

U(1)R R-symmetry is enhanced to SU(2)R and the theory is N = 3 superconformal [27–29].

The quantization of the theory can be easily carried on in superspace after performing

gauge fixing (for details, see for instance [26, 27]). In coordinate space and using Landau

gauge, this leads to gauge propagators

〈V A(1)V B(2)〉 =
1

4πK1
D

α
Dα

δ4(θ1 − θ2)

|x1 − x2|
δAB

〈V̂ A(1) V̂ B(2)〉 =
1

4πK2
D

α
Dα

δ4(θ1 − θ2)

|x1 − x2|
δAB (2.7)

whereas the scalar propagators are

〈Āâ
a(1)A

b
b̂
(2)〉 =

1

4π
D2D̄2 δ

4(θ1 − θ2)

|x1 − x2|
δâ

b̂
δ b
a

〈B̄a
â(1)B

b̂
b(2)〉 =

1

4π
D2D̄2 δ

4(θ1 − θ2)

|x1 − x2|
δa

b δ
b̂

â (2.8)

The vertices needed for one-loop calculations can be easily read from the action (2.2)
∫

d3x d4θ
[

Tr(ĀiV A
i) − Tr(BiV B̄

i) + Tr(B̄iV̂ Bi) − Tr(AiV̂ Āi)
]

(2.9)

We note that A and B vertices always carry an opposite sign.
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In N = 2 superspace language, the most general gauge invariant, BPS scalar operator is

Oi1,··· ,il
j1,··· ,jl

= Tr(Ai1Bj1 · · ·AilBjl
) (2.10)

It has classical dimension ∆ = l and belongs to a suitable representation of

SU(2)A × SU(2)B . Indeed, according to the particular theory we are considering,

the sequence of indices may be constrained by the request for the operator to be a chiral

primary (Oi1,··· ,il
j1,··· ,jl

6= D̄2X i1,··· ,il
j1,··· ,jl

). In the ABJ/ABJM case, this amounts to require the

indices to be completely symmetrized, as follows from the observation that the equations

of motion set antisymmetric products equal to D̄2(something).

For theories with U(1)A × U(1)B invariance (2.5), the composite operator Oi1,··· ,il
j1,··· ,jl

is

not in general invariant, unless it contains the same number of A1 and A2 and the same

number of B1 and B2 as well.

3 The n-point correlation functions

We are interested in computing correlation functions of the scalar composite operators

in (2.10). We begin by considering the simplest case of a dimension-one operator

Oi
j(Z) = Tr(Ai(Z)Bj(Z)) , Ōj

i (Z) = Tr(Āi(Z)B̄j(Z)) (3.1)

Here Z = (xµ, θα, θ
α̇
) and i, j are flavor indices that we omit in what follows. The gen-

eralization to higher dimensional operators is discussed in section 6, where we prove that

one-loop correlation functions for BPS operators of arbitrary dimension can be expressed

in terms of one-loop correlation functions of dimension-one operators.

We focus on the evaluation of the expression

Cn =
〈

O(Z1) Ō(Z2) · · · O(Zn−1) Ō(Zn)
〉∣

∣

θi=θi=0
(3.2)

which corresponds to the correlator for the lowest scalar component of (3.1).

At tree level, the correlation function is given by the product of free chiral propaga-

tors (2.8) which, evaluated at θ = θ = 0, are simply 1
4π

1
|xi−xj | . Taking into account all the

possibilities of contracting the fields, the expression (3.2) will be a linear combination of

connected and disconnected diagrams. We concentrate only on the connected part. Using

the simplified notation xi, j = |xi − xj|, the tree level connected correlator reads

C tree
n =

MN

(4π)n

∑

{i1,··· ,in}

1

xi1, i2

1

xi2, i3

· · · 1

xin, i1

(3.3)

where the sum is over all non-cyclic permutations compatible with the constraint that

contractions are allowed only between chirals and antichirals. Since we will be eventually

interested in the behavior of the correlator in the light-cone limit x2
i, i+1 → 0, in (3.3) we

select the most singular term which corresponds to the cyclic order {1, 2, · · · , n}

C tree
n → MN

(4π)n

n
∏

i=1

1

xi, i+1
(3.4)
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i

i-1 i+1

A B

A B

B A

AB
i-2 i+2

Figure 1. The correlation function of dimension-one operators in the light-like limit.

i D2 D2 i+1D2 D2

jD2 D2j+1 D2 D2

0

n+1

DαDα

(a)

i D2 D2 i+1D2 D2

jD2 D2j+1 D2 D2

0

n+1

DαDα

(b)

Figure 2. Building blocks for one-loop corrections.

where xn+1 = x1.

Diagrammatically, this is given by a planar n-polygon with the operators at the vertices

(See figure 1).

First order corrections in the N
K1

, M
K2

couplings are obtained by attaching a V or V̂

gauge propagator at the edges of the polygon in all possible ways. At this order, chiral

interaction vertices from the superpotential do not contribute, so the results are valid for

any N = 2 theory.

When the gauge propagator has both ends attached to a single chiral line the result

is zero. In fact, one loop corrections to chiral propagators vanish because it is possible to

perform D-algebra in such a way that no enough spinorial derivatives survive inside the loop.

We are then left with contributions where the gauge propagator joins two different

edges. It is useful to compute the generic building blocks Bij depicted in figure 2, where

the edges xi, i+1 and xj, j+1 are connected by a wave line representing either a V or a V̂

propagator.
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3.1 One-loop building block

As shown in figure 2, there are two different configurations for the one-loop building block,

depending on the chirality of the external vertices. Diagram 2a) corresponds to the case

where vertices i and j are antichirals and i+ 1 and j+ 1 chirals. Diagram 2b) corresponds

to the case where vertices i and j + 1 are antichirals, while the other two are chirals.

In order to evaluate the building blocks Bij we need perform D-algebra to end up with

a non-vanishing result when evaluated at θk = θk = 0, k = i, i + 1, j, j + 1. Starting with

the configurations of figure 2 for the spinorial derivatives, we free the gauge and one of the

chiral lines from derivatives by integrating by parts at one of the vertices. Among different

terms which get produced, the only non-trivial contribution in the θk = θk = 0 limit is

the one where a D2D̄2 structure survives on three chiral propagators. Together with the

derivatives coming out from the spinorial integrations, these derivatives are sufficient to

kill the fermionic delta functions, leading to a non-vanishing result. As a result of the D-

algebra, the ordinary Feynman diagram we are left with has three space-time derivatives

acting on chiral propagators.

Summing the contributions from the V and V̂ insertions, the final result for the two

configurations is

B(a)
ij = − 2

(4π)5

(

1

K1
+

1

K2

)

ǫµνρ ∂
µ
i ∂

ν
i+1 ∂

ρ
j+1 I(i, j)

B(b)
ij =

2

(4π)5

(

1

K1
+

1

K2

)

ǫµνρ ∂
µ
i ∂

ν
i+1 ∂

ρ
j+1 I(i, j) (3.5)

in terms of the integral

I(i, j) =

∫

d3x0 d
3xn+1

x0, i x0, i+1 x0, n+1 xj, n+1 xj+1, n+1
(3.6)

The remarkable fact is that the expression ǫµνρ ∂
µ
i ∂

ν
i+1 ∂

ρ
j+1 I(i, j) can be manipulated

by using Feynman combining and Mellin-Barnes representation and reduced to a single

integral in five dimensions. Precisely, as proved in details in appendix B, the following

identity holds

ǫµνρ ∂
µ
i ∂

ν
i+1 ∂

ρ
j+1 I(i, j) =

8

π2

ǫµνρ x
µ
i, i+1 x

ν
i+1, j x

ρ
j, j+1

xi, i+1 xj, j+1
×
∫

d5x0
1

x2
0,i x

2
0,i+1 x

2
0,j x

2
0,j+1

(3.7)

Therefore, the building block which describes the gauge correction to the tree level expres-

sion 1
xi, i+1 xj, j+1

can be still written as the product of the two free propagators times a five

dimensional scalar integral. Interpreting the xj variables as the dual coordinates of a set

of 5d momenta pj = xj+1 − xj, this can be seen as a box integral in five dimensions.

3.2 One-loop results and their light-like limit

Given the results (3.5), (3.7), we are now ready to evaluate the one-loop n-point correla-

tor. The generic contribution will be the product of the blocks (3.5) times (n − 2) free

propagators.

– 8 –
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By antisymmetry of the ǫ tensor we can ascertain that contributions coming from

the gauge propagator connecting two adjacent edges vanish identically. In fact, setting

xi = xj+1 or xj = xi+1, it is immediate to see that the structure ǫµνρ x
µ
i, i+1 x

ν
i+1, j x

ρ
j, j+1 is

zero. Therefore, we are left only with contributions where the gauge propagator connects

two non-adjacent edges.

When the two lines are separated by an odd number of free propagators the block B(a)
ij

has to be used. In this case, given the particular structure of the operator and the fact that

only the 〈AĀ〉, 〈BB̄〉 propagators are non-vanishing, the vertices employed to construct the

block are necessarily of the same type: If one is a A-vertex, the second one is a A-vertex

as well. These carry the same sign so that this contribution is given by B(a)
ij , without any

sign change. On the other hand, when the two non-adjacent lines are separated by an even

number of free lines we need use the block B(b)
ij . In this case the two employed vertices

are of different kind and since these carry opposite sign (see eq. (2.9)) we obtain an extra

minus which compensates the sign difference between the blocks, so that both kinds of

contributions end up having the same sign.

In conclusion, taking into account color factors, the leading term of the correlation

function at one-loop is

C 1−loop
n → Ctree

n × −1

4π5

[

N

K1
+
M

K2

] n−2
∑

i=1

n−δi,1
∑

j=i+2

ǫµνρ x
µ
i, i+1 x

ν
i+1, j x

ρ
j, j+1 J (i, j) (3.8)

where the sum extends to the n(n − 3)/2 ways to connect two non-adjacent edges, and

J (i, j) is

J (i, j) =

∫

d5x0
1

x2
0,i x

2
0,i+1 x

2
0,j x

2
0,j+1

(3.9)

In the ABJM case and for all theories with K2 = −K1 and M = N the color factor

in front vanishes, so that correlation functions are trivially zero at one loop. The same

happens for the BLG theory, as it can be easily checked by computing the color factor for

gauge group SU(N) × SU(M) which turns out to be (N − 1/N)/K1 + (M − 1/M)/K2.

We concentrate on more general theories for which the color factor does not vanish.

The first non-trivial expression in (3.8) is the four point correlation function. Setting n = 4,

the sum reduces to two contributions having the same integral factor

C 1−loop
4 ∝ ǫµνρ

(

xµ
1, 2 x

ν
2, 3 x

ρ
3, 4 + xµ

2, 3 x
ν
3, 4 x

ρ
4, 1

)

∫

d5x0
1

x2
0,1 x

2
0,2 x

2
0,3 x

2
0,4

(3.10)

It is immediate to see that the structure in front of the integral vanishes, due to the

contraction with the ǫ tensor. Hence, the connected four point correlation function is

identically zero, no need to perform the integral.

This trivial result is no longer true for higher point correlation functions, so that in

general we really have to work out the J (i, j) integral. We do it in the light-like limit

x2
i, i+1 → 0, which greatly simplifies the computation and, as shown in [18], is the correct

prescription to test a correspondence to light-like Wilson loops.
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Since the prefactor C tree
n in (3.8) is divergent in this limit, we consider the ratio of

the one-loop correlator to the tree level result. Moreover, in order to get a real output, we

require the n(n− 3)/2 diagonals of the n-polygon to be space-like (x2
i,j > 0, j 6= i+ 1).

To evaluate the integral (3.9) we first shift the integration variable x0 → x0 + xi,

and reduce it to a Feynman scalar box integral in five dimensions with external momenta

xi, i+1, xi+1, j, xj, j+1 and xj+1, i. In the light-like limit the integral is recognized to be the

two mass easy box, with two of the momenta massless by construction and the other two

massive. In the j = i+ 2 case, i.e. when the two edges are separated by a single free line,

one more external leg becomes massless and the integral simplifies further.

Feynman parametrizing the scalar five dimensional box and performing the loop inte-

gration yields

J (i, j) =
π3

2

∫ 1

0
[dα]4

1
(

α1 α3 x2
i,j + α2 α4 x2

i+1,j+1 + α1 α4 x2
i,j+1 + α2 α3 x2

i+1,j

)
3

2

(3.11)

where [dα]4 = δ(1 −∑4
k=1 αk)

∏4
k=1 dαk.

The delta-function constraint can be solved by performing the following change of

variables

α1 = (1 − β1)(1 − β3) , α2 = β1(1 − β3) , α3 = (1 − β2)β3 , α4 = β2β3 (3.12)

Consequently, the integral reduces to

J (i, j) =
π3

2

∫ 1

0

3
∏

i=1

dβi × (3.13)

β
− 1

2

3 (1 − β3)
− 1

2

[

(1 − β2) (1 − β1)x2
i,j + β1 β2 x2

i+1,j+1 + β2 (1 − β1)x2
i,j+1 + β1 (1 − β2)x2

i+1,j

] 3

2

where the β3-integration can be trivially performed, leading to

J (i, j) =
π4

2

∫ 1

0
dβ1dβ2 × (3.14)

1
[

(1 − β2) (1 − β1)x2
i,j + β1 β2 x2

i+1,j+1 + β2 (1 − β1)x2
i,j+1 + β1 (1 − β2)x2

i+1,j

]
3

2

Finally, the last two integrations can be performed with the help of Mathematica.

In conclusion, the general one-loop contribution to the n-point correlator corresponding

to a Feynman diagram where a vector line connects the xi,i+1 and xj,j+1 free propagators,

in the light-cone limit reads

ǫµνρ x
µ
i, i+1 x

ν
i+1, j x

ρ
j, j+1 J (i, j) = (3.15)

π4 Si, j log

[

(1 + xi+1,j Li, j) (1 + xi,j+1 Li, j)

(1 − xi+1,j Li, j) (1 − xi,j+1 Li, j)

(1 − xi,j Li, j) (1 − xi+1,j+1 Li, j)

(1 + xi,j Li, j) (1 + xi+1,j+1 Li, j)

]
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i i+1

jj+1

xi, j+1
xi+1, j

xi, j xi+1, j+1

(a)

i i+1

jj+1

xi, j+1
xi, j xi+1, j+1

(b)

Figure 3. The building blocks for the correlation functions only depend on the diagonals of the

polygon, which are drawn with dashed lines. Case (a) corresponds to the n(n− 5)/2 blocks where

all the involved diagonals are long. Case (b) depicts one of the n blocks with short diagonals.

where we have defined

Si, j =
2 ǫµνρ x

µ
i, i+1 x

ν
i+1, j x

ρ
j, j+1

√

x2
i,j + x2

i+1,j+1 − x2
i+1,j − x2

i,j+1

√

x2
i,jx

2
i+1,j+1 − x2

i+1,jx
2
i,j+1

(3.16)

and

Li, j =

√

x2
i,j + x2

i+1,j+1 − x2
i+1,j − x2

i,j+1
√

x2
i,jx

2
i+1,j+1 − x2

i+1,jx
2
i,j+1

(3.17)

Focusing on the argument of the logarithm in (3.15) we note that it depends only on the

diagonals connecting the four vertices of the block xi, xi+1, xj and xj+1, as depicted in

figure 3(a). This is due to the fact that the correlator, being Poincaré invariant, has to be

a function of the only invariants that we can construct. In the light-like limit these are the

n(n− 3)/2 space-like diagonals.1

We distinguish two sets of diagonals. We call “short” diagonals those connecting

two vertices separated by a pair of light-like edges, whereas we call “long” diagonals the

remaining n(n− 5)/2 ones.

An example of the appearance of short diagonals is depicted in figure 3(b), where the

vertices xi+1 and xj are connected by a null edge, so the space-like segments xi, j and

xi+1, j+1 are short diagonals. In this case, the corresponding contribution can be obtained

from the general expression (3.15) by collapsing xi+1, j → 0, and as a result the logarithm

contains just three factors instead of four.

Going back to (3.15), by straightforward algebra we can rewrite the argument of the

1Actually not all diagonals are independent and their number could in principle be reduced by the Gram

constraints. Since these constraints are difficult to implement we will not pursue this technique.
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logarithm as

(1 + xi+1,j Li, j) (1 + xi,j+1 Li, j)

(1 − xi+1,j Li, j) (1 − xi,j+1 Li, j)

(1 − xi,j Li, j) (1 − xi+1,j+1 Li, j)

(1 + xi,j Li, j) (1 + xi+1,j+1 Li, j)
=

(1 + xi+1,j Li, j)
2 (1 + xi,j+1 Li, j)

2

(1 + xi,j Li, j)
2 (1 + xi+1,j+1 Li, j)

2 (3.18)

As proven in section 5, Li, j ’s are real functions as long as all the diagonals are space-like.

Under this assumption, eq. (3.18) is the square of a real expression and the logarithm

in (3.15) is well defined. A similar argument applies also to the case of short diagonals,

leading to the same conclusions.

Finally, inserting the result (3.15) back into eq. (3.8) and summing over all possible

contractions, we obtain the complete analytical result for the ratio C 1−loop
n /Ctree

n in the

light-like limit. The positiveness of the arguments of all logarithms allows us to safely

rewrite the sum as

C 1−loop
n

Ctree
n

= − 1

4π

[

N

K1
+
M

K2

]

log

{

(3.19)

n−2
∏

i=1

n−δi,1
∏

j=i+2





(1 + xi+1,j Li, j) (1 + xi,j+1 Li, j)

(1 − xi+1,j Li, j)
(

1 − x2
i,j+1 Li, j

)

(1 − xi,j Li, j) (1 − xi+1,j+1 Li, j)

(1 + xi,j Li, j) (1 + xi+1,j+1 Li, j)





Si, j











In general, this expression is not zero as long as the distances xi, j are arbitrary. How-

ever they are not all independent, being the diagonals of a polygon in three spacetime

dimensions. In section 5 we come back to this result and prove that it is actually zero

when implementing an explicit parametrization which constrains the xi, j segments to be

the diagonals of a three dimensional polygon.

4 Connection with light-like Wilson loops

In this section we discuss the relation between the n-point correlation function just com-

puted and light-like polygonal Wilson loops.

For the set of theories described by the action (2.2) we consider the Wilson loop

operator

〈Wn(A, Â)〉 =
〈 1

2N
TrPexp

(

i

∮

Γn

Aµdz
µ

)

+
1

2M
TrPexp

(

i

∮

Γn

Âµdz
µ

)

〉

(4.1)

where Γn is a n-polygon with vertices xi, i = 1, · · · , n, and light-like edges, x2
i,i+1 = 0. We

require all the diagonals to be strictly positive in order to get real results. The edges can

be parametrized as

zµ
i (τi) = xµ

i − xµ
i,i+1 τi , 0 ≤ τi ≤ 1 (4.2)

The perturbative evaluation of these operators up to two loops has been carried on in [40].

Here, we briefly summarize their findings by pointing out what is needed for a comparison

with correlation functions.
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The one-loop contribution to a WL is obtained by expanding the path-ordered expo-

nential at second order in the gauge fields. Concentrating on one of the gauge fields, let’s

say Aµ, it is given by

〈W (A)〉1−loop =
i2

N

∑

i≥j

∫

dτi dτj ż
µ
i ż

ν
j 〈Tr(Aµ(zi)Aν(zj))〉 (4.3)

where τi, τj, i 6= j run independently between 0 and 1, whereas for i = j the integration

domain is meant to be 0 ≤ τi ≤ 1 and 0 ≤ τj ≤ τi. Dots indicate derivatives with respect

to the affine parameters.

Plugging in the explicit expression for the gauge propagator, which in Landau gauge

reads

〈(Aµ)ab(zi) (Aν)cd(zj)〉 = − 1

8πK1
ǫµνρ

(zi − zj)
ρ

|zi − zj |3
δa
d δ

c
b (4.4)

the contribution from a diagram where the gauge vector connects the (xi, xi+1) and

(xj , xj+1) edges is proportional to ǫµνρ x
µ
i,i+1 x

ν
i+1,j x

ρ
j,j+1 K(i, j), where

K(i, j) =
π4

2

∫ 1

0
dτidτj × (4.5)

1
[

(1 − τi) (1 − τj)x
2
i,j + τi τj x

2
i+1,j+1 + τj (1 − τi)x

2
i,j+1 + τi (1 − τj)x

2
i+1,j

]
3

2

where we have taken into account that the contributions for j = i and j = i + 1 vanish,

due to the antisymmetry of the ǫ tensor.

Now, including all the coefficients and summing the analogous contribution coming

from Â, the one-loop WL can be written as

〈W (A, Â)〉1−loop = − 1

4π5

(

N

K1
+
M

K2

) n−2
∑

i=1

n−δi,1
∑

j=i+2

ǫµνρ x
µ
i,i+1 x

ν
i+1,j x

ρ
j,j+1 K(i, j) (4.6)

where the sum runs over all possible ways to connect two non-adjacent lines. We note that

at this order matter fields do not enter the calculation. Therefore, this result is valid also

for pure Chern-Simons theories.

As for the correlation functions, the overall color factor in (4.6) vanishes for all the

theories with K2 = −K1 and M = N , ABJM case included. For this set of theories the

correlation functions/WL duality is then trivial at the first perturbative order.

Interesting non-trivial results can be found, instead, for theories where the color factor

does not vanish. In fact, the main observation is that, identifying the affine parameters

τi, τj with the Feynman parameters β1, β2 in (3.14), the K(i, j) integral is precisely the

same as the integral J (i, j) arising in the computation of an n-point correlation function

in the light-like limit. Since the integral (3.14) is the Feynman parametrization of a 5d box

integral, we can claim that also the one-loop WL can be formally expressed in terms of a

5d scalar integral.
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The exact relation between correlation functions and WL, at one-loop reads

lim
x2

i,i+1
→0

C 1−loop
n

Ctree
n

= 〈W (A, Â)〉1−loop (4.7)

all in terms of the 5d integral (3.9).

We note that the two expressions coincide, independently of the values of the couplings

K1,K2 and for any value of the gauge ranks (N,M), as no planar limit is required.

5 One-loop vanishing of correlators and Wilson loops

In this section we give an analytical proof that the expression (3.19) vanishes for any value

of n. In other words, the light-like limit of n-point correlation functions of dimension-one

BPS operators is zero at one loop.

Given the identification (4.7), as a by-product we also prove that light-like n-polygon

Wilson loops vanish at first order. This result generalizes the one in [40] valid only for n =

4, 6 and proves the conjecture made there that WL should be one-loop vanishing for any n.

As we read in (3.19), the one-loop correction to a correlation function is proportional

to the logarithm of a product of factors with schematic form
(

1±xLi, j

1∓xLi, j

)Si, j

. We prove that

this product always evaluates to 1.

In (3.19) the factors are grouped according to the pair of edges involved in a given

gauge vector exchange (see blocks in figure 2). The basic idea of the proof is to reorganize

them by group together all the factors which depend on the same diagonal xi,j. It is easy

to ascertain that each long diagonal is involved in four contributions, coming from the four

possible interactions connecting the edges which are adjacent to the diagonal itself (See

figure 4 (a)). In the case of a short diagonal, one of these contributions vanishes (it would

be a correction to the vertex), thus we are left with just three pieces (See figure 4(b)).

Once this reshuffling of factors has been performed in (3.19), we prove that the product

of contributions involving the same reference diagonal evaluates to +1 for long diagonals

and to −1 for short ones. We consider a generic diagonal and parametrize all distances in

full generality, so that once we establish this property for one diagonal, we can apply it to

all the contributions to the correlator.

Let us focus on one particular diagonal xi,j, and suppose it is long. The corresponding

block of factors then depends only on the nearest neighbours of the vertices xi and xj , which

are xi−1, xi+1, xj−1, xj+1. These six points are parametrized by 18 coordinates. However,

four of them can be eliminated by light-likeness of the edges xi, i+1, xi, i−1, xj, j+1, xj, j−1. By

using translation invariance, we choose a convenient reference frame where xµ
i = (0, 0, 0),

so removing three more coordinates. Using rotational invariance, we eliminate two further

parameters by choosing xµ
j = (0, b, 0) where b > 0. In this way, the reference diagonal lies

in the t = 0 plane. We parametrize the rest of the block in terms of the nine remaining

variables as follows

xµ
i−1 = r1 (1, cos φ1, sin φ1) , xµ

i+1 = r3 (1, cos φ3, sinφ3)

xµ
j−1 = xµ

j + r2 (1, cosφ2, sinφ2) , xµ
j+1 = xµ

j + r4 (1, cos φ4, sinφ4) (5.1)
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i-1 i+1

j-1j+1

i

j

(a)

i-1

i+1 =

j-1

j+1

i

j

(b)

Figure 4. In picture (a) the four blocks in which the reference diagonal xi,j is involved are depicted.

In picture (b) the case of a short diagonal and its three blocks is shown. Each wiggled line has to

be interpreted separately.

Figure 5. Parametrization of the block of contributions involving the same reference diagonal xi, j .

This parametrization is sketched in figure 5: the φi’s are the angles held by the projections

of the light-like lines on the t = 0 plane, while the moduli of the ri’s measure the lengths

of these same projections. It is obvious that the edges are light-like and the reference

diagonal xi, j is space-like by construction. At this stage, the other diagonals are not

necessarily space-like. The quest for them to be space-like implies that r1, r3 and r2, r4
should have separately the same sign, in order for adjacent segments to point alternatively

to the future and to the past. In the following we will assume that they are all positive,

but the final statement can be exhaustively shown to be valid for any choice of these signs.

Let us now evaluate the product of the four contributions for the reference diagonal

xi, j, namely

(

1 + xi,j Li, j

1 − xi,j Li, j

)Si, j
(

1 + xi,j Li−1, j−1

1 − xi,j Li−1, j−1

)Si−1, j−1

(

1 − xi,j Li−1, j

1 + xi,j Li−1, j

)Si−1, j
(

1 − xi,j Li, j−1

1 + xi,j Li, j−1

)Si, j−1

(5.2)
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By plugging in the parametrization (5.1) we obtain a nice symmetric expression













1 +

∣

∣

∣

∣

∣

sin
“

φ1−φ2
2

”

cos
“

φ1+φ2
2

”

∣

∣

∣

∣

∣

1 −
∣

∣

∣

∣

∣

sin
“

φ1−φ2
2

”

cos
“

φ1+φ2
2

”

∣

∣

∣

∣

∣













Sign

2

4

sin

„

φ1−φ2
2

«

cos

„

φ1+φ2
2

«

3

5











1 −
∣

∣

∣

∣

∣

sin
“

φ3−φ2
2

”

cos
“

φ3+φ2
2

”

∣

∣

∣

∣

∣

1 +

∣

∣

∣

∣

∣

sin
“

φ3−φ2
2

”

cos
“

φ3+φ2
2

”

∣

∣

∣

∣

∣













Sign

2

4

sin

„

φ3−φ2
2

«

cos

„

φ3+φ2
2

«

3

5













1 −
∣

∣

∣

∣

∣

sin
“

φ1−φ4
2

”

cos
“

φ1+φ4
2

”

∣

∣

∣

∣

∣

1 +

∣

∣

∣

∣

∣

sin
“

φ1−φ4
2

”

cos
“

φ1+φ4
2

”

∣

∣

∣

∣

∣













Sign

2

4

sin

„

φ1−φ4
2

«

cos

„

φ1+φ4
2

«

3

5











1 +

∣

∣

∣

∣

∣

sin
“

φ3−φ4
2

”

cos
“

φ3+φ4
2

”

∣

∣

∣

∣

∣

1 −
∣

∣

∣

∣

∣

sin
“

φ3−φ4
2

”

cos
“

φ3+φ4
2

”

∣

∣

∣

∣

∣













Sign

2

4

sin

„

φ3−φ4
2

«

cos

„

φ3+φ4
2

«

3

5

(5.3)

where Sign(x) is the sign function. We notice that the explicit parametrization allows us

to fix a loose end from section 3.2, namely we have ascertained that the terms xi,j L... are

real positive functions. Furthermore we observe that the apparently awkward exponents

Si, j (3.16) are surprisingly just ± signs.

Expression (5.3) can be written in a compact fashion (here and in the following φ5 = φ1

is understood)

4
∏

i=1













1 +

∣

∣

∣

∣

∣

sin
“

φi−φi+1

2

”

cos
“

φi+φi+1

2

”

∣

∣

∣

∣

∣

1 −
∣

∣

∣

∣

∣

sin
“

φi−φi+1

2

”

cos
“

φi+φi+1

2

”

∣

∣

∣

∣

∣













Sign

2

4

sin

„

φi−φi+1
2

«

cos

„

φi+φi+1
2

«

3

5

(5.4)

We observe that the expression depends exclusively on the four angles of the parametri-

zation but not on any of the five dimensionful parameters. We also note that in each

contribution the arguments of absolute values and Sign functions are the same. Because

of that and using the fact that
(

1±x
1∓x

)±
= 1+x

1−x we may simplify expression (5.4) to obtain

4
∏

i=1

cos
(

φi+φi+1

2

)

+ sin
(

φi−φi+1

2

)

cos
(

φi+φi+1

2

)

− sin
(

φi−φi+1

2

) (5.5)

This is equivalent to

4
∏

i=1

cot

(

φi

2
− π

4

)

tan

(

φi+1

2
− π

4

)

= 1 (5.6)

Therefore, this completes the proof for long diagonals.

For a short diagonal xi, j, it suffices to take the result above and set e.g., xi+1 = xj−1.

Then the contribution involving Li, j−1 vanishes by construction leaving

cos
(

φ1+φ2

2

)

+ sin
(

φ1−φ2

2

)

cos
(

φ1+φ2

2

)

− sin
(

φ1−φ2

2

)

cos
(

φ1+φ4

2

)

− sin
(

φ1−φ4

2

)

cos
(

φ1+φ4

2

)

+ sin
(

φ1−φ4

2

)

cos
(

φ3+φ4

2

)

+ sin
(

φ3−φ4

2

)

cos
(

φ3+φ4

2

)

− sin
(

φ3−φ4

2

) (5.7)
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When parametrizing as in eq. (5.1) the condition xi+1 = xj−1 is forced by choosing

r2 = r3, r3 cos (φ3) = b+ r2 cos (φ2), sin (φ3) = sin (φ2) (5.8)

These equations are solved by φ3 = π − φ2 and some function r2 = r2(a, φ3) which is

irrelevant. Plugging it into (5.7) finally simplifies the expression to −1, in a completely

analogous way as in the long diagonal case. Since there are n contributions of the short

type, and since n is even, the overall contribution of short diagonals is equal to +1.

Summarizing, we have shown that the combined collection of all short and long diagonal

contributions to the argument of the logarithm is equal to +1. Therefore, the logarithm

is equal to zero, thus proving the vanishing of the n-point correlator and Wilson loops at

one loop.

6 Generalization to higher dimensional operators

So far we have considered one-loop corrections C1−loop
n to correlators of dimension-one

operators Oi
j = Tr(AiBj). In this section, we show that one-loop corrections to correlators

Cn,2l of higher dimensional operators (2.10) can be simply computed once C1−loop
n is known.

In particular, since C1−loop
n is zero, the same holds for any correlator Cn,2l with l > 1.

We emphasize that the derivation of this result is valid for any value of the gauge group

parameters (N,M).

The most divergent part of connected correlators of higher dimensional operators in

the light-like limit x2
i,i+1 → 0 at tree level reads

Ctree
n,2l ∝

2l−1
∑

s=1

T tree
s

T tree
s =

n/2
∏

j=1

(

1

x2j−1,2j

)s( 1

x2j,2j+1

)2l−s

(6.1)

Eq. (6.1) extends eq. (3.4) to the l > 1 case. The general contribution in the sum (6.1)

is a polygon with edges alternately made by s and 2l − s propagators (see figure 6(a)).

Each value of s defines a different topology Ts. In the rest of the discussion, it is useful to

divide each topology Ts into classes Ts,a where the parameter a counts the number of 〈AĀ〉
propagators inside a block of s lines (see figure 6(b)).

One-loop corrections to Cn,2l are given by inserting a gauge propagator V or V̂ in all

possible ways between the edges of the polygon Ctree
n,2l .

As in the l = 1 case, the only non-trivial insertions occur when the gauge propagator

connects two non-consecutive edges in the polygon. All other possible insertions are zero

due to D-algebra constraints or to the antisymmetry of the ǫ tensor.

The non-trivial corrections have the form (3.5). However, since now we have more than

one chiral propagator in each edge, we have more than one possibility to insert a gauge

line between the same two edges of a correlator.

The combinatorial factor is in principle different for corrections involving different pairs

of edges in each class Ts,a. However, a careful computation which takes into account the
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j

j-1 j+1

s 2l-s

2l-s s

j-2 j+2

(a)

j-1 j

A

B

A

B
B
B

A

s-a

a
s

(b)

Figure 6. General form of the contributions to Ctree
n,2l. In figure (a), structure of the leading divergent

terms in the limit x2
i,i+1 → 0. In figure (b), the parameter a counts the number of 〈AĀ〉 propagators

in a set of s lines.

relative signs between A and B vertices (2.9) and between the two building blocks (3.5)

shows that the combinatorial factor depends only on the (a, s) parameters and it is thus a

common factor for all corrections inside each Ts,a class. Precisely, the one-loop correction

to the generic Ts,a class reads

T 1−loop
s,a ∝ T tree

s,a × (s− 2a)2
n−2
∑

i=1

n−δi,1
∑

j=i+2

ǫµνρ x
µ
i, i+1 x

ν
i+1, j x

ρ
j, j+1 J (i, j) (6.2)

where J (i, j) is the five dimensional box integral (3.9).

This formula closely resembles eq. (3.8). In particular, the sums in these two ex-

pressions are the same. Thus, having computed the one-loop corrections to the n-point

function for dimension-one operators, we immediately have the result for any T 1−loop
s,a . The

complete one-loop correction to the correlator Cn,2l can be then recovered through (6.1).

In particular, since we have proved that C1−loop
n /Ctree

n vanishes in the light-like limit, so

C1−loop
n,2l /Ctree

n,2l does.

7 Conclusions

In this paper we have focused on the novel proposal that a multiple light-like limit of the

correlation function of n protected operators reproduces a Wilson loop evaluated on a null

n-polygon. This statement has been argued and verified perturbatively in N = 4 SYM,

and it has been claimed to be valid for any conformal gauge theory in any dimensions [18].

We have confirmed this expectation for a class of supersymmetric Chern-Simons matter

theories in three dimensions at first order in perturbation theory. Our check goes as

follows: We have computed one-loop corrections to the correlation function of n BPS

scalar operators in a manifestly N = 2 supersymmetric formalism. Remarkably, they can

be expressed in terms of five dimensional box integrals. Then we have performed the light-

like limit of the correlator as prescribed in [18] in order to compare it to the Wilson loop
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expectation values on n-cusped light-like polygons. These were found explicitly in [40] in

the cases of n = 4 and n = 6 cusps. The former was shown to vanish analytically, whereas

numerical evidence hinted at the vanishing of the latter. This suggested that all light-like

Wilson loop should not receive first order quantum corrections in Chern-Simons theories.

We have managed to show analytically that both one-loop corrections to the correlators

and to the Wilson loops vanish, thus confirming the correlator/Wilson loop duality for

a class of three dimensional theories, and proving the claim on the vanishing of light-like

Wilson loops at first order. We point out that our check is not just a mere identity between

two vanishing contributions, since the equality between correlators and Wilson loops in the

light-like limit already holds when expressing them in terms of integrals, before showing

that these expressions actually vanish.

In our computation this equivalence seems to apply to any N = 2 Chern-Simons matter

theories, but this is just an artifact of the low perturbative order. Indeed quantum correc-

tions arise purely from the Chern-Simons sector both for the correlation functions and for

Wilson loops and the matter sector is not involved. On one hand, this confirms the idea

that the relation should be valid in any conformal field theory: Indeed, all Chern-Simons

matter theories are naively conformal invariant at one loop. On the other hand, this shad-

ows any difference between the gauge theories spanned by our N = 2 Lagrangian (2.2),

both as concerns supersymmetry and conformality. Models with different amounts of sym-

metry should be discriminated starting from two-loop order, where we expect that the

equivalence between correlators and Wilson loops may hold for the subset of conformal

field theories only. The Wilson loop on a four cusped null contour is available at two loops

in literature [40]; the computation of correlation functions at the same order is then highly

desirable and is planned for a future investigation [45].

The correlators/Wilson loop equivalence is just a corner of the chain of dualities conjec-

tured in [18–20]. Dualities involving scattering amplitudes are of great interest, the hope

being to eventually extract information on those from the knowledge of simpler objects

such as Wilson loops and correlation functions.

In three dimensions results on loop amplitudes are limited to the scattering of four

external particles at first order [39]. When the theory possesses enough supersymmetry

these amplitudes have been shown to vanish, completing the test of dualities in the one-loop

n = 4 case. Differently from the correlator/Wilson loop equivalence, dualities involving

scattering amplitudes seem to require supersymmetry already at one loop, indicating that

their origin should be different from the former. Indeed the duality between MHV scattering

amplitudes and Wilson loops is intimately connected to dual superconformal invariance [10]

on the field theory side and to T-duality in the AdS dual description [12]. Results on dual

superconformal invariance have been extended to tree level scattering amplitudes in three

dimensional theories in [30, 31], whereas fermionic T-dualities seem to be ill-defined for the

σ-model in the dual picture [34]–[38].

In order to shed more light on the role of superconformal invariance and dualities for

Chern-Simons matter theories the knowledge of a larger sample of scattering amplitudes is

mandatory. In particular it would be highly desirable to compute the six point amplitude

at one-loop order and the four point amplitude at two loops, which should not be trivial.
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This task represents another challenging line of research [46].
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A Notations and conventions

For three dimensional N = 2 superspace we follow the conventions of [43].

The metric for the fermionic coordinates θα (α = 1, 2) of N = 2 superspace is

Cαβ =

(

0 i

−i 0

)

Cαβ =

(

0 −i
i 0

)

(A.1)

which is used to rise and lower spinorial indices as

ψα = Cαβψβ ψα = ψβCβα (A.2)

and obeys the relation

Cαβ Cγδ = δα
γ δ

β
δ − δα

δ δ
β

γ (A.3)

Spinors are contracted according to

ψχ = ψα χα = χα ψβ = χψ ψ2 =
1

2
ψα ψα (A.4)

We consider a three dimensional Minkowski spacetime with mostly plus signature gµν =

diag (−1, 1, 1). The corresponding Dirac (γµ)α β matrices satisfy the algebra

(γµ)αγ (γν)γβ = −gµνδα
β + i ǫµνρ (γρ)

α
β (A.5)

The following identities for traces of Dirac matrices can be read from the above algebra

tr(γµ γν) = (γµ)αβ (γν)βα = −2 gµν (A.6)

tr(γµ γν γρ) = −(γµ)αβ (γν)βγ (γρ)γα = 2 i ǫµνρ (A.7)

tr(γµ γν γρ γσ) = (γµ)αβ (γν)βγ (γρ)γδ (γσ)δα =

= 2 (gµν gρσ − gµρ gνσ + gµσ gνρ) (A.8)

The scalar product of two bispinors follows

pαβ kαβ = 2 p · k (A.9)

Vectors and bispinors are exchanged according to

for coordinates xαβ = 1
2 (γµ)αβ xµ xµ = (γµ)αβ x

αβ

for derivatives ∂αβ = (γµ)αβ ∂µ ∂µ = 1
2 (γµ)αβ ∂αβ

for fields Aαβ = 1√
2

(γµ)αβ Aµ Aµ = 1√
2

(γµ)αβ Aαβ

(A.10)
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Supercovariant derivatives are defined as

Dα = ∂α +
i

2
θ

β
∂αβ , Dα = ∂̄α +

i

2
θβ ∂αβ (A.11)

and satisfy the anticommutator

{Dα, Dβ} = i ∂αβ (A.12)

The components of a chiral and an anti-chiral superfield, Z(xL, θ) and Z̄(xR, θ̄), are a

complex boson φ, a complex two-component fermion ψ and a complex auxiliary scalar F .

Their component expansions are given by

Z = φ(xL) + θαψα(xL) − θ2 F (xL)

Z̄ = φ̄(xR) + θ
α
ψ̄α(xR) − θ

2
F̄ (xR) (A.13)

where xµ
L = xµ + iθγµθ̄, xµ

R = xµ − iθγµθ̄.

The components of the real vector superfield V (x, θ, θ̄) in Wess-Zumino gauge (V | =

DαV | = D2V | = 0) are the gauge field Aαβ , a complex two-component fermion λα, a real

scalar σ and an auxiliary scalar D, such that

V = i θαθα σ(x) + θαθ
β √

2Aαβ(x) − θ2 θ
α
λ̄α(x) − θ

2
θαλα(x) + θ2 θ

2
D(x) (A.14)

The U(N) generators are TA = (T 0, T a), where T 0 = 1√
N

and T a (a = 1, . . . , N2 − 1) are

a set of N ×N hermitian matrices. The generators are normalized as Tr(TATB) = δAB .

B The emergence of a five dimensional integral

In this appendix we give a detailed proof of eq. (3.7) which allows to express a double three

dimensional integral as a one-loop five dimensional box integral.

In order to simplify the notation, in the expression ǫµνρ ∂
µ
i ∂

ν
i+1 ∂

ρ
j+1 I(i, j) we choose

i = 1, j = 3. Applying the derivatives to the integrand, the expression that we need

evaluate is then

ǫµνρ ∂1µ ∂2ν ∂4ρ

∫

d3x0 d
3x5

1

x1,0 x2,0 x0,5 x3,5 x4,5
(B.1)

= −ǫµνρ

∫

d3x0 d
3x5

xµ
1,0 x

ν
2,0 x

ρ
4,5

(x2
1,0)

3/2 (x2
2,0)

3/2 (x2
0,5)

1/2 (x2
3,5)

1/2 (x2
4,5)

3/2
≡ I

We first focus on the x0-integration which can be performed by introducing Feynman

parameters

ǫµνρ

∫

d3x0

xµ
1,0 x

ν
2,0

(x2
1,0)

3/2 (x2
2,0)

3/2 (x2
0,5)

1/2
=

4

π3/2
Γ

(

7

2

)∫ 3
∏

i=1

dyi δ(
∑

yi − 1)y
1/2
1 y

1/2
2 y

−1/2
3

∫

d3x0

ǫµνρ x
µ
1,0 x

ν
2,0

[(x0 − ρ1)2 + Ω1]7/2
(B.2)
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where ρµ
1 = y1x

µ
1 + y2x

µ
2 + y3x

µ
5 and Ω1 = y1y2x

2
1,2 + y1y3x

2
1,5 + y2y3x

2
2,5.

Performing the shift xµ
0 → xµ

0 + ρµ
1 and integrating over x0 we obtain

4 ǫµνρ x
µ
1,5 x

ν
2,5

∫ 3
∏

i=1

dyi δ(
∑

i

yi − 1)
(y1 y2 y3)

1/2

(y1y2x2
1,2 + y1y3x2

1,5 + y2y3x2
2,5)

2
(B.3)

Now, in order to render the remaining x5 integration in (B.1) doable, we manipulate the

expression (B.3) by using the Mellin-Barnes integral representation. According to the

general identity

1

(k2 +A2 +B2)a
=

1

(k2)aΓ(a)

∫ +i∞

−i∞

dsdt

(2πi)2
Γ(−s)Γ(−t)Γ(a+ s+ t)

(

A2

k2

)s(
B2

k2

)t

(B.4)

we rewrite (B.3) as

4 ǫµνρ x
µ
1,5 x

ν
2,5√

π

i∞
∫

−i∞

du dv

(2πi)2
Γ
(

−u| − 1
2 − u| − v| − 1

2 − v|2 + u+ v|32 + u+ v
)

(x2
1,2)

u+v+2 (x2
1,5)

−u (x2
2,5)

−v
(B.5)

where we have introduced the short notation Γ(z1|...|zn) ≡ Γ(z1)...Γ(zn).

We insert this expression back into eq. (B.1) and perform the x5-integration. Once

again, using Feynman combining we can write (we neglect factors which are independent

of x5)

−ǫµνρ

∫

d3x5

xµ
1,5 x

ν
2,5 x

ρ
4,5

(x2
1,5)

−u (x2
2,5)

−v (x2
3,5)

1/2 (x2
4,5)

3/2
= (B.6)

−2Γ(2 − u− v)

Γ(−u| − v)π

∫ 4
∏

i=1

dyi δ(
∑

yi − 1)y−u−1
1 y−v−1

2 y
−1/2
3 y

1/2
4

∫

d3x5 ǫµνρ x
µ
1,5 x

ν
2,5 x

ρ
4,5

[(x5 − ρ2)2 + Ω2]2−u−v

where we have defined

ρµ
2 = y1x

µ
1 + y2x

µ
2 + y3x

µ
3 + y4x

µ
4 (B.7)

Ω2 = y1y2x
2
1,2 + y2y3x

2
2,3 + y3y4x

2
3,4 + y4y1x

2
4,1 + y1y3x

2
1,3 + y2y4x

2
2,4

After shifting xµ
5 → xµ

5 + ρµ
2 , we may integrate over x5 and obtain

ǫµνρ x
µ
3,1 x

ν
3,2 x

ρ
3,4

2
√
π Γ(1

2 − u− v)

Γ(−u| − v)

∫ 4
∏

i=1

dyi
δ(
∑

yi − 1) y−u−1
1 y−v−1

2 y
1/2
3 y

1/2
4

Ω
1/2−u−v
2

(B.8)

The first remarkable observation is that this expression is exactly the Feynman parametri-

zation of a five dimensional scalar square integral with indices (−u,−v, 3/2, 3/2). Precisely,

we have

(B.8) = ǫµνρ x
µ
3,1 x

ν
3,2 x

ρ
3,4

1

2π

∫

d5x5
1

(x2
1,5)

−u (x2
2,5)

−v (x2
3,5)

3/2 (x2
4,5)

3/2
(B.9)

The identification with a higher dimensional integral is strictly formal, and should be

intended at the level of its Feynman-parametrized form. In any case, we are dealing with
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a scalar integral which depends only on the Lorentz invariants x2
i,j and these invariants are

unambiguously well-defined both in three and five dimensions.

Collecting all the factors from (B.5), (B.9), we are left with the following expression

for the initial integral

I =
2

π
3

2

ǫµνρ x
µ
1,3 x

ν
2,3 x

ρ
3,4

∫

d5x5

(x2
3,5)

3/2 (x2
4,5)

3/2
× (B.10)

∫ +i∞

−i∞

du dv

(2πi)2
Γ
(

−u| − v| − 1
2 − u| − 1

2 − v|2 + u+ v|32 + u+ v
)

(x2
1,2)

u+v+2 (x2
1,5)

−u (x2
2,5)

−v

The second remarkable observation is that the MB integral in this expression can be iden-

tified with the MB-representation of a five dimensional scalar triangle with exponents

(3/2, 3/2, 3/2). Therefore, we can write

I =
1

4π2
ǫµνρ x

µ
1,3 x

ν
2,3 x

ρ
3,4

∫

d5x0 d
5x5

1

(x2
0,1)

3/2 (x2
0,2)

3/2 (x2
0,5)

3/2 (x2
3,5)

3/2 (x2
4,5)

3/2
(B.11)

At this point it might seem that we have traded a complicated two-loop tensor integral in

three dimensions with a complicated two-loop scalar integral in five dimensions. But here

comes the magic: We can use the uniqueness relations applied to the x5-triangle integral.

We recall that for a generic triangle integral in D dimensions with arbitrary exponents

T [D;α1, α2, α3;x
2
0,3, x

2
0,4, x

2
3,4] =

∫

dDx5

(x2
0,5)

α1 (x2
3,5)

α2 (x2
4,5)

α3
, (B.12)

the following identity holds [42]

T [D;α1, α2, α3;x
2
0,3, x

2
0,4, x

2
3,4] =

Γ(
∑

i αi − D
2 )

Γ(D −∑i αi)

∏

i

Γ(D
2 − αi)

Γ(αi)
× 1

(x2
3,4)

α2+α3−D/2
×

T
[

D;
∑

αi −
D

2
,
D

2
− α3,

D

2
− α2;x

2
0,3, x

2
0,4, x

2
3,4

]

(B.13)

Applying this identity to the x5-triangle in (B.11) where we identify D = 5 and α1 = α2 =

α3 = 3/2, we obtain

I =
2

π4

ǫµνρ x
µ
1,3 x

ν
2,3 x

ρ
3,4

x3,4

∫

d5x0 d
5x5

1

(x2
0,1)

3/2 (x2
0,2)

3/2 (x2
0,5)

2 x2
3,5 x

2
4,5

(B.14)

The advantage of doing it is that the exponents of the x0 triangle are now (3/2, 3/2, 2) and

satisfy the uniqueness condition α1 + α2 + α3 = D in five dimensions. Therefore, we can

use the general result for unique triangles [42]

∫

dDx0

(x2
0,1)

α1 (x2
0,2)

α2 (x2
0,5)

α3

∣

∣

∣

α1+α2+α3=D
= (B.15)

πD/2
∏

i

Γ(D/2 − ai)

Γ(ai)

1

(x2
1,2)

D/2−α3 (x2
1,5)

D/2−α2 (x2
2,5)

D/2−α1
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and finally write

I =
8

π2

ǫµνρ x
µ
1,3 x

ν
2,3 x

ρ
3,4

x1,2 x3,4

∫

d5x5
1

x2
5,1 x

2
5,2 x

2
5,3 x

2
5,4

(B.16)

This concludes the proof of eq. (3.7) for i = 1, j = 3. The generalization of the formula to

any i, j is trivial.
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