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1 Introduction

Among the earliest tests of the AdS5/CFT4 correspondence [1–3] were comparisons of the
Weyl anomaly coefficients a and c. On the gravity side these coefficients were calculated
in [4] and were found to be equal; their values match the corresponding results in a variety
of large N superconformal 4-d gauge theories.

Thanks to the important progress during the past several years, there now also exists
a large set of precisely formulated AdS4/CFT3 conjectures. In particular, M-theory in the
AdS4 × S7/Zk background is now thought to be dual to the ABJM theory — the N = 6
superconformal U(N)k×U(N)−k Chern-Simons-matter gauge theory constructed in [5] (see
also [6, 7]). Many similar duality conjectures with lower amounts of supersymmetry are
also available. While various successful tests of some of these AdS4/CFT3 conjectures have
been made, it is interesting to ask whether there exists an analog in this dimensionality
of the Weyl anomaly matching. At first this question seems silly: of course, there are no
anomalies in 3-d field theories. Nevertheless, an idea has emerged in recent research [8–11]
that the 3-d quantity that plays a special role, and may be analogous to the anomaly a-
coefficient in 4 dimensions, is the free energy of the Euclidean CFT on a three-dimensional
sphere:1

F = − ln |ZS3 | , (1.1)

where Z is the Euclidean path integral.2 In a general 3-d CFT the free energy has power
law divergences. After they are subtracted, the finite part is independent of the radius

1Similarly, in a 4-d CFT the anomaly a-coefficient may be extracted from the free energy on the four-

sphere after removing the power-law divergences and differentiating with respect to ln R.
2A seemingly different measure of the number of degrees of freedom in a 3-d CFT was proposed in [12, 13];

it is the entanglement entropy between the two hemispheres in the CFT on R × S2. In [14] it was shown

that this quantity, which is the same as the entanglement entropy between a circle and its complement on

a plane, is also equal to minus the free energy of the Euclidean theory on S3. We thank Rob Myers for

pointing this out to us.
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of the three-sphere and appears to be an unambiguous, invariant quantity that provides
a good measure of the number of degrees of freedom. Explicit calculations in unitary 3-d
CFTs give positive values for F [9–11, 15], in contrast with the thermal free energy on
R2 × S1, which is negative. The corresponding calculations in Euclidean AdS4 also give a
positive free energy [16]

F =
πL2

2GN
(1.2)

after the counterterms that remove the power law divergences are included [4, 16, 17].
Here, GN is the effective four-dimensional Newton constant and L is the radius of AdS4.
It has been shown that L decreases along holographic RG flow in the leading supergravity
approximation [13, 18]. For M-theory on AdS4×Y , where Y is a seven-dimensional Einstein
space threaded by N units of flux, the gravitational free energy is [10]3

F = N3/2

√
2π6

27 Vol(Y )
+ o(N3/2) , (1.3)

where the metric on Y is normalized so that Rij = 6gij . This formula exhibits the char-
acteristic N3/2 scaling of the number of degrees of freedom on coincident M2-branes [19],
and it comes with a specific normalization that can be compared with the dual field the-
ory calculations.

For field theories with extended supersymmetry, the free energy on the three-sphere can
be calculated using the method of localization that reduces it to certain matrix integrals.
For all N ≥ 3 supersymmetric theories, where all field dimensions are determined by
supersymmetry, the necessary integrals were written down in [8]. Large N calculations of
these matrix integrals for theories with known M-theory duals [9, 10, 15] produce perfect
agreement with (1.3) and thus provide impressive tests of the AdS4/CFT3 conjectures. In
the present paper we extend these successes to large N theories withN = 2 supersymmetry.
For such theories the modification of the localization procedure that takes into account
anomalous dimensions was derived in [11, 20]. We will solve a variety of corresponding
large N matrix models and provide many new tests of AdS4/CFT3 conjectures.

These solvable N = 2 theories give rise to some new phenomena that could not be
seen in models with higher supersymmetry. In N = 2 theories the constraints of conformal
invariance are in general not sufficient to fix all the R-charges of gauge-invariant operators.
In such cases it was proposed [11] that the remaining freedom in the R-charges should be
fixed by extremizing the free energy on S3. We apply this idea to various large N models
and show that the R-charges determined this way are in agreement with the AdS/CFT
correspondence. In fact, in all cases we find that the R-charges locally maximize F . This is
analogous to the well-known statement that R-charges in four-dimensional N = 1 theories
locally maximize the anomaly coefficient a [21].

3We distinguish between the little-o and big-O notations: f(N) = o(Nα) as N → ∞ means that

limN→∞ f(N)/Nα = 0, while f(N) = O(Nα) as N → ∞ means that |f(N)| ≤ ANα for some constant A

and all large enough N . In other words o(Nα) stands for terms that grow slower than Nα at large N , while

O(Nα) stands for terms that grow at most as fast as Nα.
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If the cone over the seven-dimensional internal space Y is a toric Calabi-Yau four-fold,
then one can go a little further. In toric geometry the volume of Y can be found by perform-
ing a similar extremization procedure that is usually referred to as Z-minimization [22].
The function Z that one is supposed to minimize is nothing but the Einstein-Hilbert action
with positive cosmological constant evaluated on the set of Sasakian metrics on Y . It turns
out that Z depends only on how the R-symmetry (given by the Reeb vector) is embedded
within the U(1)4 isometry of the toric Calabi-Yau, which can be identified with a U(1)4

symmetry of the gauge theory. In particular, using this identification one can express Z in
terms of the trial R-charges consistent with the marginality of the superpotential. In the
cases we examine we show that Z(∆) ∼ 1/F (∆)2, where F is the three-sphere free energy
computed using the trial R-charges ∆. In other words, not only do Z-minimization and
F -maximization yield the same answer, but also the functions of ∆ that one is supposed to
extremize are related. A similar relation in the case of (3 + 1)-dimensional gauge theories
between Z and the anomaly coefficient a was found in [23].

In this paper we also study some pairs of fixed points connected by RG flow and
find that F decreases along the flow, just like a does in 4 dimensions (there is growing
evidence for the a-theorem in 4-d that states that a decreases along RG trajectories and is
stationary at RG fixed points [24]). We also find that, just like a, the free energy F stays
constant under exactly marginal deformations. It is therefore tempting to conjecture that
there exists a similar F -theorem in 3-d, stating that the free energy on the three-sphere
decreases along RG trajectories and is stationary at RG fixed points.

The rest of this paper is organized as follows. In section 2 we review the rules by
which one can construct the matrix model associated with a particular N = 2 quiver. We
show that in gauge theories where the bifundamentals are non-chiral, the total number of
fundamentals equals the total number of anti-fundamentals, and the Chern-Simons levels
sum to zero, the free energy scales as N3/2. In section 3 we discuss an infinite class of
the necklace quiver gauge theories with N = 2 supersymmetry where the N = 3 models
proposed in [25, 26], and studied in [10], are deformed by adding a cubic superpotential
for the adjoints [27]. In sections 4 and 6 we display many examples of flavored quivers
whose quantum corrected moduli space of vacua was constructed in [28, 29] and perform
F -maximization to find the R-symmetry in the IR. In section 5 we discuss deformations
of ABJM theory and RG flows. In section 7 we show that for the examples studied in
sections 4 and 6 Z-minimization is equivalent to F -maximization. In particular, this equiv-
alence represents a test of the proposed AdS4/CFT3 dualities. In section 8 we study the
N = 3 necklace quiver theories when the Chern-Simons levels don’t add up to zero. We find
that in this case the free energy on S3 as computed from the matrix model behaves as N5/3

at large N , in agreement with a dual massive type IIA construction [30]. We end with a
discussion in section 9. Various additional technical details are delegated to the appendices.

2 Matrix models for N = 2 quiver gauge theories

Using localization it was shown that the S3 partition function of N = 2 Chern-Simons-
matter theories is given by a matrix integral over the Cartan subalgebra of the gauge
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groups [11, 20]. The integrand involves both gaussians determined by the Chern-Simons
levels as well as factors appearing from one-loop determinants. The latter depend on the
curvature couplings on the sphere, parameterized by trial R-charges ∆:

F (∆) =− ln
∫ ( ∏

Cartan

dσ

2π

)
exp

[
i

4π
trk σ2 − trm σ

]
detAd

(
2 sinh

σ

2

)
×

∏
chirals

in rep Ri

detRi
(
e`(1−∆i+i

σ
2π )
)
,

(2.1)

where the function

`(z) = −z ln
(
1− e2πiz

)
+
i

2

(
πz2 +

1
π

Li2
(
e2πiz

))
− iπ

12
(2.2)

satisfies the differential equation d`/dz = −πz cot(πz). The integration variables σ are the
scalars in the vector multiplets. Since these scalars transform in the adjoint representation
of the gauge group, the integration contour for each eigenvalue of σ should be taken to
be the real axis. The trace trk is normalized so that for each gauge group a it equals the
Chern-Simons level ka times the trace in the fundamental representation. We will explain
the term trm σ at the end of the next paragraph.

Some of the important ingredients of the U(N)p CS gauge theories we study are the
topological conserved currents jtop,a = ∗ trFa and monopole operators T~q that create qa
units of trFa flux through a two-sphere surrounding the insertion point. In general, the R-
symmetry can mix with these topological global symmetries, and the monopole operators T~q
acquire R-charges R[T~q] = γ~q +

∑
a ∆(a)

m qa, where γ~q is an anomalous dimension invariant
under sending ~q → −~q, and the ∆(a)

m are what we call bare monopole R-charges. The
anomalous dimensions γ~q can be computed exactly at one-loop in perturbation theory
from the matter R-charges, as in refs. [28, 29] based on the work of [31]. Of special interest
will be the “diagonal” monopole operators T corresponding to ~q = (1, 1, 1, . . .) and T̃

corresponding to ~q = (−1,−1,−1, . . .), because they play a crucial role in the construction
of the quantum-corrected moduli space of vacua in these theories [28, 29]. Their R-charges
satisfy the relation

R[T ]−R[T̃ ] = 2∆m , ∆m ≡
∑
a

∆(a)
m . (2.3)

The modification of the couplings to curvature associated to mixing the R-charge with one
of the topological charges is precisely the complexification of the FI parameter, appropri-
ately supersymmetrized on S3. This modification results in the appearance of trm σ in the
matrix integral (2.1). Note that the trace trm is normalized so that for each gauge group
it equals the trace in the fundamental representation times the bare monopole R-charge
∆(a)
m ; when this charge vanishes the trm σ term may be removed from (2.1).

One may worry already that the bare R-charges of the diagonal monopole operators are
not gauge-invariant observables because the Chern-Simons coupling makes the monopole
operators not gauge-invariant. As we will explain in more detail in section 2.3, with an
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appropriate choice of gauge group one can construct gauge-invariant operators out of T
or out of T̃ , and from the R-charges of these gauge-invariant operators one can calculate
∆m. (In passing, note that the same concern can be raised about the R-charges of the
bifundamental fields, and the same resolution holds.) In theories with charge conjugation
symmetry the R-charge of T should equal that of T̃ , which implies ∆m = 0. Indeed,
F -maximization in non-chiral theories is consistent with this observation.

Since the R-symmetry can mix with any other abelian global symmetry, it would be
interesting to ask how many such global symmetries there are for a given quiver. We will be
interested in quivers with gauge group U(N)p as well as quivers with gauge group SU(N)p×
U(1), where the second factor is the diagonal U(1) in U(N)p. If there is no superpotential,
we can show that the number of abelian flavor symmetries equals the number of matter
representations regardless of which choice of gauge group. Indeed, if all the gauge groups are
SU(N), then for each matter field there is a U(1) global symmetry that acts by multiplying
that field by a phase. Replacing some of the SU(N) gauge groups by U(N) gauges some
of these U(1) symmetries. However, for each new U(1) gauge symmetry there is now an
additional topological conserved current jtop = ∗F in addition to the old conserved current
jmatter. For Chern-Simons level k the U(1) gauge field now couples to jmatter +kjtop. Going
from SU(N) to U(N) gauge theory therefore introduces a new topological U(1) symmetry
and gauges a linear combination of this U(1) and the diagonal U(1) in U(N). Thus, the
total number of global symmetries does not change and stays equal to the number of
matter representations for any of choice of gauge group. A non-trivial superpotential will
generically break some of these flavor symmetries.

2.1 The forces on the eigenvalues

Suppose we have a quiver with nodes 1, 2, . . . , p with U(N) gauge groups and CS levels ka.
Let’s denote the eigenvalues corresponding to the ath node by λ

(a)
i , with i = 1, 2, . . . , N .

In the saddle point approximation the force acting on λ(a)
i can be split into several pieces:

F
(a)
i = F

(a)
i,ext + F

(a)
i,self +

∑
b

F
(a,b)
i,inter +

∑
b

F
(b,a)
i,inter . (2.4)

The first term is the external force

F
(a)
i,ext =

ika
2π

λ
(a)
i −∆(a)

m , (2.5)

where ∆(a)
m is the corresponding bare monopole R-charge. The second term is due to

interactions with eigenvalues belonging to the same node:

F
(a)
i,self =

∑
j 6=i

coth
λ

(a)
i − λ

(a)
j

2
. (2.6)

Finally, the last two terms in eq. (2.4) correspond to contributions of bifundamental fields
(a, b) that transform in the fundamental representation of node a and the anti-fundamental

– 5 –



J
H
E
P
0
6
(
2
0
1
1
)
1
0
2

representation of node b. We have

F
(a,b)
i,inter =

∑
j

[
∆(a,b) − 1

2
− i

λ
(a)
i − λ

(b)
j

4π

]
coth

[
λ

(a)
i − λ

(b)
j

2
− iπ

(
1−∆(a,b)

)]
, (2.7)

F
(b,a)
i,inter =

∑
j

[
∆(b,a) − 1

2
+ i

λ
(a)
i − λ

(b)
j

4π

]
coth

[
λ

(a)
i − λ

(b)
j

2
+ iπ

(
1−∆(b,a)

)]
. (2.8)

We can split the interaction forces between the eigenvalues into long-range forces and
short-range forces. We define the long-range forces to be those forces obtained by replacing
coth(u) with its large u approximation, sgn Re(u). Since sgn Re(αu) = sgn Re(u) if α > 0,
we have

F
(a)
i,self ≈ F̂

(a)
i,self =

∑
j 6=i

sgn Re
(
λ

(a)
i − λ

(a)
j

)
,

F
(a,b)
i,inter ≈ F̂

(a,b)
i,inter =

∑
j

[
∆(a,b) − 1

2
− i

λ
(a)
i − λ

(b)
j

4π

]
sgn Re

(
λ

(a)
i − λ

(b)
j

)
,

F
(b,a)
i,inter ≈ F̂

(b,a)
i,inter =

∑
j

[
∆(b,a) − 1

2
+ i

λ
(a)
i − λ

(b)
j

4π

]
sgn Re

(
λ

(a)
i − λ

(b)
j

)
.

(2.9)

2.2 General rules for matrix models with no long-range forces

We want to study quiver gauge theories with free energies that scale as N3/2 in the large N
limit, because these theories are thought to have M-theory duals. One way of achieving this
is for the real part of the eigenvalues to scale as N1/2 and the imaginary parts to stay order
N0 in the large N limit (see appendix A for more details). A necessary condition for this
scaling is that the long range forces must vanish at the saddle point of the matrix integral.

A large class of such theories are quiver gauge theories with non-chiral bifundamental
superfields, meaning that for each N = 2 chiral superfield X(a,b) transforming in (N,N) of
the gauge groups U(N)a×U(N)b there exists another chiral superfield X(b,a) transforming
in (N,N). The two fields X(a,b) and X(b,a) need not be related by supersymmetry, and thus
their R-charges ∆(a,b) and ∆(b,a) need not be equal. In addition to these bifundamental
fields we will also allow for equal numbers of fundamental and anti-fundamental fields.4

The kinetic terms for the vector multiplets could be either Chern-Simons with level ka or
Yang-Mills. Additionally we require ∑

a

ka = 0 . (2.10)

For such theories the condition that the long-range forces (2.9) vanish is equivalent to∑
∆(a,b) +

∑
∆(b,a) = n(a) − 2 (2.11)

4Equal in total number; the number of fundamental and anti-fundamental fields charged under a given

gauge group are allowed to differ.
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for each node a, where the sum is taken over all the bifundamental fields transforming non-
trivially under U(N)a, and na denotes the number of such fields (adjoint fields are supposed
to be counted twice: once as part of the first sum and once as part of the second sum).

With these assumptions, it is consistent to assume that in the large N limit the eigen-
values λ(a)

i behave as [10] (see also [32])

λ
(a)
i = N1/2xi + iya,i + o(N0). (2.12)

As we take N to infinity, we can replace xi and ya,i by continuous functions x(s) and ya(s)
such that xi = x(i/N) and ya,i = ya(i/N). In the following discussion, it will be useful to
consider the density

ρ(x) =
ds

dx
(2.13)

and express the imaginary parts of the eigenvalues as functions ya(x).
That the long-range forces (2.9) vanish implies that the free energy functional is local.

Here are the rules for constructing the free energy functional for any N = 2 quiver theory
that satisfies the conditions described above:

1. For each gauge group a with CS level ka and bare monopole R-charge ∆(a)
m one should

add the term

ka
2π
N3/2

∫
dx ρ(x)xya(x) + ∆(a)

m N3/2

∫
dx ρ(x)x . (2.14)

2. For a pair of bifundamental fields, one of R-charge ∆(a,b) transforming in the (N,N)
of U(N)a×U(N)b and one of R-charge ∆(b,a) transforming in the (N,N) of U(N)a×
U(N)b, one should add

−N3/2
2−∆+

(a,b)

2

∫
dx ρ(x)2

[(
ya − yb + π∆−(a,b)

)2
− 1

3
π2∆+

(a,b)

(
4−∆+

(a,b)

)]
, (2.15)

where ∆±(a,b) ≡ ∆(a,b) ±∆(b,a) satisfies ∆+
(a,b) < 2, and ya − yb is in the range∣∣∣ya − yb + π∆−(a,b)

∣∣∣ ≤ π∆+
(a,b) . (2.16)

Outside this range the formula (2.15) is no longer valid, and in fact for arbitrary
ya−yb the integrand is a non-smooth function. The boundaries of the range (2.16) are
points where the integrand should be considered to be non-differentiable. In practice,
this means that the equations obtained from varying the free energy functional with
respect to ya − yb need not hold whenever

∣∣∣ya − yb + π∆−(a,b)
∣∣∣ = ±π∆+

(a,b).

3. For an adjoint field of R-charge ∆(a,a), one should add

2π2

3
N3/2∆(a,a)

(
1−∆(a,a)

) (
2−∆(a,a)

) ∫
dx ρ(x)2 . (2.17)

– 7 –



J
H
E
P
0
6
(
2
0
1
1
)
1
0
2

4. For a field Xa with R-charge ∆a transforming in the fundamental of U(N)a, one
should add

N3/2

∫
dx ρ(x) |x|

(
1−∆a

2
− 1

4π
ya(x)

)
, (2.18)

while for an anti-fundamental field of R-charge ∆̃a one should add

N3/2

∫
dx ρ(x) |x|

(
1− ∆̃a

2
+

1
4π
ya(x)

)
. (2.19)

2.3 Flat directions and U(N) vs. SU(N)

In a theory with p U(N) gauge groups, the matrix integral (2.1), seen as a function of
the R-charges of the matter fields as well as the bare monopole R-charges ∆(a)

m , has the
following symmetries parameterized by p real numbers δ(a):

eigenvalues λ(a)
i for ath gauge group: λ

(a)
i → λ

(a)
i − 2πiδ(a) ,

U(N)a ×U(N)b bifundamental of R-charge ∆(a,b): ∆(a,b) → ∆(a,b) + δ(a) − δ(b) ,

U(N)a fundamental of R-charge ∆a: ∆a → ∆a + δ(a) ,

U(N)a anti-fundamental of R-charge ∆̃a: ∆̃a → ∆̃a − δ(a) ,

bare monopole R-charge ∆(a)
m for ath gauge group: ∆(a)

m → ∆(a)
m + kaδ

(a) . (2.20)

The transformations (2.20) leave the matrix integral (2.1) invariant (up to a phase) because
they are equivalent to a change of variables where the integration contour for each set of
eigenvalues is shifted by a constant amount.

A consequence of this symmetry is that at finite N the free energy F (∆) (namely
the extremum of the free energy functional for fixed R-charges ∆) has p flat directions
parameterized by δ(a). In the U(N)p theory, these flat directions are to be expected because,
for example, the bifundamental fields in the theory are not gauge-invariant operators.
The free energy should depend only on the R-charges of gauge-invariant operators. One
then has two options: work with the U(N)p theory where by maximizing F one can only
determine the R-charges of composite gauge-invariant operators (for example, ∆(a,b)+∆(b,a)

would be a well-defined number since it is the R-charge of the gauge-invariant operator
trX(a,b)X(b,a)), or ungauge some of the diagonal U(1)a’s in the U(N)a gauge groups. If the

U(N)a gauge group is replaced by SU(N)a then the corresponding eigenvalues λ(a)
i should

satisfy the tracelessness condition ∑
i

λ
(a)
i = 0 . (2.21)

This condition fixes δ(a) and removes a flat direction from F .
In the large N limit the free energy will generically have more flat directions than at

finite N . For example, at large N there are an additional nf flat directions coming from
the flavors for the following reason. In the theories we consider each fundamental field is
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paired with an anti-fundamental field. Let the R-charge of one of the fundamental fields be
∆f and the R-charge of the corresponding anti-fundamental field be ∆̃f . At finite N the
sum ∆f + ∆̃f is fixed by the marginality of the superpotential, leaving one free R-charge.
However the finite N free energy will typically be a non-trivial function of both ∆f and ∆̃f .
At large N , on the other hand, the free energy really only depends on the sum ∆f + ∆̃f ,
as can be seen from eqs. (2.18) and (2.19). This gives us an additional nf “accidental” flat
directions at large N .

Looking at equation (2.14), one can see that at large N the free energy only depends
on the sum

∆m =
p∑
a=1

∆(a)
m . (2.22)

Naively one would think this gives us p − 1 additional flat directions corresponding to
shifts in the individual ∆(a)

m , which leave the sum in equation (2.22) invariant. However,
in theories where

∑
a ka = 0, which are all the theories presented in this paper except for

the theories in section 8, the story is slightly more subtle. In these theories we actually
only gain p − 2 additional flat directions in the large N limit. This is because at order
O(N3/2) the symmetry corresponding to δ(a) = δ is equivalent to one of the “new” flat
directions, which correspond to symmetries of the sum (2.22). To summarize, at large N
we have a total of 2(p− 1) + nf flat directions of the free energy. However, only p of these
flat directions correspond to gauge symmetries. The other p − 2 + nf flat directions are
only there at infinite N .

One could choose to eliminate some of the flat directions in the free energy by changing
the gauge groups from U(N) to SU(N). Since the diagonal monopole operators T and
T̃ are essential in obtaining the quantum-corrected moduli space in these theories, we
would like to keep the diagonal U(1) in U(N)p as a gauge symmetry. So, let’s choose to
eliminate all the flat directions in the free energy coming from the abelian gauge symmetries,
except for the flat direction corresponding to this diagonal U(1). The R-charges of the
(bi)fundamental fields are then gauge invariant quantities, as we will explain below. The
residual abelian gauge symmetry gives us p− 1 gauge invariant combinations of the p bare
monopole R-charges ∆(a)

m . However, at large N we will only be able to compute the sums
∆m and ∆f + ∆̃f because of the accidental flat directions.

In going from U(N)p to SU(N)p ×U(1) we should regard

A+ =
p∑
a=1

trAa (2.23)

as a dynamical gauge field, while the other gauge fields A(b) =
∑

a α
b
a trAa, where αba is

a basis of solutions to
∑p

a=1 α
b
a = 0, should be treated as background fields that we set

to zero. The ungauging procedure [33] can be done rigorously by adding p − 1 vector
multiplets whose vector components are Bb, b = 1, 2, . . . , p − 1, and that couple to the
topological currents ∗F (b) = ∗

∑p
a=1 α

b
a trFa through

δS =
p−1∑
b=1

∫
Bb ∧ F (b) , (2.24)
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with an appropriate supersymmetric completion. Making the fields Bb dynamical, the
integration over them in the path integral essentially ungauges A(b). For related discussions,
see [34–37].

To summarize so far, in the U(N)p gauge theory the large N free energy F (∆) gener-
ically has 2p − 2 + nf flat directions. However, only p of these symmetries correspond to
gauge symmetries with the rest being accidental flat direction appearing only at large N .
If we want to remove p − 1 of the flat directions corresponding to gauge symmetries, we
should consider the SU(N)p×U(1) gauge theory, where the U(1) gauge field is A+. In this
theory one can construct the baryonic operator

B
(
X(a,b)

)
= εi1···iN ε

j1···jN
(
X(a,b)

)i1
j1
· · ·
(
X(a,b)

)iN
jN

, (2.25)

which is a gauge-invariant chiral primary with R-charge N∆(a,b). In other words, the
operator X(a,b) can be assigned a unique R-charge ∆(a,b) because the baryon B

(
X(a,b)

)
has

the well-defined R-charge N∆(a,b). Minimizing F (∆) in this theory one can then determine
the R-charges of the bifundamenal fields.

Ungauging the p − 1 off-diagonal U(1) gauge fields makes it possible to define gauge-
invariant baryonic operators at the expense of removing from the chiral ring the off-diagonal
monopole operators that generate non-zero numbers of F (b) flux units that exist in the
U(N)p theory. This ungauging doesn’t remove, however, the diagonal monopole operators
T and T̃ , because these operators generate equal numbers of trFa flux units and thus
no F (b) flux units. Moreover, the bare monopole R-charges ∆m of T and −∆m of T̃ are
well-defined quantities because one can construct a baryonic-like operator out of T or T̃ .

From an AdS/CFT point of view, ungauging U(1) symmetries in the boundary theory
is equivalent to changing boundary conditions in the bulk for the bulk gauge fields dual
to those U(1) symmetries. In M-theory, the boundary conditions corresponding to the
U(N)p gauge theory allow the existence of M2-branes wrapping topologically non-trivial
two-cycles, but disallow the existence of the magnetic dual objects, which would be the
M5-branes wrapping the dual five-cycles. The boundary conditions for the SU(N)p ×
U(1) gauge theory allow the existence of M5-branes but disallow M2-branes wrapped on
topologically non-trivial cycles. Since these wrapped M2-branes are dual to off-diagonal
monopole operators and the M5-branes wrapping topologically non-trivial cycles are dual
to baryonic operators, the general picture on the gravity side is consistent with the field
theory analysis. See [36, 37] for a more detailed discussion.

In addition to M5-branes wrapping topologically non-trivial cycles that are allowed
only in the SU(N)p×U(1) gauge theory, on the gravity side one can also consider giant gravi-
tons, which are BPS configurations of M5-branes wrapping topologically trivial five-cycles
and rotating within the 7-d space Y [38]. On the field theory side, these objects are thought
to be dual to determinants of operators that transform in the adjoint representation of one
of the gauge groups (such as determinants of products of bifundamental fields). These de-
terminant operators are gauge invariant in both the U(N)p and SU(N)p×U(1) gauge theory.

In general, the relation between the volume of a five-cycle wrapped by an M5-brane

– 10 –



J
H
E
P
0
6
(
2
0
1
1
)
1
0
2

and the dimension of the corresponding gauge theory operator is [39]

∆ =
πN

6
Vol(Σ5)
Vol(Y )

, (2.26)

regardless of whether the five-cycle the brane is wrapping is topologically trivial or not.
We will make extensive use of this formula, as it provides a way of extracting the expected
R-charge of the bifundamental fields (or of certain products of bifundamental fields) from
the gravity side. Indeed, after performing F -maximization, we check not only that the
extremum of F matches the supergravity prediction (1.3) computed using the volume
of Y , but also that the dimensions of the operators dual to wrapped M5-branes agree
with eq. (2.26), which involves the volumes of the various five-cycles computed from the
gravity side.

3 A class of N = 2 necklace quivers

The first class of quiver gauge theories where we apply the formalism developed in the
previous section involves a modification of the “necklace” N = 3 Chern-Simons theories
proposed in [25, 26] and examined in a similar context in [10]. The N = 3 quivers involve
p gauge groups with CS levels ka that satisfy

∑p
a=1 ka = 0 as well as bifundamental

chiral superfields Aa,a+1 and Ba+1,a. These theories are natural generalizations of the
ABJM model, which corresponds to p = 2. They have quartic superpotentials W ∼∑

a
1
ka

tr(Aa,a+1Ba+1,a−Ba,a−1Aa−1,a). An equivalent description of these theories involves
extra adjoint chiral multiplets Φa and the superpotential

WN=3 ∼
∑
a

tr
(
kaΦ2

a + Φa(Aa,a+1Ba+1,a −Ba,a−1Aa−1,a)
)

(3.1)

(see figure 1). That the two descriptions are equivalent can be seen by simply integrating
out the fields Φa. If one now changes the superpotential to5

WN=2 ∼
∑
a

tr
(
µaΦ3

a + Φa(Aa,a+1Ba+1,a −Ba,a−1Aa−1,a)
)
, (3.2)

for some set of parameters µa, the resulting theories have only N = 2 supersymmetry.6 If
we perturb such an N = 2 fixed point by the relevant superpotential deformation δW =∑

a tr
(
kaΦ2

a

)
then it should flow to the corresponding N = 3 theory.

To keep the discussion as general as possible, let us consider the class of superpotentials

W ∼
∑
a

tr
[
µaΦn+1

a + Φa(Aa,a+1Ba+1,a −Ba,a−1Aa−1,a)
)
, (3.3)

where we assume that all the parameters µa are non-vanishing. If n = 1 or 2, this theory is
dual to AdS4×Yn(~k). The spaces Yn(~k) probably have a Sasaki-Einstein metric only when

5I.R.K. thanks M. Kiermaier and T. Klose for earlier discussions of these models.
6In the two-node case this model is equivalent to the Martelli-Sparks proposal for the dual of AdS4 ×

V5,2 [27].
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k1

k2

k3

k4

kp

Ap,1 A1,2

A2,3

A3,4

B2,1

B3,2

B4,3

B1,p

Φ1

Φ4

Φ3

Φ2

Φp

Figure 1. A “necklace” quiver diagram for the N = 3 Chern-Simons-matter gauge theories with
superpotential (3.2) or the N = 2 CS-matter gauge theories with superpotential (3.1). We impose
the condition that the CS levels ka should sum to zero.

n ≤ 2, though, because of the Lichnerowicz obstruction of [27, 40]. Let us denote by ∆A

and ∆B the conformal dimensions of the bifundamental fields Aa and Ba, respectively, and
by δ the conformal dimensions of the adjoints Φa. The condition that the superpotential
is marginal implies

δ = 2/(n+ 1) , ∆+ ≡ ∆A + ∆B = 2n/(n+ 1) . (3.4)

Setting the bare monopole R-charge ∆m = 0,7 eqs. (2.14)–(2.15) then imply that the free
energy functional is

Fn[ρ, ya] =
p∑
a=1

ka
2π
N3/2

∫
dx ρxya +

2π2p

3
N3/2δ(δ − 1)(δ − 2)

∫
dx ρ2

−N3/2 2−∆+

2

p∑
a=1

∫
dx ρ2

[
(ya − ya−1 + π∆−)2 − π2∆+(4−∆+)

3

]
,

(3.5)

with ∆− ≡ ∆A −∆B. Using (3.4), this equation can be simplified to

Fn[ρ, ya]=
p∑
a=1

ka
2π
N3/2

∫
dx ρxya −N3/2

p∑
a=1

∫
dx ρ2

[
(ya−ya−1 + π∆−)2

n+ 1
− 4π2n2

(n+1)3

]
. (3.6)

As discussed after eq. (2.15), this expression holds as long as |ya − ya−1 + π∆−| ≤ π∆+ =
2πn/(n+ 1).

7If one includes a non-zero ∆m in the free energy, F -maximization requires the bare monopole R-charge

to vanish.
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Since the quiver is symmetric under interchanging the A fields with the B fields, we
expect that the saddle point has ∆A = ∆B, so ∆− = 0. In this case, we can absorb the
dependence on n into a redefinition of ya and ρ. By writing

ya =
2n
n+ 1

ŷa , ρ→ n+ 1
2
√
n
ρ̂ , x→ 2

√
n

n+ 1
x̂ , (3.7)

one can easily show that

Fn[ρ, ya] =
4n3/2

(n+ 1)2
F1[ρ̂, ŷa] . (3.8)

Clearly, this relation is also satisfied by the extrema Fn and F1 of the functionals Fn[ρ, ya]
and F1[ρ̂, ŷa], respectively, which given (1.3) implies

Vol(Yn(~k)) =
(n+ 1)4

16n3
Vol(Y1(~k)) . (3.9)

In particular, we have

Vol(Y2(~k)) =
81
128

Vol(Y1(~k)) . (3.10)

When ~k = (1,−1) then Y1(~k) = S7 with volume Vol(S7) = π4/3 and Y2(~k) = V5,2 [27] with
volume Vol(V5,2) = 27π4/128 [41], in agreement with eq. (3.10).

We have just shown that for the RG flow between the N = 2 theory (3.2) in the UV
deformed by the relevant superpotential deformation δW =

∑
a tr
(
kaΦ2

a

)
and the N = 3

theory (3.1) in the IR, we have (FIR/FUV)2 = 81/128. The universal ratio 81/128 is
reminiscent of the aIR/aUV = 27/32 that often arises in (3 + 1)-dimensional RG flows;
see [42] for a general argument.

4 Flavored gauge theories with one gauge group

The first examples we consider are flavored variations of the 3-d N = 8 Yang-Mills theory,
which can be obtained as the dimensional reduction of the N = 4 gauge theory in four
dimensions. In N = 2 notation, the 3-d N = 8 vector multiplet consists of an N = 2 vector
multiplet with gauge group U(N) or SU(N) as well as three adjoint chiral superfields Xi,
1 ≤ i ≤ 3. The superpotential

W0 = trX1[X2, X3] (4.1)

ensures that the long-range forces between the eigenvalues vanish, because the requirement
that the superpotential is marginal is equivalent to eq. (2.11). The flavoring of this model
consists of adding fields qα and q̃α transforming in the anti-fundamental and fundamental
representations of the gauge group, respectively, coupled to the adjoints Xi through the
superpotential coupling ∑

α

qαOα(Xi)q̃α . (4.2)
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Here, Oα(Xi) are polynomials in the Xi with no constant term, which, as operators, also
transform in the adjoint representation of the gauge group. It was conjectured in [28, 29]
that the U(1) quantum corrected moduli space in this case can be described as the embed-
ded codimension one surface

T T̃ =
∏
α

Oα(Xi) (4.3)

in C5, where the monopole operators T and T̃ as well as the three fields Xi should be
regarded as the five complex coordinates in C5. This moduli space is a Calabi-Yau space
with a conical singularity at T = T̃ = Xi = 0. The field theory we just described is then
conjectured to be the theory on M2-branes placed at the tip of the Calabi-Yau cone (4.3)
and is therefore dual to AdS4 × Y , where Y is the Sasaki-Einstein base of the cone (4.3).

4.1 An infinite family of AdS4/CFT3 duals

Let’s first couple the basic model with superpotential (4.1) to three sets of pairs of chiral
superfields

(
q

(i)
j , q̃

(i)
j

)
, where i = 1, 2, 3 and j = 1, 2, . . . , ni for some integers ni ≥ 0 with

at least one of the ni being strictly positive. The quiver diagram for this theory is shown
in figure 2. The superpotential of the flavored theory is

W ∼W0 + tr

 n1∑
j=1

q
(1)
j X1q̃

(1)
j +

n2∑
j=1

q
(2)
j X2q̃

(2)
j +

n3∑
j=1

q
(3)
j X3q̃

(3)
j

 . (4.4)

These theories were considered in detail in [28] where it was shown that for each such
theory the quantum corrected moduli space of vacua is a toric Calabi-Yau cone. This cone
can be parameterized by the complex coordinates Xi as well as the monopole operators T
and T̃ subject to the constraint

T T̃ = Xn1
1 Xn2

2 Xn3
3 . (4.5)

The fact that the superpotential should have R-charge R[W ] = 2 as well as the con-
straint (4.5) imposes a number of constraints on the R-charges of the various fields:

3∑
i=1

R[Xi] = 2 , R[T ] +R[T̃ ] =
3∑
i=1

niR[Xi] , R[q(i)
j ] +R[q̃(i)

j ] +R[Xi] = 2 . (4.6)

With these assumptions, the rules of section 2.2 imply that the free energy functional is8

F [ρ] = 2π2N3/2∆1∆2∆3

∫
dx ρ2 +

N3/2

2

(
3∑
i=1

ni∆i

)∫
dx ρ |x|+N3/2∆m

∫
dx ρx , (4.7)

where we denoted R[Xi] = ∆i. We also have R[T ]−R[T̃ ] = 2∆m (see eq. (2.3)).

8In these non-chiral theories, F -maximization will give ∆m = 0 due to charge conjugation symmetry,

but we will nevertheless keep ∆m explicitly in the intermediate steps.
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U(n2)

U(N)

U(n1)

U(n3)

Figure 2. The quiver diagram for the flavored theories corresponding to the superpotential in
equation (4.4).

The eigenvalue density ρ(x) that maximizes F is supported on [x−, x+] with x− < 0 <
x+:

ρ =



(∑3
i=1 ni∆i

)
− 2∆m

8π2∆1∆2∆3
(x− x−) if x < 0 ,

(∑3
i=1 ni∆i

)
+ 2∆m

8π2∆1∆2∆3
(x+ − x) if x ≥ 0 ,

(4.8)

where the endpoints of the distribution are such that ρ is continuous at x = 0,

x± ≡ ±

√√√√√ 8π2∆1∆2∆3

[(∑3
i=1 ni∆i

)
∓ 2∆m

]
(∑3

i=1 ni∆i

) [(∑3
i=1 ni∆i

)
± 2∆m

] . (4.9)

Plugging these expressions into eq. (4.7), we find that the extremum of F [ρ] at given ∆i

and ∆m is given by

F =
2
√

2πN3/2

3

√√√√√∆1∆2∆3

( 3∑
i=1

ni∆i

)
− 4∆2

m(∑3
i=1 ni∆i

)
 . (4.10)

In order to find ∆i and ∆m, one just has to maximize F under the constraint that∑3
i=1 ∆i = 2. The maximization problem clearly implies that ∆m = 0, so

F =
2
√

2πN3/2

3

√√√√∆1∆2∆3

(
3∑
i=1

ni∆i

)
. (4.11)
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Finding ∆i requires solving a system of algebraic equations with no simple closed-form
solutions. However, in section 4.2 we will examine a variety of special cases where closed-
form solutions are available.

In section 7 we will show using toric geometry techniques that the extremum of the
free energy (4.10) matches with the gravity prediction based on the volume of the internal
space Y and eq. (1.3). As we will explain, in toric geometry one finds the volume of a toric
Sasaki-Einstein space Y by extremizing a certain function of three variables. By matching
determinant operators in field theory to giant gravitons in gravity, we may write those
three variables in terms of the three free R-charge parameters. We show that combining
this function with equation (1.3) exactly gives equation (4.10), even for R-charges that
don’t extremize these functions.

4.2 Particular cases

4.2.1 C2 × (C2/Zn1)

It is instructive to examine particular cases of our general formula (4.11). The first par-
ticular case we study is n2 = n3 = 0 with n1 arbitrary. The moduli space (4.5) is in this
case C2 × (C2/Zn1), where the Zn1 is generated by (z3, z4) ∼

(
z3e

2πi/n1 , z4e
−2πi/n1

)
. This

theory should therefore be dual to AdS4 × S7/Zn1 , where the Zn1 action on S7 is that
induced by the corresponding Zn1 action on C4 [43]. Eq. (4.11) is extremized for ∆1 = 1
and ∆2 = ∆3 = 1/2, which, when combined with (1.3) gives

Vol(Y ) =
π4

3n1
. (4.12)

Since the volume of the round seven-sphere is Vol(S7) = π4/3, this formula is consistent
with the expectation that the internal space Y is a Zn1 orbifold of S7. Indeed, it was argued
in [43] that there is a supersymmetry enhancement to maximal N = 8 supersymmetry
when n1 = 1.

4.2.2 CY3 × C theories

Consider n3 = 0 with arbitrary n1 and n2. The equation describing the moduli space
reduces to T T̃ = Xn1

1 Xn2
2 , which describes a toric CY3 cone times C, the complex coor-

dinate in C being X3. Since the CY3 is singular at X1 = X2 = 0, the space CY3 × C
has non-isolated singularities and so does the base of this cone, the Sasaki-Einstein space
Y . These non-isolated singularities might be a reason to worry to what extent AdS/CFT
results are applicable in this case, as additional states in M-theory might appear from these
singularities. As we will explain, the matrix model computation of the free energy matches
the M-theory expectation (1.3) in spite of these potential problems. The free energy (4.11)
is extremized by

∆1 =
n1 − 2n2 +

√
n2

1 + n2
2 − n1n2

2(n1 − n2)
, ∆2 =

n2 − 2n1 +
√
n2

1 + n2
2 − n1n2

2(n2 − n1)
, ∆3 =

1
2
,

(4.13)
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giving

Fn1,n2 =
πN3/2

3
√

2 |n1 − n2|

[(
n1 + n2 +

√
n2

1 + n2
2 − n1n2

)

×
(
n1− 2n2 +

√
n2

1 + n2
2 − n1n2

)(
−2n1 + n2 +

√
n2

1 + n2
2 − n1n2

)]1/2

.

(4.14)

Note that the field X3 corresponding to the C factor in CY3×C has the canonical R-charge
∆3 = 1/2.

When n1 = n2 = 1 the Calabi-Yau three-fold is the well-known conifold C. In this
case ∆1 = ∆2 = 3/4, and from eqs. (4.14) and (1.3) one obtains Vol(Y ) = 16π4/81. In
appendix C we confirm this number from a direct computation of the volume of Y using
an explicit metric. In appendix C we also show that the space Y has topologically non-
trivial five-cycles that using (2.26) would yield M5-branes dual to operators of dimension
3N/8. From T T̃ = X1X2 it follows that detX1 and detX2 correspond to giant gravitons
wrapping topologically trivial cycles constructed from two topologically non-trivial cycles,
so one expects the dimensions of detX1 and detX2 to be 3N/4, in agreement with the
value obtained by F -maximization.

4.2.3 The D3 theory

Another fairly simple particular case is n1 = n2 = n3 = 1. The associated CY4 is described
by the equation T T̃ = X1X2X3 and is therefore a complete intersection. While the volume
of the Sasaki-Einstein base Y can of course be obtained as a particular case from the
toric geometry computation in section 7, there is actually a simpler way of computing
this volume using the results of [41]. Indeed, eq. (16) of that paper with n = 4, d = 6,
~w = (3, 3, 2, 2, 2) (so w = 72 and |w| = 12) gives Vol(Y ) = 9π4/64. From the matrix model,
the extremum of the free energy (4.11) can be found to be

F =
8π
9

√
2
3
N3/2 , (4.15)

in agreement with the value we found for Vol(Y ).

4.3 Universal RG flows

The theories discussed in section 4.2.2 dual to CY3 × C have two obvious relevant super-
potential deformations: tr(X3)2 of R-charge 1 and tr(X3)3 of R-charge 3/2. Adding either
of these operators to the superpotential causes an RG flow to a new IR fixed point. The
RG flows obtained this way are universal in the sense that, as we will now show, the ratio
of the IR and UV free energies is independent of the details of the three-fold CY3. We will
only compute this ratio for the toric CY3 examples of section 4.2.2, but we believe that
the same ratio can be obtained for non-toric examples.

To give a unified treatment of the tr(X3)2 and tr(X3)3 deformations, let’s examine the
theory obtained by adding tr(X3)p to the superpotentials (4.4) with n3 = 0 but otherwise
arbitrary n1 and n2. This extra term in the superpotential fixes the R-charge of X3 to be
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∆3 = 2/p. Fixing ∆3 to this value and writing for example ∆2 = 2 − ∆1 − ∆3 one can
find the R-charges of the new IR fixed point by maximizing (4.11). A simple computation
shows that the IR R-charges are related to the UV R-charges through

∆IR
1 =

4(p− 1)
3p

∆UV
1 , ∆IR

2 =
4(p− 1)

3p
∆UV

2 , ∆IR
3 =

2
p
, (4.16)

where ∆UV
1 and ∆UV

2 have the values given in (4.13). Consequently, the IR free energy is
also related to the UV free energy in a way independent of which CY3 space one may want
to consider:

F IR =
16(p− 1)3/2

3
√

3p2
FUV . (4.17)

In particular, for p = 2 one obtains F IR/FUV = 4/(3
√

3) and for p = 3 one obtains
F IR/FUV = 32

√
2/(27

√
3).

One obvious question to ask is: what are the gravity duals to these RG flows? For
p = 2, we believe this holographic RG flow was constructed in [44] (for p = 3, we are
not aware of a similar holographic construction). Let’s examine the holographic RG flow
of [44] in more detail. This flow was originally found in 4-d N = 8 gauged supergravity
as a flow between two extrema of the gauged supergravity potential — the maximally
supersymmetric one and the U(1)R × SU(3)-symmetric one found in [45]. An uplift of
this flow to 11-d supergravity was constructed in [44] where in the UV the geometry
aysmptotes to AdS4×S7, and in the IR it asymptotes to a warped product between AdS4

and a stretched and squashed seven-sphere. It was noticed in [44] that the uplift of the 4-d
flow to eleven dimensions was not unique in the sense that an S5 ⊂ S7 in the UV geometry
could be replaced by the base of any CY3 cone which is a regular Sasaki-Einstein manifold.
Such a generalization of the holographic RG flow [44] should be dual to the flow induced
by the superpotential perturbation tr(X3)2 in all the gauge theories dual to CY3 × C.

We can compare the field theory prediction (4.17) with the gravity computation. From
a four-dimensional perspective, the free energy on S3 is given by eq. (1.2) in terms of the
radius L of AdS4 and the effective 4-d Newton constant G4. In the holographic RG-flow
of [44], the 4-d Newton constant is kept fixed, so the ratio of free energies is

FIR

FUV
=
(
LIR

LUV

)2

=
4

3
√

3
, (4.18)

where in the last equation we used LUV/LIR = 33/4/2 [44]. Indeed, this expression is in
agreement with eq. (4.17).

Two comments are in order. First, when CY3 = C3 supergravity predicts that the IR
theory has emergent U(1)R × SU(3) symmetry. We now explain why this is a consistent
possibility in the field theory. In the field theory, at the IR fixed point one can just
integrate out X3 ∼ [X1, X2] and obtain the effective superpotential tr

(
[X1, X2]2 + qX1q̃

)
.

The monopole operators have the OPE T T̃ ∼ X1, which implies R[X1] = R[T ] + R[T̃ ].
From eq. (4.16) we see that ∆UV

1 = 1 and ∆UV
2 = 1/2 in the UV (see section 4.2.1)

implies ∆IR
1 = 2/3 and ∆IR

2 = 1/3 in IR. The fact that ∆m = 0 tells us R[T ] − R[T̃ ] = 0,
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and combining the above observations we conclude R[T ] = R[T̃ ] = 1/3. This leads us
to conjecture that T , T̃ , and X2 form a triplet of SU(3), making the expected symmetry
enhancement to U(1)R × SU(3) a consistent possibility. We thus propose that this gauge
theory is dual to Warner’s U(1)R×SU(3) invariant fixed point of gauged supergravity [45].
Another proposed gauge theory dual is a certain mass-deformed version of ABJM theory [7];
we will solve the corresponding matrix model in section 5.

The second comment starts with the observation that the IR free energy of the mass-
deformed C × C theory, C being the conifold, is the same as that of the undeformed C4

theory. There is a field theory argument that explains this match: The C4 theory (whose
superpotential is W ∼ tr(X1[X2, X3]+ qX1q̃)) has a marginal direction where one adds X2

1

to the superpotential. Integrating out X1 one obtains W ∼ tr([X2, X3]2 +q[X2, X3]q̃). This
theory is related by another marginal deformation to W ∼ tr([X2, X3]2 + qX2X3q̃), which
in turn can be obtained by integrating out X1 from W ∼ tr(X1[X2, X3]+qX2X3q̃+mX2

1 ).
The theory with the latter superpotential has the same free energy as the mass-deformed
C× C theory.

4.4 A non-toric example: the cone over V5,2/Zn

It was proposed in [29] that the theory dual to the AdS4 × V5,2/Zn M-theory background
is a Yang-Mills U(N) gauge theory with three adjoint fields Xi and 2n fields qj and q̃j
transforming in N and N of U(N), respectively, and superpotential

W ∼ tr
[
X1[X2, X3] +

n∑
j=1

qj(X2
1 +X2

2 +X2
3 )q̃j

]
. (4.19)

The fact that the superpotential has R-charge R[W ] = 2 implies that Xi has R-charge 2/3
and qj and q̃j have R-charge 1/3.

The free energy functional is in this case

F [ρ] =
16π2

27
N3/2

∫
dx ρ2 +

2n
3
N3/2

∫
dx ρ |x|+N3/2

∫
dx ρx∆m . (4.20)

Extremizing with respect to ρ under the constraint that ρ is a density, one obtains

F =
8π
√
nN3/2

27

√
4− 9∆2

m

n2
. (4.21)

Maximizing this expression with respect to ∆m gives ∆m = 0 and

F =
16π
√
nN3/2

27
. (4.22)

Combining this expression with the M-theory expectation (1.3), one obtains

Vol(Y ) =
27π4

128n
, (4.23)

in agreement with the expectation that the space Y is a Zn orbifold of V5,2.
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Figure 3. The quiver diagram for the ABJM theory at CS level k.

5 Deforming the ABJM theory

In this section we will study some deformations of the ABJM theory that lead to RG flow.
Before we do that though, we look at the ABJM theory and assign arbitrary R-charges to
the bifundamental fields Ai and Bi that are consistent with the fact that the superpotential

W0 ∼ tr
[
εijεklAiBkAjBl

]
(5.1)

has R-charge two. In other words, denoting R[Ai] = ∆Ai and R[Bi] = ∆Bi , the constraint
the R-charges satisfy is

∆A1 + ∆A2 + ∆B1 + ∆B2 = 2 . (5.2)

Of course, assigning arbitrary R-charges ∆Ai and ∆Bi breaks SUSY from N = 6 to N = 2.
The quiver diagram for this theory is shown in figure 3

Using the general rules from section 2.2, the matrix model free energy functional is

F [ρ, δy] =
k

2π
N3/2

∫
dx ρxδy −N3/2

∫
dx ρ2

[
(δy)2 + 2πδy(∆A1∆A2 −∆B1∆B2) (5.3)

−2π2

(
∆A1∆A2(∆B1 + ∆B2) + ∆B1∆B2(∆A1 + ∆A2)

)]
+N3/2

∫
dx ρx∆m ,

where δy ≡ y1− y2 and ∆m = ∆m1 + ∆m2 is the sum of the bare monopole R-charges ∆(1)
m

and ∆(2)
m for the two gauge groups. In order to find a saddle point of the path integral on

S3, this free energy functional should be extremized as usual under the constraint that ρ
is a density, namely

∫
dx ρ = 1 and ρ ≥ 0 pointwise. So we should introduce a Lagrange

multiplier µ and extremize

F̃ [ρ, δy] = F − µN
3/2

2π

(∫
dx ρ− 1

)
(5.4)

instead of (5.3). Assuming without loss of generality that ∆A1 > ∆A2 and ∆B1 > ∆B2 , one
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can write the eigenvalue distribution that extremizes (5.4) as a piecewise smooth function:

− µ

2π(k∆A2 −∆m)
< x < − µ

2π(k∆A1 −∆m)
: (5.5a)

ρ =
µ+ 2πx(k∆A2 −∆m)

8π3(∆A2 + ∆B2)(∆A2 + ∆B1)(∆A1−∆A2)
, δy = −2π∆A2 ,

− µ

2π(k∆A1 −∆m)
< x <

µ

2π(k∆B1 −∆m)
:

ρ =
µ+ πx [k(∆A1∆A2 −∆B1∆B2)− 2∆m]

4π3(∆A1 + ∆B1)(∆A1 + ∆B2)(∆A2 + ∆B1)(∆A2 + ∆B2)
,

δy =
2kπ2x [∆A1∆A2(∆B1 + ∆B2) + ∆B1∆B2(∆A1 + ∆A2)]

µ+ πx [k(∆A1∆A2 −∆B1∆B2)− 2∆m]
, (5.5b)

+
π(∆A1∆A2 −∆B1∆B2)(2πx∆m − µ)
µ+ πx [k(∆A1∆A2 −∆B1∆B2)− 2∆m]

,

µ

2π(k∆B1 + ∆m)
< x <

µ

2π(k∆B2 + ∆m)
: (5.5c)

ρ =
µ− 2πx(k∆B2 + ∆m)

8π3(∆A1 + ∆B2)(∆A2 + ∆B2)(∆B1−∆B2)
, δy = 2π∆B2 ,

where

µ2 =
32π4

k3
(k∆A1 −∆m)(k∆A2 −∆m)(k∆B1 + ∆m)(k∆B2 + ∆m) . (5.6)

By plugging this solution into (5.3) one obtains

F =
N3/2µ

3π
=
N3/24

√
2π

3k3/2

√
(k∆A1−∆m)(k∆A2−∆m)(k∆B1 +∆m)(k∆B2 +∆m) . (5.7)

As expected from the discussion in section 2.3, for the U(N) × U(N) gauge theory
the free energy has one flat direction under which ∆Ai → ∆Ai + δ̂, ∆Bi → ∆Bi − δ̂, and
∆m → ∆m+kδ̂, corresponding in the notation of section 2.3 to δ(1) = −δ(2) = δ̂/2. This flat
direction is due to the fact that the bifundamental fields as well as the diagonal monopole
operators T and T̃ are charged under the U(1) gauge symmetry corresponding to the gauge
field tr(A1µ − A2µ), so it is not meaningful to assign them individual R-charges. Under
this gauge symmetry, the operators A1 and A2 have charge 1, B1 and B2 have charge −1,
and the monopole operators T and T̃ have charges k and −k, respectively. The gauge-
invariant operators include for example tr T̃ (Ai)k and trT (Bi)k with R-charges k∆Ai−∆m

and k∆Bi + ∆m, and these are indeed the combinations that appear in the expression for
F in eq. (5.7).

Regarding ∆m = 0 as a gauge choice, we can maximize (5.7) under the constraint (5.2)
that the R-charges of the Ai and Bi fields sum up to two. The maximum is at ∆A1 =
∆A2 = ∆B1 = ∆B2 = 1/2, which are the correct R-charges for the N = 6 ABJM theory.
The value of F at the maximum is

F =

√
2kπN3/2

3
, (5.8)
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which, when combined with eq. (1.3), implies Vol(Y ) = π4/(3k), in agreement with the
fact that ABJM theory is dual to AdS4 × S7/Zk, the volume of S7 being π4/3.

A superpotential deformation of the schematic form tr(T̃A1)2 when k = 1 or tr T̃A2
1

when k = 2 causes an RG flow to a new IR fixed point where the field A1 can be integrated
out. It was proposed in [7, 46] (see also [47]) that the holographic dual of this RG flow was
constructed in [44], first as a flow in 4-d N = 8 gauged supergravity from the maximally
symmetric point to the U(1)R×SU(3)-invariant extremum [45] of the gauged supergravity
potential, and then uplifted to M-theory as a flow from AdS4 × S7 to a warped product
between AdS4 and a stretched and squashed seven-sphere. (See also section 4.3 for another
gauge theory realization of the same holographic RG flow.)

Working in the gauge ∆m = 0, the superpotential deformation mentioned above im-
poses in the IR the constraint ∆A1 = 1, so

F =
4
√

2kπN3/2

3

√
∆A2∆B1∆B2 . (5.9)

This expression should be maximized under the constraint (5.2) that ∆A2 +∆B1 +∆B2 = 1.
By the standard inequality between the geometric and arithmetic mean, the product of
three numbers whose sum is kept fixed is maximized when all the numbers are equal, so F
has a maximum when ∆A2 = ∆B1 = ∆B2 = 1/3. In the IR we therefore have

FIR =
4
√

2kπN3/2

9
√

3
=

4
3
√

3
FUV , (5.10)

where FUV is the free energy of the ABJM theory in eq. (5.8). As already discussed
in section 4.3, the ratio of FIR to FUV given above is what one expects from the dual
holographic RG flow of [44].

6 Flavoring the ABJM quiver

In this section we will analyze N = 2 theories that come from adding flavors to the
U(N) × U(N) N = 6 ABJM theory [5] at level k. In general, we could add four pairs
of bifundamental fields (q(i)

j , q̃
(i)
j ) with i = 1, 2 and j = 1, 2, . . . , nai and (Q(i)

j , Q̃
(i)
j ) with

i = 1, 2 and j = 1, 2, . . . , nbi, and we could couple these fields to the ABJM theory (5.1)
through the superpotential coupling

δW ∼ tr

na1∑
j=1

q
(1)
j A1q̃

(1)
j +

na2∑
j=1

q
(2)
j A2q̃

(2)
j +

nb1∑
j=1

Q
(1)
j B1Q̃

(1)
j +

nb2∑
j=1

Q
(2)
j B2Q̃

(2)
j

 . (6.1)

As far as the matrix model goes, these extra fields corresponds to adding

δF [ρ, δy] =
N3/2

2

∫
dx ρ |x|

[
2∑
i=1

(nai∆Ai + nbi∆Bi) +
δy

2π
(na1 + na2 − nb1 − nb2)

]
(6.2)

to the free energy functional for ABJM theory in eq. (5.3). The quiver diagram for this
theory is given in figure 4. It is straightforward to do the extremization of the free energy
functional for arbitrary nai and nbi, but the resulting formulae are fairly long, so we will
just examine a few particular cases.
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U(nb1)

U(na2)

Figure 4. The quiver diagram for the flavored theories corresponding to the superpotential in
equations (5.1) and (6.1).

6.1 An infinite class of flavored theories

The first particular case we examine is in some sense a generalization of the flavored quivers
we studied in section 4.1. Like in the models in that section, there are no Chern-Simons
terms and the number of arrows going out of any given node equals the number of arrows
going in:

na1 + na2 = nb1 + nb2 , k = 0 . (6.3)

The U(1) quantum corrected moduli space of these theories is given by the relation
T T̃ = Ana11 Ana22 Bnb1

1 Bnb2
2 in C6 together with a Kähler quotient acting with charges

(0, 0, 1, 1,−1,−1) on (T, T̃ , A1, A2, B1, B2) [28, 29]. The free energy is

F =
2πN3/2

3

√√√√ 2∏
i,j=1

(
∆Ai+∆Bj

)[ 2∑
i=1

(nai∆Ai+ nbi∆Bi)−
4∆2

m∑2
i=1 (nai∆Ai+nbi∆Bi)

]
. (6.4)

In order to find the R-charges in the IR, this expression should be locally maximized under
the constraint (5.2). Clearly, the maximization over ∆m yields simply ∆m = 0, so there
is no asymmetry between the R-charges of the monopole operators T and T̃ , and the free
energy as a function of ∆Ai and ∆Bi reduces to

F =
2πN3/2

3

√√√√ 2∏
i,j=1

(
∆Ai + ∆Bj

) 2∑
i=1

(nai∆Ai + nbi∆Bi) . (6.5)

In the U(N) × U(N) gauge theory, the free energy (6.5) is invariant under ∆Ai →
∆Ai + δ̂ and ∆Bi → ∆Bi − δ̂, corresponding to δ(1) = −δ(2) = δ̂/2 in the notation of
section 2.3. As discussed in section 2.3, to remove this flat direction one can ungauge the
gauge symmetry that rotates Ai and Bi by opposite phases and consider instead a gauge
theory with SU(N) × SU(N) × U(1) gauge group, where the remaining U(1) comes from

– 23 –



J
H
E
P
0
6
(
2
0
1
1
)
1
0
2

the diagonal U(1) in U(N) × U(N). The difference between the SU(N) × SU(N) × U(1)
gauge theory and the U(N)×U(N) one is that in the former there is an extra constraint∫

dx ρδy = 0 . (6.6)

Imposing this constraint removes the flat direction mentioned above. An explicit calcula-
tion for the saddle point of the theories we are examining in this section gives that eq. (6.6)
is equivalent to

∆A1∆A2 −∆B1∆B2 = 0 . (6.7)

In the SU(N)×SU(N)×U(1) gauge theory one can therefore determine the R-charges of the
bifundamental fields uniquely by maximizing (6.5) under the constraints (5.2) and (6.7).
In section 7.3.2 we will show that this maximization problem is equivalent to the toric
geometry Z-minimization, which means that the field theory free energy on S3 as com-
puted from maximizing (6.5) agrees with the M-theory expectation (1.3). Moreover, the
computation in section 7.3.2 shows that the dimensions of baryonic operators computed
from the volumes of five-cycles on the gravity side are consistent with F -maximization.

There are two particular cases where the quantum corrected moduli space can be
expressed as a complete intersection and one can apply the methods of [41] to compute
the volume of the 7-d Sasaki-Einstein space Y . The first case is na1 = nb1 = 1 and
na2 = nb2 = 0, where the cone over Y can be described by the equation z1z2 = z3z4z5

in C5 [28]. In fact, we encountered this space in section 4.2.3 where we found that the
volume was Vol(Y ) = 9π4/64. One can indeed reproduce this volume by minimizing (6.5)
explicitly and using eq. (1.3).

Another particular case is na1 = na2 = nb1 = nb2 = 0, where the Calabi-Yau cone
over Y is the “cubic conifold” described as a complete intersection by the equations z1z2 =
z3z4 = z5z6 in C6. Eq. (16) of [41] with n = 4, d = 4, ~w = (1, 1, 1, 1, 1, 1) (so w = 1
and |w| = 6) gives Vol(Y ) = π4/12. Indeed, extremizing (6.5) and using (1.3) one can
reproduce the volume of Y in this case too.

6.2 M2-branes probing C× C

A quite non-trivial example where the bare monopole R-charge ∆m plays a crucial role is
the case na1 = 1 and na2 = nb1 = nb2 = 0 at CS level k = 1/2. The CS level is a half-integer
because in the IR there is an extra 1/2 shift in the CS level coming from integrating out
the fermions in the chiral multiplets q(1) and q̃(1), which are massive at generic points on
the moduli space. The U(1) quantum corrected moduli space is C times the conifold C.

The U(N)×U(N) theory has a flat direction given by ∆Ai → ∆Ai + δ̂, ∆Bi → ∆Bi + δ̂,
and ∆m → ∆m + δ̂/2, so the free energy should only be a function of

∆̂Ai ≡ ∆Ai − 2∆m , ∆̂Bi ≡ ∆Bi + 2∆m . (6.8)

Indeed, an explicit extremization of the free energy functional gives

F =
2
√

2πN3/2

3

√√√√∆̂A1

(
∆̂A2 + ∆̂B1

)(
∆̂A2 + ∆̂B2

)(
∆̂A1 + 2∆̂B1

)(
∆̂A2 + 2∆̂B2

)
4− ∆̂A1

, (6.9)
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where ∆̂Ai and ∆̂Bi satisfy the constraint ∆̂A1 + ∆̂A2 + ∆̂B1 + ∆̂B2 = 2 coming from
eq. (5.2). This expression is maximized for

∆̂A1 = 1 , ∆̂A2 =
1
2
, ∆̂B1 = ∆̂B2 =

1
4
, (6.10)

yielding

F =
√

3πN3/2

2
√

2
. (6.11)

From (1.3) one obtains that the Sasaki-Einstein base Y of C × C has volume Vol(Y ) =
16π4/81, in agreement with the value we compute in section 7.3.3 using toric geometry
techniques or in appendix C using more elementary methods.

In the SU(N)×SU(N)×U(1) theory the flat direction in F is no longer there because
one imposes as an additional constraint that

∫
dx ρδy = 0. From an explicit computation

of the saddle point, one finds that this constraint reduces to

∆m =
2∆̂B1∆̂B2 − ∆̂A1∆̂A2

2
(

4− ∆̂A1

) . (6.12)

Using (6.10) one obtains

∆m = − 1
16
, ∆A1 =

7
8
, ∆A2 = ∆B1 = ∆B2 =

3
8
. (6.13)

As we will show in section 7.3.3 these values are in agreement with the dimensions of
baryonic operators dual to M5-branes wrapping various cycles in Y computed from the
gravity side.

6.3 Dual to AdS4 ×Q1,1,1/Zn

Another example is the theory that was proposed in [28, 29] as a dual of AdS4×Q1,1,1/Zn.
This theory has na1 = na2 = n, nb1 = nb2 = 0, and vanishing CS levels k = 0. Obtaining
an expression for the free energy as a function of arbitrary R-charges ∆Ai and ∆Bi is fairly
involved, so using the symmetries of the quiver let’s just focus on the subspace where

∆Ai = ∆ , ∆Bi = 1−∆ , (6.14)

in agreement with the constraint (5.2), and allow an arbitrary bare monopole R-charge
∆m. The extremization of the free energy functional gives

F =
4πN3/2

3
√
n

∣∣n2 −∆2
m

∣∣√
3n2 −∆2

m

(6.15)

as well as ∫
dx ρδy = π

[
4n2

3n2 −∆2
m

− 2∆
]
. (6.16)
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Notice that in this case the free energy F is independent of ∆, because the fact that
k = 0 implies that the flat direction discussed in section 2.3 corresponds to ∆ → ∆ + δ̂

(where δ̂ = δ(1) = −δ(2)) leaving ∆m invariant. Maximizing (6.15) with respect to ∆m one
obtains ∆m = 0 and

F =
4π
√
nN3/2

3
√

3
, (6.17)

in agreement with the fact that the volume of Y = Q1,1,1/Zn is Vol(Y ) = π4/(8n).
As before, for the U(N) × U(N) theory it doesn’t make sense to assign any meaning

to ∆ because one cannot construct a gauge-invariant operator just from the Ai fields, for
example. In the SU(N)×SU(N)×U(1) theory, on the other hand, the condition

∫
dx ρδy =

0 combined with (6.16) and ∆m = 0 implies ∆ = 2/3. It follows that the baryonic
operators constructed out the Bi, such as B(B1), have dimensions N/3 in agreement with
the dimension of wrapped M5-branes [39].

6.4 An infinite family of non-singular spaces

Except for Q1,1,1, all the internal spaces Y corresponding to the flavored conifold quiver
that we examined so far have non-isolated singularities. However, an infinite family of non-
singular spaces Qk can be obtained by setting na1 = na2 = 1, nb1 = nb2 = 0, and arbitrary
k ≥ 2. As in the previous section, obtaining F as a function of arbitrary R-charges ∆Ai and
∆Bi is onerous, so we’ll restrict to the case (6.14) with arbitrary bare monopole R-charge
∆m. Since as discussed in section 2.3 there is a flat direction corresponding to ∆→ ∆ + δ

and ∆m → ∆m + kδ, the free energy only depends on the combination ∆̂ = ∆m − k∆:

F =
4
√

2πN3/2

3
∆̂(∆̂ + k + 1)√

(k + 1)2(k − 1)− 4(k + 1)∆̂− 2∆̂2

. (6.18)

but of course δy depends both on ∆ and ∆̂,∫
dx ρδy = −2π∆− 2π∆̂(k + 1)2

(k + 1)2(k − 1)− 4(k + 1)∆̂− 2∆̂2
. (6.19)

Because we choose to work in the SU(N) × SU(N) × U(1) gauge theory, the right hand
side of equation (6.19) must vanish. This constraint uniquely fixes ∆ in terms of ∆m, or
vice-versa, so that we are left with a prediction for the volume of the internal space Y on
the gravity side in terms of one free R-charge parameter. In section 7.3.5 we reproduce
this formula for the volume as a function of R-charge using toric geometry. Thus, we
again find that the field theory prediction for the volume of the internal space matches the
gravitational one even for R-charges away from their critical values.

7 Z-minimization from toric geometry

7.1 General rules for finding volumes of base spaces

In this section we turn to the gravity side and describe how to find the volume of the
seven-dimensional Sasaki-Einstein space Y in the case where the four complex-dimensional
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Calabi-Yau cone over Y , which we call X = C (Y ), is toric. This section relies heavily on
the results of [22].

For the moment let’s allow X to be a toric cone of complex dimension n that admits
a Ricci flat metric. That X is toric means that the isometry group of X has a U(1)n

subgroup. When we put a Ricci-flat metric on X, the base of the cone, which is the space
Y whose volume we want to find, has an induced Sasaki-Einstein metric. The idea of [22]
was to allow more general Kähler metrics on X, which by definition induce metrics on
Y that are Sasakian, but not necessarily Einstein. With each such Sasakian metric on Y

one can compute the volume of Y . When varying over the space of Kähler metrics on
X (or equivalently Sasakian metrics g on Y ) one can consider the Einstein-Hilbert action
Z[g] on Y with a fixed positive cosmological constant. This action is extremized (in fact
minimized) when the metric on Y is also Einstein, and the extremum is in fact proportional
to the volume Vol(Y ) that we want to compute. The strategy therefore is to parameterize
the set of all Sasakian metrics on Y and then extremize the Einstein-Hilbert action Z over
this set of metrics.

It turns out that volumes of Sasakian spaces depend on the Reeb vector K, which is
the vector field on X that is paired up with the radial vector field in the complex structure.
The vector field K generates isometries of the cone contained in the U(1)n isometry group,
and various Sasakian metrics differ in how the orbits of K sit within the U(1)n torus.

We may introduce symplectic coordinates (yi, φi), with i = 1, . . . , n, so that the Kähler
form on X, which should also be viewed as a symplectic from, is given by

ω = dyi ∧ dφi . (7.1)

The φi are the angular coordinates parameterizing the U(1)n group of isometries, and their
ranges are taken to be between 0 and 2π. We assume that the toric cone X is of Reeb type
so that the coordinates yi live inside of a strictly convex polyhedral cone C ⊂ Rn. Assume
that the cone has d facets. Let the vectors va, with a = 1, . . . , d, be the inward pointing
normal vectors to these facets. We only focus on cones with Gorenstein singularities,
meaning that by an appropriate SL(n; Z) transformation we may fix the first components
of the normal vectors so that va = (1, wa).

The Reeb vector K = bi
∂
∂φi

can be thought of as the normal vector bi to a hyperplane
(called the characteristic hyperplane) in Rn. When

(b, y) =
1
2

(7.2)

this hyperplane intersects the cone C to form a polytope ∆b of finite volume. Moreover,
the volume of the internal space Y is related to the Euclidean volume Vol (∆b) of the finite
polytope ∆b by

Vol (Y ) = 2n (2π)n Vol (∆b) . (7.3)

Additionally, each facet Fa, with inward normal va, corresponds to a (2n− 3)-cycle Σa in
Y . The volume of the cycle is related to the Euclidean volume Vol (Fa) of the facet by

Vol (Σa) = (2n− 2) (2π)n−1 1
|va|

Vol (Fa) . (7.4)
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The volume of the internal manifold Y can be neatly expressed in terms of the volumes of
the facets:

Vol (Y ) =
(2π)n

b1

∑
a

1
|va|

Vol (Fa) . (7.5)

When Y is Sasaki-Einstein there is a further condition that b1 = n.
We now restrict to n = 4. Suppose that the facet Fa is a tetrahedron. The vertex of this

tetrahedron is at the origin in C and the base is a triangle in the characteristic hyperplane.
There are three edges running from the characteristic hyperplane to the origin. Each edge
is the intersection between three hyperplanes, one of which is always the hyperplane normal
to va. Each of the other hyperplanes is involved in creating two edges. Thus, in addition
to the hyperplane normal to va we have three other hyperplanes involved in creating the
polytope. We label these hyperplanes by their inward-pointing normal vectors v1, v2, and
v3. It is then straightforward to derive a formula for the volume of the tetrahedron in
terms of the normal vectors,

1
|va|

Vol (Fa) =
1
48

(va, v1, v2, v3)2

| (b, va, v1, v2) (b, va, v1, v3) (b, va, v2, v3) |
. (7.6)

If the projection of Fa onto the characteristic hyperplane is a polygon instead of a triangle,
then the volume can still be computed this way by breaking the polygon up into triangles.

Each vertex of the toric diagram, which is the diagram of the vectors wa, corresponds to
a facet. The sides of the diagram which contain this vertex at one of their corners coincide
with edges of the polygon, running from the origin to the characteristic hyperplane. If a
vertex is at the edge of three planes its facet corresponds to a tetrahedron, if the vertex
is at the edge of four planes the corresponding polygon is a pyramid, and so forth. Given
a Reeb vector and a toric diagram, this procedure gives a systematic way of finding the
volume of the base space Y .

In most cases of interest to us the space Y is Ricci flat. There is a unique choice
of Reeb vector b that gives a Ricci flat metric over Y . This is the b that minimizes the
function

Z [b] =
b1 − (n− 1)

(2π)n
Vol (Y ) . (7.7)

We suspect that non-critical b corresponds to more complicated supergravity solutions than
the Freund-Rubin compactifications AdS4 × Y . In all our examples, though, there is an
agreement between the volume of Y for non-critical b and the field theory prediction of
this volume for non-critical R-charges.

7.2 Toric gauge theories with one gauge group

7.2.1 Toric geometry computation with arbitrary flavoring

In this section we consider the toric diagram [28] given in figure 5 corresponding to the
moduli space (4.5) of an arbitrary flavoring of the N = 8 theory that we discussed in
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Figure 5. The toric diagram corresponding to an arbitrary flavoring of the N = 8 theory discussed
in section 4.1.

section 4.1.9 We take the trial Reeb vector to be b = (4, y, t, z). The vertices labeled 1
through 6 correspond to tetrahedra. The volumes of the five-cycles corresponding to these
nodes in the toric diagram are

Vol (Σ1) =
π3

ytz
, Vol (Σ2) =

π3

y (4− y − t) z
, Vol (Σ3) =

π3

(4− y − t) tz
,

Vol (Σ4) =
π3

yt [n1 (4− y − t) + n2t+ n3y − z]
,

Vol (Σ5) =
π3

y (4− t− y) [n1 (4− y − t) + n2t+ n3y − z]
,

Vol (Σ6) =
π3

(4− t− y) t [n1 (4− y − t) + n2t+ n3y − z]
.

(7.8)

Using equations (7.4) and (7.5) we then calculate the volume of the base Y ,

Vol (Yb) =
π4 [n3y + n2t+ n1 (4− y − t)]

3ytz (4− y − t) [n3y + n2t+ n1 (4− y − t)− z]
(7.9)

as a function of the trial Reeb vector b = (4, y, t, z).
9There is a technical difference between the cases where we flavor one adjoint field, two adjoint fields, or

all three adjoint fields. The difference is that the toric diagrams have a different number of vertices in each
of these cases. However, the final expression for the volume of the internal space, given in equation (7.12),

is consistent with all three toric diagram classes. For that reason we only show the computation where all

three adjoint fields are flavored. That is, we require n1, n2, n3 > 0 in the following computation.
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7.2.2 Comparison with field theory

We cannot construct supersymmetry preserving baryons in the field theory of section 4.
However, we can still match the field theory operators det (Xi) to giant gravitons on the
gravity side, as discussed at the end of section 2.3. These are stabilized M5-branes wrapping
topologically trivial cycles. We propose that these cycles are simply the Σi from the toric
diagram. More specifically, label the points 1, 2, and 3 in the toric diagram by a0, b0, and
c0, respectively. Let the towers of points above these three points be denoted by ai, bi, and
ci. In this notation points 4, 5, and 6 in the toric diagram correspond to an1 , bn2 , and cn3 .
We can solve the moduli space equations by writing [28]

X1 = a0a1 · · · an1 , X2 = b0b1 · · · bn2 , X3 = c0c1 · · · cn3 ,

T =
(
an1

0 an1−1
1 · · · an1−1

)(
bn2
0 bn2−1

1 · · · bn2−1

)(
cn3

0 cn3−1
1 · · · cn3−1

)
,

T̃ =
(
a1a

2
2 · · · an1

n1

) (
b1b

2
2 · · · bn2

n2

) (
c1c

2
2 · · · cn3

n3

)
.

(7.10)

This tells us, for example, that the field theory operator det (X1) corresponds to an M5-
brane wrapping the entire ai tower. However, only the points 1 and 4 along that tower
correspond to 5-cycles. Thus the operator det (X1) is dual to an M5-brane wrapping
Σ1 and Σ4.

On the field theory side we let the R-charges R [X1] = ∆1, R [X1] = ∆2, and R [T ] −
R[T̃ ] = 2∆m be free parameters. We match these R-charges to the volumes of their
corresponding cycles using eq. (2.26). For example, the equation for ∆m is

π

6
n1 [Vol (Σ4)−Vol (Σ1)]+n2 [Vol (Σ5)−Vol (Σ2)]+n3 [Vol (Σ6)−Vol (Σ3)]

Vol (Yb)
=2∆m . (7.11)

We can solve for the Reeb vector parameters y, t, and z in terms of ∆1, ∆2, and ∆m.
The volume of the base space Y can then be expressed as a function of the field theory
R-charges, giving

Vol (Y∆) =
π4

12
(n1∆1 + n2∆2 + n3∆3)

∆1∆2∆3

[
(n1∆1 + n2∆2 + n3∆3)2 − (2∆m)2

] . (7.12)

Equation (7.12) is subject to the constraint ∆1+∆2+∆3 = 2. Remarkably, equation (7.12)
is in exact agreement with equation (4.10) for the free energy of the field theory combined
with equation (1.3). Z-minimization requires that in order for the metric on Y to be Sasaki-
Einstein one needs to minimize Vol(Y∆) with respect to ∆i and ∆m under the constraint
∆1 + ∆2 + ∆3 = 2. Since this minimization problem is equivalent to the maximization of
F in eq. (4.10), the dimensions of the determinant operators dual to giant gravitons are
consistent with eq. (2.26).

7.3 Toric gauge theories with two gauge groups

7.3.1 ABJM at level k with arbitrary R-charges

The toric diagram corresponding to the U(N)×U(N) ABJM theory at CS level k is given
in figure 6 (see for example [28]). This field theory is discussed in section 5. The four
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Figure 6. The toric diagram for the ABJM theory at CS level k.

vertices labeled 1, 2, 3, and 4 each correspond to facets that are tetrahedra. In terms of a
trial Reeb vector b = (4, y, t, z), the volumes of these cycles are determined to be

Vol (Σ1) =
k2π3

[k (4− y)− z] [k (4− t)− z] [k (y + t− 4) + z]
,

Vol (Σ2) =
k2π3

[k (y + t− 4) + z] [k (4− t)− z] z
,

Vol (Σ3) =
k2π3

[k (4− y)− z] [k (y + t− 4) + z] z
,

Vol (Σ4) =
k2π3

[k (4− y)− z] [k (4− t)− z] z
.

(7.13)

At CS level k, the monopole operators T and T̃ have gauge charge k and −k under
the gauge field A1µ − A2µ, while the bifundamental fields Ai and Bi have gauge charges
1 and −1, respectively. We may therefore construct the four gauge invariant operators
det(T̃Aki ) and det(TBk

i ). The operator det(T̃Ak1) is dual to a giant graviton wrapping the
topologically-trivial cycle kΣ1. Similarly, det(T̃Ak2) corresponds to kΣ4, det(T̃Bk

1 ) to kΣ2,
and det(T̃Bk

2 ) to kΣ3. The R-charges of these operators in field theory are given by

R[T̃Aki ] = k∆Ai −∆m , R[TBk
i ] = k∆Bi + ∆m . (7.14)

Matching these R-charges to the volumes of their corresponding cycles in field theory using
eq. (2.26), we may write the volume of the internal space Y as a function of the R-charges,

Vol (Y∆) =
π4k3

48 (k∆A1 −∆m) (k∆A2 −∆m) (k∆B1 + ∆m) (k∆B1 + ∆m)
. (7.15)

Equation (7.15) is subject to the constraint

∆A1 + ∆A2 + ∆B1 + ∆B2 = 2 . (7.16)
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Figure 7. The toric diagram for the generally flavored conifold quiver of section 6.1. Intermediate
flavor points are suppressed.

In this case too, the volume of the internal space as a function of the R-charges exactly
matches equation (5.7) for the free energy of the ABJM theory with arbitrary R-charges.

7.3.2 A general flavoring of the conifold quiver at k = 0

We now consider flavoring all four bifundamental fields in ABJM as is discussed in sec-
tion 6.1.10 The toric diagram for these theories is given in figure 7 [28]. In terms of the
trial Reeb vector b = (4, y, t, z), the volumes of the 5-cycles corresponding to facets one
through eight are

Vol (Σ1) =
π3

ytz
, Vol (Σ2) =

π3

y (4− t) z
,

Vol (Σ3) =
π3

(4− y) tz
, Vol (Σ4) =

π3

(4− y) (4− t) z
,

Vol (Σ5) =
π3

yt [na1 (4− y − t) + nb1t+ nb2y − z]
,

Vol (Σ6) =
π3

y (4− t) [na1 (4− t) + na2y + nb1 (y − t)− z]
,

Vol (Σ7) =
π3

(4− y) t [na1 (4− y) + na2t+ nb2 (y − t)− z]
,

Vol (Σ8) =
π3

(4− y) (4− t) (na2 (y + t− 4) + nb1 (4− y) + nb2 (4− t)− z]
.

(7.17)

10For analogous reasons to those given in section 7.2.1, we only show the calculation for the cases where

{na1 , na2 , nb1 , nb2} are greater than zero. However, the final expression for the volume of the internal

space will be valid more generally for any {na1 , na2 , nb1 , nb2} satisfying equation (6.3).
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Figure 8. The toric diagram for C× C.

Consider the field theory with gauge group SU (N) × SU (N) × U (1). We can solve
the moduli space equations in an analogous fashion to equations (7.10) and construct the
baryon operators B (Ai), B (Bi), B (T ), and B(T̃ ). This tells us which cycles the baryon
operators are dual to. For example, the operator B(A1) corresponds to an M5-brane
wrapping Σ1 and Σ5. Following the by now familiar procedure of matching cycle volumes
to baryonic R-charges, we then solve for the Reeb vector parameters y, t, and z in terms
of the field theory R-charges. This allows us to express the volume of the internal space
Y as a function of the R-charges. This function is exactly what one gets by combining
equation (6.5) for the free energy of the flavored ABJM theory with equation (1.3), along
with the SU (N) condition in equation (6.7).

7.3.3 C× C: flavoring one bifundamental in the conifold quiver at k = 0

We now consider flavoring the bifundamental field A1 in the ABJM model, as is discussed
in section 6.2. The toric diagram for this theory is given in figure 8 [28]. Note that in this
case the facets labeled one through four correspond to tetrahedra while the facet labeled
number five corresponds to a pyramid in R4. The volumes of the cycle corresponding to
each node are

Vol (Σ1) =
π3

ytz
, Vol (Σ2) =

π3

y (4− t− z) z
,

Vol (Σ3) =
π3

(4− y − z) tz
, Vol (Σ4) =

π3

(4− y − z) (4− t− z) z
,

Vol (Σ5) =
π3

yt (4− y − z)
, Vol (Σ6) =

π3 (4− z)
yt (4− t− z) (4− y − z)

.

(7.18)

Matching the volume of the base of the internal manifold of this theory to the free
energy of the field theory proceeds analogously to the discussion in section 7.3.2. The
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most rigorous test of the theory is obtained from the SU (N) × SU (N) × U (1) theory.
We again have the baryon operators B (Ai), B (Bi), B(T ), and B(T̃ ). Solving the moduli
space equations tells us which baryons are dual to which wrapped cycles. For example, an
M5-brane wrapping the 5-cycle Σ5 is dual to the baryon B (T ) while B(T̃ ) corresponds to
the cycle Σ1. As T T̃ = A1, we see that the baryon B (A1) is dual to an M5-brane wrapping
both cycles Σ1 and Σ5. Solving for the Reeb vector parameters in terms of the R-charges
we reproduce eq. (6.9) for the free energy of the C × C field theory, as a function of the
trial R-charges, given equation (1.3).

7.3.4 Q1,1,1: flavoring A1 and A2 in the conifold quiver at k = 0

In this section we present the toric geometry computation for the volume of the space dual
to the Q1,1,1/Zn field theory of section 6.3. With critical R-charges the internal space is
simply Q1,1,1/Zn. However, we again find that the toric geometry computation for the
volume matches the field theory free energy for non-critical R-charges.

The toric diagram for this theory is a special case of figure 7, with na1 = na2 = 1 and
nb1 = nb2 = 0. For simplicity we only compare the field theory free energy to the volume
of the internal manifold for arbitrary ∆m. We know by symmetry that at the extremum
of this theory

∆A1 = ∆A2 and ∆B1 = ∆B2 . (7.19)

Again consider the SU (N)×SU (N)×U (1) field theory. The constraint in equation (7.19)
in field theory is dual to the constraint in geometry

Vol (Σ1) + Vol (Σ6) = Vol (Σ4) + Vol (Σ5) , Vol (Σ2) = Vol (Σ3) . (7.20)

The constraint equations in (7.20) are solved for y = t = 2. After imposing this constraint,
the volumes of the cycles corresponding to each node are

Vol (Σ1) = Vol (Σ5) =
π3 (4n− z)
4 (z − 2n)2 ,

Vol (Σ2) = Vol (Σ3) =
nπ3

4n2 − z2
,

Vol (Σ4) = Vol (Σ6) =
π3 (4n+ z)
4 (z + 2n)2 .

(7.21)

The monopole charge ∆m is related to z by the equation

2∆m =
nπ

6
[Vol (Σ1)−Vol (Σ6)] + [Vol (Σ5)−Vol (Σ4)]

Vol (Yb)
. (7.22)

Solving for z we find that z = 2∆m, which gives the volume

Vol (Y∆) =
nπ4

24
3n2 −∆2

m

(n2 −∆2
m)2 (7.23)

of the internal manifold Y∆ as a function of the bare monopole R-charge ∆m. This
is in exact agreement with equation (6.15) for the free energy of the field theory as a
function of ∆m.
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Figure 9. The toric diagram for the Qk theory at CS level k. This theory is discussed in section 6.4.

7.3.5 Qk: flavoring A1 and A2 in the conifold quiver with k > 0

This section generalizes the discussion in section 7.3.4 to quivers with k > 0. This is the
field theory discussed in section 6.4. For k 6= 1 the dual internal space Qk is nonsingular.
We compute the volume of the dual space as a function of monopole charge ∆m and we
state the volume at extremum for arbitrary k.

The toric diagram for Qk is given in figure 9 [28]. We will use the same arguments
presented in section 7.3.4 and require the constraints (7.19) in field theory. This again
requires y = t = 2. The volumes of the cycles corresponding to each node are given as
functions of z by

Vol (Σ1) = Vol (Σ5) =
π3 [4 (1 + k)− z]
4 [2 (1 + k)− z]2

,

Vol (Σ2) = Vol (Σ3) =
π3
(
k2 − 1 + z

)
z2 [2 (1 + k)− z]

,

Vol (Σ4) = Vol (Σ6) =
π3

4z
.

(7.24)

Using equation (7.22) we solve for z in terms of ∆m. The volume of the internal manifold
Y∆ is a nontrivial function of ∆m when written explicitly. However, it is not hard to show
that the volume exactly matches the U (N)×U (N) free energy in equation (6.18) subject
to the SU (N) constraint in equation (6.19).
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k1

k2

k3

k4

kp

Ap,1 A1,2

A2,3

A3,4

B2,1

B3,2

B4,3

B1,p

Figure 10. A “necklace” quiver diagram for a class of N = 3 models with U(N) gauge groups and
CS levels ka. When the CS levels don’t sum to zero, the free energy behaves as N5/3 at large N .

It is useful to extremize the formula for the volume of the internal manifold Y∆ in
order to find the volume of the internal space Qk. An explicit computation gives

Vol (Qk) =
π4
[
2 (k − 1) (1 + k)2 + 4 (1 + k) z∗ − z∗2

]
6z∗2 [2 (1 + k)− z∗]2

(7.25)

with11

z∗ =
2
3

(1 + k)
[
3 +
√

1 + k
(√

3 cos θ − 3 sin θ
)]

,

θ ≡ 1
3

arg
(
−9 + i

√
48k − 33

)
.

(7.26)

8 Theories with N5/3 scaling of the free energy

In this section we consider a class of N = 3 models where the field theory free energy scales
as N5/3 in the large N limit. These models are depicted in figure 10. They consist of p
U (N) gauge groups at CS levels ka, for a = 1, . . . , p, with two non-chiral bifundamental
pairs connecting adjacent nodes. The matrix model for this theory is discussed in [10] for
the special case k ≡

∑p
a=1 ka = 0. In the large N limit the free energy scales as N3/2 in

this case. However, we show below that when k 6= 0 the free energy has N5/3 scaling.
Let λ(a) (x) denote the eigenvalues for the ath gauge group in the large N continuum

limit.12 We make the ansatz that the eigenvalues corresponding to all the gauge groups
are the same to leading order in N and that they scale as Nα:

λ(a) (x) = Nα (x+ iy (x)) (8.1)

11These results agree with [48]. We thank Stefano Cremonesi for pointing out a typo in the formula for

z∗ in an earlier version of this paper.
12As the eigenvalues scale differently in this section compared to the rest of the paper, the general rules

derived in appendix A do not apply here.
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for some 0 < α < 1. The leading terms in the free energy for large N may then be written
as

F =
N1+2α

π

k

p

∫
dxρ (x)xy (x)− iN

1+2α

2π
k

p

∫
dxρ (x)

(
x2 − y2

)
+π2N2−α

∫
dx

ρ2 (x)
1 + iy′

. (8.2)

We assume that k 6= 0 in the following discussion. Then we must take α = 1/3 in order
for the functions ρ (x) and y (x) to remain order one in the large N limit.

The saddle point of the free energy in equation (8.2) may then be found using the same
methods presented in the earlier sections. After a small calculation one finds that the free
energy is maximized when

y (x) =
1√
3
x , ρ (x) =

31/6k1/3

2πp1/3
− 2kx2

3
√

3π3p
. (8.3)

The free energy at the saddle point is given by

F =
37/6

(
3− i

√
3
)
π

20p1/3
k1/3N5/3 . (8.4)

According to (1.1), only the real part of this quantity is a measure of the number of degrees
of freedom. The imaginary part is only defined modulo 2π and contributes to the phase of
the path integral.

Theories with k 6= 0 have dual descriptions in massive type IIA theory [49, 50]. These
supergravity solutions were found in [30, 51, 52]. In these backgrounds the free energy
was found to scale as k1/3N5/3 [30] in agreement with the scaling we have found in the
matrix models.

9 Discussion

In this paper we calculated the three-sphere free energy F for a variety of N = 2 super-
conformal gauge theories with large numbers of colors. The localization of the free energy
for such theories, which allows for varying the R-charges of the fields, was carried out
in [11, 20], and we used their results to write down and solve a variety of large N matrix
models with the method introduced in [10]. The subsequent maximization of F over the
space of trial R-charges consistent with the marginality of the superpotential fixes them
and the value of F . The results we find are in complete agreement with the conjectured
dual AdS4 × Y M-theory backgrounds. We have also studied various RG flows and have
found that F decreases in all of them. F is also constant along exactly marginal directions.
Thus, F seems to be a good candidate to serve as a 3-d analogue of the a-coefficient in
the 4-d Weyl anomaly. This has led us to propose the F -theorem in three dimensions,
analogous to the a-theorem in 4-d.

The reader will note that none of the models solved in this paper include chiral bi-
fundamental fields. Instead, we have relied on models with non-chiral bifundamentals, such
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as the ABJM model, which may be coupled to a rather general set of fundamental fields,
either chiral or non-chiral. Constructions of this kind were used in [28, 29] to conjecture
gauge theories dual to a variety of N = 2 M-theory backgrounds, including such well-
known solutions as AdS4 × Q1,1,1 and AdS4 × V5,2. These novel conjectures rely heavily
on non-perturbative effects associated with monopole operators: in fact, in these theories
the monopole operators play a geometrical role on an equal footing with the fields in the
lagrangian. Our work, as well as the superconformal index calculation for the flavored
AdS4 ×Q1,1,1 model [53], provides rather intricate tests of these conjectures.

The earlier and perhaps better known conjectures for the gauge theories dual to AdS4×
M1,1,1, AdS4×Q1,1,1 and AdS4×Q2,2,2 [54–59] have instead involved chiral bifundamental
fields. The rules derived in [11, 20] seem to apply to these models as well, and we have
attempted to study these matrix models both numerically and analytically. Unfortunately,
the essential phenomenon in the matrix models exhibiting the N3/2 scaling of the free
energy, namely the cancellation of long range forces between the eigenvalues, cannot be
achieved in the theories with chiral bifundamentals. As a result, the range of the eigenvalues
grows as N , rather than

√
N , and the free energy scales as N2. The latter behavior is

in obvious contradiction with the M-theory result (1.3). As N increases, the eigenvalue
distribution does not become dense; instead, the gaps do not shrink as N is increased. This
leads to an entirely different structure from what we have observed in the various matrix
models that do produce the desired N3/2 scaling of the free energy. The question whether
the matrix models with chiral bifundamentals can be “repaired” is an interesting one and
we hope it will be investigated further.13

More generally, we find it exciting that the F -theorem for the three-sphere free energy
might hold. Such a theorem should be applicable to all 3-d theories, either supersymmetric
or not. Further tests of these ideas, as well as attempts at a general field theoretic proof,
would be very useful at this stage.

Note added. After the calculations presented here were completed, and as the paper
was being finalized, we received two papers [60, 61] that partly overlap with our results.
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A Derivation of general rules

In this section we provide a derivation of the rules we gave in section 2.2 for finding the
continuum limit of the free energy in eq. (2.1). We assume that at large N the eigenvalues
scale as

λ
(a)
i = Nαxi + iya,i + o(1) (A.1)

for some number α ∈ (0, 1). We will eventually be interested in setting α = 1/2. In writing
eq. (A.1) we implicitly assume that as we take N to infinity, the xi and ya,i become dense,
so in the continuum limit we can express ya as a continuous function ya(x). It is convenient
to define the density

ρ(x) =
1
N

N∑
i=1

δ(x− xi) , (A.2)

which as we take N → ∞ also becomes a continuous function of x normalized so that∫
dx ρ(x) = 1.

A.1 First rule

For each gauge group a with CS level ka and bare monopole R-charge ∆(a)
m , the discrete

contribution to F is

F1 =
N∑
i=1

[
− ika

4π
(λa,i)

2 + ∆(a)
m λa,i

]

=
N∑
i=1

[
− ika

4π
(Nαxi + iya,i)

2 + ∆(a)
m (Nαxi + iya,i)

]
+ o(N1+α) ,

(A.3)

where in the second line we used (A.1). Expanding in N we obtain

F1 = − ika
4π

N2α
N∑
i=1

x2
i +Nα

N∑
i=1

[
ka
2π
xiya,i + ∆(a)

m xi

]
+ o(N1+α) . (A.4)

The first term in this sum vanishes when we sum over a because we assume
∑

a ka = 0.
In taking the continuum limit we therefore only need to keep the second term and replace∑

i (· · · ) by N
∫
dx ρ(x) (· · · ). We get

F1 = Nα+1

∫
dx ρ(x)

[
ka
2π
xya(x) + ∆(a)

m x

]
+ o(N1+α) , (A.5)

reproducing eq. (2.14) when α = 1/2.

A.2 Second and third rules

The interaction terms between the eigenvalues contain two types of terms: one coming
from the one-loop determinant of the fields in the vector multiplets

F2,vector = −1
2

p∑
a=1

N∑
i,j=1

ln

(
4 sinh2

λ
(a)
i − λ

(a)
j

2

)
(A.6)
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for each gauge group a, and one coming from the one-loop determinants of the matter fields

F2,matter = −
∑

bifundamentals
(a,b)

N∑
i,j=1

`

(
1−∆(a,b) + i

λ
(a)
i − λ

(b)
j

2π

)
, (A.7)

where the function `(z) was defined in eq. (2.2). Since for each gauge group we require the
relation (2.11) to hold, we can rewrite the contribution F2,vector as

F2,vector =−1
4

∑
bifundamentals

(a,b)

(
1−∆(a,b)

) N∑
i,j=1

ln

(
16 sinh2

λ
(a)
i −λ

(a)
j

2
sinh2

λ
(b)
i −λ

(b)
j

2

)
. (A.8)

Combining (A.8) and (A.7) one can write the interaction term in the free energy as a sum
over the bifundamental fields.

In order to calculate F2 = F2,matter + F2,vector as N → ∞ we find it easier to first
calculate the derivatives of F2 with respect to ya. We have

∂F2

∂ya,i
=

N∑
j=1

[
− i

2
(
2−∆(a,b) −∆(b,a)

)
coth

Nα(xi − xj) + i(ya,i − ya,j)
2

(A.9)

− 1
4π

cot
[
π∆(a,b) +

iNα(xj−xi)+ya,i− yb,j
2

](
2π(∆(a,b) − 1)+iNα(xj−xi)+ya,i−yb,j

)
+

1
4π

cot
[
π∆(b,a) −

iNα(xj−xi)+ya,i−yb,j
2

](
2π(∆(b,a)−1)− iNα(xj−xi)+ya,i−yb,j

)]
,

where in the first term we should not let j = i. In the continuum limit this expression
becomes

δF2

δya(x)
≈N2ρ(x)2

∑
bifundamentals
(a, b) and (b, a)

P.V.
∫
dx′
[
i

2
(
2−∆(a,b) −∆(b,a)

)
coth

λa(x)− λa(x′)
2

− 1
4π

cot
[
π∆(a,b) +

i(λb(x′)−λa(x))
2

](
2π(∆(a,b)−1)+i(λb(x′)−λa(x))

)
(A.10)

+
1

4π
cot
[
π∆(b,a) −

i(λb(x′)− λa(x))
2

](
2π(∆(b,a)−1)−i(λb(x′)−λa(x))

) ]
,

where P.V. denotes principal value integration and by λa(x) we mean Nαx+ iya(x). In the
sum over pairs of bifundamental fields, adjoint fields should be counted once and should
come with an explicit factor of 1/2. Changing variables from x′ to ξ = Nα(x′ − x) and
taking N →∞, the integral in (A.10) becomes

δF2

δya(x)
≈ N2−αρ(x)2

∑
bifundamentals
(a, b) and (b, a)

∫ ∞
−∞

dξ (A.11)

[
− 1

4π
cot
[
π∆(a,b) +

iξ + ya(x)− yb(x)
2

](
2π(∆(a,b) − 1) + iξ + ya(x)− yb(x)

)
+

1
4π

cot
[
π∆(b,a) −

iξ + ya(x)− yb(x)
2

](
2π(∆(b,a) − 1)− iξ − ya(x) + yb(x)

)]
.
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This integral converges and can be evaluated to

δF2

δya(x)
≈ N2−αρ(x)2

∑
bifundamentals
(a, b) and (b, a)

[
− fab(x)

(
fab(x)

4π
+ 1−∆(a,b) −

ya(x)− yb(x)
2π

)

+fba(x)
(
fba(x)

4π
+ 1−∆(b,a) −

yb(x)− ya(x)
2π

)]
, (A.12)

where we have defined

fab(x) ≡ −i ln ei[ya(x)−yb(x)+2π(∆(a,b)−1/2)] . (A.13)

Integrating this expression with respect to ya(x) one obtains an expression for F up to
ya-independent terms. The ya-independent terms can be found by approximating F2 itself
when ya = 0 in the same way that we approximated δF/δya(x) above. The final answer is

F2 = −N
2−α

12π

∑
bifundamentals

(a, b)

∫
dx ρ(x)2

[
π2−f2

ab

][
2fab+3

(
ya − yb + 2π(∆(a,b)−1)

)]
. (A.14)

In the region where ya(x) − yb(x) + 2π(∆(a,b) − 1/2) ∈ (−π, 3π), as will be the case most
of the time, we have

fab(x) = ya(x)− yb(x) + 2π
(

∆(a,b) −
1
2

)
, (A.15)

and (A.14) becomes

F2 =−N2−α
∑

bifundamentals
(a, b) and (b, a)

2−∆+
(a,b)

2

∫
dx ρ(x)2

×
[(
ya − yb + π∆−(a,b)

)2
− 1

3
π2∆+

(a,b)

(
4−∆+

(a,b)

)]
,

(A.16)

where ∆±(a,b) ≡ ∆(a,b) ± ∆(b,a), reproducing eq. (2.15) for α = 1/2. Eq. (A.16) is valid in
the range ∣∣∣ya − yb + π∆−(a,b)

∣∣∣ ≤ π∆+
(a,b) . (A.17)

In order to reproduce eq. (2.17) for a field transforming in the adjoint of the ath gauge
group, we take ya = yb, ∆+

(a,a) = 2∆(a,a), and ∆−(a,a) = 0 in one of the terms of (A.16),
which we then multiply by a factor of 1/2 as explained above.

A.3 Fourth rule

The contribution from the fundamental and anti-fundamental fields is

F3 = −
∑

fundamental
a

N∑
i

`

(
1−∆a + i

λ
(a)
i

2π

)
−

∑
anti-fundamental

a

N∑
i

`

(
1−∆̃a − i

λ
(a)
i

2π

)
, (A.18)
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where we denoted the dimension of the fundamentals and anti-fundamentals by ∆ and ∆̃,
respectively, to avoid confusion. In the continuum limit, replacing

∑
i by N

∫
dx ρ(x) as

usual and using the scaling ansatz (A.1) we get

F3 =
i(nf − na)

8π
N1+2α

∫
dx ρx2 +N1+α

∑
fundamental

a

∫
dx ρ(x) |x|

(
1−∆a

2
− 1

4π
ya(x)

)

+N1+α
∑

anti-fundamental
a

∫
dx ρ(x) |x|

(
1− ∆̃a

2
+

1
4π
ya(x)

)
, (A.19)

where nf is the total number of fundamentals and na is the total number of anti-
fundamentals. When nf = na and α = 1/2 one reproduces eqs. (2.18) and (2.19).

A.4 Why α = 1/2?

When the CS levels sum to zero and the number of fundamentals equals the number of
anti-fundamentals, we find F1 +F3 ∼ N1+α at large N and F2 ∼ N2−α. In order to have a
non-trivial saddle point we have to balance out these two terms, so 1 +α = 2−α implying
α = 1/2. The free energy therefore scales as N3/2.

Note that as is the case for the theories in section 8 where the Chern-Simons levels
don’t sum to zero, we have F1 + F3 ∼ N1+2α and F2 ∼ N2−α, which implies α = 1/3
and therefore F ∼ N5/3. Of course, the derivation presented above doesn’t hold exactly
for those theories because for the saddle points the imaginary parts of the eigenvalues also
grow as N1/3.

B Flavoring the Martelli-Sparks model

In this section we deform the flavored ABJM construction of the theory dual to AdS4 ×
Q1,1,1 [28, 29] by assuming general monomial superpotentials for the two adjoint chiral
superfields Φ1 and Φ2:

W ∼ tr
[
Φn+1

1 + Φn+1
2 + Φ2(A1B1 +A2B2)− Φ1(B1A1 +B2A2)

+ q2iA1Q2i + q2i+1A2Q2i+1

]
. (B.1)

This is a flavored version of the Martelli-Sparks construction which led to the dual of
AdS4×V5,2 for n = 2 [27]. The marginality of the superpotential implies that the dimension
of Φa is δ = 2/(n+ 1), ∆A + ∆B + δ = 2 and that the dimensions of the fundamental fields
are 1−∆A/2. The free energy functional is

Fn[ρ, ya]=−N3/2δ

∫
dx ρ2(δy−2π∆B)(δy + 2π∆A)+N3/2nf

2π

∫
dx ρ(δy + 2π∆A)|x| , (B.2)

where δy ≡ y1 − y2. One should really consider the contribution of ∆m in equation (B.2).
However, it is not hard to show that the free energy is locally maximized for vanishing bare
monopole R-charge, so we do not include ∆m in this discussion.
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The free energy is maximized for

ρ =
√
nf (n+ 1)

2π
√

3n
−
nf (n+ 1)2 |x|

16π2n
, δy =

√
nfn√
3ρ
− 2π∆A . (B.3)

At the extremum

Fn =
16πn3/2n

1/2
f N3/2

33/2(n+ 1)2
=

4n3/2

(n+ 1)2
F1 , (B.4)

so that

Vol(Yn) =
(n+ 1)4

16n3
Vol(Y1) , (B.5)

and in particular Vol(Y2) = 81 Vol(Y1)/128.
If we were to solve the SU(N) theory and impose the constraint

∫
dx ρ δy = 0, we

would obtain

∆A =
4n

3(n+ 1)
. (B.6)

In particular, when n = 1 we reproduce ∆A = 2/3, which matches the gravity prediction.
For n = 2 we get the prediction that ∆A = 8/9.

C Comments on warped C× CY3 geometries

Some of the examples we discussed involve theories where the seven-dimensional internal
space Y is the base of a Calabi-Yau cone CY4 that can be written as the product C×CY3

for some Calabi-Yau three-fold CY3. Such a CY3 is a cone over a given five-dimensional
Sasaki-Einstein manifold X and there it can be used to construct a type IIB supergravity
solution whose metric is AdS5×X. In this section we want to answer the following question:
what can we infer about M-theory compactified on Y from our knowledge of type IIB string
theory compactified on X?

C.1 From type IIB string theory to M-theory

Let’s first try to understand the topology of the space Y . Denoting the radial coordinate in
CY3 by ρ and parameterizing C by the complex coordinate z, one can find Y by intersecting
C × CY3 with the unit sphere |z|2 + ρ2 = 1. Since on each |z| ≤ 1 slice this intersection

reduces to a copy of X of radius ρ =
√

1− |z|2, one obtains a description of Y as an X

fibration over the unit disk |z| ≤ 1 where the fiber shrinks to a point on the boundary
of the disk. Topologically, one says that Y is a double suspension of X, Y = S2X. It is
a standard consequence of the Mayer-Vietoris sequence that in performing a suspension
the reduced homology just shifts by one unit, so the reduced homology of Y can be given
simply in terms of that of X:

H̃n(Y ; Z) = H̃n−2(X; Z) . (C.1)
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In particular, the number of linearly independent n-cycles of Y (n > 2) is precisely equal to
the number of linearly independent (n− 2)-cycles of X. If such a cycle of X is represented
by an embedded closed surface Σ, the corresponding cycle of Y is represented by the double
suspension S2Σ, meaning that Σ is fibered over the disk D2 and the fiber shrinks to a point
on S1 = ∂D2.

Given a Sasaki-Einstein metric ds2
X on X, one can easily write down a Sasaki-Einstein

metric on Y :

ds2
Y = dθ2 + sin2 θ dφ2 + cos2 θ ds2

X , (C.2)

where the angels θ and φ are inside the ranges (0, π/2) and (0, 2π), respectively, parameter-
izing a disk of radius π/2 in R2. Here, the metric ds2

X is normalized so that Rmn = 4gmn,
just like on the unit five-sphere, and the metric on ds2

Y is normalized so that Rmn = 6gmn,
just like on the unit seven-sphere. In fact, if CY3 = C3, then X = S5 and Y = S7 ,with the
standard metrics on them both. Using the metric (C.2), one can find the relation between
the volumes of X and Y :

Vol(Y ) =
π

3
Vol(X) . (C.3)

More generally, one finds

Vol (n-cycle in Y ) =
2π
n− 1

Vol ((n− 2)-cycle in X) , (C.4)

where the n-cycle in Y is obtained by the double suspension of the corresponding (n− 2)-
cycle in X.

The near-horizon limit of N D3-branes at the tip of CY3 is given by the type IIB
solution

ds2
10 = ds2

AdS5
+ L̃2ds2

X , F5 =
4
L̃

(volAdS5 +L̃5 volX) , (C.5)

where L̃ is the radius of AdS5 and volAdS5 and volX are the volume forms on AdS5 and
X, respectively. The radius L̃ is quantized in string units and can be found from the
requirement that there are N units of D3-brane flux through X:

N =
1

gs(2π`s)4

∫
X
F5 =

Vol(X)
4π4gs

L̃4

`4s
, (C.6)

where `s ≡
√
α′ is the string length.

Similarly, the near-horizon limit of N M2-branes at the tip of CY4 = C × CY3 is the
11-d supergravity extremum

ds2
11 = ds2

AdS4
+ 4L2ds2

Y , F4 =
3
L

volAdS4 , F7 ≡ ∗11F4 = 384L6 volY , (C.7)

where L is the radius of AdS4, which is quantized in Planck units from the requirement
that F7 generates N units of M2-brane flux through Y :

N =
1

(2π`p)6

∫
Y
F7 =

6 Vol(Y )
π6

L6

`6p
. (C.8)
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C.2 Wrapped D3-branes and wrapped M5-branes

Let’s consider a 3-cycle Σ3 in X and the corresponding 5-cycle Σ5 = S2Σ3 in Y . In the
type IIB background, a D3-brane wrapped over Σ3 looks from the AdS5 perspective as
a very massive particle with mass mD3. In the 11-d background, an M5-brane wrapped
over Σ5 looks like a very massive particle in AdS4 with mass mM5. Let’s find the relation
between these masses.

The DBI action for a D3-brane with no worldvolume fluxes in type IIB theory is

SD3 = − 2π
gs(2π`s)4

∫
d4x e−φ

√
−g . (C.9)

Integrating over the compact coordinates, the action reduces to −mD3

∫
ds, where

mD3L̃ =
2π

gs(2π`s)4
L̃4 Vol(Σ3) =

πN

2
Vol(Σ3)
Vol(X)

, (C.10)

where in the second equality we used the D3 charge quantization condition (C.6). Similarly,
the DBI action for an M5-brane with no worldvolume fluxes is

SM5 = − 2π
(2π`p)6

∫
d6x
√
−g . (C.11)

Integrating over the compact coordinates, we obtain the effective mass

mM5L =
2π

(2π`p)6
25L6 Vol(Σ5) =

πN

6
Vol(Σ5)
Vol(Y )

, (C.12)

where in the second equality we used the M2 charge quantization condition (C.8). Com-
bining (C.10) and (C.12) with (C.3) and (C.4), one obtains

mM5L =
1
2
mD3L̃ . (C.13)

In the dual field theories, mM5L and mD3L̃ are usually interpreted as the conformal di-
mensions ∆(3)

baryon and ∆(4)
baryon of some baryonic operators. Eq. (C.13) shows

∆(3)
baryon =

1
2

∆(4)
baryon . (C.14)

Note that when making the comparison (C.14) we consider the 3-d and 4-d theories on the
same number N of M2- and D3-branes, respectively.

C.3 The minimal scalar equation

A related question one can try to answer is whether there is any relation between the
spectra of the mesonic operators in the theories dual to AdS5×X and AdS4×Y . Mesonic
operators are dual to fluctuations around these backgrounds. We analyze the simplest
such fluctuations, namely those described by a minimal scalar equation � Φ = 0 in ten and
eleven dimensions.
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In 10-d, a basis of solutions can be found by writing Φ = φ(y)ψ(x), where φ(y) depends
only on the AdS5 coordinates and ψ(x) is an eigenfunction of the laplacian on X with
eigenvalue −λ. Then the equation of motion �10 Φ = 0 reduces to

�AdS5 φ−
λ

L̃2
φ = 0 , (C.15)

so φ is a massive field with mass mAdS5 given by m2
AdS5

L̃2 = λ. The AdS/CFT relation
between the mass of this field and the conformal dimension ∆(4) of the dual operator then
implies

∆(4)(∆(4) − 4) = λ . (C.16)

In 11-d, let’s consider the ansatz Φ = φ(y)(cos θ)∆(4)
ψ(x) where φ(y) depends only

on the AdS4 coordiantes, ψ(x) is an eigenfunction of the laplacian on X with eigenvalue
−λ as above. Using the explicit metric (C.2) one can check that (cos θ)∆(4)

ψ(x) is an
eigenfunction of the laplacian on Y with eigenvalue −(∆(4) − 4)(∆(4) + 2). The minimal
scalar equation �11 Φ = 0 reduces to

�AdS4 φ−
(∆(4) − 4)(∆(4) + 2)

4L2
φ = 0 , (C.17)

so φ is a massive field with mass mAdS4 given by m2
AdS4

L2 = (∆(4) − 4)(∆(4) + 2)/4. The
conformal dimension ∆(3) of the dual CFT3 operator then satisfies

∆(3)(∆(3) − 3) = m2
AdS4

L2 =
(∆(4) − 4)(∆(4) + 2)

4
, (C.18)

with the solution

∆(3) = 1 +
1
2

∆(4) . (C.19)

The minimal scalar equation arises for example from fluctuations in the AdS part of
the metric. The dual operators are typically tr (Tµν × (chiral operator)), where the chiral
operators are constructed from the bifundamental fields in the quiver gauge theory. It is
then convenient to define ∆̃(3) = ∆(3) − 3 and ∆̃(4) = ∆(4) − 4, which are the dimensions
of the chiral operators corresponding to the eigenfunction ψ(x) of the Laplacian on X.
From (C.19) we obtain

∆̃(3) =
1
2

∆̃(4) . (C.20)

This relation is surprisingly similar to (C.14).
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