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1 Introduction and overview

Recently, a ‘double field theory’ extension of the low-energy theory of closed bosonic strings

has been found, in which the T-duality group O(D,D) is realized as a global symmetry

by virtue of doubling the coordinates [1–4] (see also [5–11] and [12] for a review). More

precisely, the conventional low-energy effective action for the metric gij , the Kalb-Ramond

2-form bij and the dilaton φ,

S =

∫
dx

√
g e−2φ

[
R + 4(∂φ)2 − 1

12
H2

]
, (1.1)

where Hijk = 3∂[ibjk], can be extended to an action written in terms of the ‘generalized

metric’

HMN =

(
gij − bikg

klblj bikg
kj

−gikbkj gij

)
, (1.2)
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and an O(D,D) invariant dilaton d defined by e−2d =
√

ge−2φ. Here, M,N, . . . = 1, . . . , 2D

are fundamental O(D,D) indices, and the fields have been grouped such that HMN trans-

forms covariantly under this group. One can think of H as a (constrained) metric on the

doubled space with coordinates XM = (x̃i, x
i), and all fields are assumed to depend on the

doubled coordinates. The action then takes a manifestly O(D,D) invariant form and reads

S =

∫
dxdx̃ e−2d

(
1

8
HMN∂MHKL ∂NHKL − 1

2
HMN∂NHKL ∂LHMK

− 2 ∂Md ∂NHMN + 4HMN ∂Md ∂Nd

)
,

(1.3)

with derivatives ∂M = (∂̃i, ∂i). This action is also invariant under gauge transformations

parametrized by ξM = (ξ̃i, ξ
i), which take the form of ‘generalized Lie derivatives’ L̂ξ,

δξHMN = L̂ξHMN ≡ ξP ∂PHMN +
(
∂MξP − ∂P ξM

)
HPN +

(
∂NξP − ∂P ξN

)
HMP ,

δd = ξM∂Md − 1

2
∂MξM ,

(1.4)

where indices are raised and lowered with the O(D,D) invariant metric

ηMN =

(
0 1

1 0

)
. (1.5)

We can think of the dilaton d as a generalized density. The gauge invariance and thus the

consistency of the action (1.3) requires the following O(D,D) covariant constraints

∂M∂MA = ηMN∂M∂NA = 0 , ∂MA∂MB = 0 , (1.6)

for arbitrary fields and parameters A,B. The first condition is the level-matching condition

for the massless fields in closed string theory. The second condition is a stronger constraint

that requires also all possible products to be annihilated by ∂M∂M . This strong constraint

implies that locally there is always an O(D,D) transformation that rotates into a T-duality

frame in which the fields depend only on half of the coordinates, e.g., being independent

of the x̃i.

If the tilde coordinates x̃i are set to zero, the action (1.3) reduces to the low-energy

action (1.1), as required. Moreover, if these coordinates are set to zero in (1.4), the gauge

transformations reduce to the familiar diffeomorphisms generated by ξi and the Kalb-

Ramond gauge transformations generated by ξ̃i.

In this paper we are concerned with the extension of the above construction to the

heterotic string [13]. In its low-energy limit, this theory is described by an effective two-

derivative action whose bosonic terms extend (1.1) by n non-abelian gauge fields Ai
α,

α = 1, . . . , n, [14],

S =

∫
dx

√
g e−2φ

[
R + 4(∂φ)2 − 1

12
Ĥ ijkĤijk −

1

4
F ijαFijα

]
, (1.7)

where

Fij
α = ∂iAj

α − ∂jAi
α + g0

[
Ai, Aj

]α
(1.8)
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is the non-abelian field strength of the gauge vectors, and the field strength of the b-field

gets modified by a Chern-Simons 3-form,

Ĥijk = 3

(
∂[ibjk] − καβA[i

α

(
∂jAk]

β +
1

3
g0

[
Aj , Ak]

]β
))

. (1.9)

Here g0 denotes the gauge coupling constant and καβ is the invariant Cartan-Killing form.

With the gauge field transforming as

δΛAi
α = ∂iΛ

α + g0

[
Ai,Λ

]α
, (1.10)

the b-field transforms under Λα as

δΛbij =
1

2

(
∂iAj

α − ∂jAi
α
)
Λα , (1.11)

such that (1.9) is invariant. At the level of the classical supergravity action, the gauge

group is arbitrary, but in heterotic string theory it is either SO(32) or E8 × E8.

In section 2 we show that for the abelian subsector the double field theory extension of

the heterotic string is straightforward. To this end, the coordinates are further extended

by n extra coordinates yα and, correspondingly, the generalized metric (1.2) is enlarged

to a (2D + n) × (2D + n) matrix that naturally incorporates the additional fields Ai
α in

precise analogy to the coset structure appearing in dimensional reductions. This suggests

an enhancement of the global symmetry to O(D,D + n). Indeed, if we formally keep

the action (1.3) and the form of the gauge transformations (1.4), but with respect to the

enlarged HMN , we obtain precisely the (abelian subsector of the) required action (1.7) and

the correct gauge transformations in the limit that the new coordinates are set to zero. In

this construction, the number n of new coordinates is not constrained, but the case relevant

for heterotic string theory is n = 16, where the yα can be thought of as the coordinates of

the internal torus corresponding to the Cartan subalgebra of SO(32) or E8 × E8.

In section 3 we turn to the non-abelian extension. In this case the group O(D,D + n)

is broken. More precisely, the reduction of the low-energy effective action (i.e., of heterotic

supergravity) on a torus TD gives rise to a theory with a global O(D,D + n) symmetry

only in the abelian limit g0 → 0 [22]. Remarkably, however, we find that the action can be

extended to incorporate the non-abelian gauge couplings in a way that formally preserves

O(D,D+n), where n equals the dimension of the full gauge group. We write the extended

action in terms of a tensor fM
NK , which encodes the structure constants of the gauge

group, and the generalized metric HMN . The consistency of this construction requires a

number of O(D,D + n)-covariant constraints on fM
NK . Apart from standard constraints

like the Jacobi identities, there is one novel differential constraint in addition to (1.6),

which reads

fM
NK ∂M = 0 . (1.12)

Moreover, the gauge variations parametrized by ξM get deformed by fM
NK in that, say, a

‘vector’ V M transforms as

δξV
M = L̂ξV

M − ξKfM
KLV L , (1.13)
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where L̂ξ denotes the generalized Lie derivative as in (1.4). Thus, the ξM gauge transfor-

mations represent a curious mix between diffeomorphism-like symmetries (which simulta-

neously treat each index as upper and lower index) and the adjoint rotations with respect

to some Lie group. The invariance of the action under these deformed gauge transforma-

tions then requires new couplings to be added to (1.3), whose Lagrangian reads (without

the e−2d prefactor)

Lf = −1

2
fM

NK HNPHKQ∂PHQM

− 1

12
fM

KP fN
LQHMNHKLHPQ − 1

4
fM

NKfN
MLHKL − 1

6
fMNKfMNK .

(1.14)

Despite the O(D,D + n) covariant form of the action, any non-vanishing choice for

the fM
NK will actually break the symmetry to the subgroup that leaves this tensor invari-

ant, because fM
NK is not a dynamical field and therefore does not transform under the

T-duality group. For instance, if we choose fM
NK to be non-vanishing only for the com-

ponents fα
βγ that are the structure constants of a semi-simple Lie group G, the remaining

symmetry will be O(D,D)×G, where G is the rigid subgroup of the gauge group. In this

case, the new couplings (1.14) precisely constitute the non-abelian gauge couplings required

by (1.7), while the gauge variations (1.13) evaluated for HMN reduce to the non-abelian

Yang-Mills transformations.

It should be stressed that the abelian and non-abelian cases are conceptually quite

different. The abelian case is closely related to the original construction in [1]. Specifically,

if we choose n = 16, the constraint (1.6) can be interpreted as a stronger form of the

level-matching condition. Moreover, the winding coordinates x̃i and the yα have a direct

interpretation in the full string theory. In contrast, the non-abelian case requires the new

constraint (1.12), which has no obvious interpretation in string theory, and formally we

introduce as many new coordinates as the dimension of the gauge group, i.e., n = 496 for

the case relevant to heterotic string theory. However, the number n is a free parameter at

the level of the double field theory constructions discussed here, and therefore we will not

introduce different notations for n in the two cases.

We note that the constraint (1.12) effectively removes the dependence on (some of)

the extra coordinates. More precisely, a subtle interplay between the constraints (1.6)

and (1.12) and the unbroken part of the T-duality group guarantees locally independence

on the ‘unphysical’ coordinates, as we will discuss in section 4. It is amusing to note that

this construction has a superficial similarity to attempts in the early literature on heterotic

string theory that aimed at realizing this theory through some Kaluza-Klein type reduction

from 496 + 10 dimensions [15, 16], but the details, in particular the physical interpretation

of the extra coordinates, appear to be different. (See also the more recent work [17], which

has some relevance for the abelian case discussed in section 2.)

Interestingly, the results on the non-abelian case are analogous to constructions of

gauged supergravities based on the so-called embedding tensor formalism (see [18] for a

review and references therein). In this formalism, the deformation of an ungauged su-

pergravity with a certain duality group G into a gauged supergravity is parametrized by

the embedding tensor that is formally a tensor under G and which is the analogue of the
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tensor fM
NK above. Even though the G-invariance is ultimately broken for any choice

of (non-vanishing) embedding tensor, all couplings induced by the gauging can be written

in a G-covariant fashion. In particular, the scalar potential takes a form that is precisely

analogous to the terms in the second line of (1.14). In gauged supergravity, however, the

exact form of these couplings can only be determined by supersymmetry. It is remarkable,

therefore, that in the construction to be discussed in this paper, the couplings (1.14) are

uniquely determined by the bosonic symmetries (1.13) (apart from the last term which is

constant and thus separately gauge invariant).

The original construction of double field theory is closely related to a frame-like geo-

metrical formalism developed by Siegel in important independent work [19, 20]. The precise

relation to the formulation in terms of a generalized metric is by now well-understood both

at the level of the symmetry transformations [4] and the action [6]. Siegel’s formalism as

presented in [19] is already adapted to include the abelian subsector of the heterotic theory.

Using the recent results of [6], it is straightforward to verify the equivalence of this formal-

ism with the generalized metric formulation in the abelian limit, which we do in section 5.

Moreover, the formulation of [19] also allows for supersymmetric extensions. We therefore

expect a supersymmetric version of the formulation discussed here to be possible. This we

will leave, however, for future work, and we stress that whenever we refer in this paper to

the heterotic string we mean, more precisely, the bosonic sector of the low-energy action.

Finally, in the conclusions to the proceedings of Strings’93 [21], Siegel also mentions the

extension to the non-abelian case, with a deformation of the gauge variations as in (1.13)

and a corresponding adaptation of the frame formalism, which we will discuss in detail in

section 5.

2 Double field theory with abelian gauge fields

In this section we introduce the double field theory formulation for the abelian subsector

of the low-energy theory of the heterotic string. We first define the enlarged generalized

metric and then show that the action (1.3) and the gauge transformations (1.4) reduce to

the required form when the dependence on the new coordinates is dropped.

2.1 Conventions and generalized metric

The coordinates are grouped according to

XM =
(
x̃i, xi, yα

)
, (2.1)

which transforms as a fundamental O(D,D + n) vector,

X ′M = hM
N XN , h ∈ O(D,D + n) . (2.2)

Here, O(D,D + n) is the group leaving the metric of signature (D,D + n) invariant,

ηMN = hM
P hN

Q ηPQ , (2.3)

– 5 –



J
H
E
P
0
6
(
2
0
1
1
)
0
9
6

where

ηMN =




ηij ηi

j ηi
β

ηi
j ηij ηiβ

ηα
j ηαj ηαβ



 =




0 1 0

1 0 0

0 0 κ



 . (2.4)

Here, we introduced κ to denote the matrix corresponding to the Cartan-Killing metric

of the gauge group. In the present abelian case, this is simply given by the unit matrix,

καβ = δαβ , but we kept the notation more general for the later extension to the non-

abelian case.

According to these index conventions, the derivatives and gauge parameters are

∂M =
(
∂̃i, ∂i, ∂α

)
, ξM =

(
ξ̃i, ξ

i,Λα
)
, (2.5)

which combines the gauge parameters of diffeomorphism, Kalb-Ramond and abelian gauge

transformations into an O(D,D + n) vector. The strong constraint (1.6) reads explicitly

∂M∂MA = 2∂̃i∂iA + ∂α∂αA = 0 , (2.6)

∂MA∂MB = ∂̃iA∂iB + ∂iA ∂̃iB + ∂αA∂αB = 0 , (2.7)

for arbitrary fields and gauge parameters A and B. As for the bosonic theory, this constraint

is a stronger version of the level-matching condition and it implies that locally there is

always an O(D,D +n) transformation that rotates into a frame in which the fields depend

only on the xi. We discuss this in more detail in section 4.

Next, we introduce the extended form of the generalized metric HMN and require that

it transforms covariantly under O(D,D + n),

H ′MN(X ′) = hM
P hN

Q HPQ(X) , d′(X ′) = d(X) . (2.8)

In analogy to the structure encountered in dimensionally reduced theories [22], we make

the ansatz

HMN =




Hij Hi

j Hi
β

Hi
j Hij Hiβ

Hα
j Hαj Hαβ



 =




gij −gikckj −gikAkβ

−gjkcki gij + ckig
klclj + Ai

γAjγ ckig
klAlβ + Aiβ

−gjkAkα ckjg
klAlα + Ajα καβ + AkαgklAlβ



 ,

(2.9)

where gauge group indices α, β, . . . are raised and lowered with καβ , and

cij = bij +
1

2
Ai

αAjα . (2.10)

The generalized metric defined like this is still symmetric, HMN = HNM . Raising all

indices with ηMN , we obtain

HMN =




Hij Hi

j Hi
β

Hi
j Hij Hiβ

Hα
j Hαj Hαβ



 =




gij + ckig

klclj + Ai
γAjγ −gjkcki ckig

klAl
β + Ai

β

−gikckj gij −gikAk
β

ckjg
klAl

α + Aj
α −gjkAk

α καβ + Ak
αgklAl

β



 .

(2.11)
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This is the inverse of (2.9), and so the generalized metric satisfies the constraint

HMKHKN = δM
N . This implies that, viewed as a matrix, it is an element of O(D,D + n)

in that it satisfies

H−1 = ηH η . (2.12)

The O(D,D+n) action (2.8) defines the generalized Buscher rules for the abelian subsector

of heterotic string theory.

2.2 Gauge symmetries

We turn now to the gauge transformations of the component fields that follow from the

extended form of the generalized metric (2.11) and the generalized Lie derivatives (1.4)

with respect to the extended parameter (2.5). Specifically, we verify that for ∂̃i = ∂α = 0

the gauge transformations of the component fields take the required form.

For the gauge variation of Hij we find

δξHij = δξg
ij = ξk∂kHij − ∂P ξi HP

j − ∂P ξj Hi
P (2.13)

= ξk∂kg
ij − ∂kξ

i gkj − ∂kξ
j gik = Lξg

ij ,

i.e., the metric gij transforms as expected with the Lie derivative under diffeomorphisms

parametrized by ξi and is inert under the other gauge symmetries. For the component Hiβ

we infer

δξHiβ = δξ

(
− gikAk

β
)

= ξk∂kHiβ − ∂P ξi HP
β − ∂P ξβ Hi

P (2.14)

= ξk∂kHiβ − ∂kξ
i Hkβ − ∂kξ

β Hik

= ξk∂k

(
− gilAl

β
)
− ∂kξ

i
(
− gklAl

β
)
− ∂kΛ

βgik

= Lξ

(
− gikAk

β
)
− gik∂kΛ

β .

Together with the form of δξg
ij determined above, this implies for the gauge vectors

δξAk
β = LξAk

β + ∂kΛ
β , (2.15)

which represents the expected diffeomorphism and abelian gauge transformation. Finally,

for the component Hi
j we derive

δξHi
j = δξ

(
− gikckj

)
= ξk∂kHi

j − ∂P ξi HPj +
(
∂jξ

P − ∂P ξj

)
Hi

P (2.16)

= ξk∂kHi
j − ∂kξ

i Hk
j + ∂jξ

k Hi
k + ∂j ξ̃k Hik + ∂jξ

β Hi
β − ∂k ξ̃j Hik

= LξHi
j +

(
∂j ξ̃k − ∂kξ̃j

)
Hik + ∂jξ

β Hi
β

= Lξ

(
− gikckj

)
+
(
∂j ξ̃k − ∂k ξ̃j

)
gik + ∂jΛ

β
(
− gikAkβ

)
.

Using again the known form of the gauge transformation δξg
ij , this implies for the tensor

defined in (2.10)

δξcij = Lξcij +
(
∂iξ̃j − ∂j ξ̃i

)
+ Aiβ∂jΛ

β . (2.17)

In order to derive the gauge transformation of bij, we project this onto the symmetric and

antisymmetric part,

δξc(ij) = δξ

(
1

2
AiβAj

β

)
= Lξ

(
1

2
AiβAj

β

)
+

1

2

(
Aiβ∂jΛ

β + Ajβ∂iΛ
β
)
, (2.18)

δξc[ij] = δξbij = Lξbij +
(
∂iξ̃j − ∂j ξ̃i

)
+

1

2

(
Aiβ∂jΛ

β − Ajβ∂iΛ
β
)
. (2.19)
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The first equation is consistent with the gauge transformation of the gauge field as obtained

above, while the second equation yields the gauge transformation of bij.

To summarize, the gauge transformations in the limit ∂̃i = ∂α = 0 read

δgij = Lξgij , (2.20)

δAi
α = LξAi

α + ∂iΛ
α , (2.21)

δbij = Lξbij +
(
∂iξ̃j − ∂j ξ̃i

)
+

1

2

(
Aiα∂jΛ

α − Ajα∂iΛ
α
)
. (2.22)

For metric and gauge vector, these give the expected result, but for bij a parameter re-

definition is required in order to obtain (1.11). If we redefine the one-form parameter ξ̃i

according to

ξ̃′i := ξ̃i −
1

2
Ai

αΛα , (2.23)

the gauge variation of bij becomes

δbij = ∂iξ̃
′
j − ∂j ξ̃

′
i +

1

2
Fij

αΛα , (2.24)

with the abelian field strength Fij
α, in accordance with (1.11).

We close this section with a brief discussion of the closure of the gauge transformations.

Using the form (1.4), one may verify that their commutator is given by

[
δξ1 , δξ2

]
= −δ[ξ1,ξ2]

C
, (2.25)

where [
ξ1, ξ2

]M
C

≡ ξN
1 ∂NξM

2 − 1

2
ξP
1 ∂M ξ2 P − (1 ↔ 2) . (2.26)

This has been proved in [4] in the original double field theory based on the generalized

metric (1.2), but since this derivation requires only the general form of the gauge transfor-

mations (1.4) and the constraints (1.6), this result immediately generalizes to the present

case. In the original case, this bracket (‘C-bracket’) reduces to the Courant bracket of

generalized geometry for ∂̃ = 0 [2, 23–25]. Let us see how this generalizes after adding

the n additional components for ξM . Setting now also ∂α = 0, we obtain for the various

components of (2.26)

([
ξ1, ξ2

]
C

)i
= ξj

1∂jξ
i
2 − ξj

2∂jξ
i
1 ≡

[
ξ1, ξ2

]i
, (2.27)

which is unmodified and given by the usual Lie bracket,

([
ξ1, ξ2

]
C

)
i
= Lξ1 ξ̃2i−Lξ2 ξ̃1i−

1

2
∂i

(
ξ̃2jξ

j
1

)
+

1

2
∂i

(
ξ̃1jξ

j
2

)
− 1

2

(
Λ1α∂iΛ2

α−Λ2α∂iΛ1
α
)
, (2.28)

which receives a new contribution involving Λ, and finally

([
ξ1, ξ2

]
C

)α
= ξj

1∂jΛ2
α − ξj

2∂jΛ1
α , (2.29)

which is the (antisymmetrized) Lie derivative of Λ. The Courant bracket is defined as

a structure on the direct sum of tangent and cotangent bundle over the space-time base

– 8 –
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manifold M , (T ⊕ T ∗)M , whose sections are formal sums ξ + ξ̃ of vectors and one-forms.

Thus, for the given generalization it is natural to consider a bundle that is further extended

to T ⊕ T ∗ ⊕ V , where we identify the sections of V with the Λα. The sections of the total

bundle are then written as ξ + ξ̃ + Λ, and in this language, the results (2.27), (2.28)

and (2.29) can be summarized by

[
ξ1 + ξ̃1 + Λ1 , ξ2 + ξ̃2 + Λ2

]
=
[
ξ1, ξ2

]

+ Lξ1 ξ̃2 − Lξ2 ξ̃1 −
1

2
d
(
iξ1 ξ̃2 − iξ2 ξ̃1

)
− 1

2

(
〈Λ1, dΛ2〉 − 〈Λ2, dΛ1〉

)

+ Lξ1Λ2 − Lξ2Λ1 ,

(2.30)

where 〈Λ1,Λ2〉 = καβΛα
1 Λβ

2 denotes the inner product, and i is the canonical product

between vectors and one-forms. Here, the term on the right-hand side in the first line

represents the vector part, the terms in the second line represent the one-form part, and

finally the terms in the last line represent the V -valued part. For Λ = 0 this reduces to the

Courant bracket.

The bracket (2.30) implies in particular that the abelian gauge transformations

parametrized by Λα close into the gauge transformations of the 2-form. This can also

be confirmed directly from (2.21) and (2.22),

[
δΛ1

, δΛ2

]
bij = δ

ξ̃
bij , ξ̃i =

1

2

(
Λ1α∂iΛ2

α − Λ2α∂iΛ1
α
)
. (2.31)

We stress, however, that this result depends on a choice of basis for the gauge parameters.

In fact, after the parameter redefinition (2.23), the 2-form varies into the gauge invariant

field strength according to (2.24) and thus the commutator trivializes.

2.3 The action

Let us now turn to the action (1.3) applied to the extended form (2.11) of the generalized

metric. We show that for ∂̃i = ∂α = 0 it reduces to the (abelian) low-energy action (1.7)

of the heterotic string.

The relevant terms in the action, setting ∂̃i = ∂α = 0, are given by

S =

∫
dx e−2d

(
1

8
Hij∂iHKL ∂jHKL − 1

2
HMi∂iHKj ∂jHMK

− 2 ∂id ∂jHij + 4Hij ∂id ∂jd

)
.

(2.32)

The last two terms are unchanged as compared to the original case without gauge vectors

since the component Hij = gij is unmodified. Thus, we only need to examine the first two

terms. The first term reads

1

8
Hij∂iHKL ∂jHKL =

1

4
∂iHkl ∂iHkl +

1

4
∂iHk

l ∂iHk
l +

1

2
∂iHαl ∂iHαl +

1

8
∂iHαβ ∂iHαβ

=
1

4
∂ig

lp ∂i
(
glp + ckpg

kqcql + Al
αApα

)
+

1

4
∂i

(
glpcpk

)
∂i
(
gkqcql

)
(2.33)

−1

2
∂i

(
glpAp

α
)
∂i
(
cqlg

qkAkα+Alα

)
+

1

8
∂i

(
Ap

αgplAl
β
)
∂i
(
AkαgkqAqβ

)
.
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After some work, this can be simplified to

1

8
Hij ∂iHKL ∂jHKL =

1

4
gij ∂ig

kl∂jgkl −
1

2
gijgkl∂iAkα ∂jAl

α − 1

4
H̃ijkH̃

ijk , (2.34)

where H̃ijk = ∂ibjk − ∂iA[j
α Ak]α.

Next we consider the second term in (2.32), which yields

− 1

2
HMi∂iHKj ∂jHMK = −1

2
Hmi

(
∂iHkj ∂jHmk + ∂iHk

j ∂jHm
k + ∂iHαj ∂jHmα

)

−1

2
Hm

i
(
∂iHkj ∂jHm

k + ∂iHk
j ∂jHmk + ∂iHαj ∂jHm

α

)

−1

2
Hβi

(
∂iHkj ∂jHβk + ∂iHk

j ∂jHβ
k + ∂iHαj ∂jHβα

)
. (2.35)

To simplify the evaluation of these terms, it is convenient to work out the following struc-

tures separately,

− 1

2
HMi∂iHKj ∂jHMK

∣∣
(∂g)2

= −1

2
gij∂jg

kl ∂lgik , (2.36)

−1

2
HMi∂iHKj ∂jHMK

∣∣
(∂g)1

= 0 , (2.37)

−1

2
HMi∂iHKj ∂jHMK

∣∣
(∂g)0

=
1

2
gikgjl∂iAl

α ∂jAkα − 1

2
H̃ijkH̃

jki . (2.38)

Combining these three structures, we obtain

− 1

2
HMi∂iHKj ∂jHMK = −1

2
gij∂jg

kl ∂lgik +
1

2
gikgjl∂iAl

α ∂jAkα − 1

4
H̃ijk

(
H̃jki + H̃kij

)
.

(2.39)

Finally, using (2.34) and (2.39), the reduced action (2.32) can be written as

S =

∫
dx e−2d

(
1

4
gij∂ig

kl∂jgkl −
1

2
gij∂jg

kl ∂lgik − 2 ∂id ∂jg
ij + 4gij ∂id ∂jd

− 1

12
Ĥ2 − 1

4
FijαF ijα

)
.

(2.40)

Up to boundary terms, the terms in the first line are equivalent to the Einstein-Hilbert

term coupled to the dilaton, compare eq. (3.18) in [3]. Thus, the reduced action coincides

precisely with (1.7).

3 Non-abelian generalization

In this section we generalize the previous results to non-abelian gauge groups. This will be

achieved by introducing a ‘duality-covariant’ form of the structure constants of the gauge

group. While this object is not an invariant tensor under O(D,D+n) and so the T-duality

group is no longer a proper symmetry, remarkably the action and gauge transformations

can still be written in an O(D,D + n) invariant fashion.
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3.1 Duality-covariant structure constants

We encode the structure constant in an object fM
NK that formally can be regarded as a

tensor under O(D,D + n), even though it is ultimately fixed to be constant and thus not

to transform according to its index structure. To be specific, let us fix an n-dimensional

semi-simple Lie group G whose Lie algebra has the structure constants fα
βγ . Then we can

define

fM
NK =

{
fα

βγ if (M,N,K) = (α, β, γ)

0 else
. (3.1)

This is not an invariant tensor under O(D,D + n), rather it will break this symmetry to

O(D,D) ×G. The advantage of this formulation is, however, that the explicit form of the

prototypical example (3.1) is not required for the general analysis: it is sufficient to impose

duality-covariant constraints, which in general may have different solutions.

Let us now turn to the constraints. First, we require that ηMN is an invariant tensor

under the adjoint action with fM
NK ,

f (M
PK ηN)K = 0 . (3.2)

This is satisfied for (3.1) with ηMN defined by (2.4), and we recall that the component ηαβ

is identified with the invariant Cartan-Killing form of G. Together with the antisymmetry

of fM
NK in its lower indices, the constraint (3.2) implies that f with all indices raised or

lowered with η is totally antisymmetric,

fMNK = f[MNK] , fMNK = f [MNK] . (3.3)

Next, we require that fM
NK satisfies the Jacobi identity

fM
N [K fN

LP ] = 0 , (3.4)

which is satisfied for (3.1) by virtue of the Jacobi identity for fα
βγ .

Apart from these algebraic constraints, we have to impose one new condition in addi-

tion to the strong constraint (1.6): we require the differential constraint

fM
NK ∂M = 0 , (3.5)

when acting on fields or parameters. By (3.3) this implies that all derivatives act trivially

that are contracted with any index of fM
NK . For the choice (3.1) this implies ∂α = 0, as

we will prove below.

To summarize, we impose the O(D,D +n) covariant constraints (3.2), (3.4) and (3.5).

Any fM
NK satisfying these conditions will lead to a consistent, that is, gauge invariant de-

formation of the abelian theory discussed above. A particular solution of these constraints

is given by (3.1) with ∂α = 0 where, as we shall see below, the theory reduces to the non-

abelian low-energy action of the heterotic string. We stress, however, that any solution

obtained from this one by an O(D,D+n) transformation also satisfies the constraints. We

will return to this point in section 4.
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We close this section by introducing the modified or deformed gauge transformations.

Each O(D,D + n) index will give rise to an adjoint rotation with the structure constants

fM
NK . In (1.13) we displayed this transformation for a tensor with an upper index,

δξV
M = L̂ξV

M − ξNfM
NKV K , (3.6)

and the transformation for a tensor with a lower index is given by

δξVM = L̂ξVM + ξKfN
KMVN . (3.7)

This extends in a straightforward way to tensors with an arbitrary number of upper and

lower indices, such that the generalized metric transforms as

δξHMN = L̂ξHMN − 2 ξP f (M
PK HN)K . (3.8)

By virtue of the constraints (3.2), the O(D,D + n) invariant metric η is invariant under

these transformations, δξη
MN = 0, which is a generalization of the analogous property

in the abelian case. Moreover, the constraint (3.5) has two immediate consequences for

these deformed gauge transformations. First, the partial derivative of a scalar transforms

covariantly,

δξ(∂MS) = L̂ξ(∂MS) = L̂ξ(∂MS) + ξLfK
LM∂KS . (3.9)

Second, any gauge transformation with a parameter that is a gradient acts trivially,

ξM = ∂Mχ ⇒ δξHMN = 0 , (3.10)

i.e., as for the abelian case there is a ‘gauge symmetry for gauge symmetries’.

3.2 The non-abelian gauge transformations

Let us now verify that the deformed gauge transformations (3.8) indeed lead to the required

non-abelian gauge transformations if we choose (3.1) and set ∂̃i = ∂α = 0. The Yang-Mills

gauge field transforms as1

δΛAi
α = ∂iΛ

α + fα
βγAi

βΛγ . (3.11)

The b-field transforms according to (1.11) and thus its transformation rule is not modified

as compared to the abelian case.

We apply (3.8) to particular components of HMN , where we focus on the new terms

proportional to fM
NK , which we denote by δ′. The variation of Hij does not receive any

modification since by (3.1) the f -dependent term in (3.8) is zero for external indices i, j.

Thus, the metric gij is still inert under Λ transformations, as expected. For components

with external index α, however, we find, e.g.,

δ′ξHiα = −gikδAk
α = −Λβfα

βγHiγ ⇒ δ′ΛAk
α = fα

βγAk
βΛγ , (3.12)

which amounts to the required transformation rule (3.11). Next, from Hi
j = −gikckj we

infer that δcij does not get corrected. In (2.10) the symmetric combination quadratic in A is

1In order to simplify the notation, we assume from now on that the gauge coupling constant g0 has been

absorbed into the structure constants fα
βγ , such that it does not appear explicitly in the formulas below.
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invariant under the non-abelian part of (3.11), as one may easily confirm, and therefore we

conclude that also δbij does not get modified as compared to the abelian case, in agreement

with (1.11). Thus, (3.8) yields precisely the required gauge transformations.

In the remainder of this subsection, we discuss the closure of the deformed gauge

transformations. It is sufficient (and simplifies the analysis) to compute the closure on a

vector V M whose gauge variation is given in (3.6). The commutator of two such gauge

transformations is then given by

[
δξ1 , δξ2

]
V M = δξ1

(
ξN
2 ∂NV M + (∂M ξ2N − ∂N ξM

2 )V N − ξK
2 fM

KNV N
)
− (1 ↔ 2)

=
[
L̂ξ1 , L̂ξ2

]
V M (3.13)

−ξN
2 ∂N

(
ξK
1 fM

KP V P
)
−
(
∂M ξ2N − ∂N ξM

2

)
ξK
1 fN

KP V P

−ξK
2 fM

KN

(
ξP
1 ∂P V N + (∂N ξ1P − ∂P ξN

1 )V P − ξP
1 fN

PQV Q
)
− (1 ↔ 2) .

Using the constraints (3.5) and (3.4) it is now relatively straightforward to check that this

can be rewritten as [
δξ1 , δξ2

]
V M = L̂ξ12V

M − ξN
12f

M
NKV K , (3.14)

where

ξM
12 = ξN

2 ∂NξM
1 − 1

2
ξ2N∂MξN

1 − (1 ↔ 2) − fM
NKξN

2 ξK
1 . (3.15)

Thus, we have verified the closure of the gauge algebra and thereby arrived at a general-

ization of the C-bracket that is deformed by the structure constants fM
NK ,

[
X,Y

]M
f

=
[
X,Y

]M
C

− fM
NKXNY K . (3.16)

The C-bracket does not satisfy the Jacobi identities, but the resulting non-trivial Ja-

cobiator gives rise to a trivial gauge transformation that leaves the fields invariant. The

deformed bracket (3.16) has a similar property, which we investigate now. First, we eval-

uate the Jacobiator,

Jf (X,Y,Z) =
[[

X,Y
]
f
, Z
]
f

+
[[

Y,Z
]
f
,X
]
f

+
[[

Z,X
]
f
, Y
]
f
. (3.17)

We compute from (3.16)

[[
X,Y

]
f
, Z
]M
f

=
[[

X,Y
]
C
, Z
]M
C

+ fM
NKfN

PQXP Y QZK

+ fM
NK

(
ZP ∂P (XNY K) − (XP ∂P Y N − Y P ∂P XN )ZK

)

+
1

2
fN

KL

(
XKY L∂MZN − ZN∂M (XKY L)

)
,

(3.18)

where we used the constraint (3.5). Using the Jacobi identity (3.4) we obtain after a brief

computation

Jf (X,Y,Z)M = JC(X,Y,Z)M − 1

2
∂M
(
fNKLXNY KZL

)
. (3.19)

Here, JC is the Jacobiator of the C-bracket, which has been proved in [2] to be a gradient.

Thus, we infer from (3.19)

Jf (X,Y,Z)M = ∂M

(
χC(X,Y,Z) − 1

2
fNKLXNY KZL

)
, (3.20)
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where χC is given in eq. (8.29) of [2]. We have seen in (3.10) that a gauge parameter that

takes the form of a pure gradient gives rise to a trivial gauge transformation on the fields.

Thus, in precise analogy to [2], the non-vanishing Jacobiator is consistent with the fact

that the infinitesimal gauge transformations δξ automatically satisfy the Jacobi identity.

We finally note that, in analogy to the discussion at the end of section 2.2, the modified

form of the gauge algebra is consistent with the closure property
[
δΛ1

, δΛ2

]
bij =

(
δ
ξ̃
+ δΛ

)
bij , Λα = fα

βγΛβ
1Λγ

2 , (3.21)

where ξ̃i is given by (2.31). In the mathematical terminology of section 2.2, the closure

property (3.15) or (3.21) amounts to a further generalization of the Courant bracket, in-

volving the structure of a non-abelian Lie algebra, in that the term [Λ1,Λ2] has to be added

in the last line of (2.30).

3.3 The non-abelian action

Next, we construct a deformation of the double field theory action parametrized by the

fM
NK in such a way that it is gauge invariant under (3.8) and leads to the required

low-energy action. For this we will start from the action written in Einstein-Hilbert like

form [4],

S =

∫
dx dx̃ e−2d R(H, d) , (3.22)

where R(H, d) is given by

R ≡ 4HMN∂M∂Nd − ∂M∂NHMN

− 4HMN∂Md ∂Nd + 4∂MHMN ∂Nd

+
1

8
HMN∂MHKL ∂NHKL − 1

2
HMN∂MHKL ∂KHNL .

(3.23)

It is defined such that it is a scalar under generalized Lie derivatives,

δξR = ξP ∂PR , (3.24)

which, together with the gauge variation (1.4) of the dilaton, implies gauge invariance of

the action. Here we modify the form of R such that (3.24) be preserved under the deformed

gauge transformations (3.8).

The result for the deformed scalar curvature is given by

Rf = R− 1

2
fM

NK HNPHKQ∂PHQM

− 1

12
fM

KP fN
LQHMNHKLHPQ − 1

4
fM

NKfN
MLHKL − 1

6
fMNKfMNK ,

(3.25)

and reduces for the abelian case f = 0 to the previous expression. Remarkably, the

structure in the second line is precisely analogous to the scalar potential appearing for

Kaluza-Klein reduction on group manifolds [26] and, for instance, in N = 4 gauged super-

gravity in D = 4 [27].2 We next verify that this action evaluated for (3.1) and ∂̃i = ∂α = 0

gives rise to the required non-abelian form of the low-energy action of the heterotic string.

2In fact, the scalar potential in N = 4 gauged supergravity for so-called electric gaugings is, up to an

overall prefactor, precisely given by the second line of (3.25), see eq. (2.2) in [28].
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The non-abelian field strength with structure constants fα
βγ is given by

Fij
α = ∂iAj

α − ∂jAi
α + fα

βγAi
βAj

γ , (3.26)

while the field strength of the b-field is modified by the Chern-Simons 3-form and thus

reads explicitly

Ĥijk = 3

(
∂[ibjk] − καβA[i

α

(
∂jAk]

β +
1

3
fβ

γδAj
γAk]

δ

))
. (3.27)

We recall that here we do not indicate the gauge coupling constant explicitly, but rather

absorb it into the structures constants. Using (3.26) and (3.27), the f -dependent non-

abelian couplings in the low-energy Lagrangian in (1.7) are found to be

Lf = −fαβγ gik gjl ∂iAj
αAk

βAl
γ − 1

4
fα

βγfαδǫ gik gjl Ai
βAj

γAk
δAl

ǫ (3.28)

+
1

2
fαβγ gik gjl gpq ∂ibjp Ak

α Al
β Aq

γ − 1

2
fαβγ gik gjl gpq Aiδ ∂jAp

δ Ak
α Al

β Aq
γ

− 1

12
fαβγfδǫζ gik gjl gpq Ai

αAj
βAp

γAk
δAl

ǫAq
ζ ,

where the first line originates from the Yang-Mills terms and the second and third line

from the non-abelian parts of the Chern-Simons 3-form.

To evaluate the new terms in (3.25), we define

Rf = R− 1

2
R1 −

1

12
R2 −

1

4
R3 −

1

6
fMNKfMNK , (3.29)

where the Ri are the respective terms in (3.25) (in the order given there). Setting ∂̃i =

∂α = 0, the first term yields

R1 = fM
NK HNPHKQ∂PHQM = fα

βγ Hβi
[
Hγj∂iHjα + Hγ

j∂iHj
α + Hγ

δ∂iHδ
α

]

= fα
βγ (−gikAk

β)
[
(−gjlAl

γ) ∂i(cpj gpq Aqα + Ajα) + (cpj gpq Aq
γ + Aj

γ) ∂i(−gjlAlα)

+(δγ
δ + Aj

γ gjl Alδ) ∂i(Ap
δ gpq Aqα)

]
. (3.30)

Similar to the computation for the abelian case, one can simplify the above terms separately

for those involving (∂g) and those not having derivatives of the metric. The result is

R1

∣∣
(∂g)1

= fα
βγ (−gikAk

β)(−∂ig
pq)
[
gjlAl

γAqα(cpj +cjp−AjδAp
δ) + Ap

γAqα − Ap
γAqα

]

= 0 , (3.31)

where the last equality follows from the definition of cij in (2.10), and

R1

∣∣
(∂g)0

= 2fαβγ gik gjl ∂iAj
αAk

βAl
γ − fαβγ gik gjl gpq ∂ibjp Aα

k Aβ
l Aγ

q

+fαβγ gik gjl gpq Aiδ ∂jAp
δ Ak

α Al
β Aq

γ . (3.32)
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Thus R1 yields the first, third, and fourth terms in (3.28) if we choose the coefficients as

in (3.29). The other terms in (3.28) do not contain any derivatives and hence they should

be obtained from R2 and R3. The computation for R2 and R3 is rather direct:

R2 = fM
KP fN

LQHMNHKLHPQ (3.33)

= fαβγ fδǫζ (δαδ + Ai
α gik Ak

δ) (δβǫ + Aj
β gjl Al

ǫ) (δγζ + Ap
γ gpq Aq

ζ)

= fαβγ fαβγ + 3fαβγ fαβ
δ gik Ai

γ Ak
δ + 3fαβγ fα

δǫ gikgjl Ai
β Aj

γ Ak
δ Al

ǫ

+fαβγfδǫζ gik gjl gpq Ai
αAj

βAp
γAk

δAl
ǫAq

ζ ,

and

R3 = fM
NKfN

MLHKL (3.34)

= fα
βγ fβ

αδ(δ
γδ + Ai

γ gik Ak
δ) = −fαβγ fαβγ − fαβγ fαβ

δ gik Ai
γ Ak

δ ,

where we have repeatedly used the total antisymmetry of fαβγ . The coefficient of R2

in (3.29) has been chosen such that it matches the coefficient of the terms f2A6. More-

over, in order to eliminate the term f2A2, which is not present in Yang-Mills theory, the

coefficient of R3 is fixed to be −1
4 . Finally, in order to cancel the constant terms fαβγ fαβγ

in R2 and R3, the last term in (3.29) is required. In total, we have verified that (3.25)

induces precisely the correct non-abelian terms.

3.4 Proof of gauge invariance

We turn now to the proof that the deformed action defined by (3.25) is invariant under the

deformed gauge transformations (3.8). The unmodified R transforms as a scalar under the

unmodified gauge transformations. We have to prove that its variation under the modified

part of the gauge transformation, which is proportional to f , cancels against the variation

of the new terms involving f .

Since all O(D,D + n) indices are properly contracted it is sufficient to focus on the

subset of variations that are non-covariant and which we will denote by ∆ξ. Specifically,

in R the new non-covariant contributions originate from partial derivatives only. For

instance, for the following structure the f -dependent terms in the gauge variation, denoted

by δ′ξ, read

δ′ξ
(
∂MHKL

)
= ξP fQ

PM∂QHKL − 2ξP f (K
PQ ∂MHL)Q − 2∂MξP f (K

PQHL)Q , (3.35)

where the first term has been added by hand, which is allowed since it is zero by the

constraint (3.5). The first two terms represent the covariant contributions, while the last

term is non-covariant. We thus find

∆ξ

(
∂MHKL

)
= −2∂M ξP f (K

PQHL)Q . (3.36)

Since we saw that ηMN can be viewed as an invariant tensor under the modified gauge

transformations (3.8), we can derive from this result, by lowering indices with η, the fol-

lowing form

∆ξ

(
∂MHKL

)
= 2∂MξP fQ

P (KHL)Q . (3.37)
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Moreover, from (3.9) we infer

∆ξ(∂Md) = 0 . (3.38)

Using this and (3.36), it is straightforward to see that all dilaton-dependent terms in (3.23)

are separately invariant under the deformed part of the gauge transformations. For instance

∆ξ

(
4∂MHMN∂Nd

)
= −8∂M ξP f (M

PQ HN)Q ∂Nd = 0 (3.39)

easily follows with (3.5). All other d-dependent terms can also be seen to be gauge invariant

by virtue of (3.5). Similarly, the term involving a second derivative of H is gauge invariant,

δ′ξ
(
∂M∂NHMN

)
= −2∂M

(
ξP f (M

PQ ∂NHN)Q + ∂N ξP f (M
PQHN)Q

)
= 0 , (3.40)

where (3.35) has been used. Thus, we have to focus only on the terms in the last line

of (3.23), whose variation with a little work can be brought to the form

∆ξR = −1

2
∂N ξLfM

LKHNPHQK∂PHMQ − ∂MξLfL
NKHNPHKQ∂PHQM . (3.41)

These terms have to be cancelled by the variations of the new terms in Rf .

There are various contributions to the gauge transformations of the f -dependent terms

in (3.25). First, the partial derivative of H in the first line transforms non-covariantly

already under the unmodified part of the gauge transformations, but it can be easily

checked, using eq. (4.36) from [4], that this contribution is zero by (3.5). Next, we have to

keep in mind that fM
NP is constant and thus does not transform with a generalized Lie

derivative with respect to ξM . The resulting non-covariant terms can be accounted for by

assigning a fictitious non-covariant variation to f (with the opposite sign),

∆ξf
M

NK = −L̂ξf
M

NK = −∂MξP fP
NK − ∂N ξP fM

PK − ∂KξP fM
NP , (3.42)

where the constancy of f and (3.5) has been used in the final step. Using this, the variation

of the f -dependent term in the first line of (3.25) can be seen to precisely cancel (3.41),

which in turn fixes the coefficient of this term in Rf uniquely.

Next, using (3.37), the term in the first line of (3.25) gives a variation proportional

to f2,

−1

2
∆ξ

(
fM

NKHNPHKQ∂PHQM

)
= −1

2
fM

NKfL
RQ∂P ξRHMLHNPHKQ

− 1

2
fM

NKfK
RM∂P ξRHNP .

(3.43)

Thus, we get two contributions: one cubic in H and one linear in H. The cubic term is

cancelled by the variation of the first term in the second line of (3.25) according to (3.42),

which in turn fixes the coefficient of this term. The term linear in H is cancelled by

the variation (3.42) of the second term in the second line of (3.25), which finally fixes

the coefficient of this term. The last term in (3.25) is constant and thus trivially gauge

invariant. In total, we have proved that the modified scalar curvature Rf transforms as

in (3.24), i.e., as a scalar, under the deformed gauge transformations (3.8), and thus that

the Einstein-Hilbert like action (3.22) is gauge invariant.
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4 The covariant constraints and their solutions

In this section we discuss the O(D,D+n) covariant differential constraints (1.6) and (1.12)

and their solutions. Before that, we explain the relation of (1.6) to the level-matching

condition in string theory.

4.1 Relation to level-matching condition

In the abelian case, for which (1.12) trivializes, the remaining constraint (1.6) has a rather

direct relation to the level-matching condition of closed string theory. In the original double

field theory construction for the bosonic string, the level-matching requires for the massless

sector [1]

L0 − L̄0 = −piw
i = 0 , (4.1)

where pi and wi are the momenta and winding modes on the torus, respectively. Upon

Fourier transformation, this implies that in string field theory all fields and parameters

need to be annihilated by the differential operator ∂̃i∂i. Here, we require the stronger form

that also all products of fields and parameters are annihilated. Similarly, the extended

form (2.6) and (2.7) of the constraint is the stronger version of the level-matching condition

in heterotic string theory, which will be discussed next.

We start by recalling the (bosonic part of) the world-sheet action for heterotic string

theory, which is given by [29]

S =
1

2π

∫
dτdσ

[
Gij∂aX

i∂aXj +εabBij∂aX
i∂bX

j +∂aXα∂aXα+εabAiα∂aX
i∂bX

α
]
. (4.2)

Here, Xi ∼ Xi+2πki, ki ∈ Z, denotes the periodic coordinates of the torus, and we have not

displayed the non-compact coordinates. The Xα are 16 internal left-moving coordinates,

i.e., satisfying the constraint (∂τ − ∂σ)Xα = 0. In this subsection, the indices a, b label the

world-sheet coordinates τ, σ, and G, B and A are the backgrounds. We split the world-sheet

scalars into left- and right-moving parts, Xi = Xi
L + Xi

R, whose zero-modes are

Xi
L(τ + σ) =

1

2
xi

0 +
1

2
pi

L(τ + σ) ,

Xi
R(τ − σ) =

1

2
xi

0 +
1

2
pi

R(τ − σ) ,

Xα(τ + σ) = xα
0 + pα

L(τ + σ) .

(4.3)

Following the canonical quantization of [29] (see also the discussion around eqs. (11.6.17)

in [30]), the left- and right-moving momenta can in turn be written as

pL i =
1

2
pi + (Gij − Bij)w

j − 1

2
Aiα

(
qα +

1

2
Aj

αwj

)
,

pR i =
1

2
pi − (Gij + Bij)w

j − 1

2
Aiα

(
qα +

1

2
Aj

αwj

)
,

pα
L = qα + Ai

αwi ,

(4.4)
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where the momentum and winding quantum numbers pi and wi, respectively, are integers

as a consequence of the periodicity of the Xi, while the qα take values in the root lattice

of E8 × E8 or SO(32).

Let us now turn to the level-matching condition, where for definiteness we work in the

Green-Schwarz formalism. We truncate to the massless subsector of the heterotic string

spectrum with 16 abelian gauge fields, i.e., taking values in the Cartan subalgebra. In other

words, we restrict to the massless spectrum with N = 0 and N̄ = 1 and thereby truncate

out the 480 remaining gauge fields, which appear for N = 0 and N̄ = 0, were N and N̄ are

the number operators. The level-matching condition for this subsector is given by

L0 − L̄0 + aL − aR = L0 − L̄0 + 1 = (pi
R)2 − (pi

L)2 − (pα
L)2 = 0 , (4.5)

where the normal ordering constants are aL = 1 and aR = 0. Inserting (4.4) into (4.5), we

obtain

2piw
i + qαqα = 0 . (4.6)

If we interpret the qα, like pi and wi, as the Fourier numbers corresponding to a torus, this

condition translates in coordinate space precisely into the differential constraint (2.6). More

precisely, the qα are vectors in the root lattice of E8 × E8 or SO(32) rather than T 16, but

these are topologically equivalent, and so we conclude that, in precise analogy to the case

of bosonic string theory originally analyzed in [1], the level-matching condition amounts to

the differential constraint (2.6) (and, correspondingly, (2.7) represents the stronger form of

this constraint). We stress that the non-abelian case to be discussed in the next subsection

is conceptually very different because it requires formally the introduction of 496 extra

coordinates together with the novel constraint (1.12), which have no direct interpretation

in the full string theory.

4.2 Solutions of the constraints

Next, we turn to the discussion of the solutions of the strong constraint. As in the bosonic

string, we will show that all solutions of this constraint are locally related via an O(D,D+n)

rotation to solutions for which fields and parameters depend only on the xi. To see this,

consider the Fourier expansion of all fields and parameters, denoted generically by A, which

take the form

A(x, x̃, y) = Aei(pix
i+wix̃i+qαyα) , (4.7)

where we indicated for simplicity only a single Fourier mode. The quantum numbers

combine into a vector of O(D,D + n),

PM =
(
wi , pi , qα

)
. (4.8)

The strong constraint now implies that

ηMN P a

M P b

N = 0 , (4.9)

for all a, b (which label the Fourier modes of all fields and parameters). Thus, all momenta

are null and mutually orthogonal. In other words, they lie in a totally null or isotropic
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subspace of R
2D+n. The canonical example of such a subspace is given by a space with

wi = qα = 0, corresponding to a situation where all fields and parameters depend only on

the xi. Since the flat metric on R
2D+n has signature (D,D + n), the maximal dimension

of any isotropic subspace is D. It is a rather general result, related to Witt’s theorem (see

the discussion and references in [3]), that all isotropic subspaces of the same dimension

are related by isometries of the full space, i.e., here they are related by O(D,D + n)

transformations. In particular, one can always find an O(D,D + n) transformation to a

T-duality frame where wi = qα = 0 and therefore one can always rotate into a frame where

fields and parameters depend only on xi, as we wanted to show.

Next, we discuss the general non-abelian theory. In this case, the global O(D,D + n)

symmetry is broken by a choice of non-vanishing structure constants fM
NK and, therefore,

we have no longer all T-duality transformations to our disposal in order to rotate into

a frame in which the fields depend only on xi. This is, however, compensated by the

additional constraint (3.5) which eliminates further coordinates for non-vanishing structure

constants.

To illustrate this point, suppose that we choose fM
NK as in (3.1), i.e., the only non-

vanishing components fα
βγ are given by the structure constants of a semi-simple Lie group

G. We can view G as the subgroup of SO(n) that leaves the tensor fα
βγ invariant,3 and

so the global symmetry group is then broken to O(D,D) × G, where we view G as the

global subgroup of the gauge group. The constraint (3.5) can now be multiplied with the

structure constants, which implies

0 = fγ
δα f δ

γβ ∂β = −2καβ ∂β , (4.10)

where καβ is the Cartan-Killing form. As καβ is invertible for a semi-simple Lie algebra,

we conclude ∂α = 0, i.e., the constraint implies that all fields are independent of yα. The

unbroken O(D,D) transformations can then be used as above in order to rotate into a

T-duality frame in which the fields are independent of x̃. In total, the constraints are still

sufficient in order to guarantee that the dependence on the ‘unphysical’ coordinates x̃ and

y is either eliminated directly or removable by a surviving T-duality transformation.

Let us now turn to a more general situation where fM
NK is of the form (3.1), but with

the gauge group G having some U(1) factors. Suppose, the gauge group is of the form

G = U(1)p × G0 , (4.11)

where G0 is semi-simple and embedded into O(n − p). If we split the indices accordingly,

α = (α, ᾱ), with α = 1, . . . , p and ᾱ = 1, . . . , n − p, the non-vanishing components of

fM
NK are given by the structure constants f ᾱ

β̄γ̄ of G0. The constraint (3.5) implies

in this case only ∂ᾱ = 0, i.e., that the fields are independent of the n − p coordinates

yᾱ. The unbroken T-duality group is, however, given by O(D,D + p) and thus larger

than in the previous example. Therefore, as in the above discussion of the abelian case,

these transformations can be used in order to rotate into a T-duality frame in which the

3Any compact n-dimensional Lie group G can be canonically embedded into SO(n). If we denote the

generators of so(n) by Kαβ = −Kβα, the generators tα of G are embedded as tα = 1

2
fα

βγKβγ .
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fields are both independent of x̃i but also of the remaining p coordinates yα. Thus, the

constraints and residual T-duality transformations are again sufficient in order to remove

the dependence on x̃ and y.

We finally note that by virtue of the O(D,D + n) covariance of the constraints any

fM
NK obtained from (3.1) by a duality transformation also solves the constraints. Pre-

sumably, these have to be regarded as physically equivalent to (3.1) and thereby to the

conventional low-energy action of heterotic string theory. It remains to be investigated,

however, whether there are different solutions to the constraints. This is particularly in-

teresting in the context of (generalized) Kaluza-Klein compactifications, where the fields

are independent of some of the xi and for which the differential constraints may allow for

more general solutions. We leave this to future work.

5 Frame formulation

Here, we reformulate the above results in a frame-like language in order to make con-

tact with the formalism developed by Siegel [19], as has been done in [6] for the double

field theory extension of the bosonic string. We first discuss the abelian case, which is

straightforward, and then turn to the non-abelian case which requires an extension of the

formalism. The non-abelian case was already mentioned by Siegel in [21]. Specifically, this

reference discusses a modification of the coefficients of anholonomy and a corresponding

deformation of the C-bracket, and these results coincide with our results given in eqs. (5.11)

and (5.12) below.

5.1 Frame fields and coset formulation

The basic field in the formalism of Siegel is a vielbein or frame field eA
M that is a vector

under gauge transformations parameterized by ξM and which is subject to local tangent

space transformations indicated by the flat index A. In the present case, the tangent space

group is GL(D)×GL(D + n) and the index splits as A = (a, ā). Using the frame field and

ηMN , one can define a tangent-space metric of signature (D,D + n),

GAB = eA
M eB

N ηMN , (5.1)

and the frame field is constrained to satisfy

Gab̄ = 0 . (5.2)

Starting from this frame field and the local tangent space symmetry, one may introduce

connections for this gauge symmetry, impose covariant constraints and construct invari-

ant generalizations of the Ricci tensor and scalar curvature. Rather than repeating this

construction here, we will just mention in the following the new aspects in the case of the

heterotic string theory and refer to [19] and [6] for more details.

The generalized metric can be defined as follows

HMN = 2Gāb̄ eā
Meb̄

N − ηMN = −2Gab ea
Meb

N + ηMN , (5.3)
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where the equivalence of the two definitions is a consequence of the constraint (5.2). Next,

it is convenient to gauge-fix the tangent space symmetry by setting GAB equal to ηMN (up

to a similarity transformation, c.f. the discussion after eq. (5.22) in [4]), such that (5.1)

and (5.3) imply [4]

HMN = δAB eA
M eB

N . (5.4)

This leaves a local O(D) × O(D + n) symmetry unbroken, and in this gauge we can think

of the frame field eA
M as a O(D,D+n)-valued coset representative that is subject to local

O(D) × O(D + n) transformations. Thus, this formulation can be viewed as a generalized

coset space construction based on O(D,D + n)/(O(D) × O(D + n)), in analogy to the

structure appearing in dimensional reduction of heterotic supergravity [22]. Fixing the

local symmetry further, one may give explicit parametrizations of the frame field eA
M in

terms of the physical fields that give rise to the form (2.11) of HMN according to (5.4),

see, e.g., eq. (4.12) in [22].

We turn now to the definition of the scalar curvature R that can be used to define

an invariant action as in (3.22). It can be written in terms of ‘generalized coefficients of

anholonomy’ ΩAB
C that are defined via the C-bracket (2.26),

[
eA, eB

]M
C

= ΩAB
C eC

M . (5.5)

Defining4

hABC = (eAeB
M )eCM , (5.6)

where eA = eA
M∂M , one obtains explicitly

ΩABC = 2h[AB]C + hC[AB] = hABC + hBCA + hCAB = 3h[ABC] . (5.7)

Here we used that the gauge condition implies that GAB is constant and therefore hABC =

−hACB from the definition (5.6). Finally, defining

Ω̃A = ∂MeA
M − 2eAd , (5.8)

the scalar curvature is given by

R = eaΩ̃
a +

1

2
Ω̃a

2 +
1

2
eaebGab − 1

4
Ωabc̄

2 − 1

12
Ω[abc]

2 +
1

8
eaGbc ebGac . (5.9)

In [6] it has been verified that starting from this expression for R and using the definition of

HMN in terms of the frame fields, this reduces precisely to the form given above in (3.23),

up to an overall factor of 4. This proof immediately generalizes to the abelian case of

the heterotic string, as all expressions, including the definition (5.3) of HMN , are formally

the same.

4We note that we changed notation as compared to [6, 19], where this quantity has been denoted by f ,

in order to distinguish it from the structure constants.
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5.2 Non-abelian extension

Let us now turn to the non-abelian generalization, which has also been mentioned in [21]. A

natural starting point is the deformed bracket (3.16) of gauge transformations. We further

generalize the coefficients of anholonomy by defining

[
eA, eB

]M
f

= Ω̂AB
CeC

M . (5.10)

By (3.16) and (5.5) this implies

Ω̂AB
C = ΩAB

C − fC
AB , fC

AB = fM
NK eM

C eA
N eB

K , (5.11)

where we introduced structure constants with flattened indices. The f -bracket of two

vectors that transform covariantly under the deformed gauge transformations transforms

covariantly in the same sense, i.e.,

δξ

[
X,Y

]M
f

= L̂ξ

[
X,Y

]M
f

− ξNfM
NK

[
X,Y

]K
f

. (5.12)

To see this, we recall from [6] that the C-bracket is invariant under the generalized Lie

derivative. Thus, it remains to be shown that the non-covariant part of the variation of

the C-bracket due to the deformed gauge variation cancels against the variation of the new

term in the f -bracket. As in the proof of gauge invariance of the action above, we denote

the non-covariant part of the variation by ∆ξ and compute

∆ξ

[
X,Y

]M
C

= −ξP fN
PKXK∂NY M +

1

2
ξP fN

PKXK∂MYN (5.13)

−XN∂N

(
ξP fM

PKY K
)

+
1

2
XN∂M

(
ξP fNP

KYK

)
− {X ↔ Y } .

Using the constraint (3.5), it is straightforward to verify that this can be rewritten as

∆ξ

[
X,Y

]M
C

= −ξNfM
NK

[
X,Y

]K
C
− (L̂ξf

M
NK)XNY K . (5.14)

The second term here is precisely cancelled by the non-covariant variation of the f -

dependent term in the f -bracket, which finally proves the covariance relation (5.12).

Next, we discuss the extension of the scalar curvature (5.9). Given the covariance of

the f -bracket, it follows from (5.10) that Ω̂ is a scalar under ξM transformations, while its

frame transformations are as in the abelian case. Therefore, if we replace in (5.9) Ω by Ω̂,

the resulting expression will also be a scalar. In the following we will show that

Rf := eaΩ̃
a +

1

2
Ω̃a

2 +
1

2
eaebGab − 1

4
Ω̂abc̄

2 − 1

12
Ω̂[abc]

2 +
1

8
eaGbc ebGac (5.15)

indeed agrees with the definition (3.25) above.

Inserting here the definition (5.11), we infer

Rf = R− 1

4

(
− 2Ωabc̄f

abc̄ + fabc̄f
abc̄
)
− 1

12

(
− 2Ω[abc]f

abc + fabcf
abc
)
. (5.16)
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Next, we rewrite these new contributions in terms of the generalized metric, using the

definition (5.3), which we rewrite here as

ea
MeaN =

1

2

(
ηMN −HMN

)
, (5.17)

eā
MeāN =

1

2

(
ηMN + HMN

)
. (5.18)

The second term in (5.16) can be written as

1

2
Ωabc̄f

abc̄ =
1

2

(
habc̄ + hbc̄a + hc̄ab

)
fabc̄ =

1

2

(
2habc̄ + hc̄ab

)
fabc̄ , (5.19)

where

habc̄f
abc̄ = ea

N∂Neb
M ec̄MeaKebP ec̄

QfKP
Q = −∂N

(
ec̄Mec̄

Q

)
ea

NeaKeb
MebP fKP

Q

= −1

8
∂NHMQ

(
ηNK −HNK

)(
ηMP −HMP

)
fKP

Q (5.20)

= −1

8
fKP

Q HNKHMP ∂NHMQ .

The fourth term in (5.16) is given by

1

6
Ω[abc]f

abc =
1

2
h[abc]f

abc =
1

2
hcabf

abc , (5.21)

where in the last step the total antisymmetry of fMNK has been used. Then, adding the

second and fourth term, we obtain

1

2
Ωabc̄f

abc̄ +
1

6
Ω[abc]f

abc = habc̄f
abc̄ +

1

2

(
hc̄abf

abc̄ + hcabf
abc
)

(5.22)

= habc̄f
abc̄ +

1

2
hCabf

abC ,

where

hCabf
abC = eC

N∂Nea
M ebMeaKebP eC

Q fKP
Q = fKP

Q ∂Qea
M eaKebMebP = 0 . (5.23)

The third and the fifth term in (5.16) can be evaluated directly. The third term yields

− 1

4
fabc̄f

abc̄ = −1

4
ea

Meb
Kec̄

P eaNebLec̄Q fMKP fNLQ (5.24)

= − 1

32

(
ηMN −HMN

)(
ηKL −HKL

)(
ηPQ + HPQ

)
fMKP fNLQ

= − 1

32

[
fMNP fMNP −HMNfMKP fN

KP −HKLHPQ fMKP fM
LQ

+ HMNHKLHPQ fMKP fNLQ

]
,

while the fifth term reads

− 1

12
fabcf

abc = − 1

12
ea

Meb
Kec

P eaNebLecQ fMKP fNLQ (5.25)

= − 1

96

(
ηMN −HMN

)(
ηKL −HKL

)(
ηPQ −HPQ

)
fMKP fNLQ

= − 1

96

[
fMNP fMNP − 3HMNfMKP fN

KP + 3HKLHPQ fMKP fM
LQ

−HMNHKLHPQ fMKP fNLQ

]
.

Finally, combining all contributions, they agree precisely with the required form in terms

of HMN , up to the same overall factor of 4 that arises in the abelian case, c.f. [6].
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6 Conclusions and outlook

In this paper we have extended the double field theory formulation of [4] to the low-energy

action of the heterotic string, which features extra non-abelian gauge fields. These extra

gauge fields neatly assemble with the massless fields of closed bosonic string theory into

an enlarged generalized metric that transforms covariantly under the enhanced T-duality

group O(D,D+n) and thereby represent a further ‘unification’. For the abelian subsector,

the action takes the same structural form as for the bosonic string, but based on the

enlarged generalized metric. In the non-abelian case, the T-duality group is broken to

a subgroup, but interestingly the action can still be written in a covariant fashion, with

new couplings which are precisely analogous to those encountered in lower-dimensional

gauged supergravities. These new couplings are parametrized by a tensor fM
NK , and any

such tensor satisfying a number of covariant constraints defines a consistent deformation

of the abelian theory. This means that rather than having a proper global O(D,D + n)

symmetry, there is an action of this group on the ‘space of consistent deformations’ of the

abelian theory. Whether this space consists of a single O(D,D + n) orbit or whether there

are more general solutions to the constraints that are inequivalent to (3.1) (and thereby to

the conventional Yang-Mills-type theory) remains to be seen.

Several aspects of these results deserve further investigations. First, the gauge algebra

gives rise to a generalization of the Courant bracket when the dependence on the extra

coordinates is dropped such that the additional gauge structure enters non-trivially. While

extensions of the Courant bracket have been studied in the literature, especially in the

context of ‘exceptional generalized geometry’ (see, e.g., [31, 32]), we are not aware of inves-

tigations of the structures discussed here, and so it would be interesting to further study

their mathematical aspects. Moreover, general properties of gauged supergravities feature

prominently in the literature on ‘non-geometric compactifications’ (see, e.g., [28]) as the

most general gauged supergravities cannot be obtained by any conventional Kaluza-Klein

type reduction from higher-dimensional theories, therefore requiring a sufficiently ‘non-

geometric’ novel framework. As the construction presented here exhibits several features

reminiscent to gauged supergravity prior to any dimensional reduction, one might expect

that this theory can provide such a framework. We hope to return to these issues in the

near future.
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