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1 Introduction

The integrable structures underlying the N = 4 Super-Yang-Mills (SYM) theory are a

continuing source of fascination, in large part due to the promise they hold of leading

to the complete solution of this non-trivial four-dimensional gauge theory. Since their

appearance in [1, 2], the main focus of investigation has been the spectral problem, i.e.

the question of obtaining the exact spectrum of anomalous dimensions of gauge-invariant

operators of the theory. For a review of the state of the art and current challenges in

this field, we refer to the collection of articles in [3]. The spectrum, however, is only part

of the information required to (at least in principle) solve the theory, the other essential

ingredient being the set of all three-point functions between the fundamental operators.

It thus natural to look beyond the spectrum and ask whether integrability plays any role

in specifying the correlation functions of the theory. Answering this question is also likely

to be crucial in attempts to probe integrability beyond the planar limit, which involves

considering interacting strings (and three-point vertices thereof) in the dual description.1

Understanding the role of integrability in the calculation of N = 4 SYM correlation

functions has recently been receiving a growing amount of attention. On the gauge side

1See the review [4] for a recent discussion of these issues.
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of the AdS/CFT correspondence, and following earlier work in [5–7], it was shown in [8]

that the one-loop Bethe equations can be used to simplify the calculation of tree-level

three-point functions of certain non-protected operators.

On the gravity side, the computation of two-point functions of spinning strings was

considered in [9], and recently taken-up again in [10], as well as in [11] using the formal-

ism of semiclassical vertex operators [12, 13]. However, the extension to general semi-

classical three-point functions appears to rely on finding the precise geometric solution

interpolating between the insertion points of the corresponding operators on the bound-

ary of AdS, which seems to lie beyond current capabilities. As argued in [14, 15], this

problem can be avoided provided one restricts to correlation functions involving only two

“heavy” operators (for which the classical string trajectory is known), while treating the

remaining “light”operators as a perturbation. With this simplifying assumption, several

cases of three- and higher-order correlation functions, involving different types of semi-

classical strings and various choices for the light operators, have been considered in the

literature [16–23].

The semiclassical string solutions discussed above correspond to single-trace gauge

theory operators with large quantum numbers, which can also be described as spin chains

with certain amounts of excitations. Although the dimension of these states is much larger

than 1 in order to justify the semiclassical approximation (in particular, the dimension is

∼
√
λ with λ the ’t Hooft coupling), it is also necessarily much smaller than the rank of the

gauge group N . However, the gauge theory also contains operators whose dimension scales

as N in the large-N limit. A class of such operators was identified in [24] with the giant

gravitons of [25], which are D3-branes wrapping an S3 in the S5 (their radius stabilised

by the presence of five-form flux in the geometry), spinning along a circle in the S5 and

located at the centre of AdS5. The mapping of these giant gravitons, as well as the dual

giant gravitons wrapping an S3 in AdS5 constructed in [26], to the gauge theory was put in

a more general context in the work of [27]: they correspond to Schur polynomial operators,

which are specific combinations of traces of one of the N = 4 SYM scalars forming an

orthogonal basis for any N .2

Each Schur polynomial is labeled by a Young tableau corresponding to a specific rep-

resentation of U(N). As argued in [27], S5 giant gravitons of dimension k ≤ N are mapped

to the antisymmetric representation with k boxes, while the dual AdS5 ones map to the

symmetric representation with k boxes. The fact that the dimension of the antisymmet-

ric representation is bounded from above by N corresponds to the fact that the angular

momentum of the S5 graviton has an upper bound: its radius increases with angular mo-

mentum but cannot become larger than that of the S5. Giant gravitons which saturate

this bound are called maximal.

Given that giant gravitons are heavy, semiclassical objects, one can ask whether the

approach of [14] can be applied to correlation functions of giant gravitons. A calculation

involving giant gravitons was recently performed in [28], which considered correlation func-

2See section 2 for the precise definition of these operators.
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tions of two S5 giant gravitons with open strings attached (as the heavy states), with the

light state being dual to a chiral primary operator. This work computed two-point func-

tions for both maximal and non-maximal giant gravitons, but three-point functions only

in the maximal case, where the giant gravitons were essentially inert (their role being that

of providing the open string endpoints).

In this work we consider a different type of correlation function of two giant graviton

operators with a chiral primary. On the string side, we will take as our heavy states

either AdS5 or S5 giant gravitons (not necessarily maximal). The light state will be an

AdS scalar field of dimension ∆ = J ≪
√
N dual to a chiral primary. On the gauge

theory side, the operators corresponding to the giant gravitons are Schur polynomials with

dimension k of order N , in the large-N limit. We compute the three-point function of

these operators with a chiral primary operator, using established gauge theory techniques.

This quantity is expected to be protected from quantum corrections, owing to the shared

1/2 BPS supersymmetry of the operators, however we do not find perfect agreement with

the string theoretic results. In the concluding section we discuss in detail this discrepancy

which we believe hinges on the inability of the Schur polynomials to interpolate between

giant and pointlike gravitons.

The plan of the paper is as follows: In the next section we introduce the operators that

we will consider on the gauge theory side and compute the three-point functions in ques-

tion using Schur polynomial techniques. Then, in section 3 we describe the string theory

computation of the same quantities using the approach of [14]. In the concluding section

we compare the two results and discuss open problems and directions for future work. We

have also included an appendix containing a simple computation of the holographic S5

giant graviton two-point function.

2 Three-point functions from gauge theory

In this section we will compute three-point functions involving two types of half-BPS

operators: single trace chiral primaries (which in the following we will simply call “chiral

primaries”) and Schur polynomial operators. Three-point functions of such operators (all

built up of the same N = 4 SYM chiral field Z) are expected to be protected to all

orders [29] and can thus be exactly calculated in the gauge theory.

2.1 Single trace chiral primaries

Let us consider single-trace operators built from a single complex scalar field Z, i.e.

OJ = TrZJ , (2.1)

These operators are dual to point-like strings moving along an equator of S5 with angular

momentum J . Their two- and three-point functions are protected and can be calculated

– 3 –
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exactly, see for instance [30], and read

〈TrZJ TrZ̄J〉 =
1

J + 1

{
Γ(N + J + 1)

Γ(N)
− Γ(N + 1)

Γ(N − J)

}
(2.2)

= J NJ

{
1 +

(
J + 1

4

)
1

N2
+ . . .

}
. (2.3)

〈TrZJ TrZKTrZ̄J+K〉 =
1

J +K + 1

{
Γ(N + J +K + 1)

Γ(N)
− Γ(N + J + 1)

Γ(N −K)

+
Γ(N + 1)

Γ(N − J −K)
− Γ(N +K + 1)

Γ(N − J)

}
(2.4)

= NJ+K−1J K (J +K)

×
{

1 +
1

3!N2

(
K + J − 1

2

)[(
K

2

)
+

(
J

2

)
− 1

]
+ . . .

}
.

Here we have left out the trivial dependence on space-time coordinates and the ’t Hooft

coupling constant. Hence we get for the CFT structure constant

CJ,K,K+J ≡ 〈OJOKŌJ+K〉√
〈OJŌJ〉〈OKŌK〉〈OJ+KŌJ+K〉

(2.5)

=
1

N

√
J K (J +K)

[
1 + O

(
1

N2

)]
. (2.6)

This is the well known expression for the three-point function of three chiral primaries of

the type given in eq. (2.1). This object can also be viewed as a two point function of a

single trace operator and a double trace operator (since the contractions needed are the

same in both cases) and we notice the well-known fact that single and multi-trace operators

are orthogonal to the leading order in 1
N provided J is not too big. For large values of J

single trace operators mix with multi trace operators and a more convenient basis is the

basis of Schur polynomials χR(Z) described below [27].

2.2 Schur polynomials

The Schur polynomial χR(Z) of a complex matrix Z is defined as

χRn(Z) =
1

n!

∑

σ∈Sn

χRn(σ)Z
iσ(1)

i1
. . . Z

iσ(n)

in
. (2.7)

Here Rn denotes an irreducible representation of U(N) described in terms of a Young

tableau with n boxes. The sum is over all elements of the symmetric group Sn and χRn(σ)

is the character of the element σ in the representation Rn. Notice that there is no limit in

which the Schur polynomial reduces to a chiral primary operator.3 Schur polynomials are

3The Schur polynomials χRn
(Z) have the general structure

χRn
(Z) = c0,nTrZn + c1,nTrZTrZn−1 + . . . + cn,n (TrZ)n

, (2.8)

where the c’s are constants independent of N and the sum is over all partitions.
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again 1/2-BPS operators with protected two- and three-point functions. These correlation

functions have been calculated exactly and read [27]

〈χR(Z)χS(Z̄)〉 = δR,S

∏

i.j∈R

(N − i+ j), (2.9)

〈χR(Z)χS(Z)χT (Z̄)〉 = g(R,S;T )
∏

i,j∈T

(N − i+ j), (2.10)

where g(R,S, T ) is the Littlewood-Richardson coefficient which counts the multiplicity

with which the representation T appears in the tensor product of the representations R

and S. Furthermore, the product
∏

i,j∈R goes over all boxes of the Young tableau of

the representation R with i denoting the row number and j the column number. Hence

the Schur polynomials provide an orthogonal basis of operators. The string theory duals

of Schur polynomials are collections of giant gravitons, i.e. D3-branes which wrap an S3

of either S5 or AdS5 [24, 27]. The cleanest examples are the Schur polynomials of the

symmetric and the antisymmetric representations. When the number of boxes, k, in the

Young tableau of the representation is large (i.e. k ∼ O(N), with N → ∞), the Schur

polynomial of the symmetric representation is dual to a single giant graviton moving on

S5 with angular momentum k and wrapping an S3 ⊂ AdS5. For the antisymmetric case

the giant graviton instead wraps an S3 ⊂ S5 [27].

Let us denote the Schur polynomial for the symmetric representation with k boxes

as χS
k (Z) and the Schur polynomial for the antisymmetric representation with k boxes as

χA
k (Z). Then we find for the corresponding two and three-point functions

〈χS
k (Z̄)χS

k (Z)〉 =

k∏

j=1

(N − 1 + j), (2.11)

〈χA
k (Z̄)χA

k (Z)〉 =

k∏

i=1

(N − i+ 1), (2.12)

〈χS
k (Z̄)χS

k−J(Z)χS
J (Z)〉 =

k∏

j=1

(N − 1 + j), (2.13)

〈χA
k (Z̄)χA

k−J(Z)χA
J (Z)〉 =

k∏

i=1

(N − i+ 1), (2.14)

since for these cases g(R,S;T ) = 1. Notice that for the antisymmetric case we have that

k ≤ N while in the symmetric case k is unbounded.

2.3 Two Schur polynomials and one single trace operator

Recently, it has been understood from the string theory side how to calculate by semiclas-

sical methods three-point functions which involve two massive string states and one light

one dual to a chiral primary operator of the type TrZJ [10, 14]. In the present paper

we will study the case where the two heavy operators are giant gravitons. In the field
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theory language these three-point functions can be calculated exactly using the results of

the sections above. The properly normalized three-point functions are

CS
k,k−J,J ≡ 〈χS

k (Z̄)χS
k−J(Z)TrZJ〉

√
〈χS

k (Z̄)χS
k (Z)〉〈χS

k−J(Z̄)χS
k−J(Z)〉〈TrZ̄JTrZJ〉

, (2.15)

and similarly for CA
k,k−J,J . We have already calculated the relevant norms above, cf. eqs.

(2.2) and (2.9). To calculate the expectation value in the numerator we expand TrZJ in

the basis of Schur polynomials. Noting that by definition

TrZJ = Tr(σ0Z), (2.16)

where σ0 is the cyclic permutation we have

TrZJ =
∑

RJ

χRJ
(σ0)χRJ

(Z), (2.17)

where the sum goes over all possible irreducible representations RJ corresponding to Young

tableaux with J boxes, see e.g. [31]. Inserting the sum instead of TrZJ in the expectation

values 〈χA
k (Z̄)χA

k−J(Z)TrZJ〉 and 〈χS
k (Z̄)χS

k−J(Z)TrZJ〉 it is clear from (2.10) that only

the completely antisymmetric representation contributes in the former case and only the

completely symmetric representation in the latter. The character χRJ
(σ0) can be written

down in closed form for hook diagrams, i.e. Young diagrams for which only the first row can

have more than one box. Denoting the number of boxes in the first row of the hook diagram

as J −m it holds that χhook
RJ

(σ0) = (−1)m. Hence for the cases of interest to us we have

χS
J (σ0) = 1, χA

J (σ0) = (−1)J−1. (2.18)

This implies4

〈χS
k (Z̄)χS

k−J(Z)TrZJ〉 =

k∏

j=1

(N − 1 + j), (2.19)

〈χA
k (Z̄)χA

k−J(Z)TrZJ〉 = (−1)J−1
k∏

i=1

(N − i+ 1). (2.20)

Dividing with the relevant norms we hence find the structure constants

CS
k,k−J,J =

√∏k
p=k−J+1(N + p− 1)

√
JNJ(1 + c(J) 1

N2 + . . .)
, (2.21)

CA
k,k−J,J = (−1)(J−1)

√∏k
p=k−J+1(N − p+ 1)

√
JNJ(1 + c(J) 1

N2 + . . .)
, (2.22)

4The (−1)J part of the prefactor in the antisymmetric case could be removed since one can equally

well define the gauge theory dual of the antisymmetric giant graviton with angular momentum k to be

(−1)kχA
k (Z). However, in the following we will follow the usual definition in the Schur operator literature

and keep the alternating sign.

– 6 –
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where the quantities in the denominators are nothing but
√
〈TrZ̄JTrZJ〉 which is given

exactly in equation (2.2). In other words we have exact expressions for CS
k,k−J,J and

CA
k,k−J,J . Now, we are interested in the situation where the Schur polynomials correspond

to large Young tableaux and where the chiral primary is a small operator, i.e. the limit

N → ∞, k → ∞,
k

N
finite, J ≪ k, (2.23)

and in particular J ≪
√
N . In this limit we find for the structure constants

CS
k,k−J,J =

1√
J

(
1 +

k

N

)J/2

, (2.24)

CA
k,k−J,J = (−1)(J−1) 1√

J

(
1 − k

N

)J/2

. (2.25)

Notice that this result does not reduce to the chiral primary result in any limit (in ac-

cordance with the fact that a chiral primary operator can not be obtained as a limit of a

single Schur polynomial). Furthermore, we note that for the antisymmetric representation

we have the constraint k ≤ N while for the symmetric case k is unbounded.

3 Three point function from string theory

In this section we will calculate the three-point function structure constants considered in

the previous sections using the AdS/CFT dictionary put forth in [10, 14]. We work under

the assumption that the holographic two-point function of the giant gravitons are given

by the D-brane solutions [25, 32] continued to the Euclidean Poincaré patch, in the same

way that semiclassical spinning strings were argued to represent the two-point functions of

the associated operators in [10, 14]. The calculation proceeds by varying the Euclidean D-

brane actions in accordance with the supergravity fluctuations corresponding to the small

operator in the desired three-point function, and then evaluating those fluctuations on the

Wick-rotated giant graviton solutions, described in the Poincaré patch.5

3.1 Giant graviton on S
5

We begin by reviewing the giant graviton [25] with worldvolume R(⊂ AdS5) × S3(⊂ S5).

We begin in Lorentzian signature (−,+, . . . ,+). The metric of AdS5 × S5 can be taken as

ds2 = − cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ̃2
3 + dθ2 + sin2 θ dφ2 + cos2 θ dΩ2

3. (3.1)

The action for the D3-brane is (in units where the AdS radius is set to 1)

SD3 = − N

2π2

∫
d4σ

(√−g − P [C4]
)
, (3.2)

where gab = ∂aX
M∂bXM , where a, b = 0, . . . , 3 label the worldvolume coordinates and

where XM are the embedding coordinates. Note that there is no B-field in our background,

5Such fluctuation calculations for D-branes were first performed in [33] in the context of Wilson loops

in higher representations.
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and we also will not be turning on worldvolume gauge fields. The four-form potential C4

which will be important for the giant graviton has its legs entirely in the S5, and may be

taken as [32]

Cφχ1χ2χ3 = cos4 θVol(Ω3), (3.3)

where theχi are angles covering the S3⊂S5 and where Vol(Ω3) indicates its volume element.

One takes the ansatz

ρ = 0, σ0 = t, φ = φ(t), σi = χi, (3.4)

and obtains

S =

∫
dtL = −N

∫
dt
[
cos3 θ

√
1 − φ̇2 sin2 θ − φ̇ cos4 θ

]
. (3.5)

Independence of φ leads to a conserved angular momentum

k ≡ δL

δφ̇
=
Nφ̇ sin2 θ cos3 θ√

1 − φ̇2 sin2 θ
+N cos4 θ. (3.6)

The action may be rewritten in terms of k, to give

S = N

∫
dt

cos4 θ

sin θ

l − cos2 θ√
(l − cos4 θ)2 + sin2 θ cos6 θ

, (3.7)

where l ≡ k/N . One may also introduce an energy defined by

E ≡ φ̇k − L =
N

sin θ

√
(l − cos4 θ)2 + sin2 θ cos6 θ, (3.8)

and which notably removes the WZ part of the action. The energy is minimized by

cos2 θ = l, Emin. = k, Smin. = 0, (3.9)

and by plugging this value in to (3.6), one finds that

φ̇ = 1. (3.10)

3.2 Giant graviton on AdS5

We turn next to the giant graviton [32] with worldvolume R × S3(⊂ AdS5). We begin in

Lorentzian signature (−,+, . . . ,+). The metric of AdS5 ×S5 can be taken as in (3.1). The

action for the anti-D3-brane6 is (in units where the AdS radius is set to 1)

SD3 = − N

2π2

∫
d4σ

(√−g + P [C4]
)
, (3.11)

where gab = ∂aX
M∂bXM , where a, b = 0, . . . , 3 label the worldvolume coordinates and

where XM are the embedding coordinates. The four-form potential C4 which will be

important for this giant graviton has its legs entirely in the AdS5, and may be taken as [32]

Cteχ1 eχ2 eχ3
= − sinh4 ρVol(Ω̃3), (3.12)

6It is the anti-D3-brane which is dual to the large symmetric representation gauge theory operator [32].
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where the χ̃i are angles covering the S3 ⊂ AdS5 and where Vol(Ω̃3) indicates its volume

element.

One takes the ansatz

ρ = const., σ0 = t, σi = χ̃i, φ = φ(t), θ =
π

2
, (3.13)

and obtains

S =

∫
dtL = −N

∫
dt
[
sinh3 ρ

√
cosh2 ρ− φ̇2 − sinh4 ρ

]
. (3.14)

Independence of φ leads to a conserved angular momentum

k̃ ≡ δL

δφ̇
=

Nφ̇ sinh3 ρ√
cosh2 ρ− φ̇2

. (3.15)

The action may be rewritten in terms of k̃, to give

S = −N
∫
dt cosh ρ sinh4 ρ

[
sinh2 ρ

√
1

sinh6 ρ+ l̃2
− 1

]
, (3.16)

where l̃ ≡ k̃/N . One may also introduce an energy defined by

E ≡ φ̇k̃ − L = N

[
cosh ρ

√
sinh6 ρ+ l̃2 − sinh4 ρ

]
. (3.17)

The energy is minimized by

sinh2 ρ = l̃, Emin. = k̃, Smin. = 0, (3.18)

and by plugging this value in to (3.15), one finds that

φ̇ = 1. (3.19)

3.3 Coordinates

We can map the global coordinates (3.1) of section 3.1 into the Poincaré patch as follows.

Take as a simplification AdS3, for which the factor dΩ̃2
3 = dψ2, then we have that

z =
R

cosh ρ cos t− sinh ρ cosψ
,

x0 =
R cosh ρ sin t

cosh ρ cos t− sinh ρ cosψ
, x1 =

R sinh ρ sinψ

cosh ρ cos t− sinh ρ cosψ
,

(3.20)

where the metric of the Poincaré patch is

ds2 =
−(dx0)2 + (dx1)2 + dz2

z2
. (3.21)

On the path of the S5 giant graviton we have ρ = 0. Continuing to Euclidean AdS, so that

t → tE = −it and x0 → x0
E = −ix0 we have that

z =
R

cosh tE
, x0

E = R tanh tE, x1 = 0 (3.22)

– 9 –
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which gives the trajectory of [10], if we identify the Euclidean time direction in the Poincaré

patch with the spatial direction in which the operators are separated on the boundary. Note

that the operator separation is given by L = 2R [10].

In the case of the AdS5 giant graviton we must use the generalization of the coordinate

transformation to AdS5

z =
R

cosh ρ cos t− n0 sinh ρ
,

x0 =
R cosh ρ sin t

cosh ρ cos t− n0 sinh ρ
, ~x =

R~n sinh ρ

cosh ρ cos t− n0 sinh ρ
,

(3.23)

where the S3 ⊂ AdS5 is given by the embedding coordinates nI = (n0, ~n), nInI = 1.

We remind the reader of the Euclidean form of the D-brane action7

SE
D3 =

N

2π2

∫
d4σ (

√
g − iP [C4]) , (3.24)

and note that the four-form potential with legs in the AdS5 part of the geometry (3.12)

gains a −i under the Wick rotation, CAdS
4 → −iCAdS

4 , due to having a leg in the temporal

direction; the potential on S5 is unaffected. Plugging the Wick-rotated solutions into the

Euclidean action always yields a real result, since the angle φ = −it compensates for the

factor of i in the Wess-Zumino term for the giant graviton on S5, whose four-form potential

has a leg in the φ direction.

3.4 Supergravity fluctuations

The supergravity modes that we are interested in are fluctuations of the 4-form potentials,

as well as the spacetime metric, and are dual to chiral primary operators with R-charge ∆

in N = 4 SYM [34–36]. The fluctuations are8

δgµν =

[
−6∆

5
gµν +

4

∆ + 1
∇(µ∇ν)

]
s∆(X)Y∆(Ω),

δgαβ = 2∆ gαβ s
∆(X)Y∆(Ω),

δCµ1µ2µ3µ4 = −4 ǫµ1µ2µ3µ4µ5∇µ5 s∆(X)Y∆(Ω),

δCα1α2α3α4 = 4ǫαα1α2α3α4s
∆(X)∇αY∆ (Ω) ,

(3.25)

where µ, ν are AdS5 and α, β are S5 indices. The symbol X indicates coordinates on AdS5

and Ω coordinates on the S5. The Y∆(Ω) are the spherical harmonics on the five-sphere,

while s∆(X) have arbitrary profile and represent a scalar field propagating on AdS5 space

with mass squared = ∆(∆ − 4), where ∆ labels the representation of SO(6) and must be

an integer greater than or equal to 2.

The bulk-to-boundary propagator for s∆ is given in [34], with normalization from [35].

It is
√
α0

B∆

z∆

((x− xB)2 + z2)∆
≃
√
α0

B∆

z∆

x2∆
B

, (3.26)

7The anti-D-brane action has a flipped sign on the WZ part.
8The traceless symmetric double covariant derivative is defined as ∇(µ∇ν) ≡

1
2

(∇µ∇ν + ∇ν∇µ) −

1
5
gµν gρσ

∇ρ∇σ.
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where we have indicated the limit where the boundary insertion xµ
B is taken infinitely far

away from the giant graviton; this is the limit we will be interested in. The normalization

is given by

α0 =
∆ − 1

2π2
, B∆ =

23−∆N2∆(∆ − 1)

π2(∆ + 1)2
. (3.27)

3.5 Antisymmetric giant graviton

We consider the coupling of the supergravity fluctuations to the Euclidean action. The

DBI part, given by

SDBI =
N

2π2

∫
d4σ

√
g, (3.28)

gives the following variation

δSDBI =
N

2
cos2 θ

∫
dt Y∆ (Ω)

(
4

∆ + 1
∂2

t − 2∆ (∆ − 1)

∆ + 1
− 8∆ sin2 θ + 6∆

)
s∆. (3.29)

We will be interested in the spherical harmonic

Y∆(Ω) =
sin∆ θ ei∆φ

2∆/2
=

sin∆ θ e∆t

2∆/2
, (3.30)

which corresponds to the gauge theory operator TrZ∆. Replacing the field s∆ with the

bulk to boundary propagator (3.26), namely

s∆ → ∆ + 1

N∆
1
2 22−∆

2

z∆

x2∆
B

, (3.31)

we obtain

δSDBI =
cos2 θ sin∆ θ (∆ + 1)

√
∆

2

∫
dt

R∆ e∆t

cosh∆ t

(
2 cos2 θ − 1

cosh2 t

)
, (3.32)

where R ≡ R/x2
B , see section 3.3. We now turn our attention to the Wess-Zumino coupling.

Because the relevant legs of C4 are in S5 we require only the fluctuation δCφχ1χ2χ3

δCφχ1χ2χ3 = 4ǫθφχ1χ2χ3s
∆∇θY∆ (Ω) = 2−

∆
2

+2ǫθφχ1χ2χ3∆s
∆ (sin θ)∆−1 cos θe∆t. (3.33)

Therefore the variation of the Wess-Zumino part is

δSWZ = −2−
∆
2

+2N∆

∫
dt e∆t sin∆ θ cos4 θs∆

= − cos4 θ sin∆ θ (∆ + 1)
√

∆

∫
dt

R∆e∆t

cosh∆ t
.

(3.34)

Adding the variations of the DBI and Wess-Zumino terms we find

δS = −cos2 θ (sin θ)∆ (∆ + 1)
√

∆

2

∫ ∞

−∞

dt
R∆e∆t

cosh∆+2 t
= −(2R)∆

√
∆ cos2 θ sin∆ θ, (3.35)

or (recalling that cos2 θ = k/N , ∆ = J) in terms of gauge theory quantities, the three-point

function structure constant is given by

CA
k,k−J,J =

√
J
k

N

(
1 − k

N

)J/2

. (3.36)
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3.6 Symmetric giant graviton

We write the metric on S3 ⊂ AdS5 as

dΩ̃2
3 = dϑ2 + cos2 ϑdφ2

1 + sin2 ϑdφ2
2, (3.37)

so that embedding coordinates are given by

nI = (cos ϑ sinφ1, cos ϑ cosφ1, sin ϑ sinφ2, sinϑ cosφ2). (3.38)

The variation of the Lagrangian density is

δL =
N

4π2
sinh2 ρ cos ϑ sinϑ

[
−2∆s+ htt + hϑϑ +

hφ1φ1

cos2 ϑ
+
hφ2φ2

sin2 ϑ

]

− 2N

π2
cosh ρ sinh3 ρ cos ϑ sinϑ∂ρs.

(3.39)

where the second line is the WZ part of the variation, and

hµν =
2

∆ + 1

[
2∇µ∇ν − ∆(∆ − 1)gµν

]
s, (3.40)

where s = s∆Y∆, while

∇t∇ts =
(
∂2

t + cosh ρ sinh ρ ∂ρ

)
s,

∇ϑ∇ϑs =
(
∂2

ϑ + cosh ρ sinh ρ ∂ρ

)
s,

∇φ1∇φ1s =
(
∂2

φ1
+ cos2 ϑ cosh ρ sinh ρ ∂ρ − cos ϑ sinϑ∂ϑ

)
s,

∇φ2∇φ2s =
(
∂2

φ2
+ sin2 ϑ cosh ρ sinh ρ ∂ρ + cos ϑ sinϑ∂ϑ

)
s.

(3.41)

Now we may replace the field s with the bulk-to-boundary propagator (3.26)

s→ ∆ + 1

22
√

∆N

R∆e∆t

(cosh ρ cosh t− cos ϑ sinφ1 sinh ρ)∆
, (3.42)

where R ≡ R/x2
B , see section 3.3. There is a great simplification which occurs between the

DBI and WZ pieces of the variation of the action, which leads to

δS = −
∫ ∞

−∞

dt

∫ 2π

0
dφ1

∫ 2π

0
dφ2

∫ π/2

0
dϑ

×
√

∆(∆ + 1)

4π2
cosϑ sinϑ sinh2 ρ

R∆e∆t

(cosh ρ cosh t− cos ϑ sinφ1 sinh ρ)∆+2
,

(3.43)
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where we have included the spherical harmonic Y = e∆t/2∆/2. We may re-cast the integral

as follows

δS = −
√

∆(∆ + 1)

2π

sinh2 ρ

cosh∆+2 ρ

∫ ∞

−∞

dt

∫ 2π

0
dφ1

∫ 1

0
dλ

R∆e∆t

cosh∆+2 t

λ
[
1 − λ sin φ1 tanh ρ

cosh t

]∆+2

= −
√

∆(∆ + 1)

2π

sinh2 ρ

cosh∆+2 ρ

∫ ∞

−∞

dt

∫ 2π

0
dφ1

∫ 1

0
dλ

R∆e∆t

cosh∆+2 t

× λ
∞∑

k=0

(
λ sinφ1 tanh ρ

cosh t

)k Γ(∆ + k + 2)

Γ(k + 1)Γ(∆ + 2)

= −
√

∆

2πΓ(∆ + 1)

sinh2 ρ

cosh∆+2 ρ

∫ ∞

−∞

dt

∫ 2π

0
dφ1

R∆e∆t

cosh∆+2 t

×
∞∑

k=0

1

k + 2

(
sinφ1 tanh ρ

cosh t

)k Γ(∆ + k + 2)

Γ(k + 1)

= −
√

∆

2Γ(∆ + 1)

1

cosh∆ ρ

∞∑

k=0

∫ ∞

−∞

dt
R∆e∆t

cosh∆+2+2k t

1

22k

Γ(∆ + 2k + 2)

Γ(k + 2)Γ(k + 1)
tanh2k+2 ρ

= − (2R)∆√
∆Γ(∆)

1

cosh∆ ρ

∞∑

k=0

tanh2k+2 ρ
Γ(∆ + k + 1)

Γ(k + 2)

= −(2R)∆√
∆

(
cosh∆ ρ− cosh−∆ ρ

)
.

(3.44)

In terms of gauge theory quantities, recalling that sinh2 ρ = k/N , ∆ = J , the three-point

function structure constant is given by

CS
k,k−J,J =

1√
J

((
1 +

k

N

)J/2

−
(

1 +
k

N

)−J/2
)
. (3.45)

4 Discussion and conclusion

We have obtained the three-point function involving two giant gravitons and one pointlike

graviton from the gauge theory as well as from the string theory side. On the string theory

side the calculation was carried out in a semiclassical approximation where the two giant

gravitons were heavy and the pointlike one light. Both the giant gravitons and the pointlike

graviton were moving with given angular velocities on S5. In the case where the two giant

gravitons were wrapping an S3 ⊂ AdS5 we found for the three-point function

CS,string
k,k−J,J =

1√
J

((
1 +

k

N

)J/2

−
(

1 +
k

N

)−J/2
)
. (4.1)

Here k is the S5 angular momenta of the giant gravitons and J the S5 angular momentum

of the pointlike graviton. First, we notice that in the limit where the size of the giant
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gravitons shrinks to zero, i.e. k
N → 0, we recover, as we should, the result for the three

point function of three pointlike gravitons, cf. eq. (2.6)

CS,string
k,k−J,J →

√
J k

N
, for

k

N
→ 0. (4.2)

Secondly, we observe that as the (unrestricted) angular momentum of the giant gravitons

becomes large, i.e. k
N → ∞ the three-point function turns into the gauge theory three-point

function involving two Schur polynomials and one chiral primary, cf. eqn (2.24)

CS,string
k,k−J,J → 1√

J

(
1 +

k

N

)J/2

= CS,gauge
k,k−J,J for

k

N
→ ∞. (4.3)

Although a more natural parameter region to consider would be k
N ∼ 1, this matching at

large k is an interesting coincidence. It may point to an easing, in the symmetric case, of

the problems of the Schur polynomial description of giant gravitons discussed below.

In the case where the giant graviton was wrapping an S3 ⊂ S5 we found from the

string theory calculations

CA,string
k,k−J,J =

√
J
k

N

(
1 − k

N

)J/2

. (4.4)

Again, we notice that we correctly recover the three-point function of three point like

gravitons in the limit where the size of the giant gravitons shrink to zero, i.e.

CA,string
k,k−J,J →

√
J k

N
, for

k

N
→ 0. (4.5)

The gauge theory analysis gave the result

CA,gauge
k,k−J,J = (−1)(J−1) 1√

J

(
1 − k

N

)J/2

. (4.6)

In this case the giant graviton angular momentum k has to satisfy the bound of k
N ≤ 1.

For k
N = 1 we find that both the string theory and gauge theory result are exactly equal to

zero but considering the limit k
N → 1 the two results differ by a factor proportional to J .9

Our interpretation of the mismatch between the gauge and string theory calculations

centers on the validity of the Schur polynomials as duals of the giant gravitons. It is well

known that the Schur polynomials should only describe the giant gravitons when the size of

the operators k is of order N , in the large-N limit [24]. Furthermore, the Schur polynomials

do not reduce to chiral primaries in the small- k
N limit, and are therefore disconnected from

the pointlike limit of the giant gravitons. When calculating a three-point function with

a small operator such as the pointlike graviton dual, i.e. the chiral primary TrZJ , we

are probing the chiral-primary content of the OPE of two Schur polynomials χk(Z̄) and

χk−J(Z), schematically

χk(Z̄(0))χk−J (Z(x)) = . . . + Cgauge
k,k−J,JTrZ̄J(0)x−2J + . . . . (4.7)

9As mentioned previously, the (−1)J part of the prefactor is convention dependent and could be removed

by a different normalisation.
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We can certainly trust the terms in the OPE involving operators of dimension O(N), but

it is not clear that the small-operator content of the operators χk(Z), i.e. the structure

constants Cgauge
k,k−J,J , are in fact themselves dual to the three-point functions of two giant

gravitons and one pointlike graviton, defined holographically in string theory. Indeed we

find that the string theory results interpolate smoothly to the limit where all three gravitons

are pointlike, whereas, without surprise, the gauge theory results fail to do so.

The fact that for the symmetric case we get a string three-point function which nicely

interpolates between the gauge theory three-point function of single trace chiral primaries

and that of Schur polynomials raises the question of whether in the gauge theory language

one can construct an (orthogonal) basis of operators which interpolates between single

trace operators and the Schur polynomials in such a way that the gauge theory and string

theory three-point functions can be exactly matched for all values of k
N . The question of

the existence of such an interpolating basis has been brought up before, see e.g. [24, 37],

but still lacks resolution. The string theoretic results given here will hopefully serve as a

benchmark for any such future construction.

In view of the above discrepancy, it might also be useful to take a moment to recapitu-

late why the gravity calculation we performed does indeed provide the leading (in the 1/N

expansion) contribution to the three-point function. For instance, let us consider a process

in which the light state coming from the boundary first decays into two light states in the

bulk, which then reach the giant graviton worldvolume. Compared to the case we examined

above, such a process will receive additional factors of N2 (from the bulk vertex), (1/N2)2

(from the two bulk-to-bulk propagators) and N (from the additional integration over the

worldvolume), and will thus be subleading as 1/N . Similarly one can check that all other

contributions to the three-point function are also subleading, so our gravity computation is

indeed expected to capture the leading part of the three-point function of a chiral primary

dual with two giant gravitons at large N .

Although we have not emphasized the point, it is possible that there exist subtleties

in the generalization of the methods developed for the holographic two-point functions

involving semi-classical strings in [10] to the case of D-branes, ultimately affecting the

procedure used here to calculate holographic three-point functions. For this reason, a first

principles derivation using D-branes, as was presented in [10] for strings, would be welcome.

We make some progress toward this goal in appendix A where the holographic two-point

function for giant gravitons on S5 is derived.

Finally, let us mention that this study, while being concerned only with 1/2 BPS

objects, opens up the avenue for studying holographic three-point functions of a variety of

extended objects in the form of branes, an interesting example being the systems of non-

BPS giant gravitons moving with two angular momenta on S5 and being dual to so-called

restricted Schur polynomials, see [38] and references therein.
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A A shortcut to the S
5 giant graviton two-point function

In this appendix we show that the calculation of the holographic S5 graviton two-point

function can easily be performed by making use of the fact that, as noted in [39], all the

dependence on the S5 directions can be integrated out, leaving a point particle on AdS5

with effective mass equal to the dimension of the giant graviton.

Let us start with the DBI action (3.11) for the giant graviton and take the embedding

to be σ0 = t, σi = χi, φ = φ(t) but leave the AdS part general. Integrating over the

three-sphere coordinates we find

SD3 = −N cos3 θ

∫
dt

√
−GMNẊMẊN +N cos4 θ

∫
φ̇dt . (A.1)

Now, following [39], we switch to a Polyakov-type formulation, by introducing an einbein e:

SD3 =
1

2

∫
dt

(
1

e
GMN Ẋ

MẊN −m2e

)
+N cos4 θ

∫
φ̇dσ0, (A.2)

where we have defined an effective mass,

m = N cos3 θ . (A.3)

To go back to the original action one simply solves for e = 1
m

√
−GMNẊMẊN and substi-

tutes back. Now let us separate the AdS5 from the S5 part as

GMN Ẋ
MẊN = gµν ẋ

µẋν + sin2 θ φ̇2, (A.4)

to obtain

S =
1

2

∫
dt

(
gµν ẋ

µẋν −m2e+
1

e
sin2 θφ̇2 + 2N cos4 θφ̇

)
. (A.5)

The conjugate momentum to φ is

k =
1

e
φ̇ sin2 θ +N cos4 θ, (A.6)

which of course agrees with (3.6) if we substitute the on-shell value of e (together with the

form of the metric (3.1) and ρ = 0). Now fix θ to the value θ0 minimising the energy (3.9)

cos2 θ0 = l =
k

N
. (A.7)

Substituting k from (A.6) and solving for φ̇ we get

φ̇ = eN cos2 θ0 . (A.8)

It is easy to see that this would lead to (3.10) were we to use the on-shell value of the

einbein. Substituting φ̇ into (A.5) we finally find

−m2e+
1

e
sin2 θ0φ̇

2 + 2N cos4 θ0φ̇ = e N2 cos4 θ0 = e M2
D3 , (A.9)
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to conclude [39] that the giant graviton can be described by a particle moving in AdS5

with mass:

MD3 = N cos2 θ0 = k . (A.10)

Standard point-particle techniques (reviewed in [10]) now straightforwardly give for the

two-point function

G(0, ǫ;x, ǫ) =

( |x|
ǫ

)−2MD3

=

( |x|
ǫ

)−2k

, (A.11)

which is the expected answer.10
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