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Abstract: Two effects, jet broadening and gluon bremsstrahlung induced by the propa-
gation of a highly energetic quark in dense QCD matter, are reconsidered from effective
theory point of view. We modify the standard Soft Collinear Effective Theory (SCET)
Lagrangian to include Glauber modes, which are needed to implement the interactions be-
tween the medium and the collinear fields. We derive the Feynman rules for this Lagrangian
and show that it is invariant under soft and collinear gauge transformations. We find that
the newly constructed theory SCETG recovers exactly the general result for the transverse
momentum broadening of jets. In the limit where the radiated gluons are significantly
less energetic than the parent quark, we obtain a jet energy-loss kernel identical to the
one discussed in the reaction operator approach to parton propagation in matter. In the
framework of SCETG we present results for the fully-differential bremsstrahlung spectrum
for both the incoherent and the Landau-Pomeranchunk-Migdal suppressed regimes beyond
the soft-gluon approximation. Gauge invariance of the physics results is demonstrated ex-
plicitly by performing the calculations in both the light-cone and covariant Rξ gauges. We
also show how the process-dependent medium-induced radiative corrections factorize from
the jet production cross section on the example of the quark jets considered here.
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1 Introduction

The start up of the Large Hadron Collider (LHC) has reinvigorated strong theoretical
interest in the physics of energetic jets [1, 2]. At present, many of the new developments
in the Quantum Chromodynamics (QCD) theory of hard jet and particle production are
motivated by the need for precise evaluation of the Standard Model background to signature
processes for new physics [3–5]. Such accuracy relies on factorization theorems [6, 7] that
allow to separate the perturbative hard scattering part of the cross section from the non-
perturbative parton distribution and fragmentation functions.

Recently, Soft Collinear Effective Theory (SCET) [8–11] has emerged as a powerful
new tool to address large Q2 processes in lepton-lepton (`+ + `−), lepton-hadron (`+ + p)
and hadron-hadron (p+p or p+p̄) collisions. SCET in conjunction with QCD factorization,
which has been proven in this framework for a number of processes [12–19], is particularly
suited to improving the precision of multi-scale calculations1 through the resummation of
large Sudakov type logarithms [17, 20–24].

An important multi-scale problem is presented by the production of jets in reactions
with large nuclei, such as lepton-nucleus (`+A), proton-nucleus (p+A) and nucleus-nucleus
(A+A) reactions. In these processes the energetic quarks and gluons must traverse a region
of dense nuclear matter of O(5 fm) and their interactions in the medium induce broadening
and a new type of radiative corrections that can significantly alter the corresponding jet
cross sections and shapes [25–28]. Preliminary results from the Relativistic Heavy Ion
Collider (RHIC) and new results from the LHC indicate that these effects may indeed
be observable in A+A collisions [29–34]. It will be natural to use SCET to describe the
collisional and radiative interactions of the jet in the medium when the typical transverse
momentum of the partons in the jet is comparable to the size of the momentum exchange
with the medium and much smaller than the jet energy. So far, only broadening of the final-
state parton in semi-inclusive deeply inelastic scattering (SDIS) [35] has been considered in
an effective theory of QCD. Reference [36] argues to present a less model-dependent result
but its gauge invariance remains to be demonstrated explicitly.

To set up a general SCET framework that can describe the collisional and radiative
processes induced by the propagation of an energetic parton in strongly interacting matter,
to derive the operators that describe the momentum space evolution of the propagating
quark or quark+gluon system and to demonstrate the gauge invariance of these results is
the main goal of this paper. By comparing our findings to previous calculations of parton
broadening [37, 38] and energy loss [39–42] in nuclear matter we identify areas where the
effective theory calculation will be able to improve the accuracy of existing computations.

Our manuscript is organized as follows: in section 2 we review very briefly the basic
concepts of Soft Collinear Effective Theory. The kinematics of jet-medium interactions be-
yond the static scattering approximation is discussed in section 3. We identify the regime
relevant to high energy jet production in hadronic reactions with large nuclei and elucidate
the possibility for constructing an effective theory to describe parton propagation in dense
QCD matter. The gauge-invariant Lagrangian for this effective theory is constructed in

1We refer here to energy, momentum or mass scales.
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section 4. Feynman rules are derived in the light-cone and covariant Rξ gauges. In sec-
tion 5 we evaluate the transverse momentum broadening of jets, induced by their collisional
interactions in the strongly interacting medium. Radiative processes are discussed in sec-
tion 6. Our focus here is on the soft gluon limit, when the energy of the emitted gluon
(ω) is much less than the energy (E) of the quark that splits: ω � E, for comparison
to previous results. We demonstrate the gauge invariance of the jet broadening and en-
ergy loss results in section 7. We deduce the kernels that describe the broadening and
medium-induced bremsstrahlung as a function of the quark interactions in the medium in
section 8. An application of the reaction operators for collisional and radiative processes is
also discussed in this section. The extension of radiative energy loss calculation beyond soft
gluon approximation is presented in section 9. We also show how the process-dependent
medium-induced radiative corrections factorize from the hard jet production cross section.
Our conclusions are given in section 10. We have moved some of the background technical
discussion to appendices.

2 A brief overview of SCET

SCET [8–11] is an effective theory of QCD which describes the dynamics of highly energetic
quarks and gluons. The relevant physical scales in this effective theory are the hard scale
Eh ∼ ET ∼ Ecm, the jet scale Ej ∼ p⊥ that describes the width of the jet in momentum
space and the scale of soft radiation Es ∼ ΛQCD. The power counting parameter of SCET
λ defines the hierarchy between the hard, jet and soft scales. We use the version of SCET,
which is sometimes referred to as SCETI, in which the scales are Eh ∼ λ0, Ej ∼ λ1 and
Es ∼ λ2. The degrees of freedom in SCET are collinear quarks (ξn,p), collinear gluons
(An,p) and soft gluons (As). Collinear particles have momentum in light-cone coordinates
pc ∼ [1, λ2,λ] and soft particles ps ∼ [λ2, λ2,λ2], where we define our light-cone notation in
appendix A. All other fields, such as hard quarks and gluons, are integrated out from the
QCD Lagrangian. Their effect on the dynamics is contained into the Wilson coefficients of
the SCET operators, which can be calculated using a standard matching of full theory onto
effective theory. In order to avoid confusion we note that what we call soft gluon mode in
this paper pµs ∼ λ2 is sometimes called ultrasoft, while the soft momentum is defined as
pµs ∼ λ, see for example [11]. However, below in section 4 when we define the momentum
scaling of the source, one of our choices corresponds to pµs ∼ λ and we call it a soft source.

The Lagrangian of SCET [9] arises from substituting into the QCD Lagrangian ψ =∑
p̃ e
−ip̃x ψn,p̃ and integrating out the small component ξn̄ of ψn, where ξn = n/n̄/

4 ψn, ξn̄ =
n̄/n/
4 ψn and ψn = ξn + ξn̄. The result for the collinear-soft Lagrangian is:

LSCET(ξn, An, As) = ξ̄n

[
in·D + iD/⊥

1
in̄·D

iD/⊥
]
n̄/

2
ξn + LYM(An, As) , (2.1)

LYM(An, As) =
1

2g2
tr
{[
iDµ

s + gAµn,q, iD
ν
s + gAνn,q′

]}2 + LG.F. , (2.2)

LG.F.(Rξ) =
1
ξ

tr
{[
iDsµ, A

µ
n,q

]}2
, (2.3)

LG.F.(LCG(b)) =
1
ξ

tr
{
bµA

µ
n,q

}2
. (2.4)
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Here, the covariant derivative D contains both collinear and soft fields: iD = i∂ +
g (An +As), while Ds includes only the soft gluons: iDs = i∂ + gAs. Thus, the collinear
and soft modes are coupled in the SCET Lagrangian. In the first term of eq. (2.2) the
summation over label momenta q, q′ is understood implicitly, and in eq. (2.3), eq. (2.4)
summation over the label momentum q is understood implicitly. We have written out ex-
plicitly the gauge fixing terms for the covariant and the light-cone gauges. The ghost terms
are omitted for brevity.

A key ingredient of the SCET formulation is the BPS transformation [11]. This trans-
formation constitutes a collinear field redefinition which involves soft Wilson lines and
removes the interactions between soft and collinear fields in the Lagrangian of SCET up to
the power corrections. Such decoupling is essential in the proof of factorization theorems
in SCET. The BPS transformation redefines the collinear quark and gluon fields:

ξn,p = Y ξ(0)
n,p , (2.5)

Aa,µ = YabA(0)µ,b
n,p , (2.6)

where the Y (x) and Yab(x) are Wilson lines built out of the soft fields in the fundamental
and adjoint representations correspondingly:

Y (x) = P exp
(
ig

∫ 0

−∞
ds n·Aas(ns+ x)T a

)
, (2.7)

Yab(x) = P exp
(
ig

∫ 0

−∞
ds n·Aes(ns+ x)

(
−ifeab

))
. (2.8)

To derive the Lagrangian of SCET in terms of the decoupled collinear fields ξ(0)
n , A

(0)
n

one needs the following key identities:

Y T aY † = YbaT b , (2.9)

Y †n·DY = n·Dn . (2.10)

In particular, the last equation removes the interactions between the soft gluons and the
collinear quarks which is contained in the covariant derivative in the left hand side of
the eq. (2.10). As a result, after the BPS transformation we obtain:

LSCET (ξn, An, As)=Lc (ξn, An)+ Ls (As) + Lcs (ξn, An, As)
BPS−−−→ Lc(ξ(0)

n , A(0)
n )+Ls(As) .

(2.11)
The couplings between the collinear and soft modes is removed from the SCET Lagrangian.
However, in order to preserve the gauge invariance one has to put soft and collinear Wilson
lines into the external SCET operators. The collinear Wilson line is defined in the following
way:

Wn(x) = P exp
(
−ig

∫ ∞
0

ds n̄·Aan(n̄s+ x)T a
)
. (2.12)
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3 Kinematics of the in-medium jet interactions

In this section we describe the kinematics of jet interactions in QCD matter. Our goal is
to identify the typical momentum exchanges between the energetic incident partons and
the medium, which in turn will help us construct an effective theory for these interactions.

The typical jet transverse energies that are phenomenologically interesting at RHIC
are in the range ET ∼ 10 GeV - 50 GeV. At the LHC this range is extended to ET ∼ several
hundred GeV. On the other hand, the mass of the particles in the medium is on the order of
or larger than 1 GeV. In cold nuclear matter this is the mass of the nucleon mN = 0.94 GeV
and in the quark-gluon plasma this is the mass of dressed partons ∝ µ = gT

√
1 +Nf/6.

Binding effects inside nuclear matter can significantly increase the effective mass of the
recoiling particles. One of the main goals of this section is to study how the elastic scattering
cross section depends on this mass and to identify the kinematic configurations that give
a dominant contribution to this cross section.

The cross section for the elastic scattering of two particles of masses m1, m2 is given
by the standard expression:

dσ =
1

4
√

(p1 · p2)2 −m2
1m

2
2

〈|M |2〉 d3p3

(2π)32E3

d3p4

(2π)32E4
(2π)4δ4(p1 + p2 − p3 − p4) . (3.1)

We work in the rest frame of the medium, which for the cases of a quark-gluon plasma at
mid-rapidity coincides with the laboratory frame. The same is true for fixed target p+A
experiments. In this frame the flux factor conveniently reduces to Flux = 4m2p1. Let
us denote by θ the scattering angle of the incident parton (θ = ∠(p1, p3)) and by p3 the
physical solution arising from the energy constraint E1(p1,m1)+m2 = E3(p3,m1)+E4(~p4 =
~p1 − ~p3,m2). In this paper we are interested in the case: m1 < m2. In this case there is a
single physical solution p3. Substituting in eq. (3.1), we obtain:

dσ

dΩ
=

1
64π2

p2
3

p1m2 [p3(E1 +m2)− p1E3 cos(θ)]
〈|M |2〉 . (3.2)

We now discuss the specific channels that may contribute to 〈|M |2〉. To study jet
broadening and energy loss, we will be interested in forward scattering where, on average,
the direction of jet propagation is not significantly altered per interaction. Such scattering is
dominated by the t-channel gluon exchange. One can, of course, write down u-channel and
s-channel diagrams but these describe hard backward parton scattering and isotropisation
processes rather than transverse momentum broadening and energy loss. For simplicity,
we give the specific example of quark-quark scattering:

〈|M |2〉= g4

(
2
9

)
color

2(u2+s2) + 4m2
1(2t− 2m2

2 −m2
1) + 4m2

2(2t− 2m2
1 −m2

2) + 8m2
1m

2
2

t2
.

(3.3)
Here, one can conveniently take the m1 → 0, m2 → 0 limits. We note that if the interaction
is of finite range, i.e. we have an exchange gluon of mass m ∼ µ, the only change is t→ t−µ2

in the denominator of eq. (3.3).
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We can now study the m2 dependence of the average squared matrix element 〈|M |2〉,
the flux and phase space factors (PS, Flux), and the differential cross section dσ/dΩ. We
chose a massless incident quark of energy 10 GeV. The mass of the recoiling particle varies
from 1 GeV to 103 GeV and we use g = 2 for the coupling constant. The top left and right
panels in figure 1 show the differential phase space (normalized by the initial flux factor)
and matrix element versus cos(θ) with the leading m2

2 dependencies taken out. While for
cos(θ) = 1 the curves come together, the difference for small values of m2 away from the
forward region can be many orders of magnitude. In contrast, in the differential cross
section dσ/dΩ this variation largely cancels everywhere except for the backward scattering
region. We show this result in the bottom panel of figure 1. The insert illustrates the
remaining subtle mass dependence in the forward scattering region. It is quite remarkable
that this residual variation is less than ±50%. At the level of the integrated scattering
cross section, the differences are even much smaller. For incident partons of E = 10 GeV
at RHIC and E = 100 GeV at the LHC we obtain:

σ(m2 = 1000 GeV)− σ(m2 = 1 GeV)
σ(m2 = 1000 GeV)

|RHIC ≈ 13% ,

σ(m2 = 1000 GeV)− σ(m2 = 1GeV )
σ(m2 = 1000 GeV)

|LHC ≈ 2% ,

respectively. Note that the scattering cross sections decreases for finite and small mass of
the recoiling particle. This, in turn, leads to larger mean free paths λ = 1/σρ in QCD mat-
ter and smaller radiative energy loss. This is in contrast to the result of ref. [43]. The reason
for this difference is that in [43] the general term “dynamical medium” was inaccurately
used to describe a specific hard thermal loop approximation and the reported increase arises
from the lack of magnetic screening. Lattice QCD results and non-perturbative arguments,
however, suggest that magnetic screening effects may be present already at O(g2T ). Our
results for a general finite-range interaction mediated by a massive vector particle allow to
precisely quantify the effect of the medium recoil. For example, we found that more than
90% of the cross section comes from configurations where the jet is not deflected more than
15% from its original direction of propagation.

A small difference in the magnitude of the scattering cross section exists between the
full calculation and the often used analytic approximation σ = 8πα2

s/9µ
2 to quark-quark

scattering. We can re-express the exact differential cross section as a function of the
transverse momentum transfer as follows:

dσ

dΩ
→ dσ

d2q⊥
=
C2(R)C2(T )

dA

|v(q⊥;E,m1,m2)|2

(2π)2
. (3.4)

In eq. (3.4) C2(R), C2(T ) are the quadratic Casimirs for the incident and target parton
representations, respectively, and dA = 8 is the dimension of the adjoint representation.
The above expression also defines v(q;E,m1,m2), which now depends on the jet energy
and the masses of the scattering particles. It is easy to check that such a definition reduces
to v(q;E, 0,∞) = 4παs

q2+µ2 , consistent with similar definition in [40]. The only subtlety is
that one allowed value of q⊥ generally corresponds to two values of cos(θ). However, the

– 6 –
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Figure 1. Kinematic factors and mean squared matrix element for the t-channel scattering of
interest are shown versus cos(θ) in the top left and top right panels, respectively. These exhibit
strong dependence on the mass m2 of the recoiling particle. The bottom panel shows the differential
cross section where this m2 dependence cancels over most of the θ range. The insert shows any
residual differences as a ratio of dσ/dΩ for 2 different values of m2.

region −1 < cos(θ) < 0 contributes ∼ 0.1% to the cross section and we simply ignore the
second solution.

Finally we discuss which momentum region for the exchange gluon gives the dominant
contribution to the cross section. The momentum transfer in terms of the final and initial
jet momentum equals q = p3−p1. Writing this in laboratory frame in terms of the light-cone
components, we get:

q+ = E3(1 + cos(θ))− 2E1 , q− = E3(1− cos(θ)) , |q⊥| = E3 sin(θ) . (3.5)

In the formula above we assumed that m1 = 0 and m2 is arbitrary. As we can clearly see
from figure 1 the cross section is dominated in the forward direction. Thus we assign to the
leading region for the cross section the following power counting: θ ∼ λ, E3, E1 ∼ 1. We
immediately can see from eq. (3.5) that this power counting corresponds to the following
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leading momentum region, depending on the mass m2:2

q ∼ [λ2, λ2,λ], if m2 ∼ λ0, i.e. static source, (3.6)

q ∼ [λ1, λ2,λ], if m2 ∼ λ1, i.e. soft source. (3.7)

To summarize, we investigated in detail the kinematics of jet-medium interactions
to determine the feasibility of an effective theory where these interactions are mediated
by Glauber gluons. We showed that for the static source, which we use in sections 5–9
below, the cross section is indeed dominated by the Glauber momentum region. We also
calculated the exact dependence of this scattering cross section on the energy and mass of
the incident and recoiling particles. This cross section will be implemented to go beyond
the static scattering center approximation. We note, however, that this approximation is
remarkably good and within 15% of the exact result even for low energy jets.

4 An effective theory for jet propagation in QCD matter: SCETG

As we have seen from the previous section, the effective theory of jet interactions in matter
has to contain the Glauber mode, which carries the exchange momentum between the
incident parton and the QCD medium with scaling q ∼ [λ2, λ2,λ]. Such mode is absent in
SCET and we have to modify the theory by including it. One possibility was considered
in [35] and later on used in [36] to study the multiple collisional interactions of jets. There
are a few differences between our approach and these references. First of all, we write down
the Glauber term directly in the momentum space as an effective potential [44], similar
to the non-relativistic QCD (NRQCD) potential term [45]. Secondly, we consider a static
source of Glauber gluons, whereas in [35] the source was a massless collinear field. We are
motivated by the physical picture of nucleons or massive quasi-particles as sources of these
Glauber gluons in nuclei and non-Abelian plasmas, respectively. We work in the rest frame
of nuclear matter and also include the collinear gluons into the interaction Lagrangian with
Glauber gluons.

In a different context, namely the Drell-Yan process, it has been shown that the
Glauber mode has to be added to SCET for the consistency of the effective theory [46].
Having formulated a consistent effective theory SCETG , it would be interesting to re-
visit the Drell-Yan factorization in this effective theory and understand the cancellation of
Glauber gluons in inclusive Drell-Yan cross section from the effective theory point of view.
In traditional QCD this cancellation was derived in refs. [47–49], however it has not been
addressed yet in effective theory methods to factorization.

4.1 The SCETG Lagrangian for different sources and gauges

Consider a quark or a gluon propagating in the positive light-cone direction n in QCD
matter. In this subsection we will derive the effective Lagrangian of SCETG , which de-
scribes the interaction of our propagating jet with the source of the Glauber gluons. We

2Such sensitivity of q+ on the recoil mass arises from the fact that E3 − E1 = m2 −
p
m2

2 + q2, which

is energy conservation equation. Thus, for heavy mass m2 ∼ 1 the recoil energy is negligible E3 −E1 ∼ λ2

and for the lighter mass m2 ∼ λ it is comparable to the transverse momentum transfer: E3 − E1 ∼ λ.

– 8 –
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consider three types of sources of Glauber gluons. The first one is a collinear field propa-
gating in the n̄ direction (considered in refs. [35, 36]). The second one is a (initially) static
nucleon/nucleus or a massive quasi-particle. Interestingly, this source can be adequately
described as a heavy quark effective theory (HQET) current. Finally, the third type of
source that we consider is a soft parton of momentum p ∼ [λ, λ,λ]. For each of these
three sources we consider three gauges: the Rξ gauge and two distinct light-cone gauges
A+ = 0 and A− = 0. In order to verify the symmetry properties of the Glauber interaction
term we include the source fields into our Lagrangian. However, for practical calculations
we integrate out the source fields as well as the Glauber gluons and present the resulting
Feynman rules.

We start from the vector potential as a function of the QCD current of the source and
the gluon propagator. Our method to derive the scaling for the vector potential AµG(x)
created by the Glauber gluons is same as in [35]:

Aµ,aG (x) =
∫
d4yδabDµν(x− y) ψ̄(y)gT bγνψ(y) . (4.1)

Expanding the propagator and the fermion field in the momentum space we get:

Aµ,aG (x) =
∫

d3p√
2Ep(2π)3

d3q√
2Ep+q(2π)3

×
∑
s,r

ar†p+qa
s
p ū(p+ q, r)gT aγνu(p, s) e−iqx (−i)∆µν(q) + · · · , (4.2)

where we have written down only the part of the vector potential that contributes to
particle-particle scattering, and the three remaining combinations involving anti-particles
are omitted. In each of three gauges under consideration, the gluon propagator is equal to:

Covariant gauge [∆µν(q)]Rξ =

(
gµν − qµqν

µ2 (1− ξ)
)

q2 − µ2
→ gµν

q2 − µ2
, (4.3)

Light-cone(A+ = 0) gauge [∆µν(q)]A+ =

(
gµν − n̄µqν+n̄νqµ

q+

)
q2 − µ2

→
gµν − n̄νqµ

q+

q2 − µ2
, (4.4)

Light-cone(A− = 0) gauge [∆µν(q)]A− =

(
gµν − nµqν+nνqµ

q−

)
q2 − µ2

→
gµν − nνqµ

q−

q2 − µ2
, (4.5)

where the arrow in each line indicates that the term proportional to qν vanishes in eq. (4.2)
because the external source particles are on-shell: qν ū(p+ q)γνu(p)=0. In eqs. (4.3)–(4.5)
we also use a finite range interaction mediated by a vector field of mass µ.

Using eq. (4.2) and eqs. (4.3)–(4.5) we obtain the scaling formula for AµG(x) for all
cases. The scaling of the creation operators is derived from the anti-commutation relations
in momentum space by allowing the external momentum of the source particles in each
of three cases under consideration to be correspondingly: collinear, soft3 and soft. We

3For the static source the external momentum equals p = mv+ k, however p1− p2 = k1− k2, equals the

difference of two soft momenta.
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Gauge Object Collinear source Static source Soft source

p
[
λ2, 1,λ

]
[1, 1,λ] [λ, λ,λ]

ap, a
†
p λ−1 λ−3/2 λ−3/2

u(p) 1 1 λ1/2

ū(p2)γνu(p1)
[
λ2, 1,λ

]
[1, 1,λ] [λ, λ,λ]

Rξ Aµ(x)
[
λ4, λ2,λ3

] [
λ2, λ2,λ3

]
[λ, λ,λ]

ΓqqAG
Γµ1 Γµ1 Γµ1

ΓggAG
Σµνλ

1 Σµνλ
1 Σµνλ

1

Γs Γµ1 (n↔ n̄) Γµ3 Γµ4
A+ = 0 Aµ(x)

[
0, λ2,λ3

] [
0, λ2,λ

]
[0, λ,1]

ΓqqAG
Γµ1 Γµ1 + Γµ2 Γµ1 + Γµ2

ΓggAG
Σµνλ

2 Σµνλ
2 Σµνλ

2

Γs Γµ2 (n↔ n̄) Γµ3 Γµ4
A− = 0 Aµ(x)

[
λ2, 0,λ

] [
λ2, 0,λ

]
[λ, 0,1]

ΓqqAG
Γµ2 Γµ2 Γµ2

ΓggAG
Σµνλ

3 Σµνλ
3 Σµνλ

3

Γs Γµ1 (n↔ n̄) Γµ3 Γµ4

Table 1. Summary of the scaling behavior of the Glauber gluon source ingredients, the Glauber
vector potential and the Feynman rules for the newly constructed theory SCETG in the covariant
Rξ gauge and two different light-cone gauges A+ = 0, A− = 0.

also note that the vector p is collinear, while q has Glauber scaling for collinear and static
sources, and q has scaling given by eq. (3.7) for the soft source.4 As a result we complete
in table 1 all entries for the scaling of AµG(x).

Having determined the scaling of the vector potential created by the Glauber field for
the cases of interest, we now derive the effective theory Feynman rules for the coupling of
the energetic jet to the Glauber field. We read off the Feynman rules from the usual SCET
Lagrangian eqs. (2.1)–(2.4) by treating the vector potential created by Glauber gluons in
the covariant derivative as a background field. All Feynman graphs between collinear and
Glauber gluons contained in eq. (2.2)5 can be found using derived Feynman rules in the
background field method from ref. [50]. In addition to these rules, one has to apply the
specific power counting of the vector potential, which we derived for each source and gauge.
As a result, we fill in the table the vertices ΓqqAG

,ΓggAG
for each source and for each gauge.

Finally, we include in table 1 the Feynman rules Γs for the interaction between the source

4Throughout this section we refer to both scalings in eq. (3.6) and eq. (3.7) as Glauber gluons, however

it should be clear from the context which one is used when.
5Those rules include couplings of a Glauber gluon to two and three collinear gluons, and two Glaubers

with two collinear gluons. We present in the table only the first vertex ΓggAG .
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fields and the Glauber gluons. This is achieved by noting that we can view the jet moving
in the direction of n as a source of Glauber gluons for the target fields η̄, η. Thus, the
Feynman rules Γs can be found by using our scaling rules for AµG(x) with the collinear
source in the n−direction.6 Also, note that for the collinear source we use SCET current
in the n̄ direction, for the static source we use the HQET current and, finally, for the soft
source we use the unexpanded vertex γµ consistent with the soft quark interaction with the
background field. As a result we fill in all the elements of table 1, where we have defined
Γ1 . . .Γ4,Σ1 . . .Σ3 as follows:

Γµ,a1 = igT a nµ
n̄/

2
, (4.6)

Γµ,a2 = igT a
γµ⊥p/⊥ + p/′⊥γ

µ
⊥

n̄·p
n̄/

2
, (4.7)

Γµ,a3 = igT a vµ , (4.8)

Γµ,a4 = igT a γµ , (4.9)

Σµνλ,abc
1 = gfabc nµ

[
gνλ n̄·p+ n̄ν

(
p′λ⊥− pλ⊥

)
− n̄λ

(
p′ν⊥−pν⊥

)
−

1− 1
ξ

2

(̄
nλpν+n̄νp′λ

)]
, (4.10)

Σµνλ,abc
2 = gfabc

[
gµλ⊥

(
−n

ν

2
p+ + pν⊥ − 2p′ν⊥

)
+ gµν⊥

(
−n

λ

2
p+ + p′λ⊥ − 2pλ⊥

)
+gνλ⊥

(
nµ n̄·p+ pµ⊥ + p′µ⊥

) ]
, (4.11)

Σµνλ,abc
3 = gfabc

[
gµλ⊥

(
n̄ν

2
(p− − 2p′−) + pν⊥ − 2p′ν⊥

)
+ gµν⊥

(
n̄λ

2
(p′− − 2p−) + p′λ⊥ − 2pλ⊥

)
+gνλ⊥

(
pµ⊥ + p′µ⊥

) ]
. (4.12)

The derived rules allow us to write down the effective Lagrangian of SCETG . As a
result, we obtain the following interaction term between SCET collinear fields and the
vector potential AµG(x) of the Glauber gluons:

LSCETG
(ξn, An, AG) = LSCET(ξn, An) + LG (ξn, An, AG) , (4.13)

LG (ξn, An, AG)=
∑
p,p′

e−i(p−p
′)x

(
ξ̄n,p′Γ

µ,a
qqAG

n̄/

2
ξn,p − iΓµνλ,abcggAG

(
Acn,p′

)
λ

(
Abn,p

)
ν

)
AGµ,a(x).

(4.14)

Depending on the gauge and the source, the vertices and the vector potential are different
and are provided in the table above. The Lagrangian of this form for the collinear source in
Rξ and A− = 0,7 gauges was derived in [35] and agrees with our expressions for correspond-
ing two entries for ΓqqAG

in table 1. We also note that for the covariant gauge and ξ = 1

6Note that in the table we have derived the Feynman rules generated by the collinear source moving in

the n̄ direction. However, since our target is a collinear current in the n−direction, its effect on the source

can be derived from our table by reversing the n↔ n̄ in the collinear source column.
7In order to avoid confusion we note that in [35] the source was in the n direction while the target jet

in the n̄ direction, thus our formulas agree with that reference if n ↔ n̄ as expected. For example in [35]

the light-cone gauge A+ = 0 was considered, while it is analogous to our A− = 0 gauge.
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our Feynman rule for ΓggAG
(Rξ) = Σµνλ

1 disagrees with that of [36]. The corresponding
Feynman rule from ref. [36] contains only the first term in eq. (4.10). However, note that
with such a Feynman rule, the relation eq. (7.4) below would be violated, which would lead
to different results for single Born radiative loss (see section 6) calculated in the covariant
and the hybrid gauges.8 With our Feynman rule this inconsistency does not happen.

Finally, in order to analyze the invariance of our Glauber exchange terms for quarks
and gluons under the gauge symmetries of SCET, we rewrite eq. (4.14) including the source
fields (see eq. (4.1)):

LG (ξn, An, η) =
∑
p,p′,q

e−i(p−p
′+q)x

(
ξ̄n,p′Γ

µ,a
qqAG

n̄/

2
ξn,p − iΓµνλ,abcggAG

(
Acn,p′

)
λ

(
Abn,p

)
ν

)
× η̄ Γδ,as η∆µδ(q) , (4.15)

where all the vertices for the target and the source are provided conveniently in table 1. In
order to make this Lagrangian collinear gauge invariant one needs to dress the quarks and
gluons with collinear Wilson lines Wn(x), defined in eq. (2.12). As a result the Lagrangian
that includes the Wilson lines can be obtained as follows:

LG (ξn, An, η)→ LG

(
W †nξn,Bn(An), η

)
≡ LG (χn,Bn, η) , (4.16)

where W †nξn(≡ χn), Bn(An) are the dressed collinear gauge invariant quark and gluon
fields, correspondingly. In the next subsection we will show that Lagrangian in eq. (4.16)
is invariant under the soft and collinear gauge transformations of SCET.

The derived Lagrangian of SCETG in eq. (4.14) and eq. (4.15) contains only interaction
between a single collinear quark or gluon with a single Glauber gluon. However there are
additional interactions between the collinear particles and Glauber gluons. For example,
in the light-cone gauge the first term of eq. (2.1) contains an interaction where the two
Glauber gluons interact at the same point with a collinear quark line. The same Lagrangian
in the same gauge contains the interaction where at the same point there are a collinear
quark, a collinear gluon and a Glauber gluon. While we omit these terms in this section
for brevity, their derivation is straightforward and the corresponding Feynman rules are
listed in the appendix C.

While we derived the Feynman rules of SCETG for variety of sources and gauges, in
the main part of this paper we will do calculations in the following cases. For the source,
motivated by our study in section 3, which showed that at RHIC and LHC energies the
recoil effect is negligible with accuracy better than 15%, we will use the (initially) static
source. The interested reader will notice that since the physics results depend on the
transverse momentum exchanges (Glauber gluons) between the projectile and the target
and the jet-medium cross sections, they should not be sensitive to the components of the
source in the n and n̄ directions.

As for the gauge choice, we consider three cases in this paper, which allows us to
establish the gauge invariance of the broadening and the radiative energy loss results. The

8This gauge choice is defined at the end of this section.
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first two choices are the covariant and positive light-cone gauges. All relevant Feynman
rules are derived in this section and summarized in appendix C. Note that in both cases the
Glauber gluons and collinear gluons are quantized with the same gauge-fixing condition.
However there is no problem in quantizing the collinear gluons in, say, the light-cone gauge,
while the Glauber gluons are in the covariant gauge. This is our third choice and we call
it the hybrid gauge. For practical purposes this turns out to be the most convenient gauge
choice [40, 51]. Physically, such a choice is possible since the scattering part and the
medium-induced splitting parts of the calculation factorize. From a formal point of view
the hybrid gauge corresponds to the vector potential created by the source derived in the
covariant gauge, and the SCET Lagrangian quantized in the light-cone gauge with the
corresponding background field vector potential. We discuss in details the Feynman rules
in this gauge in section 7.1 and in appendix C.

4.2 Gauge invariance of LG

In this subsection we show that the Glauber Lagrangian LG is invariant under both collinear
and soft gauge transformations in SCET. The collinear gauge symmetry is a simple conse-
quence of dressing the collinear fields with the collinear Wilson lines. The fields transform
under the collinear gauge transformation of SCET according to [11]:

ξn → Uc ξn , χn ≡W †nξn → χn , (4.17)

Aµn → UcAµn U†c +
1
g
Uc iDµ U†c , Bµn ≡

1
g

[
W †n iD

µWn

]
→ Bµn , (4.18)

hv → hv , (4.19)

where W is the collinear Wilson line, which is defined in eq. (2.12), and the square brackets
in the last equation indicate that the derivative operator acts only within the brackets.
Note that the massive fields hv do not transform under the collinear transformation, since
ph ∼ [1, 1,λ] and pc ∼ [1, λ2,λ]. As we see from the definition of LG(χ,B, hv), since it is
explicitly built out of the gauge invariant collinear fields, the Lagrangian is invariant under
collinear gauge transformation:

LG(χ,B, hv)
collinear gauge transformation−−−−−−−−−−−−−−−−−−→ LG(χ,B, hv) . (4.20)

Demonstrating the invariance of the Lagrangian of SCETG under the soft gauge trans-
formation is slightly more involved. The soft transformation of SCET looks like [11]:

ξn → Vs ξn , χn ≡W †n ξn → Vs χn , (4.21)

Aµn → VsA
µ
n V
†
s , Bµn ≡

1
g

[
W †n iD

µWn

]
→ Vs Bµn V †s , (4.22)

hv → Vs hv , (4.23)

where Vs = eiα
a(x)Ta , such that ∂µVs(x) = O(λ2). For shorthand notation, define Y ≡ Vs.

The quark part of the Lagrangian of SCETG then transforms into:

T cij ⊗ T ckl
soft gauge transformation−−−−−−−−−−−−−−−→ (Y †T cY )ij ⊗ (Y †T cY )kl = (Y †imT

c
mnYnj)⊗ (Y †kfT

c
fgYgl)

= (Y †imYnj)(Y
†
kfYgl)

(
1
2
δmgδnf −

1
2N

δmnδfg

)
=

1
2
δilδjk −

1
2N

δijδkl = T cij ⊗ T ckl .
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Similarly, for the gluon part of the LG in eq. (4.16) we have:

Aµ,aAν,bifabc⊗T c≡Aµ,aAν,b⊗
[
T a, T b

]
soft gauge transformation−−−−−−−−−−−−−−−→Yaa′Aµ,a′Ybb′Aν,b′⊗Y †

[
T a
′
, T b

′
]
Y

= Aµ,a
′
Aν,b

′ ⊗ Y †
[
Yaa′T a′ ,Ybb′T b′

]
Y = Aµ,a

′
Aν,b

′ ⊗ Y †
[
Y T a

′
Y †, Y T b

′
Y †
]
Y

= Aµ,a
′
Aν,b

′ ⊗
[
T a
′
, T b

′
]

= Aµ,a
′
Aν,b

′
ifa

′b′c′ ⊗ T c′ . (4.24)

As a result, we obtain that the Glauber term in SCETG is invariant under the soft gauge
transformation:

LG(χ,B, hv)
soft gauge transformation−−−−−−−−−−−−−−−→ LG(χ,B, hv) . (4.25)

5 Jet broadening

In this section we derive the modification to the transverse momentum distribution of jets
from an elastic in-medium scattering to first order in opacity. We consider a quark jet
or a gluon jet interacting with an initially static fermionic center for definitiveness. The
necessary effective theory SCETG Feynman rules were derived in the section 4 and we use
the covariant gauge for our calculation. The amplitudes that we consider for the quark
and gluon cases have the following form, respectively:

A(q) = 〈J |T χ̄n(x0) ei
R
d4x(LQCD+LSCETG )|p〉 , (5.1)

A(g) = 〈Jµ,a|T Bµ,an (x0) ei
R
d4x(LQCD+LSCETG )|p〉 , (5.2)

where χn and Bn are the gauge invariant quark and Gluon fields in SCET, and J is the un-
derlying hard process that creates the quark or gluon jet. The LQCD term simply generates
the hard QCD process in question, which we take into account by effective Feynman rule
〈J | χ̄n(x0) |p〉 = χ̄n,p iJ(p) eipx0 . In the next two subsections we calculate these amplitudes
using the Lagrangian of SCETG and combining the single Glauber gluon exchange diagram
with the contact limit of the two Glauber gluon exchange diagrams. The corresponding
amplitudes are called single and double Born diagrams in the literature [37, 38]. Each
interaction in medium can be considered located at a certain point x, and an integral over
the Glauber gluon momentum is introduced. To keep formulas compact, it is convenient
to use the following shorthand notation:

dΦi =
d4qi

(2π)4
eiqiδxi v(qi) , (5.3)

dΦi⊥ =
d2qi⊥
(2π)2

e−iqi⊥δxi⊥ ṽ(qi⊥) , (5.4)

where i is the index of the corresponding scattering center, v(q) = 2πδ(q0)ṽ(q⊥), ṽ(q⊥) is
defined by eq. (3.4) and δxi = xi − x0. The delta function in v(q) makes the dq+ integral
trivial, while the q− integral still needs to be evaluated. The following identity arises once
one works out the d4q in the light-cone coordinates:

dΦi = dΦi⊥
dq−i
2π

eiq
−δzi , (5.5)
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Figure 2. Three lowest order diagrams contributing to a collisional in-medium quark interaction.
Top: tree level, bottom left: single Born diagram, and bottom right: two Glauber gluons ex-
change diagram. The notation for the scattering centers is the following: ⊗1 = [x1, q1, (b1)i],⊗2 =
[x2, q2, (b2)j ]. The contact limit of the amplitude A(2)q

1 is also called double Born amplitude.

where δzi = δx3
i . To also shorten the color notation we substitute the color generator T a

by simply a and specifying the representation it belongs to. For example:

(a)R(a)Ti = T a(R)T a(i), (5.6)

[a, b]R = ifabcT c(R). (5.7)

We use R to denote the color representation of the incident energetic quark or gluon, and
we use T to specify the color representation of the scattering center itself. For example,
dT = 3 since we consider a fermionic scattering center, while dR = dF = 3 for a quark jet
and dR = dA = 8 for a gluon jet.

For the quark (or gluon) propagator with the collinear plus Glauber momentum p− q,
where p has scaling [1, λ2,λ] and q is the Glauber gluon with the momentum scaling
[λ2, λ2,λ], we define:

∆g(p, q) ≡
1

p− − q− − (p⊥−q⊥)2−iε
p+

. (5.8)

It is convenient to define the following quantity, since it directly appears in the expression
in eq. (5.8):

Ω(p, q) = p− − (p⊥ − q⊥)2 − iε
p+

. (5.9)

Note that the quantity in the eq. (5.9) depends only on q⊥ and p and always leads to a q−

pole in the propagator eq. (5.8) which is in the positive imaginary plane.

5.1 Quark jet

We start from the first diagram in figure 2, which represents the lowest order diagram for
the matrix element in eq. (5.1):

A
(0)q
1 = χ̄n,p iJ(p) eipx0 . (5.10)
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For a k Glauber gluon exchange diagram one has a factor of n/2 for each quark propagator
and a factor of n̄/

2 for each vertex. These factors can be commuted through to the left and
simplified:

χ̄n,p

(
n̄/

2
n/

2

)k
= χ̄n,p

(
n̄/

2
n/

2

)
= χ̄n,p, (5.11)

which means that we can (and will) ignore this factors in the Feynman rules. Squaring the
tree level result in eq. (5.10) we get:

dσ ∝ 1
dRdT

∑
spin,color

|A(0)q
1 |2 = Tr

(
n/

2
J(p)J̄(p)

)
n̄ · p . (5.12)

It is instructive to examine here the Lorentz structure of the part of the matrix element
squared which is not explicitly written in eq. (5.12). It can be represented completely
generally as follows:

J(p)J̄(p) =
16∑
i=1

ai(p)Γi . (5.13)

Here, Γi is a basis set of 16 matrices for the Dirac algebra, for example:{
1, γµ, γ5, γµγ5, σµν = i

2 [γµ, γν ]
}

. Note that σij = εijkΣk. By direct inspection one sees
that only the a+(p)γ+ part contributes to the spin averaged cross section.

For a k Glauber gluon exchange amplitude we have:9

A
(k)q
coll = χ̄n,p

∫ k∏
m=1

dΦmB
(k)q iJ

(
p−

k∑
l=1

ql

)
eipx0 , (5.14)

where B(k)q is the non-trivial part of the amplitude given by the SCETG Lagrangian.
With the notation defined above and using the Feynman rules derived in section 4 and in
appendix C we get in the Rξ gauge:

B
(0)q
1 = 1 , (5.15)

B
(1)q
1 = (b1)R (b1)Ti i i∆g(p, q1) , (5.16)

B
(2)q
1 = (b2b1)R(b1)Ti(b2)Tj i i∆g(p, q2) i i∆g(p, q1 + q2) . (5.17)

We have absorbed all the factors ṽ(q⊥) and the phases into the conveniently defined differ-
entials in eq. (5.3). Next we need to perform the longitudinal integrals dq+, dq− in the one
and two Glauber gluons exchange diagrams and reduce the integration to only transverse
components of qi⊥. For the single Born diagram this is done by using the result for the
longitudinal integral I(1)

1 from appendix D.1. The result is:∫
dΦ1B

(1)q
1 = i (b)R(b)Ti

∫
dΦ⊥1

[
eiω1 δz1

]
. (5.18)

9In our notation B(k)q , B stands for “Broadening”.
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Similarly, using the results from appendix D.1 for the integrals I(2)
1 and its contact limit

I
(2c)
1 , we get the following results for the two Glauber gluons exchange diagram and its

contact limit:∫
dΦ1 dΦ2B

(2)q
2 = (b2b1)R(b1)Ti(b2)Tj

∫
dΦ⊥1 dΦ

⊥
2

[
ei(ω12δz1+ω2(δz2−δz1))

]
(−1) , (5.19)∫

dΦ1 dΦ2B
(2c)q
2 = (b2b1)R(b1b2)Ti

∫
dΦ⊥1 dΦ

⊥
2

[
ei(ω12δz1)

]
×
(
−1

2

)
. (5.20)

In eq. (5.18)–(5.20), the inverse formation times ω1,2 are defined as follows:

ω1 = Ω(p, q1) , ω2 = Ω(p, q2) , ω12 = Ω(p, q1 + q2) . (5.21)

Finally, combining together the three amplitudes, squaring them and identifying the con-
tribution to first order in opacity, we get:

1
dR dT

Tr|A(0)q
1 +A

(1)q
1 +A

(2c)q
1 + . . . |2

=
1

dR dT
Tr
(
|A(0)q

1 |2 + |A(1)q
1 |2 + 2 Re

(
A

(0)q
1

)†
A

(2c)q
1 + . . .

)
. (5.22)

Here, we have omitted the Re
(
A

(0)q
1

)†
A

(1)q
1 term, since it vanishes because of the color

trace: Tr(T b(R)) = 0. Squaring the A(0)q
1 term has been performed in eq. (5.12) and rep-

resents the squared matrix element of the production of the quark jet from the underlying
hard process J . The same exact overall factor, the differential jet distribution d2σq,g/d

2p⊥,
appears in all other terms in eq. (5.22). We will drop this factor for brevity but will keep
in mind that the results derived below should be understood as operators acting on the
unperturbed by the medium jet distribution. Thus, the first term becomes simply unity:

1
dR dT

Tr|A(0)q
1 |2 = 1 . (5.23)

Squaring the single Born amplitude A(1)q we get:

1
dR dT

Tr|A(1)q
1 |2 =

1
dR dT

N∑
i=1

Tr((b)R(b′)R)Tr((b)Ti(b
′)Ti)

×
∫
dΦ⊥(qi) dΦ⊥(q′i)

∗ ei(ω1(qi⊥)−ω1(q′i⊥))δzi . (5.24)

This expression can be simplified further by turning the sum over the scattering centers
into a continuous integral. This approximation is valid if A⊥ � µ−2:

N∑
i=1

e−ip⊥δxi ≈ N
∫
d2b

A⊥
e−ip⊥·b = N

(2π)2 δ(p⊥)
A⊥

. (5.25)

Using this representation and integrating over q′i⊥, we obtain a particularly simple expres-
sion:

1
dR dT

Tr|A(1)q
1 |2 =

N

A⊥

C2(R)C2(T )
dA

∫
d2q⊥
(2π)2

|ṽ(q⊥)|2 × e−q⊥·
→
∇p⊥ . (5.26)
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Figure 3. Three lowest order diagrams contributing to the gluon jet in-medium interaction. Top:
tree level, bottom left: single Born diagram, and bottom right: two single Born exchanges diagram.
The notation for the scattering centers is the following: ⊗1 = [x1, q1, (c1)i],⊗2 = [x2, q2, (c2)j ].

In eq. (5.26) e−q⊥·
→
∇p⊥ indicates the shift in the transverse momentum of the initial jet

distribution. The contribution of the double Born contact term to the first order in opacity
cross section correction becomes after a similar averaging procedure, which sets q1⊥+q2⊥ =
0 in eq. (5.20):

1
dR dT

Tr
(
A

(0)q
1

)†
A

(2c)q
1 =

(
−1

2

)
N

A⊥

C2(R)C2(T )
dA

∫
d2q⊥
(2π)2

|ṽ(q⊥)|2 . (5.27)

Note that in eq. (5.27) there is no net transverse momentum transfer to the jet and no
momentum shift. Combining the contributions up to first order in opacity we finally get:

1
dR dT

Tr
(
|A(0)q

1 |2 + |A(1)q
1 |2 + 2 Re

(
A

(0)q
1

)†
A

(2c)q
1

)
= 1 +

N

A⊥

∫
d2q⊥

[
dσel(R, T )
d2q⊥

e−q⊥·
→
∇p⊥ − σelδ

(2)(q⊥)
]
, (5.28)

where we expressed the answer through the elastic scattering, which in the lowest Born
approximation equals to:

dσel(R, T )
d2q⊥

=
C2(R)C2(T )

dA

|ṽ(q⊥)|2

(2π)2
. (5.29)

5.2 Gluon jet

We repeat a similar calculation as in the previous subsection for the gluon jet scattering
off a fermionic scattering center. The first diagram in figure 3 equals to:

A
(0)g,b
1 = eipx0 i Jν,a(p)εν(p) δab. (5.30)

The square of this matrix element describes the hard scattering production cross section
and appears in every term and is dropped for brevity below. For k Glauber gluon exchange
with medium amplitude we use the following notation, similarly to the quark case above
in eq. (5.14):

A
(k)g
coll,b = εν(p)

∫ k∏
m=1

dΦmB
(k)g
µν,ab iJ

µ,a

(
p−

k∑
l=1

ql

)
eipx0 . (5.31)
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With this notation, using the Feynman rules of SCETG in covariant gauge we get for B(k)g

amplitudes for k = 0, 1, 2:

(B(0)g
1 )µν,ab = gµν δab, (5.32)

(B(1)g
1 )µν,ab = fabc1 (c1)Ti Σ̃ρν

1 (p− q1, p) (−i)∆(p− q)µρ(Rξ)
, (5.33)

(B(2)g
1 )µν,ab = f b1b c2 (c2)Tj Σ̃ρ1ν

1 (p− q2, p) (−i)∆(p− q2)ν1ρ1

(Rξ)
fab1c1 (c1)Ti

× Σ̃ρ2ν1
1 (p− q1 − q2, p− q2) (−i)∆(p− q1 − q2)µρ2

(Rξ)
. (5.34)

In the equations (5.33)–(5.34), ∆(p)µν(Rξ)
is a standard gluon propagator in the covariant

gauge, and the Σ̃µν
1 (p, p′) is the effective Feynman rule for covariant gauge for Glauber gluon

coupling to collinear gluons. As one can see from our appendix C (also from section 4) it
reads:

Σ̃µν
1 (p, p′) ≡ gµν n̄·p+ n̄µ (p′ − p)ν⊥ − n̄ν (p′ − p)µ⊥ −

1− 1
ξ

2
(
n̄νpµ + n̄µp′ν

)
. (5.35)

To work out the contraction of vertices for single and double Born diagrams, the following
identities are useful:

εν(p) Σ̃ρν
1 (p− q1, p)N

(Rξ)
µρ (p− q1) = ε⊥ ·(p⊥ − q1⊥) n̄µ + ε⊥µ n̄·p, (5.36)

εν(p) Σ̃ρ1ν
1 (p− q2, p)N

(Rξ)
ν1ρ1 (p− q2) Σ̃ρ2ν1

1 (p− q1 − q2, p− q2)N (Rξ)
µρ2 (p− q1 − q2)

= n̄·p ε⊥ ·(p⊥ − q1⊥ − q2⊥) n̄µ + (n̄·p)2 ε⊥µ , (5.37)

where we defined N (Rξ) to be the numerator of the covariant gauge gluon propagator:

N
(Rξ)
µν (p) = gµν −

pµpν
p2

(1− ξ) . (5.38)

Note that even though we work in the covariant gauge, we are free to choose any polarization
vector for the on-shell final state gluon. We assume for the external scattered gluon as well
as its source the physical polarizations:

n̄·ε(p) = 0 , p·ε(p) = 0 , (5.39)

n̄·J(p− q) = 0 , (p− q)·J(p− q) = 0 . (5.40)

Equation (5.39) was the only assumption in deriving eqs. (5.36), (5.37) above. If in addition
one assumes eqs. (5.40), then the first terms can be dropped in each of the eqs. (5.36), (5.37)
and only the transverse term survives. Under these conditions and using results for the
same longitudinal integral as in the quark case, which are summarized in the appendix D.1,
we get for the single Born amplitude:10∫

dΦ1

(
B

(1)g
1

)µν,ab
= − fabc1(c1)Ti

(
gµν⊥
) ∫

dΦ1⊥

[
eiω1δz1

]
, (5.41)

10Note that in our notation the covariant gauge gluon propagator of collinear plus Glauber momentum

can be written as ∆(p− q)µν(Rξ) = Nµν
(Rξ)(p− q) ∆g(p, q)

1
n̄·p . Using this identity along with eqs. (5.36), (5.37)

leads to the same results for the broadening of gluon jet as for the quark jet up to the color and Dirac

structure.
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which differs from the quark case in eq. (5.18) only by a color and Lorentz structure.
Similarly for the two Glauber gluons exchange diagram and its contact limit we obtain the
following results:∫
dΦ1dΦ2

(
B

(2)g
1

)µν,ab
= fab1c1f bb1c2(c2)Tj (c1)Ti

(
gµν⊥
)∫
dΦ⊥1 dΦ

⊥
2

[
ei(ω12δz1+ω2(δz2−δz1))

]
(−1) ,

(5.42)∫
dΦ1dΦ2

(
B

(2c)g
1

)µν,ab
= fab1c1f bb1c2(c2)Ti(c1)Ti

(
gµν⊥
)∫
dΦ⊥1 dΦ

⊥
2

[
ei(ω12δz1)

]
×
(
−1

2

)
. (5.43)

The final result for the cross section to lowest order in opacity coincides with the one
obtained in the last subsection for the quark case, with the substitution of the gluon-
quark cross section instead of quark-quark elastic scattering cross section. Combining the
contributions up to first order in opacity we finally get:

1
dR dT

Tr
(
|A(0)g

1 |2 + |A(1)g
1 |2 + 2 Re

(
A

(0)g
1

)†
A

(2c)g
1

)
= 1 +

N

A⊥

∫
d2q⊥

[
dσel(R, T )
d2q⊥

e−q⊥·
→
∇p⊥ − σelδ

(2)(q⊥)
]
. (5.44)

Here,

dσ
(g)
el (R, T )
d2q⊥

=
C2(R)C2(T )

dA

|ṽ(q⊥)|2

(2π)2
. (5.45)

In this case the R stands for adjoint representation (gluon jet) and T stands for fundamental
representation (fermionic static center).

6 Medium-induced bremsstrahlung

In this section we use the Feynman rules of SCETG to derive the probability for an energetic
quark to emit a gluon, induced by the jet interactions in QCD matter. This is equivalent
to evaluating the differential distribution of the number of emitted gluons. We first present
this calculation in the vacuum using SCET and later in the medium using the new SCETG

Lagrangian. In each case we consider the covariant gauge and the initially static source. We
also focus on final-state (FS) radiation. In the literature, such a calculation is typically done
in the soft (emitted) gluon approximation. However, in SCET and SCETG dynamics, the
leading interaction describes the collinear gluon emission, which will allow us to go easily
beyond the conventional ω � E limit. We will perform this new calculation below in
section 9, while in this section we will focus on taking the soft gluon limit and comparing
to the previously derived results for radiative energy loss in QCD matter.

Abrem = 〈J |T χ̄n(x0) ei
R
d4x(LQCD+LSCETG )|p,k〉 . (6.1)

To study gluon emission, we start from the matrix element, eq. (6.1), where J is the
underlying hard process that creates the quark jet, χ̄n is the gauge invariant quark field,
and p, k are the momenta of the final state quark and of the emitted gluon, correspondingly.
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Figure 4. Diagrams in SCET describing splitting of a collinear quark into a collinear quark and
a collinear gluon.

Since in this section we consider only the case of the initial quark jet, we omit the quark
index in the amplitudes below for brevity. The matrix element in eq. (6.1) gets contributions
from 0, 1, 2, . . . Glauber gluon exchanges between the collinear quark and/or gluon and
the sources in the medium. The first three correspond to vacuum emission, single Born
amplitude and two single Born exchanges amplitude, respectively, and are calculated in the
subsections below. To simplify the notation we write the n−Glauber insertion amplitude
in the following form:11

A(n),a = g χ̄n,p

(
n∏
l=1

∫
dΦl

)
R(q1, . . . , qn)(n)µ,a iJ

(
k + p−

n∑
k=1

qk

)
ei(k+p)x0 εµ(k) . (6.2)

6.1 Obtaining the Altarelli-Parisi splitting function in SCET

A large Q2 process is accompanied by bremsstrahlung even in the absence of in-medium
interactions. Knowledge of the corresponding amplitudes is also essential for the evaluation
of the interference effects between the different sources or radiation for jet production in
the QCD medium.

Calculation of the vacuum diagrams in figure 4 leads to the Altarelli-Parisi splitting
function for the q → qg process. This calculation has been performed in ref. [52] in the
light-cone gauge. We perform the same calculation here in the covariant gauge. We also
demonstrate how in the small x = k+/p+ limit the relevant radiation piece can be identified
at the amplitude level.

The calculation of the relevant radiative matrix element can be performed using dif-
ferent set of fields in SCET (see [53]): gauge dependent fields ξn, An or gauge independent
ones χn and Bn. In the former case the Feynman rules contain Wilson line emissions, from
the gauge invariant quark field χn = W †nξn. In the latter case these diagrams are absent,
since we do calculations directly with χn. However, the difference in the second case is that
the SCET Lagrangian is modified and contains explicit collinear Wilson lines Wn which
changes the Feynman rules. The equivalence of different formulations was shown in [53] on
the example of the quark jet function at one loop. We choose the first case, i.e. use fields
ξn, An to do the calculation and include the Wilson line graphs, while keeping the SCET
Lagrangian free from any collinear Wilson lines. In order to avoid confusion, we note that
for the external quark spinor we use χ̄n as before for the broadening, which is simply a
matter of notation.

11In our notation Rµ stands for “Radiation”.
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We first recall that for the jet production amplitude we have:

AJq = χ̄n,p iJ eipx0 ,
1

dRdT

∑
spin,color

dσ ∝ |AJq|2 = Tr
(
n/

2
n̄·p J(p)J̄(p)

)
. (6.3)

One notices from eq. (6.3) that the contribution to the cross section comes from the part
J(p)J̄(p) ∝ γ+. For the case of gluon bremsstrahlung, the first amplitude in figure 4 reads:

R
(0)µ,a
1 = i T a

(
nµ +

γµ⊥(p/⊥ + k/⊥)
n̄·(p+ k)

+
p/⊥γ

µ
⊥

n̄·p
− p/⊥(p/+ k/)⊥
n̄·p n̄·(p+ k)

n̄µ
)
i
n̄(p+ k)
(p+ k)2

. (6.4)

Even though we work in the covariant gauge, we are going to use physical polarization
vectors for the emitted real gluon. We choose the following gluon polarization vectors,
which are the only possible solutions that satisfy the two conditions n̄·ε = 0, k ·ε(k) = 0:

εµi (k) =
(

0,
2εi⊥ ·k⊥
k+

, εi⊥

)
, i = 1, 2 . (6.5)

For such polarization vectors the second diagram in figure 4 vanishes, since it is proportional
to n̄µ, and also the last term in eq. (6.4) vanishes once dotted with the polarization vector.
By contracting the polarization vectors from eq. (6.5) with the SCET amplitude in eq. (6.4),
we get:12

R
(0)µ,a
1 εµ = −T a

[
2Ai
⊥

A2
⊥

+
x

A2
⊥
Aj
⊥ γ

i
⊥ γ

j
⊥

]
εi⊥ , (6.6)

A⊥ ≡ k⊥(1− x)− p⊥x , (6.7)

where x is the fraction of energy taken by the emitted gluon k+ = xp+
0 , p

+ = (1−x)p+
0 . To

derive eq. (6.6) we also assumed that the external quark and gluon are on-shell. Squaring
this amplitude, averaging over the colors of the radiating quark we obtain:

1
dR
|AJq→qg|2 =

g2

dR
Tr
(
n/

2
n̄·p JJ̄

[
γ0
(
R

(0)
1 ·ε

)†
γ0
(
R

(0)
1 ·ε

)])
, (6.8)

γ0
(
R

(0)
1 ·ε

)†
γ0
(
R

(0)
1 ·ε

)
= 4CF

(
1− x+

x2

2

)
1
A2
⊥

(I)color (I)Dirac . (6.9)

The fact that the expression in eq. (6.9) is a Dirac scalar means that the cross section of
splitting factorizes into the cross section of jet production times the Altarelli-Parisi kernel,
which has a nice probabilistic interpretation. Setting the light-cone direction along the
initial quark before splitting, i.e. p⊥ = −k⊥, we reproduce the Altarelli-Parisi kernel for
q → qg splitting:

1
dR
|AJq→qg|2 =(1−x)Tr

(
n/

2
p+

0 J(0)J̄(0)
)
×4g2CF

(
1−x+

x2

2

)
1
k2
⊥

= |AJq|2×|M rad
0 |2 . (6.10)

We note that the 1 − x factor is associated with the reduction of the cross section to
have a high momentum final-state quark when a gluon is emitted. From eq. (6.10) we

12Note that in eq. (6.6) all indices are contravariant, while for example terms in eq. (6.4) contain con-

tractions between covariant and contravariant vectors, like p/⊥ ≡ pµγ⊥µ = −pi⊥ γ
i
⊥.
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can identify the radiative correction and supplying the one body phase space, written as
dk+d2k⊥/(2π)32k+, we obtain:

dNg

dxd2k⊥
= CF

αs
π2

(
1− x+ x2

2

)
x

1
k2
⊥
. (6.11)

One easily recognizes in eq. (6.11) the usual Altarelli-Parisi splitting probability for quarks
(up to x→ 1− x). Taking the small-x limit one can conveniently reproduce the boundary
condition [40] associated with hard jet production that is subsequently used in the reaction
operator approach to parton energy loss [40, 51].

We finally point out that in the soft gluon limit x� 1 the amplitude itself, eq. (6.6),
reduces as follows:

AJq→qg ≈ eipx0 χ̄n,pJ

(
−g2εi⊥ ·k⊥

k2
⊥

)
T a = AJq ×M rad

0 , (6.12)

and, just like in quantum electrodynamics in the soft photon limit, a radiation matrix
element can be identified at the amplitude level:

M rad
0 = −g2εi⊥ ·k⊥

k2
⊥

T a . (6.13)

6.2 Single Born amplitudes in SCETG

In this subsection we derive the single Born amplitudes in the fully covariant gauge for
the scattering off the initially static source. In figure 5 we list all the relevant single Born
diagrams. In this gauge two additional diagrams A4, A5 appear when the collinear gluon
appears from the Wilson line W †. Feynman rule for such collinear gluon vertex is well
known:

Γα,aW (k) = gT ar
n̄α

k+ + iε
,

where k is the outgoing gluon momentum from the Wilson line. Although we use the
Rξ gauge in this subsection, just as in the vacuum case above, we use the physical gluon
polarization vector for the emitted gluon eq. (6.5). With the Feynman rules of SCETG ,
derived in section 4, and the notation of eq. (6.2), we get the following expressions for the
amplitudes in figure 5:

R
(1)µ,a
1 = i(a)R

(
nµ+

γµ⊥(p/⊥+k/⊥)
p+ + k+

+
p/⊥γ

µ
⊥

p+

)
i(p+ + k+)
(p+ k)2+iε

i (b1)R (b1)Ti i∆g(p+k, q1) , (6.14)

R
(1)µ,a
2 = i(b1)R(b1)Tii∆g(p, q1)i(a)R

×
(
nµ +

γµ⊥(p/⊥ + k/⊥ − q/1⊥)
p+

+
(p/⊥ − q/1⊥)γµ⊥

p+

)
i∆g(p+ k, q1) , (6.15)

R
(1)µ,a
3 = i(c1)R

(
nρ1 +

γρ1

⊥ (p/⊥ + k/⊥ − q/1⊥)
p+

+
p/⊥γ

ρ1

⊥
p+

)
× (−i)∆g(k, q1)

n̄·k
N

(Rξ)
ρ1ρ2 (k − q1) i∆g(p+ k, q1) f c1ab1(b1)Ti Σ̃ρ2µ

1 (k − q1, k), (6.16)

R
(1)µ,a
4 = 0 , (6.17)

R
(1)µ,a
5 = 0 . (6.18)
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Figure 5. Single Born diagrams contributing to the medium-induced gluon bremsstrahlung
eq. ( 6.2). The notation for the scattering centers is the following: ⊗1 = [x1, q1, (b1)i].

Note that in the collinear gluon vertices in diagrams A1, A2 we omitted the last term
proportional to n̄µ because after contraction with the polarization vector of our choice
this term vanishes, since ε+ = 0. For exactly the same reason diagram A4 vanishes.
However, the reason why we ignored n̄ρ1 in diagram A3 and why A5 vanishes, is slightly
more involved. The point is that both A3 and A5 have a common factor given by eq. (5.36)
with p→ k. Since from this identity it is obvious that n̄ρ1 times this combination vanishes,
we are allowed to omit this term in A3. For the same reason A5=0.

In order to reduce the integral dΦ1R
(1)
i to the dΦ1⊥ integral we use the identity in

eq. (5.5). Also, substituting eq. (5.36) into the expression for R
(1)
3 makes it obvious that

the entire dependence on q−1 appears through the propagators ∆g(p, q). Using the form of
this propagator from eq. (5.8) we define the relevant longitudinal integrals I(1)

1 , I
(1)
2 , I

(1)
3 .

We evaluate these integrals in appendix D.2. Thus, using eq. (5.5) and the expressions for
I

(1)
1 , I

(1)
2 , I

(1)
3 from appendix D.2, we get after taking limit x� 1 in R

(1)
1,2,3:∫

dΦ1R
(1)µ,a
1 εµ(k) ≈ (−i) (ab1)R (b1)Ti

2k⊥ ·ε⊥
k2
⊥

∫
dΦ1⊥ eiω0δz1 , (6.19)∫

dΦ1R
(1)µ,a
2 εµ(k) ≈ (−i) (b1a)R (b1)Ti

2k⊥ ·ε⊥
k2
⊥

∫
dΦ1⊥

[
1− eiω0δz1

]
, (6.20)∫

dΦ1R
(1)µ,a
3 εµ(k) ≈ (−i) [a, b1]R (b1)Ti

∫
dΦ1⊥

2 (k⊥−q1⊥)·ε⊥
(k⊥ − q1⊥)2

eiω0δz1
[
e−iω1δz1−1

]
. (6.21)

The two inverse formation times ω0 and ω1 are defined according to:

ω0 =
k2
⊥

xp+
0

, ω1 =
(k⊥ − q1⊥)2

xp+
0

. (6.22)

6.3 Double Born amplitudes in SCETG

In this section we calculate all diagrams in figure 6 in the Rξ gauge for the initially static
source. Expressions for all of these diagrams are obtained directly from the Feynman rules
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Figure 6. Two single Born exchange diagrams (double Born diagrams in the contact limit)
contributing to matrix element in eq. ( 6.2). The notation for the scattering centers is the following:
⊗1 = [x1, q1, (b1)i],⊗2 = [x2, q2, (b2)j ].

of SCETG in the covariant gauge, and are straightforward, though lengthy. However, a nice
compact relations can be found for these diagrams by relating them to previously calculated
amplitudes R(0), R(1) and B(1)q, B(2)q, B(1)g, B(2)g, in the notation of eq. (5.14), eq. (5.31)
and eq. (6.2). The result is as follows:(

R
(2)
1

)µ,a
= R

(1)µ,a
1 (p, k, q2)B(1)q

1 (p+ k − q2, q1) , (6.23)(
R

(2)
2

)µ,a
= B

(1)q
1 (p, q2)R(1)µ,a

2 (p− q2, k, q1) , (6.24)(
R

(2)
3

)µ,a
= R

(0)ρ1,b
1 (p, k − q1 − q2)

(
B

(2)g
1

)µρ1,ba
(k, q1, q2) , (6.25)(

R
(2)
4

)µ,a
= B

(1)q
1 (p, q2)R(1)µ,a

3 (p− q2, k, q1) , (6.26)(
R

(2)
5

)µ,a
= R

(1)µ,a
2 (p, k, q2)B(1)q

1 (p+ k − q2, q1) , (6.27)(
R

(2)
6

)µ,a
= R

(1)µ,a
3 (p, k, q2)B(1)q

1 (p+ k − q2, q1) , (6.28)(
R

(2)
7,8,9

)µ,a
= 0 . (6.29)

Next, we integrate over the longitudinal momenta and reduce the integrals to transverse
ones. This is analogous to the procedure for the single Born diagrams. The only poles in q−i
come from propagators of collinear momenta plus Glauber momenta (given by eq. (5.8)).
We summarize the corresponding integrals in appendix D.2. Since the amplitudes A7,8,9

vanish for physical polarization of the radiated gluon, we do not even consider the corre-
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sponding longitudinal integrals. Finally, using our results for the corresponding longitudi-
nal integrals I(2)

1 , · · · I(2)
6 from appendix D.2 and taking the x� 1 approximation, we get

the following expressions:∫
dΦ1dΦ2R

(2)µ,a
1 εµ(k) = (ab2b1)R (b1)Ti(b2)Tj

∫
dΦ1⊥dΦ2⊥

2k⊥ ·ε⊥
k2
⊥

eiω0δz2 , (6.30)∫
dΦ1dΦ2R

(2)µ,a
2 εµ(k) = (b2b1a)R (b1)Ti(b2)Tj

∫
dΦ1⊥dΦ2⊥

2k⊥ ·ε⊥
k2
⊥

(
1− eiω0δz1

)
, (6.31)∫

dΦ1dΦ2R
(2)µ,a
3 εµ(k) = [[a, b2] , b1]R (b1)Ti(b2)Tj

∫
dΦ1⊥dΦ2⊥ (6.32)

×2(k⊥−q1⊥−q2⊥)·ε⊥
(k⊥ − q1⊥ − q2⊥)2

(
ei(ω0−ω12)δz1 − eiω0δz1

)
ei(δz2−δz1)(ω0−ω1) ,∫

dΦ1dΦ2R
(2)µ,a
4 εµ(k) = (b2 [a, b1])R (b1)Ti(b2)Tj

∫
dΦ1⊥dΦ2⊥

×2(k⊥ − q1⊥)·ε⊥
(k⊥ − q1⊥)2

(
ei(ω0−ω1)δz1 − eiω0δz1

)
, (6.33)∫

dΦ1dΦ2R
(2)µ,a
5 εµ(k) = (b2ab1)R (b1)Ti(b2)Tj

∫
dΦ1⊥dΦ2⊥

2k⊥ ·ε⊥
k2
⊥

×
(

1− eiω0(δz2−δz1)
)

eiω0δz1 , (6.34)∫
dΦ1dΦ2R

(2)µ,a
6 εµ(k) = ([a, b2] b1)R (b1)Ti(b2)Tj

∫
dΦ1⊥dΦ2⊥

×2(k⊥ − q2⊥)·ε⊥
(k⊥ − q2⊥)2

(
e−iω2(δz2−δz1) − 1

)
eiω0δz2 , (6.35)

where ω0 and ω1 are defined in eq. (6.22) above and ω2, ω12 are equal to:

ω2 =
(k⊥ − q2⊥)2

xp+
0

, ω12 =
(k⊥ − q1⊥ − q2⊥)2

xp+
0

. (6.36)

In order to understand the lowest opacity contribution to the induced bremsstrahlung,
one needs to combine the single Born diagrams computed in the previous section with the
contact double Born limit of the two single Born exchange diagrams. The contact limit of
two single Born exchange longitudinal integrals is derived in appendix D.2. Using these
results we get the following contact limits (or double Born amplitudes):

R
(2c)
1,2,3 =

1
2
R

(2)
1,2,3(δz2 = δz1) , (6.37)

R
(2c)
4 = R

(2)
4 (δz2 = δz1) , (6.38)

R
(2c)
5,6 = 0 . (6.39)

All results in this and the previous subsections, derived in the framework of SCETG , agree
with the soft gluon approximation previously derived in the literature [40, 51]. For example,
to first order in opacity and without explicitly showing the integral over the position of the
scattering center we find:

k+dN
g(FS)

dk+d2k⊥
=
(
N

A⊥

)
CFαs
π2

∫
d2q⊥

[
dσel(R, T )
d2q⊥

](
2k⊥ ·q⊥

k2
⊥(k⊥−q⊥)2

)(
1−cos

[
(k⊥−q⊥)2

k+
δz

])
.

(6.40)
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Note that in the equation above the superscript “g” stands for the radiated gluons and
should not be confused with Glauber gluons, denoted by “G”. However, we can go beyond
that and calculate the finite-x corrections to single and double Born diagrams, similarly to
the full Altarelli-Parisi splitting kernel, and not just its soft gluon limit. In section 9 below
we derive analytical formulas for these finite-x corrections to radiative energy loss at first
order in opacity.

7 Gauge invariance of the jet broadening and the medium-induced

bremsstrahlung results

In this section we demonstrate that the single and double Born amplitudes calculated in
the previous two sections are gauge invariant. As it is known on the example of SCET,
the gauge structure of effective theory is more rich than that of a full theory. This is a
simple consequence of having multiple modes for the gauge field. In our calculation we deal
with two types of gluons: collinear and Glauber. Thus, we can gauge fix these two modes
completely independently without changing any physical result. Since Glauber mode is
an off-shell mode, it is integrated out from the theory and is presented in the form of the
potential term in eq. (4.15). Thus, the only gauge freedom for Glauber gluons is the choice
of the propagator ∆µν(q) in our effective potential, which in principle can be arbitrary. The
collinear gluon field on the other hand is a truly propagating degree of freedom, with the
corresponding kinetic term contained in the SCET Lagrangian. For each collinear gluon
one could choose a certain gauge-fixing term.

In the previous two sections we considered the fully covariant gauge, in the sense
that both collinear gluons are quantized in the covariant gauge, and also for the Glauber
Lagrangian we choose covariant gluon propagator ∆µν(q)Rξ . Below we consider two al-
ternative gauge choices and demonstrate there equivalence to the previous results. First,
we consider a hybrid gauge where the collinear gluons are in the positive light-cone gauge
and the Glauber potential is in the covariant gauge. Second, we choose both the collinear
gluons and the Glauber potential term in the positive light-cone gauge A+

c,g = 0.
The equivalence of all considered cases can be formulated in the following way. All

the diagrams in consideration are some combination of elastic scattering amplitudes with
a real gluon emission amplitude. Since each of these two processes is gauge-independent,
the resulting amplitudes, when contracted with the physical external gluon polarization
vectors, are the same even when each of the gauges are chosen independently. This is
equivalent to the statement that different modes for the gauge field in the effective theory
can be gauge-fixed independently.

7.1 Hybrid gauge A+
c = 0, Rξ(Ag)

We start from the hybrid gauge because it is simpler from a practical point of view. In this
case we consider the light-cone gauge for the collinear gluons, while the Glauber propagator
in the potential is taken to be in the covariant gauge. The Feynman rules for this gauge
are contained in figure 11. Note that the collinear Wilson line Wn = 1 is absent in this
case. For example, for the single Born radiative energy loss case we only have the first
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three diagrams compared to the covariant gauge case in figure 5, while the remaining two
are absent. Since the collinear gluons are in the light-cone gauge, the transverse gauge link
at infinity could in principle add new Feynman rules, where Glauber gluons arise from the
transverse Wilson line Tn (see appendix E for a brief review of this subject). However, in
this case it doesn’t generate such a Feynman rule for the following reason. The diagram for
which the Tn Wilson line generates a Glauber gluon that couples to the source vanishes in
this hybrid gauge because the propagator of Glauber gluon doted with the transverse gauge
field and the source term vanishes: Ai⊥g

iµvµ = 0. However as we will see from the next
subsection this is not the case in the fully positive light-cone gauge, where this interaction
plays an important role. This is another reason why the hybrid gauge is so convenient.

For brevity, we consider explicitly only single Born diagrams for the radiative energy
loss in detail and then quote results for the remaining cases. We have only the first three
diagrams in figure 5 for this case. Using the Feynman rules from the appendix C we obtain:

(Rµ,a1 )hyb = i(a)R

(
nµ +

γµ⊥(p/⊥ + k/⊥)
p+ + k+

+
p/⊥γ

µ
⊥

p+

)
i(p+ + k+)

(p+ k)2 + iε
i (b1)R (b1)Ti i∆g(p+ k, q1) ,

(7.1)

(Rµ,a2 )hyb = i(b1)R (b1)Ti i∆g(p, q1)i(a)R

(
nµ+

γµ⊥(p/⊥−q/1⊥)
p+

+
p/⊥γ

µ
⊥

p+

)
i∆g(p+k, q1) , (7.2)

(Rµ,a3 )hyb = i(c1)R

(
nρ1 +

γρ1

⊥ (p/⊥ + k/⊥ − q/1⊥)
p+

+
p/⊥γ

ρ1

⊥
p+

)
(−i)∆g(k, q1)

n̄·k
×N (hyb)

ρ1ρ2
(k − q1) i∆g(p+ k, q1)gµρ2

⊥ f c1ab1(b1)Ti n̄·k . (7.3)

While first two amplitudes immediately match those in the covariant gauge given
in eqs. (6.14), (6.15), in order to work out the third amplitude, the numerator Nhyb

µν of
the positive light-cone gauge gluon propagator should be inserted. The following identity
is straightforward to verify using the Feynman rules at hand:

εν(k) gρν⊥ n̄·kN (hyb)
µρ (k − q1) = εν(k) Σ̃ρν

1 (k − q1, k)N (Rξ)
µρ (k − q1). (7.4)

Thus, we arrive to the result that
(
Rµ,a1,2,3

)
hyb
≡
(
Rµ,a1,2,3

)
Rξ

. The remaining two diagrams

in the figure 5 are zero in the covariant gauge13 and are simply absent in the hybrid gauge.
Similarly, proceeding with the remaining single and double Born amplitudes for the

broadening and radiation we verify that the hybrid gauge results match the covariant gauge
results at the amplitude level, as they should:(

B(1)q,g
)

hyb
=
(
B(1)q,g

)
Rξ

,
(
B(2c)q,g

)
hyb

=
(
B(2c)q,g

)
Rξ

,(
R(1)

)
hyb

=
(
R(1)

)
Rξ

,
(
R(2c)

)
hyb

=
(
R(2c)

)
Rξ

. (7.5)

13This is true only for the same choice of physical polarization vectors in the covariant, light-cone and

hybrid gauge calculations. If one chooses arbitrary polarization vectors, once squared and summed over

polarizations the result is independent on them. However, in this case it would be impossible to verify the

gauge invariance with the hybrid or positive light-cone gauge, at the amplitude level.
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7.2 Positive light-cone gauge A+
c,g = 0

We consider the positive light-cone gauge in this subsection. The collinear gluons are
treated in the light-cone gauge as well as the Glauber gluons. Similarly to the previous sub-
section, we consider in details the single Born diagrams for radiative energy loss and later
on quote the result in all other cases. Clearly, the collinear Wilson line vanishes again in this
gauge Wn = 1. However, the transverse gauge link (see appendix E) gives a new non-trivial
Feynman diagram. In figure 7 we show the two new diagrams that appear in our gauge
choice. The first one directly follows from the collinear part of the Lagrangian of SCET,
once the background field with the light-cone vector potential scaling is added. It is summa-
rized in figure 11 of appendix C. The second diagram in figure 7 arises from the Tn Wilson
line emitting a Glauber gluon which interacts with the source. The corresponding Feynman
rule is derived in the appendix E and is summarized in figure 14. As one can see from this
Feynman rule, it depends on the light-cone prescription. So does the light-cone (Glauber)
gluon propagator. We will see in this section that these two dependences cancel non-
trivially and the final answer in this case is identical to the covariant gauge calculation above
for all light-cone prescriptions. Similar cancellation was found in [54] by introducing the T
Wilson line to SCET and calculating the jet function at one-loop in the light-cone gauge.

Using the Feynman rules of this gauge we evaluate the first three diagrams in figure 5,
which are present in this gauge as well:(

R
(1)µ,a
1,2,3

)
A+

=
(
R

(1)µ,a
1,2,3

)
Rξ

+ ∆R(1)µ,a
1,2,3 , (7.6)

where the correction terms ∆R(1)µ,a
i sum up to the following expression:∫

dΦ1

(
∆R(1)µ,a

1 + ∆R(1)µ,a
2 + ∆R(1)µ,a

3

)
=
∫
dΦ1⊥

[
(b1a)R (b1)Ti

(
−q/1⊥γ

µ
⊥
p+ + k+

p+
∆I
)

+(ab1)R (b1)Ti

(
−γµ⊥q/1⊥∆I +

p+ + k+

(p+ k)2
∆A+

(
2kµ⊥
k+

+
γµ⊥ (p/⊥ + k/⊥)
p+ + k+

+
p/⊥γ

µ
⊥

p+

))]
. (7.7)

The two longitudinal integrals ∆I and ∆A+ are defined in the following way:14

∆I =
∫
dq−1
2π

eiq
−
1 ∆z1 1

(p+ k − q1)2

1[
q+

1

] , (7.8)

∆A+ =
∫
dq−1
2π

eiq
−
1 δz1

1[
q+

1

] . (7.9)

The second integral is summarized in the table 2 and vanishes in the −iε light-cone pre-
scription. However, the first integral is clearly non-zero in any of the prescriptions, since
its value comes from the poles of the propagator denominator. Luckily the first diagram
in figure 7 completely cancels this term:∫
dΦ1

(
R

(1)
4

)µ,a
A+

=
∫
dΦ1⊥

[
(b1a)R (b1)Ti q/1⊥γ

µ
⊥
p++k+

p+
∆I+(ab1)R(b1)Ti γ

µ
⊥q/1⊥∆I

]
. (7.10)
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Figure 7. Two additional diagrams that appear in the light-cone gauge for the single Born
amplitude for radiative energy loss. Left: term arising from the SCETG Lagrangian in the light-
cone gauge. Right: Tn Wilson line contribution to the matrix element. The notation for the
scattering centers is the following: ⊗1 = [x1, q1, (b1)i].

Prescription 1
[k+]

i·∆A+

+iε 1
k++iε

1
−iε 1

k+−iε 0

PV 1
2

(
1

k++iε
+ 1

k+−iε

)
1
2

ML 1
k++iεsign(k−)

1
2

Table 2. Prescription dependent integral appearing in the light-cone gauge.

When the amplitude R(1)
4 is added to the first three diagrams, the ∆I integral vanishes as

expected, while the ∆A+ integrals stays. It vanishes only in the −iε light-cone prescription,
exactly in which the transverse gauge link vanishes according to Feynman rule derived in
appendix E. In all other prescriptions, the contribution from the transverse Wilson line does
not vanish and we include it by calculating the second amplitude in figure 7. We explicitly
see that by including these Feynman diagram the prescription dependence cancels in all
three remaining cases: +iε, PV, ML, which happens through pushing the q− pole into the
negative complex plane which leads to the zero integral. Thus, by including the T -Wilson
line into the calculation we get the same result in light-cone gauge as in the covariant gauge
for all light-cone prescriptions. To see this explicitly we apply Feynman rule for the single
Glauber gluon exchange from quark T− Wilson line, using appendix E (see figure 14) and
obtain:

∫
dΦ1

(
R

(1)
5

)µ,a
A+

=(ab1)R (b1)i
∫
dΦ1⊥ i

[
nµ +

(p/⊥ + k/⊥)γµ⊥
p+ + k+

+
γµ⊥p/⊥
p+

]
i
(p+ + k+)
(p+ k)2

∆T , (7.11)

where the longitudinal integral ∆T is defined according to:

∆T = CPres
∞

∫
dq−1
2π

eiq
−
1 δz1

(
1

q+
1 + iε

− 1
q+

1 − iε

)
. (7.12)

14Note that q+
1 ≡ −q

−
1 in this equations, set by the δ(q0

1) in v(q1).
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Using table 3 for the prescription dependence of CPres
∞ we verify that it vanishes in the

−iε prescription15 and in all other prescriptions makes the ∆T integral cancel exactly the
contribution from ∆A+ integral above. Thus, in the presence of a transverse gauge link we
verify the gauge invariance for all prescriptions:∫

dΦ1

(
∆R(1)µ,a

1 + ∆R(1)µ,a
2 + ∆R(1)µ,a

3 +R
(1)µ,a
4 +R

(1)µ,a
5

)
= 0 . (7.13)

Calculations in all other cases, like jet broadening and radiative energy loss in single and
double Born amplitudes, are similar to case considered above. We quote the results:(

B(1)q,g
)
A+

=
(
B(1)q,g

)
Rξ

,
(
B(2c)
q,g

)
A+

=
(
B(2c)
q,g

)
Rξ

,(
R(1)

)
A+

=
(
R(1)

)
Rξ

,
(
R(2c)

)
A+

=
(
R(2c)

)
Rξ

. (7.14)

Thus, for all light-cone prescriptions we get an unambiguous result, same as in the co-
variant gauge. If one ignores the transverse gauge link, one should employ one particular
prescription, −iε in this case, in order to recover the correct result. For practical purposes
this gauge choice is the most difficult from all three that we considered in this paper.

8 Identifying the in-medium jet evolution kernels

In the preceding sections we calculated the amplitudes for collisional and radiative jet
interaction at a particular position xi and demonstrated the gauge invariance of the end
results. It is clear that a direct calculation of all diagrams for any number of scattering
positions xi1 , xi2 , · · · is not possible. From the results at hand, however, we can deduce the
effect of an in-medium interaction at the amplitude and cross section levels in momentum
space and employ the resulting kernels to describe a number of collisional and radiative
processes in cold and hot nuclear matter as solutions to algebraic recurrence relations with
suitably chosen initial conditions [37, 38, 40, 51, 55, 56].

In the absence of long-range color correlations in the target, the relevant interactions
at position in to lowest order in αs that can build up to a jet-medium cross sections (a
total of two Glauber exchanges in the forward cut diagram) can be expresses as follows:

Ai1···in−1,0(α) ≡ ÎAi1···in−1(α) , (8.1)

Ai1···in−1,1(α) ≡ D̂Ai1···in−1(α) , (8.2)

Ai1···in−1,2(α) ≡ V̂Ai1···in−1(α) . (8.3)

Here, α represents a set of relevant quantum numbers, such as longitudinal momentum,
transverse momentum and color. The kinematic and color structure of the scattering
is contained in the unit ( Î ), direct ( D̂ ) and virtual ( V̂ ) operators, which evolve the
amplitude Ai1···in−1(α) of the propagating system. The unit operator indicates that there
are no Glauber gluon exchanges between the projectile and the target at position xin
(in = 0). The direct operator indicates a single Glauber gluon exchange between the

15Note that in the −iε prescription the integral ∆A+ vanishes as well.
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projectile and the target at position xin (in = 1). The virtual operator indicates two
Glauber gluon exchanges between the projectile and the target at position xin (in = 2),
i.e. in the contact limit. The set of amplitude indices in eqs. (8.1)–(8.3), thus, encodes the
complete history of jet interactions in QCD matter. Repeating the basic operator steps in
eqs. (8.1)–(8.3) any amplitude that includes parton scatterings inside the medium can be
iteratively derived from the unperturbed jet production amplitude

Ai1···in(α) =
n∏

m=1

[
δ0,im + δ1,imD̂m + δ2,im V̂m

]
J0(α) . (8.4)

Time ordering is implicit in the above formula. The amplitudes Āi1···in(p, c) are the com-
plementary amplitudes to Ai1···in(α) given by

Āi1···in(α) ≡ J†0(α)
n∏

m=1

[
δ0,im V̂

†
m + δ1,imD̂

†
m + δ2,im

]
. (8.5)

The differential jet or radiative gluon distribution, depending on the problem, can be ex-
presses as a sum over the interactions in the medium dN(α)/dPS =

∑∞
n=0 dN

(n)(α)/dPS.
Each contribution with a fixed number of interactions n can, in turn be represented as

dN (n)(α)/dPS ∝ Āi1···in(α)Ai1···in(α) ∝ Tr
2∑

i1=0

· · ·
2∑

in=0

Āi1···in(α)Ai1···in(α) . (8.6)

The trace is over any uncontracted color and spin/polarization indices. Using
eqs. (8.4), (8.5) we obtain a simple recursion identity which relates dN (n)/dPS to
dN (n−1)/dPS through the reaction operator R̂ (schematically shown in figure 8)

dN (n)/dPS ∝ Āi1···in−1R̂nAi1···in−1 , R̂n = D̂†nD̂n + V̂n + V̂ †n . (8.7)

Thus, the most important step in investigating the effects of the medium on jet propagation
is the identification of the reaction operator R̂. We note that in problems that involve
long-range coherence effects, such as radiative gluon re-interactions in the QCD matter,
the recurrence relations may be inhomogeneous.

8.1 Reaction operator for collisional interactions

With the direct and virtual interactions of a jet calculated in section 5, we can identify the
form of the reaction operator for collisional interactions acting on a jet of momentum p

R̂n =
∫ L

zn−1

dznρ(zn)
∫
d2q⊥n

[
dσel
d2q⊥n

e−iq⊥n·b̂
† · eiq⊥n·b̂ − σelδ2(q⊥n)

]
. (8.8)

Here, L is the thickness of the target, b̂ = i
→
∇p⊥ is the 2-dimensional impact parameter

operator conjugate to the transverse momentum p acting to the right and b̂† = −i
←
∇p⊥

is its Hermitian conjugate acting to the left. In this paper we explicitly proved the gauge
invariance of this reaction operator. Our results are not surprising since R̂ is expressed in
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Figure 8. Three contributions to the cross section, associated with the application of the reaction
operator, correspond to the three t =∞ cuts.

terms of physical quantities, such as cross sections and densities and kinematic modification
to the initial jet distribution.

The contribution to the jet transverse momentum distribution from n medium inter-
actions can be written as:

dN (n)(p⊥)
d2p⊥

=
n∏
i=1

∫ L

zi−1

dzi
λ

∫
d2q⊥ i

[
1

σel(zi)
dσel(zi)
d2q⊥ i

(
e−q⊥ i·

→
∇p⊥

)
− δ2(q⊥i)

]
dN (0)(p⊥)
d2p⊥

, (8.9)

where λ is the mean free path of the jet in the medium. Summing over all fixed-n contri-
butions that eq. (8.9) specifies, we obtain the most general result for the broadening of jets
that propagate and interact in strongly-interacting matter.

Simplifications of the sum over the contributions given by eq. (8.9) can be obtained
for special cases. For example, for a uniform density the integrals along the path of the jet
can be performed immediately. With the notation χ = L/λ, the result reads:

dN(p⊥)
d2p⊥

=
∞∑
n=0

dN (n)(p⊥)
d2p⊥

=
∞∑
n=0

e−χ
χn

n!

∫ n∏
i=1

d2qi
1
σel

dσel
d2q⊥ i

dN (0)(p⊥ − q⊥ 1 − · · · − q⊥n) . (8.10)

This is the partonic version of the Glauber multiple collision series where the jet interaction
in the medium are described by a Poisson distribution and the momentum distribution is
modified by the normalized differential scattering cross section [37, 38].

A final simplification can be achieved if one recognizes that the individual jet-medium
interactions are of finite range r = 1/µ, such as the one discussed in sections 3 and 4. Let us
take the initial jet distribution to be in the positive light-cone direction, dN(p⊥)/d2p⊥ =
δ2(p⊥). The Gaussian approximation can be best understood in impact parameter space
where the Fourier transform of the normalized scattering cross section reads

dσ̃el
d2q⊥

(b) =
∫

d2q⊥
(2π)2

e−iq⊥·b
1
π

µ2

(q2
⊥ + µ2)2

=
µ b

4π2
K1(µ b) ≈ 1

4π2

(
1− ξ µ2 b2

2
+O(b3)

)
.

(8.11)
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Here b = |b| and in the quadratic term in eq. (8.11) the log 2/(1.08µ b) multiplicative factor
has been absorbed into an approximately b-independent constant ξ. Fourier transforming
back to momentum space we obtain:

dN(p⊥)
d2p⊥

=
∫
d2b eip⊥·b

1
(2π)2

e−
χµ2 ξ b2

2 =
1

2π
e
− p2⊥

2χµ2 ξ

χµ2 ξ
. (8.12)

The resulting distribution is of two dimensional Gaussian form and has a width of 2χµ2 ξ,
i.e.

〈
p2
⊥
〉

= 2χµ2 ξ. It should be noted that the Gaussian approximation eq. (8.12) is only
applicable for small transverse momenta. It misses the Rutherford scattering power law
1/p4

⊥ behavior for p2
⊥ ≥ 2χµ2. The general solution the problem of jet multiple scattering

is given by eq. (8.9) [37].

8.2 Reaction operator for medium-induced gluon bremsstrahlung

The derivation of the reaction operator for radiative processes is significantly more compli-
cated in comparison to the one for collisional interactions. The first step is to reorganize the
amplitudes obtained in section 6 and to identify the contributions that can be interpreted as
an interaction of the parent parton, an interaction of the already radiated gluon (Ŝn) and,
finally, a genuinely new source of radiation associated with this particular scattering (B̂n).

We introduce the following notation for the radiative gluon inverse formation times:

ω0 =
k2
⊥

2ω
, ωi =

(k⊥−q⊥ i)2

k+
, ω(ij) =

(k⊥−q⊥ i−q⊥ j)2

k+
, ω(i···j) =

(k⊥−
∑j

m=i q⊥m)2

k+
,

(8.13)
and transverse momentum propagators:

H =
k⊥
k2
⊥
, C(i1i2···im) =

k⊥ − q⊥ i1 − q⊥ i2 − · · · − q⊥ im
(k⊥ − q⊥ i1 − q⊥ i2 − · · · − q⊥ im)2

,

Bi = H−Ci , B(i1i2···im)(j1j2···jn) = C(i1i2···im) −C(j1j2···jn) . (8.14)

Further, we recall that each double Born exchange yields a factor −1/2 and the numbers
of these exchanges in the amplitude and its complementary are:

Nv = Nv(Ai1···in−1) =
n−1∑
m=1

δ2,im , N̄v = Nv(Āi1···in−1) =
n−1∑
m=1

δ0,im . (8.15)

Finally, the color matrices associated with the collisional interactions of the jet are denoted
by

Tel(Ai1···in−1) ≡ (an−1)in−1 · · · (a1)i1 , T †el(Ā
i1···in−1) ≡ (a1)2−i1 · · · (an−1)2−in−1 .

(8.16)
We first examine the single Glauber exchange and the direct operator reads:

D̂n ≡ (an + Ŝn + B̂n) (8.17)

= an + ei(ω0−ωn)zneiqn·b̂ × if cand −
(
−1

2

)Nv(Ai1···in−1
) Bn e

iω0zn [c, an]Tel(Ai1···in−1) .
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We note that the common factor to all diagrams 2igε · (· · · ), where the transverse polar-
ization vector ε contracts with the 2D propagators in eq. (8.14), is not explicitly shown for
brevity. It is understood in eq. (8.18) that if cand rotates the color of the radiated gluon d:
if candd = [c, an]. Next, we identify the virtual operator:

V̂n ≡−1
2(CA + CR)− anŜn − anB̂n = −anD̂n − 1

2(CA − CR) (8.18)

=−CR+CA
2

− ei(ω0−ωn)zneiqn·b̂anif
cand−

(
−1

2

)Nv(Ai1···in−1
) CA

2
Bn e

iω0znca
in−1

n−1 · · · a
i1
1 .

Substituting eqs. (8.18) and (8.19) in the definition of the reaction operator we find:

R̂n = (D̂n − an)†(D̂n − an)− CA = (Ŝn + B̂n)†(Ŝn + B̂n)− CA (8.19)

=CA

(
e−qn

←
∇ke−qn

→
∇k − 1

)
− 2CA Bn ·

(
Re e−iωnzneiqn·b̂In−1

)
+ δn,1CACR|B1|2.

The diagonal Bertsch-Gunion term contributes only for the first scattering n = 1 [40, 51].
The off-diagonal terms depend on the current In, which in turn obeys a recurrence relation
itself:

In = CA(ei(ω0−ωn)zneiqn·b̂ − 1)In−1 − δn,1CACRB1e
iω0z1 . (8.20)

To summarize, the medium-induced bremsstrahlung depends sensitively on the boundary
conditions - both at the amplitude and cross sections levels.

Finally, we give one example for the complete solution to the final-state medium-
induced bremsstrahlung for a jet produced in a large Q2 process. The boundary condition
is represented by the amplitude: J0 = −2ig ε·k⊥

k2
⊥
eiω0z0 c , associated with the real hard

bremsstrahlung for x � 1. Rewriting the zn position integrals as integrals over the sepa-
ration between the scattering centers ∆zn = zn− zn−1 and including the integrals over the
momentum distribution of the jet-medium scattering cross section we obtain [40]:

k+ dNg

dk+d2k⊥
=
CRαs
π2

∞∑
n=1

[
n∏
i=1

∫
d∆zi
λg(zi)

] n∏
j=1

∫
d2q⊥ j

(
1

σel(zj)
dσel(zj)
d2q⊥ j

− δ2(q⊥ j)
)

×

[
− 2 C(1,··· ,n) ·

n∑
m=1

B(m+1,··· ,n)(m,··· ,n)

(
cos

(
m∑
k=2

ω(k,··· ,n)∆zk

)

− cos

(
m∑
k=1

ω(k,··· ,n)∆zk

))]
. (8.21)

To use unified notation above, we have to specify
∑1

2 ≡ 0 and B(n+1,n) ≡ Bn. In the case
of final-state interactions, z0 ≈ 0 is the point of the initial hard scatter and zL = L is the
extent of the medium. The path ordering of the interaction points, zL > zj+1 > zj > z0,
leads to the constraint

∑n
i=1 ∆zi ≤ zL. One implementation of this condition would be

∆zi ∈ [ 0, zL −
∑i−1

j=1 ∆zj ] and it is implicit in eq. (8.21). The complete solution to the
problem of medium induced bremsstrahlung in the x� 1 limit for three different boundary
conditions can be found in ref. [51]. With the proof of the gauge invariance of the reaction
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operator for collisional and radiative processes, we have also proven the gauge invariance
of these results. As we pointed before, when the end result is expresses in terms of physics
quantities, such as scattering cross sections, mean free paths and formation times, gauge-
invariance can easily be recognized.

9 Bremsstrahlung: beyond the soft gluon approximation

In this section we calculate the corrections to the medium induced bremsstrahlung at finite
splitting fraction x ∼ 1. Effective theory Feynman rules allow us to do so easily. The
advantage of the effective theory approach is that we have the appropriate interactions in
medium at the Lagrangian level, which allows us to straightforwardly calculate any process
of interest. Doing similar calculations, for example calculating radiative energy loss to first
order in opacity keeping the full x dependance in the traditional approach would be more
difficult, since it will require to do approximations at the level of Feynman diagrams.

9.1 Incoherent radiation

We first discuss the simpler case of gluon emission without the Landau-Pomeranchuk-
Migdal destructive interference effects. Starting from expressions in eqs. (6.14)–(6.16) and
without making approximation on x we identify three pieces of these matrix elements that
are proportional to exp[iΩ1(z − z0)] (see appendix D.2 for details) as the ones that con-
tribute to the Bertsch-Gunion amplitude - the QCD analog of the Bethe-Heitler radiation
in electrodynamics. Squaring the sum of three diagrams and summing over the physical
polarizations we obtain:

1
dRdT

〈
|AJq→Jqg|2

〉
medium q⊥

=(1−x)Tr
(
n/

2
p+

0 JJ̄

)
× N

A⊥

∫
d2q⊥

dσg medium
el

d2q⊥
|M rad

BG|2 . (9.1)

It easy to see that in eq. (9.1) N/A⊥ = dz ρ(z), where ρ is the density of scattering
centers in the medium. Integrating over the path of the quark propagation we find that
the differential spectrum of the incoherent Bertsch-Gunion bremsstrahlung can be written
as:

x
dNg

dxd2k⊥
=
∫

dz

λg(z)

∫
d2q⊥

1
σel

dσg medium
el

d2q⊥

1
2(2π)3

|M rad
BG|2 . (9.2)

Here, λg(z) = 1/
[
σg medium
el ρ(z)

]
and the initial jet direction (p0 = p+k)||n. Very generally,

one can express the radiative amplitude squared as follows:

1
2(2π)3

|M rad
BG|2 = CF

αs
π2

(
1− x+

x2

2

)
q2
⊥

2A2
⊥B2
⊥C2
⊥

[
A2
⊥ + (1− x)2B2

⊥ −
1
N2
c

x2C2
⊥

]
. (9.3)

In eq. (9.3)

A⊥ = (1− x)k⊥ − xp⊥ = k⊥ |p⊥=−k⊥ , (9.4)

B⊥ = (1− x)k⊥ − x(p⊥ − q⊥) = k⊥ + xq⊥ |p⊥=−k⊥ , (9.5)

C⊥ = (1− x)(k⊥ − q⊥)− xp⊥ = k⊥ − (1− x)q⊥ |p⊥=−k⊥ . (9.6)
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By taking the small x � 1 limit above and substituting in eq. (9.3) we obtain the known
result:

1
2(2π)3

|M rad
BG|2 = CF

αs
π2

q2
⊥

k2
⊥(k⊥ − q⊥)2

. (9.7)

The general expression for the incoherent medium-induced gluon bremsstrahlung for a
medium of constant density and length L without such approximations is:

x
dNg

dxd2k⊥
= CF

αs
π2

(
1−x+

x2

2

)
L

λg

∫
d2q⊥

1
σel

dσel
d2q⊥

q2
⊥

2k2
⊥ (k⊥+xq⊥)2 (k⊥−(1−x)q⊥)2

×
[(
k2
⊥ + (1− x)2 (k⊥ + xq⊥)2

)
− 1
N2
c

x2 (k⊥ − (1− x)q⊥)2

]
. (9.8)

Finite-x effects are illustrated in figure 9. The left panel shows the Altarelli-Parisi
real gluon differential spectrum eq. (6.11) for selected values of x = 0.1, 0.2, 0.5, 0.7, 0.9
versus k⊥. We use x = 0.001 to simulate the small x-independent limit and represent
the result by a solid line. The normalization is fixed by the choice of a quark jet and
αs = 0.3. A finite effective mass meff. = 1 GeV to simulate medium effects is implemented
as k2

⊥ → k2
⊥+m2

eff. and regulates any collinear divergence. The dashed lines show that the
finite-x corrections can be as large as a factor of 2. The kinematic bound for the transverse
momentum of the emitted gluon in large Q2 jet production k⊥ max =

√
x(1− x)Q2 is not

explicitly shown in the figure.
The right panel of figure 9 shows the medium-induced differential gluon spectrum for

the same values of x in the incoherent Bertsch-Gunion limit. We have chosen L/λg = 1 in
eq. (9.8) to facilitate direct comparison to the Altarelli-Parisi case. In our calculation we
used the exact form of the 2→ 2 scattering cross section eqs. (3.2), (3.3), (3.4), including
the finite mass of the medium particles, the medium recoil and the kinematic bounds on
q⊥ max. Having chosen a quark of energy E = 100 GeV, we note that in the Bertsch-Gunion
case large-x effects are even more pronounced than in the Altarelli-Parisi case.

It should be noted that if an approximate form for the q⊥ dependence of the normalized
differential scattering cross section is employed:

1
σel

dσel
d2q⊥

=
µ2

π(q2
⊥ + µ2)2

, q⊥ max →∞ , (9.9)

the remaining integral in eq. (9.8) can be performed analytically. This form is motivated
by the infinitely massive scattering center approximation. One uses a Feynman change of
variables developed for the calculation of loop diagrams. We here quote the final result for
the soft gluon approximation x� 1:

x
dNg

dxd2k⊥
≈ αsCF

π2

(
L

λg

)
µ2(

k2
⊥
)2 (k2

⊥ +m2
eff.)

(9.10)

×
µ2(λ2

1 − λ2
2) +

[
µ2(λ1 + λ2 − 2) + k2

⊥(λ1 − λ2)2
]
λ1λ2 ln

(
λ1(1−λ2)
λ2(1−λ1)

)
λ1λ2(λ1 − λ2)3

,
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Figure 9. Left panel: the differential gluon number distribution versus k⊥ is shown for selected
values of x = k+/p+ for a quark jet that has undergone large Q2 scattering. A finite in-medium
mass meff = 1 GeV regulates the collinear divergence. Right panel: the same spectrum for the
incoherent medium-induced Bertsch-Gunion radiation. We have used L/λg = 1 and for the x→ 0
also shown an analytic calculation in the massive scattering center limit for comparison to the exact
calculation with mmed. = 1 GeV.

where λ1,2 are the solutions of the quadratic equation:

λm2
eff. + (1− λ)µ2 + λ(1− λ) k2

⊥ = 0 . (9.11)

The analytical formula for the finite x case is also calculable, though slightly more involved.
To illustrate the differences between the exact form of the 2 → 2 scattering cross section
and the approximate form given by eq. (9.9) we show the analytic small-x gluon distribution
versus k⊥ in the right panel of figure 9. We note that the differences between the exact
and approximate calculations are very small and appear only at high k⊥ - a part of phase
space that does not contribute significantly to the medium-induced energy loss.

9.2 Final-state radiation and the Landau-Pomeranchuk-Migdal effect

In this subsection we calculate the combination of single and double Born amplitudes to first
order in opacity by keeping the finite-x corrections. This evaluation proceeds analogously
to the one for the incoherent Bertsch-Gunion limit. Directly from the Feynman rules of
SCETG , derived in this paper, we find the combined squared amplitude from single and
double Born diagrams equals to:

1
dRdT

〈
Tr
[
A1A

†
1 +A0A

(c)†
2 +A†0A

(c)
2

]〉
medium q⊥

=
N

A⊥

∫
d2q⊥
(2π)2

|ṽ(q⊥)|2 Tr
(
n/

2
n̄·p JJ̄ g2

dRdT

[
ρSB + ρDB

])
, (9.12)

where both ρSB and ρDB have the following form:

ρ =
2∑
i=1

ci
(
Fi I +Gi Σ3

)
. (9.13)
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In the equation above Fi, Gi are form-factors, which we give below, and ci are the color
factors:

c1 = C2(R)2C(r)dR , c2 = C2(R)C(r)
(
C2(R)− 1

2
CA

)
dR .

We recall that in our example C2(R) = CF , dR = Nc and C(r) = 1
2 . The two operators

that appear are the identity operator in the Dirac indices I and Σ3, which is the third
component of the spin operator for the fermion:

Σ3 =

[
σ3 0
0 σ3

]
. (9.14)

The first term in eq. (9.13) allows for the factorization of the medium-induced radiative
corrections and the hard scattering cross section even in the large-x limit. The second term
in principle does not vanish. If we, however, recall the decomposition of J(p)J̄(p) in the
Dirac algebra basis, see eq. (5.13), it is easy to verify that there must be a non-zero pseudo-
vector contribution for this term not to vanish identically. Therefore, one might expect
further corrections for processes with electroweak boson exchanges. For QCD, medium-
induced radiative corrections always factorize. A simple exercise for the interested reader
is to show this on the example of inclusive tree level jet production.

The form-factors for the single Born diagrams in eq. (9.13) are given by the following
expressions:

F SB
1 =

(
1−x+

x2

2

)(
|β1|2 + |β2|2

)
, GSB

1 =2
(
x− x2

2

)
Im [(βx1)∗ βy1 + (βx2)∗ βy2] , (9.15)

F SB
2 =

(
1−x+

x2

2

)
(β1 ·β∗2 + β∗1 ·β2) , GSB

2 =2
(
x− x2

2

)
Im [(βx2)∗ βy1 + (βx1)∗ βy2] . (9.16)

On the other hand, the double Born diagrams contributions can be written as follows:

FDB
1 =

(
1−x+

x2

2

)
(α0 ·γ∗1 +α∗0 ·γ1) , GDB

1 =2
(
x− x2

2

)
Im [(γx1)∗αy0+(αx0)∗ γy1] , (9.17)

FDB
2 =

(
1−x+

x2

2

)
(α0 ·γ∗2 +α∗0 ·γ2) , GDB

2 =2
(
x− x2

2

)
Im [(γx2)∗αy0+(αx0)∗ γy2] . (9.18)

In the expressions above the vector α0 appears from the vacuum diagram, the vectors β1,2

appear from the single Born diagrams and γ1,2 appear from the double Born diagrams
calculation. They all are given in the equations below:

α0 =
2A⊥
A2
⊥
, (9.19)

β1 =
(

2A⊥
A2
⊥
− 2C⊥
C2
⊥

)
eiΩ1δz +

2C⊥
C2
⊥

eiΩ3δz , (9.20)

β2 = −
(

2B⊥
B2
⊥
− 2C⊥
C2
⊥

)
eiΩ1δz +

2B⊥
B2
⊥

eiΩ2δz − 2C⊥
C2
⊥

eiΩ3δz , (9.21)

γ1 = −3A⊥
A2
⊥

+
(

2A⊥
A2
⊥
− 2D⊥
D2
⊥

)
eiΩ4δz +

2D⊥
D2
⊥

eiΩ5δz , (9.22)

γ2 =
2A⊥
A2
⊥
−
(

2A⊥
A2
⊥
− 2D⊥
D2
⊥

)
eiΩ4δz − 2D⊥

D2
⊥

eiΩ5δz , (9.23)
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where the vectors A⊥,B⊥,C⊥ are same as in the previous subsection, the phase factors
Ω1,2,3 are same as in appendix D.2. The remaining propagators and inverse formation
times D⊥,Ω4,Ω5 appear in the double Born diagrams and are equal to:

D⊥ = A⊥ − q⊥ = k⊥ − q⊥|p⊥=−k⊥ , (9.24)

Ω4 =
A2
⊥

p+
0 x(1− x)

, Ω5 =
A2
⊥ −D2

⊥
p+

0 x(1− x)
. (9.25)

First, we should check that our result agrees with previous calculation in the soft gluon
approximation [40, 51]. For this we need to expand all quantities to lowest order in x� 1:

A⊥ ≈ k⊥ , B⊥ ≈ k⊥ , C⊥ ≈ k⊥ − q⊥ , D⊥ ≈ k⊥ − q⊥ , (9.26)

Ω1 ≈ ω0 , Ω2 ≈ 0 , Ω3 ≈ ω0 − ω1 , Ω4 ≈ ω0 , Ω5 ≈ ω0 − ω1 , (9.27)

GSB
i ≈ 0 , GDB

i ≈ 0 . (9.28)

Note that in this limit factorization is exact even if J(p)J̄(p) contains a pseudo-vector
component. The final answer depends on the form-factors Fi, which we calculate below
in the soft gluon limit. It is convenient to rewrite the α,β1,2,γ1,2 in terms of standard
definitions in the literature16 [40, 51]:

H1 =
k⊥

k2
⊥
, C1 =

k⊥ − q⊥
(k⊥ − q⊥)2

, B1 = H1 −C1 . (9.29)

The corresponding x→ 0 limit is particularly simple:

α0 = 2H1 , (9.30)

β1 = 2B1 eiω0δz + 2C1 ei(ω0−ω1)δz , (9.31)

β2 = 2H1 − 2B1 eiω0δz − 2C1 ei(ω0−ω1)δz , (9.32)

γ1 = −3H1 + 2B1 eiω0δz + 2C1 ei(ω0−ω1)δz , (9.33)

γ2 = 2H1 − 2B1 eiω0δz − 2C1 ei(ω0−ω1)δz . (9.34)

Useful relations between these vectors, that help in deriving the expression for the form-
factors Fi are the following ones:

β1 + β2 = 2H1 , γ1 + γ2 = −H1 . (9.35)

From the definitions in eq. (9.15)–eq. (9.18) we get:

F SB
1 = |β1|2 + |2H1 − β1|2 = 2|β1|2 + 4H2

1 − 4 ReH1 ·β1

= 8B2
1 + 8C2

1 + 4H2
1 + 16B1 ·C1 cos(ω1δz)− 8H1 ·B1 cos(ω0δz)

−8H1 ·C1 cos((ω0 − ω1)δz) , (9.36)

F SB
2 = β1 (2H1 − β1)∗ + (2H1 − β2)∗β2 = −F SB

1 + 4H2
1 , (9.37)

FDB
1 = 2H1 · 2 Reγ1 =−12H2

1 + 8H1 ·B1 cos(ω0δz) + 8H1 ·C1 cos((ω0 − ω1)δz) , (9.38)

FDB
2 = 2H1 · 2 Reγ2 = −FDB

1 − 4H2
1 . (9.39)

16Note that B1 is distinct from B⊥ and C1 is distinct from C⊥.
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Finally, using these equations we combine the single and double Born form-factors into the
sum:

F SB
1 + FDB

1 = 8B2
1+8C2

1 − 8H2
1+16B1 ·C1 cos(ω1δz)=−16B1 ·C1 (1−cos(ω1δz)) , (9.40)

F SB
2 + FDB

2 =−F SB
1 − FDB

1 . (9.41)

Thus, in the soft gluon approximation we get:(
ρSB + ρDB

)
x�1
≈ (c1 − c2) (−16B1 ·C1) (1− cos(ω1δz)) . (9.42)

Taking into account the phase space factors, the color factors and the final-state coherent
medium-induced emission contribution above, we find:

x
dNg

dxd2k⊥ |x�1
= CF

αs
π2

∫
d∆z
λg(z)

∫
d2q⊥

1
σel

dσg medium
el

d2q⊥
(−2B1 ·C1) (1− cos(ω1∆z)) . (9.43)

in agreement with eq. (70) of [51].
Beyond the soft gluon approximation, the full result for the coherent medium-induced

bremsstrahlung reads:

x
dNg

dxd2k⊥
=CF

αs
π2

(
1−x+

x2

2

)∫
d∆z
λg(z)

∫
d2q⊥

1
σel

dσg medium
el

d2q⊥

[
−
(
A⊥

A2
⊥

)2

+2
(
C⊥

C2
⊥

)2

−A⊥
A2
⊥
·C⊥
C2
⊥

−B⊥
B2
⊥
·C⊥
C2
⊥

(
1− cos[(Ω1 − Ω2)∆z] + cos[(Ω2 − Ω3)∆z]

)
+
C⊥

C2
⊥
·
(
A⊥

A2
⊥

+
B⊥

B2
⊥
−2
C⊥

C2
⊥

)
cos[(Ω1−Ω3)∆z]+

A⊥

A2
⊥
·
(
A⊥

A2
⊥
−D⊥
D2
⊥

)
cos[Ω4∆z]

+
A⊥

A2
⊥
·D⊥
D2
⊥

cos[Ω5∆z] +

(
N2
c − 1
N2
c

(
B⊥

B2
⊥

)2

+
1
N2
c

A⊥

A2
⊥
·B⊥
B2
⊥

)

×
(
1− cos[(Ω1 − Ω2)∆z]

)]
. (9.44)

We leave the discussion of this new result and phenomenological applications to new RHIC
and LHC experimental data [29–34] for future work. We note however that in ref. [57] an
evaluation of the medium-induced energy loss beyond the helicity amplitude approximation
found ∼ 18% reduction in the mean medium-induced energy loss. Our plan for the future is
to investigate the large-x radiative correction reduction effects at the most differential level.

10 Conclusions

In summary, we constructed an effective theory SCETG for energetic quark and gluon
p ∼ [1, λ2,λ] propagation and interaction in dense QCD matter. This theory is well-
suited to calculations both in the quark-gluon plasma [25–28, 56] and in cold nuclear
matter [38, 55, 56, 58].

To construct this theory, we examined the relevant t-channel parton scattering cross
sections and demonstrated that they are dominated by forward scattering. The correspond-
ing momentum exchanges q ∼ [λ2, λ2,λ] are approximately transverse to the direction of
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jet propagation and mediated by Glauber gluons. We also demonstrated that a fully dy-
namical treatment of the scattering centers in QCD matter leads to a small reduction of
the scattering cross section and smaller medium-induced effects in contrast to early spec-
ulations [43]. The SCETG Lagrangian was shown to be invariant under soft and collinear
gauge transformations. We derived the Feynman rules for this new Lagrangian in the co-
variant and light-cone gauges. Also we provided a third choice, which we call the hybrid
gauge, when the Glauber gluons are quantized in the covariant gauge, while the collinear
fields are gauge-fixed with the light-cone gauge. This choice provides us with the simplest
form of Feynman rules and is useful from practical point of view.

The new effective theory was used to evaluate the broadening and medium-induced
radiation for energetic quarks traversing a region of hot/dense QCD matter. SCETG was
shown to recover exactly the known results for the transverse momentum diffusion of par-
ticles in the strongly-interacting medium [37, 38]. It allows to study the Molliere multiple
parton scattering beyond the limitations of the Gaussian approximation - namely, the in-
ability to describe the Rutherford power-law tails of transverse momentum distributions.
For the case of inelastic quark interactions we derived the fully differential medium-induces
gluon bremsstrahlung spectrum for both the incoherent and Landau-Pomeranchuck-Migdal
suppressed cases. In the soft gluon approximation we obtained the kernel for the reaction
operator approach to medium-induced energy loss [40, 51]. We also evaluated the large
x = k+/E+ corrections to the medium-induced bremsstrahlung spectrum. Gauge invari-
ance of the jet broadening and radiative energy loss results was demonstrated explicitly
for the first time by performing the calculations in the covariant Rξ, light-cone and hybrid
gauges. On the example of an energetic quark, we found that in QCD the process-dependent
medium-induced radiative corrections factorize from the hard jet production cross section.
This allows us to write down perturbative jet and leading particle observables in heavy
ion collisions as a convolution of the corresponding observables in the more elementary
nucleon-nucleon reactions and the medium-induced collisional and radiative corrections
specific to the process under investigation. Our results put jet quenching phenomenology
in heavy-ion collisions on more solid theoretical grounds.

In the near future it will be a high priority for us to implement the improved theory of
parton propagation and energy loss in matter in perturbative QCD predictions for analysis
of the energetic particle and jet quenching data from the heavy-ion experiments at RHIC
and at the LHC. With the calculations at hand, we expect to be able to reliably combine
the process-dependent medium-induced radiative corrections with next-to-leading order
perturbative effects [59]. We plan to extend these calculations beyond applications to jet
propagation in the quark-gluon plasma [25, 26, 28] and also improve the accuracy in the
evaluation of cold nuclear matter effects [58].

The derived Lagrangian of SCETG can be used to revisit the factorization of the
Drell-Yan process in the effective theory and include the spectator interactions into the
analysis. The importance of Glauber (or Coulomb) gluons for the Drell-Yan factorization
has been addressed, and their cancellation in the inclusive cross section has been proved in
traditional QCD approach to factorization [47–49], while similar understanding in effective
theory method is still missing [44, 46].
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A Light-cone notation

The momentum of any particle can be conveniently represented in light-cone coordinates.
A light-cone vector β is defined by the condition β2 = 0. The two vectors that specify
the positive and negative light-cone directions are nµ = (1, 0, 0, 1) and n̄µ = (1, 0, 0,−1),
respectively. An arbitrary four-vector p then can be expanded in the light-cone vectors
basis:

pµ = p+ nµ

2
+ p−

n̄µ

2
+ pµ⊥, (A.1)

where the +,− components are defined as follows: p+ ≡ n̄·p, p− ≡ n·p. The four-vector
pµ thus can be written in the light-cone basis as [p+, p−,p⊥], where we will use the square
brackets to emphasize that the light-cone notation is being used. For example, the light-
cone vectors have the following coordinates: n = [2, 0,0], n̄ = [0, 2,0], corresponding to
positive and negative light-cone directions. Thus, the plus component is in the n direction
and the minus component is in the n̄ direction. The degrees of freedom of SCET are
collinear quarks and gluons, with the following momentum scaling pc = [1, λ2,λ] and soft
gluons with momentum ps = [λ2, λ2,λ2]. The Glauber modes that we consider in this
paper have momentum scaling pg = [λ2, λ2,λ].

B Kinematics in the laboratory frame

In section 3 we estimated the recoil effect in 2→ 2 scattering of a projectile particle with
mass m1 on an originally at rest target particle with the mass m2. An important feature
of the laboratory frame is that the final energy E3 of the scattered particle is a non-trivial
function of the laboratory angle θ. This function can be found from energy and momentum
conservation laws. The solution is given by:

E3(θ) = m2
ρ1γ

2 ±
(
γ2 − 1

)
r sin θ cos θ

γ2 − (γ2 − 1) cos2 θ
. (B.1)

In eq. (B.1) we defined:

ρ1 =
β

β1
, (B.2)

r =
√
γ2
(
1− ρ2

1

)
+ cot2 θ , (B.3)

where β1 is the velocity of the projectile particle in the center-of-mass (CM) frame and β is
the velocity of this center-of-mass. Note that the kinematics is very different depending on
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p

= i n/2
1

p−+p2
⊥/p

++iε

= igT a
(
nµ + γµ⊥p/⊥

p+ + p/′⊥γ
µ
⊥

p′+ − n̄
µ p/
′
⊥p/⊥
p′+p+

)
n̄/
2

= ig2 TaT b

p+−q+

[
γµ⊥γ

ν
⊥ −

γµ⊥p/⊥
p+ n̄ν − p/′⊥γ

ν
⊥

p′+ n̄µ + p/′⊥p/⊥
p+p′+ n̄

µn̄ν
]
n̄/
2

+ ig2 T bTa

q++p′+

[
γν⊥γ

µ
⊥ −

γν⊥p/⊥
p+ n̄µ − p/′⊥γ

µ
⊥

p′+ n̄ν + p/′⊥p/⊥
p+p′+ n̄

µn̄ν
]
n̄/
2

Figure 10. Feynman rules of SCET for the interactions between collinear quarks and gluons.

the masses. If m1 > m2, then both solutions in eq. (B.1) are physical, while for m1 < m2

only the “+” solution is physical, while the “−”-solution is not. In our case we can safely
assume that m1 < m2.

The reason for the difference discussed above is that when the projectile particle is
heavier then the target one, then in the center of mass frame the projectile particle’s
velocity is smaller than the center-of-mass velocity in the laboratory frame, i.e β1 < β.
This means that no matter in which direction the projectile particle goes in the CM frame,
it will always move in the positive hemisphere of the laboratory frame with respect to
the initial momentum of the projectile particle. Thus, each direction of motion of the
scattered projectile particle in the laboratory frame corresponds to two distinct directions
in the center of mass frame. That is the origin of two solutions from eq. (B.1). Alternatively,
for m1 < m2, we have β1 > β and each direction of the projectile particle in laboratory
frame comes from a distinct direction of this particle in the center of mass frame, leading
to the corresponding unique energy in the laboratory frame.

C Feynman rules of SCETG

In this appendix we review the Feynman rules of SCET and also present all the relevant
Feynman rules of SCETG for different gauge choices. We consider the initially static
source case.

First, we start with the SCET rules. Using the Lagrangian of SCET [9] given
in eq. (2.1) one finds the Feynman rules of interaction between the collinear quarks and
gluons given in figure 10. These rules are given in the covariant gauge. There are additional
vertices in this gauge when one has more than 2 collinear gluons and two collinear quarks
at the same point, which we omit here. The same Feynman rules as in figure 10 are valid in
the positive light-cone gauge A+, with the simplification that all the n̄µ, n̄ν terms vanish.
Also, all the mentioned omitted vertices vanish in the light-cone gauge.
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Our approach to deriving the effective Lagrangian of SCETG was to treat the effect
from Glauber gluons on the target jet as one of an external background field, which the
source creates. Having determined the scaling of the vector potential, we then read off the
Glauber term from the SCET Lagrangian as it is given in eq. (2.1) with a trivial addition
of an external vector potential to the covariant derivative. We present in figure 11 the
resulting Feynman rules. Note that we include the propagator of the Glauber gluon into
the Feynman rule as well as the color and overall Dirac structure from the static fermionic
source that we consider.

In the main part of the paper we consider three gauge choices. First, we used the
covariant gauge in the sections 5, 6. Second, we used the light-cone gauge and third was
the hybrid gauge in section 7. In the first case we used covariant gauge for both pure
SCET and the Glauber interactions given in figure 11. In the second case we did the same
for the light-cone gauge. Finally, for the hybrid gauge, we used the light-cone gauge for
SCET gauge fixing, while using the covariant gauge for Glauber gluons. In all three cases
we found the same results for physical quantities, as expected.

D Longitudinal integrals

In this appendix we define and calculate all longitudinal momentum integrals that are
required for the evaluation of jet broadening and radiative energy loss. Our notation is I(n)

m ,
where n indicates number of Glauber gluon exchanges, and m is the index corresponding
to the Feynman diagram in question. We perform each integral exactly, without assuming
a soft gluon approximation for radiative energy loss. However, from the exact results we
can easily take the soft gluon limit.

D.1 Jet broadening

The longitudinal momentum integral that appears in the single Born diagram for quark or
gluon jet broadening equals to the following expression:

I
(1)
1 =

∫
dq−1
2π

eiq
−
1 δz1 ∆g(p, q1) =

∫
dq−1
2π

eiq
−
1 δz1

1
ω1 − q−1

= −ieiω1δz1 , (D.1)

where the inverse formation time ω1 is defined according to eq. (5.8) and eq. (5.9):

ω1 = Ω(p, q1) = p− − (p⊥ − q1⊥)2 − iε
p+

. (D.2)

The double Born longitudinal integral looks like:

I
(2)
1 =

∫
dq−1
2π

dq−2
2π

ei(q
−
1 δz1+q−2 δz2) ∆g(p, q2) ∆g(p, q1 + q2)

= (−i)
∫

dq−2
(2π)

ei((ω12−q−2 )δz1+q−2 δz2) ∆g(p, q2) = −ei(ω12δz1+ω2(δz2−δz1)) , (D.3)

where inverse formation time ω12 equals:

ω12 = Ω(p, q1 + q2) = p− − (p⊥ − q1⊥ − q2⊥)2 − iε
p+

, (D.4)
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����
Rξ

q1

p p′

(b1)Ti

= i v(q1⊥) (b1)R (b1)Ti
n̄/
2

µ, a ν, bq1

p p′

(c1)Ti

= v(q1⊥) fabc1 (c1)Ti
[
gµν n̄·p+ n̄µ qν1⊥ − n̄ν q

µ
1⊥

−
1− 1

ξ

2 (n̄νpµ + n̄µp′ν)
]

����
A+

q1

p p′

(b1)Ti

= i v(q1⊥) (a)R (b1)Ti

(
1 + p2−p′2

p+[q+
1 ]

)
n̄/
2

µ, a ν, bq1

p p′

(c1)Ti

= v(q1⊥) fabc1 (c1)Ti

[
gµν⊥ n̄·p

(
1 + p2−p′2

p+[q+
1 ]

)
+ qµ1⊥p

′ν+qν1⊥p
µ

[q+
1 ]

]

q1 q2

p p′

(b1)Ti (b2)Tj

= i v(q1⊥)v(q2⊥) (b1b2)R (b1)Ti(b2)Tj
2 q1⊥· q2⊥
p+[q+

1 ][q+
2 ]

n̄/
2

q1 q2

p p′

(c)Ti (d)Tj

= (−i)v(q1⊥)v(q2⊥)

[q+
1 ][q+

2 ] (c)Ti (d)Tj
[
f caxfxdb

(
q1⊥ · q2⊥ g

µν
⊥ − q

ν
1⊥q

µ
2⊥
)

+

+f cbxfxad
(
qµ1⊥q

ν
2⊥−q1⊥ · q2⊥ g

µν
⊥
)
+f cdxfxab

(
qµ1⊥q

ν
2⊥−qν1⊥q

µ
2⊥
)]

q1

p p′

(b1)Ti

µ, a

= (−i) v(q1⊥)

[q+
1 ]

[
(ab1)R (b1)Ti

p+ γµ⊥q/1⊥ + (b1)Ti (b1a)R
p′+ q/1⊥γ

µ
⊥

]
n̄/
2

Hybrid

q1

p p′

(b1)Ti

= i v(q1⊥) (b1)R (b1)Ti
n̄/
2

µ, a ν, bq1

p p′

(c1)Ti

= v(q1⊥) fabc1 (c1)Ti g
µν
⊥ n̄·p

Figure 11. Feynman rules of SCETG involving Glauber gluons. The first two vertices are given in
the covariant gauge. Vertices from three through seven are for the light-cone gauge A+ = 0. Last
two vertices are for the Hybrid gauge. Note that the last three vertices in the light-cone gauge are
power-suppressed in the covariant and Hybrid gauges.
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and ω2 is identical to ω1 up to q1 ↔ q2. In deriving eq. (D.1) we used the fact that ω1 is
in the upper complex plane, which we should choose, since δz1 > 0. Similarly in first and
second step in deriving eq. (D.3) we used that ω12 and ω2 are in the upper q− complex
plane. In the second step we also used that δz2 > δz1, which is true for second order in
opacity diagram (we use time ordered notation z0 < z1 < z2 < . . .). Next, we calculate the
contact limit of the integral I(2)

1 , when δz2 = δz1 + 0:

I
(2c)
1 =

∫
dq−1
2π

dq−2
2π

ei(q
−
1 +q−2 )δz1 ∆g(p, q2) ∆g(p, q1 + q2)

= (−i)
∫
dq−2
2π

ei(ω12−q−2 +q−2 )δz1 ∆g(p, q2)

= −ieiω12δz1

∫
dq−2
2π

1
ω2 − q−2

=
ieiω12δz1

2π
(ln(∞− ω2)− ln(−∞− ω2)) = −1

2
eiω12δz1 . (D.5)

As one can see, in the second step in deriving eq. (D.5) we cannot use Cauchy’s theorem
to perform the remaining q−2 integral, since the boundary term at infinity does not vanish.
Instead, we perform the integral directly. We find:

I
(2c)
1 =

1
2
I

(2)
1 (δz2 = δz1) . (D.6)

D.2 Radiative energy loss

The longitudinal momentum integrals that appear in the first three single Born diagrams
on figure 5 are:17

I
(1)
1 =

∫
dq−1
2π

eiq
−
1 δz1 ∆g(p+ k, q1) , (D.7)

I
(1)
2 =

∫
dq−1
2π

eiq
−
1 δz1 ∆g(p, q1)∆g(p+ k, q1) , (D.8)

I
(1)
3 =

∫
dq−1
2π

eiq
−
1 δz1 ∆g(k, q1)∆g(p+ k, q1) . (D.9)

These three integrals are functions of three inverse formation times, all given by the poles
in eq. (5.9) of propagator in eq. (5.8):

Ω1 = Ω(p+ k, q1) = p− + k− − (p⊥ + k⊥ − q1⊥)2 − iε
p+ + k+

, (D.10)

Ω2 = Ω(p, q1) = p− − (p⊥ − q1⊥)2 − iε
p+

, (D.11)

Ω3 = Ω(k, q1) = k− − (k⊥ − q1⊥)2 − iε
k+

. (D.12)

The first integral in eq. (D.7) we already derived in eq. (D.1), where we need to substitute
ω1 → Ω1. The integrals I(1)

2 and I
(1)
3 can be reduced to the same integral in eq. (D.1)

17The remaining two vanish when one takes the physical emitted gluon polarization vector.
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by using the following trivial identity, which follows directly from definitions in eq. (5.8)
and eq. (5.9):

∆g(p1, q1) ∆g(p2, q1) = −∆g(p1, q1)−∆g(p2, q1)
Ω(p1, q1)− Ω(p2, q1)

. (D.13)

Note that in eq. (D.13) the numerator depends on q−1 , while the denominator does not.
Thus, integrals I(1)

2 and I
(1)
3 become a combination of two integrals in eq. (D.1). As a

result, we get the following exact expressions:

I
(1)
1 = −i eiΩ1δz1 , (D.14)

I
(1)
2 =

i

Ω1 − Ω2

(
eiΩ1δz − eiΩ2δz1

)
, (D.15)

I
(1)
3 ≡ i

Ω1 − Ω3

(
eiΩ1δz − eiΩ3δz1

)
. (D.16)

The soft gluon emission approximation corresponds to x� 1 and is of interest in sections 5
and 6. In this limit the inverse formation times Ω1,2,3 reduce to only two non-trivial
functions ω0, ω1. The corresponding approximate results read:

Ω1 ≈
k2
⊥

xp+
0

≡ ω0 , Ω2 ≈ 0 , Ω3 =
k2
⊥ − (k⊥ − q1⊥)2

xp+
0

≡ ω0 − ω1 , (D.17)

I
(1)
1 ≈ −ieiω0δz1 , I

(1)
2 ≈ i

ω0

[
eiω0δz1 − 1

]
, I

(1)
3 ≈ ie

iω0δz1

ω1

[
1− e−iω1δz1

]
. (D.18)

Next we move to the integrals in two Glauber exchange diagrams and their contact
limits. The longitudinal momentum integrals that appear in the first six diagrams in
figure 6 equal:18

I
(2)
1 =

∫
dq−1
2π

dq−2
2π

ei(q
−
1 δz1+q−2 δz2) ∆g(p+ k, q2)∆g(p+ k, q1 + q2) , (D.19)

I
(2)
2 =

∫
dq−1
2π

dq−2
2π

ei(q
−
1 δz1+q−2 δz2) ∆g(p, q2)∆g(p, q1 + q2)∆g(p+ k, q1 + q2) , (D.20)

I
(2)
3 =

∫
dq−1
2π

dq−2
2π

ei(q
−
1 δz1+q−2 δz2) ∆g(k, q2)∆g(k, q1 + q2)∆g(p+ k, q1 + q2) , (D.21)

I
(2)
4 =

∫
dq−1
2π

dq−2
2π

ei(q
−
1 δz1+q−2 δz2) ∆g(p, q2)∆g(k, q1)∆g(p+ k, q1 + q2) , (D.22)

I
(2)
5 =

∫
dq−1
2π

dq−2
2π

ei(q
−
1 δz1+q−2 δz2) ∆g(p, q2)∆g(p+ k, q2)∆g(p+ k, q1 + q2) , (D.23)

I
(2)
6 =

∫
dq−1
2π

dq−2
2π

ei(q
−
1 δz1+q−2 δz2) ∆g(k, q2)∆g(p+ k, q2)∆g(p+ k, q1 + q2) . (D.24)

The corresponding integrals contain seven inverse formation times, which later after taking
the contact limit and averaging over the medium states reduce to only two inverse formation
times. We define the following seven poles αi:

α1 = Ω(p+ k, q2) , α2 = Ω(p+ k, q1 + q2) , α3 = Ω(p, q2) , α4 = Ω(p, q1 + q2) ,

α5 = Ω(k, q2) , α6 = Ω(k, q1 + q2) , α7 = Ω(k, q1) . (D.25)
18The remaining three amplitudes in the figure 6 vanish.
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Next we note that all double Born integrals except for I(2)
4 can be found using combination

of already calculated integral in eq. (D.3) and the identity in eq. (D.13). The results are
following:

I
(2)
1 = −ei(α2δz1+α1(δz2−δz1)) , I

(2c)
1 =

1
2
I

(2)
1 (δz2 = δz1) , (D.26)

I
(2)
2 =

eiα3(δz2−δz1)
(
eiα4δz1 − eiα2δz1

)
α4 − α2

, I
(2c)
2 =

1
2
I

(2)
2 (δz2 = δz1) , (D.27)

I
(2)
3 =

eiα5(δz2−δz1)
(
eiα6δz1 − eiα2δz1

)
α6 − α2

, I
(2c)
3 =

1
2
I

(2)
3 (δz2 = δz1) , (D.28)

I
(2)
5 =

eiα2δz1
(
eiα3(δz2−δz1) − eiα1(δz2−δz1)

)
α3 − α1

, I
(2c)
5 = 0 , (D.29)

I
(2)
6 =

eiα2δz1
(
eiα5(δz2−δz1) − eiα1(δz2−δz1)

)
α5 − α1

, I
(2c)
6 = 0 . (D.30)

The final integral I(2)
4 we just work out:

I
(2)
4 =

∫
dq−1
2π

dq−2
2π

ei(q
−
1 δz1+q−2 δz2)

(α3 − q−2 )(α7 − q−1 )(α2 − q−1 − q
−
2 )

=
∫
dq−2
2π

eiq
−
2 δz2

(α3 − q−2 )

i
(

eiα7δz1 − ei(α2−q−2 )δz1
)

α7 − α2 + q−2
,

(D.31)

where in the first term of the remaining q−2 integral we have to close the contour in the
upper complex plane, while in the second one we close above for δz2 > δz1 and below in
the opposite case. Also, we know that α3 is in the positive complex plane, but we have to
figure out the sign of imaginary part of (α7 − α2):

Im (α7 − α2) =
ε

k+
− ε

p+ + k+
=
ε(1− x)
p+

0

> 0 . (D.32)

Thus, for physical momenta p, k, the second denominator in the last integral in eq. (D.31)
has a pole in the negative complex plane. With this in mind, we find the I(2)

4 for two cases
of interest:

I
(2)
4 (δz2 > δz1) =

ei(α3δz2+α7δz1) − ei(α2δz1+α3(δz2−δz1))

α7 − α2 + α3
, (D.33)

I
(2)
4 (δz2 < δz1) =

ei(α3δz2+α7δz1) − ei(α2δz1+(α2−α7)(δz2−δz1))

α7 − α2 + α3
. (D.34)

Finally, taking the contact limit of the last integration in eq. (D.31) we get:

I
(2c)
4 = I

(2)
4 (δz2 = δz1 + 0) = I

(2)
4 (δz2 = δz1 − 0) . (D.35)

Next, in the contact limit and taking the average over medium, we have q1⊥ + q2⊥ = 0.
This makes some of the αi trivial. Directly from their definition we get:

α2 =
(p+ k)2

p+
0

, α4 =
p2

p+
= 0 , α6 =

k2

k+
= 0 . (D.36)
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Taking these equations into account we list all the contact limit integrals:

I
(2c)
1 = −1

2
eiα2δz1 , (D.37)

I
(2c)
2 =

1
2

eiα2δz1 − 1
α2

, (D.38)

I
(2c)
3 =

1
2

eiα2δz1 − 1
α2

, (D.39)

I
(2c)
4 =

eiα2δz1

α7 − α2 + α3

(
ei(α7−α2+α3)δz1 − 1

)
, (D.40)

I
(2c)
5 = 0 , (D.41)

I
(2c)
6 = 0 . (D.42)

As discussed above, the seven inverse formation times reduced to only two combinations
after averaging over the medium. We define these two inverse formation times in the
following way:

Ω4 = α2 , Ω5 = α7 + α3 . (D.43)

Note that up until now we never used the soft gluon approximation, and all integrals and
contact limits were exact. Finally, taking the soft gluon approximation gives:

Ω4 ≈ ω0 , Ω5 ≈ ω0 − ω1 . (D.44)

E T Wilson line

Wilson lines are a common ingredient for building gauge-invariant objects in field theory.
For example, the collinear Wilson line Wn is used in SCET to dress the collinear quark field
ξn to form a gauge-invariant jet field χn = W †n ξn. However, in the light-cone gauge the
collinear Wilson line disappears W †n = 1. In the context of SDIS it has been realized [60, 61]
that additional transverse gauge link is required in this gauge in order to describe the final
state interactions in a gauge invariant way.

More recently, it has been proposed that SCET has to be expanded [54] by including
a transverse gauge link for gauge invariance of certain non-perturbative matrix elements,
like the transverse momentum-dependent parton distribution functions. Also, it has been
shown in ref. [54] that the SCET jet function calculated in the light-cone gauge in the
presence of the transverse gauge link, which the authors denote as the transverse Wilson
line T †n, is independent of the light-cone prescription, which unambiguously cancels between
the gluon propagator and the gauge link, and leads to a result which is the same as in the
covariant gauge.

χn,p = T †nW
†
n ξn,p , (E.1)

T †n = P exp
(
ig

∫ ∞
0

dτ A⊥ ·l⊥
)
, (E.2)
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Figure 12. The collinear and transverse gauge links. Left: the generic gauge, middle: regular
covariant gauge and right: singular light-cone gauge.

= i δab n̄µqi

q2+iεC
(Pres)
∞

(
1

q++iε −
1

q+−iε

)
,

Figure 13. The propagator of the T Wilson line emitted gluon.

where P denotes the path ordering. As one can see from the figure 12 the effect of the
transverse gauge link vanishes in the covariant gauge, since the gauge field is zero at infinity,
while in the singular light-cone gauge this gauge link is non-zero depending on the boundary
conditions, similar to the gluon propagator prescription in the light-cone gauge.

Our calculation of the single and double Born amplitudes in the light-cone gauge in
SCETG in the absence of the Tn Wilson line leads to the same result as in the covariant
gauge, but only in the −iε prescription. In all other prescriptions we get a different result,
as one can see from eq. (7.7) and table 2. In this appendix we show that once the Tn Wilson
line is introduced into the calculation, the prescription dependence cancels and the gauge
invariance is restored similarly to the result in [54] for the SCET jet function calculated in
the light-cone gauge. In the remainder of this section we assume the light-cone gauge, so
Wn = 1 and we derive the Feynman rules for Tn Wilson line emission.

A useful expression for the propagator of the gluon emitted from the transverse gauge
link was derived in [54] and we show it in figure 13, where the prescription dependence is
encoded into the number C(Pres)

∞ . Its dependence on the prescription is given in the table 3.
Note that the difference of this table and the propagator in figure 13 from [54] is due to
the different notation of ingoing vs outgoing momentum flow into the vertex.

First, from the form of the propagator in figure 13 one can see that the Tn Wilson line
cannot produce physical gluons in the final state, since n̄ ·ε = 0 in the light-cone gauge.
However, this propagator contracted with the static source term vµ doesn’t vanish and is
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Prescription 1
[q+]

C
(Pres)
∞

+iε 1
q++iε

1

−iε 1
q+−iε 0

PV 1
2

(
1

q++iε
+ 1

q+−iε

)
1
2

ML 1
q++iεsign(q−)

θ(q−)

Table 3. Dependence of C(Pres)
∞ on the light-cone prescription.

= (b)r(b)Ti v(q⊥)C(Pres)
∞

(
1

q++iε
− 1

q+−iε

)

= −1
2
l⊥q1⊥(b1b2)r+l⊥q2⊥(b2b1)r

l⊥q1⊥+l⊥q2⊥
(b1)Ti(b2)Tj v(q1⊥)v(q2⊥)

×
[
C

(Pres)
∞

]2 (
1

q+
1 +iε

− 1
q+
1 −iε

)(
1

q+
2 +iε

− 1
q+
2 −iε

)

µ, a
= −ifabc (−gµν⊥ ) (c)r(b)Ti v(q⊥)C(Pres)

∞
(

1
q++iε

− 1
q+−iε

)

µ, a
= −1

2 (−gµν⊥ ) l⊥q1⊥ f
ab1c1fc1b2e+l⊥q2⊥ f

ab2c1fc1b1e

l⊥q1⊥+l⊥q2⊥

× (e)r (b1)Ti(b2)Tj v(q1⊥)v(q2⊥)

×
[
C

(Pres)
∞

]2 (
1

q+
1 +iε

− 1
q+
1 −iε

)(
1

q+
2 +iε

− 1
q+
2 −iε

)
Figure 14. Feynman rules for the gluon emission from the transverse Wilson line Tn for single and
double gluon emission from a quark and a gluon line.

leading order in the effective theory power counting. In order to derive the Feynman rules
of Tn emission from the quark line we use the definition of the gauge invariant quark field
eq. (E.1) and the explicit expression for the transverse gauge link in eq. (E.2). Finally we
include the propagator in figure 13 to obtain first two Feynman rules in the figure 14 below.

In order to derive similar Feynman rules with the gluon line we need the expression
of the gauge invariant gluon field which is a straightforward generalization of the previous
definition eq. (4.19), now including the T Wilson line:

Bµn =
1
g

[
T †nW

†
n (i∂µn + gAµn) WnTn

]
, (E.3)

where the square brackets indicate that the derivative acts only within the brackets. From
the expression eq. (E.3) and again using the definition eq. (E.2) and the propagator from
figure 13 we obtain the last two Feynman rules in figure 14.
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