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1 Introduction

The study of black holes in theories with eight or more supercharges resulting from string

theory compactifications has proved to be a very useful tool in uncovering some of the

structure of the underlying statistical systems. For supersymmetric black holes this task is

facilitated by the fact that they exhibit the attractor mechanism and full supersymmetry

enhancement near the event horizon [1–3]. Using the constraints imposed by supersymme-

try, general stationary asymptotically flat solutions have been found in ungauged N = 2

Einstein-Maxwell supergravity, including higher-derivative corrections, both in four and

five dimensions [4–9]. The spatial profile of scalars in these solutions follows a first-order

gradient flow, which is integrable to (non-differential) stabilisation equations, expressing

the scalars in terms of harmonic functions. On the event horizon (the endpoint of the

flow), the values of scalars are dictated by the charges through the attractor equations,

independently of the asymptotic boundary conditions (the beginning of the flow).1

In contrast, when the requirement that the solutions must preserve some supersym-

metry is abandoned, much less is known about the general structure of the supergravity

solutions and the microscopic theory behind them. The simplest generalisation of BPS

1Some authors interchange the meaning of the terms “stabilisation equations” and “attractor equations”.

– 1 –



J
H
E
P
0
6
(
2
0
1
1
)
0
7
0

black holes to consider are the extremal black holes which do not preserve any supersym-

metry (see [10]). These are known to share some desirable features with the BPS branch,

most importantly the attractor phenomenon [11–13].

For theories with 8 supercharges coupled to vector multiplets in four and five dimen-

sions,2 the general structure of these non-BPS extremal solutions is unclear, since only

partial results are known. In the static case, a restricted set of examples can be found by

simply changing the sign of a subset of the charges, which breaks supersymmetry [14, 15].

It was found that the non-BPS solutions exhibit flat directions in the scalar sector, in the

sense that the scalars are not completely fixed at the horizon once the charges are cho-

sen [14]. However, these examples are not generic enough — they contain one less than

the minimum number of parameters required for the most general solution to be derived

from them by dualities. A solution that does contain enough parameters is called a seed

solution.

For cubic prepotentials, an appropriate seed was found in [16, 17] and the full duality

orbit for the stu model was subsequently derived in [18]. This full example clarifies how

the non-supersymmetric solutions differ from their BPS counterparts in more than simply

changing the signs of charges. In particular, they have flat directions that are subject to

symmetries that act along the full flow, including the horizon [19–21].

If one allows for angular momentum, there are two types of single-centre extremal

solutions which display attractor behaviour [22]. The over-rotating (or ergo) branch are

very different from the BPS solutions, as they feature an ergoregion and are continuously

connected to the Kerr solution [23–25]. In contrast, the under-rotating (or ergo-free) black

holes have a continuous limit to static charged black holes and seem to be tractable us-

ing BPS-inspired techniques. Recently, the single-centre under-rotating seed solution and

various multi-centred generalisations were found in [26–30]. In these cases, the nontrivial

parameter appearing in the static seed solutions can be viewed as the constant part of a

harmonic function describing rotation.

Despite the existence of these known solutions, finding an organising principle for their

general structure has proven challenging. The best developed approaches are based on four-

dimensional supergravity, where electric-magnetic duality limits the possible structures.

One such framework is provided by the timelike dimensional reduction of Breitenlohner,

Maison and Gibbons [31], which relates black holes, regardless of supersymmetry (or even

extremality), to geodesics on the (augmented) scalar manifold. Given sufficient symmetry

on the scalar manifold, solutions, including multi-centre black holes, may be generated with

powerful group-theoretical methods, cf. [32–37] and references therein. Unfortunately, this

comes at the expense of the results being expressed less explicitly.

A more direct perspective has been offered by the fake superpotential approach of

Ceresole and Dall’Agata [38]. They noticed that the rewriting of the effective black hole

potential for the scalars [11] as a sum of squares is not unique, leading to more than one

type of first-order flow for the scalar fields. The flow, which in the supersymmetric case is

2Since the two are related by dimensional reduction, we do not make a distinction between them in this

introduction.
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governed by the absolute value of the central charge, may be more generally controlled by

a different function, called the fake superpotential. The derivation of first-order equations

based on a superpotential has been subsequently extended to static non-extremal black

holes and for a number of models superpotentials have been identified explicitly [39–43]

(see [44] for a synopsis of these developments and [45] for earlier related work).

The superpotential method has been first applied to multi-centre black holes in [46],

which directly generalised [5]. However, simplifying assumptions restricted the non-super-

symmetric solutions, as in [33], to threshold-bound configurations with mutually local

charges and unconstrained relative positions of the centres. In view of the recent results

on the integrability of the scalar equations of motion in black hole backgrounds [47, 48],

one might expect also the more complicated multi-centre solutions mentioned earlier to be

derivable from first-order flows integrated to stabilisation equations.

As a step in this direction, we study extremal under-rotating (ergo-free) black holes in

compactifications of Type IIB string theory on Calabi-Yau manifolds, using the formalism

of [5]. In section 3 we relax the additional conditions of [46] to arrive at the general form

of first-order flow equations for stationary extremal black holes. Unfortunately, we find

that unlike their previously known special cases, to which they correctly reduce under the

relevant assumptions, they generically do not lend themselves to explicit integration.

In section 4, therefore, we follow a bottom-up approach, trying to find stabilisation

equations by rewriting known solutions (expressed in terms of physical scalars or affine

coordinates) in a symplectically covariant way, using the projective (homogeneous) coordi-

nates. We find that this is indeed possible for the under-rotating seed solution of [27], if one

adds a ratio of harmonic functions to the standard vector of harmonic functions appearing

in the stabilisation equations. Motivated by this, we introduce an ansatz for the general

case that can incorporate all known extremal solutions. Our arguments are independent of

the considerations in section 3, but the general form of the proposed ansatz is compatible

with the generic first-order flow equations. However, it is difficult to fully impose it in the

rotating case.

Finally, in section 5 we combine our general flow equations with the ansatz in the static

case and connect to the fake superpotential formalism. Section 6 is devoted to concluding

remarks, whereas in the appendix we present a general heuristic argument justifying the

presence of ratios of harmonic functions in the stabilisation equations.

2 Bosonic action and special geometry

In rewriting of the effective action as a sum of squares and deriving the flow equations for

stationary black holes in 4-dimensional N = 2 supergravity, we largely follow the method

and the notational conventions of the two papers [5, 46] whose results we generalise (where

we also refer the reader for more details and additional references).

Omitting the hypermultiplets, which are immaterial for our discussion, the relevant

bosonic action [49, 50]

S4D =
1

16π

∫

M4

(

R ⋆ 1 − 2 gab̄ dza ∧ ⋆ dz̄b̄ −
1

2
F I ∧ GI

)

, (2.1)
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contains neutral complex scalars za (belonging to the nv vector multiplets) and abelian

gauge fields (from both the gravity multiplet and the vector multiplets), all coupled to

gravity.

The scalars za are affine coordinates on a special Kähler manifold, whose metric can

be calculated from the Kähler potential K: gab̄ = ∂a∂̄b̄K, where ∂a is shorthand for ∂/∂za.

The field strengths are defined as F I = dAI , where AI = (A0, Aa), a = 1, . . . , nv. The

dual field strengths GI are given in terms of the field strengths and the kinetic matrix

NIJ by

GI = ImNIJ ⋆ F J + ReNIJ F J . (2.2)

We will not need the explicit formulae in what follows, but both the Kähler potential

and the kinetic matrix NIJ for the vector fields are derivable from a prepotential, F , which

is a homogeneous function of degree 2. The prepotential itself is typically displayed in

homogeneous projective coordinates XI (za = Xa/X0) and we will take it to be of the

cubic type:

F = −
1

6
Dabc

XaXbXc

X0
=: (X0)2f(z) , f(z) = −

1

6
Dabcz

azbzc . (2.3)

Surface integrals surrounding the sources of the field strengths and their duals define

physical magnetic and electric charges, pI and qI , respectively:

pI =
1

4π

∫

S2

F I , qI =
1

4π

∫

S2

GI . (2.4)

From a geometrical point of view, the above theory can be regarded as the bosonic

massless sector of type IIB superstring theory in 10 dimensions compactified on a Calabi-

Yau three-fold MCY.3 The scalars of the vector multiplets parametrise the moduli space of

complex structure deformations of MCY. The complex dimension of this scalar manifold is

given by one of the Hodge numbers of MCY, nv = h2,1, with the Kähler potential K(z, z̄)

being determined by the unique (up to rescaling), nowhere vanishing holomorphic (3, 0)-

form Ωhol, characterising MCY:

K = − ln

(

i

∫

MCY

Ωhol ∧ Ω̄hol

)

. (2.5)

It will be more convenient later to work with the covariantly holomorphic version of the

top form

Ω(z, z̄) = eK(z,z̄)/2Ωhol , (2.6)

whose Kähler covariant derivative reads

DΩ = (d + iQ)Ω , (2.7)

where Q = Im(∂aKdza) plays the role of the connection. In components:

DaΩ = ∂aΩ +
1

2
∂aK Ω , D̄āΩ = ∂̄āΩ −

1

2
∂̄āK Ω = 0 . (2.8)

3Thanks to mirror symmetry, one can equivalently use the type IIA picture.
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In the canonical symplectic basis {αI , β
J} for the third integral cohomology H3(MCY, Z),

we can expand Ω as:

Ω = XIαI − FIβ
I , (2.9)

where the coefficients are the periods of the Calabi-Yau manifold with respect to the dual

homology basis of three-cycles {AI , BJ}:

XI =

∫

AI

Ω =

∫

MCY

Ω ∧ βI , FI =

∫

BI

Ω =

∫

MCY

Ω ∧ αI . (2.10)

FI are further identified with the derivatives of the prepotential F with respect to XI :

FI = ∂F/∂XI (we hope that no confusion with the gauge field strength two-form F I

arises).

Similarly, the five-form field strength F of the IIB theory, assumed to take values in

Ω2(M4)⊗H3(MCY, Z), where Ω2(M4) represents the space of two-forms on spacetime, can

be written as

F = F I ⊗ αI − GI ⊗ βI . (2.11)

By integrating the field strength over an appropriate two-sphere in space, we recover the

charges as the coefficients of the three-form Γ ∈ H3(MCY, Z):

Γ =
1

4π

∫

S2

F = pIαI − qIβ
I . (2.12)

The five-form F is self-dual in 10 dimensions, ⋆10 F = (⋆⊗⋄)F = F , where ⋆ and ⋄

represent the Hodge operators in, respectively, spacetime and the internal CY manifold

MCY. A representation of the Hodge operator on the basis forms {αI , β
J} can be given in

terms of a scalar-dependent matrix M̌(N ):

(

⋄βI

⋄αJ

)

= M̌−1(N )

(

βI

αJ

)

, (2.13)

so that the selfduality constraint on F can be expressed in terms of components as

M̌(N )

(

⋆ F I

⋆ GJ

)

=

(

F I

GJ

)

. (2.14)

Instead of the canonical basis, one may use the Dolbeault cohomology basis furnished

by {Ω,DaΩ, D̄āΩ̄, Ω̄}, diagonalising the Hodge operator ⋄ on MCY:

⋄Ω = −iΩ , ⋄DaΩ = iDaΩ , (2.15)

and satisfying

〈Ω, Ω̄〉 = −i , 〈DaΩ, D̄b̄Ω̄〉 = igab̄ , 〈DaΩ,Ω〉 = 0 (2.16)

with respect to the antisymmetric intersection product

〈E1, E2〉 =

∫

MCY

E1 ∧ E2 . (2.17)
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In this notation, the central charge Z can be written as

Z(Γ) = 〈Γ,Ω〉 = qIX
I − pIFI , (2.18)

and, conversely, one can prove that

〈Γ1,Γ2〉 = 2 Im[−Z(Γ1) Z̄(Γ2) + gab̄ DaZ(Γ1) D̄b̄Z̄(Γ2)] , (2.19)

where gab̄ is the inverse matrix of gab̄.

Another useful object is the symmetric Hodge product 〈E1, ⋄E2〉, which introduces a

norm on H3(MCY, R):

‖E‖2 = 〈E, ⋄E〉 . (2.20)

An example of its utility in the context of the attractor mechanism is provided by the black

hole (or effective) potential

Vbh =
1

2
‖Γ‖2 = −

1

2

(

p q
)

M(N )

(

p

q

)

, (2.21)

where we suppressed the indices on the charges. (In what follows we will often identify

the elements of H3(MCY) with the associated vectors built out of the components in a

symplectic basis, such as Γ and (pI , qJ)T here.) The matrices M(N ) and M̌(N ) are

related to each other by the symplectic metric I,

M̌ = IM , I =

(

0 −I

I 0

)

, M̌−1 = −M̌ , (2.22)

and are functions of the kinetic matrix NIJ (see e.g. [51]), although detailed expressions

will not be needed in our considerations.

3 Flow equations from the action

In this section we derive generalised flow equations for non-BPS extremal black holes in

Type IIB compactifications on Calabi-Yau manifolds, using the formalism of [5]. As these

equations are not directly integrable, we describe an algorithm for solving them.

3.1 The action as a sum of squares

Since we are interested in asymptotically flat, stationary extremal black hole configurations,

the ansatz that we use for the spacetime metric is:

ds2 = −e2U (dt + ωidxi)2 + e−2Uδijdxidxj , (3.1)

with the condition U(xi), ωi(x
j) → 0 as r =

√

δijxixj → ∞. The one-form ω = ωidxi

encodes the angular momentum of the system.

The action (2.1) is not invariant under electromagnetic duality rotations, but as re-

marked in [5], at the cost of discarding manifest Lorentz invariance, one can have a duality

– 6 –
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invariant formalism [52, 53]. For this purpose it is convenient to introduce the following

product of spatial 2-forms B,C ∈ Ω2(R3) ⊗ H3(MCY):

(B,C) =
e2U

1 − w2

∫

MCY

B ∧
[

⋆0(⋄C) − ⋆0(w ∧ ⋄C)w + ⋆0(w ∧ ⋆0C)
]

, (3.2)

where by ⋆0 we denote the Hodge dual with respect to the flat three-dimensional metric

δij and define w = e2Uω. In general, boldface symbols will be reserved for quantities in the

three spatial dimensions.

With this notation, the effective action (2.1) can be written as

S4D eff = −
1

16π

∫

dt

∫

R3

[

2dU∧⋆0dU−
1

2
e4Udω∧⋆0dω+2gab̄ dza∧⋆0dz̄b̄+(F ,F)

]

. (3.3)

As shown in [5], this action can be re-expressed as a sum of squares, giving first-order flow

equations for stationary supersymmetric black holes, including multi-centre composites:

F − 2 Im ⋆0D(e−U e−iαΩ) + 2ReD(eU e−iαΩω) = 0 , (3.4)

Q + dα +
1

2
e2U⋆0dω = 0 , (3.5)

where

D = d + i

(

Q + dα +
1

2
e2U⋆0dω

)

, Q = Im(∂aKdza) . (3.6)

In the light of the considerations in [38], one might expect similar equations, involving

a modified field strength F̃ in place of the actual field strength F , to exist for non-

supersymmetric extremal black holes as well. In [46] this was shown to be true for the

special case when the fake field strength is related to the real field strength by a constant

symplectic matrix. Building on this, we have found a more general way of writing the

action as a sum of squares resulting in non-BPS first-order flow equations, based on a

non-closed F̃ and a new auxiliary one-form η related to the non-closure of F̃ . These two

objects are constrained by two new equations which need to be satisfied in addition to the

flow equations we obtained.

While they will be derived and explained below, for ease of comparison with (3.4), (3.5),

we state our non-BPS equations now. The first two equations are very similar to the

BPS ones:

F̃ − 2 Im ⋆0D(e−U e−iαΩ) + 2ReD(eU e−iαΩω) = 0 , (3.7)

Q + dα + η +
1

2
e2U⋆0dω = 0 , (3.8)

with F̃ replacing F in the first equation and η shifting the second.4 In addition, the two

equations constraining our two auxiliary variables are:

(

F ,F
)

=
(

F̃ , F̃
)

+ 2dη ∧ w , (3.9)

η ∧ Im〈G̃, eU e−iαΩ〉 = 〈dF̃ ,Re(eU e−iαΩ)〉 −
1

2
dη ∧ w , (3.10)

4D and Q are defined as in (3.6).
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where

G̃ = F̃ − 2 Im ⋆0D(e−U e−iαΩ) + 2ReD(eU e−iαΩω) . (3.11)

Now onto the derivation. In [5] the crucial step in obtaining the first-order manifestly

duality-invariant flow equations, solving second-order equations of motion, is to appro-

priately pair the derivatives of the scalars with the gauge fields and use the invariant

product (3.2) to re-express the Lagrangian. It was found in [5] that a good choice is

G = F − 2 Im ⋆0D(e−U e−iαΩ) + 2ReD(eU e−iαΩω) . (3.12)

Similarly to [46], we generalise the above to eq. (3.11) by replacing the actual field

strength with a two-form valued ‘fake’ field strength, F̃ ∈ Ω2(R3) ⊗ H3(MCY), but here

we define it by demanding only that it reproduces the original electromagnetic part of the

action
(

F ,F
)

=
(

F̃ , F̃
)

− Ξ , (3.13)

up to a possible extra term described by the three-form Ξ. The form of Ξ will be de-

termined at the end of this subsection by consistency arguments. Unlike the real field

strength, we do not require F̃ to be closed.

One can then rewrite the Lagrangian in terms of G̃ as

L = (G̃, G̃) − 4

(

Q + dα + η +
1

2
e2U⋆0dω

)

∧ Im〈G̃, eU e−iαΩ〉

+ d [ 2w ∧ (Q + dα) + 4Re〈F̃ , eUe−iαΩ〉 ] ,

(3.14)

provided that the new one-form η, which needs to be introduced due to the possible non-

closure of F̃ , satisfies

η ∧ Im〈G̃, eU e−iαΩ〉 = 〈dF̃ ,Re(eU e−iαΩ)〉 +
1

4
Ξ . (3.15)

Because adding a total derivative to the Lagrangian does not change the equations of

motion, one finds that equation (3.15) needs to hold only up to a total derivative. Observe

that the phase α = α(x) is a priori an arbitrary function.

A sufficient condition for a stationary point of the action (hence, for the equations of

motion to be satisfied) is met by neglecting the boundary terms and requiring that the

variations of the first two terms in (3.14) vanish separately, which leads to (3.7), (3.8).

From (3.8) we obtain D = d− iη, which substituted into (3.7) gives:

F̃ − 2 Im
[

⋆0(d − iη)(e−U e−iαΩ)
]

+ 2Re
[

(d − iη)(eU e−iαΩω)
]

= 0 . (3.16)

Differentiating one finds:

d⋆0d Im Ω̂ − d
(

⋆0η Re Ω̂
)

− d
(

η ∧ w Im Ω̂
)

=
1

2
dF̃ , (3.17)

where Ω̂ = e−Ue−iαΩ.5 We see in particular that, as mentioned earlier, the fake field

strength is not necessarily closed.

5Note that in [5] the hat symbolised what we call ⋄ here.
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It is now possible to derive Ξ in terms of the other quantities appearing in the rewriting.

The fundamental observation is that in the dynamical system we are considering, the

electromagnetic part of the Lagrangian acts as a potential for the remaining fields and,

for solutions of the equations of motion with vanishing action, it is expected to equal the

kinetic energy. So, by expressing F̃ through equation (3.16), one can compute
(

F̃ , F̃
)

and find:

(

F̃ , F̃
)

= 2dU ∧ ⋆0dU −
1

2
e4Udω ∧ ⋆0dω + 2gab̄dza ∧ ⋆0dzb̄

+ e2Udw ∧ ⋆0dω + 2dQ ∧ w

=
(

F ,F
)

+ e2Udw ∧ ⋆0dω + 2dQ ∧ w ,

(3.18)

from which, using (3.13), (3.8) and integration by parts, one obtains

Ξ = −2dη ∧ w . (3.19)

Finally, substituting (3.19) in (3.13) and (3.15) leads to (3.9), (3.10).

In summary, we have obtained a non-supersymmetric generalisation (3.7), (3.8) of

first-order equations [5]. The generalised equations are expressed in terms of a fake field

strength F̃ , constrained by (3.13) to reproduce the original gauge part of the action.

The non-closure of F̃ necessitates the introduction of a new, compensating object, η, in

eq. (3.15). The auxiliary three-form Ξ appearing in (3.13) and (3.15) can be expressed

in terms of other quantities through eq. (3.19). In comparison with the supersymmetric

case we thus have two more unknowns, F̃ and η, constrained by (3.9), (3.10). Since they

are mutually related, in any model for which F̃ can be obtained by other means (as in

section 5.2), η can be eliminated as well.

3.2 Solving the equations

Whenever dF̃ = 0 and η = 0, equation (3.17) reduces to the Laplace equation

2d⋆0d Im Ω̂ = 0 , (3.20)

which can be integrated to so-called stabilisation equations:

2 Im(e−Ue−iαΩ) = H . (3.21)

These express the period vector in terms of (possibly multi-centred) harmonic functions H

throughout the flow.

Using this result back in (3.16) one finds that the fake field strength is given by

F̃ = ⋆0dH− 2d(e2U Re Ω̂ω) . (3.22)

This is manifestly true for the supersymmetric case [4, 5] and for the non-BPS setting

considered in [46], for electric (p0, 0; 0, qa) or magnetic (0, pa; q0, 0) charge configuration
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and axions Re za set to zero.6 In the BPS case, one has F̃ = F by assumption, so that

the vector of electric and magnetic charges is determined through (2.12) to be

Γ =
1

4π

∫

S2

⋆0dH , (3.23)

or in other words equal to the poles of the harmonic functions H. For non-supersymmetric

solutions, F̃ is related to F by charge sign reversals, and the same holds for the poles of

the harmonic functions H in (3.22) compared to the physical charges.

In its general form, however, equation (3.17) cannot be solved directly, since the period

vector Ω (scalars), η, ω and F̃ are all unknown and constrained by (3.10). A way out of

this problem is to first make an ansatz for Im Ω̂, try to solve it for Ω and U , find η and ω

from (3.8) and then, by using (3.16) as a definition for F̃ , check if (3.9), (3.10) are satisfied.

Let us see explicitly how to do that: we start by making an ansatz of the type

2 Im(e−iαe−UΩ) = J , (3.24)

with J a vector containing all the parameters in terms of which the solutions will be

expressed. The solution for the components of Ω̂ (and hence for scalars) can then be

obtained in the same way as the solutions to supersymmetric stabilisation equations ([55],

see also [56], section 2). We will indicate all quantities calculated with the aid of the ansatz

by adding the subscript J .

We then proceed differentiating both sides of (3.24) and subsequently taking the inter-

section product with the real and imaginary part of Ω and with DaΩ. With the definitions

Ψ := −〈dJ ,Ω〉 and DaΨ := −〈dJ ,DaΩ〉 one obtains:

dU = −eU Re(e−iαΨ) , (3.25)

dα + Q = eU Im(e−iαΨ) = −
1

2
e2U 〈dJ ,J 〉 , (3.26)

dz̄b̄ = −gab̄eUe−iαDaΨ . (3.27)

Note that (3.25) and (3.27) are the flow equations for the warp factor and the scalars,

while (3.26) gives an explicit relation between α and the other quantities appearing in the

rewriting. More specifically, (3.26) combined with (3.8) eliminates α, giving:

〈dJ ,J 〉 = 2e−2Uη + ⋆0dω . (3.28)

If we make an ansatz also for the angular momentum of the black hole ωbh (which must

be expressed in terms of parameters appearing in J ), we arrive at an expression for η:

ηJ ,ω =
1

2
e2UJ

(

〈dJ ,J 〉 − ⋆0dωbh

)

. (3.29)

Independently of the ansatz, we can use (3.16) as a definition of F̃ and then substi-

tute (3.17) and (3.7) in (3.10). The left-hand side is clearly zero, whereas on the right-hand

6By charge redefinitions one can generate physically equivalent solutions also for other charge configu-

rations [54].
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side we have an intersection product that we know how to compute. Neglecting the total

derivative results in:

〈dF̃ ,Re(e2U Ω̂)〉 = 〈2d⋆0d Im Ω̂,Re(e2U Ω̂)〉 − η ∧ ⋆0η − e2Uη ∧ dω +
1

2
η ∧ dw . (3.30)

The last term here cancels the last term of (3.10). This means that once all the variables

have been expressed in terms of the parameters in the vector J , the consistency of the

ansatz with the first-order equations (3.7), (3.8) and the constraint (3.10) can be verified

by checking whether the following equation is satisfied:

e2UJ 〈d⋆0dJ ,Re Ω̂J 〉 = ηJ ,ω ∧ ⋆0ηJ ,ω + e2UJ ηJ ,ω ∧ dωbh . (3.31)

As this is an equation for J , in principle it determines an ansatz that satisfies (3.7), (3.8)

and (3.10), even though in practice one would not solve it for J , regarding it instead as

a check for the specific form of an ansatz assumed beforehand. One would also still have

to ensure that (3.9) is satisfied, which can be a rather non-trivial task. Finally, not all the

parameters in the ansatz may be constrained by the equations of motion but should rather

be fixed by appropriate boundary conditions.

In the next section we will discuss known black hole solutions which satisfy (3.31) with

a nontrivial η and propose a generic ansatz.

4 Stabilisation equations from an ansatz

An important result for BPS black holes is the direct integrability of the first order flow

equations to stabilisation equations, even for multiple centres. As described in the be-

ginning of section 3.2, this result can be extended to some non-supersymmetric solutions.

These examples, however, are not generic, in the sense that applying dualities on them

does not lead to the most general non-BPS solution.

Given the flow equations in section 3.1, one expects to find a nontrivial η and F̃ in

the general case. The non-closure of F̃ implies that the corresponding expression for the

period vector Ω in terms of charges and integration constants should be an anharmonic

extension of (3.21), which must still be consistent with symplectic reparametrisations. To

gain intuition about the possible terms, one can follow a bottom-up approach. Therefore,

we consider known explicit solutions and rewrite the physical scalars za and the metric in

terms of Ω, aiming towards a generic ansatz that covers all single-centre solutions.

4.1 Special solutions

In order to be as general as possible and to minimise the ambiguity introduced in the

process, we find it illuminating to start with a rotating black hole solution, so that the

presence of an extra harmonic function describing angular momentum can provide guid-

ance. Consider the rotating extremal black hole of [27], which can be used as the seed

solution for four-dimensional under-rotating black holes [23–25] in theories with cubic pre-

potentials. This is an almost BPS [26] solution in five-dimensional supergravity described
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by the harmonic functions:

H0 = h0 +
p0

r
, Ha = ha +

qa

r
, M = b +

J cos θ

r2
, (4.1)

where h0, ha, b are constants that are related to asymptotic moduli, −p0 is the Kaluza-

Klein magnetic charge, qa are the electric charges and J is the angular momentum of

the solution. Therefore, the associated four-dimensional charge vector is defined by the

harmonic functions:

Hc = (−H0, 0 ; 0, Ha) , (4.2)

whereas M controls the angular momentum and is invariant under symplectic transforma-

tions.

Using the 4D/5D dictionary of [56–58], one can rewrite the full solution given in five-

dimensional notation [27] in terms of variables natural from the four-dimensional perspec-

tive. The metric is as in (3.1), while the resulting expressions for the gauge fields and

scalars in our notation are:

F = ⋆0dHc − 2d(e2URe Ω̂ ω) , 2 Im Ω̂ = J ≡ H + R , (4.3)

where we use again the shorthand Ω̂ = e−Ue−iαΩ as in section 3. J is written in terms

of a harmonic part, H, and a part containing ratios of harmonic functions R, which are

respectively given by:

H = (H0, 0 ; 0, Ha) , R =

(

0, 0 ; −
M

H0
, 0

)

. (4.4)

Finally, the metric functions are given by:

⋆0dω = dM , e−2U = i〈Ω̂,
¯̂
Ω〉 =

√

I4(H) − M2 . (4.5)

Here, I4 is the quartic invariant that appears in the entropy formula for cubic prepotentials

(see [59] for explicit expressions) and the physical scalars are given by za = Xa/X0, as

usual.

The expression for the gauge fields in (4.3) parallels the form of the BPS solu-

tions (3.22), differing in that the vector of harmonic functions associated to the physical

charges (4.2), is related to the one appearing in the scalars by a single sign flip, similar

to [15]. The period vector Ω is again determined through stabilisation equations similar

to (3.21), so that the scalars are given in terms of harmonic functions describing the flow

from asymptotic infinity to the horizon. In particular, the asymptotic values of the scalars

are controlled by the constant parts of the harmonic functions H and M , whereas the

attractor equations, obtained in the limit r → 0, are controlled by the charges and the

angular momentum [22].

The novel addition to J is a ratio of harmonic functions that was not present in

previous attempts to write non-BPS stabilisation equations and allows for nontrivial axions.
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Deferring the comparison to the rewriting of section 3 for the next section, we note that

this solution leads through (3.29) to a nontrivial η, given by

η = e2U 〈dR,H〉 = −e2U H0 d

(

M

H0

)

, (4.6)

which demonstrates how η is related to the anharmonic part of the solution.

In the static limit, it is possible to show that all constraints and flow equations of the

previous section are indeed satisfied, if J in (3.24) is identified with the one in (4.3). The

presence of a nontrivial η that follows from the ratio M/H0 through (4.6) is crucial in

this respect. In the rotating case, we have verified the constraint (3.31), but it is more

challenging to verify the flow equations and especially the first constraint (3.9).

As this is the seed solution for under-rotating extremal black holes, one can apply

duality rotations on the full rotating solution using the stabilisation equations (4.3) to find

the most general solution. Imposing that the angular momentum harmonic function M is

invariant under duality transformations, the result is that a ratio of harmonic functions is

generated in all other cases as well.

For example, in the case of the stu model, one can explicitly dualise to the frame with

only two charges present, corresponding to a D0-D6 brane system in Type IIA theory. For

this model, the prepotential is as in (2.3) with Dabc = |εabc| and the scalar sector is then

described by the choice (no sum on a = 1, 2, 3):

H =

(

H0,
1

λa
Ha ;H0, λaHa

)

, R =
1

8

M

H+
0

(

1,
1

λa
;−1,−λa

)

, (4.7)

where

HI = hI +
q0

r
, H+

0 =
1

4

(

h0 +
∑

a

ha

)

+
q0

r
(4.8)

HI = −λ3HI , H0+ = −λ3H+
0 , Dabcλ

aλbλc ≡ λ3 , (4.9)

e−4U = I4(H) − M2 = (H0 H0)2 − M2 , (4.10)

and λ3 must be a constant. Note that the individual constants λa appear only as multi-

plicative factors in H and R, but not in e−U , which depends only on the physical harmonic

functions H0 and H0. It follows that the metric and gauge fields depend only on the com-

bination λ3, so that two of the λa correspond to flat directions. The structure in (4.7) is

consistent with the results on D0-D6 attractors in [60] and seems to be generic for D0-D6

solutions for all cubic prepotentials.

It is interesting to note that unlike in (4.3), the harmonic part H is not related to the

charges by sign flips, as one might expect. In fact the electric solution is special, in the

sense that the flat directions can be described through (4.3) by simply allowing for the

missing harmonic functions to be constants, at the cost of making R more complicated,

but still proportional to a single ratio as in the D0-D6 case. On the other hand, for both

solutions the angular momentum harmonic function can be invariantly characterised by

M = 〈H,R〉. The flat directions described by the λa are zero modes of this equation.
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4.2 The ansatz

On account of the above observations, it is natural to propose an ansatz for the period

vector that contains harmonic functions and ratios of harmonic functions, disregarding the

precise relation to the physical charges, which is to be fixed later. In fact, it is simple to see

that imposing consistency of any generic ansatz Im Ω ∼ H + R, leads to inverse harmonic

functions. Since one can compute 〈H,R〉 in two ways:

〈H,R〉 = Im〈Ω̂,R〉 = − Im〈Ω̂,H〉 , (4.11)

where H and R are a priori independent, it follows that 〈H,R〉 must be a scalar-

independent quantity. The only other fields in the system are the scale factor and the

rotation form ω in the metric, but since 〈H,R〉 does not carry a scale,7 it cannot depend

on eU , in accord with the explicit solution above, where 〈H,R〉 = M . In the static limit M

reduces to a constant, in which case the constraint could be solved even if R were harmonic,

but in the rotating case one has to reproduce the full function M , which depends on the

angular coordinates. This implies a structure as in (4.3), with the anharmonic part, which

then must be present even when the angular momentum is turned off. A more extensive

argument about the kind of zero modes allowed for the scalars, which leads to the same

conclusion, is given in the appendix.

Based on the linearity of symplectic reparametrisations and the fact that (4.4) and (4.7)

are seed solutions, we expect the structure seen in the previous section to be universal for

all under-rotating extremal black holes. In other words, we take the point of view that

there is no essential difference between static non-supersymmetric and under-rotating black

holes, since they are continuously connected by setting to zero the nonconstant part of a

single harmonic function, as in (4.1). Therefore, we propose the following form for the

stabilisation equations for the scalars and the angular momentum:

2 Im Ω̂ ≡ 2 Im(e−U e−iαΩ) = H + R , (4.12)

⋆0dω = 〈dH,H〉 + d〈H,R〉 , (4.13)

where H is a vector of harmonic functions and R is a vector of ratios of harmonic functions.

The integrability condition of the last equation implies that their symplectic inner product

〈H,R〉 is a harmonic function, while the scale function of the metric is given by:

e−2U = i〈Ω̂,
¯̂
Ω〉 =

√

I4(H + R) . (4.14)

Note that when R = 0 and the charges carried by H are identified with the physical

charges, one recovers the BPS stabilisation equations, as required. More generally, for a

physically reasonable solution the harmonic and inverse harmonic functions in (4.12) are

quite restricted due to various consistency constraints, both generic and based on known

explicit solutions. The rest of this section is devoted to a discussion of these generic

constraints and some of their implications.

7Here we refer to the symmetry of (3.14) under eU
→ eDeU , Ω → eDΩ, gij → e2Dgij for constant D,

inherited from the full conformal formulation of the theory [61].
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A first requirement is that in the near-horizon limit the scale factor e−4U of an under-

rotating black hole must reduce to [22]:

e−4U ∝ |I4(Γ)| − J2 cos2 θ , (4.15)

where I4(Γ) is the quartic invariant of the model and J is the angular momentum. In

the simple case of vanishing angular momentum, R is proportional to inverse harmonic

functions and thus vanishes near the horizon. Therefore, a harmonic piece must always

be present in the right hand side of (4.12), to make sense of the static solution in the

near-horizon region. Similar comments then apply for the full rotating case, hence it is

impossible to have a physical solution for the scalars based purely on inverse harmonic

functions.

Going over to the constraints posed by the form of the full solution, observe that

in the (necessarily static) BPS case the full scale function is simply e−4U = I4(H),

where the charges are replaced by their corresponding harmonic functions. Similarly,

for the stu model, where the most general non-BPS static black hole was explicitly con-

structed in [18] using the seed solution of [16, 17], it has been shown that the scale fac-

tor is shifted as e−4U ∼ I4(H) − b2, where b is a constant that does not depend on the

charges.

Interestingly, for the known under-rotating seed solution the expression for e−U in (4.5)

can again be found from (4.15) by replacing the charges and angular momentum by har-

monic functions. Moreover, the additional constant b of [16–18] is identified with the

constant piece in the harmonic function for the angular momentum in (4.5), as in [26, 27].

Therefore it is reasonable to expect that generically the scale factor is a function of the

harmonic functions for the charges and angular momentum, thus allowing for the presence

of a possible residual constant in the static solutions, when J is set to zero.

Now, for an ansatz of the type (4.12) to describe the known solutions, the vector R

must be such that (4.14) is consistent with the above comments, in particular with (4.5),

so that

e−4U = I4(H + R) = I4(H) − 〈H,R〉2 . (4.16)

This equality poses very strong restrictions on R, as it does not appear in linear, cubic

or quartic terms. In particular, the components of R must be such that I4(R) and its

first derivatives vanish, implying that it must have at most as many independent compo-

nents as a two-charge small black hole. Then, given H and a model in which I4 is known,

the linear term in R should vanish, further restricting its independent components. In-

deed, R appears to have only one independent component in the explicit solutions (4.4)

and (4.7).

For symmetric cubic models this can be made more precise, by Taylor expanding the

left hand side of (4.16) explicitly. In these models, the quartic invariant can be rewritten

in terms of the central charge as

I4 = (i1 − i2)
2 + 4i4 − i5 , (4.17)
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where

i1 = ZZ̄ , i2 = gab̄DaZD̄b̄Z̄ , (4.18)

i3 =
1

3
Re
(

ZN3(Z̄)
)

, i4 = −
1

3
Im
(

ZN3(Z̄)
)

, (4.19)

i5 = gaāDabcDāb̄c̄g
bd̄gcēgdb̄gec̄D̄d̄Z̄ D̄āZ̄ DdZ DeZ , (4.20)

and

N3(Z̄) = Dabcg
aāgbb̄gcc̄D̄āZ̄ D̄b̄Z̄ D̄c̄Z̄ . (4.21)

Although these five invariants all depend on the scalar fields and the charges, the combi-

nation in (4.17) is scalar independent. In this form, it is easy to expand I4(H + R) and

separately consider the different terms, since Z and its derivatives are linear in the charges.

Furthermore, as shown in [62], there are relations between the invariants above when the

charge vector is that of a small black hole. The previous discussion suggests that R should

have only one independent component, so we assume that it lies in a doubly critical orbit,

in which case

i2(R) = 3i1(R) ; i3(R) = 0 ; i4(R) = 2i21(R) ; i5(R) = 12i21(R) . (4.22)

A straightforward expansion of (4.17), using (4.22) leads to

I4(H + R) = I4(H) + 〈δI4(H),R〉 − 〈H,R〉2 , (4.23)

where δI4(H) denotes the derivative of I4(H) and the identity (2.19) was used. Thus, the

quadratic term reorganizes itself in the desired form without further assumptions.8 For a

given model, R can then be determined by demanding that the linear term vanishes.

This requirement is enough to ensure that the ansatz (4.12), together with the above

assumptions, automatically satisfies the constraint (3.10), as we now show. First, note that

for the ansatz in (4.12), η takes the form

η = e2U 〈dR,H〉 , (4.24)

as in (4.6). In section 3.2 it was shown that the constraint (3.10) is equivalent to (3.31),

which in view of the last result reads

〈d⋆0dJ ,Re Ω̂〉 = e2U 〈dR,H〉 ∧ 〈⋆0dH,R〉 . (4.25)

Using (4.14) and (4.16), one can then show that

〈d⋆0dJ ,Re Ω̂〉 =
1

2
e2U 〈R,H〉 〈d⋆0dR,H〉 = −e2U 〈R,H〉 〈⋆0dR,dH〉 , (4.26)

where we used the identity [65]

Re Ω̂ =
1

2

(

∂
∂JI

∂
∂J J

)

e−2U , (4.27)

8Conversely, the decomposition in [63] can be used to show that the quartic invariant takes this form

only if R lies in a doubly critical orbit [64].
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and the last step follows from the fact that 〈R,H〉 is a harmonic function. Finally, since

R depends only on a single ratio of the form 〈H,R〉/H̄ (with H̄ a harmonic function,

cf. (4.7)), it is possible to show that

〈H,R〉dR = −〈dR,H〉R . (4.28)

Combining the last relation with (4.26), the constraint (4.25) is identically satisfied, so

that (4.12), (4.13) is a solution of the constraint (3.10). The seed solution (4.3) also

satisfies these relations by construction.

This is a rather nontrivial result, as (3.31), due to (3.29), is a quartic equation for

J . Assuming this to be the general solution, the only constraint remaining at this stage

is (3.9), which generalises the constraint on the fake superpotential for static black holes [38]

to the case of under-rotating black holes. However, it is difficult to verify (3.9) and (3.16)

explicitly for the seed solution (4.3), or find the general solution. In the next section, we

give a more detailed comparison to the ansatz (4.12), (4.13) in the static limit.

It follows that the only object missing for a complete characterisation of the ansatz for

extremal solutions is an explicit form for H given a vector of physical charges. In view of

the flow equations in the previous section, that would be equivalent to solving (3.9) which,

upon using (4.12), (4.13) to determine the scalars and η, becomes a quadratic equation for

the physical charges in terms of H and R.

Unfortunately, solving this constraint is not a straightforward task. The only a priori

requirement on H is that it must be “BPS” in the sense that I4(H) > 0 and that its

quartic invariant should be related to the one of the physical charges by a sign flip. In

fact the result should not be unique, as one can expect in view of the non-uniqueness in

the rewriting (3.9). A manifestation of this ambiguity is seen in (4.7), where the two extra

unconstrained parameters in λa represent the flat directions of the scalar sector. On the

other hand, the relation between H and the physical charges must be the same throughout

the flow, as follows from (4.12), so that an attractor analysis would be sufficient for this

purpose. In any case, one can always dualise the stabilisation equations for the seed

solutions above to find any other solution and we comment on a possible way to construct

H at the end of the next section.

5 The static limit

In this section we specialise the results of section 3 to the static case, using the ansatz of

section 4, and connect to the fake superpotential formalism.

5.1 The static flow equations

The static limit of the results in section 3 leads to several simplifications, since the solutions

are necessarily spherically symmetric. This implies that ω = 0 and all quantities depend

only on the radial coordinate. Similarly as for the actual field strength, spherical symmetry

implies that the modified field strength F̃ is of the form:

F̃ = sin θ dθ ∧ dϕ ⊗ Γ̃ , (5.1)
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where now Γ̃ ∈ H3(MCY) is fibred along r. By (3.9), it must reproduce the same black

hole potential Vbh as the physical charge Γ:

1

2
‖Γ̃‖2 = Vbh =

1

2
‖Γ‖2 . (5.2)

In this setting one chooses the arbitrary function eiα to be the phase of 〈Γ̃,Ω〉. In

terms of the inverse radial coordinate τ = 1/r the first-order equations (3.7), (3.8) with

η = η dτ reduce to9

2 ∂τ Im
(

e−Ue−iαΩ
)

− 2 η Re
(

e−Ue−iαΩ
)

= −Γ̃ , (5.3)

η = −α̇ − Qτ = − Im
(

〈 ˙̃Γ,Ω〉/Z(Γ̃)
)

, (5.4)

where the second relation turns out to be equivalent to the second constraint (3.10). Ob-

serve again that the presence of a nontrivial η is essential for the generalisation of Denef’s

formalism with a fake field strength that is not a closed form.

As described in section 3.2, at least in principle these equations can be further sim-

plified by eliminating fake charges Γ̃ from them and by using an ansatz J for the scalars,

whereupon we obtain equations for J . In particular, since we already have an ansatz (4.12)

for the stabilisation equations, we can determine U and Ω from it, so that eq. (5.3) becomes:

2 ∂τ Im
(

e−Ue−iαΩ
)

= ∂τJ , (5.5)

−Γ̃ = ∂τJ − 2 η Re
(

e−UJ e−iαΩJ

)

, (5.6)

where η is given by the static limit of (4.24) as

η = e2UJ 〈∂τR,H〉 . (5.7)

Recall from the previous section that our ansatz is automatically a solution of the con-

straint (3.10) (and (5.4)), and the equations of motion are solved if one can find a J , along

the lines of section 4.2, such that Γ̃ constructed above reproduces the black hole potential

in (5.2), which now reads:

1

2
‖∂τJ ‖2 =

1

2
‖Γ‖2 + e2UJ 〈H, ∂τR〉2 . (5.8)

This quadratic constraint can be used to relate the physical charges to the harmonic func-

tions H, in addition to the generic requirements of section 4.2. In summary, the static

equations of motion are integrable if there exists an H and its corresponding R, constructed

along the lines of section 4.2, satisfying (5.8).

This is similar in spirit, but different than the approach of [41–43], were one seeks

to rewrite the black hole potential in (5.2) through a function of the physical charges

and moduli za directly. In contrast, (5.8) is an equation relating the harmonic functions

controlling the physical charges to the ones controlling the scalars through the period

vector Ω.

9The signs depend on the conventions chosen for the Hodge dual.
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We have checked that J for the known explicit static solutions are such that they

satisfy (5.8) and hence are described by the flow equation (5.3) with η as in (4.24). Since

all static non-BPS solutions are related by symplectic rotations to the seed solutions of

section 4, it follows that they satisfy the same duality-covariant equations. The nontrivial

η is reflected in the anharmonic part of (4.3), controlled by the constant b that remains

after setting the angular momentum to zero in (4.1). This observation is in line with [17],

where it was stressed that the crucial departure of the static non-BPS seed solution from a

BPS-like ansatz is the presence of a parameter related to the asymptotic scalars, identified

with this residual constant.

5.2 The fake superpotential

One can adopt the opposite point of view to the one taken above: first find fake charges Γ̃

reproducing the black hole potential (5.2) and then solve the differential equations. Taking

the intersection product of both sides of (5.3) with the basis elements then leads to the

equations for the scale factor and the scalars, which, with appropriate identifications, have

the form of non-supersymmetric flow equations generated by a superpotential W [38],

analogous to the supersymmetric flow equations governed by the absolute value of the

central charge:

U̇ = −eUe−iα〈Γ̃,Ω〉 = −eUW , (5.9)

ża = −eUe−iαgab̄〈Γ̃, D̄b̄Ω̄〉 = −2eUgab̄∂̄b̄W . (5.10)

Whenever W is explicitly known for a given model and charge configuration, a practical

way to connect it with our approach may be to first look for a moduli-independent matrix

S that rotates the usual charge vector10 Γ so that:

|Z̃| := |〈SΓ,Ω〉| = W . (5.11)

Then, its relation with Γ̃ is defined by:

Γ̃ := i ¯̃ZΩ − igābD̄ā
¯̃ZDbΩ + igab̄DaZ̃D̄b̄Ω̄ − iZ̃Ω̄ , (5.12)

where DaZ̃ = ∂aZ̃ + 1
2∂aKZ̃, with K being the Kähler potential. Note that in general

Γ̃ 6= SΓ, if we allow for S to be complex, and in fact this turns out to be the simplest

choice.

One can find the matrix S explicitly for the electric configuration, as in (4.3), assuming

all physical scalars to have the same phase, say f . The relevant superpotential was given

in [18]. Then, a suitable matrix S satisfying (5.11) and defining Γ̃ through (5.12) is

S = diag
(

e−2if , 1, 1, 1, e2if , 1, 1, 1
)

. (5.13)

In terms of the parameters appearing in the solution of section 4 one can identify cot f =

e2UM and check that the equations of motion (5.3) are satisfied. The one-form η is given

by (4.24).

10By the shorthand SΓ we mean rotating the symplectic vector of charges corresponding to the coefficients

of Γ: S · (pI , qJ )T, and arranging the result again as a three-form.
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In the non-supersymmetric axion-free case M vanishes and f = π/2, so that S is

constant (but not identity), while allowing for a τ -dependent f leads to more general

non-supersymmetric solutions. It is worth noting that η = 0 whenever S is constant (cf.

eq. (5.4)). In particular, when S = I we recover the supersymmetric case.

Alternatively, one can rewrite (5.6) and (5.8) in terms of a real matrix T such that:

TΓ := ΓT = Γ̃ − 2η Re
(

e−Ue−iαΩ
)

, (5.14)

1

2
〈ΓT , ⋄ΓT 〉 = Vbh + e−2Uη2 , (5.15)

e−iα〈ΓT ,Ω〉 = W − ie−Uη , (5.16)

where W is the superpotential in (5.9)–(5.10). If T is known, it leads to simpler equations

of motion for the scalars, that is

2∂τ Im
(

e−Ue−iαΩ
)

= −ΓT , (5.17)

which have the advantage of being directly integrable to (3.24), giving the sought solutions

as explained above. For the electric example above, T takes the form:

T =

(

I 0

W I

)

, W =





− e−2U cot f
(H0)2

2qa

p0

2qa

p0 0



 , (5.18)

so that (4.4) can be written as J = −THc, if the constants in (4.2) are appropriately

chosen. Similarly to its complex counterpart S, it reduces to a constant matrix in the

axion-free case.

It is interesting to point out that the matrix (5.18) is a (spacetime-dependent) el-

ement of the Peccei-Quinn group of transformations, defined as the largest subgroup of

the symplectic group leaving the XI ’s and the Kähler potential invariant. As was shown

recently [66], applying such a transformation on the charges indeed shifts the black hole

potential, as in (5.15). For generic charges and phases of the scalars, the corresponding

T can be found from the one in (5.18) by conjugation with the appropriate element of

the symplectic group. Such a matrix would leave a certain combination of XI ’s and FI ’s

unchanged, e.g. for the magnetic dual of the electric solution in (4.2) it would leave the FI ’s

invariant. Identifying the combinations that must be invariant for a given set of charges

could be a way to determine T from first principles.

6 Conclusions and outlook

In this work, we have extended the formalism of [5, 46], deriving symplectically covariant

flow equations for non-BPS extremal black holes in N = 2 supergravity, and we have

constructed an ansatz for the corresponding stabilisation equations. The main novelty was

to rewrite the electromagnetic part of the action in terms of a ‘fake’ field strength two-

form F̃ that does not have to be closed, where the non-closure turns out to be governed

by a single one-form η. The presence of this one-form is further related to the axions in
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the full black hole solution, apparently rendering such a deformation essential in a general

description of non-BPS extremal black holes. Unfortunately, this complication makes the

full equations challenging to solve directly, at least without considerable intuition about

the form of the solution.

To obtain that insight, we considered the known seed solution for under-rotating ex-

tremal black holes in theories with cubic prepotentials. We showed that it can indeed be

written in terms of stabilisation equations for the period vector, just as BPS black holes.

The crucial difference is that the scalars are not stabilised in terms of harmonic functions

only, but one finds that a ratio of harmonic functions is required. When the angular mo-

mentum is set to zero, one simply has the inverse of a harmonic function, which vanishes

near the horizon, but mixes with the other asymptotic constants at infinity.

As one might expect, a comparison of these explicit solutions with our flow equations

reveals the non-closure of F̃ to be reflected in exactly these non-harmonic parts of the

stabilisation equations. Based on this, we proposed an ansatz for the generic stabilisation

equations of under-rotating extremal black holes, satisfying several requirements coming

both from general arguments and known explicit solutions. Its practical realisation depends

heavily on the model and in particular on invariants constructed from two charge vectors,

one of which must correspond to a small black hole. Such invariants have been considered

recently in [63, 67] in the context of multi-centre solutions.

In the static case, we showed how to combine this ansatz with the first-order flow

equations to identify the structure of F̃ for known solutions and infer its general form. It

turned out that there are two ways of connecting the result to previous work. One involves

a complex matrix resembling the matrix S introduced in the superpotential formalism [38].

The other formulation simplifies the equations of motion, using the real matrix in (5.18)

belonging to the group of Peccei-Quinn transformations. This hints towards the possibility

of obtaining such matrices systematically.

Irrespectively of the precise description, one can characterise any solution by a vector

of harmonic functions such that the quartic invariant computed on their poles is related

to the one associated to the physical charges by a sign flip. In principle, it is possible to

construct this vector using purely algebraic methods, which is equivalent to solving the

attractor equations for static non-supersymmetric black holes. Once this is known for

particular charge vectors, one can replace the vector of charges with harmonic functions to

find H in (4.12) and directly construct new solutions using our first-order equations.

We expect this to generally hold also for the single-centre rotating solutions covered

by our ansatz, as the only difference with respect to static solutions is in the choice for

the angular momentum harmonic function, without modifying the structure of (4.12).

In line with this expectation, we have verified that the proposed ansatz does satisfy the

constraint (3.31). However, it is more difficult to impose (3.9), so it would be useful to find

a generalisation of the arguments in section 5 and/or an extension of the fake superpotential

formalism to the rotating case.

It is important to note that our flow equations are by construction fully covariant with

respect to electric-magnetic duality and are compatible with the general seed solutions

in four dimensions. It then follows that they capture the full orbit of non-BPS extremal
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solutions for suitable choices of F̃ , regardless of the existence of other stationary points

of the action, which should not be part of the standard non-BPS orbit of extremal black

holes. It is also interesting to point out the similarity to special cases of static non-extremal

black hole solutions, which can be obtained through a deformation of extremal solutions

controlled by a ratio of harmonic functions [68], except that there it appears in the line

element.

On the microscopic side, it would be very interesting to reproduce the stabilisation

equations (4.12). In the rotating case the ratio of harmonic functions survives the near-

horizon limit and modifies the attractor equations, similarly to [22], so one generally ex-

pects this structure to be accessible from microscopics. Given the model of [69], where the

constant part of M in (4.4) is interpreted as the angle between wrapped D3 branes, one ex-

pects that the full angular momentum harmonic function might have a similar microscopic

analogue.

Finally, it is worthwhile stressing that albeit the explicit solutions that we have dis-

cussed are only single centre, we have not made any assumptions on the number of centres

in the derivation of flow equations in section 3. Also the ansatz (4.12) is compatible with

multi-centre harmonic functions. It would be illuminating to make a detailed compari-

son with the results of [27, 28, 30], as a test on the robustness of the assumption on the

existence of stabilisation equations for generic extremal backgrounds.
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A On inverse harmonic functions

It is possible to give a generic heuristic argument for the presence of ratios of harmonic

functions of the kind seen in (4.3) in the solution for the scalars. We find it convenient to

choose the arbitrary function eiα according to (3.8), so that (3.14) reduces to

L = (G̃, G̃) . (A.1)

Similarly to the gauge part of (3.3), this can be interpreted as an action for the tensor

G̃ = F̃ − 2 Im ⋆0DΩ̂ + 2 ReD(e2U Ω̂) ∧ (dt + ω) , (A.2)

which respects the same pseudo-selfduality condition (2.14) as F , assuming that F̃ does:

M̌ ⋆ G̃ = G̃ . (A.3)

The scalar part can be shown to be pseudo-selfdual using (2.13) and (2.15). The matrix M̌

is crucial for the existence of such a constraint, since it is not possible to impose selfduality

on a four-dimensional field strength unless one complexifies it. However, it can be done in

4n+2 dimensions, and (A.3) descends from the ten-dimensional constraint on the five-form.

For the ordinary Einstein-Maxwell theory, gauge field equations in backgrounds of the

type (3.1) naturally lead to harmonic functions (cf. e.g. appendix B in [61]). Motivated

by (4.5), we further assume that the rotational one-form satisfies dω = ⋆0dM . Denote

spatial directions by i = 1, 2, 3 and consider first electric solutions, Fij = 0, for which the

Bianchi identity implies the existence of an electrostatic potential

∂iFtj = ∂jFti ⇒ Fti = ∂i
M

H
. (A.4)

The field equations further impose that H is harmonic

e−U = H , ∇2H = 0 . (A.5)

Similarly, for a magnetic solution, Fti = 0, the Bianchi identities relate the field strength

to a harmonic function

ǫtijk∂iFjk = 0 ⇒ Fij = ǫijk∂kH , (A.6)

where ǫijk is the Levi-Civita permutation symbol and the Einstein equation implies again

e−U = H. These solutions are related by an electric-magnetic duality rotation and belong

to a class of solutions called the Majumdar-Papapetrou solutions.

Now, consider the case that the field strength is constrained to be pseudo-selfdual,

as in (A.3). Then, the distinction between equations of motion and Bianchi identities

disappears, and the solutions can no longer be purely electric or purely magnetic. For such

a field, the gauge part of the action in (3.3) leads to the equation of motion (see [53] for

details)

d(F − M̌ ⋆F) = 0 , (A.7)
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which is then solved for both cases:

F = ⋆0dH , e−U = I(H) , (A.8)

F = ⋆0d
M

H
, e−U = I

(

M

H

)

, (A.9)

where now H denotes a vector of harmonic functions and I is a model-dependent invariant.

Imposing closure of F , which is equivalent to the existence of a gauge potential in four

dimensions, one concludes that only the first solution survives, leading to the standard

description by harmonic functions.

Going back to the Lagrangian in (A.1), the above discussion of selfdual fields applies

including the scalar sector. In view of this, G̃, unlike F , is not necessarily closed and the

two independent solutions in (A.8)–(A.9) are allowed. Based on this, one concludes that

a vector of inverse harmonic functions is a zero mode of the equations of motion following

from (A.1). Such a vector must be part of the general solution for the scalar sector only,

given that the gauge field F is described by harmonic functions, as above.

Since the equations of motion are nonlinear, it is a nontrivial task to find full solutions

with both kinds of zero modes turned on. Nevertheless, this discussion demonstrates that

one can consider the scalar sector a priori independently from the vector one. It also lends

credibility to the presence of ratios of harmonic functions in the ansatz (4.12) and the

different sets of harmonic functions in (4.3).
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