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1 Introduction

The holographic computation of the correlation functions has been an important subject

in AdS/CFT correspondence. Soon after the proposal of the correspondence [1–3], the

two-point and three-point functions of the operators in the protected sectors have been

computed on both sides [4–7]. On the field theory side, the correlation functions were

discussed in the free field limit, while on the string side, they were computed in the super-

gravity approximation. The perfect match has been found due to the non-renormalization

theorem, strongly supporting the correspondence. However, for the operators beyond the

protected sectors, the holographic computation usually becomes difficult.

Very recently, there has been renewed interest in the holographic computation of the

correlation functions of semiclassical strings. The semiclassical string states correspond to

the composite operators with large quantum numbers in the field theory [8]. And from the

dictionary of the AdS/CFT correspondence, at leading order their semiclassical energies,

whose quantum corrections are suppressed by the large quantum number, give the quantum

dimensions of the corresponding operators, which are the eigenvalues of the dilatation

operator and are calculable with the help of integrability. This relation provides not only

a nontrivial check of AdS/CFT correspondence beyond the BPS protected sector, but also

leads to a better understanding of integrable structures on both sides of the correspondence.
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The study of the correlation functions of semi-classical string states is expected to shed light

on the string interaction and integrability in super-Yang-Mills theory at non-planar level.

There is a clear physical picture in holographic computation of the correlation functions

of semiclassical string states. One needs to insert the string state vertex operators in the

string path integral. At strong coupling, the path integral is dominated by a saddle point.

Therefore one has to solve the equations of motions with the vertex operators as sources,

and find the string configurations whose ends shrink and approach to the boundary of

AdS5 at the insertion points of the composite operators corresponding to the string states.

The holographic computation of the two point functions is relatively easy and has been

illustrated in [9–11] . The computation for the higher point functions becomes much more

difficult, as the string configurations satisfying the appropriate boundary conditions are

hard if not impossible to obtain. Nevertheless, using a strategy in the holographic study

of operator product expansion(OPE) of Wilson line and Wilson surface operators [12–15],

the three-point and four-point functions of two very massive string states and one or two

light string states have been investigated [16–19]. For other related studies, see [20–28].

In this article, we would like to study the holographic computation of two-point and

three-point functions of the giant gravitons with open strings. The giant gravitons are the

D3-banes wrapping trivial cycles without collapsing due to their coupling to the background

flux [29–31]. As the open string may end on the D-brane, one can consider the system of the

giant gravitons with open strings, which correspond to determinant-like operators mapping

to a class of open spin chain [32, 33]. As D-brane is non-perturbative object, it is not clear

what kind of string state vertex operators should be inserted in the string path integral.

One possibility is to consider the boundary conformal field theory, which may count the

presence of D-brane. However, for the case at hand, the string world-sheet picture for

the giant graviton wrapping a sphere of finite size seems to make no sense. Nevertheless,

inspired by the study of the usual semi-classical closed string state, we expect the similar

picture could be carried over, at least for the maximal giant graviton wrapping an S3 in

S5. As to the leading order of string coupling gs and α′, the D-brane and open string

decouple, we may compute their contributions separately. Namely we expect that D-brane

contribution is from a “fat” D3-brane configuration whose ends shrink and approach to

the insertion points at the AdS boundary. For the open string sector, the contribution is

from the open string configuration connecting the insertion points, ending on the brane and

satisfying appropriate boundary conditions. For the two-point functions, the computation

is relatively simple. For the three-point function, the holographic computation is quite

difficult. As in other cases, we consider the cases with two massive states corresponding to

the giant gravitons with open strings and one gravity state corresponding to the half-BPS

chiral primary operator. Due to the presence of the giant gravitons, we have to consider

the contribution of D3-branes to the three-point structure constants, besides the one from

open string. It is remarkable that the D-brane contribution is vanishing, possibly due to

the BPS property of the giant graviton in our case.

There is another novel feature in our treatment. We propose to use the Routhian

to handle the string state contribution. For all the cases studied in the literature, our

prescription gives the same answer. But for the cases discussed in this paper, we have to

use the Routhian. This seems to suggest that our prescription is more useful.
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In the next section, we give a brief review of open string configurations ending on the

maximal giant graviton branes in S5, which correspond to the open spin chains. In section

3, we discuss the two-point functions of the giant gravitons with open strings, including the

cases corresponding to the ground state of Z = 0 open spin chain, the ground state of Y = 0

open spin chain and the open string in AdS5 and ending on Z = 0 brane. In section 4, we

investigate the three-point functions. In the small coupling limit, we compute the three-

point functions in the free field limit, and in the strong coupling limit, we holographically

compute it in the limit of operator product expansion. We find the perfect match for the

structure constant cY
123 involving the ground state operator of the Y = 0 open spin chain.

Last section is devoted to some conclusions and discussions.

2 Open strings ending on giant graviton branes

In this section we shall be describing giant graviton branes and open strings ending on the

maximal giant graviton branes. We shall also comment on the N = 4 SYM operators cor-

responding to the D-branes plus the open string states. In this note we shall be mainly con-

cerned about giant graviton branes moving in the S5 part of the 10d spacetime. The S5 can

be described by three complex embedding coordinates (X,Y,Z) satisfying the constraint,

|X|2 + |Y |2 + |Z|2 = 1 (2.1)

where we set the AdS radius to be unity. Using the parametrization,

X = sin θ cos αeiφ1 , Y = sin θ sinα eiφ2 , Z = cos θ eiφ , (2.2)

one finds that the S5 metric becomes

ds2
S5 = dθ2 + cos2 θ dφ2 + sin2 θ dΩ2

3 , (2.3)

with

dΩ2
3 = cos2 αdφ2

1 + dα2 + sin2 α dφ2
2 . (2.4)

Defining r = sin θ, one can alternatively write the S5 metric as

ds2
S5 =

1

1 − r2
dr2 + (1 − r2) dφ2 + r2 dΩ2

3 , (2.5)

where the coordinate r is ranged over the interval [0, 1]. The AdS5 part can be described

by the embedding coordinates YI in R2,4 satisfying the constraint

− Y 2
0 − Y 2

5 + Y 2
1 + Y 2

2 + Y 2
3 + Y 2

4 = −1 . (2.6)

The global AdS coordinates are related to the embedding coordinates by the relations

Y5 + iY0 = cosh ρ eitads , Yk = sinh ρ n̂k , (2.7)

where k = 1, 2, 3, 4 and n̂k with n̂kn̂k = 1 describes a unit S3.
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The above three complex coordinates (X,Y,Z) are dual to the following three complex

linear combinations

X = Φ1 + iΦ2, Y = Φ3 + iΦ4, Z = Φ5 + iΦ6, (2.8)

of the six real scalar fields Φi in the N = 4 super Yang-Mills side.

The D3 giant graviton brane [29–31] of our main interest below wraps an S3 part of the

S5 and rotates around the remaining directions of the S5 while taking a pointlike trajectory

given by ρ = 0 in the AdS5 part of the geometry. These D3 branes preserve a half of the

supersymmetries. We first consider a maximal sized giant graviton brane. One example of

such brane is given by the trajectory Z = 0 and ρ = 0, which is called as Z = 0 brane. This

Z = 0 brane corresponds to the gauge invariant SYM operator OD3 = detZ , which is a

half BPS state. The dimension of this operator is simply given by its engineering dimension

N , which is protected against any quantum corrections. Below we shall also consider the

Y = 0 brane which is related to the Z = 0 brane by an appropriate SO(6) rotation and

dual to the operator O′
D3 = detY .

The correspondence between open strings ending on the giant graviton brane and the

open spin chain operators in the N = 4 SYM theory is first considered in ref. [34] and

further developed in refs. [35, 36] (for a recent review, see [37]). There are two classes of

open string states of our interest below: one is the open string ending on the Z = 0 brane

and the other is the open string ending on the Y = 0 brane. We shall choose the open

string vacuum oriented along Z direction. Then the open string ending on the Y = 0 brane

takes Neumann boundary condition on the Z plane. The open string can also end on the

Z = 0 brane with Dirichlet boundary condition on the Z plane; an additional localized

boundary degree of freedom is necessary at each boundary of Z = 0.

In the N = 4 SYM theory side, the Y = 0 brane open spin chain is represented by

composite operators [34]

OY = ǫ
j1...jN−1A
i1...iN−1B Y i1

j1
· · ·Y iN−1

jN−1
(Z . . . Zχ1Z . . . Zχ2Z . . . Z)BA , (2.9)

where χ1, χ2, . . . represent other SYM fields of bulk excitations. An elementary excitation

of a single impurity is organized by the SU(1|2)2 symmetry. It is clear that the ground

state of the Y = 0 open spin chain is described by a unique vacuum configuration which is

a 1
4 BPS state preserving the SU(1|2)2 symmetry. The other is the Z = 0 brane open spin

chain represented by composite SYM operators [34],

OZ = ǫ
j1···jN−1A
i1···iN−1B Zi1

j1
· · ·ZiN−1

jN−1
(χLZ · · ·Zχ1Z · · ·Zχ2Z · · ·χR)BA . (2.10)

An important difference of the Z = 0 brane case from that of the Y = 0 brane is that the

Z = 0 open spin chain is connected to the giant graviton through boundary impurities χL

and χR. Each boundary state is organized by the representation of SU(2|2)2 symmetry.

This elementary magnon involves 16 degenerate states with the energy spectrum [34]

EB =

√

1 +
λ

4π2
. (2.11)
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Since the presence of the boundary impurities is essential, the space of corresponding

ground states is organized by the 256 degenerate states of SU(2|2)L ⊗ SU(2|2)R. Thus

there are no remaining supersymmetries for the ground state of the Z = 0 open spin chain.

We now turn to the open string description [38, 39] of the open spin chain dynamics.

For the AdS5 part, we use the ansatz

Y5 + iY0 = cosh ρ(σ) eiκsτ

Y1 + iY2 = sinh ρ(σ) eiω τ (2.12)

with Y3 + iY4 = 0. On the other hand, for the S5 part, we use the ansatz

θ = θ(σ) , φ = ντ (2.13)

with the S3 coordinates α, φ1 and φ2 being taken as constants. The string equations of

motion tell us that

ρ′′ = (κ2
s − ω2) sinh ρ cosh ρ ,

θ′′ = ν2 sin θ cos θ . (2.14)

The conformal gauge constraints lead to the condition

ρ′
2
+ θ′

2
= κ2

s cosh2 ρ − ω2 sinh2 ρ − ν2 cos2 θ . (2.15)

The first equation of (2.14) may be integrated and leads to

ρ′
2

= κ2
s cosh2 ρ − ω2 sinh2 ρ − ν2k2 (2.16)

and the second equation of (2.14) can be integrated to give

θ′
2

= −ν2 cos2 θ + ν2k2 (2.17)

where the integration constant is fixed by the conformal gauge constraint. Now for the

Z = 0 brane, one has the Dirichlet boundary condition ρ = 0 and θ = π/2 at σ = 0, π.

The solution to the equations (2.16) and (2.17) satisfying the boundary condition at σ = 0

is given by the Jacobi elliptic function as [39]

cosh ρ =
1

dn(ω̃σ, k̃2)
, sin θ = dn(νσ, k2) (2.18)

where we have introduced

ω̃2 ≡ ω2 − ν2k2 , κ̃2
s ≡ κ2

s − ν2k2 , k̃2 =
κ̃2

s

ω̃2
. (2.19)

Note that the periodicity of the Jacobi elliptic function dn(x, k2) is given by 2K(k2) where

we have introduced the complete elliptic integral of the first kind K(k2) defined by

K(k2) =

∫ 1

0
dx

1√
1 − x2

√
1 − k2x2

. (2.20)
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Since we are interested in the open string for 0 ≤ σ ≤ π starting from and ending on

the Z = 0 brane at ρ = 0, we have the relations

ω̃π = 2K(k̃2) , νπ = 2K(k2) . (2.21)

The corresponding solution describes a string ending on the Z = 0 brane spinning around

the Z plane of S5 and Y1 + iY2 of AdS5 at the same time. The ground state of the Z = 0

open spin chain that does not involve any derivative type letters, e.g. DS
+Z, is described

by ρ(σ) = 0 which leads to the condition κs = νk with κ̃s = 0. Then this ground state

configuration carries the energy E and the S5 R-charge J [38],

E =

√
λ

2π
κs

∫ π

0
dσ cosh2 ρ =

√
λ

π
k K(k2) (2.22)

J =

√
λ

2π
ν

∫ π

0
dσ cos2 θ =

√
λ

π

[

K(k2) − E(k2)
]

, (2.23)

where

E(k2) =

∫ 1

0
dx

√
1 − k2x2

√
1 − x2

(2.24)

is the complete elliptic integral of the second kind. It is then straightforward to show that

2EB = E − J =

√
λ

π

(

1 − 4

e2
e
− 2πJ√

λ + · · ·
)

(2.25)

in the long string limit of large J . This agrees with EB in (2.11) in the large λ and the

large J limit. The J dependent correction in this spectrum stems from the finite size effect

of boundary degrees of freedom of the Z = 0 brane.

Next we turn to the open string description of the Y = 0 open spin chains. At σ = 0, π,

one has the Dirichlet boundary condition ρ = 0 in the AdS5 side and θ′ = 0 for the Z plane

which is parallel to the worldvolume directions of the Y = 0 brane. Again using the string

equations in (2.16) and (2.17), one may construct various solutions but we shall here simply

present a rather trivial solution,

θ = 0 , ρ = 0 (2.26)

with κs = ν with k = 1. This describes a pointlike string rotating in the equator r = 1,

which corresponds to the ground state of the Y = 0 open string carrying [38]

E = J =
1

2

√
λ ν . (2.27)

One may see that there is no finite size correction. Since this vacuum state preserves a

quarter of the sixteen supersymmetries, one has the non-renormalization of the ground

state energy Eg = E − J = 0 using the argument ref. [40]. The operator dual to this

ground state OJ
Y will be given in subsection 4.1.

– 6 –
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3 Two-point functions

3.1 The crucial role played by Routhian

A prescription on the computations of the two-point functions from the semi-classical string

solution was given in [10]. One of the points stressed there is that we cannot simply evaluate

the on-shell actions of the semiclassical solutions. Instead there are important corrections

from convolution with the string-state wave-functions. For point particles and strings only

rotating in S5 part of the background, these corrections just change the action into energy.

But for the strings rotating in AdS part as well, the story is more involved. We need to

treat certain zero modes carefully. And the proposed corrections in this case reads

∆S = −
∫

dτdσ(~Π − ~Π0) · (~̇Y − ~̇
0Y ) (3.1)

where ~Y0 and ~Π0 are respectively so called zero-modes of the coordinate ~Y and the mo-

mentum ~Π. It is also stated there that we should use the embedding coordinates Y ’s which

respect the SO(2, 4) symmetry.

Though the above prescription works well for all cases considered there, we found that

this turns out to be problematic for more general cases. As an example, for the open string

solution in subsection 3.4, we do not obtain any sensible result following the prescription.

And the problem is already there for the closed string counterpart of the open string

solution. Thus we need some generalization of the prescription.

Through trial and error, we now propose to use the Routhian to handle the string state

contribution. Our suggestion is as follows. Whenever there is a conserved quantity Qa for

the solution (except the energy) with the corresponding cyclic coordinate ya, we perform

the Legendre transform

LR = L −
∑

a

Qaẏ
a , (3.2)

to yield the Routhian. For the further variation of the Routhian, the conserved charge Qa

should be held fixed.

For the strings only spinning inside S5, the conserved charges are three spins J1, J2, J3

in S5 and the Routhian coincides with the energy. Our new prescription goes back to the

old one in [10] for these strings. It is not hard to see that it is also the case for the string

rotating in both AdS5 and S5 studied there. However as we have already mentioned, the

generalization of the prescription in [10] is needed for more complicated cases.

We also find that, interestingly, the Routhian plays a similar role when we compute

the two-point function from a giant graviton (a D3 brane inside S5) in the next subsection.

3.2 Maximal giant gravitons

In this subsection, we will compute the two-point function of local operators dual to maxi-

mal giant graviton which is a D3 moving in S5. More precisely, the operator we focus on is

OD3 = detZ. As we have reviewed, the dual object in the gravity side is the Z = 0 giant

graviton brane.

– 7 –



J
H
E
P
0
6
(
2
0
1
1
)
0
1
4

For this computation, we have to use the Poincare coordinate for AdS5. The corre-

sponding metric is given by

ds2
AdS5

=
1

z2

[

− dt2 +
3
∑

i=1

dx2
i + dz2

]

. (3.3)

The two-point function we want to compute in this subsection is

〈O†
D3(t = tf ,x = 0)OD3(t = 0,x = 0))〉 , (3.4)

and, as in [10], we need to first find the suitable classical D3 brane solution. The worldvol-

ume coordinates of this D3 brane is (τ, θ1, θ2, θ3), where θi are three directions (α, φ1, φ2)

of the S3 inside S5. The part of nontrivial embedding involves t(τ), z(τ), φ(τ) directions

with r being a constant1. The boundary conditions read

(

t(−s/2), z(−s/2)
)

= (0, ǫ),
(

t(s/2), z(s/2)
)

= (tf , ǫ). (3.5)

The resulting induced metric becomes

ds2
ind =

[ −ṫ2 + ż2

z2
+ (1 − r2)φ̇2

]

dτ2 + r2dΩ2
3 (3.6)

where dot denotes a derivative with respect to τ .

The action of D3-brane is given by

ID3 = IDBI + ICS = −TD3

∫ √−γ + TD3

∫

P [C4], (3.7)

where γab is the induced metric of D3 brane, P [C4] is the pullback of Ramond-Ramond

four-form potential and TD3 is the tension of D3-brane,

TD3 =
1

(2π)3gsα′2
=

N

2π2
. (3.8)

For the solution at hand, after integration over S3, the DBI part of the Lagrangian

becomes

LDBI = −TD3Ω3r
3

√

ṫ2 − ż2

z2
− (1 − r2)φ̇2, (3.9)

where Ω3 = 2π2 is the volume of unit S3. The Chern-Simons part is the same as the one

in [29]:

LCS = φ̇Nr4, (3.10)

with

L = LDBI + LCS. (3.11)

The angular momentum carried by the giant graviton brane is given by

J =
∂L
∂φ̇

=
Nr3(1 − r2)φ̇

√

ṫ2−ż2

z2 − (1 − r2)φ̇2
+ Nr4. (3.12)

1We will narrow down to the case with r = 1 shortly.
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And one has J = N for the maximal case of r = 1.

It can be checked that

t = R tan κτ + t0, z =
R

cos κτ
, (3.13)

is the solution of the equations of motion. The boundary condition z(±s/2) = ǫ implies

R

cos κs
2

= ǫ. (3.14)

Since ǫ is very small, we can see that s cannot be real. We can write s = −is̃ with s̃ being

real. Then the worldsheet coordinate τ and the spacetime coordinate t have to be purely

imaginary. From t(−s/2) = 0, t(s/2) = tf , we get

κ ∼ 2

s̃
log

|tf |
ǫ

. (3.15)

As we discussed in the previous subsection in detail, we proposed that it is the Routhian

which gives the correlation function. Now the only conserved charge besides the energy is

the angular momentum J . It is easy to see that for maximal giant graviton, the Routhian

is nothing but the DBI part of the action:

LDBI = −Nκ = −2N

s̃
log

|tf |
ǫ

(3.16)

and

IDBI =

∫ −is̃/2

+is̃/2
LDBIdτ = −2iN log

|tf |
ǫ

. (3.17)

We are thus led to

exp(iIDBI) =

( |tf |
ǫ

)−2N

(3.18)

which is the expected result of the two-point function 〈O†
D3(tf )OD3(0)〉.

3.3 Nonmaximal giant gravitons in S5

We begin with the D3 brane action

L = −TD3

2

√−γ
(

γab∂aX
m∂bX

nGmn(X) − 2
)

+ LCS (3.19)

where γab is the world volume metric which is dynamical now. Since LCS is metric inde-

pendent, the equations for the worldvolume metric γab become

γab

(

−1 +
1

2
γcd∂cX

m∂dX
nGmn(X)

)

= ∂aX
m∂bX

nGmn(X) . (3.20)

Taking trace of this equation, one finds

γcd∂cX
m∂dX

nGmn(X) = 4 . (3.21)

– 9 –
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We partially solve the problem by the choice γijdσidσj = dΩ2
3 and integrate the Lagrangian

density over the S3. The resulting Lagrangian then becomes

L = −N

2
r3 b

(

−
(−ṫ2 + ż2

z2
+ (1 − r2)φ̇2

)

1

b2
+ 1

)

+ Nr4φ̇ (3.22)

where b =
√−γ00. We have set ṙ = 0 consistently since we are interested in the solution

with fixed radius. The angular momentum

J = Nr3(1 − r2)
φ̇

b
+ Nr4, (3.23)

is a conserved quantity as a result of the equation of motion. By the Legendre transform,

one now introduce the Routhian

LR = L − φ̇J =
N

2
r3

(−ṫ2 + ż2

z2 b
− b

(

(J/N − r4)2

(1 − r2)r6
+ 1

))

(3.24)

One may check that all the resulting equations of motion are equivalent to the ones got

from the Lagrangian before the transformation. The equation for b reads

− −ṫ2 + ż2

z2 b2
−
(

(J/N − r4)2

(1 − r2)r6
+ 1

)

= 0 . (3.25)

Using this, the equation for r becomes

6r2

(

(J/N − r4)2

(1 − r2)r6
+ 1

)

+ r3 d

dr

(

(J/N − r4)2

(1 − r2)r6

)

= 0 , (3.26)

whose stable solution is r2 = J/N . Inserting this solution to LR, one gets the effective

Lagrangian for the AdS part:

LR =
N

2
(J/N)

3
2

(−ṫ2 + ż2

z2 b
− bN/J

)

. (3.27)

The desired solution of this system is given by (3.13) with b = κ
√

J/N , which leads to

LR = −Jκ . (3.28)

The treatment afterward is the same as the maximal giant case.

3.4 The two-point functions from giant gravitons with open strings

Let us consider the two-point function 〈O†J
Z (x)OJ

Z(0)〉 with the operator OZ corresponding

to the ground state of Z = 0 open spin chain without involving any derivative type operators

DM . The open string solution dual to the single operator is give in section 2. We can use

the idea in [10] to find the open string solution for two-point function:

x(τ) = R tanh κτ + x0, z(τ) =
R

cosh κτ
,

sin θ(σ) = dn(νσ, k2) , φ = ντ , (3.29)
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with iκ ≡ κs = νk. The boundary conditions x(−s/2) = 0, x(s/2) = x, z(±s/2) = ǫ give

the following constraints:

x0 = x/2, x = 2R tanh
κs

2
,

R

ǫ
= cosh

κs

2
. (3.30)

There are two parts of contributions to this two-point function. The first part is from

the Routhian of the D3-brane which is discussed in subsection 3.2. The second part is from

the Routhian of the open string which is just the same as the energy of the open string.

The computations are the same as the ones for the closed string case in [10]. And finally

we obtain

〈O†J
Z (x)OJ

Z(0)〉 = |x|−2N−2Eopen , (3.31)

with Eopen given in (2.22). The computation of the two-point function 〈O†J
Y (x)OJ

Y (0)〉
from the point-like open string solution in section 2 can be treated in a similar manner.

The string solution is

x(τ) = R tanh κτ + x0, z(τ) =
R

cosh κτ
,

θ = 0 , φ = ντ , iκ = ν, (3.32)

together with similar constraints from the boundary conditions.

Now we turn to the open string inside AdS5 [39]. We try the same ansatz as in (2.12)

Y5 + iY0 = cosh ρ(σ) eiκsτ

Y1 + iY2 = sinh ρ(σ) eiω τ , (3.33)

with Y3 = Y4 = 0 to describe the spinning open-string solution ending on the giant graviton

branes. We choose the range of string coordinate σ to be 0 ≤ σ ≤ π. For the S5 part,

we assume that the string stays at a point in S5 that satisfies the required open-string

boundary conditions. The contribution from this part vanishes in this case.

The equation of motion for the string becomes

ρ′′ = (κ2
s − ω2) sinh ρ cosh ρ . (3.34)

Integration of this equation leads to

ρ′
2

= κ2
s cosh2 ρ − ω2 sinh2 ρ + a , (3.35)

where a is the integration constant. We also have the conformal gauge constraint

~̇Y · ~̇Y + ~Y ′ · ~Y ′ = 0 (3.36)

~̇Y · ~Y ′ = 0. (3.37)

The latter condition is satisfied automatically for any ansatz of the form in (3.33) and the

former one is solved by setting a = 0. Below for the later purpose, we shall relax this

condition a = 0 and solve the equation of motion for general a.
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Figure 1. The open string starting from and ending on the giant graviton at ρ = 0 is rotating in

the (Y1, Y2) plane.

The equation (3.35) is solved by

cosh ρ(σ) =
1

dn(ω̄σ, k2)
, (3.38)

where we have defined

k̄2 ≡ κ̄2
s

ω̄2
, ω̄2 ≡ ω2 + a , κ̄2

s ≡ κ2
s + a . (3.39)

Since we are considering the open string starting from and ending on the giant graviton at

ρ = 0, we find the relation

ω̄π = 2K(k̄2) . (3.40)

The energy and the angular momentum are given by

E =

√
λ

2π
κs

∫ π

0
dσ cosh2 ρ,

S =

√
λ

2π
ω

∫ π

0
dσ sinh2 ρ (3.41)

which are related to each other by

E =
κs

2

√
λ +

κs

ω
S . (3.42)

Using the solution in (3.38), one finds

E =

√
λ

π

κs

ω̄

E(k̄2)

1 − k̄2
,

S =

√
λ

π

ω

ω̄

(

E(k̄2)

1 − k̄2
− K(k̄2)

)

. (3.43)

As in [10], we do the transformation Y0 → iY4, Y4 → iY0, κs → −iκ and get

Y4 = cosh ρ(σ) sinh κτ, Y5 = cosh ρ(σ) cosh κτ,

Y1 = sinh ρ(σ) cos ωτ, Y2 = sinh ρ(σ) sin ωτ, Y0 = Y3 = 0. (3.44)

– 12 –



J
H
E
P
0
6
(
2
0
1
1
)
0
1
4

In Poincare coordinate, this solution is

x1 = eκτ tanh ρ(σ) cos ωτ,

x2 = eκτ tanh ρ(σ) sin ωτ,

z =
eκτ

cosh ρ(σ)
, (3.45)

with t = x3 = 0.

Now we use the same conformal transformation as the one used in [10] and get

x1 =
tanh ρ(σ) cos ωτeκτ + 1

Re2κτ

1 + 2
R tanh ρ(σ) cos ωτeκτ + 1

R2 e2κτ
,

x2 =
tanh ρ(σ) sin ωτeκτ

1 + 2
R tanh ρ(σ) cos ωτeκτ + 1

R2 e2κτ
,

z =

1
cosh ρ(σ)e

κτ

1 + 2
R tanh ρ(σ) cos ωτeκτ + 1

R2 e2κτ
, (3.46)

again with t = x3 = 0. Notice that for fixed τ , the value of z depends on σ for the current

case. So we need a slight modification of the boundary conditions used in [10]. We choose

the following boundary conditions:

x1(τi, σ) = 0, x1(τf , σ) = x, x2(τi, σ) = x2(τf , σ) = 0, (3.47)

min 0≤σ≤π z(τi, σ) = min 0≤σ≤πz(τf , σ) = ǫ. (3.48)

From these, we get

x = R, κ =
1

s
(2 log R − 2 log ǫ + log(1 − k2)), (3.49)

where s = τf − τi and we have used the fact that the minimum value of dn(ω̄σ, k2) is given

by
√

1 − k2 for our spinning string. Now we rescale ǫ, such that

x = R, κ =
1

s
(2 log R − 2 log ǫ). (3.50)

We remark here that one can also use other boundary condition by changing the value

of z at t = ti, tf into the maximal value of z or the mean value of z or the value of z at any σ.

These boundary conditions give the same results if we always use the rescaled ǫ like above.

As we discussed in subsection 3.1, we need to use the Routhian to compute the two-

point functions. For the present problem, the conserved quantity is the angular momentum

S and the corresponding coordinate φ is defined by Y1 + iY2 = |Y1 + iY2|eiφ with φ̇ = ω.

Evaluation of the action can be expressed as

I =

√
λ

4π

∫

dτdσ
(

κ2 cosh2 ρ + ω2 sinh2 ρ − ρ′
2
)

. (3.51)

This leads to the corrected action of the form,

IR = I −
∫

dτSω =

√
λ

4π

∫

dτdσ
(

κ2 cosh2 ρ − ω2 sinh2 ρ − ρ′
2
)

(3.52)
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where we use the expression for the angular momentum in (3.41). Using the equation of

motion in (3.35), the above expression can be reduced to

IR =

√
λ

2π

∫

dτdσ(κ2 cosh2 ρ − a) = 2
(κ

2

√
λ +

κ

ω
S − a

4κ

)

log R/ǫ. (3.53)

We would then like to minimize the above expression with respect to the modular pa-

rameter s that is proportional to κ = iκs. One further note that ω̄ will be completely

determined as a function of k̄ by (3.40). Using the definition of k̄, κ̄s is also function of

only k̄. Using the expression in (3.43), we find also that ω is completely fixed as a function

of k̄ when we fix S as a constant. Noting a = ω̄2 − ω2, one finds that a is also completely

determined as a function of k̄. Thus the extremization condition of IR with respect to

modular parameter s is equivalent to that of extremization of IR with respect to k. As

summarized in the appendix, dIR/dk̄2 = 0 gives a = 0, which is the desired solution of the

Virasoro constraint. One then has

ei(ID3
R

+IR) ∝ 1

(x/ǫ)2∆
(3.54)

with ∆ = N + κs

2

√
λ + κs

ω S including the contributions from the D3-brane.

4 Three-point functions

4.1 Field theory side

In this subsection, we discuss the computation of three-point function in N = 4 SYM

theory, which will be used for the later comparison with the semiclassical computation.

We begin our discussion with the correlation functions involving the vacuum-state

operator of the Y = 0 open spin chain,

OJ
Y = dJ

N

1

(N − 1)!
ǫ
j1...jN−1A
i1...iN−1B Y i1

j1
· · ·Y iN−1

jN−1
(ZJ)BA . (4.1)

In our convention, the normalization factor dJ
N is defined by the two-point function

〈O†J
Y (x)OJ

Y (0)〉 =
1

(x2)N+J−1
(4.2)

with a unit normalization. Note that the position space propagator of the fields X,Y and

Z is given by

I(x) =
g2

YM

4π2

1

x2
≡ s2

x2
, (4.3)

in the standard convention of the N = 4 SYM theory.

The relevant Feynman diagram of the free field contractions is depicted in figure 2:

The part involving separated parallel lines represents the contractions of elementary fields

inside the subdeterminant parts of the operators whereas the remaining square represents

the contractions in the (ZJ)AB parts. With the operator of the normalization OJ
Y /dJ

N , the

subdeterminant part has (N − 1)! independent ways of contractions for given indices A
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A B

Figure 2. The relevant Feynman diagram of free field evaluation for the two-point function of the

Y = 0 ground state is depicted. We illustrate here the case of N = 16 and J = 11.

A B

Figure 3. The relevant Feynman diagram of free field evaluation for cY
123 is depicted here. We

illustrate the case of N = 16, J = 7 and ℓ = 4.

and B and the (ZJ)AB part involves NJ−1 factor from the closed loops of indices. Further

including the N2 possibilities of the indices (A,B), one has

〈O†J
Y (x)OJ

Y (0)〉 (dJ
N )−2 =

[

I(x)
]N+J−1

N2 NJ−1 (N − 1)! . (4.4)

Therefore, the normalization factor is determined as

(dJ
N )−2 = (s2)

N+J−1 NJ N ! . (4.5)

This computation is valid for all range of λ, which can be justified using the non-

renormalization argument of 1/2, 1/4 and 1/8 BPS operators for the two-point functions

in ref. [40].

Next we turn to the evaluation of the 1/4 BPS three-point correlation function

〈O†J+ℓ
Y (x1)OJ

Y (x2)OZℓ(x3)〉 = cY
123

1

(x2
12)

N+J−1 (x2
13)

ℓ
(4.6)

where OZℓ denotes the half BPS chiral primary operator oriented in the Z direction given

by OZℓ = cℓ tr Zℓ with cℓ = (2π)ℓ/(
√

ℓλℓ/2) .

The corresponding Feynman diagram for the free field evaluation is illustrated in fig-

ure 3. We note that there are J − 1 independent ways to put the operator OZℓ inside the

box and ℓ independent ways to pick a particular Z in tr Zℓ. The remaining counting of the

combinatoric factors is similar to that of the two-point function. Therefore, one is led to

cY
123 = dJ+ℓ

N dJ
Ncℓ N !NJ+ℓ−1 (s2)

N+J+ℓ−1 (J−1) ℓ =
1

N

√
ℓ (J−1) , (4.7)

– 15 –



J
H
E
P
0
6
(
2
0
1
1
)
0
1
4

which is again valid for all range of the ‘t Hooft coupling λ due to the nonrenormalization

of the 1/4-BPS three-point correlation function [40].

This kind of non-renormalization argument does not apply for the three-point function

involving the operator OJ
Z which represents a particular ground state of the Z = 0 open

spin chain carrying the (Z plane) R-charge J + N − 1. This is because the three-point

function of our interest below

〈O†J+ℓ
Z (x1)OJ

Z(x2)OZℓ(x3)〉 = cZ
123

1

(x2
12)

N+J−1+2EB (x2
13)

ℓ
, (4.8)

does not preserve any of the sixteen supersymmetries. We expect generic perturbative

renormalization of the three-point function and do not have any field theoretic means to

compute the corresponding structure constant in the strongly coupled regime.

4.2 D brane contribution to the structure constants

In the following two subsections, we shall concern about the holographic computations

of the structure constants cY
123 and cZ

123. This subsection will be devoted to the D-brane

contributions cD3. And we will focus on the open string contributions cstring in the next

subsection. We shall compute the three-point functions in the limit of the operator

product expansion (OPE)

R12 = |x1 − x2| ≪ L12 ≡ 1

2
(x1 + x2) , (4.9)

with the choice of x3 = 0. Our prescription of holographic computations of these

three-point functions is along the way in [16, 17]. The light chiral primary operator is

dual to specific fluctuations of background fields in string theory side. This fluctuation

will lead to the fluctuation of the classical D3-brane and open string solutions used in the

calculation of the two-point functions. The variant of the on-shell action of the coupled

system of D-brane and open string will give the three-point functions in the large N and

large λ limit. This can be understood as that we treat the brane and string as source for

the supergravity fields and read off the OPE coefficients from the coupling to the brane

and string of the bulk supergravity modes dual to the light operators [12, 14].

To the leading order of gs and α′, the classical onshell action of the coupled system of

the brane and the string is the sum of the brane action ID3 and the string action Istring. So

the variation of the on-shell action of the coupled system is equal to δID3 + δIstring. This

leads to the fact that the OPE coefficient c123 is the sum of cD3 and cstring.

The fluctuations of the background AdS5 ×S5 metric gµν , gαβ corresponds to the half-

BPS chiral primary operators are [6]

hµν =

(

− 6

5
ℓ gµνsI +

4

ℓ + 1
∇(µ∇ν)sI

)

YI , (4.10)

hαβ = 2 ℓ gαβ sI YI , (4.11)

where we use µ, ν, . . . for the coordinate indices of the AdS5 part and α, β, . . . for the

coordinate indices of the S5 part, and the round parentheses of (µν) denotes the symmetric
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traceless part. The fluctuation of the background four-form potential is [6]

aµ1···µ4
= −4ǫµ1···µ5

∇µ5sIYI , (4.12)

aα1···α4
= 4ǫα1···α5

sI∇α5YI . (4.13)

The spherical harmonic function YI in the S5 coordinate space is entirely fixed by the choice

of the chiral primary operators: for OZℓ = cℓtr(Z
ℓ) and OY ℓ = cℓtr(Y

ℓ), the corresponding

harmonic functions are given by 2−ℓ/2 Zℓ and 2−ℓ/2 Y ℓ respectively.

The linear operation sI is related to a source s0(~x
′) at the boundary of AdS5 through

the following relation: sI(~x, y) =
∫

d4~x′ Gℓ(~x
′; ~x, y)sI

0(~x
′) where the bulk-to-boundary prop-

agator Gℓ is given by

Gℓ(~x
′; ~x, y) = gℓ

(

y

y2 + |~x − ~x′|2
)ℓ

, gℓ =
ℓ + 1

22−ℓ/2N
√

ℓ
. (4.14)

In the OPE limit R12 ≪ L12, one has

Gℓ ≃ gℓ
zℓ

L2ℓ
12

, (4.15)

and also

hµν ≃
(

− 2ℓgµνsI +
4ℓ

z2
δz
µδz

νsI

)

YI . (4.16)

The three-point function we want to compute is proportional to δID3

δs0(~x′=0) .

We begin with the DBI action of the D3-brane

IDBI = −TD3

∫ √
γ . (4.17)

Its variation due to the above fluctuation of the background fields is given by

δIDBI = −1

2
TD3

∫

d4σ
√

γ γab(hµν∂aX
µ∂bX

ν + hαβ∂aX
α∂bX

β)

= −1

2
TD3

∫

d4σ
√

γ

(

−2ℓsIYI +
4ℓsIYI

κ2z2

(

∂z

∂τ̃

)2

+ 6ℓsIYI

)

= −TD3

∫

d4σ
√

γ 2 ℓ sI YI

(

2 − 1

cosh2 κτ̃

)

, (4.18)

where τ̃ = iτ , and we know that τ̃ is real from subsection 3.2.

Following the prescription just reviewed, replacing sI by the bulk-to-boundary propa-

gator,

Gℓ ≃ gℓ
zℓ

L2ℓ
12

=
gℓR

ℓ
12

2ℓL2ℓ
12 coshℓ κτ̃

, (4.19)

one finds that the contribution of the DBI part of the action to the structure constant

takes the form

cDBI =
gℓ ℓN

2ℓ−1

∫

dτ̃ κ
YI

coshℓ κτ̃

(

−2 +
1

cosh2 κτ̃

)

. (4.20)
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The variation of the Chern-Simons term is given by

δIWZ =
N

2π2

∫

4 sin3 θ cos θ sin α cos αsI(−∂θYI)φ̇ dτ ∧ dφ1 ∧ dα ∧ dφ2 , (4.21)

and the contribution from this part to the structure constant is proportional to

cWZ =
gℓ N

2ℓ+1π2

∫

4 sin3 θ cos θ sinα cos α(−∂θYI)φ̇

coshℓ κτ̃
dτ̃ ∧ dφ1 ∧ dα ∧ dφ2. (4.22)

Now we use the above formula to show that the contribution from the Z = 0 (Y = 0)

brane part to the structure constants cZ
D3 (cY

D3) is vanishing. We first consider the case

of cZ
D3 where the corresponding spherical harmonic function is 2−ℓ/2 Zℓ = 2−ℓ/2 cosℓ θeiℓφ.

This is identically zero on the Z = 0 brane which is at θ = π/2. So the contribution

from the DBI part is vanishing. As for the Chern-Simons part, we notice that cos θ ∂θ(Z
ℓ)

vanishes on the brane for ℓ ≥ 1, and this leads to the vanishing of the contributions since

ℓ ≥ 2 for the chiral primary operators.

The Y = 0 brane contribution cY
D3 can be related to the the Z = 0 brane contribution

with the 1/2 BPS operator OY ℓ = cℓtr(Y
ℓ) by an appropriate SO(6) rotation. The cor-

responding spherical harmonic function is given by 2−ℓ/2Y ℓ = 2−ℓ/2 sinℓ θ sinℓ αeiℓφ2 . The

contribution from the DBI part is proportional to the integral

cDBI ∝
∫ 2π

0
dφ2 eiℓφ2 (4.23)

which is zero for ℓ 6= 0. As for the contribution from the Chern-Simons part, we have

∂θ(Y
ℓ) = 0 on the Z = 0 brane and the corresponding contribution again vanishes. This

shows that cY
D3 = cZ

D3 = 0.

4.3 Open string contributions

In this subsection we compute the open string contribution to the structure constants cY
123

and cZ
123. Since we are dealing with the three-point functions of one light chiral primary

operator and two heavy operators represented by semiclassical string trajectory, the method

developed in ref. [16, 17] is appropriate. The derivation of the corresponding formula is

originally for the closed string state. The derivation for our open string states is then

essentially the same as the closed string case in ref. [16] but simply replacing the closed

string trajectory by the open string one. One finds that

cstring =
2ℓ(ℓ + 1)

√
ℓλ

8πNRℓ
12

∫

d2σYIzℓ

[

(∂~x)2 − (∂z)2

z2
− hαβ∂Xα∂Xβ

]

(4.24)

where one evaluates the above integral with the on-shell open string trajectory in AdS5×S5

and ℓ is the dimension of the light chiral primary operator as before. The rest is basically

straightforward: we use the semiclassical solution of the open string state constructed in

the previous section to evaluate the contribution to the structure constant.
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Let us now start with the open string contribution to the structure constant cY
123.

Using the open string trajectory in (3.32), one has

1

z2

[

(∂~x)2 − (∂z)2
]

=
2κ2

cosh2 κτ
− κ2

hαβ ∂Xα∂Xβ = −κ2 (4.25)

with YI = 2−ℓ/2 cosℓ θeiℓφ = 2−ℓ/2e−ℓκτ . A straightforward computation then leads to the

expression,

cY
string =

J
√

ℓ (ℓ + 1)

N 2ℓ+1
κ

∫ ∞

−∞

dτ
e−ℓκτ

coshℓ+2 κτ
=

1

N
J
√

ℓ . (4.26)

Since the Y = 0 brane contribution is vanishing as computed in the previous section, our

final semiclassical result is given by

cY
123 = cY

D3 + cY
string =

1

N
J
√

ℓ , (4.27)

which agrees with the field theory result in the large J limit.

Let us now turn to the case of the Z = 0 open string contribution to cZ
123: By a

straightforward evaluation using the solution (3.29), one has

1

z2

[

(∂~x)2 − (∂z)2
]

=
2κ2

cosh2 κτ
− κ2

hαβ ∂Xα∂Xβ = κ2 − 2κ2 sn2(νσ, k2) (4.28)

with YI = 2−ℓ/2 kℓ snℓ(νσ, k2)e−ℓκτ/k. This leads to the expression

cZ
string =

J(ℓ + 1)
√

ℓ

N 2ℓ+2

kℓ

K(k2)−E(k2)

∫ ∞

−∞

dx
e−ℓx/k

coshℓ x

×
∫ 2K(k2)

0
ds snℓ(s, k2)

(

sn2(s, k2) − tanh2 x
)

, (4.29)

for the Z = 0 open string trajectory. Since k < 1, the x integral diverges which implies

a divergent cZ
string = ∞. Therefore we have a trouble in this case since our semiclassical

value of cZ
123 diverges whereas the field theoretic one should be finite for a given λ. We

shall comment on this issue in the last section.

5 Discussions

In this paper, we studied the holographic computation of two- and three-point functions

of giant graviton with open strings. We discussed the string configurations corresponding

to the ground states of Z = 0 and Y = 0 open spin chain, and the spinning string in AdS5

corresponding to the derivative type impurities in Z = 0 open spin chain as well. For

the two-point functions, we found both the D3-brane configuration and the open string

configurations connecting two insertions of the composite operators at the boundary.

There is only one subtle point: We had to use the Routhian rather than energy directly
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in the computation. For the three-point functions, we consider two giant gravitons with

open strings coupled to a half-BPS chiral primary operator. In the field theory side, we

computed them in the free field limit. In the limit of OPE and with the configurations for

the computation of two-point functions, we computed the three-point functions holograph-

ically. In the holographic computation, we carefully took the D-brane contribution into

account, which turned out to be vanishing. For the point-like string dual to the ground

state of Y = 0 open spin chain, we found perfect agreement. The reason of this agreement

may be the nonrenormalization of this three-point correlation function [40] which we

mentioned in the field theory computations. But for the string dual to the Z = 0 open spin

chain, we obtained a divergent structure constant from holographic computation. This

divergence may be canceled by the 1/N corrections to the contributions of D-brane because

of the attached open strings. These 1/N contributions also include quantum corrections of

D branes and there is currently no available method to compute these quantum corrections

for generic, non-BPS states of D branes. We also wish that an improved understanding of

the prescription for three-point functions will shed light on this subtle issue.

The computation in this paper is based on the picture that both the D-brane and

open string contributes to the computation. This is reasonable as the dual operators

include both the part corresponding to the giant graviton and the part corresponding to

the open spin chain. However, this picture should be changed for other kinds of open

spin chain [41–43]. For example, in the case studied in [41, 42], there are two kinds of

integrable spin chain, closed one and open one, which decouple to the leading order. In

other words, the presence of D7-brane just provides boundary conditions for the open

semiclassical string. To compute the correlation functions of the open string state, the

contribution from D-brane could be neglected safely.

In our work, we discussed the giant gravitons in S5. It would be nice to consider the

case with the giant graviton in AdS5. It is also interesting to compute holographically the

correlation functions of these giant gravitons and non-local operators, such as Wilson loops.
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A Extremal condition for IR

In this appendix, we shall show that the extremal condition for IR with respect to s is given

by a = 0. Using the relation (3.40) and the expression in (3.43), ω and κ̄2
s are expressed as

√
λ ω =

2S K(x)
E(x)
1−x − K(x)

, κ̄2
s =

4x

π2
K2(x) , (A.1)
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Where x = k̄2 and S is taken as a constant in k. Then a can be expressed as a function

of x by

ω̄2 − ω2 = a =
4K2(x)

π2

[

1 − π2S2

λ

(E(x)

1 − x
− K(x)

)−2
]

. (A.2)

Note also

da

dx

∣

∣

∣

a=0
=

8

π2
K2(x)F (x) (A.3)

where

F (x) =
d

dx
log

(

E(x)

1 − x
− K(x)

)

=
1

2(1 − x)

2E(x)
1−x − K(x)
E(x)
1−x − K(x)

. (A.4)

We then like to show that

A(x) ≡ d

dx

(κ

2

√
λ +

κ

ω
S − a

4κ

)
∣

∣

∣

a=0,κ=iκs

= 0 . (A.5)

This can be rearranged to

iκs A(x) = −
√

λ

4

d

dx
κ̄2

s +

[

− π

4K(x)

d

dx

(

κ̄2
s − a

)

+ x
dω

dx

]

S . (A.6)

We also note that

d

dx
κ̄2

s =
4

π2

K(x)E(x)

1 − x
(A.7)

√
λ

dω

dx
=

d

dx

(

2K(x)S
E(x)
1−x − K(x)

)

− 2K(x)S
E(x)
1−x − K(x)

F (x) . (A.8)

Inserting these two together with (A.3) into iκsA(x) in (A.6), one finds that iκsA = 0,

which proves that a = 0 is the extremal condition for IR.
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