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1 Introduction

The AdS/CFT correspondence [1–5] is one of the major achievements of theoretical physics

of the last few years. Indeed, this correspondence has provided analytic tools to explore

the strong coupling regime of a large variety of gauge theories in the planar limit Nc → ∞.

Originally, the AdS/CFT correspondence was formulated as a duality between N = 4

super Yang-Mills (SYM) gauge theories in four-dimensions and type IIB supergravity in

AdS5×S5. Extending the duality beyond this highly symmetric theory is clearly a problem

which deserves to be studied and, for this reason, there has been much effort devoted to

constructing supergravity duals to theories with lower amounts of supersymmetry and

different field content in several spacetime dimensions.

A general approach to construct gravity duals with lower amounts of supersymmetry

consists of considering higher dimensional branes wrapping cycles inside a non-compact
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manifold of special holonomy [6]. At energies small compared with the size of the cycles

these solutions provide gravity duals of SYM theories living on the unwrapped dimensions of

the brane. A very useful strategy to find supergravity solutions corresponding to wrapped

branes is the use of the appropriate gauged supergravities, which are lower-dimensional

theories in which the brane behaves as a domain wall. In these theories one can identify

the spin connection along the wrapped cycle with a gauge field, implementing in this way

the so-called topological twist [7]. In this approach the ten-dimensional background is

obtained from the lower dimensional one by using the corresponding uplifting formulae.

This program has been successfully carried out to find duals to gauge theories in several

spacetime dimensions with different amounts of supersymmetry [8, 9]–[19].

Another important generalization of the AdS/CFT correspondence has been the ad-

dition of matter degrees of freedom transforming in the fundamental representation of the

gauge group, i.e. quarks. This new matter sector can be added by including flavor branes,

which extend along all gauge theory directions and, in order to make its worldvolume

symmetry a global symmetry from the gauge theory point of view, they should be also

extended along some other non-compact directions [20]. When the number Nf of flavor

branes is small compared with the number Nc of colors, one can treat the flavor branes as

probes which do not modify the background created by the color branes. This defines the

so-called quenched approximation which, on the field theory side, corresponds to consider-

ing the quarks as external fields that do not run in loops and, thus, to neglect the quantum

effects produced by the fundamentals. By studying the worldvolume physics in this probe

approximation one can address many interesting problems such as, for example, the meson

spectrum [21] (see [22] for a review).

When the number of flavors is of the order of the number of colors (Nf ∼ Nc) one

must face the problem of studying the deformation produced by the flavor branes on the

geometry. Computing this backreaction is, in general, a very complicated task. Indeed,

in these unquenched setups the flavor branes should be regarded as dynamical sources of

the different supergravity fields and, unless one adopts some simplifying assumptions, the

problem becomes, in many cases, intractable. For this reason, in this paper we will consider

the case in which the flavor branes are homogeneously distributed by forming a smeared

set. This smearing technique to add unquenched flavor was first introduced in [23] in a

non-critical string framework and in [24–26] in a well-controlled ten-dimensional context.

Subsequently, this approach has been successfully applied in several brane setups [27]–

[42, 43] (see [44] for a review).

In this paper we study the addition of unquenched flavor to backgrounds constructed

by wrapping D3-, D4- and D5-branes along two- and three-cycles of a Calabi-Yau threefold.

The unflavored backgrounds, which are dual to gauge theories in two and three dimensions,

have been constructed in refs. [6, 16, 17] from the appropriate gauged supergravity. Here

we reformulate these models in terms of a new set of variables which greatly simplify their

interpretation and allows the introduction of the corresponding flavor deformation in a neat

way. After this reformulation the background is determined by a set of functions depending

on two variables, which represent the radial variables inside the Calabi-Yau cone and in
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the space transverse to it. These functions satisfy a set of first-order differential equations,

which can be recast compactly in terms of a generalized calibration form.

The flavor branes for the setups considered here are extended across the directions

normal to the cycle that the color branes wrap. In order to obtain the backreaction of these

flavor branes on the background the key point is realizing that they act as sources for the RR

field and, as a consequence, they induce a violation of the corresponding Bianchi identity.

For a set of delocalized flavor branes the violation of the Bianchi identity compatible with

the preserved supersymmetry can be encoded in a simple modification (parametrized by

two functions) of the ansatz of the RR form, while the ten-dimensional metric has the same

form as in the unflavored case. By requiring certain regularity conditions, the functions

which parametrize the flavor deformation can be greatly constrained and, in fact, they

can be exactly matched with those obtained by a careful microscopic counting of the RR

charge distribution produced by a family of supersymmetric embeddings. In this paper we

will determine these embeddings and we shall perform the matching with the macroscopic

analysis for the three cases analyzed. Moreover, the backreacted backgrounds will be found

by a numerical integration of a PDE with sources.

The rest of this paper is organized as follows. In section 2 we will consider our first

background, namely the one generated by D3-branes wrapping a two-cycle in a Calabi-Yau

threefold and preserving four supercharges. This background is dual to a two-dimensional

gauge theory with N = (2, 2) supersymmetry. We first reformulate the results of [6]

for the unflavored case by introducing a second-order master differential equation whose

solutions determine the unflavored background in implicit form. Then, we analyze the flavor

deformation induced by a smeared set of D3-branes extended along two of the directions

normal to the cycle within the Calabi-Yau cone. This deformation is analyzed first from

the macroscopic point of view and, then, these results are reproduced from a microscopic

analysis of the embeddings. Section 2 ends with the presentation of the numerical results

for the flavored model.

Section 3 is devoted to the study of a gravity dual to N = 2 gauge theories in three-

dimensions generated by wrapping D4-branes on a two-cycle of a Calabi-Yau cone of com-

plex dimension three. The analysis in this section runs completely in parallel with the one

performed in section 2. In section 4 we consider the backgrounds with four supersymmetries

which are generated by D5-branes wrapping a three-cycle. The corresponding unflavored

solution was found in refs. [16, 17], while the macroscopic approach to adding flavor was

first introduced in ref. [39]. In section 4 we identify the deformation which corresponds to

a regular charge density distribution of flavor branes and we find a family of embeddings of

D5-branes which reproduces the result of the macroscopic formalism. Finally, in section 5

we summarize our results and present our conclusions.

2 N = (2, 2) 2d SQCD from wrapped D3-branes

The background dual to the two-dimensional gauge theory which we will analyze in this

section is generated by a stack of Nc D3-branes wrapping a two-cycle of a Calabi-Yau cone

of complex dimension three, according to the setup:
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Nc D3 − − © © · · · · · ·

where S2 represents the directions of the two-cycle C2 that the branes are wrapping and

N4 are the directions of the normal bundle to C2. In the above setup a circle represents

a wrapped direction, whereas the symbols “-” and “.” denote unwrapped worldvolume

and transverse directions respectively. We shall parametrize the cycle C2 by means of two

angular coordinates (θ, φ) with 0 ≤ θ < π and 0 ≤ φ < 2π. The normal bundle N4

is non-compact and will be parametrized by a radial coordinate σ, together with three

other angular coordinates. Moreover, the transverse space R
2 will be described by polar

coordinates (ρ, λ) with 0 ≤ ρ < ∞ and 0 ≤ λ < 2π. The ansatz for the ten-dimensional

metric of type IIB supergravity corresponding to this setup is:

ds210 = H− 1

2

[

dx2
1,1 +

z

m2

(
(dθ)2 + sin2 θ(dφ)2

)
]

+

+H
1

2

[
1

z
1

2

(

(dσ)2+
σ2

4

[
(w1)2+(w2)2+(w3+cos θdφ)2

]
)

+(dρ)2+ρ2(dλ)2
]

, (2.1)

where dx2
1,1 denotes the Minkowski metric in 1+1 dimensions, the wi (i = 1, 2, 3) are SU(2)

left-invariant one-forms satisfying dwi = 1
2ǫ
ijkwj ∧ wk and m is a constant with units of

mass which, for convenience we will take as:

1

m2
=
√

4πgsNcα
′ , (2.2)

with gs and α′ being respectively the string coupling constant and the Regge slope of

superstring theory. The metric ansatz (2.1) contains two functions, z, which controls the

size of the cycle C2, and the warp factor H. Both of them should be considered as functions

of the two radial coordinates ρ and σ, i.e. z = z(ρ, σ), H = H(ρ, σ). Moreover, as any

other background generated by D3-branes, the ansatz should be endowed with a self-dual

RR five-form F5. Let us write F5 as:

F5 = F5 + ∗F5 , (2.3)

where F5 can be represented in terms of a four-form potential C4 as:

F5 = dC4 . (2.4)

The explicit ansatz that we will adopt for C4 is:

C4 = g1w
1 ∧ w2 ∧ (w3 + cos θdφ) ∧ dλ+ g2Ω2 ∧ (w3 + cos θdφ) ∧ dλ , (2.5)

with g1 and g2 being two functions depending on both radial coordinates ρ and σ and Ω2

being the volume form of the two-sphere:

Ω2 = sin θdθ ∧ dφ . (2.6)
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We will determine the functions z, H, g1 and g2 of our ansatz by imposing the condition

that our background preserves four supersymmetries. In order to specify this condition it

is convenient to fix the following vielbein basis of one-forms for the metric (2.1):

e0,1 = H− 1

4 dx0,1, e2 =
H− 1

4

m

√
zdθ, e3 =

H− 1

4

m

√
z sin θdφ,

e4 =
H

1

4

z
1

4

dσ, e5 =
H

1

4

2z
1

4

σw1, e6 =
H

1

4

2z
1

4

σw2,

e7 =
H

1

4

2z
1

4

σ(w3 + cos θdφ), e8 = H
1

4dρ, e9 = H
1

4ρdλ. (2.7)

We shall now impose the vanishing of the supersymmetry variations of the dilatino and

gravitino of the the type IIB theory. The corresponding Killing spinors ǫ are required to

satisfy the following set of projections:

Γ2356ǫ = ǫ, Γ5647ǫ = −ǫ, Γ0123(iτ2)ǫ = ǫ, (2.8)

where ǫ is a doublet of Majorana-Weyl spinors of fixed ten-dimensional chirality and τ2
is the second Pauli matrix, which acts on the doublet ǫ. In (2.8) Γa1a2··· are antisym-

metrized products of constant Dirac matrices in the vielbein basis (2.7). Moreover, the

four unknown functions z, H, g1 and g2 must satisfy the following system of first-order

differential equations:

z′ = 8m2

√
z

ρσ2
(g2 − g1), ż =

m2σ√
z
H,

g′1 =
1

8

ρσ3

√
z
Ḣ − m2

16

ρσ4

z2
H2, ġ1 = −1

8

ρσ3

z
H ′ +m2σH

z
3

2

(g2 − g1),

g′2 = −1

4

ρσ2

√
z
H, ġ2 =

2

σ
(g2 − g1), (2.9)

where the prime (dot) denotes the partial derivative with respect to ρ (σ). Similarly to

other backgrounds studied in [18, 19, 27, 40], the system (2.9) can be reduced to the

following PDE for the function z(ρ, σ):

2ρz
√
z
(
σz̈ + ż

)
= σ

(
ρz′2 − 2zz′ − 2ρzz′′

)
. (2.10)

One can verify that, if z(ρ, σ) is known, the other three functions H, g1 and g2 of our ansatz

can be determined from the BPS system (2.9). Moreover, if (2.9) holds, the second-order

equations of motion of type IIB supergravity are satisfied. Notice also that the Killing

spinors ǫ satisfy the three independent projections (2.8), which means that the background

is 1
8 -supersymmetric and four supersymmetries are unbroken. It is easy to check that there

are two supercharges of each two-dimensional chirality, as it corresponds to the gravity

dual of an N = (2, 2) gauge theory.

The BPS system (2.9) can be written in a very compact and suggestive form in terms

of the so-called (generalized) calibration form K. For the case at hand K is a four-form,

which can be represented in the vielbein basis (2.7) as:

K =
1

4!
Ka1···a4e

a1···a4 , (2.11)
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where ea1···a4 = ea1 ∧ · · · ∧ ea4 . The different components of K are obtained from the

fermionic bilinears:

Ka1···a4 = H
1

4 ǫ†iτ2Γa1···a4ǫ , (2.12)

where ǫ is a Killing spinor of the background. Taking into account the projections satisfied

by the spinor and the normalization condition H
1

4 ǫ†ǫ = 1, we get the following expression

for K:

K = e01 ∧
(
e23 − e56 − e47

)
. (2.13)

The form K can be rewritten more compactly if one takes into account that the Kähler

form of the internal manifold in the frame (2.7) is just:

J = e23 − e56 − e47 . (2.14)

Then, if Vol(Min1,1) is the volume form of the Minkowski part of the metric (Vol(Min1,1) =

H−1/2dx0 ∧ dx1), one can write the calibration form K as:

K = Vol(Min1,1) ∧ J . (2.15)

One can verify that the supersymmetry preserving conditions (2.9) can be rewritten as:

dK = ∗dC4, d
(

H− 1

2
∗K
)

= 0 , (2.16)

where the star ∗ denotes the Hodge dual in the ten-dimensional geometry (2.1). Notice that

the first of the conditions (2.16) implies the following relation between the RR five-form

field strength and the calibrating form:

F5 = dK + ∗dK . (2.17)

2.1 Integration of the BPS system

The brane setup studied in this section can be realized in the context of five-dimensional

gauged supergravity [6]. In this approach one formulates an ansatz for the 5d metric, scalar

and gauge fields in which the different functions depend on one radial variable and, there-

fore, the corresponding BPS equations are ordinary differential equations. This BPS system

was obtained in section 3.2 of [6] and will not be repeated here. After uplifting the ansatz

of [6] to ten dimensions, and by performing a suitable change of variables, one can define

two radial coordinates ρ and σ in such a way that a metric of the type (2.1) and a five-form

as in (2.3)–(2.5) are obtained (see refs. [18, 19] for similar analysis in other brane setups).

Although we have not been able to analytically integrate the BPS system of [6], it turns

out that the different first-order equations can be combined to produce a single second-order

differential equation, whose solutions allow one to solve our BPS system (2.9) in implicit

form. In order to present this solution, let us introduce an auxiliary function τ = τ(z),

defined as the solution of the following ordinary second-order differential equation:

d2τ

dz2
=
[

2e2τ − 1

2z

]dτ

dz
. (2.18)
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Then, one can show that the PDE (2.10) can be solved in implicit form by taking z(ρ, σ)

as the solution of the equation:

ρ2

e2τ(z)
+

σ2

√
z dτdz

=
1

m2
. (2.19)

The other functions of our ansatz can also be obtained. Indeed, the warp factor H(ρ, σ)

corresponding to the function z(ρ, σ) of (2.19) is given by:

H =

√
z

m2
[

ρ2
√
ze−2τ

(
dτ
dz

)2
+ σ2e2τ

] , (2.20)

while the functions g1(ρ, σ) and g2(ρ, σ) are:

g1 =
σ4e2τ

8z

(dτ

dz

)−1
H , g2 =

σ2

8m2
√
z

(dτ

dz

)−1
. (2.21)

One can verify that z, H, g1 and g2, as given in eqs. (2.18)–(2.21), satisfy the system

of PDEs written in (2.9). It is also easy to check that, when m is given by (2.2), the

functions (2.21) give rise to the correct quantization of the flux of F5 for a stack of Nc D3-

branes. The auxiliary equation (2.18) can be easily integrated numerically. This numerical

solution can be used in (2.19)–(2.21) to get the different functions of our ansatz in the (ρ, σ)

plane. Before performing this numerical analysis, let us present in the next subsection some

approximate results for the region of the background in which the value of the function

τ is large which, as we shall argue, will turn out to correspond to the UV region of the

corresponding dual field theory.

2.1.1 Approximate UV solution

For large τ the master equation (2.18) can be written as:

d2τ

dz2
≈ 2e2τ

dτ

dz
=

d

dz

(
e2τ
)
, (2.22)

which can be immediately integrated, namely:

dτ

dz
= e2τ + c , (2.23)

with c being a constant of integration. An additional integration gives τ as a function of z:

e2τ =
c

e2c(z∗−z) − 1
, (2.24)

where z∗ is a new constant of integration which represents the value of z for which τ → ∞.

By making use of (2.24) in (2.19), we arrive at the following implicit relation for z(ρ, σ) in

the large τ region:

ρ2 +
σ2

√
ze2c(z∗−z)

=
c

m2
[

e2c(z∗−z) − 1
] . (2.25)
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Notice that for large τ one has z ≈ z∗ and, according to (2.25), we are far from the origin in

the (ρ, σ) plane. Thus, large τ corresponds to the UV region of the background, as stated

above. Furthermore, in this deep UV region we can take e2c(z∗−z) − 1 ≈ 2c(z∗ − z) on the

right hand side of (2.25) and, therefore z(ρ, σ) can be approximately written as:

z ≈ z∗ −
√
z∗

2m2

1

σ2 +
√
z∗ρ2

. (2.26)

Moreover, it follows from (2.19) that in the deep UV where, at leading order, z ≈ z∗ and
dτ
dz ≈ e2τ , one has:

σ2 +
√
z∗ρ

2 ≈
√
z∗
m2

e2τ . (2.27)

On the other hand, using these UV estimates in (2.20) and (2.21), one gets:

H ≈ z∗
m4

1

(σ2 +
√
z∗ρ2)2

, g1 ≈ 1

8m4

σ4

(σ2 +
√
z∗ρ2)2

, g2 ≈ 1

8m4

σ2

σ2 +
√
z∗ρ2

.

(2.28)

The above results suggest that, in the UV, the different quantities depend on σ and ρ

through the combination σ2 +
√
z∗ρ

2. Accordingly, let us introduce the following new

variables u and α:

σ = u sinα , (z∗)
1

4ρ = u cosα , (2.29)

with 0 ≤ u <∞ and 0 ≤ α ≤ π/2. Since the combination σ2+
√
z∗ρ

2 is just u2, we get that:

H ≈ z∗
m4

1

u4
, z − z∗ ≈ −

√
z∗

2m2u2
. (2.30)

Using these results for H and z, one immediately verifies that the UV metric becomes:

ds2UV ≈ m2

√
z∗
u2
[

dx2
1,1 +

z∗
m2

(
(dθ)2 + sin2 θ(dφ)2

)]

+
1

m2

(du)2

u2
+

+
1

m2

[

(dα)2 +
sin2 α

4

(

(w1)2 + (w2)2 + (w3 + cos θdφ)2
)

+ cos2 α(dλ)2
]

. (2.31)

Notice that the first line corresponds to the metric of an AdS5 space, with two of its di-

rections compactified on an S2. The second line is the metric of a five-sphere fibered over

the S2.

2.2 Probe analysis

In order to make contact with the gauge theory dual to the background just studied, let us

consider a probe color D3-brane. This probe brane is extended along (x0, x1, θ, φ) at fixed

values of the other coordinates. We will first assume that the worldvolume gauge fields

of the D3-brane are not excited. By explicitly computing the DBI and WZ terms for this

configuration by using the metric (2.1) and the RR four-form potential corresponding to

the F5 of (2.3)–(2.5) (F5 = dC4), one realizes that the D3-brane is only at equilibrium if the

coordinate σ vanishes. Moreover, one can check that σ = 0 is the SUSY locus of the color

D3-branes. The calculations leading to these conclusions are the same as those performed

– 8 –
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in section 4.1 of [18] for the case with eight supersymmetries and, therefore, they will not

be repeated here.

Let us next consider a color brane located at the no-force point σ = 0 and let us assume

that we switch on the worldvolume gauge field F in such a way that its only non-vanishing

components are those along the unwrapped directions xµ. By expanding the DBI action in

powers of F and looking at the coefficient of the F 2 term, we get the holographic expression

of the Yang-Mills coupling gYM . Again, the calculation is the same as in [18] and gives

the result:
1

g2
YM

=
z(ρ, σ = 0)

gsm2
. (2.32)

Notice that the right-hand side of (2.32) is proportional to the size of the cycle, which is con-

trolled by the function z. Moreover, since z(ρ, σ) in (2.32) is evaluated at σ = 0 (i.e. at the

SUSY locus), the remaining radial coordinate ρ plays the role of a holographic coordinate.

In the next subsection we will present numerical results for z(ρ, σ). It is however possible

to extract relevant physical information by using the analytical results of subsection 2.1.1

in the UV region of the geometry. Indeed, by using (2.26) for σ = 0 and large ρ we get:

1

g2
YM

≈ 1

g2
∗

− 1

2m4gsρ2
, (2.33)

with g2
∗ = m2gs/z∗. It follows from (2.33) that gYM approaches the fixed-point value

gYM = g∗ in the UV and deviates from it by means of a power law in the holographic co-

ordinate ρ. Notice that the running with a ρ−2 power of the right-hand side of (2.33) was

to be expected from dimensional arguments. It is just the behavior obtained in one-loop

perturbation theory if ρ is taken to be proportional to the renormalization energy scale

µ. The minus sign of the running term in (2.33) is also expected: it just means that gYM
decreases when we move towards the UV. However, the coefficient of this term does not

coincide with the one found in perturbation theory if the naive identification ρ = 2πα′µ is

used. This fact is not surprising, given the amount of SUSY preserved by our background.

2.3 Numerical results

The gauged supergravity solution (2.18)–(2.21) of the BPS system (2.9) can be easily

evaluated numerically. One must first solve the master equation (2.18) and use the function

τ(z) obtained in this way to find z(ρ, σ) by solving the implicit equation (2.19). The warp

factor H and the functions g1 and g2 are then straightforwardly obtained from (2.20)

and (2.21).

The result of this numerical analysis for z(ρ, σ) andH(ρ, σ) has been plotted in figure 1.

We notice from this figure that z(ρ, σ) grows monotonically when we move away from the

origin of the (ρ, σ) plane and reaches a constant asymptotic value when ρ2 + σ2 → ∞. On

the contrary H(ρ, σ) increases as ρ2 + σ2 decreases until it reaches a maximum and then

starts to decrease. This non-monotonic behavior of the warp factor is opposite to the one

expected for a good holographic dual of a gauge theory and it indicates to us that the

supergravity solution is not trustable in this IR region. Notice that this problem in the IR

is shared by other backgrounds constructed from branes wrapping cycles.
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Figure 1. On the left we plot z, obtained from (2.18) and (2.19), as a function of the dimensionless

variables mρ and mσ. We have fixed the UV constants z∗ and c of (2.25) to the values z∗ = 2 and

c = −1/2. On the right we represent the warp factor H for these same values. We only show the

region where H is monotonic.

2.4 Addition of flavor

In this section we will modify the previous setup to include the effect of degrees of freedom

corresponding to fields in the fundamental representation of the gauge group (flavors). This

can be achieved by including in the setup a new set of D3-branes which introduce a new

open string sector. These flavor D3-branes should be extended along the two Minkowski

directions, as well as along a two-dimensional non-compact submanifold of the normal

bundle N4. Moreover, the flavor branes should be located at a fixed point of the two-cycle

C2 and of the transverse R
2. The corresponding brane array is:

CY3

︷ ︸︸ ︷

R
1,1 S2 N4 R

2

Nc D3 − − © © · · · · · ·
Nf D3 − − · · − − · · · ·

In order to determine the particular embedding of the flavor D3-branes in the normal

bundle N4 we will require that the configuration described by the array written above

preserves the same four supersymmetries as the unflavored background. In section 2.4.1

we will introduce a general family of such embeddings, which can be briefly described as

two-planes embedded in N4 (which has the structure of R
4 fibered over the two-cycle C2).

Notice also that the fixed value ρQ of the ρ coordinate of the flavor branes represents the

distance between the two sets of branes in the transverse R
2, which should be related to

the mass mQ of the matter fields as mQ ∼ ρQ/α
′.

When Nf ≪ Nc the flavor branes can be treated as probes which do not alter the

unflavored supergravity background. This is the so-called quenched approximation. Here

we will concentrate in the limit in which Nf is large and of the same order as Nc and,

therefore, the effects of the backreaction must be taken into account. Indeed, whenNf ∼ Nc

– 10 –



J
H
E
P
0
6
(
2
0
1
0
)
0
9
5

one must deal with a coupled gravity plus branes system in which the branes are dynamical

objects that act as sources for the different supergravity fields. In particular, the WZ term

of the D3-brane worldvolume action couples to the RR four-form potential C4 in the form:

SWZ = T3

∑

Nf

∫

M4

Ĉ4 , (2.34)

where the hat over C4 denotes its pullback to the D3-brane worldvolume M4. In general

a term like (2.34) is a source for the RR five-form F5 which gives rise to a violation of

its Bianchi identity on the flavor brane worldvolume. Actually, solving the corresponding

equations of motion of the coupled system when the flavor branes are embedded along

a given fixed submanifold M4 is a formidable task which, in practice, is not possible to

tackle. For this reason we will follow the approach of ref. [24–26] (see [44] for a review)

and we shall distribute the Nf → ∞ flavor branes along a continuous set of mutually

supersymmetric embeddings. In this approach one performs the following substitution in

the WZ term:
∑

Nf

∫

M4

Ĉ4 →
∫

M10

Ω ∧ C4 , (2.35)

where Ω is a six-form (the smearing form) which encodes the RR charge density associated

to the continuous distribution of flavor branes. Actually, Ω is just the source in the modified

Bianchi identity of F5, namely:

dF5 = 2κ2
10T3Ω , (2.36)

where 2κ2
10 = (2π)7g2

s(α
′)4. It is clear from (2.36) that, in order to include the backreaction

effects, we must modify our ansatz (2.3)–(2.5) for F5. Actually, instead of (2.4) we shall

take F5 as given by:

F5 = dC4 + f5 , (2.37)

where C4 is still given by the ansatz (2.5) and f5 is a five-form which incorporates the

modification of the Bianchi identity (2.36), namely:

df5 = 2κ2
10T3Ω . (2.38)

As our flavor branes will be located at a fixed value of ρ = ρQ, it follows that the smearing

form Ω should contain a δ(ρ− ρQ) in its expression. Moreover, it is clear from (2.38) that

Ω is a closed form, i.e. dΩ = 0. These two conditions are satisfied if Ω is of the form:

2κ2
10T3Ω = δ(ρ− ρQ)dρ ∧ dΛ , (2.39)

where Λ is a four-form depending on σ and on the angular coordinates. Eq. (2.39) implies

that f5 can be taken as:

f5 = Θ(ρ− ρQ)dΛ , (2.40)

and, therefore, the total F5 is given by:

F5 = dC4 + Θ(ρ− ρQ)dΛ . (2.41)
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The precise form of Λ (and therefore of Ω) is obtained by computing the charge density that

results after averaging over a particular family of equivalent embeddings that are mutually

supersymmetric. Instead of following this “microscopic” procedure to determine Λ, we will

follow the “macroscopic” approach of [19, 39] and we shall try to get the form of Λ by

requiring the preservation of supersymmetry and the compatibility of the charge density

with the metric ansatz (2.1). Later on, in subsection 2.4.1, we will precisely characterize

the particular set of embeddings that give rise to the charge density determined in the

macroscopic formalism.

In the flavored case we shall adopt the same ansatz (2.5) for the RR potential C4 as

in the unflavored background. Moreover, from the expression (2.41) of F5 the similarity

between C4 and Λ is quite obvious. For this reason it is quite natural to adopt an ansatz

for Λ with the same structure as in (2.5), namely:

Λ = L1(σ)w1 ∧ w2 ∧ (w3 + cos θdφ) ∧ dλ+ L2(σ)Ω2 ∧ (w3 + cos θdφ) ∧ dλ , (2.42)

where L1 and L2 are functions of the coordinate σ to be determined. Since dΛ is given by:

dΛ =
(
L2−L1

)
Ω2∧w1∧w2∧dλ+

(

L̇1w
1∧w2+L̇2Ω2

)

∧dσ∧
(
w3+cos θdφ

)
∧dλ , (2.43)

it follows that the flavored BPS ansatz for F5 can be obtained from the unflavored one

after performing the following substitutions:

ġi → ġi + L̇iΘ(ρ− ρQ), (i = 1, 2) ,

g2 − g1 → g2 − g1 + (L2 − L1)Θ(ρ− ρQ) . (2.44)

One can now repeat the supersymmetry analysis for the new ansatz. Obviously the flavored

BPS system is obtained by performing the substitutions (2.44) in (2.9), namely:

z′ = 8m2

√
z

ρσ2

[
g2 − g1 + (L2 − L1)Θ(ρ− ρQ)

]
,

ż =
m2σ√
z
H ,

g′1 =
1

8

ρσ3

√
z
Ḣ − m2

16

ρσ4

z2
H2 ,

ġ1 = −1

8

ρσ3

z
H ′ +m2σH

z
3

2

(g2 − g1 + (L2 − L1)Θ(ρ− ρQ)) − L̇1Θ(ρ− ρQ) ,

g′2 = −1

4

ρσ2

√
z
H ,

ġ2 =
2

σ
(g2 − g1) −

[

L̇2 −
2

σ
(L2 − L1)

]

Θ(ρ− ρQ) . (2.45)

By analyzing the compatibility of the different equations in the system (2.45) one discovers

that, in general, the (ρ, σ) crossed derivatives of the functions g1 and g2 are not equal.

Indeed, one can prove that:

∂ρġ1 − ∂σg
′
1 = ∂σg

′
2 − ∂ρġ2 = − 1

σ

[
2(L2 − L1) − σL̇2

]
δ(ρ− ρQ) . (2.46)
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Therefore, in order to get rid of this unwanted singularity we must require the following

condition on L1 and L2:

L̇2 =
2

σ

(
L2 − L1

)
. (2.47)

Notice that, after imposing (2.47), the last equation in (2.45) is the same as the one in

the unflavored system (2.9). Furthermore, one can verify that any solution of the BPS

system (2.45) and the compatibility condition (2.47) also solves the equations of motion

of gravity with source terms coming from the smeared branes. Moreover, in this case one

can also write a single PDE for z(ρ, σ), which now has a source term parametrized by

L2 − L1, namely:

2ρz
√
z
(
σz̈ + ż

)
= σ

(
ρz′2 − 2zz′ − 2ρzz′′

)
+

16m2(L2 − L1)z
3

2

σ
δ(ρ − ρQ) . (2.48)

The compatibility condition (2.47) allows one to determine L2(σ) in terms of L1(σ). In

principle, there are and infinite number of solutions to (2.47). However, it turns out that

there is a particularly simple solution which satisfies certain regularity conditions which

should be satisfied on general physical grounds. Since the complete analysis is very similar

to the one performed in section 3.3 of [19], it will not be repeated here. Instead, we will

write down the solution and we will verify that it satisfies some of these physical require-

ments. The solution of (2.47) we will be interested in from now on is the one obtained by

taking L1(σ) = 0, namely:

L1 = 0 , L2 = Cσ2 , (2.49)

where C is a constant. By using these values of L1 and L2 in eqs. (2.43) and (2.39) one

can readily get the corresponding expression of the smearing form Ω, i.e.:

Ω =
C

2κ2
10T3

δ(ρ − ρQ)dρ ∧ dλ ∧ Ω2 ∧
[

σ2w1 ∧ w2 + 2σdσ ∧ w3
]

, (2.50)

which, in terms of the vielbein basis (2.7), takes the following form:

Ω =
4m2C

2κ2
10T3

δ(ρ− ρQ)

ρ
√
zH

e23 ∧
[
e56 + e47

]
∧ e89 . (2.51)

An important test that the smearing form Ω must pass is the regularity and positivity of

the mass density distribution of the flavor brane sources. This mass distribution density

can be obtained by looking at the smeared version of the DBI action of the flavor branes.

Indeed, taking into account that, for a SUSY configuration, the induced volume form is

just the pullback of the calibration form K and that the smearing is performed by taking

the wedge product with Ω, this DBI action takes the form:

SflavorDBI = −T3

∫

M10

Ω ∧ K . (2.52)

Thus, Ω ∧ K can be interpreted as the mass distribution of the system of flavor branes

which, being a ten-form in a ten-dimensional space, is proportional to the volume form
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Vol(M10) of the ten-dimensional manifold. Actually, from (2.51) and the expression of K
in (2.13) one straightforwardly gets:

Ω ∧ K = −4m2C

κ2
10T3

δ(ρ− ρQ)

ρ
√
zH

Vol
(
M10

)
. (2.53)

The function multiplying Vol(M10) in (2.53) represents the mass density of the ρ = ρQ
slice of the space in which we are smearing the flavor branes. The positivity of this mass

density implies that the constant C must be negative. In the next subsection we will find

a family of supersymmetric embeddings which gives rise to the charge distribution (2.50)

and we will identify the constant C with the parameters of this set of smeared branes.

2.4.1 A microscopic interpretation

In order to characterize a family of embeddings of the flavor D3-branes that preserve the

supersymmetries of the background, let us parametrize the one-forms wi in terms of three

angles θ̂, φ̂ and ψ̂ as follows:

w1 = cos ψ̂dθ̂ + sin ψ̂ sin θ̂dφ̂ ,

w2 = sin ψ̂dθ̂ − cos ψ̂ sin θ̂dφ̂ ,

w3 = dψ̂ + cos θ̂dφ̂ , (2.54)

with 0 ≤ θ̂ ≤ π, 0 ≤ φ̂ < 2π, 0 ≤ ψ̂ ≤ 4π. Let us next introduce the coordinates yi

(i = 1, · · · , 4) as:

y2 + iy1 = σ cos
( θ̂

2

)

e
i
2

(
ψ̂+φ̂

)

, y4 + iy3 = σ sin
( θ̂

2

)

e
i
2

(
ψ̂−φ̂

)

. (2.55)

One can verify by direct calculation that:

∑

i

(
dyi
)2

= (dσ)2 +
σ2

4

∑

i

(
wi
)2
, (2.56)

which shows that the normal bundle N4 has the structure of R
4 fibered over the (θ, φ) two-

sphere and that the yi’s are just the cartesian coordinates of this four-plane. Moreover,

one can also check that:

dy1 ∧ dy2 + dy3 ∧ dy4 = −1

4

[

σ2w1 ∧ w2 + 2σdσ ∧w3
]

. (2.57)

Using (2.57) in (2.50) one immediately proves that the smearing form Ω can be written in

terms of the coordinates yi as:

Ω = − 2C

κ2
10T3

δ(ρ− ρQ)dρ ∧ dλ ∧ Ω2 ∧
[
dy1 ∧ dy2 + dy3 ∧ dy4

]
. (2.58)

The standard way to determine if a given D-brane embedding is supersymmetric is by

verifying the fulfillment of the kappa symmetry condition on the Killing spinors of the

background. Equivalently, one can demonstrate the supersymmetric nature of the em-

bedding by checking that the pullback of the generalized calibration form on the D-brane
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worldvolume M4 is equal to the induced volume element. In our case this calibration

condition reads:

K̂ = Vol(M4) , (2.59)

where K is the four-form written in (2.13). According to the brane array in the beginning

of subsection 2.4, let us consider a D3-brane which sits at a particular point of the (θ, φ)

two-sphere and that is localized in the R
2 plane parametrized by (ρ, λ). In addition, the D3-

brane is extended along a codimension two surface of the four-dimensional plane spanned

by the yi coordinates. The pullback of K for these embeddings takes the form:

K̂ =
1√
z
dx0 ∧ dx1 ∧

[
dy1 ∧ dy2 + dy3 ∧ dy4

]
, (2.60)

where the pullback of the yi coordinates is understood. Moreover, let us assume that the

embedding in the normal bundle N4 is described by linear relations of the type:

y3 = a1y
1 + b1 , y4 = a2y

2 + b2 , (2.61)

which represent a two-plane in R
4. For these linear embeddings one has:

K̂ =
1√
z
(1 + a1a2)dx

0 ∧ dx1 ∧ dy1 ∧ dy2 . (2.62)

On the other hand, the induced metric on the D3-brane worldvolume can be written as:

dŝ2 = H−1/2dx2
1,1 +

H1/2

√
z

[(
1 + a2

1

)
(dy1)2 +

(
1 + a2

2

)
(dy2)2

]
, (2.63)

and the corresponding volume form is

Vol(M4) =
1√
z

√
(
1 + a2

1

) (
1 + a2

2

)
dx0 ∧ dx1 ∧ dy1 ∧ dy2 . (2.64)

It is now straightforward to prove that the calibration condition holds if a1 = a2. Let us

parametrize:

a1 = a2 = − cot γ , (2.65)

where γ is a constant. Then, the embedding in the yi hyperplane is characterized by the

equations:

f1 ≡ cos γy1 + sin γy3 − c1 = 0 ,

f2 ≡ cos γy2 + sin γy4 − c2 = 0 , (2.66)

where c1 and c2 are new constants. Eq. (2.66) defines a family of embeddings parametrized

by three parameters (γ, c1 and c2).
1 Notice that changing γ by γ+π is equivalent to taking

ci → −ci in (2.66). Thus, we will take γ in the interval 0 ≤ γ < π.

1Actually, there is a much larger family of calibrated embeddings for this background. If we complexify

the yi coordinates as z1,2 = y2,4 + iy1,3, then any submanifold in N4 defined by a holomorphic relation of

the type z2 = f(z1) satisfies (2.59). In particular, a linear relation such as αz1 + βz2 = constant defines

a complex line in C
2 which generalizes (2.66). However, this more general family of planes gives rise to

the same Ω as the one obtained from (2.66) and, thus, we will not consider any of these more general

embeddings.
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Let us now compute the charge density six-form Ω that results after averaging over

this family of embeddings. We will homogeneously distribute the D3-brane embeddings

over the (θ, φ) two-sphere and we will consider branes with a given value ρQ of the radial

coordinate of the transverse R
2 and distributed over the angular direction parametrized by

λ. Thus, Ω can be written as:

Ω = δ(ρ − ρQ)dρ ∧ dλ

2π
∧ sin θdθ ∧ dφ

4π
∧ Γ , (2.67)

where we have normalized the distributions in the coordinates λ and (θ, φ) by dividing by

the volume of S1 and S2 respectively. In (2.67) Γ is the two-form density obtained after

averaging over the family of planes (2.66). It can be written as the integral of the volume

element of the complement of the two-planes (2.66) in N4, namely [35]:

Γ =

∫

dµδ(f1)δ(f2)
[
df1 ∧ df2

]
, (2.68)

where dµ is an integration measure depending on the parameters γ, c1 and c2 and the

exterior derivative only acts on the yi variables of the fj. The natural integration measure

dµ for the family of planes (2.66) is:

dµ = nf
dγ

π
dc1dc2 , (2.69)

with nf being the density of flavor branes. The integrals over c1 and c2 in (2.68) can be

immediately performed by making use of the two delta functions . Moreover, since:

df1 ∧ df2 = cos2 γdy1 ∧ dy2 + sin2 γdy3 ∧ dy4 + sin γ cos γ
[
dy1 ∧ dy4 − dy2 ∧ dy3

]
, (2.70)

we get: ∫ π

0
dγ
[
df1 ∧ df2

]
=
π

2

[
dy1 ∧ dy2 + dy3 ∧ dy4

]
. (2.71)

Thus, the two-form Γ can be written as:

Γ =
nf
2

[
dy1 ∧ dy2 + dy3 ∧ dy4

]
, (2.72)

and the resulting Ω is, indeed, of the form (2.58) with the constant C related to the density

nf as:

C = −2κ2
10T3

nf
64π2

. (2.73)

2.4.2 Numerical results

Let us now present the results obtained by the numerical integration of the BPS sys-

tem (2.45). As in [18, 19, 27, 40], our strategy will be to integrate the PDE equation (2.48)

for z(ρ, σ). Actually, after using the values of L1 and L2 written in (2.49) and the relation

between C and nf displayed in eq. (2.73), the PDE (2.48) takes the form:

2ρz
√
z
(
σz̈ + ż

)
= σ

(
ρz′2 − 2zz′ − 2ρzz′′

)
− 1

m2

πnf
Nc

σz
3

2 δ(ρ− ρQ) . (2.74)
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Figure 2. Plots of z(ρ, σ) for the flavored background of D3-branes. The flavor branes are located

at mρQ = 1.8 for two different values of x ≡ πnf

m2Nc
. The plot on the left (right) corresponds to

x = 2 (x = 1/2). The solution for ρ < ρQ is the unflavored one with UV parameters z∗ = 3 and

c = −1.15.

Since the system (2.45) reduces to the unflavored one for ρ < ρQ, we can assume that

the solution of (2.74) is given by (2.18)–(2.19) in this region. At ρ = ρQ the function z is

continuous while, according to the first equation in (2.45), z′ has a discontinuity given by:

z′(ρQ + ǫ, σ) − z′(ρQ − ǫ, σ) = − πnf
2m2Nc

√

z(ρQ, σ)

ρQ
. (2.75)

We have integrated (2.74) by using the continuity at ρ = ρQ and the change in deriva-

tive (2.75) as boundary conditions. The results are shown in figure 2 for two values of nf .

In our numerical analysis we have been able to integrate z up to a finite value of ρ, after

which the solution becomes highly oscillatory and unstable. As is evident from figure 2,

the function z has a wedge shape at the position ρ = ρQ of the flavor branes. Thus, there

will be a curvature singularity at this point, which is actually required by the Einstein

equation in order to match a similar term coming from the energy-momentum tensor of

the flavor brane source. In general, the addition of flavor makes z(ρ, σ) grow slower or to

decrease as we move towards the UV for ρ > ρQ. In view of the relation (2.32) between z

and the YM coupling, this behavior was to be expected since, contrary to what happens

with the non-abelian color fields, the flavor matter fields always make the coupling grow

in the UV. Thus, our flavored geometry correctly encodes this non-trivial property of the

renormalization of gauge theories.

3 N = 2 3d SQCD from wrapped D4-branes

In this section we will analyze some gravity duals of three-dimensional N = 2 supersym-

metric gauge theories which are generated by D4-branes wrapped along two-cycles of a

Calabi-Yau threefold. Our brane setup, including flavor, is very similar to the one studied

in section 2, namely:

CY3

︷ ︸︸ ︷

R
1,2 S2 N4 R

Nc D4 − − − © © · · · · ·
Nf D4 − − − · · − − · · ·
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We will be working in the context of type IIA supergravity and we will adopt the

following ansatz for the metric and dilaton in the string frame:

ds210 = H− 1

2

[

dx2
1,2 +

z

m2

(
(dθ)2 + sin2 θ(dφ)2

)
]

+

+H
1

2

[
1

z
1

2

(

(dσ)2 +
σ2

4

[
(w1)2 + (w2)2 + (w3 + cos θdφ)2

])

+ (dρ)2
]

,

eΦ = H− 1

4 , (3.1)

where −∞ < ρ < +∞ and the parameter m is given by:

1

m2
=
(
8πgsNc

) 2

3α′ . (3.2)

The similarity of the metric in (3.1) and the one corresponding to the D3-brane case in (2.1)

is manifest. However, notice that, in this case, the background should be endowed with an

RR four-form field strength F4. In analogy with the D3-brane case, we will take F4 to be

of the form:

F4 = dC3 + Θ(ρ− ρQ)dΛ , (3.3)

with C3 and Λ being given by:

C3 = g1w
1 ∧w2 ∧

(
w3 + cos θdφ

)
+ g2Ω2 ∧

(
w3 + cos θdφ

)
,

Λ = L1(σ)w1 ∧ w2 ∧
(
w3 + cos θdφ

)
+ L2(σ)Ω2 ∧

(
w3 + cos θdφ

)
, (3.4)

where Ω2 is the volume form of the S2 written in (2.6) and gi(ρ, σ) and Li(σ) are functions

to be determined. Notice that we have already included in (3.3) the term that modifies

the Bianchi identity for F4 due to the presence of the flavor D4-branes at ρ = ρQ. Indeed,

by a simple calculation from (3.3) we get:

dF4 = δ(ρ− ρQ)dρ ∧ dΛ . (3.5)

The source term on the right-hand side of (3.5) comes from the coupling of the D4-brane

to the RR fields through the WZ term of the worldvolume action, SWZ = T4

∫
Ω ∧ C5,

where Ω is the RR five-form charge density of the flavor brane distribution and C5 is the

five-form potential of F6 ( F4 = ∗F6). The corresponding Bianchi identity with source is:

dF4 = 2κ2
10T4Ω , (3.6)

which allows one to identify Ω for our ansatz with:

2κ2
10T4Ω = δ(ρ− ρQ)dρ ∧ dΛ . (3.7)

In order to find the system of BPS equations for a type IIA background with metric,

dilaton and RR four-form as in our ansatz, let us consider the following vielbein basis for
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the metric (3.1):

e0,1,2 = H− 1

4dx0,1,2, e3 =
H− 1

4

m

√
zdθ, e4 =

H− 1

4

m

√
z sin θdφ,

e5 =
H

1

4

z
1

4

dσ, e6 =
H

1

4

2z
1

4

σw1, e7 =
H

1

4

2z
1

4

σw2, (3.8)

e8 =
H

1

4

2z
1

4

σ
(
w3 + cos θdφ

)
, e9 = H

1

4 dρ.

We will now impose the following projections on the Killing spinors of type IIA super-

gravity:

Γ3467ǫ = ǫ, Γ3458ǫ = ǫ, Γ56789ǫ = ǫ , (3.9)

where the indices of the constant Dirac matrices refer to the basis (3.8). Notice that the

projections (3.9) leave four supercharges unbroken, corresponding to a three-dimensional

theory with N = 2 supersymmetry. The corresponding system of BPS equations is:

z′ = 8m2

√
z

σ2

[

g2 − g1 + (L2 − L1)Θ(ρ− ρQ)
]

,

ż =
m2σ√
z
H,

g′1 =
1

8

σ3

√
z
Ḣ − m2

16

σ4

z2
H2,

ġ1 = −1

8

σ3

z
H ′ +m2σH

z
3

2

[

g2 − g1 + (L2 − L1)Θ(ρ− ρQ)
]

− L̇1Θ(ρ− ρQ),

g′2 = −1

4

σ2

√
z
H,

ġ2 =
2

σ
(g2 − g1) −

[

L̇2 −
2

σ
(L2 − L1)

]

Θ(ρ− ρQ). (3.10)

Combining the equations of (3.10) in different ways we can check that the cross derivatives

of both g1 and g2 depend on the ordering of the differentiation. In order to avoid this un-

wanted singularity we need to impose again (2.47), which implies that the Li’s drop from

the last equation in (3.10) which, therefore, is the same in the flavored and unflavored cases.

Moreover, any solution of (3.10) with L1 and L2 satisfying (2.47) also solves the equations

of motion of the gravity plus (smeared) branes system while, as in the D3-brane case, we

can write a single PDE for the function z(ρ, σ), which has a source term parametrized by

L2 − L1, namely:

2z
√
z (σz̈ + ż) = σ

(

z′
2 − 2zz′′

)

+
16m2z3/2

σ
(L2 − L1) δ(ρ− ρQ). (3.11)

As in the D3-brane case, the BPS system (3.10) can be recast in terms of the appropriate

generalized calibration form K. In this case K is a five-form, defined in terms of bilinears

of the Killing spinors as follows:

K =
1

5!
H

1

4 ea1···a5ǫ†Γ11Γa1···a5ǫ , (3.12)
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where ǫ is normalized as H
1

4 ǫ†ǫ = 1. After using (3.9) we get the following expression for K:

K = e012 ∧
(
e34 − e58 − e67

)
. (3.13)

Using the expression (3.13) for K, as well as the ansatz (3.3)–(3.4) for F4, we can easily

verify that the following two conditions:

d
(

H− 1

4
∗K
)

= 0, F4 = ∗d
(

H
1

4K
)

, (3.14)

reduce to the BPS system (3.10). In (3.14) the Hodge dual is taken with respect to the

string frame metric in (3.1).

3.1 The unflavored solution

In the unflavored case, the setup we are studying here can be reduced to the one ana-

lyzed in [6], where a configuration of M5-branes wrapping a two-cycle and preserving four

supercharges was considered. By compactifying one of the worldvolume directions of the

M5-brane and dimensionally reducing along it, the setup of [6] reduces to the one studied

here. In [6] seven-dimensional gauged supergravity was employed to find a system of first-

order BPS equations for the functions of the ansatz. These functions depend on a single

radial variable and, therefore, the BPS system of [6] is a system of ordinary differential

equations. As in section 2, one can perform a change of variables which converts the ansatz

of [6] (uplifted to ten-dimensions) into our two-variable ansatz. Moreover, this relation can

be used to find a solution of the BPS system (3.10) with L1 = L2 = 0 from a solution of

the BPS system in [6]. Indeed, let τ(z) be the function that solves the following differential

equation:
d2τ

dz2
+ 2

(
dτ

dz

)2

= 2
dτ

dz

[

4e2τ − 1

4z

]

. (3.15)

It turns out that we can write a solution of the unflavored BPS equations in terms of this

function τ(z). First of all, one can verify that the PDE (3.11) with L1 = L2 = 0 is solved

by a z(ρ, σ) that is given implicitly by means of the following equation:

ρ2

e4τ
+

σ2

1
2e

2τ

1√
z dτdz

=
1

4m2
. (3.16)

Moreover, the warp factor H is given in terms of z(ρ, σ) and τ(z) by:

H =

√
z

m2
[

4σ2e2τ + ρ2
√
z
(
dτ
dz

)2
e−2τ

] , (3.17)

while the functions g1 and g2 are:

g1 = − ρH

64m2

(
dτ

dz

)2
[

1 +
16m2σ2

√
z
(
dτ
dz

)2 − 4m2σ2e−2τ

√
z dτdz

]

, g2 = −ρe
−2τ

16m2
. (3.18)

One can easily show that the RR flux for the solution (3.18) is correctly quantized when

the constant m is given by (3.2).
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Figure 3. Plots of z and H for the unflavored background of D4-branes. We are taking the UV

parameters z∗ = 2 and c = 1. On the right plot we only show the region in which the warp factor

H is monotonic.

It is now straightforward to solve numerically first (3.15) for τ(z) and use this result in

the implicit equation (3.16) to get z(ρ, σ). The results are plotted in figure 3 for z(ρ, σ) and

H(ρ, σ). They are very similar to the ones found in section 2 for the wrapped D3-branes

and all the comments made in subsection 2.3 also apply to the present case. In particular,

the function H is not monotonic in the IR and one should only trust the region in which

H decreases as we move towards the UV.

3.1.1 The approximate unflavored solution in the UV

When τ → ∞, z approaches a constant value and, therefore, the term 1/z on the right-

hand side of (3.15) becomes negligible compared to e2τ . Thus,approximately, the master

equation (3.15) becomes:

d2τ

dz2
+ 2

(
dτ

dz

)2

≃ 8e2τ
dτ

dz
, (τ → ∞). (3.19)

This equation can be integrated once to give:

dτ

dz
= 2
(

e2τ + ce−2τ
)

, (3.20)

while an additional integration gives τ as a function of z, namely:

e2τ =
√
c cot

[
4
√
c (z∗ − z)

]
, (3.21)

with c and z∗ being constants. Notice also that, for large τ , we can take at leading order
dτ
dz ≃ 2e2τ and the implicit equation (3.16) becomes:

ρ2 +
σ2

√
z

=
1

4m2

1

16(z − z∗)2
. (3.22)

Eqs. (3.21) and (3.22) show that for large τ one approximately has z ≈ z∗ and we are

far from the origin in the (ρ, σ) plane. Moreover, by performing an expansion around z∗
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in (3.22) and by keeping only the first non-trivial term we have:

z(ρ, σ) ≈ z∗ −
1

8m

z
1/4
∗

√

ρ2z
1/2
∗ + σ2

. (3.23)

Notice also that, in the far UV where z ≈ z∗ , one has:

σ2 +
√
z∗ρ

2 ≈
√
z∗

4m2
e4τ . (3.24)

Using these approximate UV expressions in (3.17) we arrive at the following UV estimate

of the warp factor H:

H ≈
(

1

2m

)3 z
3/4
∗

[√

ρ2z
1/2
∗ + σ2

]3 , (3.25)

whereas from (3.18) we get that g1 and g2 are approximately given by:

g1 ≈ − 1

32m2

ρz
1

4

∗
√

ρ2z
1/2
∗ + σ2

[

1 +
1

2

σ2

√
z∗ρ2 + σ2

]

, g2 ≈ − ρz
1/4
∗

32m3

√

ρ2z
1/2
∗ + σ2

.

(3.26)

The above analysis suggests that in the UV region the combination ρ2z
1/2
∗ +σ2, appearing

in the denominator of both z and H, plays a significant role. Having this in mind let us

define a new set of variables u and α as in (2.29) but now with 0 ≤ α ≤ π. In general,

z and H depend on both coordinates, u and α, but in the UV region the α dependence

disappears. Actually, their expressions when u→ ∞ are:

z → z∗ , H1/2 → 1

2
√

2

(

z
1/4
∗

mu

)3/2

. (3.27)

Using these values in the metric ansatz (3.1) we end up with the following expression:

ds2UV ≈ 2
√

2

(

mu

z
1/4
∗

)3/2
[

dx2
1,2 +

z∗
m2

dΩ2
2

]

+
1

2
√

2z
1/8
∗

du2

(mu)3/2
+

+
1

2
√

2z
1/8
∗

u1/2

m3/2

[

dα2 +
1

4
sin2 α

[

(w1)2 + (w2)2 +
(
w3 + cos θdφ

)2
]]

, (3.28)

where dΩ2
2 ≡ dθ2+sin2 θdφ2 is the line element of the (θ, φ) two-sphere. In order to interpret

the meaning of the results just found, let us recall that, given a background of type IIA

theory such as the one we are considering, one can generate a solution of eleven-dimensional

supergravity by uplifting the metric in terms of the standard formula:

ds211 = e−
2

3
Φds210 + e

4

3
Φ(dx3)2 , (3.29)

where x3 is the eleventh M-theory coordinate. We shall apply (3.29) to the ten-dimensional

UV metric and dilaton written in eqs. (3.28) and (3.27). After changing the radial variable

u by a new coordinate y, defined as:

y2 =
2m

z
1/4
∗

u, (3.30)
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the resulting eleven-dimensional UV metric becomes:

ds211 ≈ y2
[

dx2
1,3 +

z∗
m2

dΩ2
2

]

+
1

m2

(dy

y

)2
+

+
1

4m2

[

dα2 +
1

4
sin2 α

[

(w1)2 + (w2)2 +
(
w3 + cos θdφ

)2
]]

, (3.31)

where dx2
1,3 = dx2

1,2 + (dx3)2. From (3.31) we conclude that the uplifted metric is of the

form AdS7 × S4, with the AdS7 having two of its directions compactified in a two-sphere

and with the S4 being fibered over this S2. Notice that the radius of the AdS7 (S4 ) factor

in the asymptotic metric (3.31) is 1/m (1/(2m)). These results are, of course, consistent

with the origin of the solution of [6], as coming from M5-branes wrapping a two-cycle.

3.2 Probe analysis

In complete analogy with the analysis performed in section 2.2, we can test our background

by using a color D4-brane extended along the Minkowski directions and those of the two-

cycle. Again, the equilibrium position of such a brane occurs at the no-force SUSY locus

σ = 0. The coupling of the Yang-Mills theory living on the color branes can be obtained

by introducing a worldvolume gauge field along the unwrapped directions and expanding

at second order in the gauge field strength. One gets:

1

g2
YM

=
z(ρ, σ = 0)

2πgsm2
√
α′
. (3.32)

From our numerical results of figure 3 we notice that z(ρ, σ) grows monotonically as ρ

increases and reaches a constant asymptotic value when ρ → ∞. Using this result we

conclude that gYM decreases as we go to the UV. We can have an analytic estimate of

this behavior by using the asymptotic results of subsection 3.1.1. Indeed, plugging (3.23)

in (3.32) we arrive at:
1

g2
YM

≈ 1

g2
∗

− 1

16πgsm3
√
α′

1

ρ
, (3.33)

where g∗ is the asymptotic value of the YM coupling (g2
∗ = 2πgsm

2
√
α′/z∗). Again, the

behavior displayed by our holographic model coincides qualitatively with the one found in

the perturbation theory of the gauge theory dual. Indeed, if one relates the coordinate ρ

with the energy scale of the field theory by means of the naive relation ρ = 2πα′µ, one gets

that the right-hand side of (3.33) runs as µ−1, which is the same running obtained with

the one-loop beta function (although the numerical coefficients are different).

3.3 Flavored solutions

Let us now analyze the system (3.10) in the flavored case. According to our macroscopic

analysis, the source five-form Ω is parametrized by two functions L1 and L2, which must

satisfy the consistency equation (2.47). However, as was the case for the D3-brane system

of section 2, there is a simple solution to (2.47), namely (2.49), which leads to physically
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sensible results. Therefore, from now on we will assume that L1 and L2 are given by the

expressions displayed in (2.49). The corresponding smearing form Ω is:

Ω =
C

2κ2
10T4

δ(ρ− ρQ)dρ ∧ Ω2 ∧
[

σ2w1 ∧ w2 + 2σdσ ∧w3
]

, (3.34)

where C is the constant appearing in the expression of L2 in (2.49). In terms of the yi

coordinates defined in (2.55), the form Ω can be written as:

Ω = − 2C

κ2
10T4

δ(ρ− ρQ)dρ ∧ Ω2 ∧
[
dy1 ∧ dy2 + dy3 ∧ dy4

]
. (3.35)

Let us now see how we can recover the expression (3.35) of Ω from a microscopic

calculation. According to the brane array written at the beginning of this section, the

flavor D4-branes span a dimension-two surface in the normal bundle N4. Actually, it is

straightforward to verify that the family of embeddings (2.66) are calibrated by the form K
written in (3.13) and, therefore, they preserve the supersymmetries of the background. The

corresponding charge distribution obtained by an homogeneous distribution of D4-branes

embedded along the family (2.66) and smeared over the (θ, φ) two-sphere at a given fixed

value ρQ of the transverse coordinate ρ is given by:

Ω = δ(ρ− ρQ)dρ ∧ sin θdθ ∧ dφ
4π

∧ Γ , (3.36)

where Γ is the two-form of eqs. (2.68) and (2.72) that results after averaging over the

planes (2.66). Plugging (2.72) into (3.36) we immediately get (3.35) if the constant C is

related to the density nf as:

C = −2κ2
10T4

nf
32π

. (3.37)

By using this result, we can rewrite the PDE (3.11) as:

2z
√
z (σz̈ + ż) = σ

(

z′
2 − 2zz′′

)

− πnf
2mNc

σz3/2δ(ρ− ρQ) , (3.38)

while the discontinuity of z′ at ρ = ρQ is given by:

z′(ρQ + ǫ, σ) − z′(ρQ − ǫ, σ) = − πnf
4mNc

√

z(ρQ, σ) . (3.39)

The PDE (3.38) with the jump condition (3.39) can be integrated numerically by using

the same strategy applied to the case of the D3-branes in section 2. In figure 4 we have

plotted the result of this numerical integration for two values of nf . From these plots it is

clear that the effect of the flavors in this solution is qualitatively the same as in the case

of wrapped D3-branes and, therefore, the remarks made after (2.75) are also applicable to

the present case.
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Figure 4. Plots of z(ρ, σ) obtained from the numerical integration of the PDE equation (3.38) for

two different values of x ≡ πnf

m2Nc
. The left (right) plot corresponds to x = 1/5 (x = 1/20). In both

cases we are taking mρQ = 5 and the ρ < ρQ region has been obtained with the unflavored solution

with UV parameters c = −1 and z∗ = 3.

4 N = 2 3d SQCD from wrapped D5-branes

In this section we will study an alternative way of constructing a gravity dual of three-

dimensional N = 2 gauge theories, namely by considering the background generated by

D5-branes wrapping a three-cycle of a Calabi-Yau manifold of complex dimension three.

In the unflavored case this setup was considered in refs. [16, 17], where an explicit solution

was found from gauged supergravity. The addition of flavor to this system was addressed

in ref. [39] by means of a macroscopic approach similar to the one employed here. In the

present paper we revisit this configuration with our methods and, in particular, we find a

flavored solution with a good microscopic description in terms of a family of embeddings

of D5-branes.

The brane setup we will analyze is represented by the following array:

CY3

︷ ︸︸ ︷

R
1,2 S3 N3 R

Nc D5 − − − © © © · · · ·
Nf D5 − − − © · · − − · ·

In order to formulate a specific ansatz for the metric and RR three-form, let us introduce

some definitions. Let wi be SU(2) left-invariant one-forms. We shall consider a rotated

version of these forms by two angles θ and φ, with 0 ≤ θ ≤ π and 0 ≤ φ < 2π. Accordingly,

we define three new one-forms Si (i = 1, 2, 3) as:

S1 = cosφ
w1

2
− sinφ

w2

2
,

S2 = sin θ
w3

2
− cos θ

(

sinφ
w1

2
+ cosφ

w2

2

)

,

S3 = − cos θ
w3

2
− sin θ

(

sinφ
w1

2
+ cosφ

w2

2

)

. (4.1)

– 25 –



J
H
E
P
0
6
(
2
0
1
0
)
0
9
5

Similarly, we define two new one-forms E1 and E2, obtained from dθ and sin θdφ, that are

the natural frame forms of a two-sphere, as:

E1 = dθ + cosφ
w1

2
− sinφ

w2

2
= dθ + S1,

E2 = sin θ

(

dφ+
w3

2

)

− cos θ

(

sinφ
w1

2
+ cosφ

w2

2

)

= sin θdφ+ S2 . (4.2)

The prototypical example of a non-compact Calabi-Yau threefold with a three-cycle blown

up is the deformed conifold. It turns out [45] that the metric of the deformed conifold can

be written in terms of the one-forms Si and Ej as follows:

ds26 =
1

2
µ

4

3K(σ)

[

1

3K(σ)3

(

(dσ)2 + 4(S3)2
)

+ 2cosh2
(σ

2

)(

(S1)2 + (S2)2
)

+

+2 sinh2
(σ

2

)(

(E1)2 + (E2)2
)
]

, (4.3)

where 0 ≤ σ < +∞ is the radial coordinate, µ is the deformation parameter of the conifold

and K(σ) is the function:

K(σ) =

(
sinh(2σ) − 2σ

) 1

3

2
1

3 sinhσ
. (4.4)

We will take the metric (4.3) as the starting point to formulate our ansatz for the ten-

dimensional metric associated to our brane setup. First of all, we add three Minkowski

coordinates x0,1,2 and a new non-compact coordinate ρ parametrizing the transverse R

(−∞ < ρ < +∞). As before, we will parametrize the size of the three-cycle by a function

z = z(ρ, σ) and we will introduce a squashing between the three-cycle and the S2 fiber.

Accordingly, the string frame metric takes the form:

ds2 = eΦ
(

dx2
1,2 +

z

m2
dΩ2

3

)

+ e−Φ

{
1

z

[

dσ2 + σ2
[
(E1)2 + (E2)2

] ]

+ dρ2

}

, (4.5)

where Φ = Φ(ρ, σ) is the dilaton and m2 is now:

m2 =
1

gsNcα′
. (4.6)

In eq. (4.5) dΩ2
3 is the metric of the three-sphere, namely:

dΩ2
3 =

∑

i

(Si)2 =
1

4

∑

i

(wi)2. (4.7)

The background is also endowed with an RR three-form F3 which, in complete analogy

with the results of sections 2 and 3, we will represent in terms of two-forms C2 and Λ as:

F3 = dC2 + Θ(ρ− ρQ)dΛ . (4.8)

We will adopt the following ansatz for C2 and Λ:

C2 = g1E
1 ∧ E2 + g2S

1 ∧ S2 , gi = gi(ρ, σ) ,

Λ = L1E
1 ∧ E2 + L2S

1 ∧ S2 , Li = Li(σ) . (4.9)
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Notice that the two-form Λ introduces a violation of the Bianchi identity of the form:

dF3 = δ(ρ − ρQ)dΛ , (4.10)

which corresponds to sources localized at a fixed value ρQ of the ρ coordinate. Let us now

write down the explicit expression for F3. Since we have:

d
(
E1 ∧ E2

)
= −d

(
S1 ∧ S2

)
= E1 ∧ S1 ∧ S3 + E2 ∧ S2 ∧ S3 . (4.11)

Then, the RR three-form F3 given by (4.8) and (4.9) takes the form:

F3 =
(

dg1 + Θ(ρ− ρQ)L̇1dσ
)

∧ E1 ∧ E2 +
(

dg2 + Θ(ρ− ρQ)L̇2dσ
)

∧ S1 ∧ S2 +

+
(

g1 − g2 + Θ(ρ− ρQ)(L1 − L2)
)(

E1 ∧ S1 ∧ S3 + E2 ∧ S2 ∧ S3
)

. (4.12)

It is natural to consider the following basis of vielbein one-forms:

ei = e
Φ

2 dxi, (i = 0, 1, 2), ej = e
Φ

2

√
z

m
Sj−2, (j = 3, 4, 5), e6 =

e−
Φ

2√
z
dσ,

e7 = e−
Φ

2

σ√
z
E1, e8 = e−

Φ

2

σ√
z
E2, e9 = e−

Φ

2 dρ . (4.13)

In order to perform the supersymmetry analysis of the ansatz (4.5)–(4.12) in type IIB

supergravity, let us impose the following set of projections to the Killing spinors:

Γ3478ǫ = ǫ, Γ3568ǫ = ǫ, Γ6789ǫ = −τ1ǫ, (4.14)

which leave four supercharges unbroken. In (4.14) τ1 is the first Pauli matrix. The corre-

sponding BPS equations are:

Φ̇ = −m2e−2Φ σ

2z2
− e2Φ

√
z

2σ2
g′1,

Φ′ =
1

2
√
z

[

e2Φ
z2

σ2

(
ġ1 + Θ(ρ− ρQ)L̇1

)
+

3m2

σ

(
g1 − g2 + Θ(ρ− ρQ)(L1 − L2)

)
]

,

ż = 2m2e−2Φσ

z
,

z′ = 2m2

√
z

σ

(
g2 − g1 + Θ(ρ− ρQ)(L2 − L1)

)
,

ġ2 = − 1

σ
(g1 − g2) − Θ(ρ− ρQ)

[

L̇2 −
L2 − L1

σ

]

,

g′2 = −e−2Φ σ√
z
. (4.15)

The consistency of this system requires that the Li’s satisfy the condition:

L̇2 =
L2 − L1

σ
. (4.16)

Moreover, from the BPS system (4.15) we get the following PDE for the function z(ρ, σ):

z

(

zz̈ +
1

2
ż2

)

=
1

2
z′2 − zz′′ +

2m2(L2 − L1)

σ
z3/2δ(ρ− ρQ). (4.17)
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One can check that, if eqs. (4.15) and (4.16) hold, then the equations of motion of the gravity

plus smeared branes system are fulfilled. Notice the difference between the consistency

conditions (4.16) and (2.47), which is due to the fact that in this D5-brane case the flavor

branes are codimension one in the normal bundle N3, whereas in the setups of sections 2

and 3 the flavor branes span a codimension two submanifold of N4.

The generalized calibration form for this case is a six-form of the type:

K =
1

6!
Ka1···a6e

a1···a6 . (4.18)

The different components of K are given by:

Ka1···a6 ≡ −e−Φ

2 ǫ†Γa1···a6τ1ǫ , (4.19)

where ǫ is a Killing spinor of the background, normalized as e−
Φ

2 ǫ†ǫ = 1, and the minus

sign in the definition (4.19) has been introduced for convenience. By using the SUSY

projections satisfied by our solutions (eq. (4.14)), we get the actual components of K in

the frame basis (4.13), namely:

K = −e012 ∧
(
e345 + e367 + e468 − e578

)
. (4.20)

The BPS system (4.15) can be now summarized in the following equations satisfied by the

calibration form K:
∗F3 = −d

(
e−ΦK

)
, d

(
∗K) = 0 . (4.21)

4.1 The unflavored solution

The background of refs. [16, 17], obtained in seven-dimensional gauged supergravity and

afterwards uplifted to ten dimensions, provides a solution of the BPS system (4.15) and of

the PDE equation (4.17) in the unflavored case L1 = L2 = 0. Let us present this solution,

entirely written in our variables. The function z(ρ, σ) is given as the solution of the implicit

equation:

σ2

z3/2
(
I3/4(

z
2 ) − cK3/4(

z
2)
)2 +

ρ2

√
z
(
I−1/4(

z
2 ) + cK1/4(

z
2 )
)2 =

1

4m2
, (4.22)

where Iν and Kν are modified Bessel functions. One can, indeed, check that the function

z(ρ, σ) defined by (4.22) solves the PDE equation (4.17) for L1 = L2 = 0. Let us next

define the function x(z) as:

ex(z) ≡
[

I−1/4(
z
2 ) + cK1/4(

z
2 )

I3/4(
z
2 ) − cK3/4(

z
2 )

] 1

2

. (4.23)

Then, the dilaton Φ(ρ, σ) is given by:

eΦ = m
√

e−6xρ2 + z−1e2xσ2. (4.24)
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In order to write down the functions g1 and g2 that parametrize the three form F3, let us

now define the angle ψ (0 ≤ ψ ≤ π) as:

cotψ = z
1

2 e−2x ρ

σ
. (4.25)

In terms of ψ the functions g1 and g2 are simply given by:

g1 =
ψ

m2
− e−2Φ−4x ρσ√

z
, g2 =

ψ

m2
. (4.26)

This unflavored solution was analyzed in detail in ref. [17], where it was argued that, for

c > 0, it has a good IR singularity corresponding to a linear distribution of fivebranes. By

means of a probe computation, it was proposed in [17] that the solution describes a slice

of the Coulomb branch of N = 2 , d = 3 pure YM theory. Actually, one can also prove

in this case that the SUSY locus of color D5-brane probe occurs at σ = 0 and that the

Yang-Mills coupling is related to z(ρ, σ = 0) by:

1

g2
YM

=

[
z(ρ, σ = 0)

] 3

2

(4π)2gsα′m3
. (4.27)

Notice that now z does not approach a constant value in the UV. Indeed, from (4.22)

one gets that it grows logarithmically as z(ρ, 0) ∼ 2 log(mρ) for large ρ. Accordingly, gYM
in (4.27) decreases as a power of a logarithm of ρ in the UV, contrary to the result expected

for a three-dimensional gauge theory. Notice also that the dilaton blows up in the UV and,

therefore, a string theory completion is needed in this region.

4.2 Flavored solutions

The modification of the Bianchi identity of F3 induced by a set of flavor D5-branes dis-

tributed with a charge density four-form Ω is:

dF3 = 2κ2
10T5Ω. (4.28)

By comparing (4.28) with the value of dF3 for our ansatz (eq. (4.10)), one immediately

gets the smearing form Ω in terms of Λ, namely:

Ω =
δ(ρ− ρQ)dρ ∧ dΛ

2κ2
10T5

. (4.29)

As in the D3- and D4-brane cases studied above, we will concentrate on studying the

configuration in which the function L1 that parametrizes Λ vanishes. In this case the

compatibility condition (4.16) can be easily solved:

L1 = 0, L2 = Aσ, (4.30)

with A being a constant. The smearing form for this configuration can be straightforwardly

obtained by using (4.11) to compute dΛ. One gets:

Ω =
Aδ(ρ − ρQ)

2κ2
10T5

dρ ∧
(
dσ ∧ S1 ∧ S2 − σ

(
S1 ∧ S3 ∧ E1 + S2 ∧ S3 ∧ E2

))
. (4.31)
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If we now substitute in (4.31) the expression for the one-forms S1,2,3 and E1,2 written in

eqs. (4.1) and (4.2), we see that they can be rearranged so that Ω can be recast as:

Ω = −Aδ(ρ− ρQ)

8κ2
10T5

dρ∧
[
d (σ sin θ sinφ) ∧ w2 ∧ w3 + d (σ sin θ cosφ) ∧ w3 ∧ w1+

+ d (σ cos θ) ∧ w1 ∧ w2
]
. (4.32)

Let us introduce now the following set of cartesian coordinates for N3:

y1 = σ sin θ sinφ, y2 = σ sin θ cosφ, y3 = σ cos θ. (4.33)

In terms of these cartesian coordinates the smearing form has the following appealing and

compact form:

Ω = −Aδ(ρ− ρQ)

16κ2
10T5

ǫijkdρ ∧ dyi ∧ wj ∧ wk . (4.34)

In the next subsection we will identify a set of supersymmetric embeddings which give rise

to a charge density distribution given by (4.34).

4.3 Microscopic analysis

First of all, let us determine a continuous set of supersymmetric D5-brane embeddings

distributed as the flavor branes of our setup. In these embeddings the D5-brane is located

at a fixed ρ = ρQ, is extended along a two-dimensional plane in N3 and, simultaneously,

wraps an S1 inside the three-cycle S3. The particular S1 ⊂ S3 that the brane wraps

depends on the plane that it spans in N3. In order to describe this relation, we first define

the three-vector ~n as:

~n = (sinα sin β, sinα cos β, cosα), (4.35)

where 0 ≤ α ≤ π and 0 ≤ β ≤ 2π. Let us next consider the family of embeddings in N3

defined by the following function:

f(~y) ≡ ~n · ~y − y∗ = 0, (4.36)

where ~y = (y1, y2, y3) are the cartesian coordinates defined in (4.33). This is the equation

of a plane having ~n as its normal direction and with y∗ being its minimal distance to the

~y = 0 origin of N3. Let us next define the following two tangent vectors to the plane:

~t1 = (cos β,− sin β, 0),

~t2 = (cosα sin β, cosα cos β,− sinα). (4.37)

Notice that (~t1,~t2, ~n) is an orthonormal basis in R
3. Let us now arrange the three SU(2)

one-forms wi in a vector, namely: ~w = (w1, w2, w3). If we define the one-forms:

wti ≡ ~ti · ~w, wn ≡ ~n · ~w, (4.38)

then, the embeddings in the S3 are defined by the two differential conditions:

wt1 = 0, wt2 = 0. (4.39)
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Notice that the system (4.39) is integrable due to the property:

dwt1 = −wt2 ∧ wn, dwt2 = −wn ∧wt1 , (4.40)

which shows that the differential equations derived from (4.39) are on involution and,

according to Frobenius’ theorem, they are integrable. Moreover, in order to show that

the corresponding embedding preserves the supersymmetry of the background, one has to

verify the fulfillment of the generalized calibration condition:

K̂ = Vol(M6), (4.41)

where K̂ is the pullback of the six-form (4.20). To verify (4.41) we will come back for a

while to our original (σ, θ, φ) coordinates of N3. Notice, first of all, that we can use the

differential equations (4.39) to express the pullback of two of the wi’s in terms of the third

one. For example, if α 6= π/2 we can write:

ŵ1 = sinβ tanαŵ3, ŵ2 = cos β tanαŵ3. (4.42)

Using this result we can compute the pullback of the different one-forms of the basis (4.13)

and, thus, one can compute the pullback of the calibration form K. The result can be

written as:

K̂ =
σ2eφ

2m3
√

2z

secα sin θ

cosα cos θ + cos(β − φ) sinα sin θ
dx0 ∧ dx1 ∧ dx2 ∧ ŵ3 ∧ dθ ∧ dφ. (4.43)

One can also compute the induced metric and check that, indeed, eq. (4.41) is satisfied

and, therefore, the embeddings described above are supersymmetric, as claimed.

Let us now verify that the charge distribution generated by this family of D5-brane

configurations is just given by a six-form Ω such as the one written in (4.34). Following

the same methodology that we applied for the D3- and D4-brane cases, let us write the

smearing form Ω as:

Ω = δ(ρ − ρQ)dρ ∧ Γ, (4.44)

where Γ is the following three-form:

Γ =

∫

dµδ(f)
[
df ∧ ΓS3

]
, (4.45)

with the integration measure dµ given by:

dµ =
sinαdαdβ

4π
nfdy∗, (4.46)

and with ΓS3 being the charge density distribution obtained after averaging over the possi-

ble embbedings on the S3 for a given plane in N3. In (4.46) nf is a density of flavor branes.

The integral over y∗ in (4.45) can be immediately performed by using δ(f) = δ(~n · ~y − y∗).

One gets:

Γ =
nf
4π

∫

sinαdαdβ
[
df ∧ ΓS3

]
. (4.47)
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In order to determine ΓS3 let us first consider the particular plane with α = β = 0. In

this case the differential equations for the embedding in the S3 are just w1 = w2 = 0. After

looking at the parametrization (2.54) of w1 and w2 in terms of the three angles (θ̂, φ̂, ψ̂),

one immediately realizes that the equation for this embedding can be integrated as:

fφ ≡ φ̂− φ̂∗ = 0, fθ ≡ θ̂ − θ̂∗ = 0, (4.48)

where φ̂∗ and θ̂∗ are constant angles. These embeddings depend on two continuous pa-

rameters φ̂∗ and θ̂∗ which span a two-sphere. Therefore the corresponding two-form ΓS3 is

given by:

ΓS3 =

∫
sin θ̂∗dφ̂∗dθ̂∗

4π
δ(fφ)δ(fθ)

[
dfφ ∧ dfθ

]
, (4.49)

where we are integrating over φ̂∗ and θ̂∗ with the invariant measure of the two-sphere.

These integrals are immediately performed with the help of the Dirac δ-functions:

ΓS3 =
sin θ̂

4π
dφ̂ ∧ dθ̂ =

1

4π
w1 ∧ w2. (4.50)

From this result it is clear that the generalization to arbitrary values of α and β is:

ΓS3 =
1

4π
wt1 ∧ wt2 . (4.51)

Taking into account that ~n = ~t1 × ~t2 or, in components, ni = ǫijktj1t
k
2 , we can write:

wt1 ∧ wt2 =
1

2
ǫijkniwj ∧ wk. (4.52)

Thus, we can rewrite (4.51) as:

ΓS3 =
1

8π
ǫijkniwj ∧wk, (4.53)

and, plugging this result in (4.47), we find that Γ can be represented as:

Γ =
nf

32π2

[
∫ π

0
sinαdα

∫ 2π

0
dβninj

]

ǫjkldyi ∧ wk ∧wl. (4.54)

Moreover, using the fact that:

∫ π

0
sinαdα

∫ 2π

0
dβninj =

4π

3
δij , (4.55)

we get:

Γ =
nf
24π

ǫijkdyi ∧ wj ∧ wk. (4.56)

Therefore, by combining this result with (4.44) we conclude that the smearing form Ω for

this family of embeddings can be written as:

Ω =
nf
24π

ǫijkδ(ρ− ρQ)dρ ∧ dyi ∧ wj ∧ wk. (4.57)
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Figure 5. Plots of z(ρ, σ) obtained from the numerical integration of the PDE (4.60) for two values

of x ≡ 8πnf

3mNc
. The left curve corresponds to x = 2/3, while the curve on the right was obtained for

x = 1/5. In these two cases mρQ = 3 and we are considering the case with c = 1 for ρ < ρQ, where

c is the constant appearing in the unflavored solution (4.22).

By comparing (4.57) and the macroscopic expression of Ω written in (4.34) we get that

both expressions coincide if the constant A is identified with:

A = −2κ2
10T5

nf
3π
. (4.58)

Taking into account that 2κ2
10T5 = 4π2gsα

′, we can rewrite the previous relation as:

A = −4π

3
gsα

′nf . (4.59)

4.4 Numerical results

Using the expression (4.59) of the constant A, one can straightforwardly demonstrate that

the PDE (4.17) for the flavored system takes the form:

z

(

zz̈ +
1

2
ż2

)

=
1

2
z′2 − zz′′ − 8πnf

3Nc
z3/2δ(ρ− ρQ). (4.60)

The discontinuity of z′ at ρ = ρQ in this case is given by:

z′(ρQ + ǫ, σ) − z′(ρQ − ǫ, σ) = −8πnf
3Nc

√

z(ρQ, σ). (4.61)

In figure 5 we show the numerical result of the integration of the PDE (4.60) for z(ρ, σ)

which reduces to the unflavored solution for ρ < ρQ and such that its first partial derivative

with respect to ρ has the discontinuity given in (4.61).

5 Summary and conclusions

In this paper we have studied supergravity backgrounds which are obtained by wrapping D-

branes on cycles of a Calabi-Yau cone. In their unflavored version these backgrounds were

obtained some time ago by uplifting to ten dimensions the corresponding solutions in lower

dimensional gauged supergravity. These uplifted solutions depend on several angles and are

quite involved. Here we have rewritten them in terms of the two radial coordinates (ρ, σ).

In spite of the fact that one has to deal with functions depending on these two variables, this
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form of presenting these backgrounds is a simplification that clarifies their interpretation

and allows to easily find their generalization when flavor sources are added. In the cases of

the D3- and D4-branes, the solutions of the BPS systems in gauged supergravity of ref. [6]

can be obtained by solving the master equations (2.18) and (3.15) and using these results

in the implicit equations (2.19) and (3.16) respectively. In the case of the D5-brane, the

analytic solution of the unflavored background of refs. [16, 17] is obtained, in terms of our

variables, by solving the implicit equation (4.22).

The most important results of this paper are the construction of backgrounds which

include the backreaction due to a large number of flavor branes. The latter act as extended

dynamical sources for the different supergravity fields and, in particular, they modify the

Bianchi identity of the RR fields. In order to deal with this problem, we have first adopted

an effective macroscopic approach in which the precise knowledge of the flavor brane em-

beddings is not needed.

Using the preservation of supersymmetry and the compatibility with the metric ansatz

as guiding principles, we were able to parametrize the violation of the Bianchi identity

induced by the flavor branes by means of two functions L1 and L2 and we argued, as in

ref. [19], that the most physically sensible configuration corresponds to taking L1 = 0. We

have verified this fact by reproducing the results found in the macroscopic approach by

means of a careful analysis of the supersymmetric configurations of the flavor branes. We

first found a family of embeddings which satisfy a generalized calibration condition and

such that, in an appropriate system of coordinates, they can be regarded as planes in the

directions orthogonal to the cycle wrapped by the color branes. We then computed the RR

charge density Ω resulting after distributing homogeneously the flavor branes throughout

the family of calibrated planes and we checked that the result coincides with the one found

in the macroscopic approach. In turn, this result allowed us to relate the constants A and

C of the macroscopic approach to the density nf of flavor branes. Once this identification

is performed, the flavored backgrounds are obtained by integrating numerically the PDE

equation for z(ρ, σ) with the condition that the solution reduces to the unflavored one for

ρ < ρQ and such that the first derivative z′(ρ, σ) jumps at the location ρ = ρQ of the flavor

brane as dictated by the corresponding BPS equation.

Let us now comment on some points not addressed in our work that could be interesting

to analyze in the future. First of all, we could study the fluctuations of a flavor probe brane

embedded along one of the supersymmetric planes. By studying the normalizable modes

one would find the meson mass spectrum. The results should be close to the ones analyzed

in refs. [18, 27, 40] for other backgrounds similar to the ones analyzed here. In particular,

by comparing the spectra for the quenched and unquenched backgrounds one could study

the effects of the backreaction on the meson masses. When the probe brane is located at

ρ = ρq ≤ ρQ the spectrum for the backreacted solution is the same as the one without

backreaction since both metrics coincide for ρ ≤ ρQ. On the contrary, for ρq > ρQ this is not

the case and, from the change in the mass spectra, one can extract, in the holographic setup,

the corrections produced by charge screening effects due to quark loops. As in other similar

cases analyzed before [18, 27, 36–38, 40], one expects these screening effects to be small.

In this paper we have only studied configurations of flavor branes extended along cal-
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ibrated planes. There exist, however, more general embeddings that preserve the same

supersymmetry (see, for example, section 2.4.1). Generically, these other embeddings rep-

resent configurations in which the flavor branes end on the color branes in such a way

that both types of branes are recombined. On the field theory side these solutions should

correspond to Higgs branches of the corresponding supersymmetric theory.

One aspect that is missing for the kind of gravity duals analyzed here is the precise

dictionary between them and the corresponding field theory. If we had this dictionary

we could extract more precise information from our solutions. We could, for example,

understand the relation between the field theory duals to the backgrounds of sections 3

and 4, which should correspond to two three-dimensional gauge theories with different UV

completions. Nevertheless, we regard our work as part of the efforts devoted to approach

the gauge/gravity duality to particle physics phenomenology. In the absence of a true

gravity dual of QCD, the best that one can do is trying to uncover universal features of the

duality by systematically analyzing different backgrounds and their generalizations. We

hope that some of the results presented here could be useful in this endeavor.
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