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on the relation between this linear system and the XXX model TBA equations.

Keywords: AdS-CFT Correspondence, Lattice Integrable Models

ArXiv ePrint: 1002.4142

c© SISSA 2010 doi:10.1007/JHEP06(2010)080

mailto:balog@rmki.kfki.hu
mailto:hegedus@rmki.kfki.hu
http://arxiv.org/abs/1002.4142
http://dx.doi.org/10.1007/JHEP06(2010)080


J
H
E
P
0
6
(
2
0
1
0
)
0
8
0

Contents

1 Introduction 1

2 Linearized TBA equations 4

3 XXX model TBA equations 6

4 Calculation of ρk 7

A Existence and uniqueness of the inverse matrix 9

1 Introduction

One of the most important problems in testing the AdS/CFT correspondence [1–3] is

to understand the finite size spectrum of the AdS5 × S5 superstring. For large volumes

the asymptotic Bethe Ansatz (ABA) describes the spectrum of the model [4]. It takes into

account all power like corrections in the size, but neglects the exponentially small wrapping

corrections [5].

In [6] it was shown that the leading order wrapping corrections can also be expressed by

the infinite volume scattering data through the generalized Lüscher formulae [7]. In [6] the

4-loop anomalous dimension of the Konishi operator was obtained by means of the general-

ized Lüscher formulae in perfect agreement with direct field theoretic computations [8, 9].

Subsequently wrapping interactions computed from Lüscher corrections were found to be

crucial for the agreement of some structural properties of twist two operators [10] with LO

and NLO BFKL expectations [11, 12].

More recently [13] the 5-loop wrapping correction to the anomalous dimension of

the Konishi operator was also computed from the generalized Lüscher approach yielding

the result:

∆(10) = ∆
(10)
asympt + g10

{
− 81ζ(3)2

16
+

81ζ(3)

32
− 45ζ(5)

4
+

945ζ(7)

32
− 2835

256

}
,

with g being the coupling constant related to the ’t Hooft coupling λ through λ = 4π2g2.

Later this result has been extended to the class of twist two operators as well [14].

Due to the integrability of the string worldsheet theory, the Thermodynamic Bethe

Ansatz (TBA) approach for the mirror model [5, 15] offers a tool to investigate the spectrum

of the string theory. The TBA equations were derived first for the ground state [16–20].

Later using an analytic continuation trick [21] they were extended to excited states lying

in the sl(2) sector of the theory [20, 22] as well. The TBA equations passed some tests

both in the weak and in the strong coupling limit. In the strong coupling limit it was
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shown [23] that the TBA equations reproduce correctly the 1-loop string energies in the

quasi-classical limit. In the weak coupling regime they give (by construction) the same

leading order wrapping corrections in g as predicted by the generalized Lüscher formulae.

However, to extract the next to leading order wrapping correction in g from TBA

is more difficult as at this order the modification of the ABA equations must be taken

into account. In the TBA approach the modified ABA equations depend also on the

asymptotically non-vanishing Y -functions (which satisfy non-trivial coupled equations even

in the small g limit), making the next to leading order calculation of wrapping interactions

a non-trivial task.

In the TBA formulation of the finite size problem the energy of an N -particle state

takes the form:

E = J +
N∑

i=1

E(pi) −
1

2π

∞∑

Q=1

∫ ∞

−∞
du
dp̃Q

du
log(1 + YQ) , (1.1)

where J is the angular momentum carried by the string rotating around the equator of S5,

p̃Q is the mirror momentum and the functions YQ are the unknown functions (Y-functions)

associated to the mirror Q-particles, futhermore

E(p) =

√
1 + 4g2 sin2 p

2
(1.2)

is the dispersion relation of the string theory particles.

In this paper we will focus on the g10 order computation of the anomalous dimension

(energy) of the Konishi operator Tr(D2Z2−(DZ)2) and expanding the considerations of [24]

we prove analytically that the TBA equations and the generalized Lüsher formulae of [13]

give the same result for the 5-loop anomalous dimension of the Konishi operator. This

operator corresponds to the N = J = 2 choice in (1.1). For its TBA equations see [22, 25].

In this paper we will use the notations and conventions used in [22].

It is known for the Konishi operator that in the weak coupling regime the wrapping

corrections start at the order of g8 thus the ABA equations for the momenta get corrections

from wrapping at g8 order, i.e. δpk ∼ g8, where δpk is the wrapping correction to the

asymptotic value of the kth momentum.

The energy formula (1.1) can be expanded around the asymptotic solution if the Y -

functions are small. This happens either for large J as the YQ-functions are exponentially

small in this limit or at fixed J for small g. From the asymptotic solution of the TBA

equations [26] it is known that YQ ∼ g8, this is why up to O(g10) it is enough to take

into account only the first term, linear in YQ, in the series expansion of the integral term

of (1.1).

E ≃ J +

2∑

i=1

E(pABA
i ) +

2∑

i=1

∂E
∂pi

∣∣∣∣
ABA

δpi −
1

2π

∞∑

Q=1

∫ ∞

−∞
du
dp̃Q

du
YQ +O(g12), (1.3)

where pABA
i denotes the solution of the ABA and the derivative of E must be taken at

the asymptotic values of the momenta. As the function depQ

du
starts at O(1) in g2 and
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∂E
∂pi

∣∣∣∣
ABA

∼ g2 it can be seen that only the asymptotic form of the YQ functions contribute

to the wrapping correction in leading order and the momentum perturbations start to play

a role only at O(g10).

Taking the asymptotic form of the YQ functions given in [26] it is easy to see that all

terms in the above energy expression identically agree with those of ref. [13] except the one

containing the momentum correction. Thus only the momentum quantization equations

should be compared to see whether both approaches give the same result for δpi.

In a recent publication [24] this agreement was verified by numerically solving the

linearized TBA equations. We will use the results (and notations) of this paper.

Let uk = uo
k + δuk, where uo

k is the asymptotic value of the uk and δuk ∼ g8 is its

wrapping correction. Then δuk satisfies the equation:

2∑

j=1

δABA(uk, {ui})
δuj

∣∣∣∣
ui=uo

i

δuj + Φ
(8)
k = 0

where Φ
(8)
k is the O(g8) correction to the ABA. For small g all YQ functions are small and

the TBA equations can be linearized around the asymptotic solution.

In [24] it has been shown that at O(g8) the linear problem for the functions associated

to the vw-strings decouples from the other type of variables and takes the form

YM |vw = (AM−1|vwYM−1|vw +AM+1|vwYM+1|vw) ⋆ s− Y o
M+1 ⋆ s,

Y0|vw = 0, M = 1, 2, . . . , (1.4)

where YM |vw is the O(g8) perturbation of the asymptotic Y o
M |vw

function defined by the

formula YM |vw = Y o
M |vw

(1 + YM |vw), AM |vw = lim
g→0

Y o
M|vw

1+Y o
M|vw

and it is given explicitly by1

AM |vw(u) =
M(M + 2)

(M + 1)2
(u2 − w2 +M2 − 1) (u2 − w2 + (M + 2)2 − 1)

[u2 −w2 + (M + 1)2]2 + 4w2 − 4M(M + 2)
, (1.5)

where

u1 = −u2 = w =
1√
3

(1.6)

is the O(1) solution of the ABA for the Konishi state. Furthermore ⋆ denotes convolution,

s is the TBA kernel s(x) = 1
4 cosh(π

2
x) , and finally in the source term of the linear problem

Y o
Q is the leading, O(g8), asymptotic expression of the YQ functions:

Y o
Q(u) = g8 64Q2[−1 +Q2 + u2 − w2]2

(Q2 + u2)4[(Q− 1)2 + (u− w)2][(Q+ 1)2 + (u− w)2]
× (1.7)

× 1

[(Q− 1)2 + (u+ w)2][(Q+ 1)2 + (u+ w)2]
.

1We simplified the formula (2.15) of ref. [24] to make its relation to the XXX magnet apparent.
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It turns out [24] that apart from the Y o
Q functions and Y1|vw no perturbations of the

other Y -functions enter the final formula for δRk = −Φ
(8)
k :

δRk =
1

π

∞∑

m=1

∫ ∞

−∞
duY o

m(u)
u− uk

(m+ 1)2 + (u− uk)2
+ ρk

+
1

π

∞∑

m=1

∫ ∞

−∞
duY o

m+1(u)

{
Fm(u− uk) −

u− uk

m2 + (u− uk)2

}
,

(1.8)

where

Fm(u) =
−i
4

{
ψ

(
m+ iu

4

)
− ψ

(
m− iu

4

)
− ψ

(
m+ 2 + iu

4

)
+ ψ

(
m+ 2 − iu

4

)}

(1.9)

with the usual ψ function ψ(z) = Γ′(z)/Γ(z) and ρk is the contribution coming from the

YM |vw-functions:

ρk =

∫ ∞

−∞
duA1|vw(u)Y1|vw(u)

1

2 sinh π
2 (u− uk)

. (1.10)

On the other hand the generalized Lüscher approach provides [13] the following expression

for Φ
(8)
k :

Φ(8)(uk) =
∞∑

M=1

∫ ∞

−∞
duY o

M(u) × (1.11)

× 1

π

[
− u−uk

(M+1)2+(u−uk)2
− u−uk

(M−1)2+(u−uk)2
+

uk

−1+M2+u2−u2
k

]
.

In [24] it has been numerically verified that Φ
(8)
k given by (1.8) and (1.11) agrees. In this

paper we will show this fact analytically. The key point of the proof is to recognize that

the coefficient functions AM |vw of the linear problem (1.4) are related to the Y -functions

of the inhomogeneous spin-1
2 XXX chain (for a review, see [27]) and that (with a different

source term) the linear problem (1.4) is identical to the variation of the TBA equations2

of the XXX magnet with respect to the inhomogeneity parameters. Exploiting these facts

we can express the quantity Φ
(8)
k by the Y -functions of the XXX magnet and show that

the formulae (1.8) and (1.11) are identical (up to a sign).

2 Linearized TBA equations

Let us rewrite the linearized AdS TBA system (1.4) as follows:

Dm δLm − s ⋆ (δLm+1 + δLm−1) = −s ⋆ Y o
m+1, m = 1, 2, . . . (2.1)

Note that our unknown functions δLm(u) are rescaled (by Am|vw(u)) with respect to the

ones used in ref. [24] and the coefficient functions Dm(u) are the inverses of the functions

Am|vw(u) given by (1.5). In this note we will only use the fact that the Y o
m(u) functions

2In this case the term TBA is used in the sense of finite size effects.
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are regular and even in u, but their explicit form (1.7) is not needed. In (2.1) δL0 = 0 by

convention and we also note that δL1(uk) = 0 because of the rescaling by A1|vw(u), since

the latter function vanishes at u = uk. We first have to solve (2.1) and then the relevant

quantity to be calculated is

ρk =

∫ ∞

−∞
du

δL1(u)

2 sinh π
2 (u− uk)

. (2.2)

No principal value prescription is needed since the integrand is regular at u = uk. If we can

calculate ρk then the leading correction to the Bethe-Yang quantization is given by (1.8).

To avoid the singularities coming from D1(u) at uk we shift the integration contour in

the imaginary direction by a small amount iγ:

Dγ
m δLγ

m − s ⋆ (δLγ
m+1 + δLγ

m−1) = −sγ ⋆ Y o
m+1, m = 1, 2, . . . (2.3)

Here we use the notation fγ(u) = f(u + iγ) for any function f(u). Although we need to

solve (2.3) in a particular case only, it turns out to be useful to study the corresponding

general linear problem, for a general (infinite) vector of unknowns ξ and arbitrary (infinite)

source vector j:

M ξ = j, (2.4)

where the operator matrix is given by

M =




Dγ
1 −s⋆ 0 . . .

−s⋆ Dγ
2 −s⋆ . . .

0 −s⋆ Dγ
3 . . .

...



. (2.5)

In our case the unknowns are

ξ =



δLγ

1

δLγ
2

...


 (2.6)

and the source term is of the form

j = I =



−sγ ⋆ Y o

2

−sγ ⋆ Y o
3

...


 . (2.7)

The operator matrix M is symmetric, MT = M. Therefore, assuming that the inverse of

M exists uniquely3 we can formally solve (2.4) as

ξ = R j, R = M−1, (2.8)

such that the inverse operator R is also symmetric: RT = R. Writing the solution (2.8)

in components we have

ξm(x) =

∞∑

m′=1

∫ ∞

−∞
dy Rmm′(x, y) jm′(y), (2.9)

3See appendix A about the existence and unicity of the inverse of M.
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where, due to the symmetry of the operator, the kernels satisfy

Rmm′(x, y) = Rm′m(y, x). (2.10)

Using this notation, we have

ρk =

∫ ∞

−∞
du

δLγ
1(u)

2 sinh π
2 (u+ iγ − uk)

=

∞∑

m=1

∫ ∞

−∞
du

∫ ∞

−∞
dv

1

2 sinh π
2 (u+ iγ − uk)

R1m(u, v)Im(v).

(2.11)

In this paper we will compute the relevant quantity ρk given by (2.11) without solving

explicitly the linearized TBA equations (2.1). This can be done by recognizing that an

explicitly solvable auxiliary linear problem can be defined via the XXX model which is of

the form (2.4) with a special right hand side j. This linear problem is the linearization

of the TBA system corresponding to the XXX model such that the coefficient functions

Dm are related to the XXX model Y-functions. The construction and the solution of this

linear problem is given in the next section.

3 XXX model TBA equations

The XXX model transfer matrix eigenvalue relevant for our considerations is

tm(u) = (m+ 1) {(u− u1)(u− u2) +m(m+ 2)} , m = −1, 0, 1, 2, . . . . (3.1)

This is a zero isospin solution of the T-system equations for the inhomogeneous XXX spin

chain4 of length 2 (the corresponding Baxter Q-operator has one real Bethe root):

tm(u+i) tm(u−i) = tm+1(u) tm−1(u)+t0(u+(m+1)i) t0(u−(m+1)i), m = 0, 1, 2, . . . (3.2)

The Y-system elements are given by the usual definitions

ym(u) =
tm+1(u) tm−1(u)

t0(u+ (m+ 1)i) t0(u− (m+ 1)i)
, (3.3)

1 + ym(u) =
tm(u+ i) tm(u− i)

t0(u+ (m+ 1)i) t0(u− (m+ 1)i)
(3.4)

and satisfy the Y-system equations

ym(u+ i) ym(u− i) = [1 + ym+1(u)] [1 + ym−1(u)]. (3.5)

Now the crucial observation is that with this solution

Dm(u) =
1

Am|vw(u)
=

1 + ym(u)

ym(u)
, (3.6)

where the functions Am|vw(u) are given by (1.5). More precisely, (3.6) holds for the sym-

metric case (1.6).

4Here we consider the case when the inhomogeneities u1 and u2 are real.
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Our T-functions (except t0) have no physical roots (zeroes with imaginary parts less

than unity) if ∣∣∣∣
u1 − u2

2

∣∣∣∣ <
√

2 (3.7)

and therefore (for m ≥ 1) only y1(u) has physical roots. The corresponding TBA equations

are of the form

ym(u) = {t(u− u1) t(u− u2)}δm1 exp {s ⋆ (Lm+1 + Lm−1)(u)} , (3.8)

where

t(u) = tanh
π

4
u and Lm(u) = ln(1 + ym(u)). (3.9)

Taking the derivative (∂k) of (3.8) with respect to uk gives

∂kym(u)

ym(u)
= − π δm1

2 sinh π
2 (u− uk)

+ (s ⋆ ∂kLm+1) (u) + (s ⋆ ∂kLm−1) (u). (3.10)

After shifting the u variable by iγ and making the specialization5 (1.6) we get the auxiliary

linear problem which is precisely of the form (2.4) with

ξm(u) = ∂kL
γ
m(u) (3.11)

and

jm(u) = − π δm1

2 sinh π
2 (u+ iγ − uk)

. (3.12)

Substituting (3.11) and (3.12) into (2.9) we get a relation between the solution (3.11) and

certain matrix elements of the inverse operator

∂kL
γ
m(u) = −π

2

∫ ∞

−∞
dv

Rm1(u, v)

sinh π
2 (v + iγ − uk)

. (3.13)

4 Calculation of ρk

From (2.11) and the symmetry property of the inverse operator R it can be seen that

the knowledge of the right hand side of (3.13) is enough to compute ρk without solving

explicitly the complicated linearized TBA equations (2.1) of the AdS/CFT. Making use

of (3.13) we get

ρk = − 1

π

∞∑

m=1

∫ ∞

−∞
dv Im(v) ∂kL

γ
m(v)

=
1

π

∞∑

m=1

∫ ∞

−∞
dv

∫ ∞

−∞
du s(v + iγ − u)Y o

m+1(u) ∂kL
γ
m(v)

=
1

π

∞∑

m=1

∫ ∞

−∞
duY o

m+1(u) (s ⋆ ∂kLm) (u).

(4.1)

5In the rest of the paper ∂k is understood as first taking the derivative with respect to uk and then

taking the specialization corresponding to (1.6).

– 7 –



J
H
E
P
0
6
(
2
0
1
0
)
0
8
0

This can be simplified further if we introduce the gauge transformed T-system functions

t̂m(u) =

{
∏

k

rm(u− uk)

}
tm(u), (4.2)

where

rm(u) =
1

4

γ(2 +m+ iu) γ(2 +m− iu)

γ(4 +m+ iu) γ(4 +m− iu)
(4.3)

with γ(z) = Γ(z/4). It is easy to check that in this gauge we have

t̂m(u+ i) t̂m(u− i) = 1 + ym(u). (4.4)

Since t̂m (m ≥ 1) has no roots in the physical strip we can write

t̂m(u) = exp {(s ⋆ Lm) (u)} (4.5)

and by taking the ∂k derivative we obtain

∂k ln t̂m(u) = s ⋆ ∂kLm(u). (4.6)

ρk can now be written as

ρk =
1

π

∞∑

m=1

∫ ∞

−∞
duY o

m+1(u) ∂k ln t̂m(u). (4.7)

Calculating the derivative we find

∂k ln t̂m(u) = −Fm(u− uk) +
2(u− uk)

m2 + (u− uk)2
− u+ uk

u2 − u2
k +m(m+ 2)

. (4.8)

Putting everything together, we find the result

δRk =
1

π

∞∑

m=1

∫ ∞

−∞
duY o

m(u)
u− uk

(m+ 1)2 + (u− uk)2

+
1

π

∞∑

m=1

∫ ∞

−∞
duY o

m+1(u)

{
u− uk

m2 + (u− uk)2
− uk

u2 − u2
k +m(m+ 2)

}
.

(4.9)

This is precisely the same (up to a sign) as (1.11), the result obtained by using the gen-

eralized Lüscher formalism [13]. Thus we have shown that up to 5-loop order the TBA

equations and the generalized Lüscher formulae give the same result for the anomalous

dimension of the Konishi operator.
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A Existence and uniqueness of the inverse matrix

The problem of finding the solution of the linearized TBA equations (2.3) is essentially

equivalent to finding the inverse of the infinite matrix (2.5). In this appendix we show the

existence and uniqueness of this matrix inversion problem. Uniqueness, which is essentially

equivalent to the absence of zero modes, is important because this enables us to calculate

ρk unambiguously from (2.2). The infinite matrix (2.5) can be written as

M = D− P s⋆, (A.1)

where D =< Dγ
1 ,D

γ
2 , · · · > is diagonal and P is a constant tridiagonal matrix given by

Pij = δi+1 j + δi−1 j. We can rewrite M as

M = (1 − A)D , where A = Ps ⋆D−1. (A.2)

The action of the operator A on a vector with components fi(x) can be written as

(Af)i(x) =
∑

j

Pij

∫ ∞

−∞
dy s(x− y) dj(y)fj(y) , (A.3)

where dj(y) = 1/Dγ
j (y). The crucial observation is that the absolute value of this function

is always smaller than its asymptotic value, ∆j :

|dj(y)| < ∆j =
j(j + 2)

(j + 1)2
j = 1, 2, . . . , (A.4)

at least for small enough γ. For later use we now define the operator B, which is obtained

from A by replacing dj(y) with its asymptotic value:

(Bf)i(x) =
∑

j

Pij

∫ ∞

−∞
dy s(x− y)∆jfj(y) . (A.5)

We also define analogously

M∞ = (1 − B)D∞ = D∞ − Ps ⋆ . (A.6)

The vectors of our linear space are given as infinite vectors

f ∼ {f1(x), f2(x), . . . } , (A.7)

or, equivalently, in Fourier space as

f ∼
{
f̃1(ω), f̃2(ω), . . .

}
, (A.8)

where, as usual,

f̃(ω) =

∫ ∞

−∞
dx eixω f(x). (A.9)

We now equip our space with the hermitean scalar product

(g|f) =

∞∑

i=1

∫ ∞

∞
dx g∗i (x)fi(x) =

1

2π

∞∑

i=1

∫ ∞

∞
dω g̃∗i (ω)f̃i(ω) (A.10)
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and the corresponding norm ||f ||2 = (f |f). With this norm our vector space becomes

a Hilbert space. We assume throughout this paper that both the vector variables ξ and

the source terms j in equations of the form (2.4) belong to this Hilbert space. This is a

natural assumption since it is easy to see that both source terms (2.7) and (3.12) and, more

importantly, the vector on the left hand side of (3.13) are elements of this Hilbert space.

For later purpose we note that the action of the operator B on the elements of the

Hilbert space is simple in terms of the Fourier transformed components. Using the notation

Bf = h, we have

h̃i(ω) =
∑

j

Pij s̃(ω)∆j f̃j(ω) , (A.11)

where

s̃(ω) =
1

2 coshω
=

1

q + 1
q

, q = e|ω| ≥ 1. (A.12)

We now observe that

|(Af)i(x)| ≤
∑

j

Pij

∫ ∞

−∞
dy s(x− y) |dj(y)| |fj(y)|

<
∑

j

Pij

∫ ∞

−∞
dy s(x− y)∆j f̂j(y) = (Bf̂)i(x) ,

(A.13)

where6

f̂i(x) = |fi(x)| , (f̂ |f̂) = (f |f). (A.14)

This inequality implies that A is “smaller” than B, in the sense that

||Af || < ||Bf̂ || and |(g|Af)| < (ĝ|Bf̂). (A.15)

On the other hand, B is smaller than unity, in the following sense. We first write

(g|Bf) =
1

2π

∫ ∞

−∞
dωs̃(ω)

∞∑

j=1

∆j f̃j(ω)
{
g̃∗j+1(ω) + g̃∗j−1(ω)

}
(A.16)

and after using the simple inequality 2|ab| ≤ |a|2 + |b|2 we have

|(g|Bf)| < 1

2π

∫ ∞

−∞
dωs̃(ω)

∞∑

j=1

{∣∣∣f̃∗j (ω)
∣∣∣
2
+

∣∣g̃∗j (ω)
∣∣2

}
<

1

2
||f ||2 +

1

2
||g||2 . (A.17)

Thus the norm of B is not exceeding unity since from the above inequality it follows that

|(f |Bf)| < (f |f) (A.18)

and similarly

|(f |Af)| < (f̂ |Bf̂) < (f̂ |f̂) = (f |f) . (A.19)

6All strict inequalities in this appendix are valid for nonzero Hilbert space vectors f, g.
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The inequalities (A.18) and (A.19) imply uniqueness of the inverse of the operators 1−B

and 1 − A since by multiplying the equations

f = Bf , f = Af (A.20)

by f we arrive at a contradiction.

More precisely, the solution of (1 − A)f = 0 as an infinite component vector

{f1(x), f2(x), . . . } may formally exist, but the above considerations show that f cannot

be a vector of the Hilbert space. The analogous M∞ξ = 0 equation can be explicitly

solved in Fourier space. This corresponds to the recursion relation
(
q +

1

q

)
(k + 1)2

k(k + 2)
ξ̃k = ξ̃k+1 + ξ̃k−1 , k = 1, 2, . . . (A.21)

with the boundary condition ξ̃0 = 0. The formal solution is easily found:

ξ̃k(ω) = C1(ω)a(k) , a(k) =
k

k + 1

(
qk+2 − q−k−2

)
− k + 2

k + 1

(
qk − q−k

)
. (A.22)

Here C1(ω) is an arbitrary (ω-dependent) normalization constant. Of course, this ξ cannot

be an element of the Hilbert space, since its components are exploding in k. This shows

why the Hilbert space requirement is natural: linearization only makes sense as long as the

linearized variable remains small.

The general solution of the recursion relation (A.21) is

ξ̃k(ω) = C1(ω)a(k) + C2(ω)b(k) , b(k) =
k + 2

k + 1
q−k − k

k + 1
q−k−2 , (A.23)

where C2(ω) is a second normalization constant. Using the building blocks a(k) and b(k)

the inverse of M∞ in Fourier space can be written as

R̃∞ kl(ω) =

{
λ(ω) a(k)b(l) k ≤ l ,

λ(ω) a(l)b(k) k ≥ l ,
(A.24)

where

λ(ω) =
coshω

4 sinh3 |ω| . (A.25)

One can show that

R∞ = D−1
∞ (1 − B)−1 = D−1

∞ b , (A.26)

where b is the sum of the Neumann series

b = (1 − B)−1 = 1 + B + B2 + . . . (A.27)

Since A is “smaller” than B, the inverse of 1− A also exists in the form of the Neumann

series

a = (1 − A)−1 = 1 + A + A2 + . . . (A.28)

since it can be shown easily that

||(1 + A + A2 + · · · + Ak)f || < ||(1 + B + B2 + · · · + Bk)f̂ || < ||bf̂ || . (A.29)
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It is also evident that the inverse of M, which can be written as

R = D−1 + D−1Ps ⋆D−1 + D−1Ps ⋆D−1Ps ⋆D−1 + . . . (A.30)

is manifestly symmetric.
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