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and N is invisible. By first determining the upper edge of the dilepton invariant mass

spectrum, we reduce the problem to a curve for each event in the 3-dimensional space of

mass-squared differences. The region through which most curves pass then determines the

unknown masses. A statistical approach is applied to take account of mismeasurement

of jet and missing momenta. The method is easily visualized and rather robust against

combinatorial ambiguities and finite detector resolution. It can be successful even for small

event samples, since it makes full use of the kinematical information from every event.
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1 Introduction

One of the principal objectives of the ongoing experiments at the Large Hadron Collider

is the discovery of new physics beyond the Standard Model. Many models of BSM physics

predict a rich spectrum of new particles with sequential decays into chains of other new

particles plus visible jets and leptons. Typically the endpoint of the chain is a new stable

invisible particle that is a dark matter candidate. Important examples are the squark decay

chain in supersymmetric models,

q̃ → χ̃0
2 + q , χ̃0

2 → ℓ̃± + ℓ∓ , ℓ̃± → χ̃0
1 + ℓ± , (1.1)

where the neutralino χ̃0
1 is the lightest supersymmetric particle (LSP), and the excited

quark decay in models with universal extra dimensions,

q∗ → Z∗ + q , Z∗ → ℓ∗± + ℓ∓ , ℓ∗± → γ∗ + ℓ± , (1.2)

where the photon excitation γ∗ is the lightest Kaluza-Klein particle.

If such decay chains do indeed occur at the LHC, the most urgent and challenging task

will be to determine the masses and other properties of the new particles involved. Many

approaches to the mass determination problem have been proposed,1 based mainly on the

measurement of endpoints, kinks or other features in the distributions of invariant masses

or specially constructed observables, or on explicit solution for the unknown masses using

multiple events.

The present paper investigates a combination of the explicit-solution and endpoint

methods for processes in which there are two effectively identical three-step decay chains,

such as first- and second-generation squark pair production and decay as in (1.1).2 The

method is a development of the approaches in refs. [4–6], combining kinematic fitting with

endpoint information to represent the possible mass solutions for each individual event as

1For a recent review, see [1].
2The explicit-solution method using pairs of events has been applied to the same class of processes in

refs. [2, 3].
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Figure 1. Event topology.

a curve in a three-dimensional space of mass-squared differences. For exact kinematics,

the curves of different events all intersect at the unique correct solution point. In the

presence of combinatorial ambiguities, measurement errors and mass variations, the region

where the density of curves is highest gives the best estimate of the masses. Unlike pure

endpoint or kink methods, this approach makes full use of the kinematical information

from every event, no matter where it may lie in phase space. Determination of the four

sparticle masses and reconstruction of the LSP momenta then appears possible even with

small event samples.

In section 2 we present the general method and then in section 3 we show results for

a number of SUSY model points that lead to the decay chain (1.1). Our conclusions are

summarized in section 4.

2 Method

Consider the double decay chain in figure 1. The 4-momenta in the upper chain should satisfy

(p1 + p2 + p3 + p4)
2 = m2

Z

(p2 + p3 + p4)
2 = m2

Y

(p3 + p4)
2 = m2

X

p2
4 = m2

N . (2.1)

Defining the mass-squared differences

M1 = m2
Z − m2

Y > 0

M2 = m2
Y − m2

X > 0

M3 = m2
X − m2

N > 0 , (2.2)

the first three equations give linear constraints on the invisible 4-momentum p4:

− 2p1 · p4 = 2p1 · p2 + 2p1 · p3 + m2
1 − M1 ≡ S1

−2p2 · p4 = 2p2 · p3 + m2
2 − M2 ≡ S2

−2p3 · p4 = m2
3 − M3 ≡ S3 . (2.3)
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Similarly for the lower chain

− 2p5 · p8 = 2p5 · p6 + 2p5 · p7 + m2
5 − M1 ≡ S5

−2p6 · p8 = 2p6 · p7 + m2
6 − M2 ≡ S6

−2p7 · p8 = m2
7 − M3 ≡ S7 . (2.4)

We also have the missing transverse momentum constraints

px
4 + px

8 = px
miss ≡ S4

py
4 + py

8 = py
miss ≡ S8 . (2.5)

If we make an 8-vector of the invisible 4-momenta,

P = (px
4 , py

4, p
z
4, E4, p

x
8 , py

8, p
z
8, E8) , (2.6)

then we have

AP = S (2.7)

where A is the 8×8 matrix

A = 2





























px
1 py

1 pz
1 −E1 0 0 0 0

px
2 py

2 pz
2 −E2 0 0 0 0

px
3 py

3 pz
3 −E3 0 0 0 0

1/2 0 0 0 1/2 0 0 0

0 0 0 0 px
5 py

5 pz
5 −E5

0 0 0 0 px
6 py

6 pz
6 −E6

0 0 0 0 px
7 py

7 pz
7 −E7

0 1/2 0 0 0 1/2 0 0





























. (2.8)

Furthermore S may be written as

S = BM + C (2.9)

where M = (M1,M2,M3) is the 3-vector of mass-squared differences to be determined,

B =





























−1 0 0

0 −1 0

0 0 −1

0 0 0

−1 0 0

0 −1 0

0 0 −1

0 0 0





























(2.10)

and

C = (2p1 · p2 + 2p1 · p3 + m2
1, 2p2 · p3 + m2

2,m
2
3, p

x
miss,

2p5 · p6 + 2p5 · p7 + m2
5, 2p6 · p7 + m2

6,m
2
7, p

y
miss) . (2.11)
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Hence the solution for the invisible 4-momenta is

P = A−1S = DM + E (2.12)

where D = A−1B and E = A−1C.

The invisible 4-momenta also satisfy the quadratic constraints

p2
4 = P 2

4 − P 2
1 − P 2

2 − P 2
3 = m2

N

p2
8 = P 2

8 − P 2
5 − P 2

6 − P 2
7 = m2

N (2.13)

where mN is an extra unknown, independent of M. However, in the case that the terminal

pairs of visible decay products (2,3) and (6,7) are opposite-sign same-flavour dileptons, as

in (1.1) or (1.2), we can reasonably expect that the upper edge of the dilepton invariant

mass spectrum will be measured with good accuracy. This quantity is given by

(mmax
ll )2 ≡ ML = (m2

Y − m2
X)(m2

X − m2
N )/m2

X = M2M3/(M3 + m2
N ) (2.14)

and hence

m2
N = M3(M2/ML − 1) . (2.15)

Substituting this into eqs. (2.13), we obtain a pair of trivariate quadratic equations in

M1,M2,M3, whose real solutions lie on a curve in the 3-dimensional space of those variables.

The corresponding solutions for the new particle masses are then given by eq. (2.15) and

m2
X = m2

N + M3 , m2
Y = m2

X + M2 , m2
Z = m2

Y + M1 . (2.16)

The limits m2
N > 0, m2

Z < MU (where MU = s/4, s being the collider c.m. energy squared,

or smaller, depending on the relevant parton luminosities) imply that the solutions must

lie within the region

0 ≤ M3 ≤ MU − ML

ML ≤ M2 ≤ MU/(1 + M3/ML)

0 ≤ M1 ≤ MU − M2(1 + M3/ML) . (2.17)

This is a finite region with volume

1

4
ML

[

2M2
U ln(MU/ML) − (3MU − ML)(MU − ML)

]

, (2.18)

which vanishes as ML → 0 or ML → MU .

3 Results

As an illustration of the method, we apply it here to the process of squark-pair production

at the LHC (pp collisions at 14 TeV centre-of-mass energy). The SUSY mass spectrum

and decay branching ratios are taken to be those of CMSSM point SPS 1a [7]. The

corresponding masses in the decay chain (1.1) are given in table 1. Events are generated

– 4 –
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N X Y Z

χ̃0
1 ẽR χ̃0

2 ũL

96 143 177 537

Table 1. Mass spectrum in GeV for Snowmass point SPS 1a
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Figure 2. Stereoscopic views of the true parton-level solution curves for three events. The ball

shows the true mass point.

using HERWIG version 6.5 [8–10]. Some of the squarks are produced directly and some

come from gluino decay; the production mechanism affects their momentum and rapidity

distributions but is otherwise irrelevant for our purposes.

Third-generation squarks are excluded, as their different masses prevent a good fit

with a single squark mass. Experimentally, this would involve vetoing events with a tagged

b-jet. At SUSY point SPS 1a only left-squarks have significant branching ratios into the

mode (1.1) and so the left-right squark mass splitting is not a problem here. The d̃L − ũL

mass difference is 5.8 GeV. Therefore the assumption that the masses in the two decay

chains are identical should be a good approximation.

To obtain the solution curve for each event, we proceed as follows. As explained earlier,

substitution of eq. (2.15) into eqs. (2.13) gives a pair of trivariate quadratic equations in

M1,M2,M3. Eliminating, for example, M3 gives a quartic equation for M2 as a function of

M1. For each real solution, M3 is given uniquely in terms M1 and M2. Thus for each M1 we

obtain a set of 0, 2 or 4 real solution points. We divide the space of (M1,M2,M3) into cells.

Scanning over M1 gives a set of solution points which occupy ‘hit’ cells. To find all hit cells

we also scan over M2 and M3, using permutations of the above procedure. Hits on already

occupied cells are discarded. The resulting set of points provides an approximately uniform

coverage of the solution curve. In general, the solution curve may consist of one or two

closed loops or open segments with endpoints on the surface of the allowed region (2.17).

Figure 2 shows the parton-level solution curves for three typical SPS1a events, using

the correct combinations of quarks and leptons in the decay chains.3 The curves all pass

close to the “true” mass point (TMP)

M1 = 257040 , M2 = 10880 , M3 = 11233 , (3.1)

3The two images can be merged into a three-dimensional display by directing each eye at the corre-

sponding image.

– 5 –



J
H
E
P
0
6
(
2
0
1
0
)
0
6
9

0

200 000
400 000
M1

0500010 00015 00020 000
M2

0

5000

10 000

15 000

20 000

M3

0

200 000

400 000
M1

0500010 00015 00020 000
M2

0

5000

10 000

15 000

20 000

M3

Figure 3. Stereoscopic views of the parton-level solution curves for the same three events, now

including all combinations.

m0 m1/2 A0 χ̃0
1 ẽR χ̃0

2 ũL

Point A 110 220 0 86 142 161 504

Point B 100 250 −100 99 141 186 563

Point C 140 260 0 103 174 193 592

Table 2. Parameters and mass spectra in GeV for non-CMSSM model points A, B and C. Param-

eters common to all points are m3rd gen.

0 = 300GeV, tanβ = 10, sign(µ) = +.

all in GeV2, corresponding to the SUSY mass spectrum in table 1. The curves do not

precisely intersect, even with exact kinematics, owing to Breit-Wigner smearing of unstable

particle masses. However, we see that the density of solution curves is high only in the

vicinity of the TMP (3.1).

Figure 3 shows the effect of combinatorial ambiguities for the same three events, viewed

from a different angle for clarity. Here the interchanges of near and far leptons (2 ↔ 3 and

6 ↔ 7) and of quarks (1 ↔ 5) are included, making eight combinations per event. Three-

dimensional viewing reveals that incorrect combinations either have no real solutions or

tend to give curves that do not congregate to form regions of high density.

In the real world, the effects of parton showering, hadronization and detector resolution

shift and distort the solution curves. The density of solutions around the TMP is reduced,

and incorrect combinations may happen to produce other regions of high density. In addi-

tion, QCD radiation produces extra jets, which increase the number of wrong combinations.

To investigate these effects, we study an inclusive SUSY sample containing SUSY

backgrounds as well as signal processes, generated using HERWIG 6.5 with initial and final

state radiation turned on. The sample is interfaced with AcerDET 1.0 [11]. Final-state

hadrons are formed into jets, and the momenta of jets and leptons are smeared according

to the simulated detector resolution.

To obtain a larger event sample with two decay chains like (1.1), for this analysis

we adopt non-CMSSM model points A, B and C, where the third-generation soft mass

is larger than the others, so that the branching ratio (1.1) is increased by suppressing

the χ̃0
2 → τ̃±

1 τ∓ mode. The sparticle spectra at these points are shown in table 2. The

– 6 –
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Point A Point B Point C

Events (S/B) 326 (4.2) 499 (4.5) 292 (2.8)

Sharing (S/B) 219 (8.1) 341 (9.7) 172 (4.9)

M1 (True ; Best) 231890 ; 222500 286157 ; 282500 316274 ; 317500

M2 (True ; Best) 5624 ; 5000 14520 ; 14200 6815 ; 6600

M3 (True ; Best) 12872 ; 11700 10293 ; 9900 19812 ; 18900

Table 3. First row: number of events (signal/background) after cuts. Second row: number of

events that contribute to the best-fit cell in the ∆χ2 distribution. Third to fifth rows: true mass

and the central value of the best-fit cell in GeV2.

generated samples of 500,000 events correspond to about 10, 15 and 20 fb−1 of integrated

luminosity, respectively.

The following cuts are applied in order to select signal events:

(i) Meff ≡ ∑4
i=1 pjet,i

T +
∑4

i=1 plep,i
T + Emiss

T > 400GeV ;

(ii) Emiss
T > max(200GeV, 0.2Meff ) ;

(iii) At least two jets with pjet,1
T > 100GeV and pjet,2

T > 50GeV within |η| < 2.5 ;

(iv) Two pairs of opposite sign same flavour leptons with pT > 20GeV and |η| < 3 ;

(v) No b jet with pT > 30GeV and |η| < 3 .

The b tagging efficiency is assumed to be 60%. In the cut (iv), we select not only

opposite-flavour lepton pairs (e+e−µ+µ−) but also the same-flavour pairs (e+e−e+e− and

µ+µ−µ+µ−) to have larger samples, although the latter have double the combinatorial

background of the former. If an event contains more than two hard jets, we take the three

hardest jets as candidates for the jets from the signal decay chains (1.1), and try all possible

combinations. The number of combinations is 8 (16) for two candidate jets and 24 (48)

for three with opposite (same) flavour lepton pairs. The numbers of events that survive

the above cuts are shown in the first row in table 3 together with signal/background ratios

for each model point. The background is rather mixed, coming mainly from direct χ̃0
2

productions associated with squarks or gauginos as well as modes containing q̃R → χ̃0
2j,

b̃1 → χ̃0
2b and χ̃0

2 → χ̃0
1l

+l−. For model point C, the three-body decay χ̃0
2 → χ̃0

1l
+l− is

enhanced because mχ̃0

2

≃ mχ̃0

1

+ mZ and turns out to be the main background. Standard

Model background is expected to be negligible after the above selection cuts. According to

ref. [12], the potential background comes from tt̄ → bb̄W+W− → 4l. Based on HERWIG

6.5 simulation of this process, we confirmed that it is indeed negligible after cuts.

If the detector and jet properties are well understood, from the observed jet momentum,

pjet, we may stochastically estimate the original parton momentum, ppar, with a gaussian

distribution ǫ(ppar|pjet). In this situation, we can built a confidence region in the (M1, M2,

M3) space [4]. For each signal event combination, iev, a probability density function may

be constructed as

fiev(M) =
1

Niev

∫

dppar
1 dppar

2 ǫ(ppar
1 |pjet

1 )ǫ(ppar
2 |pjet

2 )δ(p2
4 − m2

N )δ(p2
8 − m2

N ), (3.2)

– 7 –
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Figure 4. Distribution of ∆χ2(M) for each model point at detector level. The true mass point is

at the intersection of the three dashed lines.

where p4, p8 and mN are the functions of M and ppar
1,2 given in section 2, and Niev is a

normalization factor. Given N event-combinations, log-likelihood and ∆χ2 functions are

obtained as

ln L(M) =

N
∑

iev

ln fiev(M) (3.3)

and

∆χ2(M) = 2(ln L(M)max − ln L(M)), (3.4)

respectively, where ln L(M)max is the maximum value of ln L(M) in the space M.

We calculate ln L(M) approximately by the following procedure. For each event, we

generate Monte Carlo “fake” events whose jet momenta are shifted from the original ones

according to the probability distribution ǫ(ppar|pjet). The parameter space M is divided

into cells. For each cell, we count the number of fake events for which the solution curves

go through that cell. If different combinations of the same event yield two or more curves

passing through the same cell, we count only one. If the number of fake events is large and

the cell size is small, this provides fiev(Mcell) with a certain normalization. As long as we

work with ln L(M), the normalization factor Niev is irrelevant, because it only shifts the

constant term of ln L(M). We ignore cells that have fiev(Mcell) = 0 in our log-likelihood

calculation, setting ln fiev(Mcell) = 0. Finally, we sum up ln fiev(Mcell) for all combinations

of all events.

In the following analysis, we generate 1000 Monte Carlo fake events for each event.

For the smearing of jets and the missing transverse momentum, we use gaussian functions

with the following standard deviations, obtained by parametrizing the AcerDET results:

σE

E
=

0.5√
E

+ 0.03, σφ =
0.4√
E

+ 0.015, ση =
0.3√
E

+ 0.02, (3.5)

for jets and

σE

E
=

0.5√
E

+ 0.03, σφ =
0.8√
E

+ 0.06, (3.6)

for the missing transverse momentum. We do not smear the lepton momenta because

mismeasurement of lepton momenta is negligible compared to the jet smearing.

– 8 –
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χ̃0
1 ẽR χ̃0

2 ũL

Point A 68.2+16.2
−5.8 127.9+12.6

−4.2 146.1+13.0
−4.4 493.8+11.5

−3.8

Point B 94.5+8.5
−2.8 137.2+9.1

−3.1 181.7+8.5
−2.8 561.7+9.4

−3.1

Point C 95.6+5.1
−5.3 167.4+3.9

−3.9 186.1+4.0
−4.0 593.4+3.4

−3.4

Table 4. Estimated sparticle masses with their errors in GeV.

Figure 4 shows the ∆χ2(M) distribution obtained by the above procedure for each

model point. The cell size is ∆M1 = 5000, ∆M2 = 400, ∆M3 = 600 in GeV2. The

distribution has only one sharp minimum, which is close to the TMP, as can be seen in

table 3. Backgrounds from wrong combinations and different decay chains do not produce

local minima at other places, and the effect of those backgrounds may be less significant

around the true mass point.

The second row in table 3 shows how many different events share the best-fit cell; the

signal/background ratios in that cell are also shown in parentheses. The ratios are improved

significantly. For each model point the ratio is about twice that for the whole sample.

In the third to fifth row of table 3, we show the central values of the best-fit cells

compared to the TMP at each model point. As can be seen, the best-fit points are slightly

biased towards lower masses. This may result from the following systematic errors in the

present analysis. First, the AcerDET jets that we use are defined as massless, whereas

the 4-momenta defined by ppar = p(q̃) − p(χ̃0
2) have masses of around 10-100 GeV after

fragmentation and hadronization. Second, we have parametrized the probability distribu-

tions of parton momenta by gaussian functions. However, the difference between a parton

momentum in the event record and the AcerDET jet momentum deviates slightly from a

gaussian distribution, due to the underlying event, hadronization effects and high-pT gluon

emission from the original parton. A better jet algorithm with jet masses and a more

refined parametrization will be needed to reduce these systematic errors.

Table 4 shows the sparticle masses estimated from our analysis. The errors are obtained

from 1σ regions assuming the errors in M1, M2 and M3 are uncorrelated, where the 1σ

region is defined by ∆χ2 < 3.53. We neglect the error from the mismeasurement of the

dilepton endpoint because of its expected good accuracy. The 1σ errors at Point C are

accidentally small despite the small number of signal events compared to the other points.

The sizable errors also come from the cell size, because the 1σ region is almost the same

size as the cells. More precise error estimation would require smaller cells. In addition,

larger numbers of fake Monte Carlo events could be used to make the probability density

smooth around the peak region. Such refinements would be justified and straightforward

in an analysis of real data.

The statistical approach we have adopted here is justifiable for large event samples.

In order to see what happens in small samples, and to check the interpretation of ∆χ2, we

divide the samples after cuts into several sub-samples, so that each of them contains 25

events. Figure 5 shows the 1σ regions of 10 sub-samples for each model point. The sub-

samples are distinguished by their colours. As expected, the 1σ regions are more widely

spread compared to figure 4. As can be seen in figure 5C, the gold-coloured sub-sample

– 9 –
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(A) (B) (C)

Figure 5. One-sigma regions of 10 sub-samples, distinguished by their colours. Each sub-sample

contains 25 events.

has two local minima, one of them away from the TMP. Furthermore, the 1σ region of the

blue-coloured sub-sample is localised away from the TMP. Those sub-samples have fewer

signal events compared to the others. The signal/background ratio is 1.8 (2.6) for the

blue (gold) sub-sample. We checked, however, that the 2σ region of the blue sub-sample

contains the TMP. Despite the small sub-sample sizes, the maximum-likelihood regions are

still mainly localised around the TMP, and their average sizes scale as expected with the

number of events. In our approach, unlike in endpoint and kink methods, all signal events

contribute to the determination of the unknown masses, no matter where they may lie in

phase space, and so the method can provide meaningful information about the unknown

masses even in rather small samples.

4 Conclusions

The method of mass determination presented above is simple to apply and looks promising

for the class of processes studied here. We demonstrated the validity of the method by

means of full simulations including detector effects. Combinatorial background, the back-

ground from other SUSY processes and the effects of additional jets due to QCD radiation

do not appear to be a serious problem. A statistical approach is applicable to deal with

jet momentum mismeasurement. We constructed an effective ∆χ2 variable which allows

a rather precise determination of the unknown masses with controlled statistical errors.

There are identified systematic errors, leading to a bias towards lower masses, which could

be reduced with an appropriate jet algorithm and improved parametrization of jet mo-

mentum smearing. The method can be applied successfully even to small event samples,

because it makes full use of the kinematical information from every event.

Note added: the procedure adopted here for constructing an approximate likelihood

function by generating large numbers of “fake” events is quite time-consuming. An an-

alytical procedure similar to that outlined (but not implemented) for the exact-solution

method in section 6 of ref. [3] may be applicable and more efficient. We thank H. C. Cheng

for this suggestion.

– 10 –
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