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1 Introduction

The AdS/CFT correspondence is an invaluable tool [1–3], not only enabling us to study

the strong coupling limits of a wide variety of gauge theories, but also allowing us to study

deep questions arising in the study of quantum gravity.

Certain heavy supersymmetric states in the gauge theory can be dual to geometric

backgrounds in string theory. An example is the set of 1/2 BPS chiral primary states built

with one complex scalar [4–6, 13–16]. These operators can be labelled by Young tableaux

or Schur polynomials which themselves form an orthonormal basis. When the charges of

these operators are very large, they become dual to a variety of geometries, which have

bubbling type boundary conditions in some loci of the spacetime far from the boundary,

that encode the mapping from the gauge theory states. Besides the 1/2 BPS chiral primary

operators, there are also other types of operators with corresponding bubbling geometries,

e.g. [17–34] in N = 4 SYM.

A natural question which arises is what is the description of the non-BPS excitations

on top of the above states in both the gauge and string theory sides? On the gauge side,

we study operators which are products between a Schur polynomial and a single trace

operator. We may view the Schur polynomial as the background geometry and the single

trace part as a further stringy excitation on the geometry. On the string side, we study

closed strings excited on the dual geometries, described by a general Schur polynomial

or Young tableau. In particular we study the backgrounds with general concentric ring
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distributions [6] in the phase space plane. The size of the S3’s in the LLM metric are

determined by the position in the droplet distribution, in which the edges correspond to

the vanishing of one or the other S3.

One way to study such non-BPS states is to look at the dilatation generator acting

on them. The dilatation operator acting on the non-BPS state is naturally described in

terms of the hamiltonian on a lattice, which itself can be described in a variety of limits.

The bosonic occupation numbers of the lattice sites correspond to the number of complex

scalar fields in the trace part of the operator in between the impurity fields. This has

been studied before in the context of certain background geometries [7–12]. We will be

particularly interested in studying the coherent states of such a lattice, though for more

general background geometries. In the continuum limit of the lattice we obtain a sigma

model that matches with the sigma model of the closed string living in the dual geometry.

We can also study the lattice with a small number of sites, corresponding to short BMN

type strings.

In [8] an analysis was made of a reduced subspace of possible diagrams. In this work

the authors analyzed the coherent state on a disk plus ring distribution and proved that the

normalized wavefunction constructed from this coherent state knew about the geometry

and topology of the string theory background. In the current work we fully generalize

this description to include any geometries which can be described by axially symmetric

solutions in the phase space plane.

Furthermore we will look at the entropy of particular ensembles of such states. In the

1/2-BPS limit all non-equivalent geometries are orthogonal to one another, meaning that

an ensemble made of such solutions does not mix. The breaking of supersymmetry via the

stringy excitation/trace operator allows for a mixing between elements of the gravitational

ensemble and a non-diagonal reduced density matrix.

The organization of this paper is as follows. In section 2.1, we introduce the non-BPS

operators that we will study, the lattice labelling, and the associated oscillator algebra. In

section 2.2, we analyze the coherent state wavefunction of the system, the continuum limit

of the lattice and sigma models, and also the properties of the coherent state wavefunction,

such as the norm and the average occupation number. In section 2.3, we describe a density

matrix over these coherent states with a constrained set of Young tableaux, and from this

we are able to calculate the entropy of such an ensemble of states. In section 2.4, we derive

the BMN states from the ansatz of the coherent states and show that in the appropriate

limits we recover the results of [8]. Finally, in section 3, we briefly discuss our results and

conclude. We also include four appendices providing concrete computational details on the

calculations discussed in the body of the text.

2 Strings on bubbling geometries

2.1 Operators

The 1/2 BPS chiral primary operators of N = 4 super Yang Mills can be labelled by

Schur Polynomials χR(Z), where R is the representation in which the operator is being

traced, and Z is one of the complex scalar fields. Equivalently they can be represented
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by Young tableaux which are dual to 1/2 BPS geometries. These can be described using

the LLM prescription as a series of concentric black and white annuli distributions. The

Young tableau corresponding to a particular chiral primary operator may be labelled by

the positions of its corners. We label outward corners with a “b” and inward corners

with an “a”, going from bottom left to top right. A given diagram will come with labels

b1, a1, b2, a2, . . . , bm, am where m is the total number of inward, or equivalently outward

pointing corners. Such operators can be mapped into a distribution of m black rings

where the inner and outer edges of a ring/annulus correspond on an outward pointing or

inward pointing edge of a Young tableau, respectively. We label these inner and outer

radii as R2k−1 and R2k where k labels the ring (we will use k and l to label ring numbers

throughout). Due to quantization of the phase space area, the radius squared R2
2k−1 of each

inner circle of the black rings is proportional to the distance Cbk
from the lower-left point of

the Young tableau to the outward corner bk, of the Young tableau, counting along the edge.

Similarly, the radius squared R2
2k of each outer circle of the black rings is proportional to

the distance Cak
from the lower-left point of the Young tableau to the inward corner ak:

1

R2k−1 =

√

Cbk√
N

, R2k =

√

Cak√
N

, (2.1)

Cbk
= Cak

− Nk, Cak
=

k
∑

j=1

(Mj + Nj) . (2.2)

This provides a simple mapping between a Young tableau labelling and a phase space

distribution.

It should be noted that such Young tableaux do not exhaust all possible concentric

ring distributions. Such a description will not include phase space distributions which start

with a black disk.2 These are labelled separately with a thin vertical line running from the

bottom left hand corner of the Young tableau, corresponding to having no white region in

the centre. The labelling of such states follows logically. The bulk of this paper is moti-

vated by studying closed string states in backgrounds given by general axially symmetric

ring distributions.

Having described this subspace of the half-BPS sector we would like to look at products

of a trace multiplied by an operator described by the Schur polynomials discussed above.

Such products are in general non-BPS and we will utilize the breaking of supersymmetry

in what follows. We label such products as:

O{nj} = tr





L
∏

j=1

WαjZ
nj
aj



χR(Z) , (2.3)

where χR(Z) is a Schur polynomial corresponding to a Young tableau of representation

R. Wαj is a letter corresponding to impurities coming from fields which are not in the

1The coordinates of the z-plane in this paper are rescaled from the coordinates of the z-plane in [6] by

a factor, such that R2|here

1/N
= R2|there

2~
.

2These would correspond to M1 = 0, R1 = 0 limit, which will be discussed more in appendix A.
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Figure 1. An example of the Young tableau description of a Schur polynomial operator in the

gauge theory (with small N and M as an example). The numbers of rows and columns on each step

(Mk and Nk) are labelled along with the positions of the inner and outer edges of the associated

annulus distribution in the LLM plane. The rings are labelled k = 1 to 3 from the inner ring to the

outer ring. The dark regions in the LLM plane are those with boundary value − 1

2
but are shaded

in grey for clarity. The ring radii squared are: (1, 5, 9, 13, 15, 16).

1/2 BPS chiral primary sector. Zaj is a field creating or removing a box with weight

Cak
or Cbk

at the Young tableau corner, where the subscript aj denotes the corner ak

or bk (see also [9]). Such an operator corresponds to a closed string, represented by the

trace, in a background represented by the Schur polynomial. The presence of the string

in the background leads to SUSY breaking. The operators that are eigenstates of the

dilatation operator are superpositions in the space spanned by the basis (2.3). (In [8],

product of determinants were used in place of the Schur polynomial part.) The total

number of Zs in the trace part of (2.3) is not fixed when we mix these operators to obtain

the eigenstates of the dilatation generator, so it is convenient to view the trace part of (2.3)

as a lattice of L sites each with an occupation number nj. For simplicity, we first take

Wαj to come purely from the complex scalar Y . Each operator can thus be represented by

a state |n1, n2, . . . , nL〉 . The positive occupation number corresponds to positive angular

momentum of the string along the outer circle of a black ring, while the negative occupation

number corresponds to the negative momentum of the string along the inner circle of the

black ring. Such a basis can be used to describe a wide variety of string states in 1/2-

BPS backgrounds.

The effective Hamiltonian of the lattice is derived from the dilatation generator ∆ =

∆0 + λ∆1 +
∑

n≥2
λn∆̂n, where

∆0 + λ∆1 = tr(Z∂Z + Y ∂Y ) +
g2
YM

8π
tr[Z, Y ][∂Z , ∂Y ] , (2.4)
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for the operators under consideration, and here λ =
g2
YM

N

8π
. We have

∆0 =

(

Jχ +
L
∑

j=1

nj

)

+ L = J + L , (2.5)

λD1 =
g2
YM

8π
tr[Z, Y ][∂Z , ∂Y ] = ∆ − J − L = H , (2.6)

where in the last line we only consider the one-loop dilation generator. The Hamiltonian

when acting on the lattice takes the form

H = E − J − L = λ

L
∑

j=1

(a†j − a†j+1)(aj − aj+1) , (2.7)

where aj are shift operators which reduce the bosonic occupation number by one. We use

J to denote the total U(1)-charge associated with Z, and use J to denote that U(1)-charge

from the trace part, i.e.

J = Jtrace =
L
∑

j=1

nj. (2.8)

For a general Young Tableau, we have the following algebra

a |−n, bk〉 =

√

Cbk√
N

|−n − 1, bk〉 , n > 0, (2.9)

a |1, al〉 =
m
∑

k=1

vk
l

√

Cak√
N

|0〉k , a |n, ak〉 =

√

Cak√
N

|n − 1, ak〉 , n > 1 (2.10)

a† |n, ak〉 =

√

Cak√
N

|n + 1, ak〉 , n > 0, |0, bk〉 = |0, ak〉 = |0〉k , (2.11)

a† |−n, bk〉 =

√

Cbk√
N

|−n + 1, bk〉 , n > 0. (2.12)

The state |−n, bk〉 corresponds to the −nth excitation on the inner edge of the kth ring

while |n, ak〉 corresponds to the nth excitation on the outer edge of the kth ring. As noted

before, the Cbk
and Cak

are the distances (number of boxes) between the kth outward

pointing or inward pointing corner and the bottom-left point of the Young tableau. The

Cbk
and Cak

are also the weights of the boxes of these Young tableau corners, and are the

coefficients that appear in the two-point correlators for the fields Zaj [9]. The action of

the annihilation/creation operator on different types of Zaj field excitations differ by the

coefficients
√

Cbk
/N , or

√

Cak
/N , and is otherwise similar. The action of aj (a†j) removes

(adds) a box in the appropriate corner of the Young tableau. More discussions of their

properties are included in appendix A.

In principle one can take several limits in order to study superpositions of operators

of the form (2.3), and their string theory duals. The limits of interest (both on the gauge

and string side) include:
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1. The continuous limit/sigma model limit:

L ≫ 1,
λ

L2
≪ 1 , J unfixed; λ ≪ 1, v.s.

1

λ
≪ 1 (2.13)

2. The BMN/plane-wave type limit:

L = 2, |J | ≫ 1,
λ

J2
≪ 1 ; λ ≪ 1, v.s.

1

λ
≪ 1 (2.14)

3. The Hofman-Maldacena type limit:

L = 2, |J | ≫ 1,
n

|J | finite; λ finite (2.15)

where in the last two cases, we use a two-site lattice, corresponding to a two-magnon state.

It is of course possible to study this in a more general L-site lattice.

2.2 Coherent string states

We would like to be able to describe a coherent string state on the background given by

an arbitrary distribution of black rings, as discussed in the previous section. In order to

be able to do this we find a coherent string prescription which is normalizable on each of

the m black rings separately. The coherent state satisfies the equation [44–46]

a |z〉l = z |z〉l , (2.16)

where the l labels the lth ring in which the wavefunction is well defined and normalizable.

The coherent state can be expressed as

|z〉l =
l
∑

k=1

f2k−1
l

∞
∑

n=0

(

R2k−1

z

)n

|−n, bk〉 +
m
∑

k=l

f2k
l

∞
∑

n=1

(

z

R2k

)n

|n, ak〉 , (2.17)

which is normalizible on the lth black ring, i.e. R2l−1 < |z| < R2l . The state |n, ak〉
corresponds to the nth excitation on the outer edge of the kth ring while |−n, bk〉 corresponds

to the −nth excitation on the inner edge of the kth ring. It can be shown that the sums

over k can be consistently restricted to the ranges in (2.17) due to the normalizability on

the lth ring. A more detailed derivation of the above is included in appendix A.

In (2.17), we sum over all the positive occupancies, or in other words, positive angular

momentum movers along the outer circles, outside the lth black ring, and over all the

negative occupancies, or, negative angular momentum movers along the inner circles, inside

the lth black ring. Note that such a summation is important for normalizability within

the lth ring. The coefficients f2k−1
l and f2k

l correspond to the relative contribution to

the wavefunction from the excitations associated with the (2k − 1)th and 2kth circles.

Equivalently these circles correspond to the bk, ak corners of the Young tableau from the

gauge theory point of view.

(2.17) is a Fock space state which sums over all occupation numbers, as well as all types

of oscillators specified by the Young tableaux corners bk, ak. The real, positive coefficients

f2k−1
l , f2k

l can be shown to satisfy the following relation

m
∑

k=l

f2k
l vj

k = f2j−1
l , j 6 l;

m
∑

k=l

f2k
l vj

k = 0, j > l , (2.18)
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where vj
k is a mixing matrix which allows for mixing between different rings. The f ′s can

then be written as

(f2k−1
l )2 =

−cl

∏m
p=l+1(R

2
2k−1 − R2

2p−1)
∏l

p=16=k(R
2
2k−1 − R2

2p−1)

∏l−1
p=1(R

2
2k−1 − R2

2p)
∏m

p=l(R
2
2k−1 − R2

2p)
(2.19)

=
−clN

∏m
p=l+1(Cbk

− Cbp)
∏l

p=16=k(Cbk
− Cbp)

∏l−1
p=1(Cbk

− Cap)
∏m

p=l(Cbk
− Cap)

, (2.20)

(f2k
l )2 =

cl

∏m
p=l+1(R

2
2k − R2

2p−1)
∏l

p=1(R
2
2k − R2

2p−1)

∏l−1
p=1 6=k(R

2
2k − R2

2p)
∏m

p=l 6=k(R
2
2k − R2

2p)
(2.21)

=
clN

∏m
p=l+1(Cak

− Cbp)
∏l

p=1(Cak
− Cbp)

∏l−1
p=1 6=k(Cak

− Cap)
∏m

p=l 6=k(Cak
− Cap)

, (2.22)

where we have used the identity (2.1) to write these expressions in terms of Cbk
, Cak

. It

can be shown that these expressions are positive definite. By looking at the behavior of

the norm 〈z|z〉 when merging two black rings, we get

cl =

cR

l
∏

k=2

R2
2k−1

m
∏

k=l

R2
2k

l−1
∏

k=1

R2
2k

m
∏

k=l+1

R2
2k−1

=

cR

l
∏

k=2

Cbk

m
∏

k=l

Cak

N
l−1
∏

k=1

Cak

m
∏

k=l+1

Cbk

, (2.23)

where cR is an overall normalization which is unfixed from the coherent state condition but

will be fixed later by putting a constraint on the integral over the inner product of such

representations in the z -plane. Finally, one can write the coherent state wave-function on

the entire z-plane as a sum over the states defined on each ring:

|z〉 =

m
∑

l=1

|z〉l θR2l−1,R2l
, (2.24)

where θx,y has unit support between x and y, and is 0 otherwise.

Having defined such a coherent state on the 1/2 BPS background, one can take the

continuum limit:

L ≫ 1,
λ

L2
≪ 1 ; λ ≪ 1 , (2.25)

as the product of coherent states on each lattice site:

aj |zj〉 = zj |zj〉 . (2.26)

This limit would correspond to the large angular momentum (L) limit on the string side.

A general coherent state is then labelled by a coherent state on each site of the lattice:

|z1, z2, . . . , zL〉 . (2.27)
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The continuum limit can be expressed in terms of a sigma model action with Hamilto-

nian (2.7), which is derived by looking at the large L limit of the lattice action:

S =

∫

dt

(

〈z1, z2, . . . , zL| i
d

dt
|z1, z2, . . . , zL〉 − 〈z1, z2, . . . , zL|H |z1, z2, . . . , zL〉

)

=

∫

dt
L
∑

j=1

(

〈zj| i
d

dt
|zj〉 − λ |zj − zj+1|2

)

= L

∫

dt

∫ 1

0
dσ

(

i

2
(

.
z∂z −

.
z∂z) log(〈z|z〉) − λ

L2
|z′|2

)

, (2.28)

V (z, z) = ∂z log(〈z|z〉) . (2.29)

This is a sigma model with target space the z-plane of the 1/2 BPS bubbling chiral primary

geometry [7, 8], see as well [9]. This Landau-Lifshitz type action coincides with the action

from the string theory side for the string sigma model that describes a closed string traveling

with large angular momentum L on the S3 in the 1/2 BPS bubbling geometry under the

uniform gauge, in which the angular momenta on the S3 are uniformly distributed along

the string. This uniform gauge corresponds to the uniform distribution of the Y fields on

the lattice sites. This action can be written in terms of the above potential as:

S =
L

α′

∫

dt

∫ 1

0
dσ

(

i

2
(V

.
z − .

zV ) − λ

L2
|z′|2

)

(2.30)

=
L

α′

∫

dt

∫ 1

0
dσ

(

h2 i

2
(z

.
z − .

zz) − λ

L2
|z′|2

)

(2.31)

=
L

α′

∫

dt

∫ 1

0
dσ

(

h2ρ2
.

φ − λ

L2
(ρ′2 + ρ2φ′2)

)

, (2.32)

V = h2z,

z = ρeiφ . (2.33)

We have neglected higher order terms
(

λ
L2

)2 |z′|4,
(

λ
L2

)2 |z′′|2
h4 , which would correspond to

the contribution from the two-loop dilatation operators and can be safely neglected in

this limit.

The equations of motion coming from this action are

λ

L2
z′′ =

i

2
(∂zV + ∂zV )

.
z , (2.34)

which have static solution

.

φ = 0,
.
ρ = 0, φ′ = 0, ρ′ = c1 , (2.35)

z = (c1σ + c3)e
ic2 , (2.36)

where c1, c2, c3 are constants of motion, and the solution corresponds to a straight string

stretching across a black ring (and back again).
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One can also bring (2.30) into the canonical form of a 2d complex scalar field theory.

We can transform the z → ϕ, bringing the kinetic term into its canonical form

h2 i

2
(z

.
z − .

zz) =
i

2
(ϕ

.
ϕ − .

ϕϕ), (2.37)

z = ρeiφ, ϕ = reiφ, (2.38)

hρ = r, ϕ = hz . (2.39)

Under this transformation, the complex scalar field theory is described by the action

S =
L

α′

∫

dtdσ

[

i

2
(ϕ

.
ϕ − .

ϕϕ) − λ

L2

(

f(|ϕ|2)1
2
|ϕ′|2 + g(|ϕ|2)(ϕϕ′)2 + (ϕϕ′)2

4|ϕ|2
)]

, (2.40)

where

f(|ϕ|2) = (∂rρ)2 +
1

h2
, g(|ϕ|2) = (∂rρ)2 − 1

h2
. (2.41)

The potential terms in this action are dependent on the background in which the string is

moving. This means that the action is dependent directly on the droplet configuration in

the z-plane. In particular the topology of the background which is related to the number

of inner and outer rings is captured in the potential. One can study the S-matrix of this

model, via similar methods to [36] for AdS5 × S5. For example for the AdS5 × S5 case the

potential is given by:

V

z
=

1

|R2
1 − |z|2| , (2.42)

z =
R1r√
1 + r2

eiφ, ϕ = reiφ , (2.43)

z → ϕ maps the disk into a whole plane and R1 is the radius of the disk. For more general

concentric black-ring configurations we have

V

z
=

m
∑

k=1



− 1
∣

∣

∣R2
2k−1 − |z|2

∣

∣

∣

+
1

∣

∣

∣R2
2k − |z|2

∣

∣

∣



 . (2.44)

The limits of such an expression can be found in appendix A.

We would now like to derive such a potential from the coherent state. We first consider

the norm of the coherent states 〈z|z〉 . The coherent state (2.17) defined on the lth ring is:

|z〉l =

l
∑

k=1

f2k−1
l |z, bk〉 +

m
∑

k=l

f2k
l |z, ak〉 , (2.45)

where

|z, bk〉 =

∞
∑

n=0

(

R2k−1

z

)n

|−n, bk〉 , |z, ak〉 =

∞
∑

n=1

(

z

R2k

)n

|n, ak〉 , (2.46)
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which have the property

〈z, bk|z, bk〉 = − R2
2k−1

R2
2k−1 − |z|2

+ 1 = − |z|2

R2
2k−1 − |z|2

, (2.47)

〈z, ak|z, ak〉 =
R2

2k

R2
2k − |z|2

− 1 =
|z|2

R2
2k − |z|2

. (2.48)

From the coherent state expansion we get

〈z|z〉l =
l
∑

k=1

− (f2k−1
l )2R2

2k−1

R2
2k−1 − |z|2

+
m
∑

k=l

(f2k
l )2R2

2k

R2
2k − |z|2

, (2.49)

which leads to a relation between the coefficients in the coherent state expansion

l
∑

k=1

− (f2k−1
l )2 +

m
∑

k=l

(f2k
l )2 = 0 , (2.50)

Note that the coherent state norm is nonzero only on the black rings. The expression (2.49)

can be summed and factorized in the numerator, and rewritten as

〈z|z〉l =

cl

l−1
∏

k=1

(

R2
2k − |z|2

) m
∏

k=l+1

(

R2
2k−1 − |z|2

)

(− |z|2)

l
∏

k=1

(

R2
2k−1 − |z|2

) m
∏

k=l

(

R2
2k − |z|2

)

(2.51)

=

cR

l−1
∏

k=1

(

1 − |z|2
R2

2k

) m
∏

k=l+1

(

1 − |z|2
R2

2k−1

)

l
∏

k=2

(

1 − |z|2
R2

2k−1

)

m
∏

k=l

(

1 − |z|2
R2

2k

)

(− |z|2)
(

R2
1 − |z|2

) , (2.52)

The norm of the coherent state can also be written in terms of the potential, V , as

〈z|z〉l = e
R

V (z,z)dz , (2.53)

which can be used to calculate the potential:

V (z, z) =

l−1
∑

k=1

[

z

R2
2k−1 − |z|2

− z

R2
2k − |z|2

]

+

m
∑

k=l+1

[

− z

R2
2k−1 − |z|2

+
z

R2
2k − |z|2

]

+
z

R2
2l−1 − |z|2

+
z

R2
2l − |z|2

. (2.54)

Note that the existence of cR is consistent with the existence of an integration constant

in (2.53).

The coherent state norm is non-zero only on the black-rings as the potential diverges

at their edges. This calculation of the potential matches with the V function derived in the

sigma model from the string theory side. This shows that the coherent state wavefunction

knows about the geometry of the multi-ring background. Moreover, the coherent state
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wavefunction has a different expression on each disconnected black ring, meaning that it

knows about the disconnectedness of the droplets, i .e. topology, of the background.

Another property we can study using the coherent state we have described above is

the average value of the occupation number on each lattice site. From (2.17), we have the

coefficients in the coherent state expansion expressed as

f2k−1
l =

〈z, bk|z〉l
〈z, bk|z, bk〉

, f2k
l =

〈z, ak|z〉l
〈z, ak|z, ak〉

,

R2n
2k−1

|z|2n
= 〈z, bk| − n, bk〉2 ,

|z|2n

R2n
2k

= 〈z, ak|n, ak〉2 . (2.55)

The states are orthonormal, such that

〈−n1, bk1| − n2, bk2〉 = 1 · δn1,n2
δbk1,bk2

, 〈n1, ak1|n2, ak2〉 = 1 · δn1,n2
δak1,ak2

. (2.56)

Excitations of a different level or on a different ring are orthogonal.

The coherent state is a superposition of states with different occupation numbers so

in order to find the average occupancy we have to look at the probability of occupancy

−n or n on a given inner or outer ring. For the inner rings the probability P (−n, bk) of

occupation number −n on the kth ring is given by:

P (−n, bk) =
〈z, bk| − n, bk〉2
〈z, bk|z, bk〉

=
R2n

2k−1

|z|2n

(

1 − R2
2k−1

|z|2

)

, (2.57)

and the average occupation number n̄bk
on the inner edge of the kth ring is (for n > 0)

n̄bk
=

∞
∑

n=0

(−n)P (−n, bk) = − 1
|z|2

R2
2k−1

− 1
. (2.58)

Similarly for the outer edge of the kth ring we have a probability P (n, ak) of occupation

number n:

P (n, ak) =
〈z, ak|n, a〉2
〈z, ak|z, ak〉

=
|z|2(n−1)

R
2(n−1)
2k

(

1 − |z|2
R2

2k

)

, (2.59)

and the average occupation number n̄ak
on the outer edge of the kth ring is (for n > 0)

n̄ak
=

∞
∑

n=1

n · P (n, ak) =
1

1 − |z|2
R2

2k

. (2.60)

We can now define an occupation number operator n̂. The average occupation over all

inner and outer rings (corresponding to the average U(1) J charge on the string) for the
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entire coherent state is

〈n〉l =
〈z | n̂ | z〉l

〈z|z〉l
=

l
∑

k=1

∞
∑

n=0
〈−n, bk|z〉2l (−n) +

m
∑

k=l

∞
∑

n=1
〈n, ak|z〉2l (n)

〈z|z〉l
(2.61)

=

l
∑

k=1

(f2k−1
l )2 〈z, bk|z, bk〉 n̄bk

+
m
∑

k=l

(f2k
l )2 〈z, ak|z, ak〉 n̄ak

〈z|z〉l
(2.62)

= |z|2 ∂|z|2 log 〈z|z〉l = |z|2 h2
l , (2.63)

where the norm can be written as

〈z|z〉l =
l
∑

k=1

(f2k−1
l )2 〈z, bk|z, bk〉 +

m
∑

k=l

(f2k
l )2 〈z, ak|z, ak〉 , (2.64)

So we see that

〈n〉l = |z|2 ∂|z|2 log 〈z|z〉l , (2.65)

which is again a quantity depending on both the position of all the black rings, and on the

ring from which the measurement is being made. The average occupation number gives

the average U(1) J charge of the single trace part of the operator (2.3),

〈n〉 =
J

L
, (2.66)

and also gives the average angular momentum of the string on the z-plane.

2.3 Density matrix

The states we consider in (2.3) are in general non-BPS states. They are dual to strings on

the bubbling AdS backgrounds described by systems of concentric rings in the LLM plane.

In the situation where we have only the 1/2-BPS backgrounds, all distinct representations

(described by the Schur polynomials) form an orthonormal basis. Having broken supersym-

metry with the inclusion of the trace operator, such orthonormality is however no longer

guaranteed. Let us consider two very similar background geometries which have a large

number of identical coincident black rings and a small region where the ring structures

differ. The coherent state wavefunction will be able to distinguish such small differences.

The radii, defining a given ring configuration (2.17), can be viewed as the continuous pa-

rameters in the coherent state string wavefunction, and we can study the entire class of

background geometries from the point of the view of this wavefunction.

Having obtained the coherent string state on a general background geometry given by

a Young tableau representation R, we can write the string state in this background as

|z,R〉 , (2.67)

where R labels the background geometry, and is seen in the set of parameters in the

coherent state wavefunction (the R′
is). There are various constraints we may place on
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the representation but for now we study representations with fixed total number of boxes

∆ and N total rows. We would like to define a reduced density matrix by studying the

inner product between different string states in different backgrounds (representations R)

and then integrating out the string degrees of freedom. This can be achieved through the

following definition of the reduced density matrix over coherent states,

ρ̂(R, R̂) =

∫

z

i

2
dzdz

〈

z,R|z, R̂
〉

=

∫

z

〈

z,R|z, R̂
〉

2π |z| d |z| , (2.68)

where because of the θ functions in the definition of 〈z〉l the only contributions to the inte-

gral come from the regions in the LLM plane where the black regions in the representations

R and R̂ overlap. The wavefunctions are normalized (using the integration constant cR

in (2.23)) such that the reduced density matrix element of one representation with itself

is unity,
∫

z

〈z,R|z,R〉 2π |z| d |z| = 1 . (2.69)

Given a particular constraint on the representations (a constraint on the total number

of boxes, rows and columns) we can define an entropy by looking at all possible inner

products between representations within a superselection sector. The entropy of such a

system is given by

S = −Tr(ρ log ρ) , (2.70)

where ρ = 1
D

ρ̂, T r(ρ̂) = D, Tr(ρ) = 1. In other words we take the trace over the space

spanned by the Young tableaux basis (including the additional Young tableaux plus black

inner disk configurations).

Looking at a fixed total number of boxes and a fixed number of rows N , if we define the

number of Young tableaux with no coincident radii as D1, and the total number of Young

tableaux as D = D1 + D2, the entropy will be between log(D1) and log(D). We can also

put a constraint on the density matrix in terms of the size of the off-diagonal components.

The diagonals of the density matrix are equal, due to the normalization described above.

We define the density matrix as the addition of the diagonal part and an off-diagonal part

f ,

ρ =
1

D
(ID×D + f) , (2.71)

S = log(D) − 1

D
Tr((I + f) log(I + f)) , (2.72)

where D is the total number of Young tableaux. This density matrix measures the sim-

ilarities of different Young tableaux, and due to the contribution from the off-diagonal

components, the entropy gets reduced from log(D). If the Young tableaux are all identical

then the entropy reduces to zero, and the system becomes a pure state. If on the other

hand, the off-diagonal contributions are small, which is the case for M ≫ N (a sparse dis-

tribution of rings with many large gaps), then the entropy is close to log(D); in that case

the second term in (2.72) can be approximated as − 1
2D

Tr(f2). We analyze the dimension

D of a constrained set of partitions in appendix B. In general we constrain the Young

tableaux to have fixed N and fixed M = ∆
2N

.
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In order to calculate the reduced density matrix we must understand the inner product

between two non-equivalent representations. Consider the two coherent string states in the

backgrounds with representation R and R̂ with m and m̂ total black rings respectively.

The coherent states are defined as:

|z,R〉 =

m
∑

l=1

{ ∞
∑

n=0

l
∑

k=1

f2k−1
l

(

R2k−1

z

)n

|−n, bk〉 +

∞
∑

n=1

m
∑

k=l

f2k
l

(

z

R2k

)n

|n, ak〉
}

θR2l−1,R2l
,

(2.73)

∣

∣

∣z, R̂
〉

=

m̂
∑

l̂=1







∞
∑

n=0

l̂
∑

k̂=1

f̂2k̂−1

l̂

(

R̂2k̂−1

z

)n
∣

∣−n, b
k̂

〉

+

∞
∑

n=1

m
∑

k̂=l̂

f̂2k̂

l̂

(

z

R̂2k̂

)n
∣

∣n, a
k̂

〉







θ
R̂

2l̂−1
,R̂

2l̂
.

(2.74)

The inner product between the two representations can be written in terms of a contribution

from the inner edges b and outer edges a separately as there are no cross-terms between

a’s and b’s:
〈

z,R|z, R̂
〉

=
〈

z,R|z, R̂
〉

a
+
〈

z,R|z, R̂
〉

b
. (2.75)

Looking at the a type contributions we find the following set of summations:

〈

z,R|z, R̂
〉

a
=

m
∑

l=1

m̂
∑

l̂=1

m
∑

k=l

m̂
∑

k̂=l̂

∞
∑

n=1

f̂2k̂

l̂
f2k

l

(

z

R2k

)n
(

z

R̂2k̂

)n
〈

n, a
k̂
|n, ak

〉

θR2l−1,R2l
θ
R̂

2l̂−1
,R̂

2l̂

=

m
∑

l=1

m̂
∑

l̂=1

m
∑

k=l

m̂
∑

k̂=l̂

∞
∑

n=1

f̂2k̂

l̂
f2k

l

(

|z|2

R2
2k − |z|2

)

δ
R̂

2k̂
R2k

θR2l−1,R2l
θ
R̂

2l̂−1
,R̂

2l̂
, (2.76)

and similarly for the b type contributions
〈

z,R|z, R̂
〉

b

=
m
∑

l=1

m̂
∑

l̂=1

m
∑

k=l

m̂
∑

k̂=l̂

∞
∑

n=0

f̂2k̂−1

l̂
f2k−1

l

(

R2k−1

z

)n
(

R̂2k̂−1

z

)n
〈

−n, b
k̂
| − n, bk

〉

θR2l−1,R2l
θ
R̂

2l̂−1
,R̂

2l̂

=
m
∑

l=1

m̂
∑

l̂=1

m
∑

k=l

m̂
∑

k̂=l̂

∞
∑

n=1

f̂2k̂−1

l̂
f2k−1

l

(

− |z|2

R2
2k−1 − |z|2

)

δ
R̂

2k̂−1
R2k−1

θR2l−1,R2l
θ
R̂

2l̂−1
,R̂

2l̂
, (2.77)

The calculation of such an inner product is complicated both by the large numbers

of summations in the above terms, and also by the products implicit in the f ′s. Having

calculated the inner products the integration must be implemented. The integration itself

is not complicated but because there are very many terms we have performed all such

computations using Mathematica. In order to find the full reduced density matrix it is also

necessary to find all the possible Young tableaux for a given set of constraints. We also

do this using Mathematica. The algorithmic procedure is outlined in appendix C while an

analytical estimate of the dimension of the reduced density matrix is given in appendix B.

The dimension of the reduced density matrix for ∆ = 40, M = N = 9 is greater than 800

meaning that there are about a million non-equal entries in the density matrix. Such a
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Figure 2. The values of the 29 by 29 elements of the reduced density matrix for the M = N = 6,

∆ = 18 ensemble. On the right is the plot of the logarithm of the 29 eigenvalues of this matrix. The

dashed line is the line that the eigenvalues would fall on if there were no mixing. The entropy of this

particular ensemble is 2.50. The maximum entropy for an ensemble of 29 elements is log 29 = 3.37.

computation is possible but, for representations with M and N much greater than 10, the

combinatorics very quickly become unmanageable, D & O(e
√

∆).

In the following we plot some of the results for various M and N , noting that for M

and N of order 10, we can consider that we are approaching the large N regime.

For M = 6, N = 6, ∆ = 18, there are 29 distinct representations (the representations

are given in appendix C). The reduced density matrix can be diagonalized and the loga-

rithm of the 29 eigenvalues calculated. The non-diagonalized reduced density matrix along

with the logarithm of the eigenvalues are plotted in figure 2. Note that if there were no

mixing, all eigenvalues would lie on the dashed line. Figures 3 and 4 show the same plots

for M = N = 7, ∆ = 24 for which there are 81 distinct representations.

In figure 5 we plot the entropy as a function of M and N for ∆ = MN
2 . We see

that for large M and N the entropy goes much slower than logD meaning that the off-

diagonal elements are extremely important in describing the purity of the state. Indeed

the constraint we are looking at M = N and ∆ = MN
2 is one in which we would expect a

large number of overlaps in diagrams. This means that, in this case, the number of degrees

of freedom is actually much less than the dimension of the density matrix.

The limit of small N , large M , however gives a result much closer to log D as can be

seen in figure 6 where the points are the values of the entropy calculated for N = 3 and the

line is given by log D , showing an almost perfect match in this limit of no overlaps. Note

that there is a subtlety in such a calculation which is dependent on how one regularizes

the divergences in the reduced density matrix. See appendix C for more details.

2.4 BMN string states

Having studied the continuum limit, we turn to the two-site lattice in the BMN limit. Such

states can be viewed as the two-magnon states of the string with large J charge. We can
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Figure 3. The logarithm of the 81 eigenvalues of the reduced density matrix for the ensemble of

representations with M = N = 7, ∆ = 24 . The dashed line corresponds to the positions of the

eigenvalues if there were zero mixing, i.e. − log 81.

Figure 4. The reduced density matrix for M = N = 7, ∆ = 24. We see the line of 1/81 on the

diagonal and a very large non-trivial mixing on the off-diagonals.

project onto states with fixed angular momentum J by performing the contour integral

over the product of two coherent states as follows:

∣

∣φJ
〉

=

∮

C

dzz−(J+1) |z〉 |z〉 , (2.78)
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Figure 5. Plot of the entropy for the superselection sector ∆ = MN

2
. This plot goes, for large M

and N roughly as S ∼ log(MN) ∼ log(log(D)). This is a lot slower than the log(D) which would

be the answer with minimal mixing between states. The conclusion therefore is that the non-trivial

mixing is extremely important for M ∼ N and ∆ = MN

2
. Such a conclusion will not be true for

sparse representations.

50 100 150 200
M

1

2

3

4
S

Figure 6. Point plot for the entropy as a function of M with N = 3 and ∆ = MN

2
along with the

line plot for log(D−1) where D is the number of elements in the ensemble for a given M , this value

also matches log(M/4) to extremely high precision. The conclusion from this is that for M ≫ N

there is little mixing and the entropy is maximal.

however unlike in the one black-ring case [8], |z〉 is a sum of contributions from each ring,

so we have to sum over rings:

|z〉 |z〉 =
m
∑

l=1

m
∑

l′=1

|z〉l |z〉l′ θ(l)θ(l′) , (2.79)
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where θ(l) is the theta function with unit support only on the lth ring (this is simply a

rewriting of (2.24) without referring to the ring radii).

Since we are only looking at a single representation, R, (both |z〉′s are the same), the

product of θ′s means that the above simplifies to:

|z〉 |z〉 =
m
∑

l=1

|z〉l |z〉l θ(l) . (2.80)

We therefore start by looking at |z〉l |z〉l
∣

∣φJ
〉

l
=

∮

C

dzz−(J+1) |z〉l |z〉l

=

∮

C

dzz−(J+1)

(

l
∑

k=1

∞
∑

n=0

f2k−1
l

(

R2k−1

z

)n

|−n, bk〉 +
m
∑

k=l

∞
∑

n=1

f2k
l

(

z

R2k

)n

|n, ak〉
)

·





l
∑

p=1

∞
∑

s=0

f2p−1
l

(

R2p−1

z

)s

|−s, bp〉 +

m
∑

p=l

∞
∑

s=1

f2p
l

(

z

R2p

)s

|s, ap〉



 . (2.81)

Only terms which have a single negative power of z will contribute to the integrand. There-

fore, for positive J this is only possible for terms of the form |−n〉 |n + J〉 , |n + J〉 |−n〉,
|n〉 |J − n〉 and |J − n〉 |n〉. There will be no contributions from a product of two negative

movers (two b types) only.

Calculating the contribution from each l and summing we arrive at the final expression

for the angular momentum eigenstate as:

∣

∣φJ
〉

=

m
∑

l=1











l
∑

k=1

∞
∑

n=0

m
∑

p=l

f2k−1
l f2p

l Rn
2k−1R

−(n+J)
2p |−n, bk〉 |n + J, ap〉





+





m
∑

k=l

∞
∑

n=0

l
∑

p=1

f2k
l f2p−1

l R
−(n+J)
2k Rn

2p−1 |n + J, ak〉 |−n, bp〉





+





m
∑

k=l

J−1
∑

n=1

m
∑

p=l

f2k
l f2p

l R−n
2k Rn−J

2p |n, ak〉 |J − n, ap〉











. (2.82)

The analysis for the total negative J states is similar, except that we now pick up

products of two b type states, and do not pick up the products of two a type states.

We can now use (2.82) as a general ansatz to write down an energy eigenstate. Sim-

plifying this expression we arrive at,

∣

∣φJ
〉

=

m
∑

k=1

m
∑

p=1

{( ∞
∑

n=0

F 2k−1,2p
−n Rn

2k−1R
−(n+J)
2p |−n, n+J〉k,p (2.83)

+ F 2k,2p−1
n+J R

−(n+J)
2k Rn

2p−1 |n + J,−n〉k,p

)

+

(

J−1
∑

n=1

F 2k,2p
n R−n

2k Rn−J
2p |n, J − n〉k,p

)}

,
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where we write the two occupation numbers together into one bracket and leave the infor-

mation about which ring is being excited as a subsript after the ket. The F ′s are calculated

after applying an energy eigenstate constraint on the kets. A full explanation of this pro-

cedure can be found in appendix D. In order to find the correct constraints on the F ′s
we have to simplify the problem by looking at a decoupling limit which reduces us to the

two site case already discussed extensively in [8]. The full problem of finding the F ′s in

complete generality is outside the scope of the current paper.

The decoupling limit which we choose is the one in which a single black ring, the lth

is decoupled from the rest. In (2.83), we pick k = p = l, and since R2l−1 =
√

Cbl
/N and

R2l =
√

Cal
/N we can define γ = Cbl

/Nl, and the state and algebra are very similar to

the one black ring case [8]. From the general expression (2.83), we get in the decoupling

limit that

∣

∣φJ
〉

=
0
∑

n=−∞

(

γ

1 + γ

)−n
2

fnvn +
J−1
∑

n=1

fnvn +
∞
∑

n=J

(

γ

1 + γ

)
n−J

2

fnvn , (2.84)

where vn = |J − n, n〉.
The energy eigenstate equation is

H |φ〉 = 2λ(a†1a1 + a†2a2 − a†2a1 − a†1a2) |φ〉 = E |φ〉 (2.85)

i.e.
(

2λ(a†1a1 + a†2a2 − a†2a1 − a†1a2) − E
)

|φ〉 = 0 . (2.86)

Applying this operation to our state we get:

2λ

{

0
∑

n=−∞

(

γ

1 + γ

)−n
2

fn

(

(1 + 2γ)vn −
√

γ(1 + γ)(vn−1 + vn+1)
)

(2.87)

+

J−1
∑

n=1

fn ((2 + 2γvn − (1 + γ)(vn−1 + vn+1))

+
∞
∑

n=J

(

γ

1 + γ

)
n−J

2

fn

(

(1 + 2γ)vn −
√

γ(1 + γ)(vn−1 + vn+1)
)

}

− N

Nl

E

{

0
∑

n=−∞

(

γ

1 + γ

)−n
2

fnvn +
J−1
∑

n=1

fnvn +
∞
∑

n=J

(

γ

1 + γ

)
n−J

2

fnvn

}

= 0 .

This equation generates recursion relations between triples of fn
′s and we can solve the

whole system iteratively starting from just two fn
′s, e.g. f0, f1. These recursive equations

will be almost the same as [8], except that in (2.87) we have Ê = N
Nl

E instead of E. We

thus have three unknowns, f0, f1, Ê. . f0 is set to 1 via an overall normalization freedom

while f1 and Ê are fixed by demanding convergence of the series in the two asymptotic

regimes n → ±∞. The calculation is discussed in detail in the appendix but the outline

is the following: Three generating functions are derived which describe in closed form the

recursion relations between f0 and fJ−1, fJ+1 and f∞ and, f−1 and f−∞. Using these
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generating functionals we are able to write f−∞ and f∞ in as functions of Ê and f1.

Convergence of the sums puts a constraint first on f1 from the n → ∞ regime and finally

a constraint equation is found for Ê from the n → −∞ regime. More detailed discussions

are in appendix D. One finally gets that for large J states, the eigenvalues are3

En̂ =
Cal

N

2π2n̂2λ

J2

(

1 − 2 + 4γ

J

)

=
Cal

N

8π2n2λ

J2

(

1 − 2 + 4γ

J

)

, (2.88)

where here n̂ = 2n, and n is the oscillator mode number in the BMN state [35]. A similar

procedure for large −J states produces similar recursive relations and yields

En =
Cbl

N

8π2n2λ

J2

(

1 − 2 + 4γ

J

)

. (2.89)

These are strings excited along the exterior and interior edges of the black ring. The

different coefficients in the energy spectrum reflect the different effective radii of curvature

when we take the plane-wave limit along the geodesics near the different circles [6]. Thus,

by measuring and comparing the effective units of energies of the states, one can know the

exact location of these (short) string excitations in the bulk spacetime.

3 Discussion

In this paper we have studied the quantum string excitations on top of a class of axially

symmetric bubbling geometries dual to the 1/2 BPS chiral primary operators. This work

is a continuation of the research undertaken in [7–12]. On the gauge theory side, we have

studied operators of the form of a product of a Schur polynomial χR(Z) and a single trace

of Z ′s and impurities Y ′s. The Schur polynomial part corresponds to a general Young

tableau which specifies a background geometry. The single trace part can be viewed as a

bosonic lattice of Y ′s, and for each site there are, in general, 2m type of bosonic excitations,

m of which have positive occupation numbers n, corresponding to the m inward corners

of the Young tableau, at which point one can add n extra boxes there. The other m, with

negative occupation numbers, −n, correspond to the m outward corners on the Young

tableau, where one can subtract n boxes.

Developing the work of [7–9] we have solved the problem of the coherent state for a

general geometry with arbitrary concentric ring distributions (i.e. a general set of radii),

and equivalently for a general Young tableau. We have also studied the algebra of the shift

operators (or ladder operators) a, a†, acting on the different types of bosonic excitations

on the lattice, and extended the algebra of [9] by including the mixing of the |0〉 states of

3 The state |n1, n2, . . . , nL〉 is equivalent to the state under a cyclic permutation of the integers, e.g. to

|nL, n1, . . . , nL−1〉 [8], due to the cyclicity of the trace part of the operator (2.3). For a two-site system,

one can write a general state as the sum of a symmetric state, i.e. one with the property |n1, n2〉 =

|n2, n1〉, and an anti-symmetric state, i.e. one with the property |n1, n2〉 = − |n2, n1〉. The energy eigenstate

equation (2.86) is to be supplemented by the projection onto symmetric eigenstates. Thereby one should

project out half of the eigenfunctions of the equation, associated with n̂ = 2n+1, and only keep the other half

with n̂ = 2n [8], and interpret the n as the mode number of the BMN state. Therefore finally (2.88), (2.89)

are in agreement with [8].
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different black rings. These different types of excitation correspond to the different possible

circles in the geometry. The coherent state wavefunction has different expressions on the

m different and disconnected black rings. On each black ring, the contribution to the Fock

state wavefunction, normalizable on that ring, comes from all the positive mover states

along the circles outside that ring, and all the negative mover states along the circles inside

that ring.

The norm of the coherent state wavefunction is related to the metric function V that

appears in the dual string sigma model [7–9]. The radii that appear in the denominator

of the norm are those radii for which the angular momentum excitations of the string are

included in the coherent state expansion. The radii that appear in the numerator of the

norm are all the rest of the radii in the geometry, and emerge due to the factorization of

the numerator after summation. We have also calculated the average occupation number

on each black ring, which are related to the metric function V . We have checked that the

coherent state wavefunction behaves nicely under the merging of two nearby rings.

Having obtained the coherent state wavefunction for a general concentric ring geometry,

or equivalently, for a general Young tableau, we used the wavefunction as a means to study

the different background geometries since the continuous parameters of these geometries

are encoded in the coherent state wavefunction itself. We have then gone on to define a

reduced density matrix element between any pair of geometries or Young tableaux. This

has been implemented by integrating out the string degrees of freedom from the cross

product between the coherent state wavefunctions living on these geometries. The reduced

density matrix measures the degree of similarity between any pair of geometries. In the

most extreme case, if the two geometries are almost identical except for some very small

inequivalent region, the matrix element between them is close to 1/D, where D is the

total number of Young tableaux in a given constrained ensemble. We use computational

methods to obtain both the representations in the ensemble and furthermore the reduced

density matrix itself. This calculation is a novel development, which allows us to study

the mixing of non-supersymmetric operators. The mixing of the tableaux is due to the

non-BPS property of the entire operator (Schur polynomial times single trace).

We have also studied an ansatz similar to the coherent states that describe the BMN

states with large J charge. The coherent state has no fixed total J , but includes a super-

position of all states with different J ′s . By picking the fixed J solutions from within the

coherent state expansion, and using these states as the basis for the superposition to form

a BMN eigenstate of the dilatation generator, we are able to solve the eigenvalue problem

and find the eigenvalues. The spectrums encode the different radii of the rings within the

geometry and therefore the locations of short string excitations in the bulk gravity dual.

It therefore tells us some locality information of the bulk quantum gravity. We also show

that one can obtain the BMN states with large negative J charge, which correspond to

the negative movers along the inner circles of the different rings. For fixed large |J |, the

number of sites of the lattice L corresponds to the number of magnons on the string.

In finding the string sigma model in these geometric backgrounds we obtain a metric

function, V , which describes the entire class of concentric ring geometries. The metric

function V is a superposition of many terms each of which looks like a metric function for
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an AdS5 space with a different radius. A future goal would be to consider the solutions,

and S-matrices of these sigma models in more detail. The straight string solutions are

of particular interest, and may be related to the work of [47–49]. Semi-classical long

strings on these backgrounds were studied previously in [50–52]. It would seem natural

to consider these as operators of the form of the product of the Schur polynomial and an

additional operator.

A further direction of research would be to consider the higher loop dilatation gener-

ators acting on the lattice, having here extensively studied the application of the one loop

dilatation generator. It would also be interesting to generalize the trace operator under

consideration from one which contains only Z and Y impurities to one which contains fields

from a larger sector, for instance the derivative operator. There is still much to be done to

fully understand many aspects of these types of operators.
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A Derivation of the coherent states

Here we give a more detailed explanation of the calculation of the coherent state, used

extensively throughout this work.

We assume that the coherent state on the lth ring takes the form

|z〉l =

m
∑

k=1

gk
l |0〉k +

l
∑

k=1

f2k−1
l

∞
∑

n=1

(

R2k−1

z

)n

|−n, bk〉 +

m
∑

k=l

f2k
l

∞
∑

n=1

(

z

R2k

)n

|n, ak〉 , (A.1)

where the excitations on the inner and outer rings are labelled by bk and ak and the

ground state of the kth ring is labelled by |0〉k. The ranges of the sum over k is due to the

normalizability on R2l−1 < |z| < R2l.

The algebras are written in section 2.1, and in particular, we assume that the action

of the annihilation operators on a single positive mover gives a sum over zero modes:

a |1, al〉 =

m
∑

k=1

vk
l

√

Cak√
N

|0〉k , a |0〉k =

√

Cbk√
N

|−1, bk〉 . (A.2)

The mixing of the |0〉k states is natural, since when two nearby black rings merge, or

equivalently, two nearby vertical edges of the Young tableau merge together, the |0〉 states

on these two black rings, under this limit, have to be identified as the same state. The
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algebra without such mixing would reduce to m decoupled algebras, each of which has a

similar form but with different coefficients.

We then have that the action of the annihilation operator on the negative and positive

movers respectively gives

a

∞
∑

n=1

(

R2k−1

z

)n

|−n, bk〉 =

∞
∑

n=1

(

R2k−1

z

)n
√

Cbk√
N

|−n − 1, bk〉

= z
∞
∑

n=1

(

R2k−1

z

)n

|−n, bk〉 −
√

Cbk√
N

|−1, bk〉 , (A.3)

a

∞
∑

n=1

(

z

R2k

)n

|n, ak〉 =

∞
∑

n=2

(

z

R2k

)n
√

Cak√
N

|n − 1, ak〉 +
z

R2k

m
∑

j=1

vj
k

√

Cak√
N

|0〉j

= z

∞
∑

n=1

(

z

R2k

)n

|n, ak〉 + z

m
∑

j=1

vj
k |0〉j . (A.4)

The coherent state condition then needs to be satisfied which will provide a series of

recursion relations for the f ′s. The condition

a |z〉l − z |z〉l = 0 (A.5)

yields the constraint

m
∑

k=1

gk
l

√

Cbk√
N

|−1, bk〉 −
l
∑

k=1

f2k−1
l

√

Cbk√
N

|−1, bk〉 +
m
∑

k=l

f2k
l

( m
∑

j=1

vj
kz |0〉j

)

−
m
∑

k=1

gk
l z |0〉k = 0 .

(A.6)

which gives a relationship between the f ′s and g′s

gk
l = f2k−1

l , k 6 l; gk
l = 0, k > l . (A.7)

We also have the following constraint coming from the sums over zero modes

m
∑

k=l

f2k
l

( m
∑

j=1

vj
k |0〉j

)

=

l
∑

j=1

f2j−1
l |0〉j , (A.8)

which can be rewritten as
m
∑

k=l

f2k
l vj

k = f2j−1
l , j 6 l;

m
∑

k=l

f2k
l vj

k = 0, j > l , (A.9)

and thus

vj
l =

v̄j
l

f2l
l

, v̄j
l = f2j−1

l −
m
∑

k=l+1

f2k
l

f2k
k

v̄j
k, v̄j

m = f2j−1
m , v̄j

m−1 = f2j−1
m−1 − f2m

m−1

f2m
m

f2j−1
m . (A.10)

Taking the above constraints we are left with a simplified expression for the coherent

state, given by:

|z〉l =

l
∑

k=1

f2k−1
l,m

∞
∑

n=0

(

R2k−1

z

)n

|−n, bk〉 +

m
∑

k=l

f2k
l,m

∞
∑

n=1

(

z

R2k

)n

|n, ak〉 , (A.11)
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where we have made a choice to absorb the zero modes in the bk states. From the coherent

state expansion we get the norm of the state on the lth ring as

〈z|z〉l =

l
∑

k=1

c2k−1
l,m R2

2k−1

R2
2k−1 − |z|2

+

m
∑

k=l

c2k
l,mR2

2k

R2
2k − |z|2

, (A.12)

c2k−1
l,m = −(f2k−1

l,m )2, c2k
l,m = (f2k

l,m)2 , (A.13)

which can be re-summed and factored in terms of a quotient of products as

〈z|z〉l = cl

l−1
∏

k=1

(

R2
2k − |z|2

) m
∏

k=l+1

(

R2
2k−1 − |z|2

)

(− |z|2)

l
∏

k=1

(

R2
2k−1 − |z|2

) m
∏

k=l

(

R2
2k − |z|2

)

, (A.14)

where cl is an overall normalization constant.

Since when there is no black region in the center, the norm is zero when z = 0:

l
∑

k=1

c2k−1
l,m +

m
∑

k=l

c2k
l,m = 0 , (A.15)

which has solution

(f2k−1
l,m )2 =

−cl

∏m
p=l+1(R

2
2k−1 − R2

2p−1)
∏l

p=16=k(R
2
2k−1 − R2

2p−1)

∏l−1
p=1(R

2
2k−1 − R2

2p)
∏m

p=l(R
2
2k−1 − R2

2p)

= −cl

m
∏

p=16=k

(

R2
2k−1 − R2

2p−1

)sign(p−l)
m
∏

p=1

(

R2
2k−1 − R2

2p

)sign(l−p−1)
(A.16)

(f2k
l,m)2 =

cl

∏m
p=l+1(R

2
2k − R2

2p−1)
∏l

p=1(R
2
2k − R2

2p−1)

∏l−1
p=1 6=k(R

2
2k − R2

2p)
∏m

p=l 6=k(R
2
2k − R2

2p)

= cl

m
∏

p=1

(

R2
2k − R2

2p−1)
)sign(p−l)

m
∏

p=1 6=k

(

R2
2k − R2

2p

)sign(l−p−1)
, (A.17)

where sign(p − l) = 1, for p > l; and sign(p − l) = −1, for p < l.

It can be seen that

sign(c2k−1
l,m ) = (−1)2(m−k)+1 = (−1)#R>R2k−1 = −1 , (A.18)

sign(c2k
l,m) = (−1)2(m−k) = (−1)#R>R2k = 1 . (A.19)

The f2k−1
l and f2k

l coefficients give the relative strengths of the response of the lth ring to

the excitations on R2k−1,R2k circles in the m-black-ring geometry.

It can be checked that they correctly produce all the non-zero coefficients of the 2-circle

case with

c1,1 = 1 = R2
2 − R2

1 , (A.20)

since R2
2 − R2

1 is already proportional to N and we use the coordinate z in the units that

R2
2 − R2

1 is 1.
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It can also be checked that they correctly produce all the non-zero coefficients of the

3-circle case with

c1,2 =
R2

4R
2
2

R2
3

, c2,2 =
R2

4R
2
3

R2
2

. (A.21)

These match with the 3-circle result in [8].4 Note our 4,3,2 is their 3,2,1, we have taken

the R2
1 = 0 limit, and these normalizations make the norm of coherent state when R2

1 = 0,

to be 1 (in the unit of cR) at the origin, z = 0. In this procedure, we first take R2
1 = 0,

then z = 0.

From this one can calculate the coefficient cl, giving

cl =

cR

l
∏

k=2

R2
2k−1

m
∏

k=l

R2
2k

l−1
∏

k=1

R2
2k

m
∏

k=l+1

R2
2k−1

, (A.22)

where the subscript on cR denotes the representation R and not a radius. Before taking

the R2
1 = 0 limit the expression has the property that the coherent state wavefunction is

normalized to zero at the origin, because there is no black region there. The limit from 2m

circles to 2m − 1 circles is similar.

The overall normalization factor for each black ring has the property that:

〈z|z〉l =

cl

l−1
∏

k=1

(

R2
2k − |z|2

) m
∏

k=l+1

(

R2
2k−1 − |z|2

)

(− |z|2)

l
∏

k=1

(

R2
2k−1 − |z|2

) m
∏

k=l

(

R2
2k − |z|2

)

(A.23)

=

cR

l−1
∏

k=1

(

1 − |z|2
R2

2k

) m
∏

k=l+1

(

1 − |z|2
R2

2k−1

)

(−|z|2)

(R2
1
−|z|2)

l
∏

k=2

(

1 − |z|2
R2

2k−1

)

m
∏

k=l

(

1 − |z|2
R2

2k

)

. (A.24)

When one crosses from the lth ring to the (l + 1)th ring, there is only a change of factor

(

1 − |z|2
R2

2l+1

)

(

1 − |z|2
R2

2l

) →

(

1 − |z|2
R2

2l

)

(

1 − |z|2
R2

2l+1

) . (A.25)

Similarly, when one crosses from the lth ring to the (l − 1)th ring, there is only a change

of factor
(

1 − |z|2
R2

2l−2

)

(

1 − |z|2
R2

2l−1

) →

(

1 − |z|2
R2

2l−1

)

(

1 − |z|2
R2

2l−2

) . (A.26)

4There is a slight typo in equation (58) of [8], where the prefactors of the last two terms are switched.
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These are due to the sign changes of the contributions in |z〉 from the two circles that one

passes by.

The disappearance of the central circle leads to the limit

(− |z|2)
(

R2
1 − |z|2

) → 1 , (A.27)

which gives a good limit to the case of an odd number of circles - i.e. a disk plus annuli

configuration. This is also a good limit for |z〉, since − R2
1

R2
1
−|z|2 → 0.

A merging of two black rings when R2
2j → R2

2j+1 is also a natural and well behaved

limit, as, e.g.
(

1 − |z|2
R2

2j+1

)

(

1 − |z|2
R2

2j

) → 1,

(

1 − |z|2
R2

2j

)

(

1 − |z|2
R2

2j+1

) → 1 , (A.28)

so the formula reduces to the situation with one fewer black ring. This is also a good limit

for |z〉, since c2j+1
l → −c2j

l , and contributions from the two merging circles cancel.

The situation where the lth black ring is far away from others leads to the following limit

〈z|z〉l → cl
(− |z|2)

(

R2
2l−1 − |z|2

)(

R2
2l − |z|2

) =
c2l−1
l R2

2l−1

R2
2l−1 − |z|2

+
c2l
l R2

2l

R2
2l − |z|2

, (A.29)

which reduces to the one black ring case, which is a form of decoupling limit for the lth

ring.

The limit where we go from 2m circles to 2m − 1 circles takes the following form

R2
1 → 0, V → V . (A.30)

In fact the 2-circle case can be viewed as a limit of the 3-circle case with R1 = 0 leading

to the 1/z̄ term.

There is a further limit which would give the wavefunction in complimentary regions

nomarlizable on the white regions instead of the black. Starting from the case of an even

number (e.g. 2m) of circles, and sending the last circle to infinity, followed by switching

the black and white regions leads to

R2
2m → ∞, V → −V . (A.31)

This procedure gives us coherent state wavefunction in white regions instead of black, as

it is complimentary to the wavefunction in the black regions.

B Dimension of the density matrix

The dimension of the density matrix D in section 2.3 is related to the entropy of the

superstar, S via

eS = D . (B.1)
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The superstar geometry corresponds to a grey disk on the z -plane with a larger radius and

lower fermion filling density than the AdS disk. It has the same N as the AdS geometry

but has a larger radius on the z-plane [6, 37–39]:

R2
star = R2

AdS

(

1 +
2∆

N2

)

= N + M , R2
AdS = N , (B.2)

M =
2∆

N
. (B.3)

A single superstar may be viewed as a microcanonical ensemble with N total rows, and M

total columns, both fixed. In other words, we have

N =

m
∑

j=1

Nj, M =

m
∑

j=1

Mj . (B.4)

The slope of such a Young tableau is, in the limit of large M and N ,

q =
M

N
=

2∆

N2
, (B.5)

and the filling density on the grey disk with the larger radius, is 1
1+q

= N
N+M

.

One can consider the entropy as the sum of entropies of each area element in the phase

space, each of which is subject to a Bernoulli distribution {u, 1 − u}. The sum is written

in [40] (see also [41]) which is

S = − 1

2π~

∫

d2x [u log u + (1 − u) log(1 − u)] (B.6)

= −N

∫

d |z|2 [u log u + (1 − u) log(1 − u)] , (B.7)

where the area is quantized due to the quantization of the phase space

1

2π~

∫

d2x = M + N = N

∫

d |z|2 ,
R2|there

2~
=

R2|here

1/N
, (B.8)

(see the footnote on page 3). For a uniform distribution in the phase space, u is a constant

which is the filling fraction N
M+N

, and we can thus write the entropy as

S = (M + N)

[

M

M + N
log

(

M + N

M

)

+
N

M + N
log

(

M + N

N

)]

(B.9)

= f

(

N

N + M

)

·
√

∆ , (B.10)

where

f

(

N

N + M

)

=

(
√

2M

N
+

√

2N

M

)

[

M

M + N
log

(

M + N

M

)

+
N

M + N
log

(

M + N

N

)]

.

(B.11)

This agrees exactly with [39], which is derived from the partition function approach.
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In the case of unrestricted N and M , the Hardy-Ramanujan formula tells us

that [39, 42]

S ∼
√

2π2

3

√
∆ =

√

π2

3
MN = 2.5651

√
∆ , (B.12)

on the other hand from (B.10)

S = f

(

N

N + M

)√
∆ 6 1.96052

√
∆ , (B.13)

which is consistent with the Hardy-Ramanujan bound.

In the M ≫ N regime (B.10) has the limit,

S ∼ N

(

log
M

N
+ 1

)

. (B.14)

This formula is similar to the case of the type IIA geometry with N units of D2-brane flux

and K units of NS5-brane flux on the torus [43].

Another method to obtain this order of magnitude estimate for the entropy in the

superstar geometry is by using Schur’s theorem to find the number of partitions of ∆ =
MN

2 with N maximum rows. If D denotes the number of possible sets n1, . . . , nN which

satisfy the relation ∆ =
∑N

i=1 rini and are non-negative, and {ri} are relatively prime, then

D ∼ ∆N−1

(N − 1)!

1

r1 . . . rN
, (B.15)

in the large ∆ limit. This should give an order of magnitude estimate, with the distinction

coming from the fact that the set {ri} may not be relatively prime. If we let rk = k, which

is the case we are interested in, we find

log D ∼ N

(

log
∆

N2
+ 2

)

, (B.16)

where we have used Stirling’s approximation for the logarithm of the factorial in the large

N limit. We see that (B.16) agrees with (B.14) in the leading order.

C Procedure for computing the density matrix

In this section we will give a detailed explanation as to how to calculate the reduced

density matrix given a set of Young tableaux. We start with two representations shown in

figure 7. The two ring configurations for the representations R and R̂ are drawn only in

their half planes so that we may see the coincident outer rings (marked with black lines)

and coincident inner rings (marked with dashed blue lines). We may draw a more detailed

picture of these two representations by simply plotting the radii in a linear fashion, as

shown in figure 8. In this figure we have also labelled the ak and bk oscillators for the R

representation along with the eight radii R1, . . . , R8 and similarly the âk, b̂k and R̂i for the

R̂ representation.
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R R
`

Figure 7. Two representations R and R̂ given by their half plane disk diagrams. The black solid

and blued dashed circles emphasize the coincident outer and inner rings.

9a1, R2= 9a2, R4= :a3, R6> :a4, R8>9b1, R1= :b2, R3> :b3, R5> 9b4, R7=

:a`1, R
`

2> :a`2, R
`

4> :a`3, R
`

6> :a`4, R
`

8>:b
`

1, R
`

1> :b
`

2, R
`

3> :b
`

3, R
`

5> :b
`

4, R
`

7>

R:

R
`
:

Figure 8. The two representations R and R̂ compared in a purely radial diagram, showing their

coincident inner and outer edges along with their a, b and Ri labels.

We see that the ring radii are coincident on two outer rings and one inner ring (the

innermost). Note that the actual values of the radii are unimportant for this example. We

simply aim to show the calculational procedure.

We first write the coherent state wave function for the first ring structure (which has

four rings) as:

|z〉 = |z〉1 θR1,R2
+ |z〉2 θR3,R4

+ |z〉3 θR5,R6
+ |z〉4 θR7,R8

, (C.1)

and for the second

|ẑ〉 = |ẑ〉1 θ
R̂1,R̂2

+ |ẑ〉2 θ
R̂3,R̂4

+ |ẑ〉3 θ
R̂5,R̂6

+ |ẑ〉4 θ
R̂7,R̂8

, (C.2)

where each coherent state wavefunction |ẑ〉l has support only on the lth ring θxy = 1 for

x < z < y and zero otherwise. Note that these are coherent states, though we can multiply

the whole state by an arbitrary constant and it will still be a coherent state. We set this
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arbitrary normalization such that the inner product of the state with itself, integrated over

the whole space gives 1
D

where D is the total number of representations in the ensemble.

∫

d2z 〈z|z〉 =

∫

d2z 〈ẑ|ẑ〉 = 1 . (C.3)

We can write out the coherent state wavefunction in full, in terms of the f ′s defined in (2.22)

|z〉 =
4
∑

l=1

{ ∞
∑

n=0

l
∑

k=1

f2k−1
l

(

R2k−1

z

)n

|−n, bk〉 +
∞
∑

n=1

4
∑

k=l

f2k
l

(

z

R2k

)n

|n, ak〉
}

θ
R2l−1,R̂2l

,

(C.4)

|ẑ〉 =
4
∑

l̂=1







∞
∑

n=0

l̂
∑

k̂=1

f̂2k̂−1

l̂

(

R̂2k̂−1

z

)n
∣

∣−n, b
k̂

〉

+
∞
∑

n=1

4
∑

k̂=l̂

f̂2k̂

l̂

(

z

R̂2k̂

)n
∣

∣n, a
k̂

〉







θ
R̂

2l̂−1
,R̂

2l̂
.

(C.5)

Note that the fact that there are four rings in both representations is a coincidence —

in many cases one looks at the overlap between representations with different numbers

of rings.

Now let’s look at the inner product of these two objects. There is one clear simplifi-

cation we can make. This is that there are never any cross products between the a’s and

the b’s, so we can write:

〈ẑ|z〉 = 〈ẑ|z〉a + 〈ẑ|z〉b . (C.6)

Looking first at the a contribution in (C.6) we see that we have the following sums:

〈

z, R̂|z,R
〉

a

=
4
∑

l=1

4
∑

l̂=1

∞
∑

n=1

∞
∑

m=1

4
∑

k=l

4
∑

k̂=l̂

f̂2k̂

l̂
f2k

l

(

z

R2k

)n
(

z

R̂2k̂

)m

< m,a
k̂
|n, ak > θR2l−1,R2l

θ
R̂

2l̂−1
,R̂

2l̂

=

4
∑

l=1

4
∑

l̂=1

∞
∑

n=1

∞
∑

m=1

4
∑

k=l

4
∑

k̂=l̂

f̂2k̂

l̂
f2k

l

(

z

R2k

)n
(

z

R̂2k̂

)m

δmnδ
R̂

2k̂
R2k

θR2l−1,R2l
θ
R̂

2l̂−1
,R̂

2l̂

=

4
∑

l=1

4
∑

l̂=1

∞
∑

n=1

4
∑

k=l

4
∑

k̂=l̂

f̂2k̂

l̂
f2k

l

( |z|
R2k

)2n

δ
R̂

2k̂
R2k

θR2l−1,R2l
θ
R̂

2l̂−1
,R̂

2l̂

=
4
∑

l=1

4
∑

l̂=1

4
∑

k=l

4
∑

k̂=l̂

f̂2k̂

l̂
f2k

l

(

|z|2

R2
2k − |z|2

)

δ
R̂

2k̂
R2k

θR2l−1,R2l
θ
R̂

2l̂−1
,R̂

2l̂
. (C.7)

There are two positions where the outer rings overlap, for l = l̂ = 1 and l = l̂ = 3. Note

that it does not have to be the case that they are on the same rings. From this observation
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we get the following two terms contributing:

〈

z, R̂|z,R
〉

a
= f̂2

1 f2
1

(

|z|2

R2
2 − |z|2

)

θR1,R2
θ
R̂1,R̂2

+

(

|z|2

R2
6 − |z|2

)

(

f̂6
3 f6

3θR5,R6
θ
R̂5,R̂6

+ f̂6
1 f6

1 θR1,R2
θ
R̂1,R̂2

)

. (C.8)

The first term includes a contribution from only one ring, whereas the second term,

which comes from coincident a’s on the third ring gives contributions from all the overlap-

ping regions of all inward rings from that point.

We can write a similar expression for the b’s and we find that the process is very similar

except that the contribution comes from all rings out from the coincident radii. This time

there is clearly no contribution from the second rings as they do not overlap at all, so there

are again just three contributing terms here

〈

z, R̂|z,R
〉

b
=

(

|z|2

|z|2 − R2
1

)

(

f̂1
1 f1

1θR1R2
θ
R̂1R̂2

+ f̂1
3 f1

3 θR5R6
θ
R̂5R̂6

+ f̂1
4 f1

4 θR7R8
θ
R̂7R̂8

)

.

(C.9)

Note that it is just a coincidence that the radii have the same label in the products of θ’s

- they may come from overlaps of very different ring numbers in more complex examples.

Because of the particular overlaps we see in the above diagram, we can simplify the θ,

to get:

〈

z, R̂|z,R
〉

a
=

(

|z|2

R2
2 − |z|2

)

f̂2
1 f2

1 θR1,R2
+

(

|z|2

R2
6 − |z|2

)

(

f̂6
3 f6

3 θR5,R6
+ f̂6

1 f6
1θR1,R2

)

,

(C.10)

〈

z, R̂|z,R
〉

b
=

(

|z|2

|z|2 − R2
1

)

(

f̂1
1 f1

1 θR1R2
+ f̂1

3 f1
3 θR5R6

+ f̂1
4 f1

4 θ
R7R̂8

)

. (C.11)

We will then need to take the integral over the complex z plane. The factors of 2π are

not important because they will be taken care of when we normalize the diagonal of the

reduced density matrix to 1
D

where D is the number of diagrams contributing. The reduced

density matrix therefore between these two terms, up to normalization is given by:

〈

R̂|R
〉

=

∫

d |z|
(

|z|3

R2
2 − |z|2

)

f̂2
1f2

1 θR1,R2
+

(

|z|3

R2
6 − |z|2

)

(

f̂6
3 f6

3θR5,R6
+ f̂6

1 f6
1 θR1,R2

)

+

(

|z|3

|z|2 − R2
1

)

(

f̂1
1 f1

1 θR1R2
+ f̂1

3 f1
3 θR5R6

+ f̂1
4 f1

4θ
R7R̂8

)

. (C.12)

In fact this integral is divergent, but there is a very natural cutoff given by the fact that

the phase space is discrete. The integration of the area in the phase space is really the sum

of area elements in the phase space, i.e. d(|z|2) = δ(R2). Given that the R2 are quantized

in units of 1
N

, we subtract (or add) 1
N

from the upper (lower) bound given by the R2k−1
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(R2k), giving:

〈

R̂|R
〉

= f̂2
1f2

1

(

−R2
2

2
log
(

R2
2 − |z|2

)

− |z|2
2

)∣

∣

∣

∣

∣

q

R2
2
− 1

N

R1

+f̂6
3f6

3

(

−R2
6

2
log
(

R2
6 − |z|2

)

− |z|2
2

)∣

∣

∣

∣

∣

q

R2
6
− 1

N

R5

+ f̂6
1f6

1

(

−R2
6

2
log
(

R2
6 − |z|2

)

− |z|2
2

)∣

∣

∣

∣

∣

R2

R1

+f̂1
1f1

1

(

R2
1

2
log
(

R2
1 − |z|2

)

+
|z|2
2

)∣

∣

∣

∣

∣

R2

q

R2
1
+ 1

N

+ f̂1
3 f1

3

(

R2
1

2
log
(

R2
1 − |z|2

)

+
|z|2
2

)∣

∣

∣

∣

∣

R6

R5

+f̂1
4f1

4

(

R2
1

2
log
(

R2
1 − |z|2

)

+
|z|2
2

)∣

∣

∣

∣

∣

R8

R7

. (C.13)

This whole expression needs to be correctly normalized such that 〈R|R〉 and
〈

R̂|R̂
〉

are
1
D

. Note that for small N and M one should really apply a summation rather than

an integration at this point. This distinction will not be important in the large M,N

limit. There are however subtleties when we fix, for instance large M and small N due to

coincident thin rings at very large radii. For small N , these dominate when one uses the

summation. If one considers an ensemble in which the total M is allowed to vary slightly,

such outer ring coincidences are rare and this issue becomes unimportant.

Having given an abstract example, we turn to a concrete calculation. In this case

we look at the case for M = N = 6 and ∆ = MN
2 = 18. In this case there are a total

of 29 Young tableaux which make up the ensemble. Some examples of these are shown

in figure 9. The five diagrams with solid lines extending from the base are those which

have central black disks within the annuli. We can calculate the reduced density matrix

from these diagrams using the previously described algorithm and find the graph shown in

figure 2. We concentrate on 2 points in the 29 by 29 matrix which correspond to the mixing

between different representations. The two pairs of Young tableaux and disk configurations

in the z-plane are shown in figures 10 and 11 where the values of these reduced density

matrix elements are 1
D

0.12 and 1
D

0.0014 respectively, where D = 29 is the dimension of the

reduced density matrix. The fact that these off-diagonal values are non-zero shows that the

entropy will be reduced from the maximal value of log(D). The mixing of representations

via the breaking of supersymmetry leads directly to these non-zero off-diagonals.

From the above discussion we can summarize the computational procedure for calcu-

lating the entropy of any chosen ensemble. The steps in the procedure are as follows:

1. Choose the values of M , N and ∆. Some of these may or may not be constrained

depending on the limits of interest.

2. Given the constraints on M , N and ∆ calculate all of the Young tableaux (including

inner disk contributions) for these parameters. In general the number of diagrams,
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Figure 9. 16 examples of the 29 Young tableaux making up the ensemble of M = N = 6, ∆ = 18.

-3-2-1 0 1 2 3

-3
-2
-1

0
1
2
3

Figure 10. The 1st and 4th diagrams from figure 9 compared. The (1,4) reduced density element

is 1

D
0.12 showing small overlap in the representations.

-3-2-1 0 1 2 3

-3
-2
-1

0
1
2
3

Figure 11. The 1st and 6th diagrams from figure 9 compared. The (1,6) reduced density element

is 1

D
0.0014 showing almost no overlap in the representations.
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D, goes roughly as e
√

∆ though the constraints on N and M can lower this number

considerably.

3. Look first at the diagonal elements of the reduced density matrix. There is an overall

normalization of every |z〉 which is fixed by requiring that each diagonal element of

the reduced density matrix should be 1
D

. These normalizations are stored and are

later used to weight the off-diagonal elements appropriately.

4. Study the off-diagonal elements by cycling through all pairs of representations.

5. Given two representations we first look for all coincident inner and outer edges which

will contribute to the total reduced density matrix element. Calculate individually

the contributions from the inner and outer edges, integrating over the appropriate

overlapping regions, summing to give the total and dividing by the weighting factors

calculated from the diagonal elements.

6. Calculate S = −Tr(ρ log ρ) by diagonalizing ρ.

D Derivation of the BMN spectrum

We include here an overview of the calculation of the BMN state using a series of recursion

relations obtained from the energy eigenstate condition. The equation we discuss here

is (2.87). This equation was obtained in [8] but the details of the calculation were not

given there. We think that it might be useful to the reader to include more detailed

intermediate steps in this appendix. Our results parallel theirs when the parameter N
Nl

E

is replaced by E.

The constraint that the state is an eigenfunction of the Hamiltonian relates triples of

f ′
ns. We are able to solve the system iteratively by starting from two f ′

ns which we chose

to be f0 and f1 . The procedure has to be done in parts because different ranges of n have

distinct recursion relations which cannot be solved using a generating function formalism.

We start by looking at the modes from n = 2 to J − 3 (to be sure that we are not taking

in any of the behaviour for the J th mode which has a slightly different recursion relation

due to the factors of γ coming both from the prefactor and the action with H. We also

define N
Nl

E = Ê in (2.87).

We use a method of generating functions which can be defined from a general recursion

relation. For the case where we have relations between triples of coefficients in our recursion

relation we have an equation of the form:

afn+1 = bfn + cfn−1 , (D.1)

and define the generating function which we would like to solve for as

B =

∞
∑

n=1

fnxn , (D.2)
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we can multiply the above recursion relation (D.1) by xn and make the sum:

1

x

∞
∑

n=2

afnxn = bB + x

∞
∑

n=0

cfnxn , (D.3)

leading to the relation:

1

x
(aB − af1x) = bB + x(cB + cf0) . (D.4)

Solving for B we have:

B =
xcf0 + af1
1
x
a − b − cx

. (D.5)

In the case of the energy eigenfunction equation, concretely we have that:

B = −
2x(γ + 1)λ

(

x
√

γ
γ+1f0 − f1

)

2(γ + 1)λ(x − 1)2 + Êx
, (D.6)

which we can write in the form of a summation by re-summing the geometric series,

such that:

B =
x
(

x
√

γ
γ+1f0 − f1

)

r2
− − 1

∞
∑

n=0

(

1

rn
−
− rn+2

−

)

xn , (D.7)

where

r− =
4λ(γ + 1) +

√

Ê

√

Ê − 8λ(γ + 1) − Ê

4λ(γ + 1)
, (D.8)

By solving the recursion relations up to, for instance n = (J − 2) we can make sure that

this gives the correct closed form for the recursion relation. To calculate fn one simply

calculates the coefficient of the xn term. Now we calculate fJ−1 up to fJ+1 in terms of

f0 and f1 using the recursion relation calculated and the generating function to take us to

fJ−2, and find that:

fJ+1 =
r−J−1
+

(

γ
(

r2
+ − r2J

+

)

((γ+ + r+ (γ+r+ − 1)) f0 + γ+r+f1)
)

γ2
(

r2
+ − 1

) (D.9)

+
r−J−1
+

(√
γγ+

(

γ
(

r2J
+ − r4

+

)

f0 + r+

(

r2J
+ − 1

)

(γ+ + r+ (γ+r+ − 1)) f1

))

γ2
(

r2
+ − 1

) ,

where r+ = 1
r−

and γ+ = γ + 1. Now we perform the same procedure as before with a

new generating functional, but going from n = J + 2 to ∞. This gives us the asymptotic

behaviour for fn which we use to fix f1. The generating functional, the equivalent of

equation (D.6), is given by

C = − 2xJ+1λ (xfJγ+ − γfJ+1)

λ(2x2γ+ + γ(2 − 4x) − 2x) + Êx
, (D.10)
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from which we calculate that the nth> J th term is given by:

fn = −
(γR+)−n(R+γ+)−J

(

γnR2J+1
+ (γfJ+1−R+γ+fJ) γJ

++γJ+1R2n
+ (fJ−R+fJ+1) γn

+

)

R2
+γ+−γ

,

(D.11)

where

R+ =

2λ (γ + γ+) −
√

4
(

λ2 − Êλ (γ + γ+)
)

+ Ê2 − Ê

4λγ+
. (D.12)

We want the eigenstate to be normalizable which puts a constraint on the n → ∞ modes

and leads to the constraint that:

γfJ+1 − R+γ+fJ = 0 . (D.13)

This is only possible for a particular value of f1 and f0. We have the freedom, by the

linearity of the eigenvalue equation, to set f0 = 1 and so we are left with a constraint on

f1 which reads:

f1 =
γ
((

r2J
− − 1

)

γ+r2
− +

(

r2
− − r2J

−
)

(γ+R+ + 1) r− +
(

r2J
− − r4

−
) (

γ+ −√
γγ+

))

r−
√

γγ+

(

−r−
(

r2J
− − 1

)

(γ+R+ + 1) +
(

r2J+2
− − 1

)

γ+ +
(

r2J
− − r2

−
) (

γ+ −√
γγ+

)

) .

(D.14)

We can check that this is correct by performing the full recursion order by order in Math-

ematica up to a high value of n and checking that the series really does converge for f1 of

this form. Indeed the system is extremely sensitive to tiny changes in f1 and the above

solution gives precise convergence.

Now we must perform the same procedure but working to n → −∞ which leads to

a constraint on Ê itself. Here using the recurrence relation for negative n’s we get the

following generating functional:

A =
∞
∑

n=0

f−nxn

= −x
(

−γ2ρ3
+ − γρ3

+ + γ2ρ+

) (

−γf−1x
2 − f−1x

2 + γf−2x
)

γ(γ + 1) (ρ+ − x) (xρ+γ − γ + xρ+)
(

γ
γ+1 − ρ2

+

) , (D.15)

where:

ρ =
4γλ + 2λ −

√

4λ2 − 8Êγλ − 4Êλ + Ê2 − Ê

4(γλ + λ)
. (D.16)

From this we can pull out the nth coefficient in the series expansion to find the closed form

value for f−n. Stepping through the n = −2 and n = −1 terms from the n = 0 and n = 1

we can write this in terms of f1 which has been fixed above. At this stage we have a closed

form for f−n in terms of Ê, J and n. This means that we can look at the asymptotics

n → ∞ and ask for a constraint on Ê such that the series is also convergent in this limit.

Numerical studies show that the eigenvalues, Ê, coming from this constraint give precisely

the same values as those from equation (32) in [8].
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Figure 12. Numerical calculation of the eigenvalues of the two site lattice Hamiltonian.

The numerical method is performed as follows. By taking the equation for Ê, similar

to equation (32) in [8], and plotting the right hand side as a function of Ê and finding the

points that it crosses 0 we are able to find the eigenvalues. In figure 12 we plot I =
√
−1

times the right hand side of the equation versus Ê (solid line). The dots mark the points:

Ên̂ = (1 + γ)
2π2n̂2λ

J2

(

1 − 2 + 4γ

J

)

, (D.17)

En̂ =
Cal

N

2π2n̂2λ

J2

(

1 − 2 + 4γ

J

)

. (D.18)

As discussed in section 2.4, one keeps only n̂ = 2n states as the physical BMN states, in

agreement with [8]. Figure 12 is plotted for J = 30, λ = 2, γ = 1
10 . Note that one only

expects agreement for the first few points for finite J due to the number of solutions to the

transcendental equation.
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