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1 Introduction

Event shapes measure the geometrical properties of the energy flow in QCD events and,

notably, its deviation from that expected based on pure lowest order partonic predictions.

Event shapes, as well as being among the first observables proposed to test QCD [1], have

been inextricably tied with the progress of QCD. They have played a crucial role in the

extraction of the strong coupling from properties of the final-state [2]. They have been

essential in tuning the parton showers and non-perturbative components of Monte Carlo

event generators [3–7] and have also provided a laboratory for developing and testing

analytical insight into the hadronisation process (e.g. refs. [8–19] and the reviews [20,

21]). From a technical point of view, the development of resummations and fixed-order

calculations has benefited from comparisons of predictions for event-shape distributions

obtained with both kinds of methods [22–29]. Additionally, they are one of the several

tools that are used for classifying hadronic final states in new physics searches.

The majority of investigations of event shapes has been performed for e+e− colliders,

with significant work also in DIS. A review of some of that work is given in [30]. In

contrast, few dedicated studies have been performed on them at hadron colliders, with a

handful of measurements at the Tevatron [31–33], a pure fixed order study [34, 35], pure

resummations in [36–38], and a recent experimental simulation study by CMS [39], as well

as some investigation of the use of event shapes applied to jet contents for the identification

of hadronic decays of boosted massive particles [40–42] (other approaches are reviewed e.g.

in ref. [43]). The purpose of this article is to help bring our understanding of hadron-

collider event-shape phenomenology closer to the level of sophistication that is standard

in the e+e− and DIS cases, concentrating specifically on event shapes in hard QCD (dijet)

events.

As is well known from the e+e− and DIS cases, accurate studies of event shapes

involve the simultaneous use of two kinds of calculation. Fixed-order calculations provide

expansions of event-shape distributions in powers of the strong coupling, αs. They are

available up to next-leading-order (NLO) for hadron-collider event shapes, through the

nlojet++ [34, 35] program. When the event shape has a value v ≪ 1, for each power

of αs in the distribution there can be up two powers of a large logarithm, L = ln 1/v,

associated with soft and collinear enhancements. This compromises the convergence of the

perturbative series. The enhanced terms can however be resummed to all orders, providing

the dominant contribution to the distribution for v ≪ 1. Such resummed predictions tend

to be carried out for the distribution integrated up to some value v, which generally has an

exponentiated structure exp(Lg1(αsL)+ g2(αsL)+ . . .).1 The Lg1(αsL) term gives leading

logarithmic (LL) accuracy in the exponent, g2(αsL) is next-to-leading-logarithmic (NLL),

1Not all event-shape distributions exponentiate, see e.g. [44, 45].
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etc. For suitable (recursively infrared and collinear safe, continuously global) observables,

the caesar program [45] calculates both Lg1(αsL) and g2(αsL). To obtain a reliable

prediction for an event shape distribution, one must combine both types of calculations,

via a “matching” procedure [46]. An appropriately performed matching of NLO fixed

order and NLL exponentiated resummation allows one to ensure that in the expansion of

the resummation one correctly accounts for all terms αn
s Lp, with 2n − 2 ≤ p ≤ 2n, which

is NNLL in the expansion. While NLO+NLL with NNLL in the expansion is the state-of-

the-art for generic e+e− and DIS event shapes,2 matching of this kind had not so far been

achieved for hadron-collider event shapes.

Our study here will give NLL+NLO predictions for event shape distributions both at

Tevatron (pp̄,
√

s = 1.96 TeV) and at the LHC (pp,
√

s = 14 TeV). We start in section 2

by recalling the definitions of three classes of continuously global event shapes for hadron

colliders,3 addressing also the question of event shapes defined in terms of jets rather than

particles. In section 3 we describe the structure of the perturbative resummation as well

as its matching to the NLO result. We also discuss possible general event-shape resum-

mation issues associated with “super-leading” logarithms [53, 54]. In section 4 we present

our results for matched distributions, paying particular attention to the issue of theoreti-

cal uncertainties. We also compare our results to those obtained with parton-level shower

Monte Carlo event generators, in some cases also matched to exact multi-parton tree-level

matrix elements. In section 5 we briefly discuss the impact of non-perturbative effects,

the hadronisation and the underlying event. Finally, switching to more phenomenological

questions, in section 6 we compare various event shapes’ ability to distinguish character-

istically different event topologies, and examine their robustness in such tasks, both with

respect to parton showering and to the orientation of the final state event. Our results

are summarised in section 7. Some technical details are collected in appendices A and B.

Many further additional plots can be obtained from the URL [55].

2 Event-shape definitions at hadron colliders

In this article, we shall consider observables that measure the extent to which an event’s

energy flow departs from a dijet structure. The lowest-order contribution to a dijet event

consists of just two incoming and two outgoing partons. Throughout the paper we refer to

these QCD configurations as the “Born limit”. Many of the event shapes studied here were

presented for the first time in [37]. All share the property of continuous globalness [45, 56],

2 For specific observables, higher logarithmic and/or fixed-order accuracies have been reached. This is

e.g. the case with NNLL accuracy in the exponent for the e+e− energy-energy correlation [47], NNNLL

for the thrust distribution in e+e− [28] and NNLL for the Higgs or vector boson transverse momentum

spectrum at hadron colliders [48, 49]. Additionally NNLO accuracy has been achieved for a range of e+e−

event shapes [27], with NNLO+NLL matching in [50] and NNLO+NNNLL in [28].
3 For non-global observables [23, 24], those sensitive to emissions only in a restricted phase space region,

the angular-ordered branching underlying caesar’s resummations does not account for all NLL effects.

Additional soft, large-angle contributions have to be resummed, which is currently possible only in the

large-Nc limit [23, 24, 51] (though see also [52]). This is the reason why, in this work, we consider only the

(continuously) global case.

– 3 –



J
H
E
P
0
6
(
2
0
1
0
)
0
3
8

which is currently a necessary condition for being able to carry out a resummation to NLL

accuracy without a leading-NC approximation, and which also contributes to the simplicity

of caesar’s generalised resummation approach (independently of the question of large-NC

approximations). For an observable to be continuously global, it has to be sensitive to

all emissions in an event (this is the requirement of globalness), and moreover it should

have definite scaling properties with respect to secondary emission’s transverse momenta

(see section 3.1.1 for a mathematical formulation). The continuously global event shapes

we propose fall into three main classes: observables that are directly global, others that

are supplemented with “exponentially suppressed forward terms” and observables with

“recoil terms”.

2.1 Directly global observables

We first consider observables that are defined in terms of all hadrons in the event, therefore

the name ‘directly’ global. The global transverse thrust is defined as

T⊥,g ≡ max
~nT

∑

i |~q⊥i · ~nT |
∑

i q⊥i
, (2.1)

where the sum runs over all particles qi in the final state, ~q⊥i represents the two momentum

components transverse to the beam, q⊥i its modulus, and ~nT is the transverse vector that

maximises the sum. The observable which is resummed is then τ⊥,g ≡ 1 − T⊥,g, which

vanishes in the Born limit. The normalization of event shape observables to a hard trans-

verse scale of the event is important because it reduces uncertainties associated with the

experimental jet-energy scale, which partially cancel between numerator and denomina-

tor [57]. For most event shapes (except τ⊥,g) the choice of specific hard scale to which one

normalises is arbitrary, and could for example also be the sum of the transverse momenta

of the two hardest jets.

The transverse thrust axis ~nT and the beam form the so-called event plane. One can

then define a directly global thrust minor, which is a measure of the out-of-event-plane

energy flow

Tm,g ≡
∑

i |~q⊥i × ~nT |
∑

i q⊥i
. (2.2)

In close analogy with the e+e− case [58], one can formulate a transverse spherocity:

Sphero

⊥,g ≡ π2

4
min

~n=(nx,ny,0)

(∑

i |~q⊥,i × ~n|
∑

i q⊥i

)2

(2.3)

where the minimisation is carried over all possible unit transverse 2-vectors ~n.4 This vari-

able ranges from 0 for pencil-like events, to a maximum of 1 for circularly symmetric events.

An alternative observable, which makes use of a linearised version of the transverse

momentum tensor (with direct analogy to the C and D parameters [59, 60] used in e+e−),

4Numerically, the minimisation is simplified by the observation (based on extensive numerical tests) that

the ~n that provides the minimal sum always coincides with the transverse direction of one of the ~qi.

– 4 –



J
H
E
P
0
6
(
2
0
1
0
)
0
3
8

is the F -parameter:

M lin =
∑

i

1

q⊥i

(

q2
xi qxiqyi

qxiqyi q2
yi

)

, Fg ≡ λ2

λ1
(2.4)

where λ1 ≥ λ2 are the two eigenvalues of M lin . Related variables have been considered in

the plane transverse to the thrust axis in e+e− (resummed for 3-jet events in [61, 62]) and

in the plane transverse to a jet in the context of boosted top-quark decays [40–42], where

forms involving the determinant of M lin , e.g. 4λ1λ2/(λ1 + λ2)
2 = 4F/(1 + F )2, have been

used. There is a one-to-one mapping between different forms, and we have chosen eq. (2.4)

because it gives clearer separation between different kinematic regions.

Finally, we consider the exclusive variant of the kt-algorithm [63] (closely related to

the inclusive variant [64] as adopted for Run II of the Tevatron [65] and expected to be

used also at the LHC)

1. One defines, for all n final-state (pseudo)particles still in the event,

dkB = q2
⊥k , (2.5)

and for each pair of final state particles

dkl = min{q2
⊥k, q

2
⊥l}

(yk − yl)
2 + (φk − φl)

2

R2
, (2.6)

where yi = 1
2 ln Ei+pzi

Ei−pzi
is the rapidity of particle i and φi its azimuthal angle. The

jet-radius parameter R sets the angular reach of the jet algorithm. Throughout this

paper, we will take R = 0.7.

2. One determines the minimum over k and l of the dkl and the dkB and calls it d(n). If

the smallest value is diB then particle qi is included in the beam and eliminated from

the final state particles. If the smallest value is dij then particles qi and qj are recom-

bined into a pseudoparticle (jet). A number of recombination procedures exist. We

adopt the E-scheme, in which the particle four-momenta are simply added together,

qij = qi + qj . (2.7)

3. The procedure is repeated until only 3 pseudoparticles are left in the final state.

The observable we resum is the directly global three-jet resolution parameter

y23 =
1

P 2
⊥

max
n≥3

{d(n)} , (2.8)

where P⊥ is defined by further clustering the event until only two jets remain and

taking P⊥ as the sum of the two jet transverse momenta,

P⊥ = p⊥,1 + p⊥,2 . (2.9)
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While directly global event-shapes are defined in terms of all particles in the event,

experimental measurements can be carried out only up to some given pseudorapidity ηmax

(ηmax ∼ 3.5 at the Tevatron and ηmax ∼ 5 at the LHC). However, as long as the event-

shape’s value v is not too small [36], v > vmin, one can safely neglect the contribution

of hadrons beyond the rapidity cut. The value vmin up to which a NLL resummation is

valid is observable specific. In particular, it depends on the behaviour of each event shape

under a soft and collinear emission, as derived in [36, 37]. Further discussion is given in

appendix B.

2.2 Observables with exponentially suppressed forward terms

One way to address the difficulty in performing measurements near the beam is to de-

fine event-shapes using only particles in a central region and to add a term sensitive to

emissions along the beam direction, so as to render them (continuously) global, but with

an exponential suppression in the forward or backward directions. We define the central

region C by requiring that the rapidity of particles in C satisfies |ηi| < ηc = yj,max + δη,

where yj,max specifies the rapidity region in which the two highest pt jets should lie, and

δη is a rapidity buffer around the jets of size ∼ 1.

Given the central region C, we introduce the mean transverse-energy weighted rapidity

ηC of this region,

ηC =
1

Q⊥,C

∑

i∈C

ηi q⊥i , Q⊥,C =
∑

i∈C

q⊥i , (2.10)

and define the exponentially suppressed (boost-invariant) forward term as

EC̄ =
1

Q⊥,C

∑

i/∈C

q⊥i e
−|ηi−ηC | . (2.11)

We can then define non-global variants of the event-shapes defined in section 2.1 by restrict-

ing the sums to just the central region. For example, we have a central transverse thrust,

T⊥,C ≡ max
~nT,C

∑

i∈C |~q⊥i · ~nT,C |
Q⊥,C

, τ⊥,C ≡ 1 − T⊥,C , (2.12)

a central thrust minor

Tm,C ≡ 1

Q⊥,C

∑

i∈C

|qxi| , (2.13)

and a central three-jet resolution threshold, y23,C defined by the algorithm of section 2.1 ap-

plied only to the final state particles in C (but maintaining the “beam” distance, eq. (2.5)).

Finally, we define “exponentially suppressed” variants of the event-shapes of section 2.1

by adding to the central event-shapes a power of EC̄ which makes the event-shape contin-

uously global [37]. We obtain the exponentially suppressed transverse thrust, thrust minor

and three-jet resolution,

τ⊥,E ≡ τ⊥,C + EC̄ , (2.14)

Tm,E = Tm,C + EC̄ , (2.15)

y23,E ≡ y23,C + E2
C̄ . (2.16)

– 6 –
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Additionally, one can consider event-shapes which are more naturally defined using

particles only in a restricted region, like jet-masses and broadenings. Given a central

transverse thrust axis ~nT,C, one can separate the central region C into an up part CU

consisting of all particles in C with ~p⊥ · ~nT,C > 0 and a down part CD with ~p⊥ · ~nT,C < 0

respectively. One then defines, in analogy with e+e− [66–68], the normalised squared

invariant masses of the two regions

ρX,C ≡ 1

Q2
⊥,C





∑

i∈CX

qi





2

, X = U,D , (2.17)

from which one can obtain a (non-global) central total and heavy-jet mass,

ρT,C ≡ ρU,C + ρD,C , ρH,C ≡ max{ρU,C , ρD,C} , (2.18)

and the corresponding global event-shapes, the exponentially-suppressed total and heavy-jet

mass

ρT,E ≡ ρT,C + EC̄ , ρH,E ≡ ρH,C + EC̄ . (2.19)

With the same division into up and down regions as for the jet masses, one can define

jet broadenings. To do so in a boost-invariant manner, one first introduces rapidities and

azimuthal angles of axes for the up and down regions,

ηX,C ≡
∑

i∈CX
q⊥iηi

∑

i∈CX
q⊥i

, φX,C ≡
∑

i∈CX
q⊥iφi

∑

i∈CX
q⊥i

, X = U,D , (2.20)

and defines broadenings for the two regions,

BX,C ≡ 1

2Q⊥,C

∑

i∈CX

q⊥i

√

(ηi − ηX,C)2 + (φi − φX,C)2 , X = U,D , (2.21)

from which one can obtain central total and wide-jet broadenings,

BT,C ≡ BU,C + BD,C , BW,C ≡ max{BU,C , BD,C} . (2.22)

Adding the forward term one obtains the global exponentially-suppressed total and wide-jet

broadenings,

BT,E ≡ BT,C + EC̄ , BW,E ≡ BW,C + EC̄ . (2.23)

We note that an observable that effectively has exponentially suppressed forward behaviour

has also been studied in [38].

2.3 Observables with recoil term (indirectly global observables)

Because of transverse momentum conservation, if radiation is emitted in the forward region

C̄, recoil effects will cause the vector sum of the transverse momenta in the complementary,

central region C to be non-vanishing. It is then possible to exploit this effect to make

observables (continuously) global, despite the fact that only a central subset of particles

in the event effectively enters the definition of the event shapes. To do so, we add to the

– 7 –
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central event-shapes a suitable power of a recoil term, the two-dimensional vector sum of

the transverse momenta in C,

R⊥,C ≡ 1

Q⊥,C

∣

∣

∣

∣

∣

∑

i∈C

~q⊥i

∣

∣

∣

∣

∣

, (2.24)

We obtain than recoil enhanced transverse thrust, thrust minor, three-jet resolution,

total and heavy-jet masses, total and wide broadenings

τ⊥,R ≡ τ⊥,C + R⊥,C , (2.25a)

Tm,R ≡ Tm,C + R⊥,C , (2.25b)

y23,R ≡ y23,C + R2
⊥,C , (2.25c)

ρT,R ≡ ρT,C + R⊥,C , ρH,R ≡ ρH,C + R⊥,C , (2.25d)

BT,R ≡ BT,C + R⊥,C , BW,R ≡ BW,C + R⊥,C . (2.25e)

The resummation of these observables is not as straightforward as for those of sections 2.1

and 2.2, as we shall discuss in more detail at the end of section 3.1.2.

2.4 Particles versus jets as inputs

The event shapes discussed so far have all been defined in terms of the particles in the

event. The experiments don’t measure particles directly. They do, however, have methods

such as the combination of information from electromagnetic and hadronic calorimeters

into “Topoclusters” (ATLAS [69]) and, with tracking, “particle flow” (CMS [70]), that

provide inputs to jet algorithms that are quite close to particles. These same inputs would

probably also be well suited to event-shape studies.

In uses of event shapes to cut on event topology in beyond-standard-model searches,

as well as in the study of ref. [39], it is not particles but instead jets that have been used

as inputs. The jets are usually defined through an angular resolution parameter R (as

in eq. (2.6)) and a transverse momentum cutoff, which we will denote pt0. One of the

interests of using jets is that the pt0 cutoff eliminates much of the contamination from the

underlying event, which can easily contribute O (100 GeV) of transverse momentum to the

rapidity region covered by LHC detectors.

From the point of view of resummation, the use of jets as inputs poses two main

problems. One comes from the presence of the new scale pt0 in the problem: in terms

of the parameters a and b1,2 defining the event-shape’s sensitivity to radiation along the

incoming legs (cf. table 1 and section 3.1.1), this new scale causes separate regions of

event shape value to each involve different logarithmic structure: for cases with b1,2 > 0

the potentially different regions are v ≫ (pt0/Q)a, (pt0/Q)a ≫ v ≫ (pt0/Q)a+b1,2 and

v ≪ (pt0/Q)a+b1,2 . The first of these regions may be within the scope of caesar if pt0/Q

is sufficiently small.

A second problem is that of (continuous) globalness. Emissions collinear to any outgo-

ing hard parton will be clustered together with its emitter to form a jet. The observable’s

sensitivity to these emissions will then depend on the jet recombination scheme. In the

– 8 –
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E-scheme, the current default at the Tevatron and LHC, the jet four-momentum is con-

structed by simply adding the four momenta of its constituents. Therefore, all observables

defined using transverse momenta will get no sensitivity to emissions inside each of the two

hard jets, and will therefore be non-global. This statement is true for any recombination

scheme that adds three-momenta vectorially. As an example consider the directly global

transverse thrust in a 2 → 2 event. This event has two back-to-back jets and τ⊥,g = 0.

Now allow for a soft or collinear emission such that it gets clustered into one of the two

hard jets. In the E-scheme, that jet’s new momentum is the sum of the momenta of its

two constituents. By momentum conservation, the two jets will therefore still be back-to-

back and τ⊥,g will remain zero. This means that the observable with jets as an input is

insensitive to emissions in some parts of phase space and so non-global.

For variables with sensitivity to longitudinal degrees of freedom, globalness can only be

assessed on a case by case basis. For instance if one considers any global version of the total

and heavy-jet mass (with exponentially suppressed or recoil term), in the E-scheme the

mass of each central hard jet will enter the hemisphere central jet mass ρX,C in eq. (2.17).

Therefore one obtains the same result for the central component of the event shape as

would have been obtained using hadrons as inputs (modulo the fact that the jet clustering

may affect which particles are considered central).

One alternative to the use of jets as inputs, in order to avoid the globalness issue, is

the following: use as inputs the particles that are inside the two hardest jets, together with

all the remaining jet momenta. Note that this does not eliminate the issue of the extra

scales related to pt0, though it does maintain the reduced sensitivity to underlying event

that comes from the use of jets.

3 Structure of the perturbative calculation

Typically one wishes to consider event shapes only for events that are sufficiently hard,

requiring for example at least one jet above some minimum transverse momentum threshold

pt,min and in some central rapidity region. We will denote this kind of hardness selection

cut by a function H(q1, . . . , qN ) of the N particles in the event; H(q1, . . . , qN ) is equal to

1 for events that pass the cuts and 0 otherwise. One can then define the cross section for

events that pass the cuts,

σ =
∑

N

∫

dΦN
dσN

dΦN
H(q1, . . . , qN ) , (3.1)

where dσN/dΦN is the differential cross section for producing N particles in some config-

uration ΦN . One can determine σ perturbatively as long as H corresponds to an infrared

and collinear (IRC) safe selection procedure.

One also defines the partial integrated cross section Σ(v) for events that pass the cut

and for which additionally the event shape observable V (q1, . . . , qN ) is smaller than some

value v,

Σ(v) =
∑

N

∫

dΦN
dσN

dΦN
Θ(v − V (q1, . . . , qN ))H(q1, . . . , qN ) . (3.2)

– 9 –
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The differential normalised distribution for the event shape is then given by

1

σ

dΣ(v)

dv
. (3.3)

Perturbatively we will write σ and Σ(v) as expansions in the number of powers of the

coupling that they contain,

σ = σ0 + σ1 + σ2 + . . . (3.4)

where σ0 is the leading order (LO) result, σ1 the NLO result, etc.; σi is proportional to

α2+i
s . We have chosen not to extract the powers of αs from the σi coefficients, because the

scale of αs may depend on the kinematics of the events over which one has integrated.

The expansion for Σ(v) is similar

Σ(v) = Σ0(v) + Σ1(v) + Σ2(v) + . . . , (3.5)

with the property that Σ0(v) ≡ σ0 because the observable vanishes at O
(

α2
s

)

. Σ1(v) looks

like a NLO term in eq. (3.5), but it is usually determined from the LO α3
s term for the

differential cross section of v,

Σ1(v) = σ1 + Σ̄1(v), Σ̄1(v) = −
∫

v
dv′

dΣ1(v
′)

dv′
. (3.6)

The quantity Σ̄2(v) is similarly determined from the NLO term of the differential cross

section of v. In the following we shall never use explicitly Σ2, since σ2, the NNLO correction

to the dijet cross section, has yet to be calculated and since its effect would lead to terms

that are beyond our accuracy in differential distributions.

3.1 Resummation

Resummations are relevant in the region of small v, where logarithmically enhanced con-

tributions of soft and collinear origin, as large as (αs ln2 v)n, appear at all orders in the

integrated cross section Σ(v), thus making fixed-order predictions unreliable. There is a

large class of observables for which one can write a common “master” resummation for-

mula, as was done in [45], in order to sum such terms to all orders in αs. In this section

we will first examine what the class of observables is, and then review the broad structure

of the resummation.

3.1.1 Prerequisites for resummation with caesar

In order for an observable to be resummed within the caesar framework, its functional

behaviour in the presence of an arbitrary number of soft and/or collinear emissions has

to satisfy a number of conditions. These have been extensively discussed in [45], and are

checked automatically by caesar given a computer subroutine that computes the value of

an observable given a set of four-momenta. The conditions are:

1. a specific functional form for the observable’s dependence V ({p̃}, k) on the momentum

of a single soft emission k, collinear to one of the hard “Born” partons (“legs”) in

the event:

V ({p̃}, k) = dℓ

(

k
(ℓ)
t

Q

)aℓ

e−bℓη
(ℓ)

gℓ(φ) , (3.7)
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where {p̃} denote the Born momenta (including recoil effects) and k is the soft

collinear emission; k
(ℓ)
t and η(ℓ) denote respectively its transverse momentum and

rapidity, as measured with respect to the Born parton (‘leg’) labelled ℓ; φ is the

azimuthal angle of the emission with respect to a suitably defined event plane (when

relevant); g(φ) can be any function for which
∫

dφ ln g(φ) is well defined; Q is a hard

scale of the problem (taken here to be the sum of the transverse momenta of the two

hardest jets).

2. continuous globalness [23, 24, 71], a requirement on the observable’s single-emission

scaling properties in every region of the phase space. First, all the aℓ have to be equal,

a1 = a2 = . . . ≡ a, and the dℓ have to be all non-zero. Second, the observable’s scaling

at the boundaries of the soft collinear region has to be consistent with eq. (3.7), i.e. in

the soft large-angle region we require V ({p̃}, k) ∼ ka
t for a fixed angle of k, whilst for

hard emission collinear to leg ℓ we must have V ({p̃}, k) ∼ ka+bℓ
t at fixed energy for

k.

3. recursive infrared and collinear safety, a subtle mathematical condition (see [45] for

its precise formulation) concerning the observable’s scaling in the presence of multiple

soft/collinear emissions.

Table 1 summarises the values of the coefficients aℓ and bℓ for the event shapes presented in

section 2. We stress that central observables, like the central transverse thrust eq. (2.12),

defined using only hadron momenta in a selected rapidity interval, tend to have d1,2 = 0,

and therefore be non-global. The exponentially-suppressed term EC̄ in eq. (2.11) or the

recoil term R⊥,C in eq. (2.24), as explained in sections 2.2 and 2.3, are added to central

event shapes precisely so as to make them continuously global. The different powers of

EC̄ and R⊥,C that appear in the definition of these modified event shapes (see for instance

eqs. (2.14) and (2.16)) are chosen so as to ensure their continuous globalness. This can be

seen by observing that, for each event shape, the coefficients aℓ corresponding to different

legs are equal. The above discussion holds for most observables but there may be excep-

tions. For example, the central variant of the thrust-minor Tm,C is actually a continuously

global observable because of an indirect sensitivity to non-central emissions due to recoil.

This is the reason why the b1,2 coefficients for Tm,E are not those that usually appear for

observables with exponentially-suppressed components, but are rather those typical of a

(linear) recoil term.

Recursive infrared and collinear (rIRC) safety, a detailed discussion of which is beyond

the scope of the present paper, is trivially satisfied for all observables that we discuss here.

3.1.2 NLL resummation structure

For global observables, in events with v ≪ 1, it is possible, unambiguously, to associate the

event kinematics with that of a 2 → 2 (Born) event. This is because the requirement v ≪ 1

forces all radiation to be either soft or collinear. At perturbative level it is also possible to

unambiguously attribute a partonic subprocess to the event, for example qq → qq (doing

so requires a flavour infrared and collinear safe procedure, as in [72], but the result is
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a1,2 b1,2 a3,4 b3,4

τ⊥,g 1 0 1 1

τ⊥,E 1 1 1 1

τ⊥,R 1 1 1 0

Tm,g 1 0 1 0

Tm,E 1 0 1 0

Tm,R 1 0 1 0

y23 2 0 2 0

y23,E 2 2 2 0

y23,R 2 0 2 0

BT/W,E 1 1 1 0

BT/W,R 1 0 1 0

ρT/H,E 1 1 1 1

ρT/H,R 1 0 1 1

Fg 1 0 1 1

Sphero

⊥,g 2 0 2 0

Table 1. Table of event shapes being considered here and the powers of their parametric sensitivity

to the transverse momentum (aℓ) and collinear angle (bℓ) of an emission along incoming (a1,2, b1,2)

and outgoing (a3,4, b3,4) hard partons.

independent of the choice of the procedure). Here we will use B to label the event’s 2 → 2

kinematics and δ to label its 2 → 2 flavour structure. Then we can write Σ(v) as a sum

over partonic subprocesses and an integral over Born configurations that pass the hard

event cuts,

Σ(v) =
∑

δ

Σ(δ)(v) , Σ(δ)(v) =

∫

dB dΣ(δ)(v)

dB H(B) , (v ≪ 1). (3.8)

The ambiguities in such a decomposition of Σ(v) are suppressed by powers of v.

For observables that satisfy the properties of the previous section, the result of ref. [45]

is that we can write

dΣ(δ)(v)

dB =
dσ

(δ)
0 (v)

dB f
(δ)
B (v)(1 + O (αs)) (v ≪ 1) . (3.9)

where dσ
(δ)
0 (v)/dB is the LO cross section, differential in the Born configuration, separated

into subprocesses, and understood to have been evaluated with a factorisation scale µF ∼ Q.

The function f
(δ)
B (v) encodes the resummation, and has the form [46, 73]

f
(δ)
B (v) = exp

[

Lg
(δ)
1 (αsL) + g

(δ)
2,B(αsL,µR, µF ) + O

(

αn
s Ln−1

)

]

, L = ln
1

v
, (3.10)

where αs ≡ αs(µR), with µR some renormalisation scale of order Q.
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The order-by-order expansion of f
(δ)
B (v) involves terms of the form αn

s L2n. It is because

of the property of “exponentiation” (a consequence of rIRC safety and of coherence5) that

one can write it in the form eq. (3.10), whose leading-logarithmic (LL) contribution in

the exponent, Lg
(δ)
1 (αsL), resums terms αn

s Ln+1: i.e. corrections to the first order αsL
2

term involve only powers of αsL. The function g
(δ)
2,B(αsL,µR, µF ) resums “next-to-leading

logarithmic” (NLL) terms in the exponent, αn
s Ln, also referred to sometimes as single-

logarithmic terms.

The LL function Lg
(δ)
1 (αsL) can be computed analytically given only the aℓ and bℓ

values. It is given by

Lg
(δ)
1 (αsL) = −

∑

ℓ

C
(δ)
ℓ L

2πβ0λbℓ

(

(a − 2λ) ln

(

1 − 2λ

a

)

− (a + bℓ − 2λ) ln

(

1 − 2λ

a + bℓ

))

= −
∑

ℓ

C
(δ)
ℓ

a(a + bℓ)

αsL
2

π
+ O

(

α2
sL

3
)

, (3.11)

where C
(δ)
ℓ is the colour charge (CF or CA) of hard parton ℓ for the hard-scattering subpro-

cess δ, λ = αsβ0L and β0 = (11CA−4TRnf )/(12π). Since the coefficients a ≡ a1 = a2 = . . .

and bℓ do not depend on the particular momentum configuration B of the hard partons,

g
(δ)
1 (αsL) is also independent of B. Its dependence on the subprocess arises only through

the colour charges of the incoming and outgoing partons.

The NLL function g
(δ)
2,B(αsL,µR, µF ) can be decomposed into three types of terms [45]

g
(δ)
2,B(αsL,µR, µF ) = g

(δ)
2s,B(αsL,µR) +

2
∑

ℓ=1

ln





q
(δ)
ℓ (x

(B)
ℓ , v

1
a+bℓ µF )

q
(δ)
ℓ (x

(B)
ℓ , µF )



+ lnF (δ)(R′(αsL)) ,

(3.12)

The term g2s(αsL) accounts for NLL corrections associated with the event kinematics, the

particular values of the dℓ and gℓ(φ) coefficients in eq. (3.7), the choice of renormalisation

scale and scheme used in αs in g1(αsL), as well as the non-trivial colour evolution of

large-angle soft virtual gluon resummation [74–79].

The second term on the right-hand side (r.h.s. ) of eq. (3.12) involves parton distri-

bution functions (PDF) for the parton flavours in the initial state of the given subpro-

cess, q
(δ)
ℓ (x

(B)
ℓ , µF ), at a longitudinal momentum fraction x

(B)
ℓ for each leg that depends

on the Born kinematics. This term arises because the PDFs in dσ
(δ)
0 /dB in eq. (3.9) were

evaluated at a factorisation scale µF ∼ Q. The presence of a PDF at scale µF ∼ Q

implies that one integrates over all possible incoming collinear emissions, up to kt ∼ Q.

However the requirement that the event shape be small, V (k) . v, restricts collinear

emissions to have kt . v1/(a+bℓ)Q. Thus the PDFs should actually be evaluated at a fac-

torisation scale ∼ v1/(a+bℓ)Q ∼ v1/(a+bℓ)µF (such a result was first obtained for di-hadron

correlations [80–83] and has been most extensively discussed in the context of Drell-Yan

transverse-momentum resummations, e.g. [73]). The ratio of PDFs in eq. (3.12) serves to

5The validity of coherence is brought into question by the findings of refs. [53, 54] and we discuss the

possible implications of this in section 3.3.
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replace q
(δ)
ℓ (x

(B)
ℓ , µF ) as used in the Born cross section with a PDF at the correct factori-

sation scale.

The third term on the r.h.s. of eq. (3.12) accounts for the NLL corrections associated

with the presence of multiple soft and collinear emissions, when each has V (k) ∼ v and

they are all widely separated in rapidity. It is a function of

R′(αsL) ≡ − ∂LLg1(αsL) , (3.13)

and is known analytically for some observables (e.g. τ⊥,g), while in all other cases cae-

sar can compute it numerically via a suitable Monte Carlo procedure. F (δ)(R′) sometimes

depends on the underlying scattering channel δ, but not (for the observables studied here)

on the hard momentum configuration.

The behaviour of F(R′) with increasing R′ (decreasing v) is a characteristic feature of

each event shape. It depends on whether multiple emissions tend to increase or decrease

the value of the event shape. In the first case, for a fixed value v, F(R′) has to account

for an extra suppression of emissions so as to keep the event shape’s value less than v, i.e.

F(R′) < 1. For the special case of V (k1, k2, . . .) = max(V (k1), V (k2), . . .) then F(R′) ≡ 1

(for example the y23 jet resolution threshold [25] in the e+e− Cambridge jet algorithm [84]).

Conversely if the contributions of multiple emissions tend to cancel, the function F(R′)

has to compensate the excessive suppression given by the LL function Lg1(αsL), therefore

F(R′) > 1.

This last case appears most dramatically when it is a cancellation between multiple

emissions, and not a direct veto on real emissions, that is the dominant effect that keeps the

event shape small. In this case the LL function Lg1(αsL) (whose functional form depends

only on the effect of single emission) no longer accounts for the dominant contribution to

the distribution. Furthermore, no NLL function such as F(R′) can fully compensate for

this. This inconsistency reveals itself through a divergence of F(R′) at a given critical value

R′
c, which can be inferred from considerations on the cancellation mechanism, as explained

in refs. [37, 45]. Such a divergence is present, for example, for Tm,C and Tm,E and occurs at

R′
c = CT /(C1 + C2), where C1 and C2 are the colour charges of incoming partons and CT

the total colour charge of the hard parton system. It will prevent us from obtaining sensible

NLL resummed results for these observables. In the case of recoil observables there is also

a divergence, but at larger R′
c (smaller v), for example at R′

c = 2CT /(C1 + C2) for Tm,R

and BT/W,R. The effect on the corresponding differential distributions will be discussed

when presenting matched results.

3.1.3 NNLLΣ accuracy

As well as discussing the LL, NLL, etc. accuracy of resummation in the exponent of

eq. (3.10), one can also discuss the accuracy in the order by order expansion of Σ itself.

In this way of counting logarithms, “LLΣ” terms involve powers αn
s L2n, NLLΣ involve

αn
s L2n−1, etc. A NLL resummation in the exponent automatically guarantees NLLΣ ac-

curacy. However it is also possible (if not entirely straightforward), given the information

at our disposal, to obtain NNLLΣ accuracy. To see how, observe that the terms that we
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neglect in eqs. (3.9) and (3.10) are an overall αs correction without logarithms, as well as

terms αn
s Ln−1 in the exponent, starting at α2

sL. The latter, if they multiply αn
s L2n when

expanding the exponent, lead at most to αn+2
s L2n+1 ∼ αn

s L2n−3, i.e. they are NNNLLΣ.

We can therefore ignore them. As for the overall αs correction, when multiplied by the

double logarithms, it gives us terms αn+1
s L2n ∼ αn

s L2n−2, which are NNLLΣ and therefore

cannot be neglected. This means that we need to determine the coefficient of the pure

O (αs) term.

To do so, let us define the NLL resummed cross section as

dΣ
(δ)
r (v)

dB ≡ dσ
(δ)
0 (v)

dB f
(δ)
NLL,B(v) . (3.14)

with f
(δ)
NLL,B(v) containing only the LL and NLL resummation terms,

f
(δ)
NLL,B(v) ≡ exp

[

Lg
(δ)
1 (αsL) + g

(δ)
2,B(αsL,µR, µF )

]

. (3.15)

Then we can determine the coefficient C
(δ)
1,B in terms of the first order expansion of the

exact and resummed distributions, and in particular their difference as v → 0,

αsC
(δ)
1,B ≡ lim

v→0

(

dΣ
(δ)
1 (v)

dB −
dΣ

(δ)
r,1(v)

dB

)/

dσ
(δ)
0

dB . (3.16)

The C
(δ)
1,B constant involves many contributions, including parts that cancel the µR and

µF dependence present in the Born cross section, parts that are sensitive the observable’s

exact behaviour with respect to soft large-angle emission and hard collinear splitting and

parts related to the exact structure of the 1-loop 2 → 2 scattering diagram.

Now we can write the NNLLΣ resummed distribution as

dΣ
(δ)
r (v)

dB (1 + αsC
(δ)
1,B) . (3.17)

The fact that we may multiply (1 + αsC
(δ)
1,B) and dΣ

(δ)
r (v)
dB in order to get NNLLΣ accuracy

is a consequence of the property that soft-collinear virtual corrections, which give powers

of αsL
2, affect neither the flavour, the momentum nor the colour involved in the hard

scattering or the PDFs and therefore straightforwardly multiply all the more complicated

contributions that are present in C
(δ)
1,B.

In practice, it is not feasible to (numerically) determine the exact first order distri-

bution for v fully differentially in the Born configurations. Considering instead quantities

Σ(δ)(v), Σ
(δ)
r (v) (and their order-by-order expansions), integrated over configurations that

pass the event cuts, as in eq. (3.8), one can define a C
(δ)
1 coefficient averaged over Born

momentum configurations,

〈αsC
(δ)
1 〉 ≡ lim

v→0

Σ
(δ)
1 (v) − Σ

(δ)
r,1(v)

σ
(δ)
0

=
1

σ
(δ)
0

∫

dBdσ
(δ)
0

dB αsC
(δ)
1,B . (3.18)
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Writing

(1 + 〈αsC
(δ)
1 〉)Σ(δ)

r (v) , (3.19)

gives a distribution that is still correct to NNLLΣ accuracy, because the LL,

exp(Lg
(δ)
1 (αsL)), component of Σ

(δ)
r (v) is independent of the momentum configuration.

In contrast, if one considers C1 averaged additionally over subprocesses

〈αsC1〉 ≡ lim
v→0

Σ1(v) − Σr,1(v)

σ0
=

1

σ0

∑

δ

〈αsC
(δ)
1 〉σ(δ)

0 , (3.20)

then

(1 + 〈αsC1〉)Σr(v) , (3.21)

is not accurate to NNLLΣ, because

∑

δ

〈αsC
(δ)
1 〉σ(δ)

0 exp(Lg
(δ)
1 (αsL)) 6=

(

1

σ0

∑

δ

〈αsC
(δ)
1 〉σ(δ)

0

)(

∑

δ

σ
(δ)
0 exp(Lg

(δ)
1 (αsL))

)

,

(3.22)

since the coefficient of the double logarithms in Lg
(δ)
1 (αsL) does depend on the subprocess,

through the colour charges of the hard partons.

3.2 Matching of NLL to NLO

While the resummation of logarithms is necessary in the region where event-shape values

are small and their logarithms large, the region of large values of V is dominated by events

with three or more well separated jets. Those types of events are described more reliably by

fixed order calculations. It has therefore become standard to match resummed calculations

to next-to-leading order (NLO) to have a reliable prediction over a larger range of values

of V . In this section we will present the formulae we use to perform the matching.

In the following we will denote with f(v) = Σ(v)/σ the integrated event-shape fraction,

where Σ(v) and σ are defined in eqs. (3.2) and (3.1) respectively. After a NLL+NLO

matching this quantity should satisfy the following requirements

1. it should respect the physical constraints that, when the event shape reaches its

maximum value vmax, we have f(vmax) = 1 exactly and df(v)
dv

∣

∣

v=vmax
= 0;

2. its expansion up to relative O
(

α2
s

)

should reproduce the exact NLO result for the

corresponding differential distribution;

3. one should obtain NNLLΣ accuracy, i.e. all logarithms O (αn
s Lm) with m ≥ 2n − 2

should be correctly accounted for, which implies that the matching formula should

reduce to eq. (3.19) in the limit of small v. Preferably this should be the case without

having to go through the tedious procedure of manually determining C
(δ)
1 separately

for each event shape.

There are various matching procedures that satisfy these requirements and therefore for-

mally have the same accuracy. We consider here the so-called log-R [46] and multiplica-

tive [56] matching schemes, adapted to hadron-hadron collisions. In particular both need
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to be modified in accordance with the need, section 3.1.3, to have the O (αs) constant C
(δ)
1

term multiply the resummation separately for each subprocess. Actually, what matters is

not so much the subprocess but the colour charges of the incoming and the outgoing Born

partons. Therefore we can consider all subprocesses qq → qq, qq′ → qq′, qq̄ → qq̄, etc., with

the same incoming and the same outgoing colour charges as belonging to a single colour

channel a = qq → qq. The other colour channels are qg → qg, qq̄ → gg, gg → qq̄ and

gg → gg.6

We denote by Σ
(a)
r,i (V ) the expansion of the resummed cross section corresponding to a

specific colour channel and by Σ
(a)
i (V ) the corresponding exact fixed order prediction. In

analogy with eq. (3.8), where the index a is omitted a sum over all possible colour channels

is understood. The index i denotes the order in αs of the expansion (relative to the Born

cross section).

We have obtained fixed order cross-sections using the code nlojet++ [34, 35]. The

publicly available version computes cross-sections summed over the flavour of outgoing

partons. We therefore extended it so as to have access to the flavour of both incoming

and outgoing partons in the calculation of σ0, σ1 and Σ1(v), though not for Σ̄2(v) since

its colour-channel separation is not needed for NNLLΣ accuracy. To assign events with

more than two outgoing partons to a definite 2 → 2 colour channel we used the exclusive

flavour-kt algorithm of [72] to cluster events to a 2 → 2 topology while keeping track of

flavour in an infrared safe manner. During the clustering procedure, quarks of different

flavour might end up in the same jet, giving rise to multi-flavoured jets, i.e. jets whose

flavour does not correspond to any QCD parton. These events, which do not correspond to

any Born 2 → 2 processes and have vanishing weights for v → 0, will be labelled as having

a = other.

The matching equations are defined in terms of the following resummed distribution

(and its fixed order expansions Σ̃
(a)
r,1 (v), Σ̃

(a)
r,2 (v)),

Σ̃(a)
r (v) =

∑

δ∈a

∫

dB dσ
(δ)
0

dB H(p3, p4) f̃
(δ)
B (v) , (3.23)

where f̃
(δ)
B (v) is the resummed probability f

(δ)
B (v) (eq. (3.15)) with L replaced by [46, 56]

L̃ ≡ 1

p
ln

((

1

xV v

)p

−
(

1

xV vmax

)p

+ 1

)

, xV = X · XV , (3.24)

where vmax is the maximum kinematically allowed value of the event shape, so that L̃(v =

vmax) = 0. We take the values of vmax from the NLO calculation, which is sensible since

we want the differential distributions to reproduce the NLO result at high v. The factors

xV and p modify the definition of the logarithm that one is resumming. The main effect of

6 We study here only observables whose double logarithms depend only on the total colour charge of

the two incoming and two outgoing partons, so that we do not to distinguish incoming partons 1 and 2 (or

outgoing partons 3 and 4). This means that for the matching only the colour structure is relevant, therefore

this colour labelling does not distinguish quarks from anti-quarks or quarks of different flavour. A given

colour channel a is then in general a sum over multiple partonic channels δ.
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xV is to modify the logarithm at small values of V , and it will therefore affect subleading

logarithmic terms (the change at NLL is cancelled via a suitable compensatory term in

g2(αsL)). The main effect of p on the contrary is to modify L at large values of V , it will

therefore mainly affect power suppressed terms. Our default values for xV , XV are given

by (see appendix A of ref. [37]) are fixed by setting X = 1 and

ln XV = − 1

n

n
∑

ℓ=1

(

ln dℓ +

∫

dφ

2π
ln gℓ(φ)

)

. (3.25)

In the same way as one varies renormalization and factorization scales around a central

value by a factor of 2, we will probe the xV dependence through a variation of X in the

range 1/2 ≤ X ≤ 2. This will provide an estimate of the error associated with unknown

NNLL contributions to the resummation. In principle, one can also vary the power p

around the value 1 (as a probe of terms that are suppressed by powers of v), though for

simplicity in the following we just fix p = 1 and therefore do not include any uncertainty

related to its variation.

We now introduce the log-R matching formula

f(v) =
f̃(v)

f̃(vmax)
, (3.26)

with

f̃(v) =
1

σ0 + σ1







∑

a6=other

Σ̃(a)
r (v) exp

[

Σ
(a)
1 (v) − Σ̃

(a)
r,1 (v)

σ
(a)
0

]

×

× exp





Σ̄2(v) − Σ̃r,2(v)

σ0
− 1

σ0

∑

a6=other

(Σ
(a)
1 (v))2 − (Σ̃

(a)
r,1 (v))2

2σ
(a)
0



+ Σ
(other)
1 (v)







,

(3.27)

where Σ̄2(v) has been introduced after eq. (3.6). It is straightforward to verify that with

this matching equation f(v) satisfies all three requirements listed at the beginning of this

section.

The alternative, multiplicative matching (mod-R) scheme that we use is

f(v) =
1

σ0 + σ1







∑

a6=other

[Σ̃(a)
r (v)]Z(σ

(a)
0 )1−Z

[

1+
Σ

(a)
1 (v)−ZΣ̃

(a)
r,1 (v)

σ
(a)
0

+
Σ̄2(v)−ZΣ̃r,2(v)

σ0

− 1

σ0

∑

a′ 6=other

ZΣ̃
(a′)
r,1 (v)

Σ
(a′)
1 (v) − Z+1

2 Σ̃
(a′)
r,1 (v)

σ
(a′)
0



+ Σ
(other)
1 (v)







, (3.28)

where Z =
(

1 − v
vmax

)

. This matching equation has the same matching accuracy as

eq. (3.26), so that using both matching procedures provides an additional way of esti-

mating the uncertainty in the matched distributions.
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In both matching formulae, Σ̃r,1(v) and Σ̃r,2(v) require the calculation of the order αs

and α2
s expansions of the ratios of PDFs at different scales that appear in eq. (3.12). These

have been obtained using hoppet [85].

In the following we will present results for normalised differential distributions

1

σ

dσ(v)

dv
=

df(v)

dv
. (3.29)

Notice that two-loop corrections to σ2, currently unknown, are not needed for a second

order matching, as they do not contribute to the differential distribution within the tar-

get accuracy.

3.3 Coherence-violating (super-leading) logarithms

One of the assumptions that enters into the derivation of the generalised resummations

of [86] is “coherence” [87–91], the property that real emissions and virtual corrections at

large angles are independent of the structure of real emissions that have occurred at small

angles (with respect to any of the incoming and outgoing legs). Physically this can be

understood as arising because a large-angle emission (or virtual correction) sees only the

sum of colour charges of a bunch of collinear partons and that sum of colour charges is

conserved under collinear splitting.7

The assumption of coherence is challenged by the results of ref. [53, 54], which found

“super-leading logarithms” (SLL), terms that go as α4
sL

5, when calculating the probabil-

ity of there being no soft radiation (above scale Qe−L) in a finite patch of rapidity and

azimuth. Based on coherence, one would have expected only terms αn
s Lm with m ≤ n

for such an observable. Therefore, one might also call the terms of [53, 54] “coherence-

violating logarithms” (CVL), a name that is suitable also in the case of observables whose

leading-logarithmic structure involves double logarithmic terms αn
s L2n (for which α4

sL
5 is

not super-leading).

The interpretation of the result in ref. [53, 54] is that one specific class of (soft) single

logarithmic virtual correction, “Coulomb-gluon exchange,” can be affected by small-angle

(collinear) initial-state gluon emission, independently of how small that angle is. This is

because in the calculation of [53, 54] Coulomb gluons are exchanged either between two

incoming partons or between two outgoing partons but not between one incoming and one

outgoing parton (whereas other classes of soft contribution treat incoming and outgoing

partons on an equal footing); real initial-state splittings, however small in angle, lead to a

redistribution in colour between incoming and outgoing states and therefore Coulomb-gluon

exchange cares about them (but not about the corresponding collinear virtual initial-state

corrections). This means that the coefficient of the Coulomb single logarithms αn
s Ln is

proportional to the probability of soft-collinear initial state emission, αm
s L2m and hence

one obtains terms αn+m
s Ln+2m, which are super-leading with respect to the expected αn

s Ln.

The calculation of the impact of this effect requires that one follow through the soft

colour evolution of the 2 → 2 scattering [74–79], for which the Coulomb-exchange terms

7For initial-state splittings, large-angle emission sees the difference in colour charges between incoming

and outgoing partons that are collinear to an incoming direction.
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provide imaginary contributions. For the purposes of our discussion here it is not necessary

to enter into the full detail of the soft colour evolution. Rather it suffices to be aware,

following [54], that for the case of vetoing emissions into a finite patch (gap) the lowest

order coherence-violating terms are contributions with structures such as

CVLgap ∼ Cα4
s

∫

dk
(v)
t1

kt1

dk
(r/v)
t2

kt2

dθ
(r/v)
2

θ2
Θ(1 − θ2)Θ(Qθ2 − kt2)

dk
(v)
t3

kt3

dk
(v)
t4

kt4
·

· Θ(Q − kt1)Θ(kt1 − kt2)Θ(kt2 − kt3)Θ(kt3 − kt4)Θ(kt4 − Qe−L) (3.30a)

=
2C

5!
α4

sL
5 + O

(

α4
sL

4
)

, (3.30b)

where we have shown only one of the two orderings given in [54] (the other gives either

the same number or fewer logarithms, depending on the observable). In the integration

measures, we have labelled each momentum with (v) if it can only be virtual, and (r/v)

if we are considering the difference between real and virtual cases. Gluon 2, the collinear,

possibly real gluon, can have an angle corresponding to anywhere outside the gap region,

down to the smallest kinematically allowed angles θ2 ∼ kt2/Q. Gluons 1, 3 and 4 have

only transverse momentum integrations because they are either Coulomb exchange gluons

or the virtual counterparts of large-angle soft-gluon emission. (In the other ordering it is

gluon 1 that is collinear and possibly real). The integral for gluon 4 is limited to be above

Qe−L because below that scale the observable places no constraint on real emissions and

so all real and virtual effects should cancel, by virtue of unitarity. Finally, the constant C

depends on the kinematics of the hard scattering and the definition of the gap region.

The extension to the event-shapes case involves restricting the (r/v) integration for

gluon 2 to regions of phase-space that are consistent with the the real gluon’s contribution

to the event shape being . e−L. Eq. (3.30) therefore becomes

CVLev-shp ∼ Cα4
s

∫

dk
(v)
t1

kt1

dk
(r/v)
t2

kt2

dθ
(r/v)
2

θ2
·

· Θ(1 − θ2)Θ(Qθ2 − kt2)Θ(Qe−L/a − kt2θ
b/a
2 )

dk
(v)
t3

kt3

dk
(v)
t4

kt4
·

· Θ(Q − kt1)Θ(kt1 − kt2)Θ(kt2 − kt3)Θ(kt3 − kt4)Θ(kt4 − Qe−L/a) , (3.31)

where the coefficients a and b are those that appear in eq. (3.7) for the incoming legs,

ℓ = 1, 2, for simplicity we have neglected the dl and gℓ factors there, and the constant

C may differ somewhat from that in eq. (3.30) (since there it could depend on the gap

definition). Three cases arise:

b < 0 → CVLev-shp ∼ Cα4
sL (3.32a)

b = 0 → CVLev-shp ∼ Cα4
sL

2 (3.32b)

b > 0 → CVLev-shp ∼ Cα4
sL

5 (3.32c)

where for the cases b ≤ 0 the number of powers of L is that obtained when relaxing the

constraint Qe−L/a > kt2θ
b/a
2 to become Qe−L/a & kt2θ

b/a
2 (consistent with the fact that
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we have ignored factors of dℓ, gℓ). In words, the CVL contributions only appear with a

large number of logarithms when the collinear gluon, 2, if real, is allowed to be harder

than the virtual Coulomb gluons (3, 4).8 For observables with b < 0 the one logarithm

arises from the integration over kt1, while the Qe−L/a & kt2θ
b/a
2 constraint forces k2 to be

at large angles with kt2 ∼ Qe−L/a, with the knock-on effect that kt3 and kt4 should also

be ∼ Qe−L/a. For b = 0, we instead have just Qe−L/a & kt2 for gluon 2, and an extra

logarithm then arises from the integration of θ2 in the collinear region.

The expectation for yet higher order terms is that for b ≤ 0 (all observables of this

paper except the exponentially-suppressed ones) the results in eq. (3.32) could be multiplied

by additional powers of αsL giving at worst a series αn
s Ln−2, which is subleading both with

respect to our NLL accuracy in the exponent and to our NNLLΣ accuracy in its expansion.9

For b > 0 (the exponentially suppressed observables) one would obtain terms αn
s L2n−3. It

is not clear how they would fit into the exponential resummation, except that they would

certainly destroy NLL accuracy in the exponent; in the expansion of the resummation they

would represent terms NNNLLΣ and therefore be subleading with respect to our accuracy.

One caveat with regard to the above discussion is that the results of [53, 54] have been

obtained in a strongly ordered eikonal approximation, with the assumption that the “strong

ordering” parameter is transverse momentum. With different assumptions, the results

change. For example, if the correct ordering parameter were energy, then eq. (3.30) would

be modified in such a way as to give an infinite result. If instead one considered emission-

time (or virtuality) ordering,10 which leads to kt1 ≫ kt2θ2 ≫ kt3, then the contribution of

eq. (3.30) would be halved,

CVL(T-ordered)
gap ∼ C

5!
α4

sL
5 , (3.33)

and the corresponding result for the event shapes case would become

b < a → CVL
(T-ordered)
ev-shp ∼ Cα4

sL (3.34a)

b = a → CVL
(T-ordered)
ev-shp ∼ Cα4

sL
2 (3.34b)

b > a → CVL
(T-ordered)
ev-shp ∼ Cα4

sL
5 (3.34c)

8 Note that for the exponentially-suppressed observables, with b = a, we expect the coefficient of the

CVL to be significantly suppressed as compared to the gap case, because of the way in which the event-shape

constraint restricts the phase-space integration region.
9This result involves the assumption that there must be at least two large-angle or Coulomb virtual gluons

softer than the collinear gluon. While this is the case for the contributions found in the gap case [53, 54]

we do not show here that it will always necessarily be the case for event-shapes. If there could instead be

coherence-violating contributions with just one large-angle or Coulomb virtual gluon that is softer than the

collinear one, one might expect terms up to αn
s Ln−1, which, however, are still subleading relative to the

calculations of this paper.
10One gets the same result for the ordering based on two different considerations. Physically, the time scale

for the collinear emission to take place is (1/kt2) · (ω2/kt2) ∼ 1/(kt2θ2), where ω2 is the energy of gluon 2,

to be compared with 1/kt for a large-angle virtual gluon exchange. In terms of the diagrammatic structure,

ordering is in part related to the virtualities of propagators and for a hard scattering of partons with energy

E, the squared propagator virtuality induced by soft and collinear gluon emission is ∼ Eω2θ
2
2 ≃ Ekt2θ2 to

be compared with Ekt for large-angle virtual gluon exchange.

– 21 –



J
H
E
P
0
6
(
2
0
1
0
)
0
3
8

In this case, for all the observables being discussed in this paper, the CVL terms would be

subleading relative to our accuracy.

To conclude: given today’s knowledge it is not clear whether coherence-violating terms

matter at our accuracy for event-shape resummations. The critical issue is that of the

appropriate ordering parameter (kt, time or virtuality ordering, or some other ordering).

The correct ordering needs to be derived (by going beyond the eikonal approximation),

unless of course there exists some yet-to-be found contribution that cancels the CVL terms.

If CVL terms do exist and kt ordering is correct, then they will invalidate our statement of

NLL accuracy in the exponent for the exponentially suppressed class of observables, though

not our statement of NNLLΣ accuracy in the expansion of the distribution. In practice we

have reason to believe that their numerical impact will still be small: partly because the

CVL terms were already not very large in [53]; and partly because the large colour factors

multiplying the double logarithms of our resummation force the majority of events to be in

a region where the logarithms are not actually all that large (a reflection of this will appear

in section 4.5, where we will see that naive exponentiation of the NLO calculation is not

too different from the full NLO+NLL result, even though it misses classes of LL terms in

the exponent and LLΣ terms in its expansion).

4 Perturbative results

In this section, we shall consider numerical results both for Tevatron and LHC collision

scenarios. We will start by presenting the event selection cuts that we use. We shall

show results for NLL+NLO matched calculations for a range of observables. We will pay

particular attention to the estimation of uncertainties on our predictions, and comparisons

to separate pure NLO and NLL calculations. We will also compare our results to Monte

Carlo parton-shower results, with and without tree-level matrix element matching.

4.1 Event selection cuts

The Tevatron scenarios involve pp̄ collisions at centre-of-mass energy
√

s = 1.96 TeV.

Events are clustered with the SISCone jet algorithm [92] (similar to the MidPoint algo-

rithm [65] that is in widespread use at the Tevatron, but infrared safe), with a jet radius

R = 0.7 and a split-merge overlap threshold f = 0.75. The two hardest (highest-pt) jets in

the event should have rapidities |y| < 0.7. Events are accepted for a low-pt sample if the

hardest jet has pt > 50 GeV, while they are accepted for a high-pt sample if the hardest jet

has pt > 200 GeV. As concerns the event shapes, the central region is defined by ηC = 1.

The LHC scenarios involve pp collisions at a centre-of-mass energy
√

s = 14 TeV.11

Events are clustered with the kt jet algorithm [63, 64], with a jet radius R = 0.7. The two

11The LHC will initially run at centre-of-mass energies that are below
√

s = 14 TeV, though the exact

energy of collisions is subject to uncertainty and will vary over the course of the initial runs. Given that the

generation of the NLO results for a single combination of collider energy and event-selection cuts requires

many CPU-years of computing time, we have decided to remain with
√

s = 14 TeV as our default choice for

the time being. The general picture as it applies to other centre-of-mass energies can be largely understood

by interpolation between the Tevatron and 14 TeV LHC results.
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LO NLO qq → qq qg → qg gg → gg

Tevatron, pt1 > 50 GeV 60+22
−15 nb 116+28

−21 nb 10% 43% 45%

Tevatron, pt1 > 200 GeV 59+25
−16 pb 101+27

−22 pb 41% 43% 12%

14 TeV LHC, pt1 > 200 GeV 13.3+3.4
−2.5 nb 23.8+3.9

−3.2 nb 7% 40% 50%

14 TeV LHC, pt1 > 1 TeV 6.4+2.0
−1.4 pb 10.5+2.2

−2.0 pb 31% 51% 17%

Table 2. Cross section for events that pass the selections cuts described in the text. The uncertainty

is that due to scale variation with the choice pt/2 ≤ µR, µF ≤ 2 pt, with µF /2 ≤ µR ≤ 2 µF , where

pt is the average of the transverse momenta of the two hardest jets. Also shown is the breakdown

(at LO) into the main scattering channels; q denotes both quarks and antiquarks, and channels

that contribute negligibly, such as gg → qq̄, are not shown.

hardest jets in the event should have rapidities |y| < 1. Events are accepted for a low-pt

sample if the hardest jet has pt > 200 GeV, while they are accepted for a high-pt sample if

the hardest jet has pt > 1 TeV. As concerns the event shapes, the central region is defined

by ηC = 1.5. The larger choice than at the Tevatron reflects the LHC detectors’ larger

overall rapidity coverage.

The cross sections for the different selections are given in table 2. These, and all

other NLO calculations presented here, have been carried out with nlojet++ 3.0 [34, 35]

(modified to provide access to parton flavour information up to O
(

α3
s

)

), with CTEQ6M

Parton Distribution Functions (PDFs) [93] and FastJet 2.3 [94, 95] for the jet clustering.

The renormalisation and factorisation scales have central values µR, µF = pt ≡ (pt1 +

pt2)/2, where pt1 and pt2 are the transverse momenta of the hardest and second hardest

jet respectively. The quoted errors correspond to the uncertainties due to scale variation

pt/2 < µR, µF < 2pt, with µF /2 < µR < 2µF .

Given the cross sections in table 2 one easily concludes that with available (anticipated)

luminosities at the Tevatron (LHC) there will be large event samples on which to study

event shapes. One also observes that NLO corrections are larger than one is used to seeing

for (say) inclusive jet cross sections. This is a consequence of our selection based on the

value of pt1. A selection based on the average pt of the two hardest jets would instead have

given K-factors rather similar to those for the inclusive cross section.12

Table 2 also shows the breakdown into the 3 main partonic scattering channels (as

calculated at LO). At each of the colliders, for the lower pt cut, channels involving gluons

are dominant, while for the higher pt cut channels involving quarks play a bigger role. This

difference between low and high-pt samples will be clearly visible in the final results.

12The choice of a cut on pt1 was originally motivated by the observation in the context of HERA [96–98]

that identical simultaneous cuts on pt1 and pt2 led to poor convergence of the perturbative series, for reasons

discussed in [99, 100]. Cutting on pt1 was intended as a way of avoiding this problem, but, as we see here,

seems to introduce issues of its own. Note that it is probably not advisable to introduce a staggered cut on

pt1 and pt2, e.g. pt1 > 50 GeV and pt2 > 40 GeV, because that introduces an extra small parameter in the

problem, related to the difference between the two pt cuts.
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4.2 Resummed results and uncertainty studies

Here we present resummed results for the global thrust minor, Tm,g together with a study

of its perturbative uncertainties at the Tevatron for the high-pt sample (pt1 > 200 GeV).

Figure 1a illustrates the NLL+NLO matched distribution obtained in the log-R match-

ing scheme with X = 1. The renormalisation and factorisation scales are chosen, event-

by-event, to be µF = µR = pt = (pt1 + pt2)/2 in both the resummation and the NLO

calculation. The distribution has a peak at small event-shape values that is characteristic

of all resummed (and physical) event-shape distributions.

The uncertainty on the prediction is almost as important as the result itself, especially

as it will allow us to gauge the significance of any disagreements that we will see with other

predictive methods.

The most widely used form of uncertainty estimate is the variation of renormalization

and factorization scales. The solid (red) curves in figure 1b illustrate the effect of varying

these scales simultaneously, showing the ratio of results with µF = µR = pt/2 and µF =

µR = 2pt to the default result. Except at very small event-shape values or at very large

ones, where the distribution vanishes, one sees that the impact of symmetric scale variation

is only about 5%. Asymmetric scale variations are shown by the dashed (green) curves,

corresponding to µF = {pt/2, 2pt} while keeping µR = pt, and µR = {pt/2, 2pt} while

keeping µF = pt. For moderate and large values of the event shape they have a significantly

larger impact than symmetric scale variations, of the order of 10% for moderate Tm,g. This

highlights the importance of considering both symmetric and asymmetric variations.

Figure 1c shows the impact of varying X in eq. (3.24), with the line thickness increasing

from X = 0.5 to X = 2. As discussed in section 3.2, this variation can be used to estimate

the effect of higher order logarithms not included in our NLL resummation. We find

that for moderate and large values of Tm,g the effect is similar in size to the asymmetric

renormalization/factorization scale variation. Closer to the peak of the distribution (where

the bulk of events sits), the impact of the X-scale variation is mildly larger. We also note

that the variation is quite asymmetric: smaller X values distort the central distribution

much more than larger values.

In figure 1d we estimate uncertainties that arise from the details of the matching

procedure. In particular we show the ratio of the mod-R matched distribution to the log-R

(see eqs. (3.26), (3.27) and (3.28)). It is clear that at large values of Tm,g, the difference

between the two matched distributions is large, with differences of up to 45% for Tm,g ∼ 0.5.

These very large discrepancies occur however only in the tail of the distribution, where fewer

events are present. Comparison to NLO at high Tm,g (not shown) indicates that of the

two matching schemes, log-R matching is the one with smaller higher order terms (i.e. its

NLO+NLL result is closer to NLO) at large Tm,g. In the following we will therefore use

log-R matching as our default. Figure 1d also shows the effect of varying p in eq. (3.24).

One sees that this is small compared to other uncertainties, and in what follows we shall

keep a fixed value of p = 1.

A final potential source of uncertainty stems from the ambiguity in the procedure used

to assign 2 → 3 events to a definite 2 → 2 colour channel (index a in eqs. (3.27, 3.28)).
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Figure 1. a) NLL+NLO resummed matched distribution for the directly global thrust minor at

the Tevatron (pp̄,
√

s = 1960 GeV) with pt > 200 GeV; b) renormalisation and factorisation scale

uncertainties for xR, xF = 0.5, 1.0, 2.0, varied separately, with the condition 0.5 ≤ xF /xR ≤ 2; c)

effect of varying X = 0.5, 0.7, 1.0, 1.5, 2.0 in eq. (3.24); d) effect of changing the matching scheme.

Though we have not explicitly checked other schemes for the assignment, we have examined

results obtained without a colour-channel decomposition and found them to be almost

indistinguishable from those shown here. This is perhaps not surprising given figures 21d

and 22d of appendix A.

The above findings are representative of the results for the other event shapes con-

sidered here, both at the Tevatron and at the LHC and for the low- and high-pt samples

(further NLO+NLL results are shown in section 4.4 and on the website associated with this

article [55]). In particular symmetric renormalization and factorization scale variation (as is
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Figure 2. The distribution for the representative observable Tm,g, comparing pure resummation

(NLL, left) and pure fixed order (LO and NLO, right) with the matched prediction (NLL+NLO).

For the matched resummed result, the band corresponds to the span of all the uncertainties shown

in figure 1, while in the fixed order calculations it corresponds to the (asymmetric) variations of just

the renormalisation and factorisation scales; for the pure resummed result the band corresponds to

the renormalisation, factorisation and X-scale uncertainties. See text for more details.

currently done in many phenomenological studies) systematically underestimates the true

size of theoretical uncertainties. While detailed error-estimate studies such as variation of

X-scale and matching procedure are possible only for specific (resummed) calculations, an

asymmetric µR and µF variation can be carried out for generic observables. This is perhaps

most relevant for multi-scale observables, where the scale of αs is a priori not clear.

4.3 Comparison of resummed, NLO and matched results

In this section we compare various levels of fixed order calculations (LO, NLO), pure

resummed ones (NLL) and matched ones (NLO+NLL) at the Tevatron for the high-pt

sample. Because NLL+NLO resummations are rarely available (e.g. they are currently not

available for non-global observables), we discuss in particular the extent to which NLO

alone can be used to describe event shape distributions. As in the previous section we will

use Tm,g to illustrate our findings, but results are fairly independent of the specific event

shape, the collider and the details of the hard cuts.

Figure 2 shows the result for the log-R matched Tm,g distribution compared to pure

resummation (left) and pure NLO, and LO for reference (right). For the matched resummed

result, the band corresponds to the span of all the uncertainties shown in figure 1, while in

the fixed order calculations it corresponds to the variations of just the renormalisation and

factorisation scales (pt/2 ≤ µR, µF ≤ 2 pt, with µF /2 ≤ µR ≤ 2µF ); for the pure resummed

result the band corresponds to the renormalisation, factorisation and X-scale uncertainties.

As expected, the matched distribution agrees with the NLO results at large values of

Tm,g. However for the pure NLL resummation without any coefficient function obtained

from eq. (3.23), the level of agreement with NLO+NLL is quite poor even at fairly small

values of Tm,g. For example, the position of the peak of the distribution is not all that well
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Figure 3. The NLO+NLL matched distribution for the directly global thrust minor, Tm,g shown

for the Tevatron (left) and
√

s = 14 TeV LHC (right) with two transverse momentum cuts for the

event selection.

predicted (at Tm,g ∼ 0.09 − 0.11 rather than at Tm,g ∼ 0.08). As far as the height of the

peak is concerned, both NLL and NLO+NLL distributions are normalized to one, however

the NLL distribution becomes negative at Tm,g > 0.35, and this negative tail causes the

distribution to be far too high at low Tm,g. It is on the other hand reassuring that these

large differences with the matched distribution are reflected in the very large uncertainty

band of the NLL distribution. Though not shown in the figure, we have also examined

a pure NNLLΣ distribution, obtained from NLL as in eq. (3.19), with an approximate

determination of 〈αsC
δ
1〉, as described in appendix A. We find that compared to the NLL

result it gives a noticeable improvement in the estimate of the peak height, though still

with large uncertainties.

As far as the fixed-order results are concerned, Figure 2b, they are as expected di-

vergent at small Tm,g. The LO distribution essentially never agrees with the matched

distribution, while the NLO does within uncertainties for Tm,g & 0.2. It is on the other

hand evident that scale uncertainties of the NLO results at small Tm,g underestimate the

size of higher order corrections not included in the fixed order calculations.

Altogether, figure 2 highlights how neither NLO nor resummation alone can provide

a sensible prediction, while the combination of NLO and resummation gives significantly

reduced scale-dependence compared to either on its own. Furthermore the matching pro-

cedure gives the general shape that is associated with the resummation, while maintaining

the large-v behaviour of the NLO prediction. We finally note that for the event shapes

presented here a LO+NLL resummation agrees well neither with the LO, nor with the

NLO+NLL matched result.

4.4 NLL+NLO matched results for a range of observables

In the previous section we established that contrary to NLO or NLL alone, NLO+NLL

provides robust theoretical predictions for event shapes distributions over a large range of

the event-shape values. This section contains the bulk of results of the present work: we

discuss NLL+NLO resummed distributions for a number of event shapes variables, both

at the Tevatron and at the LHC and for both, low- and high-pt samples.
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Figure 4. The normalised NLO+NLL matched distributions, 1

σ
dσ
dv

, for a range of event-shape

observables at the Tevatron with pt1 > 200 GeV. For further details, see text.

We start by looking at the effect of changing the hard selection cuts and the collider

(Tevatron vs LHC) for the same observable discussed previously, Tm,g, figure 3. There is

a striking similarity between the Tevatron (left) and the LHC plot (right), both for the

low-pt (Tevatron, pt1 > 50 GeV and LHC, pt1 > 200 GeV) and for the high-pt (Tevatron,

pt1 > 200 GeV and LHC, pt1 > 1000 GeV) samples. We also notice that low-pt curves

are broader and peaked at a higher value of Tm,g. This is a consequence of the higher

prevalence of gluons in both the initial and final states of the hard scattering.

Because of this similarly between low- and high-pt samples at the two colliders, we

examine results for a large range of observables, as defined in section 2, just for the high-

pt cuts at the Tevatron, figure 4, and for the low-pt cuts at the LHC, figure 5. For each
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Figure 5. The normalised NLO+NLL matched distribution, 1

σ
dσ
dv

, for a range of event-shape

observables at the
√

s = 14 TeV LHC with pt1 > 200 GeV. For further details, see text.

observable, we give two uncertainty bands, one corresponding to a symmetric scale variation

(hatched, dark blue) and one defined in terms of all theoretical uncertainties as discussed

in section 4.2 (solid, light blue). Comparing figure 4 and figure 5 we see that, as observed

earlier for Tm,g, the peaks of the distributions are further to the right and the distributions

are broader for the LHC (low pt) than for the Tevatron (high pt). Looking at specific

observables we see that, as already remarked in the case of Tm,g for all observables the

symmetric scale variation uncertainties are considerably smaller than the full uncertainties,

and we stress that only the latter are really indicative of the size of all kinds of neglected

higher order terms.

Some final remarks concerns the NLO+NLL results for Tm,R, BT,R and BW,R. As

discussed in [37] and at the end of section 3.1.2, recoil variables are more difficult to
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resum than other variables, because in the caesar approach, the NLL term g2(αsL) has

an unphysical divergence at small values of the observable. This difficulty is reflected

in the substantially larger uncertainty bands for these observables than for the directly

global variants and those with an exponentially-suppressed forward term. Among the

recoil variables, the thrust minor and broadenings were the only ones for which an even

partially acceptable result could be obtained. In order to obtain results for recoil variables

of similar quality to those for the other observables requires a resummation of initial state

emissions in appropriate Fourier transform variables, as done e.g. for the Drell-Yan pt

resummation [101], mixed with a Sudakov type resummation, as was done for the DIS

broadening [102]. This is beyond the scope of caesar. Another characteristic to be

commented on is the spike for BT,R and BW,R near 0.37. We believe this could be related to

a Sudakov shoulder [103] type phenomenon, and similar (though less pronounced) artifacts

have also been observed in DIS event-shape distributions. Again, it is beyond the scope of

caesar to resum the enhanced higher-order terms associated with these structures.

4.5 Naive exponentiation of NLO

In the previous section we presented full NLO+NLL resummations for a range of event

shapes. Both the NLO Monte Carlo calculation and the NLL resummation are highly

CPU intensive and are usually both run across many CPUs. While the NLO part of

the calculation is the most computer intensive, this is to some degree counterbalanced

by the fact that many observables can be computed in the same NLO run. The NLL

resummation on the other hand requires essentially a separate run with caesar for each

observable. Altogether, a single combination of collider energy and event-selection cuts

requires many CPU-years of computing time. NLO+NLL resummation also requires that

the NLO total cross section and LO distributions be decomposed into flavour channels,

and this information is not available in the public version of nlojet++ (nor in most other

public NLO codes). Furthermore, caesar is currently not public, the range of observables

that can be resummed with caesar is not as broad as one might like (see section 3.1.1),

and the matching procedure at hadron colliders is not as straightforward as in e+e−, as

discussed in section 3.2. For the above reasons, it is interesting to explore the possibility

of obtaining predictions with accuracy close to NLO+NLL using publicly available NLO

results only. For instance the following combination of LO and NLO integrated, flavour

summed distributions, Σ1(v) and Σ̄2(v), and the corresponding total cross sections, σ0 and

σ1, as obtained directly from nlojet++,

f(v) =
f̃(v)

f̃(vmax)
, f̃(v) =

σ0

σ0 + σ1
exp

[

Σ1(v)

σ0
+

Σ̄2(v)

σ0
− 1

2

(

Σ1(v)

σ0

)2
]

, (4.1)

has the following properties:

• f(v) goes to 1 at v = vmax, without O
(

α3
s

)

corrections;

• the fixed order expansion of the corresponding differential distribution, up to relative

order α2
s reproduces the normalized NLO differential distribution;
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Figure 6. Comparison of the NLO+NLL results with full uncertainties and exponentiation of NLO

(as defined in eq. (4.1)) with asymmetric scale uncertainties for the directly global thrust minor

(top left), the total broadening with recoil term (top right) and for y3,E (bottom left). Shown for

the Tevatron with a 200 GeV cut on pt1.

• the formal accuracy is not even LLΣ: starting from order α3
s the terms αn

s L2n are only

correct in the limit in which the event sample is dominated by a single colour channel.

Though the method does guarantee any formal resummation accuracy, it is still in-

structive to see how it fares in practice. We therefore show in figure 6 a comparison of

NLO+NLL matched results with full uncertainties and the naive exponentiation of NLO,

as defined in eq. (4.1) with full scale uncertainties for a representative set of observables

for the Tevatron with a 200-GeV jet pt cut (similar results hold also at the LHC and for

other cuts as well as other observables [55]). We see that for the directly global thrust

minor (top, left) the exponentiation result is well-contained in the uncertainty band of the

NLO+NLL matched result, suggesting that the naive exponentiation of NLO is indeed

a quite reasonable procedure (similar results hold in general for the other directly global

event-shape-like observables). The same observation is true also for the total broadening

with recoil term (top, right) but with one important difference. In this case the NLO+NLL

uncertainty band at small values of the observable is divergent, signaling the breakdown

of the resummation (as discussed in [37] and at the end of section 3.1.2). The scale uncer-
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tainty band of the naive exponentiation does of course not account for this and is small for

all values of the observable. Therefore for observables like the recoil event shapes, whose

double logarithms do not fully exponentiate, the naive exponentiation of the NLO results

can only be used as long as one is far from the divergence of the pure NLL resummation

(whose position is one of the pieces of information provided by caesar).

Finally, we show in figure 6 (bottom, left) how well the naive exponentiation does in the

case of the three-jet resolution parameter with exponentially suppressed term. We see that

in this case the naive exponentiation result is not contained in the full uncertainty band

of the NLO+NLL resummation. This is true for the tail of the distribution, where there

seems to be too little radiation suppression and, similarly, for the peak, whose position

is slightly displaced to the left. This softer spectrum is a feature of other exponentially

suppressed observables as well (though the effect is not as remarkable).

Altogether it seems that naive exponentiation is a sensible procedure to extend the

range of validity of pure NLO predictions. However, since it is not guaranteed to provide

any formal logarithmic accuracy, one should rely on full NLO+NLL predictions for precision

studies. In any case, we stress that before carrying out this exponentiation procedure,

one should understand the basic soft/collinear properties of the observable (be it with

caesar or in whatever other way).

4.6 Comparison with (matched) parton showers

For most practical applications, it is far more convenient to use parton-shower Monte

Carlo event generators, like Herwig [3, 4] or Pythia [5], or event generators merged with

LO matrix elements, rather than a full NLL+NLO calculation. It can however be difficult

to estimate the accuracy of these tools and the reliability of the error estimates that come

with them. The purpose of this section is therefore to compare the NLL+NLO results

with parton-shower based predictions (at parton level, in order to avoid non-perturbative

corrections from hadronisation and the underlying event).

We will start with Herwig (v6.5) events showered from exact tree-level matrix elements

for 2 → 2, 2 → 3 and 2 → 4 partonic scatterings, as generated with Alpgen [104]. We

use the MLM prescription [105] to avoid double counting between emissions generated in

the hard 2 → n scattering and those generated by the parton shower. This combination of

parton-shower and tree-level matrix elements is the standard tool for many Tevatron and

LHC predictions.

To gauge uncertainties in the resulting matched samples we shall simultaneously vary

the renormalisation and factorisation scales in the tree-level matrix elements by a factor

of two around their default settings in the MLM procedure (which are taken as in the

CKKW procedure [106]). The MLM procedure also involves a separation scale between

the region of phase-space to be accounted for by the tree-level matrix elements or by the

parton shower. We take this separation scale to be 0.5pt,min when we look at event samples

whose hardest jet has pt > pt,min and the angular distance for a jet and a parton to be

matched is restricted to be ∆R < 1.05. The hard events have been generated with a pt

threshold 0.4pt,min for all partons (constrained to have |y| < 5), which must be separated

from each other by a distance ∆R > 0.7. In principle the MLM separation scale should
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also be varied in order to gauge uncertainties. However, the generation threshold should

also be kept lower than the separation scale and the production of the 2 → 4 tree-level

event samples with the 0.4pt,min threshold already turned out to have very low efficiency

and would have become prohibitive with much lower a threshold. Therefore we will only

show results with a fixed separation scale. The PDF that we used was CTEQ5L [107], the

default choice in Alpgen, but we also verified that the effect of switching to CTEQ6M (as

used in our NLO+NLL calculations) was small.

A comparison of the parton-level Alpgen+Herwig (Tree+PS) results with the

NLL+NLO results is given in figures 7 and 8, for pp̄ collisions at Tevatron and LHC, with

a cut of 200 GeV on the transverse momentum of the hardest jet. The Alpgen+Herwig

results are shown as red cross-hatched bands. The NLO+NLL results are shown as two

bands: a blue hatched band whose width corresponds to the uncertainty from just the

symmetric variation of renormalisation and factorisation scales; and a cyan, solid band

corresponding to the full set of uncertainties represented in figure 1.

Generally, there is reasonable agreement between the Tree+PS and the NLO+NLL

results. One feature of note is that the Tree+PS uncertainty band is significantly narrow

than the NLO+NLL band (even that with just symmetric scale variation). It is not imme-

diately obvious that this truly reflects smaller uncertainties in the Tree+PS case, which,

based as it is on LO calculations, would be expected to show larger uncertainties than

the NLO+NLL prediction. We tend instead to interpret this as indicating that symmet-

ric scale variation does not provide a good estimate of the true uncertainty on Tree+PS

predictions.13

There does not seem to be a clear pattern to the cases where there are significant

differences between the two kinds of predictions. For example, for the τ⊥,g and the Tm,g

variables the Tree+PS predictions seem harder than the NLL+NLO results. Instead, for

y3,E , the Tree+PS results are generally softer.

We also show in figures 9 and 10 a comparison between results obtained from different

shower Monte Carlo event generators with and without matching, for the same subset of the

observables at the Tevatron and the LHC with a minimum pt on the hardest jet of 200 GeV.

Pythia 6.4 is shown both for the old (virtuality ordered) and new (transverse-momentum

ordered) showers. All results are shown at parton-level, without multiple interactions (i.e.

no underlying event). As in figures 7 and 8, we show for reference the result of NLO+NLL

resummation both with symmetric scale variation and with full uncertainties.

In general Herwig’s angular-ordered shower and Pythia’s virtuality ordered (old)

shower give results that are quite similar (or slightly harder) to the full matched results,

with deviations visible in some cases, e.g. for BW,E at the LHC.

It is perhaps surprising that unmatched, plain parton shower results, are often harder

and sometimes even closer to the NLL+NLO band than the Tree+PS matched ones, this is

particularly evident for y3,g at the LHC. This is an unexpected result as the motivation for

carrying out Tree+PS merging is that parton showers are unable to reproduce the structure

of hard large-angle emissions.

13It should be said that the uncertainty band on the Tree+PS prediction is considerably larger if one

considers differential cross sections instead of normalised differential distributions.
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Figure 7. Comparison of the NLO+NLL results with matched Alpgen+Herwig results. The latter

have just symmetric scale variation in their uncertainty bands, so we also include subsidiary bands

for NLL+NLO with just symmetric scale variation. Shown for the Tevatron with a 200 GeV cut

on pt1.

What is also evident from figures 9 and 10 is that there are big discrepancies between

the newer, transverse-momentum ordered shower in Pythia 6.4 (in the S0A tune) and,

essentially, everything else. These distributions appear to be significantly softer than those

from other parton showers, with the difference most visible in the case of the y3 variables,

and inconsistent with the NLL+NLO calculation.

It is therefore useful to try to understand whether the origin of the discrepancies lies
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Figure 8. Comparison of the NLO+NLL results with matched Alpgen+Herwig results. The latter

have just symmetric scale variation in their uncertainty bands, so we also include subsidiary bands

for NLL+NLO with just symmetric scale variation. Shown for the
√

s = 14 TeV LHC with a

200 GeV cut pt1.

in the new shower or in the tuning of the Pythia parameters. To further probe this issue,

we show in figure 11 a comparison among plain Herwig, virtuality ordered (DW) Pythia

and different tunings of the new transverse-momentum ordered shower, S0A [108], as used

above, and two more recent tunes, Perugia0 [109] Pro-pt0 [110], (shown with version 6.421;

version 6.412 yields identical results). Of these the two more recent pt-ordered tunes, Pro-

pt0 gives results very similar to S0A, while Perugia0 is closer (though not identical) to
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Figure 9. As is figure 7 with, in addition, results from plain Herwig and Pythia showers. Pythia 6.4

is shown both for the old (virtuality ordered) and new (transverse-momentum ordered) showers. All

results are shown at parton-level, without multiple interactions (i.e. no underlying event). Shown

for the Tevatron with a 200 GeV cut on pt1.

the Herwig and virtuality-ordered Pythia results. The conclusion to be drawn from these

results is that for transverse-momentum ordered showers, the shower parameters can have

major implications for the reliability of the results and a consensus has yet to emerge
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Figure 10. As is figure 8 with, in addition, results from plain Herwig and Pythia showers. Pythia

6.4 is shown both for the old (virtuality ordered) and new (transverse-momentum ordered) showers.

All results are shown at parton-level, without multiple interactions (i.e. no underlying event). Shown

for the
√

s = 14 TeV LHC with a 200 GeV cut on pt1.

among current tunes for the choices of these parameters.14

14A number of theoretical issues concerning dipole and pt-ordered showers have recently been raised

in [111], in the context of the Z-boson pt distribution. Depending on the exact formulation of a shower,

such effects could be relevant for recoil observables, but are probably not the main cause of the discrepancies
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Figure 12. Comparison of parton-level, hadron-level without UE and hadron level with UE, for

selected event-shape distributions, as obtained with Pythia 6.4 (DW tune).Shown for the Tevatron

with a 50 GeV cut on pt1.

5 Non-perturbative effects

So far we discussed only perturbative effects, however, before any comparison to data can be

done, non-perturbative effects have to be included. As in e+e− annihilation, there are non-

perturbative effects due to hadronisation, i.e. related to the transition of partons to hadrons.

seen here, which seem to be related to the conditions for secondary radiation from initial-state emissions in

the S0A tune (we are grateful to Peter Skands for discussions on this last point).
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Figure 13. As in figure 12, but for the Tevatron with a 200 GeV cut on pt1.
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Figure 14. As in figure 12, but for the
√

s = 14 TeV LHC with a 200 GeV cut on pt1.

In hadron-hadron collisions there are also interactions between the two beam-remnants, the

so-called underlying event (UE). Both effects are suppressed by inverse powers of the hard

scale pt of the high-pt scattering. For event shapes the dependence is linear in 1/pt [36],

while for jet-resolution parameters the dependence is even more suppressed, as will become

evident also from the plots presented in this section.15

15 A further potential non-perturbative effect is that due to in-time pileup, the additional (usually) soft

pp collisions that take place during the same beam crossing as the hard pp collision of interest. Its impact

can largely be eliminated by considering only events with a single primary interaction in the beam crossing.

Given the huge cross-sections for the event selections outlined in table 2, this should not pose too much of

a problem except, possibly, at the higher LHC pT cut.
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Figure 15. As in figure 12, but for the
√

s = 14 TeV LHC with a 1 TeV cut on pt1.

At hadron colliders, analytical predictions for non-perturbative (NP) effects are avail-

able only for a limited number of jet-observbales [36, 112–114]. A more general way to

estimate those effects is to use event generators, such as Herwig [3, 4] or Pythia [5], which

can be run at parton- or hadron-level with or without underlying event. The default

Pythia underlying event model includes multi-parton interactions, while Herwig needs to

be interfaced to Jimmy [115] to have a realistic modelling of the underlying event.

In figures 12–15, we compare parton level and hadron level results without and with

UE for the set of observables discussed previously for the low- and high-pt samples at the

Tevatron and at the LHC, as obtained with virtuality ordered Pythia 6.4 (DW tune).

As far as hadronisation corrections are concerned, one notices immediately that for

event shapes these effects are quite large at the Tevatron for the pt1 > 50GeV sample.

They systematically shift the distributions to the right and distort them (mostly squeeze

them). As expected these effects decrease considerably at pt1 > 200GeV. Going from

the Tevatron to the LHC, keeping the pt1 > 200GeV cut, hadronisation correction are

comparable, while again they decrease when going to the pt1 > 1000GeV sample, where

they are completely negligible. Since the majority of events in a sample will have jets

with pt close to the pt-cut, this patten confirms the expected 1/pt scaling of hadronisation

corrections. For y3 distributions hadronisation effects follow the same pattern but are much

smaller, and are already very small at the Tevatron for pt1 > 50GeV.

The effect of the underlying event on these distributions is quite different. For event

shape distributions at the Tevatron for pt1 > 50 GeV, the UE broadens significantly the

distributions and moves them systematically to the right. For fixed center of mass (c.o.m.)

energy, the UE decreases with pt, but contrary to the hadronisation corrections, increasing

the c.o.m. energy, at fixed pt results in an increased UE activity. As for hadronisation

corrections, UE effects are much smaller for y3 distributions than for event shapes. This

fact means that at sufficiently high pt one can compare perturbative predictions directly
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Figure 16. Hadron-level results, including underlying event, for selected event-shape distributions,

as obtained with Herwig 6.5 + Jimmy 4.31 (ATLAS tune, as given in text) and Pythia 6.4 with 2

tunes, DW (DWT would be identical) and S0A. Shown for the Tevatron with a 200 GeV cut on pt1.

to data, without additional NP corrections. This also makes y3 distributions (in particular

the directly global version) suitable for direct tuning of shower parameters. We note also

that different event shapes have different NP sensitivities, broadenings seem to have smaller

corrections, while masses and thrust distributions tend to have larger ones. Therefore the

latter seem better suited to study NP effects and to tune models of hadronisation and

underlying event.
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Figure 17. Hadron-level results, including underlying event, for selected event-shape distributions,

as obtained with Herwig 6.5 + Jimmy 4.31 (ATLAS tune, as given in text) and Pythia 6.4 with 3

tunes, DW, DWT and S0A. Shown for the
√

s = 14 TeV LHC with a 200 GeV cut on pt1.

To address this last issue further, we show in figure 16 how different Monte Carlo

showers and tunes to the same Tevatron data differ from each other for the same set of

observables. Specifically we use Herwig+Jimmy16 Pythia’s virtuality ordered shower with

the DW tune and Pythia with the pt-ordered shower (S0A tune). It is noticeable how the

16 The parameters used are PRSOF=0, PTJIM= 2.8(s/1800 GeV)0.137 GeV, an inverse (anti)proton

radius of JMRAD(73)=JMRAD(91)= 1.8 GeV and CTEQ6L1 [93] PDFs, as per the ATLAS tune in [116].
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DW, S0A and Herwig+Jimmy tunes differ (sometimes substantially), despite the fact that

all have been tuned to Tevatron data. For S0A in particular this is not really surprising:

if perturbative predictions already differ substantially, so will full results at hadron level.

However it is nevertheless instructive, because it illustrates to what extent hadron-level

event-shape distributions can help constrain perturbative aspects of the shower.

Finally, in figure 17 we show what happens for the same pt cut at the LHC. Discrep-

ancies between Herwig and Pythia survive (but are maybe reduced). In addition to the

DW Pythia tune, we also show DWT (which was identical at Tevatron energies) and see

sizable differences between them. All this suggests that event shapes have significant scope

for tunes of event generators.

6 Multi-jet limit

One common use of event shapes is to distinguish two different classes of multi-jet events:

those in which the jets cover phase space quite uniformly, as in multi-body heavy-particle

decays; and those in which the jets are relatively collimated in few bunches, as induced

by the collinear singularities of massless QCD multi-particle emission. For example, the

ATLAS [69] and CMS [70] discussions of prospective analyses mention the use of event

shapes, most notably the transverse sphericity (see below), in physics studies that range

from tt̄ analyses to searches for supersymmetric particle decays and black-hole decays (yet

other applications include hidden-valley searches [117, 118]).

The purpose of this section is to compare various event shapes’ ability to distinguish

characteristically different event topologies. Firstly we shall examine to what extent current

event shapes are able to distinguish symmetric 3-jet topologies from symmetric multijet

topologies. The main finding will be that they discriminate principally between 2-jet pencil-

like events and symmetric events, regardless of the number of jets in the latter. We shall

then study the robustness of the identification of symmetric events: both with respect to

parton showering and to the orientation of the multijet system. The results from these two

studies will then lead us to propose event shapes that should have enhanced sensitivity to

the symmetric multijet limit.17

6.1 The transverse sphericity

One event shape that we have not considered so far is the sphericity. Since it is by far

the most widely used for discriminating symmetric multi-jet topologies, let us briefly ex-

amine its properties. It is defined in terms of the eigenvalues λ1 ≥ λ2 of the transverse-

momentum tensor:

Mxy =
∑

i

(

p2
xi pxipyi

pxipyi p2
yi

)

, Spheri

⊥,g ≡ 2λ2

λ1 + λ2
. (6.1)

17 It is worth noting also the event-shape type observable proposed for BSM searches [119], whose aim

is not to distinguish multijet “hedgehog” topologies from dijet topologies, but rather to be sensitive to

the hadronic structure of BSM signal events with large transverse missing energy (e.g. R-parity conserving

SUSY), but without making explicit use of the measurement of missing transverse energy.
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Figure 18. Values of various observables for events with N momenta arranged symmetrically in

the transverse plane.

It has the property that it tends to 1 for events with circular symmetry in the transverse

plane, and is 0 for pencil-like events. However the appearance of a sum of squared momen-

tum components in Mxy makes this observable collinear unsafe, as is the case [58] for the

related variable in e+e−: for example, if a hard momentum along the x direction is split

into two equal collinear momenta, then their combined contribution to
∑

i p
2
xi will be half

that of the original momentum. Therefore collinear splittings change the sphericity by a

factor of order 1. One consequence of this is that it is impossible to make perturbative

predictions for the sphericity beyond leading order. Another consequence is that parton

showering and hadronisation significantly alter the value of the observable, limiting its

ability to discriminate different topologies (at least when the input momenta are particles;

often it is jets that are used as inputs). We shall see this explicitly in section 6.3.

6.2 The circular limit

The simplest instructive study that comes to mind for event shapes intended to distin-

guish symmetrical multi-jet events from dijet events is to examine their values V (N)

for perfectly symmetrical planar transverse events with varying numbers N of momenta,

pi =
Q⊥,C

N (cos 2πi
N , sin 2πi

N , 0, 1) for i = 1 . . . N . This is illustrated in figure 18. For uni-

formity the results have been normalised to the value Vcirc obtained for perfectly circular

planar events (N → ∞), as given in table 3.

The only two observables with a monotonic (and trivial) behaviour are Spheri

⊥,g and Fg.

The remaining ones have been grouped into the left and right hand plots according to

whether they peak for n = 3 (thrust-like) or n = 4 (broadening-like) and one sees that the

perfectly circular limit does not give the largest value for all observables. Perhaps the most

interesting observation from these plots is the modest difference between the 3-particle

and fully circular events — thus they are sensitive to the absence of a unique preferred

transverse direction, but not to the overall degree of symmetry of the event.
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Spheri

⊥,g Sphero

⊥,g Fg τ⊥,g Tmin,g ρT,C BT,C

1 1 1 1 − 2
π

2
π

1
2 − 2

π2
π
8

Table 3. Vcirc, the values of various observables in the transverse circularly symmetric limit.

The events have been chosen to be planar — the variables other than ρT,C and BT,C are however

insensitive to the longitudinal components of the momenta.
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Figure 19. Distribution of event shape values after showering and hadronisation for the “generic”

and Mercedes input 3-parton events (for further details of the event generation, see text). The

arrows indicate the values for the 3-parton events. Small overlap between the two distributions and

good correspondence with the arrows are signs of a good observable.

6.3 Collinear safety and showered events

Let us now ask the question of how much the collinear unsafety of Spheri

⊥,g matters in prac-

tice. To investigate this we have taken a number of 2 → 3 partonic events and showered

them with Herwig, using the “inclusive” MLM prescription [104] to reject events in which

the showering introduces a fourth, harder jet, or other strong modifications of the event.

Figure 19 shows the distribution of Spheri

⊥,g , Fg and BT,C for two kinds of input 2 → 3

partonic event, which are both planar with all particles at rapidity y = 0:

Event 1 (generic) Event 2 (Mercedes)

pt1 = 828 GeV, φ1 = 0 pt1 = 666 GeV, φ1 = 0

pt2 = 588 GeV, φ2 = 3π/4 pt2 = 666 GeV, φ2 = 2π/3

pt3 = 588 GeV, φ3 = −3π/4 pt3 = 666 GeV, φ3 = −2π/3

One clearly sees that the collinear unsafe Spheri
⊥,g has much less discriminating power between

the two events than do Fg or BT,C (or for that matter any of the other event shapes that

were shown in figure 18). Furthermore it is clear for the Mercedes event that the peak

at Spheri

⊥,g = 0.7 has little connection with the expected 3-parton Mercedes value of 1. In

contrast, the distributions for the other two observables are peaked close to the expected

values (indicated by the arrows). This should of course be of no surprise given the collinear

unsafety of Spheri

⊥,g . However, in view of the latter’s widespread current use (albeit with jets,

rather than particles, as inputs), we feel that the point is worth noting.
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Figure 20. Distribution of event shape values after showering and hadronisation for the “generic”

and rotated generic input 3-parton events, as described in the text. Observables that have similar

distributions for the two sets of events are likely to be more effective for identifying massive-

object decays.

6.4 Impact of event orientation

One of the interests of event-shape studies is in identifying massive particle decays. Most

of the event shapes above have the counterproductive characteristic that they give very

different results for particles that decay with just transverse components (in the particle’s

centre of mass) or with both longitudinal and transverse components. To illustrate this,

we take the generic event given above and rotate it by π/2 around the axis of particle 1,

giving pt2 = pt3 ∼ 416 GeV, φ2 = φ3 = π and rapidities y2 = −y3 ≃ 0.88. We shower it,

as explained above, and the resulting distributions for three event shapes (normalised to

their values in the circular limit) are shown in figure 20.

For Spheri

⊥,g and Fg there is a large difference between the distributions for the generic and

rotated-generic events (and similarly for e.g. Sphero

⊥,g , τ⊥,g and Tmin,g). For the broadening

in contrast, which we recall involves both the y and φ dispersions of particles with respect

to axes in each of the two central half-regions, the generic and rotated-generic events give

rather similar distributions. A similar phenomenon occurs with the invariant masses of

those regions, in that masses too are sensitive to both directions of dispersion, though their

intrinsic rotational invariance is in part spoiled when one normalises to Q⊥,C as in eq. (2.17).

The rotational invariance is probably in part the origin of the usefulness of “cluster-masses”

in the context of hidden-valley studies [118]. Note however that masses are significantly

more sensitive to (initial-state) forward semi-hard radiation than are broadenings.

6.5 Increasing sensitivity to the spherical limit

As is clear from figure 18, none of the event shapes above are particularly effective at distin-

guishing truly spherical events from simpler multi-jet topologies, like symmetric transverse-

planar events.

What one has in mind when discussing spherical events is that they have significant

“volume”, symmetrically distributed around the event. One way of obtaining sensitivity

to this is to consider the following matrix, separately for the up and down central regions
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of an event:

MU =
∑

i∈CU

pti

Q⊥

(

∆y2
iU ∆yiU∆φiU

∆yiU∆φiU ∆φ2
iU

)

(6.2)

where ∆yiU = yi − yCU
and ∆φiU = φi − φCU

, and similarly for the central down region,

CD. The eigenvalues λU1 > λU2 of MU have the property that λU1 is non-zero if there

are two non-collinear particles in the hemisphere, while λU2 is non-zero if there are three

non-coplanar particles in the hemisphere. The observable

S6 = min(λU2, λD2) , (6.3)

which we name “supersphero”, is therefore non-zero only if there are 3 non-coplanar par-

ticles in each of the hemispheres of the event — i.e. for events that truly bear some resem-

blance to spherical events.

For a perfectly spherical event the two eigenvalues in each hemisphere are λ1 = π2/24 ≃
0.411 and λ2 = π2/8 − 1 ≃ 0.234.18

The S6 observable, in terms of its use of eigenvalues of a 2×2 matrix, relates of course

to the Fg-parameter of eq. (2.4) and to the event shapes studied for boosted top-quark

identification [40, 42]. The latter’s use of a matrix defined in the plane transverse to a jet

is actually quite similar to our use of a matrix defined in a central half-region.

A detailed study of the S6 observable would benefit from comparisons of high jet-

multiplicity QCD samples and multijet samples from new-physics scenarios. Such a study

is beyond the scope of this paper, but would, we believe, be of interest.

7 Summary of main results

Given the length of the paper, and the fact that we have addressed quite a range of issues,

we find it useful, before concluding, to summarise here the main results of the paper.

There are a number of reason why event shapes provide a powerful laboratory for

studying of a range of aspects of strong-interaction physics at hadron colliders. From an

experimental point of view, cross sections for the QCD (dijet) events on which one carries

out event-shape studies are very large both at the Tevatron and at the LHC. This means

that high-statistics event samples are already available at the Tevatron and can be expected

early on at the LHC. Since event shapes are defined as dimensionless ratios of combinations

of hadron-momenta, and since their differential distributions are also dimensionless, many

experimental uncertainties are reduced. From a theoretical point of view, one of the attrac-

tive characteristics of event-shape studies is that different variables provide complementary

sensitivities to a broad variety of features of hadronic events, such as the topology of the

final state, the nature of initial and final-state jet-fragmentation, hadronisation, and the

underlying event.

The above points motivated us to study many hadron-collider event shapes in a sin-

gle context. We exploited the automated NLL resummation procedure implemented in

18 One may balance the two eigenvalues more closely for example by replacing ∆yiU → ∆yiU (1+∆y2
iU/6)

(i.e. with the first two terms of the expansion of sinh ∆yiU ) in eq. (6.2), though there is a significant degree

of arbitrariness in this choice.
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caesar to obtain next-to-leading logarithmic resummed distributions matched to next-to-

leading order exact predictions from nlojet++ for a large number of event shapes at the

Tevatron and at the LHC.

The matching procedure is conceptually simple, but technically involved, as discussed

in detail in section 3.2. One issue is that the best logarithmic accuracy achievable once

NLO and NLL predictions are available, namely αn
s L2n−2 in the expansion of the integrated

distribution, NNLLΣ, can be obtained only if the NLO code provides full information

about the flavour of all incoming and outgoing partons. This decomposition into flavour

channels is not present in the publicly available version of nlojet++, so we used the

extended version developed in [120] in order to extract this information. We also needed

to use the flavour-kt jet-algorithm of ref. [72] to map the flavour of 2 → 3 events into

that of an underlying 2 → 2 Born-like event. Additionally we needed the order-by-order

expansion of PDF evolution, which was provided by hoppet [85]. The computing effort

should also not be neglected: our directory of resummed results contains O (10000) files,

and we estimate that several tens of years of CPU time have gone into the NLO and

NLL calculations used here. Part of this complexity stems from our choice to consider

several different classes of uncertainties associated with uncalculated higher-order terms:

those from separate variation of renormalisation and factorisation scales; redefinition of

the argument of the logarithm being resummed (X-scale); and two choices of schemes for

combining (matching) the NLO and NLL results.

Among the questions we asked was whether this considerable complexity is needed.

It turned out that the flavour decomposition had only a modest effect (cf. appendix A).

We also found that a simple exponentiation of the NLO result, as presented in section 4.5,

not even correct to LL or LLΣ accuracy, comes remarkably close to reproducing most of

the NLO+NLL distributions (albeit not close enough that one would forgo NLO+NLL if

it is available). One interpretation is that the large amount of radiation that comes from

the 4 Born legs in a 2 → 2 process causes event-shape distributions to be dominated by

regions where the logarithm that is being resummed is not all that large. Note, however,

that plain (unexponentiated) NLO predictions are very inadequate substitutes for the full

NLL+NLO result and their uncertainty bands are misleadingly small.

We studied three generic classes of event shapes: the directly global ones, those with

exponentially suppressed terms and those with a recoil term. The definition of the observ-

ables is recalled in sections 2.1, 2.2, and 2.3 respectively. While stable numerical results

could be obtained for observables belonging to the first two classes, for the last of these

it was sometimes impossible to obtain numerically sensible results. This is in part due to

cancellations among contributions from multiple emissions in the recoil term, which cause

the resummation provided by caesar to have a divergence at small v, as explained in

section 3.1.2. It is also due to structures in the middle of the physical region, akin to

Sudakov shoulders [103], which would require an additional resummation. Such shoulders

are visible e.g. for the broadenings with recoil term in figures 4 and 5. These observables

are also challenging experimentally because the measurement of the recoil term is affected

by cancellations between large transverse momenta of the two hard jets.
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A question mark that hangs over NLL resummations is that of coherence-violating

logarithms (CVL, referred to as super-leading logarithms (SLLs) in the context of interjet

energy flow) [53, 54], terms potentially starting at α4
sL

5, related to a violation of coherence,

whose validity was a crucial assumption in the resummations of [45]. There is a risk

that this could therefore invalidate our claim of NLL accuracy for some observables. We

investigated this point in section 3.3, and found that the answer depends critically on the

ordering parameter used in the calculation of the SLL terms. If, as in [53, 54], one makes the

assumption that the ordering parameter is transverse momentum, then the claim of NLL

accuracy breaks down for our “exponentially suppressed” class of observable (not for the

others), while NNLLΣ remains valid for all observables. If one instead assumes virtuality

ordering, then both NLL and NNLLΣ accuracies should be valid for all our observables.

This highlights the importance of understanding the question of ordering for SLLs, which

also affects the coefficient of the α4
sL

5 terms in [53, 54] and probably requires that one go

beyond the eikonal approximation that was used there. Nevertheless, practically we tend

to believe that SLLs will not seriously affect our results, one reason being that we still

retain NNLLΣ accuracy.

Turning to our phenomenological results, a feature common to all observables is that

the shape of the distributions is strongly influenced by the ratio of quarks to gluons

among the incoming partons. This is because the double-logarithmic Sudakov exponent,

responsible for the position and width of the peak of the distribution for each under-

lying subprocess, is determined by the total color charge of the hard emitting partons.

Event samples dominated by gluon scattering (Tevatron with pt1 > 50 GeV, LHC with

pt1 > 200 GeV) have broader distributions than those dominated by quark scattering (Teva-

tron with pt1 > 200 GeV, LHC with pt1 > 1000 GeV). This is evident e.g. in figure 3 in

the case of our representative observable Tm,g and is discussed in Sec 4.3. We remark that

dijet event-shapes at hadron colliders are the first case in which a change in a kinematical

cut modifies the double logarithmic behaviour of the event-shape distributions. This would

not be the case for event shapes in hadron-collider processes such as Drell-Yan production,

or Z+jet or W+jet.

In the absence of data on the event shapes discussed here, one of the interesting uses

of our NLL+NLO results is to compare them to the results of two Monte Carlo parton

shower programs, this is discussed in section 4.6. We considered Pythia 6.4 and Herwig 6.5

both without and (in the case of Herwig) with matching to multi-parton tree-level matrix

elements (Alpgen, MLM prescription). The quality of the agreement between plain parton

showers and the resummations depends significantly on the quark/gluon admixture: in

quark-dominated event samples it is often adequate, while in gluon-dominated samples

it is somewhat poorer. This may be a reflection of the extensive tuning of quark parton

showers carried out with LEP data, while gluon parton showers have seen fewer constraints.

The importance of tuning parton showers in a context with incoming beams is highlighted

particularly strongly by the results of the newer pt-ordered shower in Pythia 6.4. In two

tunes, S0A and Pro-Pt0, the agreement both with NLO+NLL and with other showers is

quite poor; in the Perugia0 tune it improves, as can be seen from figure 11.
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One might expect that supplementing parton showers with matching to multi-parton

tree-level events (Tree+PS) should improve the agreement with NLO+NLL results. This is

the case only for some of the observables. We also examined the impact of (simultaneous)

renormalisation and factorisation scale variation on the Tree+PS results and found that

it leads to an uncertainty estimate that is far smaller than the actual differences between

Tree+PS and NLO+NLL results, as can be seen in figures 7 and 8.19 This should not be

surprising: in the NLO+NLL calculations simultaneous scale variation represented only a

small part of the full uncertainties. Questions that remain open therefore are whether in the

Tree+PS approach uncertainties can be more faithfully estimated if one examines further

“handles” (independent scale variation, matching scale, etc.), and whether we would have

reached similar conclusions with other matching schemes (e.g. CKKW) and programs.

From a non-perturbative point of view, we estimated both hadronisation and UE

corrections using Monte Carlo event generators, as discussed in section 5. As expected,

hadronisation corrections decrease when increasing the pt1-cut on the jets. They are fairly

negligible with cuts of the order of 200 GeV both at the Tevatron and at the LHC, as can

be seen in figures 13 and 14. For lower pt cuts, they shift the distributions to the right and,

for some observables they squeeze them, see e.g. figure 12. For jet resolution parameters

(y3,g and y3,E) hadronisation effects are always small, just a few percent correction for

pt1 > 50 GeV at the Tevatron, much smaller in all other cases. These observations are

consistent with the experience obtained from e+e− and DIS event-shape studies.

As concerns the UE, there are observables for which it has a sizable effect even at

pt1 > 1 TeV, most notably for the thrusts and jet-masses, as can be seen in figure 15. This

means that these event shapes are particularly good for tunes of the UE. Jet-resolution

parameters are the only observables for which the UE effects remain consistently small (a

few percent for the lower pt-cut samples, even smaller for the large pt ones). They are

therefore well suited for tunes of perturbative parameters of showers and in general for

perturbative studies.

Finally, in section 6 we examined how well event shapes can discriminate QCD-like

two-jet events from BSM-like multi-jet events, and how robust this discriminating power

is with respect to parton shower (radiative) corrections. In general we find that event-

shapes discriminate well between events with two or more than two jets, but they do not

discriminate well between three or any large number of jets: the value of event-shapes

does not even increase monotonically with the number of jets for symmetric events, see

figure 18 in section 6.2. On the other hand it is possible to design new event shapes,

which start with six jets in the final state, as is the case for our “supersphero” S6 event

shape defined in section 6.5. We believe these might be particularly promising for extract-

ing new-physics signals that involve relatively isotropic events with high jet multiplicity.

Other considerations that we examined in section 6.3 include how well event shapes re-

tain their discriminatory power after parton showering (the collinear-unsafe, but widely

19More precisely: it was significant on the 2, 3 and 4-jet differential cross sections, but mostly cancelled

in the normalised event-shape distributions.
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used transverse sphericity, whose definition is recalled in section 6.1 is particularly poor in

this respect); and also their sensitivity not just to transverse event structure, but also to

longitudinal event structure (the broadenings do well at treating both on an equal footing).

8 Conclusions

In this article we have shown the first NLO+NLL (NNLLΣ) predictions, with full uncer-

tainty bands, for hadronic observables at pp and pp̄ colliders. We opted to make these

predictions for event shapes in the context of dijet production, bringing together calcu-

lations with caesar and a specially adapted version of nlojet++, despite the fact that

the NLO+NLL matching is technically more challenging than for event shapes in other

hadron-collider processes such as Drell-Yan [38] or W/Z+jet [36] production.

Several properties of the dijet process motivated our choice: it involves both initial

and final-state partons; it offers the freedom to vary the proportion of quarks and gluons

involved in the Born process, through the cut on the hard jets; when that cut is placed

at moderate pt, dijet production involves a substantial gg → gg scattering component,

offering the most accessible example of a gluon-dominated process; and the cross sections

imply large event samples.

Comparisons of our results with parton-shower Monte Carlo predictions revealed ade-

quate agreement for historic showers (Herwig 6.5, virtuality-ordered Pythia 6.4) in quark-

dominated cases, while the showers were generally too hard in gluon-dominated processes.

Some common tunes of the newer, pt-ordered shower in Pythia 6.4 fared noticeably worse

than the historic showers. We also examined one framework for matching to multi-parton

tree-level matrix elements (MLM matching of Alpgen+Herwig 6.5). Though it led to some

improvements, it was not immediately sufficient to bring about systematic agreement with

the NLO+NLL results. These findings illustrate how event shapes can provide substantial

input to the quest of understanding perturbative QCD at hadron colliders.

At hadron level, some event shapes are subject to significant non-perturbative correc-

tions from hadronisation and the underlying event. We saw this to be the case, for example,

for the thrusts and jet masses, while other observables, notably the y3 variants, were largely

unaffected by non-perturbative effects. Studying a broad range of event shapes, as done

here, therefore provides complementary information on QCD phenomena at hadron collid-

ers at many different physical scales.

Event shapes are of interest not just for constraining QCD dynamics, but also for

discriminating BSM-like multi-jet topologies from more QCD-like events. There are many

interesting questions to ask about event shapes in this context. Some that we addressed

here include their robustness to parton showering (the widely used transverse sphericity

fares poorly), their sensitivity to longitudinal versus transverse event structure and their

behaviour in the high jet multiplicity limit, where new dedicated event shapes, like the

supersphero variable introduced here, can have particular advantages.

These first steps of ours in exploring the phenomenology of event shapes at hadron

colliders open a window onto a broad range of possible new studies, both theoretical and

experimental. We look forward to their future development.
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A Cross-checking fixed order and resummation

Part of the value of having separate resummed and fixed-order calculations for event-shape

distributions is that they provide cross-checks as to the validity of each of the approaches.

This check is usually performed by a comparison of the exact fixed order results Σi(v) in

eq. (3.5) with the expansion of the resummed result Σr(v) from section 3.1. At small v

the two results should differ order-by-order only by terms suppressed by powers of v or

by logarithmically enhanced terms that are neglected within the resummation accuracy

of Σr(v).

At order αs, the distribution Σ(v) of eq. (3.2) has the expansion at small v

Σ1(v) = H12L
2 + H11L + H10 =

∑

a

(H
(a)
12 L2 + H

(a)
11 L + H

(a)
10 ) , (v ≪ 1) ,

H
(a)
10 =

∑

δ∈a

σ
(δ)
0 〈αsC

(δ)
1 〉 , L ≡ ln

1

v
,

(A.1)

where H
(a)
nm is the coefficient of Lm, has the dimension of a cross section and implicitly

contains αn
s (notice that H

(a)
nm is of order αn+2

s ). A NLL resummation predicts H
(a)
12 and

H
(a)
11 , while H

(a)
10 is obtained from the coefficient 〈αsC

(δ)
1 〉 of eq. (3.18) by summing over

all subprocesses δ corresponding to the same colour channel a, as indicated in eq. (A.1).

The constant H
(a)
10 can be extracted from the exact fixed cross sections σ

(a)
1 and Σ̄

(a)
1 (v),

defined as in eq. (3.6), as follows:

H
(a)
10 = σ

(a)
1 + lim

v→0

[

Σ̄
(a)
1 (v) −

(

H
(a)
12 L2 + H

(a)
11 L

)]

. (A.2)

Figure 21a shows the prediction for the differential distribution v[dΣ1,r(v)/dv] obtained

from eq. (A.1), compared to the exact result v[dΣ1(v)/dv] from nlojet++, for the total

transverse thrust τ⊥,g. The two distributions agree at small v.

Since figure 21a contains large logarithms, a better visual constraint can be obtained by

plotting the difference between Σ1(v) and its logarithmically-enhanced part H12L
2 +H11L,

which should go to a constant at small v, and indeed does. By performing this exercise

separately for each colour channel one can obtain the H
(a)
10 individually, and can also verify
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that Σ
(other)
1 (v) vanishes for small v. From H

(a)
10 one can extract the colour-decomposed

average coefficient constant 〈αsC
(a)
1 〉 = H

(a)
10 /σ

(a)
0 .

The coefficients 〈αsC
(a)
1 〉 obtained in this way are not precisely the ones that multiply

the resummed distribution according to either of the two matching procedures described

in section 3.2, because there one resums not logarithms of v but of a rescaled quantity

XV v, eq. (3.24). To get an idea of the size of the O (αs) term as it is relevant in the

matched resummations, instead of plotting Σ1(v)− (H12L
2 + H11L), in figure 21b we plot

the difference between Σ1(v) and the distribution

Σ̄r,1(v) = H̄12L̄
2 + H̄11L̄ = H12L

2 + H11L + H ′
10 , L̄ ≡ ln

1

X̄V v
, (A.3)

where X̄V is the constant XV of eq. (3.25) computed for the reference Born configuration

used for the analysis of the event-shape properties in caesar (two hard jets in the centre-of-

mass frame with an angle θ∗ with respect to the beam corresponding to cos θ∗ = 0.2). The

constants H̄1m and H ′
10 are defined in terms of the H1m so as to give equality between the

middle and right-hand sides of eq. (A.3). One observes that the difference Σ1(v) − Σ̄r,1(v)

in figure 21b (normalised to σ0) goes, as expected, to a constant. That constant should be

of order αs, whereas numerically it is O (1). However, we also know from table 2 that the

order αs corrections can come with large coefficients.

Given the 〈αsC
(a)
1 〉 and the corresponding NLL resummations f (a)(v), one can predict

the NNLLΣ terms in the αs expansion of Σ(v), i.e. terms αn
s Lp with n− 2 ≤ p ≤ n.

Specifically, to second order in αs, we have

Σ2(v) = H24L
4 + H23L

3 + H22L
2 + H21L + H20 , (v ≪ 1) , (A.4)

and to NNLLΣ accuracy we should control H24, H23 and H22. To see that this is the case

we compare Σ2(v) to the resummation prediction for the modified integrated distribution

Σ̄r,2(v) = H̄24L̄
4 + H̄23L̄

3 + H̄22L̄
2 = H24L

4 + H23L
3 + H22L

2 + H ′
21L + H ′

20 , (A.5)

where again the constants H̄2m and H ′
2m are defined so as to given agreement between

the middle and right-hand sides of eq. (A.5). Figure 21c shows the exact second-order dif-

ferential distribution v[dΣ2(v)/dv],20 compared to v[dΣ̄2,r(v)/dv] obtained from eq. (A.5).

Again one sees good agreement, which is more readily verified by examining the differ-

ence between the two distributions, figure 21d, which is supposed to be (and is) flat (the

constant results from differentiation of the H̄21L term in eq. (A.5)). We also include the

result that is obtained (lower points with errorbars) if one does not carry out the colour

decomposition for 〈αsC
(a)
1 〉, but just computes 〈αsC1〉 = H10/σ0. This gives rise to a dif-

ferent expansion, Σ̄′
r,2(v), whose coefficient of L2 is different from that of Σ̄r,2(v). For τ⊥,g

one notices that the corresponding difference between the exact result v[dΣ2(v)/dv] and

the distribution v[dΣ̄′
2,r(v)/dv] exhibits a hint of a slope at small τ⊥,g, indicating a missing

α2
sL

2 term in Σ̄′
2,r(v).

20As mentioned at the beginning of section 3, there is an unknown overall constant in Σ2(v), which

relates to the NNLO coefficient of the dijet cross-section. This is irrelevant for us here, since we only use

the derivative of Σ2(v).
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Figure 21. Comparisons of logarithms predicted by the resummation with the exact O (αs) results

(a,b) and the O
(

α2
s

)

results from nlojet++ for τ⊥,g. Shown for the Tevatron energy and cuts,

with pt1 > 200 GeV.

Figure 22 shows the same comparison of figure 21 for the global thrust-minor Tm,g.

In this case one is not able, within errorbars, to see any difference between a resummed

prediction containing 〈αsC
(a)
1 〉, giving the correct H22, and one based on 〈αsC1〉, as is

evident from figure 22d. This is possibly due to the fact that the difference between the

full O (αs) results and the first order expansion of the resummation, shown in figure 22a,

is small.

A.1 Weighted recombination in NLO calculations

NLO Monte Carlo calculations for multi-jet processes are highly CPU intensive. Con-

sequently, one carries out multiple calculations (runs), spread across many CPUs, and

averages them so as to get the final result. The correct way of determining the average

is to weight each run in proportion to its number of events. In practice, however, it is

common for the distribution of each run to contain one or two bins that are “outliers”,

obviously inconsistent with the distribution as a whole, and which are a consequence of a

handful of real and subtracted NLO events with very large opposite-sign weights that end

up in different bins. These outliers lead to visible anomalies also in the number-weighted
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Figure 22. Comparisons of logarithms predicted by the resummation with the exact O (αs) results

(a,b) and the O
(

α2
s

)

results from nlojet++ for Tm,g. Shown for the Tevatron energy and cuts,

with pt1 > 200 GeV.

average and make it almost impossible to use the final distribution without some (often

questionable) prescription to deal with the outlying bins.

A common alternative to number-weighted averaging is, for each bin of a run, to

choose a weight that is inversely proportional to the square of the bin’s error in that run.

This is an option for example in nlojet++ (and is implicit also for the total cross section

in programs like MCFM [121] that use VEGAS). Since outlier bins tend to have much

larger errors than normal bins, they contribute little to the average, resulting in much

smoother final distributions. However, the error-weighted averaging procedure introduces

a bias, because there tends to be a correlation between the value in a bin and its error: for

example, in event samples with positive-definite weights, it is well known that runs with

larger bin values also have larger errors, and the final error-weighted average systematically

undershoots the correct result.

Figure 23 shows the analogue of figure 21, comparing event number-based and error-

based weighting. At large negative values of L there is a clear slope, i.e. the bias in the error-

weighted procedure causes the result to disagree with the expectations based on resumma-

tion. Only with number-weighted averaging does one obtain results like figure 21, which
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Figure 23. Comparisons of logarithms predicted by the resummation with the exact O
(

α2
s

)

results

from nlojet++. The left-hand plot corresponds to the case with (event) number-based averaging

of NLO results from separate runs. In the right-hand plot, for each bin of the NLO results, each

run has been given a weight inversely proportional to the square root of the error on that bin in the

run. The results are for the τ⊥,g observable, with Tevatron energy and cuts and pt1 > 200 GeV.

show agreement between the logarithmic structure of the NLO and resummed calculations.

So as to deal systematically with the issue of outlying bins figures 21 and 22 use a

modified version of the number-based weighting, as follows. One first determines an error-

based average for a bin b(w), and a corresponding uncertainty on its contents σ(w) — this

provides an estimate for the correct value. One then carries out the number-based average

with the following modification: for a given bin, one excludes runs whose result is further

than Nσ(w) from the b(w) (we use N = 100 for 15 runs; N should scale as the square-

root of the number of runs). This then gives us a final result that is smooth and with a

substantially reduced bias relative to an error-weighted recombination.

Note that in the phenomenological plots of sections 3 and 4 we have used the error-

based recombination weights. On one hand the bias that it introduces is modest compared

to uncertainties from subleading effects. On the other, some of our runs used Rambo [122]

phase space and others the dipole [123] phase space, and this automatically privileges

whichever of the two gives best convergence in a given phase-space region.

B Comment on effect of forward rapidity cut

For both generic directly global event shapes and those with an exponentially suppressed

forward term, in order to satisfy the continuous globalness requirement needed for the

NLL resummation, we included all particles in the event, including those in the for-

ward/backward regions. Experimentally however, it is not possible to perform measure-

ments up to infinite rapidity. At the Tevatron the forward detector coverage goes up to

y ≃ 3.5 and, at the LHC, measurements up to y ≃ 5 are viable. Theoretical arguments

suggest that as long as the event-shape’s value is not too small, the effect of not including
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Figure 24. Resummed distributions for a selection of event shapes with and without forward

rapidity cut for the high-pt sample at the Tevatron.

forward emissions should be negligible [36], specifically if v & vmin, with vmin given by [37]

vmin ∼ e−(a+b1,2)ηmax , (B.1)

where the a and bi parameters were discussed in section 3.1.1. Examining the pure re-

summed distributions in [37], we came to the conclusion that the result in eq. (B.1) for

vmin ensured that the cutoff would usually have an impact only well below the maximum

of the distributions. Here we supplement this analysis with a numerical study that inves-

tigates the impact of the rapidity cut in practice.
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Figure 25. Same as figure 24 for the low-pt sample at the LHC.

For this purpose we compute the NLO+NLL prediction using a rapidity cut on input

particles for the NLO part of the calculation and compare this to the full NLO+NLL

without forward rapidity cuts. In parallel we carry out an estimate using a Monte Carlo

event generator, since it is straightforward to run it with a rapidity cut.

Figure 24 shows comparisons between NLO+NLL with (solid line) and without the

cut (full uncertainty band), as well as the corresponding Monte Carlo predictions obtained

with Herwig (without UE) at parton level at the Tevatron (pt1 > 200 GeV). Figure 25

shows the corresponding results at LHC (pt1 > 200 GeV). The results with the rapidity
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cut are always contained in the full uncertainty band of the results without. Furthermore,

there is in general very little difference between the two Monte Carlo predictions, with the

exception of the directly global transverse thrust, which is the observable most sensitive

to forward emissions, as the weight of emissions in the forward region is large compared

to that of emissions inside the jets. We note that this is also the one observable where the

difference between Monte Carlo predictions and NLO+NLL is largest.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribution,

and reproduction in any medium, provided the original author(s) and source are credited.
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