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1 Introduction

On-shell recursive techniques have proven very successful in the computation of scattering

amplitudes in gauge theories and in theories of gravity [1–4]. The recursive techniques

for tree scattering amplitudes make use of both the rationality of the amplitudes and

their complex factorisation properties. Specifically, in a theory with massless states, if we

use a spinor helicity representation for the polarisation vectors it is possible to write the

amplitude entirely in terms of spinorial variables A(λi
α, λ̄i

α̇) where the massless momentum

of the ith particle is λi
αλ̄i

α̇ = (σµ)αα̇kµ
i .1

Within this formalism it is possible to probe the analytic structure of the amplitude

by choosing a pair a, b of external momenta and shifting these according to

λ̄a −→ λ̄a − zλ̄b, λb −→ λb + zλa (1.1)

where we suppress the spinor indices. The analytic behaviour of the shifted amplitude A(z)

can then be studied.

If A(z)

1. is a rational function,

2. has simple poles at points zi, and

3. vanishes as z −→ ∞
1We use the usual spinor products 〈a b〉 = ǫαβλa

αλb
β , [a b] = ǫα̇β̇ λ̄a

α̇λ̄b

β̇
, which satisfy 〈a b〉 [b a] = (ka +

kb)
2 ≡ sab, chains of spinor products such as [a|b|c〉 ≡ [a b] 〈b c〉 and [a|Pef ···

|b〉 = [a|e|b〉 + [a|f |b〉 + · · · etc

and tabc ≡ (ka + kb + kc)
2.

– 1 –
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then applying Cauchy’s theorem to A(z)/z with a contour at infinity yields

A(0) = −
∑

zi

Res

(

A(z)

z
, zi

)

. (1.2)

This technique has proven very effective in computing tree amplitudes and has been ex-

tended from the purely gluonic case to a variety of other applications including that of

gravity [3, 4]. Alternate shifts exist [5] which can be used to re-derive the CSW formula-

tion for Yang-Mills [6] and gravity [7].

The result (1.2) holds even if condition 2 above is relaxed to poles of finite order;

however this condition allows us to use the factorisation theorems to determine the residues

in terms of lower point amplitudes. At tree level the factorisation is relatively simple:

amplitudes must factorise on multi-particle and collinear poles. For a partition of the

external momenta (SL, SR) with at least two momenta on either side, and defining Kµ ≡
∑

i∈SL
kµ

i , the n-point tree amplitude Atree
n factorises as K becomes on shell as

Atree
n

K2→0−→
∑

σ

[

Atree
r+1

(

ki ∈ SL,Kσ
) i

K2
Atree

n−r+1

(

(−K)−σ, ki ∈ SR

)

]

(1.3)

where σ denotes the internal state of the intermediate particle and r is the length of

SL. Consequently, simple poles in the shifted amplitude A(z) occur at values of z where

K2(z) = 0. Only those K’s containing precisely one of ka or kb will be z dependent. When

the corresponding K2(z) vanishes the residue will be the product of the tree amplitudes

defined at z = zi. Thus we can express the n-point tree amplitude in terms of lower

point amplitudes,

Atree
n (0) =

∑

i,σ

Atree,σ
ri+1 (zi)

i

K2
Atree,−σ

n−ri+1(zi), (1.4)

where the summation over i is only over factorisations where the a and b legs are on opposite

sides of the pole.

Beyond tree level there are three potential barriers to using recursion. Firstly the

amplitudes, in general, contain non-rational functions such as logarithms and dilogarithms;

secondly, the amplitudes may contain higher-order poles for complex momenta and, finally,

the amplitudes may not vanish asymptotically with z. Nonetheless a variety of techniques

based upon recursion and unitarity have been developed. A one-loop amplitude for massless

particles may be expressed as

A1-loop =
∑

n=2,3,4;i

ciI
i
n + R + O(ǫ) (1.5)

where the scalar integral functions Ii
n are the various scalar box, triangle and bubble

functions. The function R contains the remaining rational terms. The one-loop amplitude

can then be specified by computing the coefficients, ci, and the purely rational term R.

The ci are rational coefficients which can be computed by various applications of the four-

dimensional unitarity technique [8–11] or indeed recursively [12].

– 2 –
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There are a variety of strategies for evaluating the rational terms. They may be

evaluated using D-dimensional unitarity, by recursion or by specialised Feynman diagram

techniques [13–31]. In general, the rational term R does not simply satisfy the previously-

stated requisites for recursion 2 and 3. If the amplitude has only simple poles but does

not vanish as z −→ ∞ then it can be possible to formulate recursion by the use of an

auxiliary recursion relation [32, 33]. However there are rational amplitudes for which one

cannot find a shift which only generates simple poles such as the one-minus amplitude

A1-loop(1−, 2+, · · · , n+). These amplitudes vanish at tree level and consequently are purely

rational at one-loop. A shift on these amplitudes yields double and single poles

A ∼ a

(z − zi)2
+

b

(z − zi)
+ · · · =

a

(z − zi)2

(

1 +
b

a
(z − zi) + · · ·

)

(1.6)

The double pole is not in itself a a barrier to using recursion with the double pole con-

tributing

−Res

(

1

z(z − zi)2
, zi

)

=
1

z2
i

. (1.7)

However to obtain the full residue in a recursive construction one must have specific formu-

lae for this double pole and for the coincident single pole, or the ‘pole under the double pole’.

In ref. [34] the form of the pole in Yang-Mills was postulated to be

1

(K2)2



1 +
∑

ai,bi

S(a1, K̂
+, a2)K2 S(b1, K̂

−, b2)



 (1.8)

where the ‘soft’ factors are

S(a, s+, b) =
〈a b〉

〈a s〉 〈s b〉 , S(a, s−, b) =
[a b]

[a s] [s b]
(1.9)

With this ansatz recursion correctly reproduces the known one-minus one-loop amplitudes.

In ref. [35] it was shown that the consistency requirements for recursion in QCD are suffi-

cient to determine these soft factors.

The above postulate, or variations thereof, however does not work for gravity ampli-

tudes [36]. In this article we will demonstrate how to apply recursion techniques in gravity

scattering amplitudes by determining the ‘pole under the pole’ using an axial gauge for-

malism. By only keeping the pole terms it is relatively simple to extract these from the

diagrammatic approach. We demonstrate this by calculating the previously-unknown am-

plitudes M1-loop(1−, 2+, 3+, 4+, 5+) and M(1−, 2+, 3+, 4+, 5+, 6+). We assume that the

shifted amplitudes have vanishing behaviour as z −→ ∞. The expressions we derive have

the correct symmetries and soft limits, providing strong evidence for the validity of this

assumption. Further, we compare the result numerically with a completely independent

computation of M1-loop(1−, 2+, 3+, 4+, 5+) from ‘string-based rules’ for gravity [37–40].

– 3 –
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2 Recursion

The factorisation of one-loop massless amplitudes is described in ref. [41],

A1-loop
n

K2→0−→
∑

λ=±

[

A1-loop
r+1

(

ki, . . . , ki+r−1,K
λ
) i

K2
Atree

n−r+1

(

(−K)−λ, ki+r, . . . , ki−1

)

+ Atree
r+1

(

ki, . . . , ki+r−1,K
λ
) i

K2
A1-loop

n−r+1

(

(−K)−λ, ki+r, . . . , ki−1

)

+ Atree
r+1

(

ki, . . . , ki+r−1,K
λ
) i

K2
Atree

n−r+1

(

(−K)−λ, ki+r, . . . , ki−1

)

Fn

(

K2; k1, . . . , kn

)

]

,

(2.1)

where the one-loop ‘factorisation function’ Fn is helicity-independent. Näıvely this only

contains single poles, however for complex momenta there are double poles. These can

be interpreted as due to the three-point all-plus (or all-minus) one-loop amplitude also

containing a pole

A1-loop
3 (K+, a+, b+) =

1

K2
V 1-loop(K+, a+, b+) (2.2)

where, for pure Yang-Mills,

V 1-loop(K+, a+, b+) = − i

48π2
[K a] [a b] [bK] . (2.3)

To see this explicitly, let us consider the five-point Yang-Mills amplitude

A1-loop(1−, 2+, 3+, 4+, 5+) [42]:

A1-loop
5 (1−, 2+, 3+, 4+, 5+) =

i

48π2

1

〈3 4〉2
[

− [2 5]3

[1 2] [5 1]
+

〈1 4〉3 [4 5] 〈3 5〉
〈1 2〉 〈2 3〉 〈4 5〉2

− 〈1 3〉3 [3 2] 〈4 2〉
〈1 5〉 〈5 4〉 〈3 2〉2

]

. (2.4)

If we carry out a complex shift on legs 1 and 5,

λ5 −→ λ5 + zλ1, λ̄1 −→ λ̄1 − zλ̄5, (2.5)

then 〈4 5〉 −→ 〈4 5〉 + z 〈4 1〉 which vanishes at z = −〈4 5〉 / 〈4 1〉 and the amplitude has a

double pole at this point.2

A recursive approach suggests drawing the diagrams shown in figure 1. The third of

these involves the one-loop vertex V 1-loop(K+, 4+, 5̂+). Computing with this does correctly

generate the double pole in the amplitude [34, 36], however it needs augmentation to give

an expression with the correct single pole. By trial and error, adding the second term

in (1.8) gives the correct single pole and completes the computation of the amplitude.

When calculating the gravity amplitude M1-loop
5 (1−, 2+, 3+, 4+, 5+) we must consider

the same class of diagrams as in figure 1 together with permutations over the external legs.

For gravity the vertex

V 1-loop(K+, a+, b+) = − iκ3

1440π2
([K a] [a b] [bK])2 (2.6)

2The term which gives rise to the double pole [4 5] / 〈4 5〉2 is the one-loop splitting function [8, 9] which

only gives a linear collinear pole for real momenta.
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LT

1̂−

2+ 3+

4+

5̂+

± ∓

(a)

L T

1̂−

2+

3+ 4+

5̂+

+ −

(b)

LT

1̂−

2+

3+ 4+

5̂+

− +

(c)

Figure 1: Diagrams contributing to the recursive construction of A(1−, 2+, 3+, 4+, 5+)

with legs 1 and 5 shifted in the manner of (2.5). The diagram (c) contains the one-loop

vertex V 1-loop(K̂+, 4+, 5̂+) that contributes the double-pole.

T

l−5̂

l+4

l

4+

5̂+

3+

2+

1̂−

Figure 2: The form of the tree insertion that augments the recursion in order to construct

the double pole and its underlying single pole.

can be used to generate a double pole term which has the correct soft and collinear limit,

but attempts [36] to implement a universal correction for the single pole analogous to that

of (1.8) have failed.

We find that the resolution is to replace the factorisation term of figure 1c with a

tree insertion diagram of the form shown in figure 2 and compute this using axial gauge

diagrammatics. In section 3 we present the axial gauge rules, in section 4 the computation of

the five point one-minus gravity amplitude and in appendix A the result of the computation

of the six point one-minus amplitude.

3 Axial gauge diagrammatics

We use axial gauge diagrammatic methods to determine the singular structure necessary to

augment the recursion. We identify and compute the singularities arising when we shift a

negative-helicity leg a and a positive-helicity leg b as in (1.1). These singularities arise from

propagators involving just external momenta and from the loop momentum integration.

Following ref. [43] we use a set of Feynman rules for Yang-Mills amplitudes based

on scalar propagators connecting three and four point vertices. The starting point is the

expansion of the axial gauge propagator in terms of polarisation vectors,

i
dµν

k2
=

i

k2

(

−gµν + 2
kµqν + qµkν

2k · q

)

=
i

k2
[ǫ+

µ (k)ǫ−ν (k) + ǫ−µ (k)ǫ+
ν (k) + ǫ0

µ(k)ǫ0
ν(k)], (3.1)

– 5 –
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where

ǫ+
µ (k) =

[k♭|γµ|q〉√
2
〈

k♭ q
〉 , ǫ−µ (k) =

[q|γµ|k♭〉√
2
[

k♭ q
] , ǫ0

µ(k) = 2

√
k2

2k · q qµ. (3.2)

Here q is a null reference momentum which may be complex. For any momentum k we

define its q-nullified form

k♭ := k − k2

2k · q q. (3.3)

Contracting the polarisation vectors into the usual Yang-Mills three-point vertex yields the

familiar three-point MHV and MHV vertices,

1

i
√

2
V3(1

−, 2−, 3+) =
〈1 2〉3

〈2 3〉 〈3 1〉 =
〈1 2〉 [3 q]2

[1 q] [2 q]
,

1

i
√

2
V3(1

+, 2+, 3−) = − [1 2]3

[2 3] [3 1]
=

[2 1] 〈3 q〉2
〈1 q〉 〈2 q〉 , (3.4)

along with a V3(1
+, 2−, 30) vertex. In the formula above, all momenta are q-nullified.

As vertices of this last type must be attached together in pairs, it is natural to absorb

the resulting four-point configurations into an effective four-point vertex along with the

Yang-Mills four-point vertex. These effective four-point vertices contain prefactors

[p q]

〈p q〉 and
〈m q〉
[m q]

, (3.5)

for each positive-helicity leg p, and each negative-helicity leg m, respectively.

When adopting a recursive approach which involves shifting a negative-helicity leg a

and a positive-helicity leg b, the recursion-optimised choice for the reference momentum

q is

λq = λa, λ̄q = λ̄b. (3.6)

With this choice of q the prefactors of four-point vertices (3.5) involving a shifted leg

vanish. Furthermore from (3.4) the legs a and b can only enter a diagram on an MHV or

MHVthree-point vertex respectively.

Thus for the single-minus amplitudes, at tree and one-loop level, the external negative-

helicity leg must enter the diagram via an MHV three-point vertex and this must have a

negative-helicity internal leg. This leaves insufficient negative helicities to have a four-point

vertex anywhere in the diagram. At tree level there are no non-vanishing diagrams whilst at

one-loop we have a single MHV three-point vertex and several MHV three-point vertices in

each diagram. These rules apply to both Yang-Mills and gravity calculations. For gravity

we define the tree amplitudes using the Kawai-Lewellen-Tye (KLT) expressions [44].

We now wish to characterise the singularities when either sbc or say vanish. Singular-

ities arise in the integration from the region of loop momentum where the denominators

of three adjacent propagators vanish simultaneously, as the two null legs to which they

– 6 –
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Figure 3: With the constraints that (1) the negative-helicity leg enters via an MHV three-

point vertex and (2) the four-point vertices vanish, we only have non-vanishing diagrams

with a single three-point MHV vertex with the remaining vertices three-point MHV with

internal helicities organised as shown in these sample diagrams.

l+b

l−c

l

c+

b+

d+
.
.

a−
τ

(a)

l+y

l−a

l

a−

y+

b+
.
.

x+
τ

(b)

Figure 4: Singularities in sbc and say arise in integrations over the terms shown.

c+

b+

d+
.
.

a−
τ

−

+
−

+
−

+

(a)

c+

b+

d+
.
.

a−
τ

+

−
+

−
+

−

(b)

c+

b+

d+
.
.

a−
τ

−

+
−

−
+

+

(c)

Figure 5: The three possible helicity structures of figure 4a.

connect become collinear. The diagrams of interest for any single-minus amplitude can

then be collected into the forms shown in figure 4. Note that we evaluate these diagrams

for real momenta and only carry out analytic shifts on the final expressions. The circles

in these diagrams represent the sums of all possible tree diagrams with two internal legs

and the given external legs. We denote these by τ(a, b, . . .). In the integration region of

interest all the legs of τ are close to null and the internal legs are close to collinear.

In each case there are three options for the helicities within the loop, as illustrated in

figure 5. Let us consider figure 4a. With the configuration of figure 5c, τ vanishes at the

integration singularity because it is a one-minus tree amplitude in this limit and so the

diagram has vanishing residue.

– 7 –
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The diagram 5b evaluates to

∫

d4l
[b|l|a〉[c|l|a〉
〈b a〉 〈c a〉 × 〈l − c, a〉2

〈l + b, a〉2
τ((l − c)+, d+, · · · , a−, (l + b)−)

l2(l + kb)2(l − kc)2
(3.7)

where the momenta in the spinor products are q-nullified as in (3.3). We construct a basis

for the loop momentum built on b and c via

l = α1(kb + kc) + α2(kb − kc) + (α3 + iα4)
〈c a〉
〈b a〉λbλ̄c + (α3 − iα4)

〈b a〉
〈c a〉λcλ̄b (3.8)

Under this parametrisation,

∫

d4l

l2(l + kb)2(l − kc)2
f(l) =

1

sbc

∫

dαi F (αi)f(l(αi)) (3.9)

where F (αi) has no dependence on sbc.
3

Also,

[b|l|a〉 =
(

α1 − α2 + α3 + iα4

)

[b|c|a〉,
[c|l|a〉 =

(

α1 + α2 + α3 − iα4

)

[c|b|a〉. (3.10)

After these manipulations the integrand from figure 4a becomes

[bc]

〈bc〉
〈l − c, a〉2

〈l + b, a〉2
τ((l − c)+, d+, . . . , a−, (l + b)−) × F ′(αi). (3.11)

When l, b and c become collinear, τ approaches the collinear limit of an MHV tree am-

plitude. Within τ there are diagrams with an explicit sbc pole. The singular factor from

the integration around the collinear limit combines with the explicit pole factor to give the

double pole discussed previously. In addition to the leading behaviour of τ in the collinear

limit, we need to know its finite piece in order to determine the residue at this pole. The

diagram 5a gives the same contribution.

We can apply a similar analysis to the contributions from diagrams of the type shown

in figure 4b. In this case τ approaches either a one-minus or an all-plus tree amplitude in

the region of interest and so vanishes. Thus diagrams of the type shown in figure 4b give

no contribution.

In order to evaluate the contribution from (3.11) we must evaluate the tree structures

to order 〈b c〉0. For diagrams within τ involving 1/sbc this means going beyond leading

order. The loop part of these diagrams is a triangle and the calculation is readily done

exactly. The diagrams without this propagator need only be calculated to leading order. In

this regard, not only is the recursive approach selecting a subset of diagrams for calculation,

it is also allowing us to calculate these diagrams in a very convenient limit.

3 We have not explicitly introduced a regulator, although even for the finite amplitudes under consid-

eration individual diagrams may diverge. If we were to use a Pauli-Villars regulator with mass MPV for

instance, we could still extract the same momentum-dependent prefactor but the remaining integral would

depend on the αi and M2
PV/sbc. Knowing that any divergent pieces cancel in the full amplitude allows us

to consider only the finite pieces, which are independent of MPV.

– 8 –
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In the following section we apply an augmented recursive analysis to the calculation

of the amplitude M1-loop(1−, 2+, 3+, 4+, 5+). For gravity, using the KLT relations for tree

amplitudes [44] the equivalent expression to (3.11) is

[bc]3

〈bc〉
〈l − c, a〉4

〈l + b, a〉4
τgrav((l − c)+, d+, . . . , a−, (l + b)−) × F ′(αi). (3.12)

4 The graviton scattering amplitude M1-loop(1−, 2+, 3+, 4+, 5+)

To compute this amplitude recursively, as discussed in the previous section, we must com-

pute three types of contribution:

c+

L

b̂+

d+

e+

â−

− +
â−

L

e+

b̂+

c+

d+

− +
T

l+b̂

l−c

l

c+

b̂+

d+

e+

â−

(1) (2) (3)

together with the contributions obtained by summing over the distinct permutations of c,

d and e.

The first two of these involve single poles only, so we only need the loop structures

to leading order and we can use the corresponding four-pt one-loop amplitudes. The

final structure contains a double pole so we must evaluate both the tree structure on the

right and the loop pieces more carefully. The first diagram uses the four-point one-minus

amplitude whereas the second requires the four-point all-plus amplitude, both are given

in (B.4). We obtain,

R1(a, b, c, d, e) =
1

5760

〈ad〉2〈ae〉2[bc][de]4
(

〈cd〉2〈ae〉2 + 〈ac〉〈cd〉〈de〉〈ae〉 + 〈ac〉2〈de〉2
)

〈ab〉2〈bc〉〈ce〉2〈cd〉2〈de〉2 ,

R2(a, b, c, d, e) = − 3

5760

〈ae〉[be]4
〈cd〉2[ab]2[ae]

(

[bc]2[de]2 + [bc][cd][de][be] + [cd]2[be]2
)

. (4.1)

For the third diagram, we need the tree diagrams which constitute τgrav of (3.12).

Mindful of the recursive analysis that we will ultimately perform, we calculate these dia-

grams as Laurent series in 〈b c〉, dropping terms that will not contribute to the residues.

We require the five-point contributions with two off-shell legs B− and C+, carrying

momenta B ≡ l + b and C ≡ c − l, respectively.

The KLT relation [44] between Yang-Mills amplitudes and gravity amplitudes at five

points is

M(a−, B−, C+, d+, e+) =sBCsdeA(a−, B−, C+, d+, e+)A(a−, C+, B−, e+, d+)

+ sBdsCeA(a−, B−, d+, C+, e+)A(a−, d+, B−, e+, C+), (4.2)

where we have chosen a form of the KLT relations that restricts the 〈bc〉 pole to the first

term. The KLT relations are only valid for on-shell momenta, although these momenta

– 9 –
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may be in higher dimensions. If we assume the deviation from eq. (4.2) may be neglected

in the region around B2 = C2 = 0, we see that the gravity tree structure has the form,

〈bc〉
(

T leading

〈bc〉 + T sub-leading

)(

T leading

〈bc〉 + T sub-leading

)

, (4.3)

where all diagrams contribute to the sub-leading pieces but only diagrams involving a

V3(B
−, C+, x) vertex contribute to the leading pieces. The second term in eq. (4.2) is only

needed to leading order and its contribution to the residue will be directly determined by

the on-shell Yang-Mills MHV amplitudes. The amplitude generated using the leading and

sub-leading singularity terms from (4.2) has the correct symmetries and collinear limits.

Additionally, the five-point amplitude has been verified by a completely independent string-

based rules computation. The general case is worthy of further study [45].

First we establish the double pole term. This arises from the poles in each of the Yang-

Mills tree amplitudes in the first term of (4.2). We evaluate this diagrammatically. The

Yang-Mills amplitude, A(a−, B−, C+, d+, e+) receives contributions from five diagrams.

The two which contribute to the pole are:

k1 k2+ − + −

C+

B−

d+ e+

a−

k1 k2+ − + −

C+

B−

d+

e+a−

(a) (b)

with contributions

Da =
〈Ba〉2
〈Ca〉2

〈a|bc|a〉[de][eb]

sbc〈da〉〈ea〉[ae][ab]
fa(αi),

Db =
〈Ba〉2
〈Ca〉2

〈a|bc|a〉〈ca〉
〈bc〉[ab]〈de〉〈da〉〈ea〉 fb(αi), (4.4)

where we have used 〈a|BC|a〉 = 〈a|(b + l)(c − l)|a〉 = 〈a|bc|a〉f(αi), etc.. The parameters

contained in fa and fb are the same for both diagrams and the sum of the two contribu-

tions is

Da + Db =
〈Ba〉2
〈Ca〉2

〈a|bc|a〉
sbc[ab]〈da〉〈ea〉

(

[b|ad|e] − [b|cb|e]
[ae]〈de〉

)

fa(αi), (4.5)

where the second term is sub-leading in the 〈bc〉 pole.

The leading pole in the other Yang-Mills factor is obtained analogously and, combining,

we obtain the leading pole in (4.2),

〈Ba〉4
〈Ca〉4 sbcsde

〈ab〉〈ac〉[de]

〈bc〉〈ea〉[ae]〈de〉
〈ab〉〈ac〉[de]

〈bc〉〈da〉[ad]〈de〉 f
′
a(αi). (4.6)
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Combining this with the factors arising from the left hand part of the full diagram and

integrating over the αi the leading term in the Laurent series is proportional to

[bc]3

〈bc〉 [bc][de]
〈ab〉〈ac〉[de]

〈ea〉[ae]〈de〉
〈ab〉〈ac〉[de]

〈bc〉〈da〉[ad]
, (4.7)

which clearly displays the double pole factor. The constant of proportionality is most

readily fixed by looking at collinear limits.

We must now enumerate the contributions that are sub-leading in the sbc pole. These

come from a variety of sources. We express these single-pole terms as the double-pole factor

of (4.7), multiplied by a factor δ. Firstly, we have the sub-leading contribution of (4.5)

together with the corresponding contribution from the other Yang-Mills factor,

δ1 =
sbc[be]

[b|ad|e] +
sbc[bd]

[b|ae|d]
. (4.8)

Next we have the sub-leading diagrams for the Yang-Mills amplitudes in the first term

of (4.2) shown below:

k1 k2+ − + −

B−

a−

C+ d+

e+

k1 k3+ − + −

B−

a−

C+

d+e+

k1 k2− + + −

a−

e+

B− C+

d+

(c) (d) (e)

We note that in the first two of these the k1 propagator feeds into the two diagrams that

would make a one-minus four-point tree if k1 and C were both null. As we know that this

vanishes when all the legs are null, the sum of the first two diagrams must be of the form:

C2X +k2
1Y . We can drop the terms containing a C2 factor as we are already at sub-leading

order, leaving something proportional k2
1 . Thus taking both terms together leads to the

cancellation of the saB propagator:

Dc + Dd =
〈Ba〉2
〈Ca〉2

[b|B|a〉
[ab]〈ea〉〈de〉

〈ca〉
〈cd〉fc(αi) + O(〈bc〉). (4.9)

Pulling out a factor of (4.7) leaves

δ2 =
sbc[e|a|c〉
sab[e|d|c〉

. (4.10)

We can apply the same procedure to the final diagram giving

δ3 =
〈bc〉〈de〉
sab[de]

(

[e|B|a〉[eb]
〈da〉〈cd〉 +

[d|B|a〉[db]

〈ea〉〈ce〉

)

(4.11)

Finally we need the second term in (4.2), sBdsCeA(a,B, d,C, e)A(a, d,B, e, C), which we

evaluate using MHV tree amplitudes. After extracting the double-pole factor we obtain

δ4 =
〈bc〉〈de〉[d|B|a〉[e|C|a〉
[bc][de]〈ab〉2〈cd〉〈ce〉 . (4.12)
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We thus have the leading and sub-leading poles expressed as

[bc]3

〈bc〉 [bc][de]
〈ab〉〈ac〉[de]

〈ea〉[ae]〈de〉
〈ab〉〈ac〉[de]

〈bc〉〈da〉[ad]
×
(

1 +
∑

i

δi

)

(4.13)

We can now use the pole to determine the amplitude recursively. This involves applying

the shift (1.1) and evaluating at z = −〈bc〉/〈ac〉. The coefficient of the double pole in (4.7)

has a z dependence under this shift which generates a further contribution to the single

pole since

Res

(

f(z)

z(z − zi)2
, zi

)

= −f(zi)

z2
i

+
1

zi

df

dz

∣

∣

∣

∣

z=zi

. (4.14)

Carrying this out and combining with the contributions of the δs gives

∆(a, b, c, d, e) = −1

2

〈ad〉〈bc〉
〈ab〉〈cd〉 −

1

2

〈ae〉〈bc〉
〈ab〉〈ce〉 (4.15)

− 3
[db][eb]

〈dc〉〈ec〉
〈bc〉
[bc]

〈de〉
[de]

− 3
[dc][ec]

〈dc〉〈ec〉
〈bc〉
[bc]

〈de〉
[de]

〈ca〉2
〈ba〉2 (4.16)

− 7

2

[dc][eb]

〈dc〉〈ec〉
〈bc〉
[bc]

〈de〉
[de]

〈ca〉
〈ba〉 −

7

2

[db][ec]

〈dc〉〈ec〉
〈bc〉
[bc]

〈de〉
[de]

〈ca〉
〈ba〉 . (4.17)

The full one-minus amplitude can now be written as the sum over recursive contribu-

tions arising from three orderings of the external legs,

M1-loop(1−, 2+, 3+, 4+, 5+) = R(1, 2, 3, 4, 5) + R(1, 2, 4, 5, 3) + R(1, 2, 5, 3, 4). (4.18)

with the full amplitude having a factor of iκ5/16π2 as in (B.1).

Each recursive term is a sum over the three classes of recursive diagram,

R(a, b, c, d, e) = R1(a, b, c, d, e) + R2(a, b, c, d, e) + R3(a, b, c, d, e), (4.19)

where R1 and R2 are given by (4.1), and

R3(a, b, c, d, e) =
1

5760

〈ab〉2〈ac〉4[bc]4[de]

〈ad〉〈ae〉〈bc〉2〈cd〉〈ce〉〈de〉
(

1 + ∆(a, b, c, d, e)
)

. (4.20)

The overall normalisation can be obtained by evaluating the parameter integrals or, more

easily, fixed by factorising the known four-point amplitude. The individual factors on

the terms in ∆ are also obtainable by parameter integration or more conveniently by the

normalisation of the collinear limits.

This form for the amplitude has the correct collinear limits and is symmetric under

interchange of any pair of positive-helicity legs. We have also checked that the amplitude

agrees with that calculated by string-based rules. This calculation can readily be extended

to the six-point case, M1-loop(1−, 2+, 3+, 4+, 5+, 6+). We have constructed the amplitude

and again checked that it has the correct symmetries and collinear limits. This result is

presented in appendix A. Mathematica code for both the five- and six-point amplitudes

may be found at http://pyweb.swan.ac.uk/∼dunbar/graviton.html.
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5 Conclusions and remarks

In this article we have demonstrated how to augment recursion in order to determine the

rational terms in amplitudes with double poles under a complex shift. Double poles are

generic in amplitudes, however it is often possible to carry out a recursion which avoids then.

However, double poles are unavoidable in the case of the one-minus Yang-Mills amplitudes

A1-loop(1−, 2+, 3+, . . . , n+) and the gravity amplitudes M1-loop(1−, 2+, 3+, . . . , n+). In the

absence of a universal soft factor analogous to (1.8), in order to perform the augmented

recursion the sub-leading poles must be determined on a case-by-case basis. While we have

done this for both the five- and six-point one-minus gravity amplitudes, this procedure could

be used to calculate the seven-point or indeed any higher-point one-minus amplitude.

A Six-point single-minus amplitude

The six-point one-loop single-minus graviton scattering amplitude can also be calculated

using augmented recursion. The calculation follows that of the five-point amplitude with

the addition of factorisations involving a four-point tree amplitude and a four-point loop

amplitude. The shift employed is once again λ̄1 → λ̄1−zλ̄2, λ2 → λ2 +zλ1. The amplitude

is given by

M1-loop(1−, 2+, 3+, 4+, 5+, 6+) = (A.1)
∑

x∈{3,4,5,6}
{y1,y2,y3}∪{x}={3,4,5,6}

{

R
(6)
1 (1, x|2, y1, y2, y3; zx) + R

(6)
2 (2, x|1, y1, y2, y3; zx)

+R
(6)
3 (2, x|1, y1, y2, y3; zx)

}

+
∑

{x1,x2}⊂{3,4,5,6}
{y1,y2}∪{x1,x2}={3,4,5,6}

R
(6)
4 (1, x1, x2|2, y1, y2; zx1,x2

).

In each of these terms the vertical bar denotes a split of the external momenta with the

relevant pole arising when the shifted total momentum to the right of bar is null.

The R
(6)
1 terms are the factorisations involving a three-point MHV tree and a five-point

all-plus one-loop amplitude:

R
(6)
1 (1, x|2, y1, y2, y3; zx) =

[x 2]2 〈1x〉
[1 2]2 [1x]

M1-loop(p+, 2̂+, y+
1 , y+

2 , y+
3 ), (A.2)

with zx = [1x] / [2x] and p = (λx + λ1 [1 2] / [x 2])λ̄x. Similarly, the R
(6)
2 terms are

the factorisations involving a three-point MHV tree and a five-point one-minus one-

loop amplitude:

R
(6)
2 (2, x|1, y1, y2, y3; zx) =

〈1x〉2 [2x]

〈1 2〉2 〈2x〉
M1-loop(1̂−, y+

1 , y+
2 , y+

3 , p+), (A.3)

with zx = −〈x 2〉 / 〈x 1〉 and p = λx(λ̄x + 〈1 2〉 λ̄2/ 〈1x〉). The R
(6)
4 terms are the factorisa-

tions involving a four-point MHV tree and a four-point all-plus one-loop amplitudes:

R
(6)
4 (1, x1, x2|2, y1, y2; zx1x2

) =
M tree(1̂−,−p−, x+

1 , x+
2 )M1-loop(2̂+, y+

1 , y+
2 , p+)

t1x1x2

, (A.4)
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with zx1x2
= t1x1x2

/[2|Px1x2
|1〉 and p = k1̂ + kx1

+ kx2
.

The R
(6)
3 terms are the augmented pieces arising from the 〈2x〉 poles. Here, zx =

−〈x 2〉 / 〈x 1〉.

R
(6)
3 (2, x|1, y1, y2, y3; zx) =

[2x]3

〈2x〉

{

−KLTF(1̂, 2̂, x, y1, y2, y3)

+
[2x]

〈2x〉sy2y3
YML(1̂, 2̂, x, y1, y2, y3)

× [sy1y3
YML(1̂, 2̂, x, y3, y1, y2) + (sy1y2

+ sy1y3
)YML(1̂, 2̂, x, y3, y2, y1)]

+ [2x]sy2y3
YML(1̂, 2̂, x, y1, y2, y3)

× [sy1y3
YMS(1̂, 2̂, x, y3, y1, y2) + (sy1y2

+ sy1y3
)YMS(1̂, 2̂, x, y3, y2, y1)]

+ [2x]sy2y3
YMS(1̂, 2̂, x, y1, y2, y3)

× [sy1y3
YML(1̂, 2̂, x, y3, y1, y2) + (sy1y2

+ sy1y3
)YML(1̂, 2̂, x, y3, y2, y1)]

+
[2x]

〈2x〉sy1y3
YML(1̂, 2̂, x, y2, y1, y3)

× [sy2y3
YML(1̂, 2̂, x, y3, y2, y1) + (sy2y1

+ sy2y3
)YML(1̂, 2̂, x, y3, y1, y2)]

+ [2x]sy1y3
YML(1̂, 2̂, x, y2, y1, y3)

× [sy2y3
YMS(1̂, 2̂, x, y3, y2, y1) + (sy2y1

+ sy2y3
)YMS(1̂, 2̂, x, y3, y1, y2)]

+ [2x]sy1y3
YMS(1̂, 2̂, x, y2, y1, y3)

× [sy2y3
YML(1̂, 2̂, x, y3, y2, y1) + (sy2y1

+ sy2y3
)YML(1̂, 2̂, x, y3, y1, y2)]

}

,

(A.5)

where the KLT terms contributing to the double pole have leading Yang-Mills factors:

YML(a, b, c, d, e, f) =
〈ac〉〈ba〉

[ab]〈da〉〈ea〉〈fa〉

{

[bc]〈ca〉
tdef

(

[f |Pde|a〉
〈de〉 +

[d|Pef |a〉
〈fe〉

)

+
[d|Pef |a〉[b|Pef |a〉

〈ef〉tefa
+

[d|Pef |a〉[ef ][fb]

[af ]tefa
+

[f |Pde|a〉[fb]

[af ]〈de〉

}

, (A.6)

and sub-leading factors:

YMS(a, b, c, d, e, f) =
〈ba〉

[ab]〈da〉〈ea〉〈fa〉

{

[d|Pef |a〉[b|Pef |a〉2
〈ef〉t2efa

+
[d|Pef |a〉[ef ][fb]

[af ]tefa

(

[b|Pef |a〉
tefa

+
[bf ]

[af ]

)

− [f |Pde|a〉[bf ]2

[af ]2〈de〉

}

+
1

2

[bc]〈ac〉2
[ab]〈cd〉〈de〉〈ef〉〈fa〉 − 1

2

[f |kb − kc|a〉〈ac〉[fb]

[ab]〈cd〉〈de〉〈ea〉sfa

− 1

2

〈a|(kb − kc)Pef |a〉〈ac〉
[ab]〈cd〉〈da〉〈ea〉tefa

(

[b|Pef |a〉
〈fe〉〈fa〉 +

[bf ][ef ]

sfa

)

. (A.7)
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Finally the finite terms in the KLT sum are:

KLTF(a, b, c, d, e, f) =

sef 〈ab〉4
2〈ad〉〈ae〉〈af〉〈bd〉2〈be〉2〈bf〉〈ef〉2

×
{

〈ae〉
(

6〈a|bPef |b〉[d|b|a〉+7〈a|bPef |b〉[d|c|a〉+7〈a|cPef |b〉[d|b|a〉+6〈a|cPef |b〉[d|c|a〉
)

+ 〈ab〉
(

6〈e|fb|a〉[d|b|a〉 + 7〈e|fb|a〉[d|c|a〉 + 7〈e|fc|a〉[d|b|a〉 + 6〈e|fc|a〉[d|c|a〉
)

}

+
sdf 〈ab〉4

2〈ad〉〈ae〉〈bd〉〈be〉〈bf〉2〈de〉〈df〉
×
{

6[e|b|a〉[f |b|a〉 + 7[e|b|a〉[f |c|a〉 + 7[e|c|a〉[f |b|a〉 + 6[e|c|a〉[f |c|a〉
}

+
〈ab〉4

2〈ad〉〈ae〉〈af〉〈bd〉〈be〉〈bf〉2〈de〉
{

[d|c|a〉[e|b|a〉[f |c|a〉 + [d|b|a〉[e|c|a〉[f |b|a〉
}

+ {d ↔ e} (A.8)

Expressed näıvely, without attempting optimisation, as a rational polynomial of the λi
α

it has a LeafCount of 355,053. For comparison, the LeafCount of the five-point one-minus

gravity amplitude is 4,549, and for the six-point one-minus Yang-Mills amplitude is 1,541.

B Graviton scattering amplitudes

We define tree and one-loop amplitudes in gravity for which all field couplings have been

removed, i.e.,

Mtree
n (1, 2, . . . , n) = iκ(n−2)M tree

n (1, 2, . . . , n),

M1-loop
n (1, 2, . . . , n) =

iκn

(4π)2
M1-loop

n (1, 2, . . . , n). (B.1)

As for Yang-Mills amplitudes we express amplitudes using the spinor helicity formalism.

For the four dimensional case there are only two graviton helicities and their polarisation

tensors can be constructed from direct products of Yang-Mills polarisations vectors,

ε+
µν = ε+

µ ε+
ν , ε−µν = ε−µ ε−ν . (B.2)

If we consider the Feynman diagrams for a gravity one-loop scattering amplitude, per-

forming a Passarino-Veltman reduction [46–48] allows us to reduce any one-loop amplitude

to the form

M1-loop
n (1, . . . , n) =

∑

i

ci Ii
4 +

∑

j

dj Ij
3 +

∑

k

ek Ik
2 + R + O(ǫ). (B.3)

Relatively few graviton scattering amplitudes have been computed. In fact, only the

four-point amplitudes have been computed for all helicity configurations [39, 40, 49–51] and
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all possible matter types circulating in the loop. For four points there are three independent

helicity configurations for the external gravitons: M(1+, 2+, 3+, 4+), M(1−, 2+, 3+, 4+)

and M(1−, 2−, 3+, 4+). The all-plus and one-minus vanish at tree level and have one-loop

amplitudes which are purely rational (to order ǫ0). These amplitudes, for any matter

content, are

M1-loop(1+, 2+, 3+, 4+) = −Ns

(

st

〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉

)2 (s2 + st + t2)

1920
,

M1-loop(1−, 2+, 3+, 4+) = Ns

(

st

u

)2( [2 4]2

[1 2] 〈2 3〉 〈3 4〉 [4 1]

)2 (s2 + st + t2)

5760
, (B.4)

where s = (k1 + k2)
2, t = (k1 + k4)

2, u = (k1 + k3)
2 and Ns = NB − NF is the number

of bosonic states in the loop minus the number of fermionic states. The amplitudes for

pure gravity are found by putting Ns = 2 in the above expressions since a graviton has two

helicity states. These amplitudes vanish in any supersymmetric theory. The n-point all-

plus and one-minus amplitudes are also particle-type independent up to a prefactor of Ns,

as can be seen from the vanishing of these amplitudes in any supersymmetric theory as a

consequence of supersymmetric Ward identities [52, 53]. It is therefore sufficient, for these

configurations, to compute the amplitude with a scalar particle circulating in the loop.

Beyond four points most of the explicit graviton amplitudes are for scattering in su-

persymmetric theories. For N = 8 supergravity the n-point MHV is known [54], as are

the NMHV six- [55, 56] and seven-point amplitudes [57]. In ref. [54] a ‘dimension shift’

relation [31] allowed the conjecture of an ansatz for the all-plus n-point amplitudes. This

amplitude is an ingredient in the recursion of the one-minus amplitude.

C String-based rules calculation of M1-loop(1−, 2+, 3+, 4+, 5+)

The string-based rules were introduced in refs. [37, 38, 58] as a method of calculating

(one-loop) gauge theory amplitudes. Their extension to gravity, in the form we use here,

was given in refs. [39, 40]. In this appendix we summarise these rules and then describe

how they are applied to compute M1-loop(1−, 2+, 3+, 4+, 5+). Our presentation treats the

method as something of a ‘black box’ for obtaining field-theory results and we refer those

interested in the details of its string-theory origins and derivation to the literature.

C.1 Summary of the string-based rules for gravity amplitudes

String-based rules use one-loop φ3-like graphs to compute the one-loop corrections to a field

theory amplitude. The terms produced take the form of a rational function of the kinematic

variables, within a Feynman parametrisation of a tensor loop integral. This approach has

the advantage of significant computational savings over the traditional Feynman graph

method: far fewer graphs are involved and early application of simplifications from the

spinor-helicity formalism reduce the complexity of the associated expressions.

We begin by drawing all one-loop φ3 graphs excluding massless bubbles (which vanish

in dimensional regularisation) and tadpoles. We label the outermost legs of the graphs

with the particles’ momenta, k1, . . . , kn. An internal line bears the same label as the first
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line or leg found going anti-clockwise about its outermost vertex. (For examples of such

graphs and labellings, see figure 6.) All independent labellings of external legs contribute

for gravity amplitudes. The one-loop correction to the amplitude is then given by

M1-loop(1, 2, . . . , n) =
∑

graphs γ

D(γ),

where the contribution from a graph γ with an nℓ-propagator loop is

D(γ) = Γ(nℓ − 2 + ǫ)

(

nℓ−1
∏

m=1

∫ xim+1

0
dxim

)

K(γ)(xi1 , . . . , xinℓ−1
)

{

∑

1≤k<l≤nℓ
Pik · Pilxikil(1 − xikil)

}nℓ−2+ǫ .

(C.1)

In this formula, i1, . . . , inℓ
are the labels of the lines adjoining the loop going clockwise.

xij ≡ xi − xj, with xinℓ
fixed at 1, and Pik is the momentum entering the loop along the

line with innermost label ik. The ‘reduced kinematic factor’ for γ, K(γ)(xi1 , . . . , xinℓ−1
), is

a polynomial in the xik which for a gravity theory with no supersymmetries is of order 2nℓ.

We compute K(γ)(xi1 , . . . , xinℓ−1
) as follows: the starting point is the overall graviton

kinematic factor

K =

∫ n
∏

i=1

dxidx̄i

∏

1≤i<j≤n

exp
{

ki · kj Gij
B + (ki · εj − kj · εi)Ġ

ij
B − εi · εj G̈ij

B

+(ki · ε̄j − kj · ε̄i)
˙̄Gij
B − ε̄i · ε̄j

¨̄Gij
B − (εi · ε̄j − εj · ε̄i)H

ij
B

}∣

∣

∣

multi-linear
, (C.2)

where ‘multi-linear’ indicates that we retain only the coefficient of
∏n

i=1 εiε̄i in the ex-

pansion of the exponentials. The graviton polarisation tensor are then reconstructed us-

ing (B.2). K contains much structure from the string theory perspective: Gij
B ≡ GB(xij)

is the bosonic Green’s function on the string world-sheet, and the xi(x̄i) are closed-

string left(right)-moving co-ordinates. Other objects present are the derivatives of Gij
B :

Ġij
B = ∂Gij

B/∂xi, which is antisymmetric in i, j, and G̈ij
B = ∂2Gij

B/∂x2
i (with similar ex-

pressions for the right-moving ˙̄Gij
B and ¨̄Gij

B ); and H ij
B = ∂2Gij

B/∂xi∂x̄i. However, for our

purposes we will simply treat (C.2) as an object for obtaining reduced kinematic factors

by the application of some substitution rules that implement the field theory limit.

For the helicity configuration under consideration and a judicious choice of reference

momenta for the polarisation vectors, we shall see that the coefficients of the second-order

derivatives of the Green’s functions vanish. Nevertheless, in general this is not so and

we should eliminate the G̈B and ¨̄GB from K using integration by parts, which may lead

to additional factors of the HB appearing. Each HB factor should then be eliminated by

replacing it with the Feynman denominator relevant to the diagram under consideration

(i.e. the expression found within the curly braces in (C.1)). At this point we simply drop

the integration over the world-sheet co-ordinates and the leading factors of exp(ki · kj Gij
B )

from K (their contributions are built into the rules).

Now consider a consecutive pair of lines joining on to the loop in a φ3 graph, labelled

(i, j) going clockwise. We can ‘pinch off’ this pair of lines by attaching them instead to
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J
H
E
P
0
6
(
2
0
1
0
)
0
2
7

a new vertex and then drawing a new line carrying the label j from this vertex back to

the loop. Any of the graphs drawn for string-based rules may be obtained this way (for

example, the graph of figure 6d is obtained from figure 6a first by pinching off (2, 3), and

then (3, 4)). For each such pinch used to reach a graph we: (1) discard all terms in the

expression obtained above except those containing exactly one power of Ġij
B

˙̄Gij
B ; (2) replace

i with j in all remaining ĠB, ˙̄GB; and (3) multiply by −1/k2
ij , where kij is the momentum

carried by the new line formed by the pinch.

Next we apply the substitution rules. These act on the derivatives of the Green’s

functions in a left/right-independent manner, replacing them with polynomials in the xij

in a way that depends on the particle content of the loop. In particular, the rule for a

single scalar degree of freedom running around the loop is the simple substitution

Ġij
B , ˙̄Gij

B → xij −
1

2
sign xij. (C.3)

There are other rules for particles of higher spin in the loop (including the graviton),

but by the discussion in appendix B, (C.3) is all we need for a one-minus amplitude.

Therefore we compute the amplitude by applying (C.3) to the reduced kinematic factors

and multiplying by Ns = 2. Finally we make change of the integration variables in (C.1)

to ak using xik =
∑k

l=1 al, which yields an integral in the usual Feynman parametrisation.

C.2 Application to M1-loop(1−, 2+, 3+, 4+, 5+)

The (topologies of the) graphs that have a non-vanishing contribution to M1-loop(1−, 2+,

3+, 4+, 5+) are shown in figure 6. There are 117 such labelled graphs in total: 12 massless

pentagons (figure 6a), 30 one-mass boxes (figure 6b), 15 two-mass triangles (figure 6c) and

30 one-mass triangles (figure 6d). There are also 30 massive bubbles, but these vanish by

the pinching process when using the spinor helicity choice (C.4) below.

In order to define the εi and ε̄i (which are set to the same values after multi-linearisation

in (C.2)), we choose k5 as the reference momentum for the first graviton and k1 for the

rest. In the spinor-helicity formalism the polarisation vectors are

εµ
1 =

[5|γµ|1〉√
2 [1 5]

and εµ
i =

[i|γµ|1〉√
2 〈1 i〉

for i 6= 1. (C.4)

We have the standard spinor-helicity results that ki · εi = k5 · ε1 = k1 · εi = 0 for all i, and

furthermore for this choice εi · εj vanishes for all i, j, so there are no second derivatives of

Green’s functions to handle. After dropping the exp(ki · kjG
ij
B ), (C.2) becomes,

(k2 · ε1 Ġ12
B + k3 · ε1 Ġ13

B + k4 · ε1 Ġ14
B )(k3 · ε2 Ġ23

B + k4 · ε2 Ġ24
B + k5 · ε2 Ġ25

B )

× (k2 · ε3 Ġ32
B + k4 · ε3 Ġ34

B + k5 · ε3 Ġ35
B )(k2 · ε4 Ġ42

B + k3 · ε4 Ġ43
B + k5 · ε4 Ġ45

B )

× (k2 · ε5 Ġ52
B + k3 · ε5 Ġ53

B + k4 · ε5 Ġ54
B ) × (l → r). (C.5)

Here, ‘(l → r)’ denotes taking the expression to the left and replacing all Ġij
B with ˙̄Gij

B .

We can now see why there are no bubble graphs in the problem. They come from three

pinches that form two independent trees, but any such sequence of pinches will either pull
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Figure 6: Topologies for φ3-like Feynman diagrams that have a non-vanishing contribution

to the string-based rules calculation of M1-loop(1−, 2+, 3+, 4+, 5+). (The labellings shown

are non-vanishing examples; other orderings also contribute.)

out a factor of the form (k1 + ki) · εi, which vanishes by conservation of momentum and

the remarks below (C.4), or simply run out of pinchable GBs.

Since the same substitution rule (C.3) is applied independently to both the left- and

right-moving sectors, and at each step in the pinching we pull out terms containing exactly

one power of both Ġij
B and ˙̄Gij

B , we can in fact proceed in a rather more straightforward

manner by applying the pinching and substituting for just the left-moving factors of (C.5),

then taking the square of the result as K(γ)(xi1 , . . . , xinℓ−1
), taking care not to square the

kinematic factors that arise from the trees during pinching.

We do this for all 117 graphs and substitute back into (C.1), changing the variables to

the usual Feynman parameters. Each graph thereby yields an expression of the form

D(γ) =
∑

{pi}

X(γ)(r1, . . . , rnℓ
)I(γ)

nℓ
[ar1

1 · · · arnℓ
nℓ

], (C.6)

where X(γ)(r1, . . . , rnℓ
) is a rational coefficient. The nℓ-gonal tensor Feynman integral with

momentum configuration relevant to the graph γ is defined as

I(γ)
nℓ

[ar1

1 · · · arnℓ
nℓ

] = Γ(nℓ − 2 + ǫ)

∫ 1

0
dnℓa

ar1

1 · · · arnℓ
nℓ

δ(1 −∑i ai)
{

∑nℓ

k,l=1 S
(γ)
kl akal − iε

}nℓ−2+ǫ
, (C.7)

with the array S
(γ)
kl given in terms of the momenta Pik entering γ’s loop by

S
(γ)
kl =

{

0 for k = l,

−1
2(Pik + · · · + Pil−1

)2 otherwise.
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These integrals may be evaluated by the recursive approach detailed in refs. [42, 59].

In this way we have constructed an integral database using computer algebra, indexed by

the tuples {(r1, . . . , rnℓ
)|∑i ri ≤ 2nℓ} for integrals with 3 ≤ nℓ ≤ 5 and up to 5 − nℓ

massive legs. The table contains both the rational pieces of the integrals and the rational

coefficients of their (di)logarithms. Since M1-loop(1−, 2+, 3+, 4+, 5+) is entirely rational, we

can use the vanishing of the logarithmic terms as a consistency check. Computationally

the most complicated integrals are the pentagons where we must evaluate integrals with

Feynman parameter polynomials of order ten.

The coefficients produced in this manner are far too large and cumbersome to present

here (or even form a compact analytic expression for the amplitude at present); neverthe-

less, they are amenable to exact numeric arithmetic at a kinematic point. The results have

been compared with, and agree with, the recursion-derived expression (4.18).
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