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1 Introduction

The study of supersymmetric gauge theories in string theory has undergone significant progress
with the introduction and understanding of D-branes and orientifold planes (O-planes). D-
branes, or Dirichlet-branes, are solitonic extended objects in string theory that open strings
can end [1]. Therefore, the stacking of multiple D-branes is instrumental in manifesting
non-abelian gauge symmetries, which are indispensable in the formulation of gauge theories.
Furthermore, D-branes preserve a fraction of the supersymmetry in string theory setups.
Consequently, they offer a framework for the realization of supersymmetric gauge theories,
enhancing our understanding of the dynamics and dualities inherent in these theories.

In addition to D-branes, O-planes — fixed planes where strings reflect and alter their
orientation [2] — play a vital role in the construction of models with specific gauge groups.
They enable the realization of orthogonal and symplectic gauge groups within string theory
frameworks. O-planes are also crucial for canceling the net charge and tension introduced
by D-branes, ensuring the consistency and stability of the theory.
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The manipulation of brane configurations with O-planes enables the exploration of
incredibly rich families of supersymmetric theories. This approach provides a geometrically
simple and intuitively clear perspective on these theories. Moreover, the dynamics of branes,
encompassing their movement and interaction, yields profound insights into the strongly
coupled dynamics of supersymmetric gauge theories. Notable phenomena like the Hanany-
Witten (HW) transition, which involves brane creation and annihilation [3], and Sen’s
decomposition of an O7−-plane into a pair of two 7-branes [4], exemplify the significance of
novel brane dynamics. Utilizing the configuration and dynamics of D-branes with O-planes
has repeatedly proven crucial in constructing and studying supersymmetric theories, leading
to a deeper understanding of essential aspects like the moduli space of vacua, partition
functions, and duality.

In this paper, we study (p− 2)-dimensional supersymmetric gauge theories with eight
supercharges constructed from D(p− 2)-branes with an Op±-plane. The setups give rise to
not only Sp(N)/SO(N) gauge theories as mentioned, but also SU(N) gauge theories with
(anti-)symmetric hypermultiplet [5–8]. Our investigation focuses on the idea of freezing: by
adjusting the positions of 2p−4 Dp-branes around an Op−-plane, the effect is closely related
to an Op+-plane within Type II theory. Schematically, we write the freezing as

Op+ ∼ Op− + 2p−4 Dp
∣∣∣
fixed near Op−

. (1.1)

In fact, the case of p = 7 was recently explored in [9, 10] where the effects of an O7+-plane can
be approximated by “freezing” eight D7-branes with an O7−-plane (O7−+8D7) in Type IIB
brane configurations.1 This process involves adjustments to the mass parameters or chemical
potentials associated with the global symmetries of the D7-branes in some observables. In
fact, it has been tested in the context of Seiberg-Witten curves [9] and is extendable to the
level of partition functions [10]. This technique provides a useful method for calculating some
partition functions for theories formulated with an O7+-plane, and moreover reveals non-
trivial relationships between two theories. We delve into the freezing process by examining
exact partition functions, with a focus on instanton partition functions [13].

We must emphasize that the freezing method does not universally apply to all physical
observables nor imply a duality between theories. It is primarily effective for specific
observables, such as the prepotential or instanton partition functions, offering an efficient
computational strategy. While it does establish identities for certain observables, there exist
observables that distinguish between the two configurations. Nevertheless, the freezing method
unveils curious links between seemingly distinct theories, which deserve more investigation.

Subsequently, our analysis extends to the unfreezing process. During the freezing phase,
2p−4 Dp-branes are utilized, but these can be removed by adjusting the positions of the
“color” D(p − 2)-branes and possibly adding more Dp-branes near the Op−-plane. This
rearrangement is achieved through Hanany-Witten transitions [3] following the Higgsing of
the D(p− 2)-branes. This process provides yet another non-trivial relationship between two
different configurations with an Op±-plane. Remarkably, we find that instanton partition

1The use of “freezing” in this context is inspired by the concept of a frozen singularity associated with an
O7+-plane [11, 12]. In this paper, “freezing” denotes the arrangement where 2p−4 Dp-branes are positioned
adjacent to an Op−-plane, achieving an overall effect analogous to that of an Op+-plane.
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functions exhibit notable discontinuities during the process of unfreezing. Since the instanton
partition functions are Witten indices counting half-BPS states of instantons, this indicates a
novel BPS jumping phenomenon. This is rooted in a basic principle from elementary calculus
class: integration and limit operations generally do not commute, schematically represented by∫

limZ ̸= lim
∫
Z . (1.2)

The instanton partition functions are evaluated by Jeffrey-Kirwan (JK) residue integrals [14].
Upon the specialization of parameters within the considered theory, these integrals encounter
degenerate poles [15–17]. As a result, the accurate computation of residues, following this
parameter specialization, differs from a naive parameter substitution in the generic integrated
expressions. This gives rise to the novel BPS jumping phenomenon. It is noteworthy that
this phenomenon is different from wall-crossing phenomena [18] as it occurs at special points
in the parameter (moduli) space of the theory where new degenerate poles emerge in JK
residue integrals. This phenomenon is indeed ubiquitous when we tune chemical potentials
or fugacities in JK residue integrals. Thus, this phenomenon offers a new perspective for
understanding and analyzing not only instanton partition functions but also a wider range
of partition functions involving JK residue methods.

In our detailed analysis, we aim to elucidate how the unfreezing processes relate two
instanton partition functions with multiplicity coefficients, as recently found in [19, 20]. In
the context of 5-brane web configurations, D1-branes generate instantons in 5d theories
so that this implies that D1-branes contribute distinct non-perturbative effects at certain
configurations specifically associated with unfreezing. In other words, the configuration
of branes during unfreezing leads to the creation/annihilation of unique instanton states,
deviating from those observed at generic points in the parameter space. Moreover, the Witten
index on the moduli spaces of instantons undergoes notable changes at particular chemical
potential values, highlighting the novel dynamical nature across the parameter space.

The paper is outlined as follows. Central to our study, section 2 delves into the freezing
and unfreezing process involving O7±-plane in the 5-brane webs. As a warm-up, we review
5-brane web realization of 5d N = 1 supersymmetric gauge theories in Type IIB theory, and
we proceed to examine the effects of the freezing and unfreezing by the cubic prepotentials.
Our investigation then extends to the investigation of the (un)freezing process in terms of 5d
instanton partition functions. Concretely, using the ADHM descriptions of instanton moduli
spaces, we explicitly show non-trivial identities among instanton partition functions as direct
outcomes of freezing and unfreezing. As an illuminating example of the identities, we deal
with the relation of partition functions of E-string and M-string theory. It also elucidates the
method for calculating E-string and M-string partition functions using 5d instanton partition
functions. Finally, we explore the novel BPS jumping phenomenon using unrefined instanton
partition functions during the unfreezing process.

Subsequently, we study the freezing and unfreezing processes in 4d and 3d theories with
eight supercharges. As emphasized before, the freezing process does not lead to the identities
of all the physical observables. In the realm of 4d N = 2 superconformal field theories, the
superconformal index serves to differentiate between two theories related by the (un)freezing
process with O6±-plane. However, this process does reveal non-trivial connections among
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Schur indices. Similarly, in 3d N = 4 theories, both the superconformal and twisted indices
can distinguish theories related by the (un)freezing process involving an O5±-plane, yet
they also show noteworthy identities between 3-sphere partition functions. These aspects
are examined in section 3.

Several appendices supplement the main text. Appendix A fixes the notations and
conventions employed throughout the paper. Appendix B details the contributions to
ADHM integrals from various gauge and matter multiplets for instanton partition functions.
Appendix C delves into the detailed computations of Jeffrey-Kirwan residues for instanton
partition functions, with a particular emphasis on handling degenerate poles. Through
detailed calculations of JK residues, we clarify the occurrence of BPS jumping due to the
appearance of degenerate poles during the unfreezing process.

2 Freezing, unfreezing, and BPS jumping in 5d theories

2.1 5d cubic prepotential and freezing

To start, we review the freezing at the level of the cubic prepotential, discussed in [9], and
propose yet another novel relation between theories involving an O7-plane in their brane
configurations.

The cubic prepotential F governing Coulomb branch of 5d supersymmetric field theory
of gauge group G is given by [21–23]

F(ϕ) = 1
2g2

0
hijϕiϕj +

κ

6dijkϕiϕjϕk + 1
12

(∑
r∈∆
|r · ϕ|3 −

∑
f

∑
w∈Rf

|w · ϕ + mf |3
)

, (2.1)

where g0 is the gauge coupling, hij = Tr(TiTj) with Ti being the Cartan generators of Lie
algebra g associated with G, and ϕ is the vacuum expectation value of the scalar field in the
vector multiplet. The one-loop contribution of the cubic prepotential is given in the last term
where ∆ is the root system of Lie algebra g, w is the weight of a representation Rf , and mf

are mass parameters for hypermultiplet in Rf . We note that the term with the coefficient κ
6

in (2.1) only exists for gauge group G = SU(N ≥ 3) where κ is the Chern-Simons (CS) level
and dijk = 1

2Tr(Ti{Tj , Tk}). If the cubic Casimir of the matter representation is odd, there
is a parity anomaly that can be canceled by a CS term with a half-odd-integer level κ. In
particular, in the case of SU(2N + 1) gauge theory with (anti-)symmetric matter, a parity
anomaly is present, requiring the introduction of a CS term with a half-odd-integer level.

We also remark that the 5d Sp(N) gauge theory has a discrete θ-angle due to the fact
that π4(Sp(N)) = Z2 [22, 24, 25]. The θ-angle crucially distinguishes the spectrum of the
theory at the instanton level. In other words, Sp(N)θ=0 gauge theory and Sp(N)θ=π gauge
theory have distinct instanton partition functions, which will be discussed in detail in the
following sections. On the other hand, as the cubic prepotential (2.1) is one-loop exact, the
prepotential is insensitive to the discrete θ angle.2 For this reason, we do not introduce the
discrete θ-angle when writing a prepotential F(ϕ). Moreover, for Sp(N) gauge theory with
fundamental hypermultiplets, the discrete θ-angle difference can be understood from the sign

2We note that although the cubic prepotential does not distinguish the θ angle, the complete prepotential [26]
does distinguish the discrete θ angle and moreover it captures enhanced flavor symmetry.
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difference of the fundamental hypermultiplet mass and so we omit the discrete θ angle in
the presence of fundamental hypermultiplet for Sp(N) gauge theory.3

For convenience, we express the cubic prepotential in terms of the Coulomb branch
parameters ai, by setting all the masses of hypermultiplets to zero. For G = SU(N), in the
Weyl chamber a1 ≥ a2 ≥ · · · ≥ aN−1 ≥ 0 and aN = −∑N−1

i=1 ai, the cubic prepotential for
SU(N) gauge theory at the CS level κ with hypermultiplets in Nf fundamental representations,
Na antisymmetric representations, and Ns symmetric representations (for short, SU(N)κ +
Nf F + NaAS + NsSym) takes the form

FSU(N)κ+Nf F+NaAS+NsSym = 1
2g2

0

N∑
i=1

a2
i +

κ

6

N∑
i=1

a3
i +

1
6

N∑
i<j

(ai − aj)3

− Nf

12

N∑
i=1
|ai|3 −

Na

12

N∑
i<j

|ai + aj |3

− Ns

12

( N∑
i=1
|2ai|3 +

N∑
i<j

|ai + aj |3
)

.

(2.2)

For G = Sp(N), in the Weyl chamber a1 ≥ a2 ≥ · · · ≥ aN ≥ 0, the cubic prepotential
takes the form

FSp(N)+Nf F = 1
g2

0

N∑
i=1

a2
i +

1
6

( N∑
i<j

(
(ai−aj)3 + (ai+aj)3)+ (8−Nf )

N∑
i=1

a3
i

)
. (2.3)

For G = SO(2N), in the Weyl chamber a1 ≥ a2 ≥ · · · ≥ aN ≥ 0, the cubic prepotential
takes the form

FSO(2N)+Nf F = 1
g2

0

N∑
i=1

a2
i +

1
6

( N∑
i<j

(
(ai − aj)3 + (ai + aj)3)−Nf

N∑
i=1

a3
i

)
. (2.4)

We note that it is well-known that SU(2N) gauge theory with an antisymmetric hypermul-
tiplet or a symmetric hypermultiplet has a Higgs branch to Sp(N) or SO(2N), respectively,

SU(2N)κ + 1AS Higgsing−−−−−→ Sp(N) ,

SU(2N)κ + 1Sym Higgsing−−−−−→ SO(2N) , (2.5)

which can be seen from the cubic prepotential by setting a2N+1−i = −ai as well as masses
of the hypermultiplets to zero, mAS/Sym = 0. This Higgsing can be readily seen from
5-brane webs in Type IIB theory. Our convention for 5-brane webs is as follows: D5- and
NS5-branes are extended in the x0,1,2,3,4,6-directions and the x0,1,2,3,4,5-directions, respectively
so that their 5-brane configurations are constructed in the x5,6-plane, called the (p, q)-plane.
The fundamental hypermultiplets can be described by D7-branes which are extended in
the x0,1,2,3,4,7,8,9-directions so that a 7-brane in the (p, q)-plane appears as a dot on which
5-branes end. See [28, 29] for more details and examples.

3As Sp(1) = SU(2), pure SU(2) theory also has the θ-angle. It was also discussed in [27] that the discrete
θ-angle for the SU(2)θ theory can be understood as the Chern-Simons level κ of SU(N)κ for N = 2.
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O7−

(a) (b) (c)

O7− O7−

Figure 1. A Higgsing from SU(2N) + 1AS to Sp(N). As an example, we choose N = 2. (a) a
5-brane web for SU(4)+ 1AS. (b) The Coulomb branch parameters and the mass of an antisymmetric
hypermultiplet are tuned so that the middle NS5-brane can be Higgsed. (c) The resulting 5-brane
configuration after Higgsing the middle NS5-brane, which is a 5-brane web for Sp(2).

(a) (b) (c)

O7+ O7+ O7+

Figure 2. A Higgsing from SU(2N) + 1Sym to SO(2N). As an example, we choose N = 3. (a) a
5-brane web for SU(6) + 1Sym. (b) The Coulomb branch parameters and the mass of a symmetric
hypermultiplet are tuned so that the middle NS5-brane can be Higgsed. (c) The resulting 5-brane
configuration after Higgsing the middle NS5-brane, which is a 5-brane web for SO(6).

Along with this convention, 5d SU(N) gauge theory with one (anti-)symmetric hyper-
multiplet is constructed by introducing an O7-plane on 5-brane web where a half NS5-brane
is stuck [8]. An O7−-plane gives rise to an antisymmetric hypermultiplet (e.g., see figure 1),
while an O7+-plane gives rise to a symmetric hypermultiplet (e.g., see figure 2). The asymp-
totic horizontal distance of this middle NS5-brane from the position of an O7-plane is given
by N

2 mAS/Sym, a half of the mass of (anti-)symmetric hypermultiplet multiplied by the
number of color branes [9]. As an illustrative example, in figure 2(a), we present a 5-brane
web for SU(6)+ 1Sym, where the fundamental region is given. One can imagine the covering
space such that the projected image due to an O7+-plane is included below the monodromy
cut of an O7+-plane (the dotted line in figure 2). To perform the Higgsing (2.5), the color
D5-branes are aligned to realize the above Higgsing condition so that the middle NS5-brane
is aligned, which is depicted in figure 2(b). The Higgsing takes place as follows. The parallel
color D5-branes on the left and the right are reconnected and the middle half N5-brane brane
is also connected through its reflected image so that the NS5-brane is taken away along the
transverse directions where an O7-plane is extended. The resulting web is given in figure 2(c),
which is a 5-brane web for pure SO(6), as expected.

When there are additional Nf fundamental hypermultiplets, there is another Higgs
branch associated with fundamental hypermultiplets, which reduces the Coulomb branch
dimension and the number of fundamental hypermultiplets by one:

SU(n) + 1AS/Sym + Nf F → SU(n− 1) + 1AS/Sym + (Nf − 1)F . (2.6)

The corresponding 5-brane configuration4 is depicted in figure 3, where the brane charges
4The Higgsing SU(n) + 1AS + 1F → SU(n − 1) + 1AS is also possible with a special mass mf = 0. In the

brane web, the Higgsed D5-brane is a half-D5 color brane that is connected to two half-D7-branes.

– 6 –
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Higgsing HW

x7,8,9

(a) (b) (c)

Figure 3. A Higgsing with a symmetric or antisymmetric hypermultiplet: SU(n) + 1AS/Sym +
Nf F→ SU(n− 1) + 1AS/Sym + (Nf − 1)F.

are neglected to highlight the relevant Higgsing procedures. In figure 3(a), two (flavor)
D7-branes, appearing red dots, are aligned on a color D5-brane in a way that recombination
can take place such that the D5-brane in red ends on two D7-branes, while the D5-branes in
blue are connected to a D7-brane and a 5-brane with NS5-charge in the middle. Once this
recombination happens, as illustrated in figure 3(b), the D5-brane in red is Higgsed away
along the transverse direction to 5-brane, which is denoted by the x7,8,9-directions. Finally,
one can take the Hanany-Witten (HW) transition so that a D7-brane on the left of figure 3(c)
is decoupled, becoming a free hypermultiplet, while a D7-brane on the right contributes to a
fundamental hypermultiplet. As a result, this Higgsing described through the 5-brane web
reduces the rank of the Coulomb branch and the flavor group by one, respectively. It is worth
noting that this Higgsing takes out one fundamental hypermultiplet, to realize the Higgsing,
one needs to tune masses of two fundamental hypermultiplets.

We note that the 5-brane configuration suggests another Higgsing process:

SU(n)κ + 1AS/Sym + Nf F → SU(n− 2)κ + 1AS/Sym + (Nf − 2)F . (2.7)

This Higgsing, while physically akin to the one described in (2.6), differs in its execution.
It could be viewed as applying the Higgsing process in (2.6) twice. However, as illustrated
in figure 4, this particular Higgsing involves the adjustment of only two Coulomb branch
and two mass parameters, leaving other mass parameters and the CS level untouched. It is,
hence, more convenient when we perform Higgsings successively, in particular, at the level of
partition functions. It follows that along the Higgsings, one finds that the prepotential for
SU(N + 8) + 1AS + 8F becomes identical to that for SU(N) + 1AS by setting the Coulomb
branch parameters and the hypermultiplet mass parameters as

aN+1 = · · · = aN+8 = mi = 0 . (2.8)

Here we note that as the hypermultiplet masses of the prepotential (2.2) were already set
to zero for simplicity, the prepotential check for this Higgsing is done with zero masses. We
shall see in the next subsection that the precise relation does not require them to zero, rather
a generic value satisfying the condition (2.8) is enough.

With these explicit forms of the prepotentials for the theories involving an O7-plane in
their brane configurations, one can see the following intriguing relations among these theories.

– 7 –
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Higgsing HW

x7,8,9

Figure 4. A Higgsing with a symmetric or an antisymmetric hypermultiplet reducing the Coulomb
branch dimension by two: SU(n) + 1AS/Sym + Nf F→ SU(n− 2) + 1AS/Sym + (Nf − 2)F.

Freezing. The cubic prepotential of SU(N) gauge theory with an antisymmetric and eight
fundamentals (1AS + 8F) given in (2.2) can be reduced to that with a symmetric (1Sym),
as proposed in [9]:

FSU(N)κ+1AS+(8+Nf )F = FSU(N)κ+1Sym+Nf F . (2.9)

Though for simplicity, we set the hypermultiplet masses to zero, but this relation is generic.
With mAS = mSym = m for (anti-)symmetric hypermultiplets, mF = m

2 for the eight
fundamental hypermultiplets, one can easily check (2.9). We also remark that as in [9, 10],
there exists a set of mass parameters giving rise to the relation even at the level of the
(refined) instanton partition function which will be discussed in the next subsection

SU(N)κ + 1AS + 8F −→ SU(N)κ + 1Sym . (2.10)

We refer to this reduction procedure as the freezing [9].
From the perspective of Type IIB 5-brane webs, the freezing can be understood as

follows. As explained, SU(N) + 1AS + 8F is constructed with eight D7-branes (flavors) and
an O7−-plane at which a half NS5-brane is stuck, while SU(N) + 1Sym is constructed by a
5-brane web with an O7+-plane where a half NS5-brane is stuck. To realize the freezing, eight
D7-branes are put at the position of the O7−-plane such that they are bound together to make
a combination of O7−+8D7 which leads to the same charge and monodromy as an O7+-plane,

O7− + 8D7
∣∣∣
fixed

∼ O7+. (2.11)

In doing so, one finds that the prepotential for SU(N) + 1AS + 8F becomes identical to that
for SU(N) + 1Sym. The corresponding 5-brane configuration is depicted in figure 5.

The concept of freezing involves fixing the positions of eight D7-branes close to an
O7−-plane, producing an effect analogous to that of an O7+-plane as if eight D7-branes and
an O7−-plane are “frozen” to form an O7+-plane. For SU type gauge theories, the freezing is
a procedure that tunes the masses of 1AS + 8F to convert the set of hypermultiplets into
1Sym while the Coulomb branch parameters are untouched.

Unfreezing. We now imagine a reverse procedure of the freezing. Namely, we convert
1Sym into 1AS + 8F, but we also simultaneously reduce the dimension of the Coulomb
branch by the Higgsing discussed in (2.7):

SU(N + 8)κ + 1Sym −→ SU(N)κ + 1AS . (2.12)

– 8 –
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O7− O7+

~

Figure 5. Freezing: O7− + 8D7|fixed ∼ O7+. Here, D7-branes are denoted by red dots and the
charges of the 5-brane are neglected to highlight the relation between an O7±-plane with 8 D7-planes.

O7−O7+ O7−

~

Figure 6. Unfreezing. Left: a simplified 5-brane web for SU(2N + 8) + 1Sym. Here, one brings four
D5-branes (in blue) to the position of an O7+-plane and then one “unfreezes” an O7+-plane so that
it can be effectively regarded as an O7− and 8 D7s such that D7-branes are on the blue D5-branes.
Middle: at the same time, four simultaneous Higgsing take place so that 8 D7-branes and 4 D5-branes
in blue on top of O7−-plane are recombined such that D5-branes in red are suspended between two
D7-branes. Right: the D5-branes in red are Higgsed away along x7,8,9-directions and the remaining
D7-branes attached to D5-branes in blue are taken to infinity so that the Hanany-Witten transition
makes them free hypermultiplets. As a result, one obtains a 5-brane web for SU(2N) + 1AS.

By setting all the unfrozen mass parameters to zero and at the same time performing
four successive Higgsings with a2N+1 = · · · = a2N+8 = 0, one can see that the cubic
prepotential yields

FSU(N+8)κ+1Sym −→ FSU(N)κ+1AS . (2.13)

This procedure can be viewed as “unfreezing”: we regard an O7+-plane effectively as O7−
paired with 8 D7s at fixed positions, which is at the same time followed by four consecutive
Higgsings, each removing a configuration involving a color D5-brane connected to two
D7-branes. Subsequent Hanany-Witten transitions [3] then displace the eight D7-branes
from the vicinity of the O7−-plane along its monodromy cut, which makes eight D7s free
hypermultiplets (or floating D7-branes). These procedures, depicted in figure 6, should
take place at the same time.

We note that having discussed the freezings and unfreezings, one finds an intriguing
relation between theories involving an O7-plane, which can be summarized as in figure 7.

We also remark that a similar relation arises for Sp/SO theories, which follows from
the Higgsings of antisymmetric or symmetric hypermultiplet given in (2.5). More explicitly,
one can see the relations as follows. Starting from the cubic prepotential for Sp(N + 4)
theory with eight fundamental hypermultiplets. We freeze the theory by setting the masses
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Figure 7. Freezing, unfreezing, and Higgsings for SU gauge theories.

of eight flavors to zero,

mN+1 = mN+2 = · · · = mN+8 = 0 , (2.14)

which leads to the form of the prepotential given in (2.3), which is nothing but the prepotential
for pure SO(2N + 8) theory:

FSp(N+4)+8F
freezing−−−−→
(2.14)

1
g2

0

N+4∑
i=1

a2
i +

1
6

N+4∑
i<j

(
(ai − aj)3 + (ai + aj)3) = FSO(2N+8) . (2.15)

We then do the unfreezing by setting aN+j = 0 (j = 1, 2, 3, 4) which leads to the cubic
prepotential for pure Sp(N) theory:

FSO(2N+8)
unfreezing−−−−−−→ 1

g2
0

N∑
i=1

a2
i +

1
6

N∑
i<j

(
(ai−aj)3 + (ai+aj)3)+8

6

N∑
i=1

a3
i = FSp(N) . (2.16)

Together with a successive application of conventional Higgsing, Sp(N+4)+8F → Sp(N),
one can summarize the relation between Sp / SO gauge theories as depicted in figure 8.

Because these various intriguing relations between theories involving an O7±-plane are
presented based on the cubic prepotentials, one is tempted to speculate whether the same
relation holds even at the non-perturbative level. It is suggestive that though the cubic
prepotential only captures perturbative aspects, the existence of the corresponding brane
configurations would imply that a similar relation can be extended to the non-perturbative
level. We now consider 5d instanton partition functions on the Ω-background and generalize
the freezing with refined Ω-deformation parameters, ϵ1,2.

2.2 Identities of 5d instanton partition functions

In 5d supersymmetric theories, one of the most important observables is an instanton partition
function [13] on S1 × R4 with the Ω-background. It is defined as an index that counts BPS
states within a 5d theory:

Zinst (ϵ1, ϵ2, ai, m) = Tr
[
(−1)Fe−β{Q,Q†}e−ϵ1(J1+JR)e−ϵ2(J2+JR)e−aiCie−m·F

]
. (2.17)
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Figure 8. Freezing, unfreezing, and Higgsings for Sp/SO gauge theories.

Here, J1, J2 are defined by the Cartans Jl, Jr of the spacetime symmetry SO(4) ∼= SU(2)l ×
SU(2)r of R4 via J1 = Jr+Jl

2 , J2 = Jr−Jl
2 . The operator JR represents the Cartan generator

of the SU(2)R R-symmetry. The Coulomb branch parameters are denoted as ai, where the
index i ranges from 1 to the rank of the gauge group G. All additional flavor symmetries
are collectively labeled as F , which are conjugate to the mass parameters m.

Instantons, representing non-perturbative effects in gauge theories, play a crucial role in
understanding the behavior of gauge theories in strong coupling regimes, where traditional
perturbative methods fail. The method employed by Nekrasov [13] involved localization
techniques, which allowed the path integral of the gauge theory to be exactly computed by
localizing it to the moduli space of instantons. Consequently, the instanton partition function
can be understood as a character of the equivariant action

C×
ϵ1 × C×

ϵ2 ×
rk G∏

i

C×
ai
×

rk F∏
j

C×
mj

. (2.18)

on the instanton moduli spaces. A more physical perspective interprets it that a 5d theory
on the Ω-background effectively localizes to supersymmetric quantum mechanics on the
instanton moduli spaces, and (2.17) is its partition function. As exact results, encoding all
non-perturbative effects in a gauge theory, we make use of the instanton partition functions
to see the consequence of freezing and unfreezing.

First, let us recall the Higgsing of SU(N)κ + 1Sym to SO(N) at the level of instanton
partition functions [20]. Turning on the Ω-background, a brane may change its position by
a certain linear combination of ϵ1,2 from the absence of the background. As in figure 2, to
Higgs SU(N)κ + 1Sym to SO(N), all the D5-branes are aligned and the middle NS5-brane
is positioned at ϵ+/2 so that we tune the parameters of the theory

m = ϵ+ , aN−i+1 = −ai , (2.19)

where m is the mass of the symmetric hypermultiplet. Note that when N is odd, we set
a N+1

2
= 0. At this specialization, the instanton partition function behaves

Z
SU(N)+1Sym
2k,κ= 1

2 (N mod 2)
Higgsing−−−−−→

(2.19)
(−1)k(N+1)Z

SO(N)
k , (2.20)
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for N ≥ 4. It is important to note that 2k-instanton on the left-hand side coincides with k-
instanton on the right-hand side, and the odd-instanton partition functions of SU(N)κ+1Sym
vanish at the specialization (2.19).

We can apply a similar procedure to the brane configuration involving an O7−-plane
(SU(N)κ + 1AS) to obtain the brane configuration for pure Sp(N) gauge theory, as given
in figure 1. This involves the specialization

m = ϵ+ , a2N−i+1 = −ai , (2.21)

manipulating the instanton partition functions, which yields the following identities:

Z
SU(2N)+1AS
k,κ≡N mod 2

Higgsing−−−−−→
(2.21)

(−1)k(N+1)+⌈ k
2 ⌉Z

Sp(N)
k,θ=0 ,

Z
SU(2N)+1AS
k,κ≡N+1 mod 2

Higgsing−−−−−→
(2.21)

(−1)k(N+1)+⌈ k
2 ⌉Z

Sp(N)
k,θ=π .

(2.22)

The value of the discrete θ-angle in the resulting Sp(N) theory is determined by both the
Chern-Simons level and the rank of the gauge group.

SU(N) gauge theories with (anti-)symmetric hypermultiplet

In the context of instanton partition functions, we apply the Higgsing process as depicted
in figure 4 to reduce the rank of a gauge group. It is important to note that, on the Ω-
background, the positions of branes, which correspond to the Coulomb branch and mass
parameters, might be shifted by a linear combination of ϵ1,2. Particularly, the Higgsing of the
SU(N)κ + 1AS + Nf F instanton partition function à la figure 4 can be implemented using
two distinct sets of parameterizations. One such set of parameters is defined as

aN = −aN−1 −m− ϵ+, mNf
= −aN−1 + ϵ+, mNf−1 = aN−1 + m + 2ϵ+ , (2.23)

and an alternate set is obtained by changing ϵi → −ϵi above. Under these conditions, one
can verify that the instanton partition function of SU(N)κ + 1AS + Nf F reduces both the
gauge group rank and the number of fundamental hypermultiplets by two:

Z
SU(N)κ+1AS+Nf F
inst

Higgsing−−−−−→
(2.23)

Z
SU(N−2)κ+1AS+(Nf−2)F
inst , (2.24)

which can be checked at the level of the integrand:

Zvec
SU(N)κ,kZ

anti
SU(N),k(m)ZNf

SU(N),k

∣∣∣
(2.23)

= Zvec
SU(N−2)κ,kZ

anti
SU(N−2),k(m)ZNf−2

SU(N−2),k . (2.25)

The various contributions to the ADHM integrals are summarized in appendix B.
Now let us consider the effect of freezing (2.11) on the instanton partition functions

for SU(N)κ + 1AS + 8F whose brane setting is explained in the previous section. On a
generic Ω-background, we apply the freezing 8D7 to O7− by setting the mass parameters
mℓ=1,··· ,8 of eight fundamental hypermultiplets to

mℓ =
m± ϵ±

2 (+πi) , (2.26)
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where m is the mass of an antisymmetric hypermultiplet. (See also our notation convention
in appendix A.) Here, we consider all possible combinations of signs, and (+πi) indicates
both the inclusion and exclusion of this shift. Upon the freezing, the instanton partition
function reduces to that of SU(N)κ + 1Sym

Z
SU(N)κ+1AS+8F
inst

freezing−−−−−→
(2.26)

Z
SU(N)κ+1Sym
inst . (2.27)

This can be shown by comparing the integrands of the instanton partition functions at each
instanton level, without performing JK-residues. Using the identity (A.8), one can verify that

Zvec
SU(N)κ,kZ

anti
SU(N),k(m)ZNf =8

SU(N),k

∣∣∣
(2.26)

= Zvec
SU(N)κ,kZ

sym
SU(N),k(m) . (2.28)

Therefore, the identity (2.27) holds when we introduce the same 5d Chern-Simons term
to the two theories.

For unfreezing, there are notable differences compared to the prepotential case (2.13).
While we tune the positions of only eight color branes for prepotential, we need more color
branes and flavor branes for unfreezing at the level of instanton partition functions. This is
because the positions (2.26) of 8D7 are different from each other. To Higgs these 8D7 branes,
we require the introduction of eight more color branes and an equal number of additional
D7 branes, leading to the following

Z
SU(N+16)κ+1Sym+8F
inst

Unfreezing−−−−−−→
(2.30)

Z
SU(N)κ+1AS
inst , (2.29)

which can be executed by two different parameter specializations. One such set of parameters
is given by

as = −m

2 − ϵ+ ±
ϵ±
2 (+πi), −m

2 + 2ϵ+ ±
ϵ±
2 (+πi)

ml =
m

2 − 3ϵ+ ±
ϵ±
2 (+πi) , (2.30)

and the other set is obtained by changing ϵi → −ϵi above. The other set is obtained by
changing ϵi → −ϵi above. As detailed in (2.23), there are two parametrizations for Higgsing
of the instanton partition function, leading to the above two transformations. This can be
confirmed, in a similar manner to (2.28), by examining the identity of the ADHM integrands
at each instanton level.

We remark that if one combines the two processes, Freezing and Unfreezings, together,
the total effect is equivalent to eight sequential Higgsings of (2.24), which is illustrated in
figure 9. Moreover, during the unfreezing process, the instanton partition function exhibits a
sudden jump. This novel phenomenon will be treated in section 2.4 in detail.

Sp(N) and SO(2N) gauge theories

As demonstrated in (2.20) and (2.22), the Higgsing applied to SU(2N) + 1Sym or SU(2N) +
1AS transitions into pure Yang-Mills theory for either SO(2N) or Sp(N) gauge group.
Consequently, this Higgsing process, as outlined in (2.21), alongside the subsequent steps of
freezing and unfreezing, establishes a connection between the instanton partition functions of
the Sp(N) and SO(2N) gauge theories. Let us look at this relationship more closely.
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Figure 9. This figure illustrates the relationships between refined instanton partition functions
for SU gauge groups under specific parameter specializations. It shows that the partition function
Z

SU(N+16)κ+1AS+16F
k , following the freezing process (2.26), becomes identical to Z

SU(N+16)κ+1Sym+8F
k .

Additionally, when the unfreezing procedures (2.30) are applied, Z
SU(N+16)κ+1Sym+8F
k corresponds to

Z
SU(N)κ+1AS
k . The dashed line in the figure represents BPS jumping.

We start the Sp(N)θ + 8F setup, where eight mass parameters are specifically arranged
for the freezing process as follows:

mℓ = 0, ϵ+,
ϵ1,2
2 , πi, ϵ+ + πi,

ϵ1,2
2 + πi . (2.31)

These parameterizations can be seen as the m = ϵ+ specialization of (2.26). When we apply
this freezing process, the 2k-instanton partition function of Sp(N)θ + 8F becomes identical
to the k-instanton partition function of the pure SO(2N) Yang-Mills

Z
Sp(N)θ+8F
2k

freezing−−−−−→
(2.31)

Z
SO(2N)
k . (2.32)

Interestingly, this process of freezing, particularly the setting of one fundamental mass to
zero, eliminates the minus sector from the Sp(N) instanton partition function, as indicated
in (B.4). Consequently, this freezing process is independent of a choice of the discrete θ-angle,
and we can verify it from the identity of the ADHM integrands

Zvec,+
Sp(N),2kZ

Nf =8,+
Sp(N),2k

∣∣∣
(2.31)

= Zvec
SO(2N),k . (2.33)

The subsequent stages of unfreezing become more subtle. As mentioned above, the
freezing process (2.31) removes the minus sector of the Sp(N) instanton partition function
because one of the fundamental masses is set to be zero mℓ = 0. The processes of unfreezing
then revive the plus sector with even instanton numbers:

Z
SO(2N+16)+8F
k

unfreezing−−−−−−→
(2.35)

Z
Sp(N)+

2k , (2.34)

adjusting the Coulomb branch (as) and mass parameters (mℓ) as follows:

as = 0, ϵ+,
ϵ1,2
2 , πi, ϵ+ + πi,

ϵ1,2
2 + πi,

ml = as + ϵ+. (2.35)
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By increasing the rank of the gauge group and the number of fundamental masses,
other sectors of the Sp(N) instanton partition function can be accessed through unfreezing.
The details are committed, but these can be also verified at the level of the integrand (up
to some factor):

Z
SO(2N+18)+10F
k

unfreezing−−−−−−→ Z
Sp(N)+

2k+1

as = 0(+πi) , ϵ+(+πi) ,
ϵ1.2
2 (+πi) , ϵ−

ml = ϵ+(+πi) , 2ϵ+(+πi) , ϵ+ + ϵ1·2
2 (+πi) , 0, 2ϵ+.

Z
SO(2N+18)+10F
k

unfreezing−−−−−−→ Z
Sp(N)−
2k+1

as = 0(+πi) , ϵ+(+πi) ,
ϵ1.2
2 (+πi) , ϵ− + πi

ml = ϵ+(+πi) , 2ϵ+(+πi) , ϵ+ + ϵ1·2
2 (+πi) , πi, 2ϵ+ + πi.

Z
SO(2N+20)+12F
k−1

unfreezing−−−−−−→ Z
Sp(N)−
2k

as = 0(+πi) , ϵ+(+πi) ,
ϵ1.2
2 (+πi) , ϵ−(+πi)

ml = ϵ+(+πi) , 2ϵ+(+πi) , ϵ+ + ϵ1·2
2 (+πi) , 0(+πi), 2ϵ+(+πi). (2.36)

Comments on 4d instanton partition functions. While we have focused on 5d instanton
partition functions so far, let us make brief comments on 4d instanton partition functions.
In fact, from 5d to 4d instanton partition functions, we can simply make the following
replacements

sh(α)→ α , ch(α)→ 2 . (2.37)

To implement the freezing process in the NS5-D4-D6-O6 system within Type IIA, we position
four D6-branes at the location of the O6−-plane. These D6-branes are bound together,
forming a composite structure of O6− + 4D6. The resulting effect can be compared with
that of an O6+-plane:

O6− + 4D6
∣∣∣
fixed

∼ O6+. (2.38)

(For a more detailed explanation, refer to section 3.1.) This leads to the identity of 4d
instanton partition functions of SU(N) + 1AS + 4F and SU(N) + 1Sym where the mass
parameters are as in (2.26) without (+πi) shifts. Similarly, the unfreezing process in this
setting provides the identity of 4d instanton partition functions of SU(N + 8) + 1Sym + 4F
and SU(N) + 1AS where the parameter specializations are as in (2.30) again without (+πi)
shifts. It becomes evident that the (un)freezing process also implicates identities between 4d
SO(N) and Sp(N) instanton partition functions, although we will omit the details here.

2.3 E-string → M-string

Up to this point, our study revealed a striking correspondence in the instanton partition
functions. Specifically, we have found that, as a result of freezing, the partition function for
SU(N)κ + 1AS + 8F coincides with that of SU(N)κ + 1Sym, upon the eight masses of the
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Figure 10. Left: the brane diagram for SU(2) with one symmetric hypermultiplet. Right: the brane
diagram for Sp(1) with eight fundamental hypermultiplets. The external 5-branes meet at a certain
point in both diagrams, which indicates the presence of a higher-order pole at infinity in ADHM
integrands.

fundamentals are appropriately tuned. This finding not only enhances our understanding of
instanton dynamics but also bridges different configurations in string theory.

A particularly intriguing manifestation of this correspondence is found in the context of
E-string [30–32] and M-string [33] theories. Although these theories have 6d origins, they
admit 5d realizations, offering a unique playground to explore the above correspondence.
In this respect, the E-string theory is effectively disguised as a 5d SU(2) theory with eight
fundamental hypermultiplets, while M-string theory reveals itself as a 5d SU(2) theory of
the discrete theta θ = 0 with one symmetric (adjoint) hypermultiplet:

E-string on S1 = 5d SU(2)+8F ,

M-string on S1 = 5d SU(2)0+1Sym .
(2.39)

Therefore, while the partition functions of E-string and M-string have been computed by
various methods [33–40], we can make use of 5d instanton partition functions to evaluate
them here as in [41]. Since the antisymmetric representation of SU(2) is trivial, the N = 2
specialization (2.27) of the freezing effect can be understood as the relation between E-string
and M-string through this approach. Namely, upon specializing the eight mass parameters
in E-string, the partition function agrees remarkably with that of M-string.

Poles at infinity and brane diagrams. Before delving into the partition functions of
E-string and M-string theory, it is important to discuss a pole at infinity in the ADHM
integrand and its interpretation in a brane diagram. As figure 10 depicts, the external
5-branes meet at a certain point in the 5-brane web diagram for SU(2)+1Sym, and a D1-
brane suspended by these external 5-branes is bounced back. In such scenarios, the ADHM
instanton integrals suffer from higher-order poles at infinity. For example, the expression
for the 1-instanton case from (B.1),

ZSU(2)0+1Sym
k=1 = sh(ϕ + m± a) sh(±(m + 2ϕ)− ϵ−) sh(2ϵ+)

sh(ϵ1,2) sh(ϵ+ ± a± ϕ)
ϕ→∞∼ O(eϕ) , (2.40)

shows the presence of a higher-order pole as ϕ→∞. This issue is present even for higher
instantons. A similar issue arises in the instanton partition function for SU(2)+1AS+8F. As a
result, a naive application of the JK residue method fails to yield the correct partition function.
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1-instanton. For SU(2)0+1Sym, we can use the expression for the adjoint hypermultiplet
in (B.1) since Sym ∼= Adj for SU(2). For instance, the 1-instanton part behaves as

ZSU(2)0+1Adj
k=1 = sh(m± ϕ± a) sh(ϵ− ±m) sh(2ϵ+)

sh(ϵ1,2) sh(ϵ+ ± a± ϕ)
ϕ→∞∼ O(1) . (2.41)

Therefore, the JK residue integral provides

Z
SU(2)0+1Adj
k=1 = sh(m± (2a− ϵ+)) sh(m± ϵ−)

sh(ϵ1,2) sh(2a) sh(2ϵ+ − 2a)

+ sh(m± (2a + ϵ+)) sh(m± ϵ−)
sh(ϵ1,2) sh(−2a) sh(2ϵ+ + 2a)

= Z
SU(2)0+1Adj
extra,k=1 + Z

SU(2)0+1Adj
QFT,k=1 ,

(2.42)

where Zextra is the part independent of the Coulomb branch parameter, a,

Z
SU(2)0+1Adj
extra,k=1 = 2sh(m± ϵ−)

sh(ϵ1,2)
,

Z
SU(2)0+1Adj
QFT,k=1 = sh(ϵ± ±m) ch(2ϵ+)

sh(ϵ1,2) sh(2ϵ+ ± 2a) .

(2.43)

Now let us turn to E-string theory. The ADHM integrand of SU(2)+8F obtained
from (B.1) exhibits a higher-order pole O(e2ϕ) at infinity. In contrast, the ADHM integrand
of Sp(1)θ=0+8F,5 derived from the formulas in appendix B.3, presents a less severe singularity
O(eϕ) at infinity (see the right of figure 10) although it provides the same partition function
as SU(2)+8F. This makes the latter more manageable. To mitigate the singularity at infinity,
we can make use of an antisymmetric hypermultiplet [41–43]. For the SU(2) ∼= Sp(1) gauge
group, the antisymmetric representation is trivial, meaning the addition of an antisymmetric
hypermultiplet does not fundamentally change the physics. However, this addition is beneficial
as the contribution of the antisymmetric hypermultiplet tends towards O(e−ϕ) at infinity,
therefore softening the singularity. Thus, to derive the E-string partition function, we will
examine the ADHM instanton partition function of Sp(1)0+1AS+8F in detail because it
behaves as O(1) at infinity.6

At 1-instanton, the ADHM instanton partition function of Sp(1)0+1AS+8F does not
involve an integral [44, 45] so that the evaluation is straightforward:

Z
Sp(1)0+1AS+8F
k=1 = Z

Sp(1)0+1AS+8F,+
k=1 + Z

Sp(1)0+1AS+8F,−
k=1

= sh(±a + m)∏8
ℓ=1 sh(mℓ)

sh(ϵ1,2) sh(±m−ϵ+) sh(±a + ϵ+)
+ ch(±a + m)∏8

ℓ=1 ch(mℓ)
ch(ϵ1,2) ch(±m−ϵ+) ch(±a + ϵ+)

= Z
Sp(1)0+1AS+8F
extra,k=1 + Z

Sp(1)0+1AS+8F
QFT,k=1 ,

(2.44)
5When hypermultiplets are introduced, the discrete theta angle θ does not lead to a topologically distinct

theory. Here we specify the value of θ to keep track of what ADHM integral is used for the computation.
6The pole at infinity could provide two distinct contributions: one that yields a physically relevant

contribution and the other that leads to the extra/decoupled factor. If the pole at infinity can be appropriately
handled before introducing the antisymmetric hypermultiplet, the outcomes are expected to be identical.
However, to the best of the authors’ knowledge, the proper method of dealing with the pole at infinity has not
been established yet.
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where, in the last line, we separate the parts dependent (labelled by QFT) and independent
(labelled by extra) of the Coulomb branch parameter:

Z
Sp(1)0+1AS+8F
QFT,k=1 = −

∏8
ℓ=1 sh(mℓ)

sh(ϵ1,2) sh(±a + ϵ+)
−

∏8
ℓ=1 ch(mℓ)

ch(ϵ1,2) ch(±a + ϵ+)
,

Z
Sp(1)0+1AS+8F
extra,k=1 =

∏8
ℓ=1 sh(mℓ)

sh(ϵ1,2) sh(±m− ϵ+)
+

∏8
ℓ=1 ch(mℓ)

ch(ϵ1,2) ch(±m− ϵ+)
.

(2.45)

Upon specializing the eight masses mℓ as in (2.26), we obtain

Z
Sp(1)0+1AS+8F
QFT,k=1

∣∣∣
(2.26)

= − sh(ϵ± ±m) ch(2ϵ+)
sh(ϵ1,2) sh(2ϵ+ ± 2a) . (2.46)

Comparing this with (2.43), we see a relationship between the 1-instanton partition functions
of the E-string and M-string,

Z
Sp(1)0+1AS+8F
QFT,k=1

(2.26)−−−→ −Z
SU(2)0+1Adj
QFT,k=1 . (2.47)

Higher-instanton. Let us move on to higher-instanton. The instanton partition function
of SU(2)0+1Adj [13, 46] can be expressed in terms of sums over Young diagrams as

ZSU(2)0+1Adj =
∑
k≥0

e−m0k
∑∑

s
|λ(s)|=k

2∏
s,t=1

∏
x∈λ(s)

sh(Nst + m− ϵ+) sh(Nst −m− ϵ+)
sh(Nst) sh(Nst − 2ϵ+)

, (2.48)

where m0 is the inverse coupling squared (or instanton mass), and we define the Nekrasov
factor as

Nst(x) = as − at − ϵ1Lλ(s)(x) + ϵ2(Aλ(t)(x) + 1) . (2.49)

(See (A.4) for the definitions of the arm Aλ(x) and leg Lλ(x) length for a content x ∈ λ.)
As seen above, this can be factored into two parts

ZSU(2)0+1Adj = Z
SU(2)0+1Adj
extra Z

SU(2)0+1Adj
QFT , (2.50)

where Z
SU(2)0+1Adj
extra is expressed in terms of a plethystic exponential

Z
SU(2)0+1Adj
extra = PE

[
e−m0

1− e−m0

2 sh(m± ϵ−)
sh(ϵ1,2)

]
. (2.51)

On the other hand, a closed-form expression of the refined instanton partition function
of Sp(1)0+1AS+8F is unavailable at this moment because it is difficult to classify the JK
pole structure. Therefore, we perform the JK residue integral at each instanton level. To
extract a genuine instanton contribution, it is necessary to eliminate the extra factor that
is independent of the Coulomb branch parameter. For the sake of simplicity, we focus on
the extra factor specifically at the specialization (2.26), as a computation for generic mass
parameters is computationally intensive:

ZSp(1)0+1AS+8F
∣∣∣
(2.26)

= Z
Sp(1)0+1AS+8F
extra · ZSp(1)0+1AS+8F

QFT

∣∣∣
(2.26)

, (2.52)
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where Z
Sp(1)0+1AS+8F
extra is expressed in terms of a plethystic exponential

Z
Sp(1)0+1AS+8F
extra = PE

[
e−m0

1 + e−m0

sh(ϵ− ±m)
sh(ϵ1,2)

(
1− e−m0

1− e−m0

ch(2ϵ+)
2 ch(m± ϵ+)

)]
. (2.53)

We have verified the equivalence of the partition functions up to k = 4 at the refined level
(up to sign):7

Z
Sp(1)0+1AS+8F
QFT,k

∣∣∣
(2.26)

= (−1)kZ
SU(2)0+1Adj
QFT,k . (2.54)

We remark that in a similar fashion, one can also take another freezing limit on the
E-string partition function which leads to the partition function for SU(2)π + 1Adj. The
map is based on [10] and given by:

m1,··· ,8 = ±m + ϵ+
2 ,

m± ϵ−
2 ,

m± ϵ±
2 + πi , (2.55)

where m is the mass of the adjoint hypermultiplet.
The two different freezings on E-string were also checked in [47].

2.4 BPS jumping in instanton spectra

Now we turn to the part of the unfreezing procedure, and we delve into the BPS jumping
phenomenon briefly mentioned in the preceding subsection through the partition function. The
unfreezing requires the specialization of parameters in the theory. As we fine-tune parameters
in the theory, the Jeffrey-Kirwan integral encounters degenerate poles, as explained in
appendix C. Interestingly, these degenerate poles can give rise to the appearance of multiplicity
coefficients in [19, 20]. Consequently, we observe jumps in the instanton partition functions.
In other words, the BPS spectrum of one theory jumps to that of another, upon a particular
tuning of the physical parameters (masses and Coulomb branch moduli) of the theory which
we will discuss in detail. For the sake of simplicity, we will concentrate on unrefined instanton
partition functions to illustrate this remarkable BPS jumping phenomenon.

The unrefined limit ϵ1 = −ϵ2 = ℏ offers further simplification since brane positions
become more degenerate compared to the refined case. This effect notably reduces the
necessary number of color and flavor branes for the processes of unfreezing. At the unrefined
level, the fundamental hypermultiplets are indeed unnecessary, and the ranks of gauge groups
are the same as the analysis of the prepotential, as in figure 11. Thus, let us first delve into the
unfreezing process for the SU gauge groups using the unrefined instanton partition functions.

SU(N) gauge theories with (anti-)symmetric hypermultiplet

In this subsection, we adopt the same notation for the unrefined limit of the Nekrasov
factor (2.49) as follows:

Ns,t(x) := as − at − ℏ(Aλ(s)(x) + Lλ(t)(x) + 1) . (2.56)
7This sign difference can be absorbed into the redefinition of the instanton factor.
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Z
SU(N+8)κ+1AS+8F
k

Z
SU(N)κ+1AS
k

Z
SU(N+8)κ+1Sym
k

Freezing

Higgsing

Unfreezing

Z
Sp(N+4)+8F
2ℓ+χ

Z
Sp(N),±
2ℓ+χ

Z
SO(2N+8)
ℓ

Freezing

Unfreezing

Figure 11. Left: illustration of the identities among unrefined instanton partition functions for SU
gauge groups upon specific parameter specializations. The partition function Z

SU(N+8)κ+1AS+8F
k , after

the freezing process as in (2.63), is equal to Z
SU(N+8)κ+1Sym
k . Furthermore, applying the unfreezing

procedures as in (2.60) identifies Z
SU(N+8)κ+1Sym
k with Z

SU(N)κ+1AS
k where the dashed line indicates

BPS jumping. Right: demonstrates the identities of unrefined instanton partition functions for SO/Sp
gauge groups upon parameter specializations. The partition function Z

Sp(N+4)+8F
2ℓ+χ , after the freezing

process as in (2.73), is equal to Z
SO(2N+8)
ℓ . Furthermore, applying the unfreezing procedures as

in (2.70) identifies Z
SO(2N+8)
ℓ with Z

Sp(N),±
2ℓ+χ where the dashed line indicates BPS jumping.

Then, the formula for SU(N)κ + 1Sym (N ≥ 3)8 is expressed as a sum over N -tuples λ⃗

of Young diagrams

Z
SU(N)κ+1Sym
k

= (−1)kN+⌈ k
2⌉
∑
|λ⃗|=k

N∏
s=1

∏
x∈λ(s)

eκϕs(x) sh (2ϕs(x) + m± ℏ) ·∏N
t=1 sh (ϕs(x) + at + m)∏N

t=1 sh2 (Ns,t(x))

×
N∏

s≤t

∏
x∈λ(s),y∈λ(t)

x<y

sh (ϕs(x) + ϕt(y) + m± ℏ)
sh2 (ϕs(x) + ϕt(y) + m)

(2.57)

=:
∑
|λ⃗|=k

Z
SU(N)κ+1Sym
λ⃗

,

where ϕs(x) indicates a pole location associated to a content x = (i, j) ∈ λ(s) as

ϕs(x) = as + (i− j)ℏ . (2.58)

It is important to emphasize that this formula is valid only under the assumption that all
the Coulomb branch parameters as take generic values. The reason for this remark becomes
evident later. When the Coulomb branch parameters take special values, an additional
phenomenon arises, and the partition function differs from the expression (2.57).

8Since the JK residue integral for the SU(2) gauge group suffers from the higher-order pole at infinity as
discussed around figure 10, the formulas (2.57) is not valid for N = 2. This remark is also applied to (2.62).
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On the other hand, the formula for SU(N)κ + 1AS is expressed as a sum over (N + 8)-
tuples λ⃗ of Young diagrams9

Z
SU(N)κ+1AS
k =

∑
|λ⃗|=k

Canti
λ⃗,⃗a

Z
SU(N+8)κ+1Sym
λ⃗

∣∣∣
(2.60)

, (2.59)

where we set eight additional effective Coulomb branch parameters as

aN+j = −m

2 (+πi) , −m

2 (+πi) ,
±ℏ−m

2 (+πi) . (2.60)

The poles coming from the eight additional Young diagrams are generically degener-
ate [15, 16, 48], meaning that more than k factors in the denominator of the ADHM integrand
simultaneously become zero at these poles. Consequently, the residues at these degenerate
poles give rise to the multiplicity coefficients Canti

λ⃗,A⃗
. The conjectured values for these constants

are as follows: Canti
λ(s)=∅,as

= 1, and

Canti
λ(s),as= m

2 (+πi) =− 1 for s = N + 1, N + 2 ,

Canti
λ(s),as= m

2 (+πi) = (−1)α(λ(s)) for s = N + 3, N + 4 ,

Canti
λ(s),as= ℏ−m

2 (+πi) = β(λ(s)) mod 2 for s = N + 5, N + 6 ,

Canti
λ(s),as=−ℏ−m

2 (+πi) = β((λ(s))t) mod 2 for s = N + 7, N + 8 .

(2.61)

See (A.5) for the definitions of α(λ) and β(λ).
The unrefined instanton partition function of SU(N)κ + 1AS + 8F is given by

Z
SU(N)κ+1AS+8F
k =

∑
|λ⃗|=k

Canti
λ⃗,⃗a

Z
SU(N+8)κ+1Sym
λ⃗

N+8∏
s=1

∏
x∈λ(s)

8∏
l=1

sh(ϕs(x) + ml)
∣∣∣
(2.60)

. (2.62)

To obtain the partition function Z
SU(N)κ+1Sym
k from Z

SU(N)κ+1AS+8F
k , the masses of the

eight fundamentals in SU(N)κ + 1AS + 8F must be adjusted as

mj = m

2 ,
m

2 ,
m± ℏ

2 ,
m

2 + πi,
m

2 + πi,
m± ℏ

2 + πi , (2.63)

for j = 1, . . . , 8. Like the refined case, this can be verified at the level of the ADHM integrand:

Zvec
SU(N)κ,kZ

sym
SU(N),k(m) = Zvec

SU(N)κ,kZ
anti
SU(N),k(m)ZNf =8

SU(N),k

∣∣∣
(2.63)

. (2.64)

In fact, when the masses of the fundamentals are set to (2.63), the residues at the degenerate
poles become zero. This is evident from the fact that the contributions ϕs(x) (s = N +
1, . . . , N +8) from the effective Coulomb branch parameters (2.60) vanish due to the presence
of sh(ϕs(x) + ml) factors arising from 8F. Consequently, we arrive at the following identity

Z
SU(N)κ+1AS+8F
k

∣∣∣
(2.63)

=
∑
|λ⃗|=k

Z
SU(N)κ+1Sym
λ⃗

= Z
SU(N)κ+1Sym
k . (2.65)

9The expression (2.59) is indeed different from ([20], eq. (2.12)), where only four effective Coulomb branch
parameters are present. The expression (2.59) takes into account the freezing/unfreezing of O7+∼O7−+8D7,
resulting in the emergence of eight additional effective Coulomb branch parameters (2.60).
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To obtain the partition function Z
SU(N)κ+1AS
k from Z

SU(N+8)κ+1Sym
k , we need to adjust

the eight Coulomb branch parameters in SU(N + 8)κ + 1Sym as (2.60) for j = 1, . . . , 8.
Once again, verifying the equality of the partition functions at the level of the ADHM
integrand is straightforward. However, we observe an intriguing phenomenon. A naive
substitution of (2.60) into (2.57) does not yield (2.59) due to the presence of the multiplicity
coefficients. These multiplicity coefficients arise due to two reasons. Firstly, they emerge
because the adjustment of some Coulomb branch parameters by a difference of ℏ in (2.60)
disrupts the conventional classification of poles by Young diagrams. Secondly, when tuning
the eight Coulomb branch parameters of SU(N + 8)κ + 1Sym to (2.60), the JK residue
integrals encounter degenerate poles. For a detailed analysis of these phenomena, we refer
to appendix C. Consequently, at the specific value of the Coulomb branch parameters, the
partition function suddenly jumps, implying the corresponding jump in the BPS spectra:

Z
SU(N+8)κ+1Sym
k =

∑
|λ⃗|=k

Z
SU(N+8)κ+1Sym
λ⃗

aN+j at (2.60)
−−−−−−−−−→

BPS jump

∑
|λ⃗|=k

Canti
λ⃗,⃗a

Z
SU(N+8)κ+1Sym
λ⃗

∣∣∣
(2.60)

.
(2.66)

Consequently, the unrefined instanton partition function of SU(N + 8)κ+1Sym at the special
value of Coulomb branch parameters (2.60) agree with that (2.59) of SU(N)κ + 1AS.

In this discussion, we primarily explore unrefined instanton partition functions. However,
it is important to note that can also occur during the unfreezing processes at the refined
level as illustrated in figure 9. In fact, we analyze the BPS jumping at the refined level in
appendix C. The jumping phenomenon indeed becomes more complicated in refined settings.
Due to the lack of a closed-form expression for refined instanton partition functions, we avoid
delving into these complexities in this paper.

Sp(N) and SO(2N) gauge theories

A similar phenomenon can be observed among Sp(N) and SO(n) gauge theories. The
formula for the pure SO(n) gauge theory (n ≥ 4) is expressed as a sum over ⌊n

2 ⌋-tuples
λ⃗ of Young diagrams

Z
SO(n)
k =

∑
|λ⃗|=k

N∏
s=1

∏
x∈λ(s)

sh4 (2ϕs(x))
sh2χ (ϕs(x))

∏N
t=1 sh2 (Ns,t(x)) · sh2 (ϕs(x) + at)

×
N∏

s≤t

∏
x∈λ(s),y∈λ(t)

x<y

sh4 (ϕs(x) + ϕt(y))
sh2 (ϕs(x) + ϕt(y)± ℏ)

=:
∑
|λ⃗|=k

Z
SO(n)
λ⃗

,

(2.67)

where n = 2N + χ (n ≡ χ mod 2). Again, we emphasize that this formula remains valid
when the Coulomb branch parameters are generic.

As is well-known from [45], for 5d Sp(N) gauge theory, the supersymmetric quantum
mechanics on the k-instanton moduli spaces is described by O(k) gauge group, which consists
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of two connected components O(k)±. Consequently, the instanton partition function receives
two contributions, denoted by ± sectors corresponding to the sign of the O(k)± determinant.
As explained in appendix B.3, the sum (resp. difference) of these two contributions gives the
partition function at θ = 0 (resp. θ = π). At the unrefined level, the formulas as sums over
(N + 4)-tuples λ⃗ of Young diagrams are provided in [19], and moreover the relation to the
SO(2N + 8) instanton partition function is pointed out, which is given as follows:

Z
Sp(N),±
k = pref±k

∑
|λ⃗|=ℓ

CSp
λ⃗,⃗a

Z
SO(2N+8)
λ⃗

∣∣∣
(2.70)

, (2.68)

where the prefactor functions are given by

pref±k =



1 (k = 2ℓ,+) sector
1

sh2(ℏ)
∏N

s=1 sh2(as)
(k = 2ℓ + 1,+) sector

2(−1)N 1
sh2(ℏ) sh2(2ℏ)

∏N

s=1 sh2(2as)
(k = 2ℓ + 2,−) sector

(−1)N 1
sh2(ℏ)

∏N

s=1 ch2(as)
(k = 2ℓ + 1,−) sector .

(2.69)

Here aN+j (j = 1, . . . , 4) are four additional effective Coulomb branch parameters that take
specific values at each sector as

aN+j =



ℏ
2(+πi), 0(+πi) (2ℓ,+) sector
ℏ
2(+πi), ℏ, πi (2ℓ + 1,+) sector
ℏ
2(+πi), ℏ(+πi) (2ℓ + 2,−) sector
ℏ
2(+πi), 0, ℏ+ πi (2ℓ + 1,−) sector

(2.70)

The multiplicity coefficients are given by

CSp
λ(s),as=0(+πi), ℏ2 (+πi) =

22α(λ(s))−1(2α(λ(s))−1
α(λ(s))−1

) , CSp
λ(s),as=ℏ(+πi) =

22β(λ(s))(2β(λ(s))+1
β(λ(s))

) , (2.71)

with CSp
λ(s)=∅,as

= 1. See (A.5) for the definitions of α(λ) and β(λ).
The unrefined instanton partition function of Sp(N + 4)+8F in the plus sector is given by

Z
Sp(N+4)+8F
k=2ℓ+χ,+ (2.72)

=
( ∏8

l=1 sh(ml)
sh2 (ℏ)∏N

s=1 sh2 (as)

)χ ∑
|λ⃗|=ℓ

CSp
λ⃗,⃗a

Z
SO(N+4)
λ⃗

8∏
l=1

N+4∏
s=1

∏
x∈λ(s)

sh(±ϕs(x) + ml)
∣∣∣
(2.70)

.

The expression in the minus sector for Sp(N + 4) + 8F can be written in a similar way. To
obtain the partition function Z

SO(2N+8)
ℓ from Z

Sp(N+4)+8F
2ℓ+χ (χ = 0, 1), we must freeze the

masses of the eight fundamentals in Sp(N + 4) + 8F as

mj =

 0, 0, πi, πi, ± ℏ
2 , ± ℏ

2 + πi k = 2ℓ ,

ℏ,−ℏ, πi, πi, ± ℏ
2 , ± ℏ

2 + πi k = 2ℓ + 1 .
(2.73)
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At this specialization, the minus sector of the partition function drops because ZNf =8,−
Sp(N),2ℓ+χ

vanishes due to (B.4). Then, it is straightforward to verify that the integrands agree (up
to a factor) at this specialization

Zvec
SO(2N+8)),ℓ =

( ∏8
l=1 sh(ml)

sh2 (ℏ)∏N
s=1 sh2 (as)

)−χ

Zvec,+
Sp(N+4),2ℓ+χZ

Nf =8,+
Sp(N+4),2ℓ+χ

∣∣∣∣
(2.73)

. (2.74)

Note that the residues of the degenerate pole become zero when we tune the mass parameters
as (2.73) so that no multiplicity coefficients are involved( ∏8

l=1 sh(ml)
sh2 (ℏ)∏N

s=1 sh2 (as)

)−χ

Z
Sp(N+4)+8F
k=2ℓ+χ,+

∣∣∣∣∣
(2.73)

=
∑
|λ⃗|=ℓ

Z
SO(2N+8)
λ⃗

= Z
SO(2N+8)
ℓ . (2.75)

To derive Z
Sp(N),±
2ℓ+χ from Z

SO(2N+8)
ℓ , we specialize the four Coulomb branch parameters

in SO(2N + 8) as in (2.70). It is straightforward to confirm the equivalence of the partition
functions at the level of the ADHM integrand up to the factor (2.69). Nonetheless, we note an
interesting occurrence. Naively substituting (2.70) into (2.67) does not lead to (2.68) because
of the multiplicity coefficients. As previously highlighted, these coefficients originate from
degenerate poles. When tuning the four Coulomb branch parameters of pure SO(2N + 8)
Yang-Mills to (2.70), the JK poles become degenerate, resulting in the presence of multiplicity
coefficients. As a result, at particular values of the Coulomb branch parameters, there is a
notable jump in the partition function, suggesting the corresponding jump in the BPS spectra:

Z
SO(2N+8)
ℓ =

∑
|λ⃗|=ℓ

Z
SO(2N+8)
λ⃗

aN+j at (2.70)
−−−−−−−−−→

BPS jump

∑
|λ⃗|=ℓ

CSp
λ⃗,⃗a

Z
SO(2N+8)
λ⃗

∣∣∣
(2.70)

.
(2.76)

Thus, exactly at the specific Coulomb branch parameter values (2.60), the unrefined instan-
ton partition function for pure SO(2N + 8) Yang-Mills agrees with the one (2.59) for the
corresponding sector of the pure Sp(N) Yang-Mills, up to the factor (2.69). In turn, this
explains the finding in [19], demonstrating that each sector of the Sp(N) unrefined instanton
partition function can be expressed in terms of that of SO(2N + 8), augmented by multiplicity
coefficients. It is also noteworthy that the BPS jumping occurs in a more intricate manner at
the refined level although a detailed analysis is beyond the scope of this paper.

3 Freezing and unfreezing in 4d and 3d theories

In this section, we extend the freezing and unfreezing processes to lower dimensions, 4d and
3d. We investigate a lower-dimensional version of such relation between an Op+-plane and
Op− + 2p−4Dp and compute relevant physical observables that clearly show the relation.

3.1 4d N = 2 SCFT and Schur index

In this section, we shall see the effects of freezing and unfreezing phenomena of an O6-plane
with D6-branes in 4d N = 2 Schur indices [49].
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The 4d N = 2 superconformal algebra SU(2, 2|2) is generated by supercharges (QI
α, Q

I
α̇)

and their superconformal partners (Sα
I , S

α̇
I ). Relevant bosonic symmetry generators of

SU(2, 2|2) here are (E, j1, j2, R, r) where j1,2 signifies the angular momentum of SO(4) ≃
SU(2)1 × SU(2)2, while (R, r) correspond to Cartan generators associated to the N = 2
superconformal R-symmetry SU(2)R × U(1)r.

The 4d N = 2 superconformal index counts the 1/8-BPS states annihilated by one
supercharge and its superconformal partner, say Q1−̇ and S

1−̇. In other words, it counts
Q1−̇-cohomology states, which saturate the bound

δ̄1−̇ := {S1−̇
, Q1−̇} = E − 2j2 − 2R + r = 0 .

Then, the 4d N = 2 superconformal index is defined as

I(p, q, t) = Tr(−1)F e−β δ̄1−̇ pj1+j2−r q−j1+j2−r tR+r
∏
j

m
fj

j , (3.1)

where mj are flavor fugacities and fj are Cartan generators of flavor symmetry in an N = 2
SCFT. It is straightforward to evaluate the 4d N = 2 superconformal index for anN = 2 SCFT
with Lagrangian description [50, 51]. In particular, the contribution of a half-hypermultiplet
with representation λ to the multi-particle index gives rise to the elliptic gamma function,
given by

I
1
2 H(z; p, q, t) =

∞∏
i,j=0

1− z−wpi+1qj+1/
√
t

1− zw
√
t piqj

=: Γ(zw
√
t) , (3.2)

where w runs over the weights of the representation λ. The 4d N = 2 vector multiplet
contributes

Ivec(z; p, q, t) =
κrkGΓ( pqt )rkG

|WG|
∏

α∈∆

Γ
(
zα pq

t

)
Γ (zα) , where κ = (p; p)(q; q) , (3.3)

where ∆ represents the set of roots associated with the gauge group G, and |WG| is the
order of the Weyl group of G. Then, for a superconformal theory with a gauge group G and
half-hypermultiplets carrying representations λi, the full index is schematically expressed by

I =
∮

TrkG

dz

2πiz
Ivec(z; p, q, t)

∏
matter

I
1
2 H(z; p, q, t) , (3.4)

where the integral is performed over the maximal torus TrkG of the gauge group G.
In the context of 4d N = 2 superconformal index, there are several intriguing spe-

cializations [49, 52]. Of particular relevance in this paper is the Schur index, obtained by
setting t = q, which enumerates the 1/4 BPS operators consisting of Higgs branch opera-
tors annihilated by (Q1

−, S−
1 ) and (Q1

−̇, S
−̇
1 ). In the Schur limit, the contribution from the

hypermultiplet simplifies to

IH = Γ(z±
√
t) t→q−−→ IH

Schur =
1

θ(z√q; q) , (3.5)

and the vector multiplet contribution is reduced to

Ivec =
κrkGΓ( pqt )rkG

|WG|
∏

α∈∆

Γ
(
zα pq

t

)
Γ (zα)

t→q−−→ Ivec
Schur =

(q; q)2rkG

|WG|
∏

α∈∆
θ(zα; q) . (3.6)
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Freezing~
Figure 12. Left: a IIA brane configuration for 4d SU(N)+1AS + (N + 2)F (N = 6 in this case).
Right: a brane configuration for 4d SU(N)+1Sym + (N − 2)F. Here, (color) D4 branes are extended
along the x6-direction, NS5-branes are extended along the x4,5-directions, and (flavor) D6-branes
(x7,8,9) are denoted by black dots. Also, an O6−-plane is denoted by a black circle and an O6+-plane
is by a red circle.

SU(N) gauge theories with (anti-)symmetric hypermultiplet

Let us consider 4d N = 2 SCFTs with SU(N) gauge group and one (anti-)symmetric
hypermultiplet. For an N = 2 theory to be conformal, the β-function must vanish:

β ∝ 2T (adj)− T (R) , (3.7)

where R is the representation of a half-hypermultiplet in a theory. The Dynkin indices for
the representations of SU(N) are given by

T (□) = 1
2 , T (adj) = N, T (Sym) = N

2 + 1, T (AS) = N

2 − 1 . (3.8)

Therefore, for SU(N) gauge theory with one symmetric (resp. antisymmetric) hypermultiplet
to be superconformal, we have to add N − 2 (resp. N + 2) fundamental hypermultiplets.

Similar to the construction of 5d gauge theories with (anti-)symmetric hypermultiplet in
IIB 5-brane web diagrams, 4d SU(N) gauge theories can be constructed from IIA brane setup
with NS5-, D4-, and D6-branes/O6-planes, which is a T-dual of IIB brane configuration. More
precisely, SU(N) gauge theories with Nf fundamental hypermultiplets are represented by N

D4-branes stretched between two NS5-branes, accompanied by Nf D6-branes to account for
the fundamental hypermultiplets. When one (anti-)symmetric hypermultiplet is introduced,
the corresponding brane setup requires an O6±-plane, respectively. This setup is illustrated
in figure 12, where the brane arrangement is shown in the covering space, highlighting
the D4/D6-branes mirrored by an O6-plane. The freezing here is the process in (2.38),
O6− + 4D6|fixed ∼ O6+. One then clearly sees that if the middle NS5-brane is Higgsed away,
then the resulting brane configuration becomes that for Sp/SO gauge theories with only
fundamental hypermultiplets. Analogous to the case of the IIB brane configuration discussed
earlier, the same kind of Higgsing reducing ranks of gauge and flavor groups by two is
naturally realized on this IIA brane configuration as depicted in figure 13.

The process of unfreezing in the IIA brane setup is also evident. In figure 14, we illustrate
a brane configuration for SU(10) + 1Sym + 8F with an O6+-plane for 1Sym. Through
unfreezing, we utilize O6+ ∼ O6− + 4D6|fixed, with the four D6 branes highlighted in red. At
the same time, Higgsing is applied to eight color D4-branes arranged alongside eight D6-branes,
subsequently relocated in the x7,8,9 direction. Following the Hanany-Witten transitions, one
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Figure 13. Higgsing with AS/Sym in IIA brane setup: SU(N + 2) + 1AS/Sym + 2F→ SU(N) +
1AS/Sym. In the last figure, Hanany-Witten transitions are performed to two D6 branes along the
direction of the arrows.

~

Figure 14. Unfreezings for on IIA brane setup, suggesting SU(N +8)+1Sym+(N +6)F→ SU(N)+
1AS + (N + 2)F. Here, N = 2. LEFT: a brane configuration for SU(10) + 1Sym + 8F with a red
circle denoting an O6+. MIDDLE: an O6+ ∼ O6−+4D6 (unfreezing) and color D4-branes are align
with D6-branes to be Higgsed. RIGHT: 8 D6-branes become free hypermultiplets by Hanany-Witten
moves. The brane setup describes SU(2) + 1AS + 4F.

finds that the resulting configuration is a IIA brane configuration SU(2) + 1AS + 4F, as
shown on the right of the figure 14, where red dots represent free hypermultiplets.

Although the brane configuration illustrated in figure 14 suggests the relation between
SU(N + 8) + 1Sym + (N + 6)F and SU(N) + 1AS + (N + 2)F, capturing this relation
within the complete BPS spectrum in 4d is far from straightforward. Our analysis reveals
that only a select few BPS observables truly reflect this relation as depicted by the brane
setup. The Schur index stands out as one such observable. We will now delve into a detailed
demonstration of how the unfreezing process manifests at the level of the Schur index.

Schur index. Based on the discussion of the Schur limit of the superconformal index earlier,
we find that the Schur index for SU(N + 8) + 1AS + (N + 10)F can be expressed as follows:

I
SU(N+8)+1AS+(N+10)F
Schur =

∮
TN+7

dz

2πiz
ISU(N+8)+1AS+(N+10)F

Schur (3.9)

=(q; q)2(N+7)

(N + 8)!

∮
TN+7

dz

2πiz

N+8∏
i=1

∏
j>i

θ((zj/zi)±)
θ(zizjm

√
q)

N+10∏
k=1

1
θ(zimk

√
q) .

where m is U(1) flavor fugacity of one antisymmetric hypermultiplet while mk are the U(N+10)
flavor fugacities for the fundamental hypermultiplets.

In this setup, two Higgs branch operators acquire the vacuum expectation values (VEVs),
which Higgses the gauge group by rank two:

SU(N + 2) + 1AS + (N + 4)F Higgsing−−−−−→ SU(N) + 1AS + (N + 2)F . (3.10)
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The Higgsing procedure can be seen at the level of the superconformal index [53] as follows.
To move two D6 branes on a D4-brane, we tune the flavor fugacities mN+9 = m

mN+10
√
q , and

take residues at the particular values of the gauge fugacities[
(N + 8)(N + 7)(q; q)2

N+8∏
i=1

θ(mN+10/mi)θ(mimN+10
√
q/m)

]−1
ISU(N+6)+1AS+(N+8)F

Schur

= Res′
zN+7=mN+10

m

ReszN+8= 1
mN+10

√
q
ISU(N+8)+1AS+(N+10)F

Schur

(
mN+9 = m

mN+10
√
q

)
. (3.11)

Here, Res′ indicates that we remove the divergent zero modes by hand, which are typically
present in the Higgsing process, when taking the residue. As illustrated on the left side of
figure 15, by employing this procedure four times, we can reduce the gauge rank by eight
through the appropriate assignment of VEVs to eight hypermultiplets.

Now let us see the freezing effect (2.38) at the level of the Schur index. To fix the position
of four D6-branes near the O6−-plane, we set the flavor fugacities in the Schur index (3.9) as

mN+j = ±m
1
2 q±

1
4 , (3.12)

where j ranges from 7 to 10, and here we take all possible sign combinations. With this
specialization, it reduces to the Schur index of SU(N + 8) with one symmetric and (N + 6)
fundamental hypermultiplets

ISU(N+8)+1AS+(N+10)F
Schur

Freezing−−−−−→
(3.12)

ISU(N+8)+1Sym+(N+6)F
Schur , (3.13)

where

I
SU(N+8)+1Sym+(N+6)F
Schur

= (q; q)2(N+7)

(N + 8)!

∮
TN+7

dz

2πiz

N+8∏
i=1

1
θ(z2

i m
√
q)
∏
j>i

θ((zj/zi)±)
θ(zizjm

√
q)

N+6∏
k=1

1
θ(zimk

√
q) . (3.14)

To transition from the Schur index of SU(N +8)+ 1Sym+ (N +6)F to SU(N) + 1AS+
(N + 2)F, we position an additional four D6-branes close to the O6−-plane. This is achieved
by adjusting four flavor fugacities as follows:

mN+j = ±m− 1
2 q±

1
4 , (3.15)

where j ranges from 3 to 6, and we take all possible sign combinations here. Then, to
implement the unfreezing, we bring eight color D4-branes near the O6−-plane. This is done
by taking residues in the integrand of the Schur index for SU(N + 8) + 1Sym + (N + 6)F at

zN+j = ±m± 1
2 q±

1
4 , (j = 1 . . . , 8) (3.16)

where we remove the divergent zero modes appropriately. Consequently, we obtain the
integrand of the Schur index for SU(N) + 1AS + (N + 2)F up to some factor:

ISU(N+8)+1Sym+(N+6)F
Schur (mN+j = ±m− 1

2 q±
1
4 ) Unfreezing−−−−−−→

(3.16)
ISU(N)+1AS+(N+2)F

Schur . (3.17)

The entire procedure is illustrated in the left of figure 15.
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ISU(N+8)+1AS+(N+10)F
Schur

ISU(N)+1AS+(N+2)F
Schur

ISU(N+8)+1Sym+(N+6)F
Schur

Freezing

Consecutive
Higgsing

Unfreezing

ISp(N+4)+(2N+10)F
Schur

ISp(N)+(2N+2)F
Schur

ISO(2N+8)+(2N+6)F
Schur

Freezing

Consecutive
Higgsing

Unfreezing

Figure 15. Freezing, unfreezing and Higssing procedures for Schur indices. Left: the Schur
index of SU(N + 8) + 1AS + (N + 10)F, after the freezing process as in (3.12), is equal to that
of SU(N + 8) + 1Sym + (N + 6)F. Furthermore, applying the unfreezing as in (3.15) and (3.16)
identifies the Schur index of SU(N + 8) + 1Sym + (N + 6)F with that of SU(N) + 1AS + (N + 2)F,
up to a factor. Right: the Schur index for Sp(N + 4) + (2N + 10)F, following the freezing process as
described in (3.21), matches the Schur index for Sp(N) + (2N + 2)F. Moreover, by implementing
the unfreezing processes, as detailed in (3.24) and (3.25), we can equate the Schur index of Sp(N) +
(2N + 2)F to that of SO(2N + 8) + (2N + 6)F, up to a factor.

Comment on the full superconformal indices. Unlike the Schur index, when we extend
our analysis to the full superconformal index with p, q, t, we find that no specific flavor
fugacities provide the identity for the SCFTs involving the antisymmetric hypermultiplet
and the one with the symmetric hypermultiplet. Moreover, while the Macdonald index [52]
receives the same contributions from Higgs branch operators as the Schur index does, these
theories cannot be related by the identities of the Macdonald indices. Specifically, the
fugacity t distinguishes these theories. It is desirable to discern why this overlap appears
exclusively at the Schur index level.

Sp(N) and SO(2N) gauge theories

We will now compare the Schur indices between the superconformal QCD of Sp(N) and
SO(2N). For Sp(N), the superconformal condition is achieved with 2N + 2 fundamental
half-hypermultiplets while the SO(2N) group achieves this with 2N − 2 fundamental half-
hypermultiplets.10 Hence, the Schur index for the superconformal QCD of Sp(N + 4) is
determined as follows:

I
Sp(N+4)+(2N+10)F
Schur = (q; q)2(N+4)

(N + 4)!2N+4

∮
TN+4

dz

2πiz

N+4∏
i=1

θ(z±2
i )

∏
j>i

θ(z±j z±i )
2N+10∏

k=1

1
θ(z±i mk

√
q)

.

(3.18)
Let us Higgs the gauge group by rank one via the Hanany-Witten process after placing

two D6-branes onto a D4-branes:

Sp(N + 4) + (2N + 10)F Higgsing−−−−−→ Sp(N + 3) + (2N + 8)F . (3.19)

10A Higgsing of an antisymmetric/symmetric full-hypermultiplet on SU(2N) gauge theories with (anti-)
symmetric matter leads to the superconformal conditions for Sp(N) and SO(2N) gauge theories.
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Regarding the Schur index, we equate the flavor fugacities m2N+10 and m2N+9, and set the
gauge fugacity to zN+4 = m2N+9q

1/2:

[
2(N + 4)(q; q)2

2N+8∏
i=1

θ(m±
2N+9/mi)

]−1
ISp(N+3)+(2N+8)F

Schur

= Res′zN+4=m2N+9q1/2 ISp(N+4)+(2N+10)F
Schur (m2N+10 = m2N+9) (3.20)

where Res′ implies the exclusion of the divergent zero modes when taking residues. Sequentially
applying this Higgsing process four times ultimately leads to the Sp(N) + (2N + 2)F theory.

The freezing effect from (2.38) can be seen at the level of the Schur index. To set the
positions of four D6-branes close to the O6−-plane, we specialize the four flavor fugacities
in the Schur index (3.18) as follows:

m2N+6+j = ±1,±q
1
2 , (3.21)

it reduces to the Schur index of the SO(2N + 8) + (2N + 6)F theory up to a factor of 2:

ISp(N+4)+(2N+10)F
Schur

Freezing−−−−−→
(3.21)

ISO(2N+8)+(2N+6)F
Schur , (3.22)

where

1
2I

SO(2N+8)
Schur = (q; q)2(N+4)

(N + 4)!2N+4

∮
TN

dz

2πiz

N+4∏
i=1

∏
j>i

θ(z±j z±i )
2N+6∏
k=1

1
θ(z±i mk

√
q)

. (3.23)

To transition from the Schur index of SO(2N + 8) + (2N + 6)F to Sp(N) + (2N + 2)F,
we relocate an additional four D6-branes close to the O6−-plane, and Higgs four D4-branes
out. This relocation is achieved by setting four flavor fugacities as follows:

m2N+2+j = ±1,±q
1
2 , (3.24)

where j = 1, . . . , 4. Subsequently, we take residues in the Schur index formula of SO(2N +
8) + (2N + 6)F at

zN+j = ±1,±q
1
2 , (j = 1, . . . , 4) (3.25)

where we appropriately remove the divergent zero modes in the denominator. Consequently,
we obtain the integrand of the Schur index for Sp(N)+(2N +2)F up to an unimportant factor:

ISO(2N+8)+(2N+6)F
Schur (m2N+2+j = ±1,±q

1
2 ) Unfreezing−−−−−−→

(3.25)
ISp(N)+(2N+2)F

Schur . (3.26)

The whole relationship is depicted in the right of figure 15.
As noted earlier, the relation holds only at the Schur indices. We emphasize that no

specific tuning of flavor and gauge fugacities can extend this relation to encompass the full
superconformal index involving p, q, t, or its various other limits.
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3.2 3d N = 4 sphere partition functions

In the context of 3d setups, the brane configurations for 3d N = 4 theories are closely
related to those used for 4d N = 2 gauge theories. For example, as depicted in figure 12
with O6-planes and D6-branes, the concept of freezing can be adapted to 3d by substituting
O6-planes with O5-planes and D6-branes with D5-branes, as illustrated by

O5− + 2D5
∣∣∣
fixed

∼ O5+ . (3.27)

A notable distinction is the extension of NS5-branes along the x4,5,6-directions in 3d con-
figurations. Thus, we will now turn our attention to the sphere partition function, which
effectively represents the concept of freezing in 3d. Given the similarity of this procedure
to those previously described, we will provide a concise overview here. In this setting, the
(un)freezing can be captured by the three-sphere partition function [54]. Since the procedure
is very similar to the previous cases, our discussion here will be succinct for simplicity.

U(N) gauge theories with (anti-)symmetric hypermultiplet

Freezing. An S3 partition function is evaluated by supersymmetric localization in the
pioneering work [54]. The S3 partition function for U(N) gauge group with one antisymmetric
and (Nf + 2) fundamental hypermultiplets is

Z
U(N)+1AS+(Nf +2)F
S3 (m) = 1

N !

∫
[ds]

N∏
i=1

e2πiξsi
∏

j>i sh2 2π(si − sj)∏
j>i ch 2π(si + sj −m)∏Nf +2

k=1 ch 2π(si −mk)
,

(3.28)
where ξ is the Fayet-Iliopoulos term, m is the mass of the antisymmetric and mk are
those of the fundamentals. To incorporate the effect of freezing two D5-branes with an
O5−-plane (3.27), we specialize two mass parameters as

mNf +1 = m

2 −
i

4 , mNf +2 = m

2 + i

4 (3.29)

in the aforementioned partition function. This adjustment yields the partition function
for U(N) gauge group with one symmetric and Nf fundamental hypermultiplets (up to
a factor of i):

Z
U(N)+1AS+(Nf +2)
S3

Freezing−−−−−→
(3.29)

Z
U(N)+1Sym+Nf F
S3 . (3.30)

where

Z
U(N)+1Sym+Nf F
S3 (m)

= 1
N !

∫
[ds]

N∏
i=1

e2πiξsi
∏

j>i sh2 2π(si − sj)
ch 2π(2si −m)∏j>i ch 2π(si + sj −m)∏Nf

k=1 ch 2π(si −mk)
. (3.31)

Here we use the addition formula

sh 2π(2s) = ch 2π(s) sh 2π(s) . (3.32)
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Unfreezing. Now let us turn to the process of unfreezing. To separate the two D5-branes
used in the freezing process (3.27), we move two color D3-branes to the position of the
D5-branes. Subsequently, through Higgsing and the Hanany-Witten transition, the D5-
branes are moved away. To apply this change to the S3 partition function, we can take
the residues at m

2 ±
i
4

ZU(N−2)+1AS+Nf F
S3 (m) (3.33)

=
[
2N(N − 1)ie−2πimξ

Nf∏
k=1

ch(m− 2mk)
]
ReszN = m

2 − i
4
ReszN−1= m

2 + i
4
ZU(N)+1Sym+Nf F

S3 (m) .

In this way, we can see the unfreezing at the level of the S3 partition functions

ZU(N)+1Sym+Nf F
S3

unfreezing−−−−−−→ ZU(N−2)+1AS+Nf F
S3 . (3.34)

Sp(N) and SO(2N) gauge theories

Freezing. The S3 partition function of 3d N = 4 SQCD with a simple gauge group G and
Nf half-hypermultiplets carrying representations w can be computed by

Z
G+Nf F
S3 = 1

|WG|
lim
ξ→0

∫
[ds]e

2πiξ
∑rkG

i=1 si
∏

α∈∆ sh 2π(α · s)∏Nh
j=1

∏
w∈R ch 2π(w · s−mj)

, (3.35)

where ∆ andR refer to, respectively, the root system of G and the weights of the representation
associated with the hypermultiplet. Although a simple gauge group does not admit the
Fayet-Ilioupolous term, we introduce a regulator ξ and take the limit ξ → 0 to calculate
the S3 partition functions [55].

The S3 partition function of Sp(N) SQCD with (Nf + 2) fundamental hypermultiplets
is given by

Z
Sp(N)+(Nf +2)F
S3 (m) = 1

N !2N
lim
ξ→0

∫
[ds]

N∏
i=1

e2πiξsi sh2 2π(2si)
∏

j>i sh2 2π(si ± sj)∏Nf +2
j=1 ch 2π(±si −mj)

(3.36)

=
∑

I∈C
Nf +2
N

N∏
j=1

mIj sh 2π(2mIj )∏
ℓ ̸∈I sh 2π(mℓ ±mIj )

, (3.37)

where I denotes a subset of N distinct integers selected from {1, . . . , Nf + 2}, representing
all possible combinations C

Nf +2
N . The transition from the integral expression in the first line

to the sum in the second line is facilitated by isolating the poles at

sj = ±mIj + i
2kj + 1

2 , kj ∈ Z≥0

and considering the symmetries of permutations SN of the set I. The limit ξ → 0 is
then applied using L’Hospital’s rule to derive the summation form as shown in the second
line ([56], appendix D).

Now to perform the freezing (3.27), we specialize the two mass parameters in the Sp(N)
partition function (3.36) as

mNf +1 = 0 , mNf +2 = i

2 . (3.38)
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This adjustment brings the partition function into the one for SO(2N) SQCD with Nf

fundamental hypermultiplets up to a factor of 2:

Z
SO(2N)+Nf F
S3 (m) = 1

N !2N−1 lim
ξ→0

∫
[ds]

N∏
i=1

e2πiξsi
∏

j>i sh2 2π(si ± sj)∏Nf

j=1 ch 2π(±si −mj)
(3.39)

= 2
∑

I∈C
Nf
N

N∏
j=1

mIj

sh 2π(2mIj )
∏

ℓ/∈I sh 2π(mℓ ±mIj )
. (3.40)

This freezing can be verified directly in the integrands and also through the integrated
expressions:

Z
Sp(N)+(Nf +2)F
S3

Freezing−−−−−→
(3.38)

Z
SO(2N)+Nf F
S3 . (3.41)

Unfreezing. The subsequent steps are also analogous. To undo the freezing process
described in (3.27), we introduce two additional D5-branes alongside two color branes in the
vicinity of the O5-plane. This is followed by the processes of Higgsing and Hanany-Witten
transition. For the S3 partition functions, we then adjust the mass parameters to

mNf
= 0 , mNf−1 = i

2 , (3.42)

and fine-tune the gauge fugacities to

zN = 0 , zN−1 = i

2 . (3.43)

Through these adjustments, the unfreezing processes become evident at the level of the S3

partition functions, leading to the transformation

ZSO(2N)+Nf F
S3

unfreezing−−−−−−−→
(3.42, 3.43)

ZSp(N−2)+(Nf−2)F
S3 . (3.44)

Comments on other partition functions. In 3d, other exact partition functions are
available. The 3d N = 4 superconformal index [57] can be understood as a partition function
on S1 × S2 with appropriate background fields introduced. However, there is no fine-tuning
of the flavor symmetries to match the superconformal indices of the two theories compared
above. Since 3d N = 4 theories are endowed with SU(2)H × SU(2)C R-symmetry, performing
topological twists [58], one can also consider a twisted partition function on a general three-
manifold. Notably, A-twisted and B-twisted indices on a Riemann surface, S1×Σg, have been
studied in ([59], §6) where A-twist (resp. B-twist) corresponds to a topological twist with
SU(2)H (resp. SU(2)C). Specifically, A-twisted and B-twisted indices on S1 × S2 provide the
Hilbert series of the Coulomb and Higgs branch of the 3d N = 4 theory, respectively. Once
more, the twisted indices show no specialization in flavor fugacities that leads the indices of
the two compared theories to be equal. This particularly indicates that the two theories have
distinct Coulomb and Higgs branch moduli spaces. This distinction demonstrates that the two
theories are not dual to each other, even when considering specific mass parameters and flavor
fugacities. Hence, the correspondence in the S3 partition function remains observational.
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4 Conclusion

In this study, we introduce a fascinating link between the BPS partition functions for a
family of supersymmetric gauge theories equipped with eight supercharges. These theories
are characterized by brane configurations that incorporate an Op+-plane across dimensions
d = 5, 4, 3, with p = d + 2.

In particular, in five dimensions, we show that the partition functions tied to an O7+-
plane emerge from configurations with an O7−-plane and eight D7-branes through a process
we term “freezing.” This process is applicable to theories such as SU(N)κ + 1Sym + Nf F←
SU(N)κ + 1AS + (Nf + 8)F and SO(2N) + Nf F ← Sp(N) + (Nf + 8)F, respectively for
N ≥ 2 and Nf up to the flavor limit of 5d Kaluza-Klein (KK) theories. We find that
their refined instanton partition functions match when we apply mass specializations to
the hypermultiplets, a direct outcome of freezing. A notable example is the application
of freezing to the 5d KK theory SU(2) + 8F, commonly referred to as E-string theory on
a circle. At the level of partition functions, this results in the KK theory SU(2)θ + 1Adj,
where θ = 0 aligns with the 6d M-string on a circle, and θ = π links to the 6d A2 theory
on a circle with a Z2 outer automorphism twist.

Furthermore, we identify a novel phenomenon where the BPS instanton spectrum jumps
from one theory to another through “unfreezing,” a reversal of the freezing process, in 5d
theories. Unfreezing necessitates precise adjustments of mass and Coulomb branch parameters,
followed by successive Higgsings in the partition function calculation. This leads to the
emergence of degenerate poles in the JK residue integrals, subsequently resulting in the
appearance of multiplicity coefficients that facilitate shifts in the partition functions. We have
concretely verified that SU(N+8)κ+1Sym+8F 99K SU(N)κ+1AS and SO(2N+8) 99K Sp(N)
for the unrefined case.

The processes of freezing and unfreezing can be applied to both 4d and 3d supersymmetric
gauge theories. While the brane configurations in these dimensions may not be as visually
intuitive as in the five-dimensional case, the charges associated with orientifold planes
connect distinct theories. Specifically, in four dimensions, this relationship is represented
by O6+ ∼ O6− + 4D6, and in three dimensions, by O5+ ∼ O5− + 2D5. We have found
that, in these lower-dimensional theories, only certain physical observables agree under the
processes of freezing and unfreezing. For example, under the freezing, the Schur index
for a 4d N = 2 SU(N) gauge theory with a symmetric hypermultiplet matches that of a
theory with an antisymmetric hypermultiplet and (N + 2) fundamental hypermultiplets.
Similarly, the relationship of these theories through unfreezing is depicted in figure 15. In
three dimensions, the equivalence of S3 partition functions between 3d N = 4 U(N) gauge
theories with symmetric and antisymmetric hypermultiplets, alongside two fundamental
hypermultiplets, is explicitly verified. The S3 partition functions for Sp/SO gauge theories
have also been confirmed.

We remark that it is well-known that 5-brane webs for SO/Sp gauge theories can be
constructed using an O5-plane instead of an O7-plane. For a single gauge group, naively a
5-brane web with an O7-plane is not much distinct from that with an O5-plane. For instance,
SW curves obtained from 5-brane webs with an O7- and an O5-plane are equivalent [9, 60].
Hence, the freezing and unfreezing associated with an O5-plane can also be understood

– 34 –



J
H
E
P
0
5
(
2
0
2
4
)
3
4
0

O5+O5− O5− O5− O5− O5− O5−O5+ O5+

(a) (b) (c)

Figure 16. 5-brane webs with an O5-plane and freezing. (a) 5-brane web for Sp(N) + 8F theory. (b)
Freezing: O5+ ∼ O5− + 2F denoted by blue dashed lines. (c) Together with virtual Higgsings with
blue “color” branes and flavor branes, the freezing takes place on O5−-plane with flavor D5-brane (in
red), leading to an O5+-plane, which results in a 5-brane web for SO(2N) theory.

similarly. For instance, a freezing process with an O5-plane is depicted in figure 16 relating
the 5d Sp(N) + 8F and the 5d SO(2N) theory.

The study of the freezing and unfreezing in this paper raises interesting questions and
several promising directions to consider. First of all, we observe that certain physical
observables agree upon freezing though this agreement is not universal across all observables,
as demonstrated in the 4d and 3d contexts. Given that freezing does not constitute a duality,
discrepancies in observables are to be expected. Nonetheless, it is crucial to uncover any
underlying principles that explain why specific observables match under freezing.

Moreover, we encounter the BPS jumping phenomenon during unfreezing. This behavior
is anticipated to occur more generally when degenerate poles appear in the JK residue integrals
upon varying chemical potentials. This suggests that observing BPS jumping through JK
residue integrals becomes feasible when chemical potentials, serving as physical parameters,
are adjustable. A systematic examination of the conditions leading to BPS jumping and the
physical mechanisms driving this phenomenon would be essential next steps.

Expanding this analysis to other dimensions presents another compelling direction for
research. While our attention has primarily been on 5d instanton partition functions, it
would be interesting to extend the investigation to 6d elliptic genera and Little String Theory
partition functions through the viewpoint of O8+ ∼ O8− + 16D8. Exploring a 2d extension,
where freezing implies a relation O4+ ∼ O4− + 1D4, may offer another valuable perspective.
Additionally, the study of the freezing in the context of string dualities such as T-duality
invites further investigation.

Another aspect worth exploring is whether the process of (un)freezing can be applied
to theories and configurations with less supersymmetry. Since the freezing process Op+ ∼
Op− + 2p−4 Dp can be implemented locally within brane configurations, it is feasible to
decrease the amount of supersymmetry by altering global configurations or incorporating
additional branes. Investigating the process of (un)freezing in more general brane setups
would also be an interesting direction for future research.
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A Notation and convention

In this appendix, we outline the specific notations and conventions employed throughout
this paper.

First of all, throughout the paper, we denote the product (resp. sum) of all possible sign
combinations for multiplicative (resp. additive) parameters in the following expressions:

f(a±b±) = f(ab)f(a−1b)f(ab−1)f(a−1b−1),
g(±a± b) = g(a + b)g(−a + b)g(a− b)g(−a− b),

(A.1)

For mass or Coulomb branch specialization, we use the following shorthand notation

a = ±ϵ±(+πi) ⇔ a = ϵ+, ϵ+ + πi, −ϵ+, −ϵ+ + πi, ϵ−, ϵ− + πi, −ϵ−, −ϵ− + πi . (A.2)

For various SU, Sp, and SO gauge theories, we frequently use the following concise
notations for matter hypermultiplet representations:

• Fundamental representation: F

• Antisymmetric representation: AS

• Symmetric representation: Sym

Young diagrams. A Young diagram λ is defined by a non-increasing sequence of non-
negative integers, λ = (λ1 ≥ λ2 ≥ . . . ≥ λℓ(λ) > 0). The length of a Young diagram,
denoted by ℓ(λ), is the number of its non-zero rows. The total number of boxes in the
Young diagram is denoted by

|λ| =
ℓ(λ)∑
i=1

λi . (A.3)

The transpose of the Young diagram λ, denoted by λt, is obtained by reflecting λ along its
main diagonal. For a box x = (i, j) ∈ λ, where i is the row index and j is the column index,
the arm length Aλ(x) and the leg length Lλ(x) are defined as

Aλ(x) = λi − j Lλ(x) = λt
j − i (A.4)
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λ =
α(λ)

α(λ)

λ =

β(λ)

β(λ) + 1

Figure 17. α(λ) is the number of rows with λi ≥ i while β(λ) is the number of rows with λi ≥ i + 1.
For λ = (7, 5, 4, 4, 3, 1, 1), α(λ) = 4 and β(λ) = 3.

We also denote that α(λ) is the number of rows with λi ≥ i while β(λ) is the number
of rows with λi ≥ i + 1:

α(λ) = max(i | λi ≥ i) , β(λ) = max(i | λi ≥ i + 1) . (A.5)

(See figure 17 for an example.)
For an expression of an instanton partition function, we often use the following notation

of the P -tuple Young diagrams with k a total number of boxes:

λ⃗ = (λ(1), . . . , λ(P )) ,

and

|λ⃗| :=
P∑

s=1
|λ(s)| = k .

Partition functions. In our notation, the integrand of a partition function is denoted in
calligraphic font, while the resultant partition function is represented in standard lettering.
For example, a k-instanton partition function is expressed as

ZT
k =

∮
JK

∏
I

dϕI

2πi
ZT

k (ϕ) , (A.6)

where T symbolizes the theory under consideration. An instanton partition function is
defined on the Ω-background [13], and we use the standard notation ϵ1,2 to represent the
Ω-deformation parameters. We also introduce the notation 2ϵ± = ϵ1 ± ϵ2, with the unrefined
limit being defined as ϵ1 = −ϵ2 = ℏ (therefore ϵ+ = 0, ϵ− = ℏ) For the 5d instanton partition
function, it is also helpful to introduce the notations

sh(x) := e
x
2 − e−

x
2 , ch(x) := e

x
2 + e−

x
2 , (A.7)

which satisfy the relation

ch(x) = −i sh(x + πi) , sh(2x) = sh(x) ch(x) . (A.8)

For a superconformal index, the integrand is also denoted in calligraphic type, and the
index post-integration in standard lettering:

IT =
∮

T

∏
j

dzj

2πizj
IT (z). (A.9)
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We use fraktur font for fugacities in the superconformal index. The integrand I is represented
by the elliptic Gamma function, defined as

Γ(z; p, q) =
∞∏

m,n=0

1− pm+1qn+1/z

1− pmqnz
= PE

[
z − pq

z

(1− q)(1− p)

]
. (A.10)

The q-Pochhammer symbol is defined as

(x; q) :=
∞∏

i=0
(1− xqi) ,

and the theta function as

θ(x; q) = (x; q)(qx−1; q) .

B ADHM contour integrals

This appendix lists contributions to the instanton partition functions from various fields
in 5d theories with classical gauge groups. Specifically, 5d supersymmetric theories on
the Ω-background effectively localize to supersymmetric quantum mechanics on instanton
moduli spaces. These spaces are described by the Atiyah-Drinfeld-Hitchin-Manin (ADHM)
construction [61] for classical groups. Therefore, the contributions of various fields to the
instanton partition functions are derived from the ADHM descriptions of these instanton
moduli spaces and their associated bundles. For a more detailed explanation, we refer readers
to [13, 41, 44, 45, 62, 63].

B.1 SU(N) gauge group

For SU(N) gauge group, we list the contributions from hypermultiplets in the fundamental,
(anti-)symmetric, and adjoint representations:

Zvec
SU(N)κ,k = eκ

∑k

I=1 ϕI

∏
I ̸=J sh(ϕI − ϕJ) ·

∏
I,J sh(2ϵ+ − ϕI + ϕJ)∏

I,J sh(ϵ1,2 + ϕI − ϕJ)
∏k

I=1
∏N

s=1 sh(ϵ+ ± (ϕI − as))

ZNf

SU(N),k(ml) =
Nf∏
l=1

k∏
I=1

sh(ϕI + ml)

Zsym
SU(N),k(m) =

k∏
I=1

sh (2ϕI + m± ϵ−)
N∏

s=1
sh (ϕI + as + m)

k∏
I<J

sh (ϕI + ϕJ + m± ϵ−)
sh (−ϵ+ ± (ϕI + ϕJ + m))

Zanti
SU(N),k(m) =

k∏
I=1

∏N
s=1 sh (ϕI + as + m)

sh (−ϵ+ ± (2ϕI + m))

k∏
I<J

sh (ϕI + ϕJ + m± ϵ−)
sh (−ϵ+ ± (ϕI + ϕJ + m))

Zadj
SU(N),k(m) =

k∏
I=1

sh (ϵ− ±m)∏N
s=1 sh (m± (ϕI − as))

sh (ϵ+ ±m)

k∏
I<J

sh (ϵ− ±m± (ϕI − ϕJ))
sh (ϵ+ ±m± (ϕI − ϕJ))

(B.1)
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B.2 SO(n) gauge group

In the case of the SO(n) gauge group, the nature of contributions depends on whether
n is even or odd. We represent n = 2N + χ, where n ≡ χ mod 2. Then, we can write
the contributions from hypermultiplets in the fundamental, adjoint (antisymmetric), and
symmetric representations:

Zvec
SO(n),k = 1

2k k!
shk(2ϵ+)
shk(ϵ1,2)

k∏
I=1

sh(2ϵ+ ± 2ϕI) sh(±2ϕI)
shχ(ϵ+ ± ϕI)

∏N
s=1 sh(ϵ+ ± ϕI ± as)

·
∏
I<J

sh(2ϵ+ ± ϕI ± ϕJ) sh(±ϕI ± ϕJ)
sh(ϵ1,2 ± ϕI ± ϕJ)

ZNf

SO(n),k(ml) =
Nf∏
l=1

k∏
I=1

sh (±ϕI + ml)

Zadj
SO(n),k(m) =

k∏
I=1

sh (±m− ϵ−) shχ(m± ϕI)
∏⌊n

2 ⌋
s=1 sh (±ϕI ± as + m)

sh (±m− ϵ+) sh (±2ϕI ±m− ϵ+)

·
k∏

I<J

sh (±ϕI ± ϕJ ±m− ϵ−)
sh (±ϕI ± ϕJ ±m− ϵ+)

Zsym
SO(n),k(m) =

k∏
I=1

sh (±m− ϵ−) sh (±2ϕI ±m− ϵ−) shχ(m± ϕI)
∏⌊n

2 ⌋
s=1 sh (±ϕI ± as + m)

sh (±m− ϵ+)

·
k∏

I<J

sh (±ϕI ± ϕJ ±m− ϵ−)
sh (±ϕI ± ϕJ ±m− ϵ+)

(B.2)

B.3 Sp(N) gauge group

For Sp(N) gauge group, the instanton partition functions depend on the discrete θ-angle
in general. This is rooted in the topological property that π4(Sp(N)) = Z2 [22, 24]. Such
a property is manifested in the way supersymmetric quantum mechanics is described by
the O(k)± gauge group which has two disconnected components. Denoting these respective
contributions as Z±

k , a choice of taking the sum or difference of Z±
k corresponds to θ = 0 or

θ = π. Thus, the k-instanton partition function with trivial θ-angle is given by

Zθ=0
k = Z+

k + Z−
k

2 ,

whereas that with non-trivial Z2 element is given by

Zθ=π
k = (−1)k Z+

k − Z−
k

2 .

Therefore, in the following, we enumerate contributions from both plus and minus sectors
for hypermultiplets in the fundamental, adjoint (symmetric), antisymmetric representations.
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Vector multiplet

Zvec,+
Sp(N),k=2ℓ+χ = 1

2ℓ−1+χℓ!

(
1

sh (ϵ1,2)
∏N

s=1 sh (ϵ+ ± as)
·

ℓ∏
I=1

sh (±ϕI) sh (2ϵ+ ± ϕI)
sh (ϵ1,2 ± ϕI)

)χ

·
ℓ∏

I=1

sh (2ϵ+)
sh (ϵ1,2) sh(ϵ1,2 ± 2ϕI)

∏N
s=1 sh (ϵ+ ± ϕI ± as)

ℓ∏
I<J

sh(2ϵ+ ± ϕI ± ϕJ) sh(±ϕI ± ϕJ)
sh(ϵ1,2 ± ϕI ± ϕJ)

Zvec,−
Sp(N),k=2ℓ+1 = 1

2ℓℓ!
1

sh (ϵ1,2)
∏N

s=1 ch (ϵ+ ± as)
·

ℓ∏
I=1

ch (±ϕI) ch (2ϵ+ ± ϕI)
ch (ϵ1,2 ± ϕI)

·
ℓ∏

I=1

sh (2ϵ+)
sh (ϵ1,2) sh (ϵ1,2 ± 2ϕI)

∏N
s=1 sh (ϵ+ ± ϕI ± as)

ℓ∏
I<J

sh(2ϵ+ ± ϕI ± ϕJ) sh(±ϕI ± ϕJ)
sh(ϵ1,2 ± ϕI ± ϕJ)

Zvec,−
Sp(N),k=2ℓ+2 = 1

2ℓℓ!
ch (2ϵ+)

sh (ϵ1,2) sh (2ϵ1,2)
∏N

s=1 sh (±2as + 2ϵ+)
·

ℓ∏
I=1

sh (±2ϕI) sh (4ϵ+ ± 2ϕI)
sh (2ϵ1,2 ± 2ϕI)

·
ℓ∏

I=1

sh (2ϵ+)
sh (ϵ1,2) sh (ϵ1,2 ± 2ϕI)

∏N
s=1 sh (ϵ+ ± ϕI ± as)

ℓ∏
I<J

sh(2ϵ+ ± ϕI ± ϕJ) sh(±ϕI ± ϕJ)
sh(ϵ1,2 ± ϕI ± ϕJ)

(B.3)

Fundamental hypermultiplet

ZNf ,+
Sp(N),k=2ℓ+χ(ml) =

Nf∏
l=1

shχ(ml)
ℓ∏

I=1
sh(±ϕI + ml)

ZNf ,−
Sp(N),k=2ℓ+1(ml) =

Nf∏
l=1

ch(ml)
ℓ∏

I=1
sh(±ϕI + ml)

ZNf ,−
Sp(N),k=2ℓ+2(ml) =

Nf∏
l=1

sh(ml)
ℓ∏

I=1
sh(±ϕI + ml) (B.4)

Adjoint hypermultiplet

Zadj,+
Sp(N),k=2ℓ+χ =

(
sh (±m− ϵ−)

N∏
s=1

sh (m± as)
ℓ∏

I=1

sh (±ϕI ±m− ϵ−)
sh (±ϕI ±m− ϵ+)

)χ

·
ℓ∏

I=1

sh (±m− ϵ−) sh (±2ϕI ±m− ϵ−)
∏N

s=1 sh (±ϕI ± as + m)
sh (±m− ϵ+)

ℓ∏
I<J

sh (±ϕI ± ϕJ ±m− ϵ−)
sh (±ϕI ± ϕJ ±m− ϵ+)

Zadj,−
Sp(N),k=2ℓ+1 =sh (±m− ϵ−)

N∏
s=1

ch (m± as) ·
ℓ∏

I=1

ch (±ϕI ±m− ϵ−)
ch (±ϕI ±m− ϵ+)

·
ℓ∏

I=1

sh (±m− ϵ−) sh (±2ϕI ±m− ϵ+)
∏N

s=1 sh (±ϕI ± as + m)
sh (±m− ϵ+)

ℓ∏
I<J

sh (±ϕI ± ϕJ ±m− ϵ−)
sh (±ϕI ± ϕJ ±m− ϵ+)

Zadj,−
Sp(N),k=2ℓ+2 = sh (±m− ϵ−) sh (±2m− 2ϵ−)

∏N
s=1 sh (2m± 2as)

ch (±m− ϵ+)

ℓ∏
I=1

sh (±2ϕI ± 2m− 2ϵ−)
sh (±2ϕI ± 2m− 2ϵ+)

·
ℓ∏

I=1

sh (±m− ϵ−) sh (±2ϕI ±m− ϵ+)
∏N

s=1 sh (±ϕI ± as + m)
sh (±m− ϵ+)

·
ℓ∏

I<J

sh (±ϕI ± ϕJ ±m− ϵ−)
sh (±ϕI ± ϕJ ±m− ϵ+)

(B.5)
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Antisymmetric hypermultiplet

Zanti,+
Sp(N),k=2ℓ+χ =

(∏N
s=1 sh (m± as)
sh (±m− ϵ+)

ℓ∏
I=1

sh (±ϕI ±m− ϵ−)
sh (±ϕI ±m− ϵ+)

)χ ℓ∏
I=1

sh (±m− ϵ−)
∏N

s=1 sh (±ϕI ± as + m)
sh (±m− ϵ+) sh (±2ϕI ±m− ϵ+)

·
ℓ∏

I<J

sh (±ϕI ± ϕJ ±m− ϵ−)
sh (±ϕI ± ϕJ ±m− ϵ+)

Zanti,−
Sp(N),k=2ℓ+1 =

∏N
s=1 ch (m± as)
sh (±m− ϵ+)

·
ℓ∏

I=1

ch (±ϕI ±m− ϵ−)
ch (±ϕI ±m− ϵ+)

sh (±m− ϵ−)
∏N

s=1 sh (±ϕI ± as + m)
sh (±m− ϵ+) sh (±2ϕI ±m− ϵ+)

·
ℓ∏

I<J

sh (±ϕI ± ϕJ ±m− ϵ−)
sh (±ϕI ± ϕJ ±m− ϵ+)

Zanti,−
Sp(N),k=2ℓ+2 =ch (±m− ϵ−)

∏N
s=1 sh (2m± 2as)

sh (±m− ϵ+) sh (±2m− 2ϵ+)

·
ℓ∏

I=1

sh (±2ϕI ± 2m− 2ϵ−)
sh (±2ϕI ± 2m− 2ϵ+)

sh (±m− ϵ−)
∏N

s=1 sh (±ϕI ± as + m)
sh (±m− ϵ+) sh (±2ϕI ±m− ϵ+)

·
ℓ∏

I<J

sh (±ϕI ± ϕJ ±m− ϵ−)
sh (±ϕI ± ϕJ ±m− ϵ+)

(B.6)

C Analysis of BPS jumping

In this supplementary appendix, we explain the method of the Jeffrey-Kirwan (JK) residue
integrals [14–17], which is applied to instanton partition functions. The JK residue integral
for an instanton partition function typically includes both non-degenerate and degenerate
poles. The presence of degenerate poles leads to multiplicity coefficients and BPS jumping,
as discussed in the main text. Given its importance to our study, it is beneficial to revisit
the JK residue integral procedure, with a focus on handling degenerate poles. Alternatively,
this appendix serves to provide detailed derivations of the multiplicity coefficients, which
were not covered in [19, 20].

C.1 Lightning review of Jeffrey-Kirwan residue integrals

An instanton partition function can be expressed as a Witten index of supersymmetric
quantum mechanics on an instanton moduli space. For supersymmetric quantum mechanics
with a gauge group of rank-k, the instanton partition function is expressible as follows:

Z =
∮

JK

k∏
i=1

dϕi

2πi
Z(ϕ) , (C.1)

where ϕi take values of the Cartan subalgebra h of the gauge group, and a contour over a
k-dimensional complex space is specified by the JK residue prescription. The integrand Z
takes the form of ratios of the sine hyperbolic functions (denoted by sh here), with the poles
originating from the zeros of sh in the denominator. More concretely, poles are identified
by solving the equations

Qj(ϕ) + fj(a, m, ϵ) = 2πinj , nj ∈ N , j = 1, 2, . . . , k , (C.2)
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where Qj ∈ h∗ and fj(q) are functions dependent on (Coulomb branch, mass, or Ω-deformation)
parameters. Each pole in this way corresponds to a hyperplane in h, creating singularities
in the integrand. We associate a charge Qj ∈ h∗ with each hyperplane identified by the
solution of the equations (C.2). A set of k linearly independent charge vectors {Qj} ∈ h∗

constitutes a positive cone in Cone(Q) ⊂ h∗. Every such cone represents the intersection of k

hyperplanes, each associated with a non-trivial residue. Note that the range for nj in (C.2)
is finite in N and is determined by the charge vectors Q.

Let M∗
sing be the set of isolated points where at least k linearly independent hyperplanes

intersect, namely the set of ϕ∗ solving at least k linearly independent linear equations (C.2).
When exactly k hyperplanes intersect at ϕ∗, it is called a non-degenerate pole. Otherwise,
it is called degenerate. Choosing a reference vector η ∈ h∗, the JK prescription chooses a
contour in such a way that the integral computes the sum of residues corresponding to all
cones Cone(Q) for which η lies within Cone(Q). More concretely, we define the

JK-Res
ϕ=0

(Q∗, η) dϕ1 ∧ · · · ∧ dϕk

Qj1(ϕ) · · ·Qjk
(ϕ) =


1

|det(Q)| if η ∈ Cone(Qj1 , . . . , Qjk
)

0 otherwise
. (C.3)

Then, the JK residues are defined by

Z =
∑

ϕ∗∈M∗
sing

JK-Res
ϕ=ϕ∗

(Q(ϕ∗), η) · Z(ϕ) . (C.4)

Note that although the nature of poles and individual JK residues may vary significantly
as η moves across different chambers, the overall integral result remains independent of
the choice of η.

In the case of a non-degenerate pole, applying the above definition to evaluate the
residue is quite straightforward. However, evaluating the residue at a degenerate pole is more
complicated, which we will examine closely as it plays an important role in this paper. We
identify an associated set of charge vectors, Q∗ = {Q1, . . . , Qn}, with n > k.

For any given k-sequence of linearly independent charge vectors (Qj1 , . . . , Qjk
) from Q∗,

we can construct a flag, denoted as F . This flag represents a sequence of nested subspaces
within Rk, described as:

{0} ⊂ F1 ⊂ . . . ⊂ Fk = Rk, Fℓ = span{Qj1 , . . . , Qjℓ
} . (C.5)

Although different sequences may lead to identical flags, we pick just one representative
sequence. The sequence (Qj1 , . . . , Qjk

) is commonly referred to as a basis B(F, Q∗) of the flag
F in the set Q∗. Note that, for a given flag F , the basis within Q∗ is not uniquely determined.
Therefore, we select one basis arbitrarily for our purposes.

From each flag F and its corresponding basis B(F, Q∗), we construct a sequence of
vectors as follows:

κ(F, Q∗) := (κ1, . . . , κk) , κa =
∑

Q∈Q∗
Q∈Fa

Q . (C.6)

We also define the sign of the flag F , denoted as signF , which is the sign of the determinant of
κ(F, Q∗). For each vector sequence κ(F ), a closed cone Cone(F, Q∗) is constructed, spanned
by the vectors in κ(F, Q∗).
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With the aforementioned objects in place, the Jeffrey-Kirwan (JK) residue of a given
degenerate pole ϕ∗ is calculated as follows:

JK-Res
ϕ=ϕ∗

(η) · Z =
∑
F

δ(F, η) signF

detB(F, Q∗)
Res
αk=0

· · · Res
α1=0

Z
∣∣∣∣Qj1 (ϕ)+fj1 =nj1 +α1

···
Qjk

(ϕ)+fjk
=njk

+αk

, (C.7)

where the summation extends over all flags derived from Q∗ associated with ϕ∗. The term
δ(F, η) equals one if the closed-cone Cone(F, Q∗) contains η, and zero otherwise. This
definition of JK-Res effectively generalizes to include non-degenerate poles. Finally, for a
generic choice of η, the integral is defined as:

Z =
∑

ϕ∗∈M∗
sing

JK-Res
ϕ=ϕ∗

(κ(F, Q∗), η) · Z(ϕ) . (C.8)

The final result is independent of the choice of η.

C.2 Multiplicity coefficients and BPS jumps

To examine the emergence of degenerate poles upon tuning Coulomb branch parameters,
consider the integrand of the instanton partition function. It is defined as follows for SU(N+8)
with a symmetric hypermultiplet at instanton number k:

ZSU(N+8)0+1Sym
k = 1

k!

∏
I ̸=J sh (ϕI − ϕJ) ·

∏
I,J sh (2ϵ+ − ϕI + ϕJ)∏

I,J sh (ϵ1,2 + ϕI − ϕJ)
∏k

I=1
∏N+8

s=1 sh (ϵ+ ± (ϕI − as))
(C.9)

×
k∏

I=1
sh (2ϕI+ m± ϵ−)

N+8∏
s=1

sh (ϕI+ as+ m)
k∏

I<J

sh (ϕI+ ϕJ + m± ϵ−)
sh (−ϵ+± (ϕI+ ϕJ+ m)) .

And for SU(N) with an antisymmetric hypermultiplet:

ZSU(N)0+1AS
k = 1

k!

∏
I ̸=J sh (ϕI − ϕJ) ·

∏
I,J sh (2ϵ+ − ϕI + ϕJ)∏

I,J sh (ϵ1,2 + ϕI − ϕJ)
∏k

I=1
∏N

s=1 sh (ϵ+ ± (ϕI − as))

×
k∏

I=1

∏N
s=1 sh (ϕI + as + m)

sh (−ϵ+ ± (2ϕI + m))

k∏
I<J

sh (ϕI + ϕJ + m± ϵ−)
sh (−ϵ+ ± (ϕI + ϕJ + m)) . (C.10)

For the sake of simplicity, we set the 5d Chern-Simons level to be zero κ = 0 in this appendix.
Upon taking the unrefined limit, it is straightforward to verify that the integrand of (C.9)
at the specialization (2.60) agrees with (C.10).11

Here our goal is to elucidate why we need to introduce the multiplicity coefficients
in (2.59) when evaluating the JK residue integral of SU(N)0 +1AS at the unrefined level. To
this end, we first comment on the JK residue integral of SU(N + 8)0 + 1Sym, which results
in the expression (2.57). At the unrefined level, all poles contributing non-trivial JK residue
for (C.9) are classified by the (N + 8)-tuple Young diagrams with a total number of boxes
|λ⃗| = k where each box x = (i, j) ∈ λ(s) corresponds to a pole positioned at

ϕs(x) = as + (i− j)ℏ . (C.11)
11Since the integrand includes shk(ϵ+) in the numerator, the naive unrefined limit leads to zero. However, to

derive the correct results, this term must be kept even in the unrefined limit because the JK residue procedure
gives rise to a compensating shk(ϵ+) in the denominator.
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Since all the non-trivial poles at the unrefined level are non-degenerate, the JK residue can
be calculated in the following manner:

Z
SU(N+8)0+1Sym
λ⃗

= shk(0) · ZSU(N+8)0+1Sym
k (ϵ1 = ℏ, ϵ2 = −ℏ)

∣∣∣∣
∪

x∈λ⃗
ϕI=ϕs(x)

. (C.12)

In this formula, the right-hand side implies that when the pole location (C.11) is substituted,
k factors in the denominator vanish. Consequently, multiplying by shk(0) effectively removes
these k factors from the denominator, accurately determining the residue value. The expression
for the resulting residue on the left-hand side is given in (2.57).12

However, this straightforward approach is not applicable for calculating the JK residues of
SU(N)0 + 1AS (C.10), even though the integrand can be derived from (2.57) by specializing
the Coulomb branch parameters as in (2.60). It is also necessary to incorporate the multiplicity
coefficients in the formulation of the Young diagram expression, which results in the BPS
jumping. In the following, we will elaborate on these aspects in the instanton partition
functions of SU(N)0 + 1AS.

At 1-instanton, the JK residue integral is of rank one. The evaluation is straightfor-
ward, and there is no interesting phenomenon. Therefore, our analysis begins with the
2-instanton case.

2-instanton. Consider the 2-instanton partition function for SU(N)0 + 1AS, with η =
(1, 0.01) selected as the reference vector. We focus on a specific pole, described as follows{

ϕ1 = −m

2 −
ϵ1
4 + ϵ2

4 , ϕ2 = −m

2 + 3ϵ1
4 + ϵ2

4

}
, (C.13)

the following two factors vanish at the pole in the denominator of the 2-instanton integrand,

sh(m− ϵ+ + ϕ1 + ϕ2), sh(ϵ1 + ϕ1 − ϕ2) , (C.14)

whose charge vectors are

Q∗ = {(1, 1), (1,−1)} . (C.15)

Therefore, it is a non-degenerate pole with | detQ∗| = 2 and the cone formed by the charge
vectors includes the reference vector η. Consequently, the JK residue at this pole can be
expressed as

JK-Res
ϕ=(C.13)

(η) · ZSU(N)0+1AS
k=2 = − 1

4 sh(ϵ1) sh(ϵ2) sh(2ϵ2) sh(2ϵ−)
∏

i sh(± ϵ1
2 −

m−3ϵ+
2 − ai)

,

(C.16)
which simplifies in the unrefined limit to

− 1
4 sh2(ℏ) sh2(2ℏ)∏i sh(±ℏ−m

2 − ai)
. (C.17)

12At the refined level, the situation changes significantly as even degenerate poles contribute to non-trivial
residues. As a result, the classification of poles cannot be solely based on sets of Young diagrams, and a
closed-form expression for the refined case has not been obtained yet at present.
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Furthermore, an additional pole yields an identical contribution in the unrefined limit,
described as {

ϕ1 = −m

2 + ϵ1
4 −

ϵ2
4 , ϕ2 = −m

2 + ϵ1
4 + 3ϵ2

4

}
. (C.18)

In the unrefined limits of (C.13) and (C.18), the poles are located at ±ℏ−m
2 .

In our study, to perform unfreezing, we specialize the Coulomb branch parameters of
the SU(N + 8)0 + 1Sym instanton partition function, yielding the partition function for
SU(N)0 + 1AS as (2.60):

aN+1 = −m

2 , aN+2 = −m

2 + πi, aN+3 = −m

2 , aN+4 = −m

2 + πi, (C.19)

aN+5 = ℏ−m

2 , aN+6 = ℏ−m

2 + πi, aN+7 = −ℏ−m

2 , aN+8 = −ℏ−m

2 + πi .

Under this specialization, the pole locations ϕs(x) = ±ℏ−m
2 (see (C.11)) emerge from the

following configurations in the (N + 8)-tuple Young diagrams:

λ⃗∗ Canti
λ⃗,⃗a

(∅, . . . , ∅, , ∅, ∅, ∅) 1

(∅, . . . , ∅, ∅, ∅, , ∅) 1

(∅, . . . , ∅, , ∅, , ∅) 0

(C.20)

Indeed, in the expression (2.57) over Young diagrams, each set from the above yields a
contribution identical to (C.17):

Z
SU(N+8)0+1Sym
λ⃗∗

∣∣∣
(C.19)

= − 1
4 sh2(ℏ) sh2(2ℏ)∏i sh(±ℏ−m

2 − ai)
. (C.21)

In our analysis, the accurate evaluation of JK residues reveals contributions solely from
two poles, (C.13) and (C.18). However, this contrasts with the presence of three configura-
tions (C.20) in the (N +8)-tuple Young diagrams, leading to a discrepancy in the results. This
issue originates from the specialization (C.19), where the difference between aN+5 = ℏ−m

2
and aN+7 = −ℏ−m

2 is precisely ℏ. In the process of freezing, two D7-branes are placed by a
distance of ℏ near an O7−-plane. To unfreeze these D7-branes, it is necessary to position
color D5-branes at an interval of ℏ. This positioning reinforces the ℏ difference between
aN+5 and aN+7 in specialization (C.19). To reconcile this with the JK residues and eliminate
one of the three configurations in (C.20), we introduce multiplicity coefficients as defined
in (2.61), which vanish at the last configuration in (C.20). Then, the result is consistent with
the JK residue. This can be interpreted that when color D5-branes are spaced at intervals
of ℏ, certain instanton contributions effectively disappear.

3-instanton. The degenerate poles appear first at the level of 3-instanton. We pick
η = (1, 0.01, 0.001) as a reference vector. Let us focus on the following poles{

ϕ1 = ϵ+ −m

2 − ϵ1, ϕ2 = ϵ+ −m

2 + ϵ1, ϕ3 = ϵ+ −m

2

}
. (C.22)
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In the denominator of the 3-instanton integrand, the following four factors vanish at the poles:

sh(m− ϵ+ + ϕ1 + ϕ2), sh(ϵ1 + ϕ1 − ϕ3), sh(ϵ1 − ϕ2 + ϕ3), sh(m− ϵ+ + 2ϕ3) . (C.23)

It is important to emphasize that the last pole is absent in the partition function (C.9)
of SU(N + 8)0 + 1Sym at a generic value of the Coulomb branch parameters. While the
other three poles are present in (C.9), its residue is zero due to the term sh(2ϕI + m± ϵ−)
in the numerator. Hence, the degenerate pole (C.22) appears only at a specific value of
the Coulomb branch parameters.

The corresponding charge vectors are

Q∗ = {(1, 1, 0), (1, 0,−1), (0,−1, 1), (0, 0, 2)} . (C.24)

Choosing the reference vector η = (1, 0.01, 0.002), only the following basis of cones contains
η among cones constructed from these charge vectors

B(F, Q∗) = ((1, 0,−1), (1, 1, 0), (0,−1, 1)) ,

κ(F, Q∗) = ((1, 0,−1), (2, 1,−1), (2, 0, 2)) ,
(C.25)

where detB(F, Q∗) = 2 and signF = +1. Since the four factors (C.23) in the denominator
vanish for this triple-integral, the integral requires the evaluation of the residues at the
degenerate pole (C.22):

JK-Res
ϕ=(C.22)

(η) · ZSU(N)0+1AS
k=3

=
[
12 sh(ϵ1) sh(2ϵ1) sh(3ϵ1) sh(ϵ2) sh(2ϵ−) sh(2ϵ1 − ϵ2)

×
N∏

i=1
sh
(
2ϵ+ ± ϵ1 −

m + ϵ+
2 − ai

)
sh
(
2ϵ+ −

m + ϵ+
2 − ai

)]−1
. (C.26)

With this choice of the reference vector, there are two additional degenerate poles{
ϕ1 = ϵ+ −m

2 − ϵ1, ϕ2 = ϵ+ −m

2 , ϕ3 = ϵ+ −m

2 + ϵ1

}
,{

ϕ1 = ϵ+ −m

2 − ϵ1, ϕ2 = ϵ+ −m

2 + ϵ1, ϕ3 = ϵ+ −m

2

} (C.27)

that provide the same JK residue. Consequently, their total residue in the unrefined limit
becomes

− 1
4 sh2(ℏ) sh2(2ℏ) sh2(3ℏ)∏N

i=1 sh(±ℏ− m
2 − ai) sh(−m

2 − ai)
, (C.28)

which yields a term corresponding to in (2.59) at one −m/2 of the effective Coulomb
branch parameters in (C.19). The term at the second effective Coulomb branch parameter
−m/2 in (C.19) is the total contribution from the poles{

ϕ1 = ϵ+ −m

2 − ϵ2, ϕ2 = ϵ+ −m

2 + ϵ2, ϕ3 = ϵ+ −m

2

}
,{

ϕ1 = ϵ+ −m

2 − ϵ2, ϕ2 = ϵ+ −m

2 , ϕ3 = ϵ+ −m

2 + ϵ2

}
,{

ϕ1 = ϵ+ −m

2 − ϵ2, ϕ2 = ϵ+ −m

2 + ϵ2, ϕ3 = ϵ+ −m

2

}
.

(C.29)
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4-instanton. While the evaluation of 4-instanton is quite involved, this is the first instanton
number where the BPS jumping can be observed due to the presence of degenerate poles.
Given its importance, it is essential to delve into the JK residues at 4-instanton in more
detail. To start, we will focus on examining the following degenerate pole{

ϕ1 = ϵ+ −m

2 − ϵ1, ϕ2 = ϵ+ −m

2 + ϵ1, ϕ3 = ϵ+ −m

2 , ϕ4 = ϵ+ −m

2

}
(C.30)

at which the following eight factors in the denominator vanish:

sh(m− ϵ+ + ϕ1 + ϕ2), sh(ϵ1 + ϕ1 − ϕ3), sh(ϵ1 − ϕ2 + ϕ3), sh(m− ϵ+ + 2ϕ3),
sh(ϵ1 + ϕ1 − ϕ4), sh(ϵ1 − ϕ2 + ϕ4), sh(m− ϵ+ + ϕ3 + ϕ4), sh(m− ϵ+ + 2ϕ4).

(C.31)

The corresponding charge vectors are

Q∗ = {(1, 1, 0, 0), (1, 0,−1, 0), (0,−1, 1, 0), (0, 0, 2, 0),
(1, 0, 0,−1), (0,−1, 0, 1), (0, 0, 1, 1), (0, 0, 0, 2)} . (C.32)

Note that, in the integrand (C.9) for SU(N+8)0+1Sym, the 4th and 8th poles are not present
at generic values of the Coulomb branch parameters. Although the remaining six poles do
appear in (C.9), their residue becomes zero due to the term sh(2ϕI +m±ϵ−) in the numerator.

Choosing η = (1, 0.01, 0.002, 0.0003) as a reference vector, we find three flags Fi (i = 1, 2, 3)
constructed from Q∗ such that η lies within the Cone(Fi, Q∗). The first flag F1 consists of

B(F1, Q∗) = ((1, 0,−1, 0), (1, 1, 0, 0), (0,−1, 1, 0), (1, 0, 0,−1))
κ(F1, Q∗) = ((1, 0,−1, 0), (2, 1,−1, 0), (2, 0, 2, 0), (3,−1, 3, 3)) ,

(C.33)

where detB(F1, Q∗) = −2 and signF1 = +1. The second flag F2 consists of

B(F2, Q∗) = ((1, 0, 0,−1), (1, 1, 0, 0), (0,−1, 0, 1), (1, 0,−1, 0))
κ(F2, Q∗) = ((1, 0, 0,−1), (2, 1, 0,−1), (2, 0, 0, 2), (3,−1, 3, 3)) ,

(C.34)

where detB(F2, Q∗) = 2 and signF2 = −1. The third flag F3 consists of

B(F3, Q∗) = ((1, 0, 0,−1), (1, 0,−1, 0), (1, 1, 0, 0), (0,−1, 1, 0))
κ(F3, Q∗) = ((1, 0, 0,−1), (2, 0,−1,−1), (3, 1,−1,−1), (3,−1, 3, 3)) ,

(C.35)

where detB(F3, Q∗) = 2 and signF3 = +1.
The contribution to the JK residue from F1 can be readily computed as

signF1
detB(F1, Q∗)

Res
α4=0

· · · Res
α1=0

Z
∣∣∣∣
ϵ1+ϕ1−ϕ3=α1, m−ϵ++ϕ1+ϕ2=α2, ϵ1−ϕ2+ϕ3=α3, ϵ1+ϕ1−ϕ4=α4

= sh(2ϵ1 + ϵ2)
[
96 sh(ϵ1) sh2(2ϵ1) sh(3ϵ1) sh2(2ϵ−) sh(2ϵ1 − ϵ2) sh2(ϵ2)

×
N∏

i=1
sh
(
2ϵ+ ± ϵ1 −

m + ϵ+
2 − ai

)
sh2

(
2ϵ+ −

m + ϵ+
2 − ai

)]−1
. (C.36)
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It is important to note that, while the eight factors (C.31) in the denominator vanish at the
pole (C.30), indicating it is a degenerate pole, four sh factors in the numerator also vanish
at the pole (C.30), reducing the order of the pole. Consequently, the naive (and incorrect)
evaluation of the pole (C.30) to the integrand also leads to

sh4(0) · ZSU(N)0+1AS
k=4

∣∣∣∣
(C.30)

= sh(2ϵ1 + ϵ2)
[
24 sh(ϵ1) sh2(2ϵ1) sh(3ϵ1) sh2(2ϵ−) sh(2ϵ1 − ϵ2) sh2(ϵ2)

×
N∏

i=1
sh
(
2ϵ+ ± ϵ1 −

m + ϵ+
2 − ai

)
sh2

(
2ϵ+ −

m + ϵ+
2 − ai

)]−1
. (C.37)

Interestingly, the computed value (C.36) of the correct residue from F1 for the degenerate
pole is precisely 1

4 of the value obtained from the naive evaluation mentioned above. This
is indeed the origin of the multiplicity coefficient.

Continuing to evaluate the contribution to the JK residue from F2, we find

signF2
detB(F2, Q∗)

Res
α4=0

· · · Res
α1=0

Z
∣∣∣∣
ϵ1+ϕ1−ϕ4=α1, m−ϵ++ϕ1+ϕ2=α2, ϵ1−ϕ2+ϕ4=α3, ϵ1+ϕ1−ϕ3=α4

= sh(2ϵ1 + ϵ2)
[
96 sh(ϵ1) sh2(2ϵ1) sh(3ϵ1) sh2(2ϵ−) sh(2ϵ1 − ϵ2) sh2(ϵ2)

×
N∏

i=1
sh
(
2ϵ+ ± ϵ1 −

m + ϵ+
2 − ai

)
sh2

(
2ϵ+ −

m + ϵ+
2 − ai

)]−1
. (C.38)

On the other hand, the JK residue for F3 vanishes:

signF3
detB(F3, Q∗)

Res
α4=0

· · · Res
α1=0

Z
∣∣∣∣
ϵ1+ϕ1−ϕ4=α1, ϵ1+ϕ1−ϕ3=α2, m−ϵ++ϕ1+ϕ2=α3, ϵ1−ϕ2+ϕ3=α4

= 0

(C.39)
As defined in (C.7), we sum up (C.36), (C.38) and (C.39) to get the JK residue for

the pole (C.30):

JK-Res
(C.30)

(η) · ZSU(N)0+1AS
k=4

= sh(2ϵ1 + ϵ2)
[
48 sh(ϵ1) sh2(2ϵ1) sh(3ϵ1) sh2(2ϵ−) sh(2ϵ1 − ϵ2) sh2(ϵ2)

×
N∏

i=1
sh
(
2ϵ+ ± ϵ1 −

m + ϵ+
2 − ai

)
sh2

(
2ϵ+ −

m + ϵ+
2 − ai

)]−1
. (C.40)

To identify additional cones containing η = (1, 0.01, 0.002, 0.0003), we will explore
permutations of the poles in (C.7). These permutations as well as their associated flags and
residues are summarized in table 1. It is noteworthy that all JK residues are proportional to
the naive evaluation in (C.37). Accordingly, the third column of table 1 specifies coefficients
which, upon being multiplied by the value in (C.37), calculate the corresponding JK residues.
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poles: (ϕ1, ϕ2, ϕ3, ϕ4) B(F, Q∗) JK(
ϵ+−m

2 , ϵ+−m
2 , ϵ+−m

2 − ϵ1, ϵ+−m
2 + ϵ1

)
((2, 0, 0, 0), (1, 1, 0, 0), (0, 0, 1, 1), (-1, 0, 1, 0)) 0

(
ϵ+−m

2 , ϵ+−m
2 − ϵ1, ϵ+−m

2 , ϵ+−m
2 + ϵ1

) ((2, 0, 0, 0), (0, 1, -1, 0), (0, 1, 0, 1), (-1, 1, 0, 0)) -1
4

((2, 0, 0, 0), (0, 1, 0, 1), (-1, 1, 0, 0), (0, 1, -1, 0)) 1
4(

ϵ+−m
2 , ϵ+−m

2 − ϵ1, ϵ+−m
2 + ϵ1, ϵ+−m

2

) ((2, 0, 0, 0), (0, 1, 1, 0), (-1, 1, 0, 0), (0, 1, 0, -1)) 1
4

((2, 0, 0, 0), (0, 1, 0, -1), (0, 1, 1, 0), (-1, 1, 0, 0)) -1
4

((1, -1, 0, 0), (1, 0, 0, 1), (0, 2, 0, 0), (1, 0, -1, 0)) 1
4(

ϵ+−m
2 − ϵ1, ϵ+−m

2 , ϵ+−m
2 , ϵ+−m

2 + ϵ1
)

((1, 0, -1, 0), (1, -1, 0, 0), (1, 0, 0, 1), (0, 2, 0, 0)) 0

((1, 0, -1, 0), (1, 0, 0, 1), (0, 0, 2, 0), (1, -1, 0, 0)) 1
4

((1, -1, 0, 0), (1, 0, 1, 0), (0, 2, 0, 0), (1, 0, 0, -1)) 1
4(

ϵ+−m
2 − ϵ1, ϵ+−m

2 , ϵ+−m
2 + ϵ1, ϵ+−m

2

)
((1, 0, 0, -1), (1, -1, 0, 0), (1, 0, 1, 0), (0, 2, 0, 0)) 0

((1, 0, 0, -1), (1, 0, 1, 0), (0, 0, -1, 1), (1, -1, 0, 0)) 1
4

((1, 0, -1, 0), (1, 1, 0, 0), (0, -1, 1, 0), (1, 0, 0, -1)) 1
4(

ϵ+−m
2 − ϵ1, ϵ+−m

2 + ϵ1, ϵ+−m
2 , ϵ+−m

2

)
((1, 0, 0, -1), (1, 1, 0, 0), (0, -1, 0, 1), (1, 0, -1, 0))) 1

4

((1, 0, 0, -1), (1, 0, -1, 0), (1, 1, 0, 0), (0, -1, 1, 0)) 0

Table 1. The first column displays the location of each pole which is a permutation of (C.30). The
second column identifies the basis vector of a flag F , relevant to the pole, whose cone contains η. The
third column specifies the coefficient which, when multiplied by the value in (C.37), yields the JK
residue associated with the basis B(F, Q∗). Notably, the last three rows of the table are associated
with the flags Fi (i = 1, 2, 3) for the pole (C.30), as elaborated above.

Consequently, the total contribution from these poles is

sh(2ϵ1 + ϵ2)
[
16 sh(ϵ1) sh2(2ϵ1) sh(3ϵ1) sh2(2ϵ−) sh(2ϵ1 − ϵ2) sh2(ϵ2)

×
N∏

i=1
sh
(
2ϵ+ ± ϵ1 −

m + ϵ+
2 − ai

)
sh2

(
2ϵ+ −

m + ϵ+
2 − ai

)]−1
, (C.41)

whose unrefined limit is

1
16 sh2(ℏ) sh4(2ℏ) sh2(3ℏ)∏N

i=1 sh(±ℏ− m
2 − ai) sh2(−m

2 − ai)
. (C.42)

Similarly, we can evaluate the contributions from the pole{
ϕ1 = ϵ+ −m

2 − ϵ2, ϕ2 = ϵ+ −m

2 + ϵ2, ϕ3 = ϵ+ −m

2 , ϕ4 = ϵ+ −m

2

}
(C.43)

and its permutations. Although these poles are all degenerate, a similar cancellation of
the zeros in the denominator and numerator occurs so that the pole order is still four.
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Consequently, the naive (and incorrect) evaluation of the residue at the pole (C.43) is

sh4(0) · ZSU(N)0+1AS
k=4

∣∣∣∣
(C.43)

= sh(2ϵ2 + ϵ1)
[
24 sh(ϵ2) sh2(2ϵ2) sh(3ϵ2) sh2(2ϵ−) sh(2ϵ2 − ϵ1) sh2(ϵ1)

×
N∏

i=1
sh
(
2ϵ+ ± ϵ2 −

m + ϵ+
2 − ai

)
sh2

(
2ϵ+ −

m + ϵ+
2 − ai

)]−1
. (C.44)

Since the correct evaluation procedure for these degenerate poles is the same as before,
we omit the detail. Nonetheless, the total contribution from these poles is proportional
to (C.44), which is

sh(2ϵ2 + ϵ1)
[
16 sh(ϵ2) sh2(2ϵ2) sh(3ϵ2) sh2(2ϵ−) sh(2ϵ2 − ϵ1) sh2(ϵ1)

×
N∏

i=1
sh
(
2ϵ+ ± ϵ2 −

m + ϵ+
2 − ai

)
sh2

(
2ϵ+ −

m + ϵ+
2 − ai

)]−1
, (C.45)

whose unrefined limit is the same as (C.42):

1
16 sh2(ℏ) sh4(2ℏ) sh2(3ℏ)∏N

i=1 sh(±ℏ− m
2 − ai) sh2(−m

2 − ai)
. (C.46)

We continue to proceed the evaluation of residues for poles of a similar kind. Consider
the following pole and its permutations:
{

ϕ1 = −ϵ+ + m

2 , ϕ2 = 2ϵ+−
ϵ+ + m

2 , ϕ3 = ϵ1 −
ϵ+ + m

2 , ϕ4 = ϵ2 −
ϵ+ + m

2

}
. (C.47)

This pole is also degenerate due to the vanishing of these seven factors in the denominator:

{
sh(−m−ϵ+− 2ϕ1), sh(m− ϵ++ ϕ1 + ϕ2), sh(ϵ1 + ϕ1 − ϕ3), sh(ϵ2 − ϕ2 + ϕ3),

sh(ϵ2 + ϕ1 − ϕ4), sh(ϵ1 − ϕ2 + ϕ4), sh(m− ϵ+ + ϕ3 + ϕ4)
}

.
(C.48)

The associated charge vectors are given by

Q∗ = ( (−2, 0, 0, 0), (1, 1, 0, 0), (1, 0,−1, 0), (0,−1, 1, 0),
(1, 0, 0,−1), (0,−1, 0, 1), (0, 0, 1, 1) ) . (C.49)

With our chosen η, among these vectors, only one flag’s cone contains η:

B(F, Q∗) = ((1, 1, 0, 0), (1, 0, 0,−1), (1, 0,−1, 0), (−2, 0, 0, 0)) ,

κ(F, Q∗) = ((1, 1, 0, 0), (2, 1, 0,−1), (3, 1,−1,−1), (1,−1, 1, 1)) ,
(C.50)
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where detB(F, Q∗) = −2 and signF = +1. The JK residue for this flag is

JK-Res
(C.47)

(η) · ZSU(N)0+1AS
k=4

= signF

detB(F, Q∗)
Res
α4=0

· · · Res
α1=0

Z
∣∣∣∣
m−ϵ++ϕ1+ϕ2=α1, ϵ2+ϕ1−ϕ4=α2, ϵ1+ϕ1−ϕ3=α3, −m−ϵ+−2ϕ1=α4

= −
[
48 sh(ϵ1,2) sh(2ϵ1,2) sh(2ϵ2 − ϵ1) sh2(2ϵ−) sh(2ϵ1 − ϵ2)

×
N∏

i=1
sh
(

ϵ+ −m

2 − ai

)
sh
(

ϵ1,2 +
ϵ+ −m

2 − ai

)
sh
(
2ϵ+ + ϵ+ −m

2 − ai

)]−1
. (C.51)

As before, a cancellation of zeros in both the denominator and numerator occurs, maintaining
the pole order at four, and the naive (and incorrect) evaluation of the residue at the
pole (C.47) is

sh4(0) · ZSU(N)0+1AS
k=4

∣∣∣∣
(C.47)

=
[
24 sh(ϵ1,2) sh(2ϵ1,2) sh(2ϵ2 − ϵ1) sh2(2ϵ−) sh(2ϵ1 − ϵ2)

×
N∏

i=1
sh
(

ϵ+ −m

2 − ai

)
sh
(

ϵ1,2 +
ϵ+ −m

2 − ai

)
sh
(
2ϵ+ + ϵ+ −m

2 − ai

)]−1
. (C.52)

However, the correct residue evaluation (C.51) yields a value that is −1
2 of this naive estimate.

As in table 2, each permutation of the pole (C.47) has one flag that contributes to the JK
residue, and their total contribution is

−
[
8 sh(ϵ1,2) sh(2ϵ1,2) sh(2ϵ2 − ϵ1) sh2(2ϵ−) sh(2ϵ1 − ϵ2)

×
N∏

i=1
sh
(

ϵ+ −m

2 − ai

)
sh
(

ϵ1,2 +
ϵ+ −m

2 − ai

)
sh
(
2ϵ+ + ϵ+ −m

2 − ai

)]−1
, (C.53)

where the unrefined limit is

1
8 sh2(ℏ) sh4(2ℏ) sh2(3ℏ)∏N

i=1 sh(±ℏ− m
2 − ai) sh2(−m

2 − ai)
. (C.54)

In the unrefined limits, the permutations of (C.30), (C.43) and (C.47) fall into a class
of poles at {

−m

2 , − m

2 + ℏ, − m

2 − ℏ, − m

2

}
. (C.55)

Summing up (C.42), (C.46) and (C.54), we find the total contribution to the unrefined
instanton partition function associated with these poles to be

1
4 sh2(ℏ) sh4(2ℏ) sh2(3ℏ)∏N

i=1 sh(±ℏ− m
2 − ai) sh2(−m

2 − ai)
. (C.56)
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poles: (ϕ1, ϕ2, ϕ3, ϕ4) B(F, Q∗) JK(
− ϵ++m

2 , 2ϵ+ − ϵ++m
2 , ϵ2 − ϵ++m

2 , ϵ1 − ϵ++m
2

)
((1, 1, 0, 0), (1, 0, 0, -1), (1, 0, -1, 0), (-2, 0, 0, 0)) -1

2(
− ϵ++m

2 , 2ϵ+ − ϵ++m
2 , ϵ1 − ϵ++m

2 , ϵ2 − ϵ++m
2

)
((1, 1, 0, 0), (1, 0, 0, -1), (1, 0, -1, 0), (-2, 0, 0, 0)) -1

2(
− ϵ++m

2 , ϵ2 − ϵ++m
2 , 2ϵ+ − ϵ++m

2 , ϵ1 − ϵ++m
2

)
((1, 0, 1, 0), (1, 0, 0, -1), (1, -1, 0, 0), (-2, 0, 0, 0)) -1

2(
− ϵ++m

2 , ϵ2 − ϵ++m
2 , ϵ1 − ϵ++m

2 , 2ϵ+ − ϵ++m
2

)
((1, 0, 0, 1), (1, 0, -1, 0), (1, -1, 0, 0), (-2, 0, 0, 0)) -1

2(
− ϵ++m

2 , ϵ1 − ϵ++m
2 , 2ϵ+ − ϵ++m

2 , ϵ2 − ϵ++m
2

)
((1, 0, 1, 0), (1, 0, 0, -1), (1, -1, 0, 0), (-2, 0, 0, 0)) -1

2(
− ϵ++m

2 , ϵ1 − ϵ++m
2 , ϵ2 − ϵ++m

2 , 2ϵ+ − ϵ++m
2

)
((1, 0, 0, 1), (1, 0, -1, 0), (1, -1, 0, 0), (-2, 0, 0, 0)) -1

2

Table 2. The first column displays the location of each pole that is a permutation of (C.47). The
second column identifies the basis vector of a flag F , relevant to the pole, whose cone contains η. The
third column specifies the coefficient which, when multiplied by the value in (C.52), yields the JK
residue associated with the basis B(F, Q∗). Notably, the first row of the table is associated with the
pole (C.47), as discussed above.

Note that although the choice of a different reference vector for η changes the pole structure,
the final outcome remains unchanged.

On the other hand, examining (C.11), the following configurations in the (N + 8)-tuple
Young diagrams correspond to (C.55):

λ⃗∗∗ Canti
λ⃗,⃗a

(∅, . . . , ∅, , ∅, ∅, ∅, ∅, ∅, ∅, ∅) -1

(∅, . . . , ∅, ∅, ∅, , ∅, ∅, ∅, ∅, ∅) 1

(∅, . . . , ∅, , ∅, , ∅, ∅, ∅, ∅, ∅) 1

(∅, . . . , ∅, , ∅, , ∅, ∅, ∅, ∅, ∅) 1

(∅, . . . , ∅, , ∅, , ∅, ∅, ∅, ∅, ∅) 1

(∅, . . . , ∅, , ∅, , ∅, ∅, ∅, ∅, ∅) 1

(C.57)

Note that non-trivial Young diagrams show up at the positions associated to the effective
Coulomb branch parameter −m

2 . When evaluating the expression (2.57) over these Young
diagrams at the specialization (C.19), each configuration contributes:

Z
SU(N+8)0+1Sym
λ⃗∗∗

∣∣∣
(C.19)

= 1
16 sh2(ℏ) sh4(2ℏ) sh2(3ℏ)∏N

i=1 sh(±ℏ− m
2 − ai) sh2(−m

2 − ai)
.

(C.58)
Thus, since there are six configurations in (C.57), simply specializing the Coulomb branch
parameters as in (C.19) does not bring the expression (2.57) for SU(N + 8)0 + 1Sym to
the partition function of SU(N)0 + 1AS. Nevertheless, once we incorporate the multiplicity
coefficients, the top two configurations in (C.57) effectively cancel each other out, and only
the remaining four consequently contribute, yielding the correct value (C.56).
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Conclusion. In summary, the reason why the BPS jumping occurs at a specific value of
Coulomb branch parameters can be attributed to the following two reasons.

First, when there is a difference of ℏ in the Coulomb branch parameters in SU(N + 8)0 +
1Sym, there may be a mismatch between the number of poles in the JK residue integral and
those represented in the Young diagram sum expression. This requires the introduction of
multiplicity coefficients, as we have observed in the 2-instanton level analysis. However, it is
worth noting that multiplicity coefficients of this kind can often be mitigated by massaging
the formula, like eq. (2.12) in [20].

Second, degenerate poles contribute even at the unrefined level in the instanton partition
functions of SU(N)0 + 1AS. Namely, the presence of degenerate poles at specific Coulomb
branch values in SU(N +8)0 +1Sym is a more fundamental reason behind the BPS jumping.
Despite being degenerate, these poles maintain an order equal to the instanton number due
to the cancellation of zeros in both the numerator and the denominator of the integrand.
Consequently, the JK residue at a degenerate pole is proportional to the naive estimate
of the residue as done in (C.12) (or (C.37), (C.44), (C.52)). Additionally, a degenerate
pole may give rise to multiple flags whose cone contains a reference vector. The resulting
multiplicity coefficients depend on these proportional coefficients and the number of flags.
As the instanton number increases, the changing structure of flags within a degenerate pole
affects these coefficients. This explains why (2.61) depends on Young diagrams through
α(λ) and β(λ).

While our primary focus has been on the relation between SU(N + 8)0 + 1Sym and
SU(N)0 +1AS, similar considerations apply to the relation between SO(2N +8) and Sp(N)θ

pure Yang-Mills theories [19]. In the Sp(N)θ theory, degenerate poles also make non-trivial
contributions, leading to the presence of multiplicity coefficients (2.71). The analysis, albeit
tedious, follows the same principles outlined above. To keep the discussion concise and
focused, we omit the details.

As observed, this phenomenon manifests not only at the point of “unfreezing” but also
where degenerate poles appear within JK integrals. Thus, if chemical potentials (or fugacities)
admit physical interpretation and can be varied in JK integrals, it would be insightful to
conduct a systematic investigation into the values of these chemical potentials and their
corresponding JK residues at which new degenerate poles emerge.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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