
J
H
E
P
0
5
(
2
0
2
4
)
3
0
6

Published for SISSA by Springer

Received: January 17, 2024
Accepted: April 23, 2024
Published: May 28, 2024

Conformal matter

Mario De Marco ,a Michele Del Zotto ,a,b Michele Graffeo c

and Andrea Sangiovanni d

aMathematics Institute, Uppsala University,
Box 480, SE-75106 Uppsala, Sweden

bDepartment of Physics and Astronomy, Uppsala University,
Box 516, SE-75120 Uppsala, Sweden

cDepartment of Mathematics, Politecnico di Milano,
Via Bonardi 9, Milano 20133, Italy

dDepartment of Physics, King’s College London,
Strand, WC2R 2LS London, U.K.

E-mail: mario.demarco@math.uu.se, michele.delzotto@math.uu.se,
michele.graffeo@polimi.it, andrea.1.sangiovanni@kcl.ac.uk

Abstract: Six-dimensional superconformal field theories (SCFTs) have an atomic classifica-
tion in terms of elementary building blocks, conformal systems that generalize matter and
can be fused together to form all known 6d SCFTs in terms of generalized 6d quivers. It
is therefore natural to ask whether 5d SCFTs can be organized in a similar manner, as the
outcome of fusions of certain elementary building blocks, which we call 5d conformal matter
theories. In this project we begin exploring this idea and we give a systematic construction
of 5d generalized “bifundamental” SCFTs, building from geometric engineering techniques in
M-theory. In particular, we find several examples of (e6, e6), (e7, e7) and (e8, e8) 5d bifunda-
mental SCFTs beyond the ones arising from (elementary) KK reductions of the 6d conformal
matter theories. We show that these can be fused together giving rise to 5d SCFTs captured
by 5d generalized linear quivers with exceptional gauge groups as nodes, and links given by
5d conformal matter. As a first application of these models we uncover a large class of novel
5d dualites, that generalize the well-known fiber/base dualities outside the toric realm.

Keywords: Field Theories in Higher Dimensions, M-Theory

ArXiv ePrint: 2311.04984

Open Access, © The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP05(2024)306

https://orcid.org/0000-0001-6742-974X
https://orcid.org/0000-0001-8988-0574
https://orcid.org/0000-0002-7973-6023
https://orcid.org/0000-0001-7946-1923
mailto:mario.demarco@math.uu.se
mailto:michele.delzotto@math.uu.se
mailto:michele.graffeo@polimi.it
mailto:andrea.1.sangiovanni@kcl.ac.uk
https://doi.org/10.48550/arXiv.2311.04984
https://doi.org/10.1007/JHEP05(2024)306


J
H
E
P
0
5
(
2
0
2
4
)
3
0
6

Contents

1 Introduction 2
1.1 Geometric and atomic classification schemes 2
1.2 A 5d atomic classification 4
1.3 Generalized bi-fundamental conformal matter 5
1.4 Outline of this paper 7

2 Geometric origin of generalized 5d bifundamentals 7
2.1 Geometric engineering 5d SCFTs: lightning review 8
2.2 Intersecting families of ADE singularities 9

3 A concrete example: (E6, E6)x conformal matter 13
3.1 Resolution of the singularity Xx

E6
13

3.2 5d gauge theory phase 18
3.3 UV flavor symmetry 19

4 5d (g, g)• conformal matter and X•
g singularities 20

4.1 A partial resolution via base change 20
4.2 The resolution of two transversal families of A singularities 22
4.3 Quiver gauge-theory and parity invariance 24
4.4 Low-energy quiver theories and their properties 25

5 Exceptional linear quivers and 5d dualities 31
5.1 Linear generalized quiver with edges of the same type 32
5.2 Further generalizations and 5d dualities 38
5.3 Complete list of the five-dimensional dualities 42

6 Conclusions and outlook 47

A Atlases for the crepant resolutions of Du Val Singularities 49
A.1 Crepant resolution of Ak singularities 50
A.2 Crepant resolution of D4 singularity 51
A.3 Crepant resolution of D5 singularity 53
A.4 Crepant resolution of the E6, E7 and E8 singularities 54

B Derivation of the toric fan for transversal families of A singularities 55

C Explicit prepotential computation 57

D Computation of the Chern-Simons levels in the type IIA limit 58

– 1 –



J
H
E
P
0
5
(
2
0
2
4
)
3
0
6

1 Introduction

The existence of superconformal field theories (SCFTs) in dimension higher than four is
among the striking consequences of string theory [1–8]. Thanks to higher dimensional
SCFTs several very non-trivial aspects of lower dimensional QFTs can be predicted via
compactifications, ranging from dualities [9–18] and non-invertible symmetries [19–24] to
correspondences between QFTs in different dimensions [25–33] and beyond [34]. Higher
dimensional irreducible SCFTs are rigid and extremely constrained [35–37]: this suggests
looking for classification schemes as a pathway towards a better understanding of these
systems, by highlighting generic features and identifying exotics.

There are various possible classification schemes which we broadly divide in three
categories: geometric classification schemes, algebraic classification schemes, and atomic
classifications. Geometric classification schemes rely upon features such as the constrained
structure of moduli spaces of superconformal systems, or the constraints that superconformal
symmetry imposes on the geometrical realization of these models within string theory, or a
combination of the two. Algebraic classification schemes build on the constraints arising from
representations of superconformal algebras, as well as on the existence of generalized versions of
chiral rings. The latter further constrain certain BPS subsectors of the spectrum of operators of
SCFTs and have an interesting interplay with bootstrap techniques. Geometric and algebraic
classifications can sometimes be combined, which gives interesting consistency checks.

Atomic classifications are slightly different in spirit. An atomic classification builds on
identifying some basic more elementary building blocks for SCFTs (the atoms, or “conformal
matter” systems), and constraining the structures of the other SCFTs viewing them as
molecules, built out of atoms via field theoretical operations analogue to the conformal
gauging of diagonal global symmetries in four dimensions. These operations are typically very
constrained by the lack of gauge anomalies and by analogues of the condition of vanishing
beta functions in four dimensions.

In the context of 5d SCFTs, there are well-developed geometric classification schemes
building on M-theory geometries [38–44], while both an algebraic classification and an atomic
classification are lacking at the time of this writing. In this paper we aim at laying the
foundations for an atomic classification scheme for 5d SCFTs. Our main result in this paper
is the construction of 5d “bifundamental” conformal matter theories for gauge groups of type
Ak, Dk, E6, E7 and E8, as well as the prediction of new 5d dualities associated to 5d linear
quivers built out of conformal matter theories. The existence of 5d conformal matter theories
of bifundamental kind is the starting point for an atomic classification program, but it is
not the end of it. In particular, in 5d we expect to find other 5d conformal matter systems
that are of “trifundamental” kind. These 5d trifundamentals are the subject of an upcoming
work [45]. In this introduction we proceed by explaining this logic in detail by contrasting
geometric and atomic classifications in the context of 6d theories [46–48], as well as for 4d
SCFTs. We then proceed outlining some of the features of the 5d atomic classification.

1.1 Geometric and atomic classification schemes

In order to illustrate the main result in this project, let us proceed by quickly reviewing
the existing classifications of six-dimensional SCFTs. There are only two 6d superconformal
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algebras that admit a conserved stress-energy tensor supermultiplet [49], osp(8∗|2) and
osp(8∗|4).1 Thanks to the enhanced supersymmetry, in this context one can envision geometric
classification schemes via geometric engineering dictionaries within string/M/F theory. For
osp(8∗|4) this leads to the 6d (2, 0) SCFTs, which occur in an ADE series corresponding to the
geometric engineering limit of IIB superstrings on orbifolds C2/Γ where Γ ⊆ SU(2) is a finite
subgroup [1, 2].2 In this case, there is also a possible algebraic classification, arising from
VOAs organizing specific 6d (2,0) chiral rings and its interplay with the bootstrap [54, 55].

For theories with osp(8∗|2) superconformal symmetry, there is no known algebraic
classification and the geometric classification scheme becomes much richer and intricate.
These 6d (1,0) SCFTs are now realized within F-theory via singular elliptic Calabi-Yau (CY)
threefolds with orbifold bases of the form C2/Γ, where Γ ⊆ U(2) [46].3 On top of the data
of Γ, in order to have a consistent F-theory model over such orbifold base, one needs a
non-Kodaira singularity in the T 2 fiber supported at the origin of C2/Γ, so that the total
space of the fibration is a Calabi-Yau. This can be supplemented with further “freezing”
data [59], and possible non-compact Kodaira singularities supported along lines meeting at
the origin of the base, that can be further decorated by T-branes [60].4

For 6d (1, 0) SCFTs there is however an alternative classification scheme: the atomic
classification scheme [47] where generic 6d SCFTs are constructed as molecules built out
of more elementary building blocks or atoms. These building blocks are conformal systems
that play the role of generalized forms of matter, and can be coupled together to form
generalized 6d quivers that give a description of more complicated SCFTs [60]. The 6d
conformal matter theories needed for the atomic classification have the structure of some
sort of generalized fundamentals and bifundamental “matter” fields. The generic 6d SCFTs
are obtained from these elementary building blocks via fission and fusion operations [58, 62]
leading to a collection of rather constrained shapes for generalized quiver structures [47].
The resulting models can be further enriched, for example with the additional data of frozen
singularities [59, 63]. This results in a rather comprehensive description of the existing 6d
(1, 0) SCFTs [46–48, 64]. As we discuss below, we believe this feature of the 6d classification
will carry over to 5d. Namely, on top of the various 5d conformal matter systems we will
also have to include discrete data to complete the classification. We comment about these
further possibilities in the conclusions of this paper.

In order to develop our 5d atomic classification, it is interesting to ask whether SCFTs
in other dimensions also admit an “atomic classification” of sort. From the 6d example, we
expect that atomic classifications are a feature of theories with 8 (or less) conserved Poincaré
supercharges, while for higher amounts of supersymmetries we expect the resulting SCFTs

1More exotic systems with osp(8∗|8) superconformal symmetry do exist within string theory [50, 51], but
these systems lack a conserved stress-energy tensor multiplet and therefore we would prefer not to identify
them as quantum field theories. An indication that this is indeed the case, is that the circle reduction of these
theories is believed to give rise to N = 4 supergravity in five dimensions [50].

2The latter can be justified with field theoretical methods, either starting from the structure of BPS
strings [52], or adding some further requirements on the axioms for 6d SCFTs [53].

3See also eg. [15, 56–58] for more details about the F-theory orbifold approach to 6d SCFTs.
4For non-frozen geometries it has been conjectured that the T-brane data give rise to systems that also

have a geometric realization without T-branes [47]. Evidence towards this conjecture has been given exploiting
systems that have a dual realization in massive Type IIA superstrings [61].
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to behave like some sort of noble gases in the Mendeleev table of theories. Let us consider
the four-dimensional case as another example. For 4d N ≥ 2 SCFTs several classification
schemes have been designed [65–78] which are all classifications of ‘geometric’ type. In this
context, moreover, algebraic classification schemes are also possible, building on the interplay
between VOAs and bootstrap [79–81] or modularity [82]. One could then ask whether 4d
N = 2 SCFTs theories have an atomic classification as well. Theories with N = 3 and N = 4
would be the noble gasses. Building on the original analysis for the theories of class S [11, 12],
we see that indeed also 4d N = 2 SCFTs already have an obvious “atomic” structure. The
building blocks of these systems are indeed generalized fundamentals, bifundamentals and
a new ingredient, the trinions (or generalized tri-fundamentals), arising from 3-punctured
spheres [11] (see also [83–90] for a comprehensive study and [91] for a review). In 4d there
are also more exotic classes of theories (rare-earths and isotopes), the Argyres-Douglas (AD)
models [92, 93], as well as other similar systems [94–97].5 This quick superficial glance at 4d
N = 2 models indicates that an atomic classification of these theories is, in a sense, already
existing, especially for systems in class S. For 4d N = 1 theories, to our best knowledge,
neither a geometric, nor an algebraic, nor an atomic classification schemes are available.
In that context, it is interesting to notice that from the geometric engineering perspective,
evidence for the existence of yet another more general atom (the 4d N = 1 tetraons) was
recently found from geometric engineering limits of M-theory on G2 orbifolds [104].

1.2 A 5d atomic classification

5d SCFTs are governed by the representation theory of the unique five-dimensional supercon-
formal algebra f(4) and have known classification schemes of two kinds. On the one hand
there is a classification in terms of their six-dimensional origin [39, 40, 43, 105, 107, 108]. On
the other hand, there is a classification in terms of CY geometries [41, 97, 109–117]. Large
classes of examples are obtained in this way. An especially large and interesting class is
obtained from M-theory geometric engineering on orbifolds of C3/Γ where Γ ⊆ SU(3) is
a finite subgroup [109, 118–120].

For 5d SCFTs, however, an atomic classification scheme is still lacking. Evidence for
such a scheme has been known since a long time. 5d SCFTs sporting A × A and A × D

flavor algebras can be easily constructed from M-theory [121] — one substantially ends
up with free hypers (up to discrete gauging) [116, 122, 123]. Similarly, it is known that
generalized 5d trifundamental of A-type can be constructed via the M-theory dual of trivalent
junctions of (p,q)-fivebranes [124]. The analogue of the fusion operation in 6d is provided
geometrically, via glueing operations [125].

In this work we begin exploring the building blocks for an atomic classification, looking
at the existence of the simplest possible atoms, the ones of bi-fundamental type. Of course,
from the above discussion we expect to find also further 5d trinion theories, generalizing the
5d TN theories to ones arising from collisions of 3 lines of singularities (possibly folded and

5For all these AD-like theories the question whether these are to be thought as atoms themselves or as
derivatives is debatable: AD models (almost by definition) arise as special fixed points of RG flows from
more conventional molecules, however some AD theories can definitely be thought as building blocks for more
general models. As an example, consider the Db

p(G) theories [98–101], which, despite being Argyres-Douglas
points, indeed end up playing the role of generalized fundamentals in many contexts [15, 102, 103].
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YAk
PAk

(x, y, z) = x2 + y2 − zk+1

YDk
PDk

(x, y, z) = x2 + zy2 + zk−1

YE6 PE6(x, y, z) = x2 + y3 + z4

YE7 PE7(x, y, z) = x2 + y3 + yz3

YE8 PE8(x, y, z) = x2 + y3 + z5,

Table 1. Representatives for each isomorphism class of Du Val singularities.

or decorated by additional T-brane like data). These geometries are much more intricate
to analyze in detail, and for this reason we mention them only briefly in the conclusion
section, whereas in this project we mainly focus on engineering generalized bi-fundamentals
theories of (g, g) types.6

The question that motivates this work is the following: can bifundamental conformal
matter theories, analogous to the ones in six dimensions, and yet not directly descending
from them via elementary Kaluza-Klein reduction, be constructed in five dimensions? Our
main result is that the answer is in the affirmative, and that it involves a surprisingly simple
M-theory construction. The existence of conformal matter readily allows some predictions on
five-dimensional dualities that give generalizations of the well-known fiber/base dualities [126]
to 5d quiver theories of ADE type. In the following we give a summary of the main features
of 5d conformal matter theories of “bifundamental” type.

1.3 Generalized bi-fundamental conformal matter

In this work, we geometrically engineer 5d conformal matter “bifundamental” theories of types
(g, g)xi where g ∈ ADE, by looking at specific M-theory singularities, and the label xi refers
to the fact that we find that in 5d there are various “species” of generalized bifundamentals,
exhibiting slightly different properties which we identify. The techniques of [7, 127] can be
exploited to study the properties of these models along the Coulomb branch, displaying other
possible gauge theory phases [128]. All these models have at least one gauge theory phase
which we identify and exploit in order to confirm their flavor symmetries, exploiting the
Tachikawa flavor enhancement criterion for 5d quiver gauge theories [129] — see also [130, 131].
Moreover, we show that (g, g)xi 5d conformal matter theories (with xi one among x, y, z) can
be employed to form generalized linear 5d quiver SCFTs of the form

g
(g,g)xi1 g

(g,g)xi2 g
(g,g)xi3 · · ·

(g,g)xin−1 g
(g,g)xiN g (1.1)

where the edges are 5d generalized bifundamentals, and the circular nodes represent a fusion
operation corresponding to a 5d generalization of the familiar operation of gauging a diagonal
flavor symmetry of type g [125].

Our construction starts from a Du Val singularity (see table 1)

Pg(x1, x2, x3) = 0, g ∈ ADE (1.2)
6The detailed study of bi-fundamentals theories of (g, g′) as well as of 5d trinions will appear elsewhere [45].
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which is a hypersurface singularity Yg ⊂ C3. We then apply a base change xi = uv (with
i = 1, 2, 3) and obtain a CY three-fold singularity X

(i)
g ⊂ C4

X
(i)
g :

Pg(x1, x2, x3) = 0
uv = xi

(1.3)

The latter has by construction two transversally intersecting singularities of type g located
along u = 0 and v = 0 (see figure 1), and possibly an enhanced singularity at the intersection
point xj = u = v = 0 for j ̸= i. By crepantly blowing up the singularities we show that
at the intersection point there lies trapped five-dimensional matter, charged under g × g

flavor symmetry, as can be expected from the geometric perspective. The theory so obtained
has different features depending on the choice of coordinate xi for the base change, and
correspondingly we obtain 5d conformal matter theories of different types. Gauging together
these theories gives rise to generalized linear 5d quivers of A-type, which have a geometrical
counterpart in the singularitiesPg(x1, x2, x3) = 0

uv = xk1
1 xk2

2 xk3
3

, ki ≥ 0 (1.4)

which follows from a detailed analysis we present below. Furthermore, in many examples we
can show that the theory obtained in such fashion is not a simple KK dimensional reduction
of a 6d conformal matter with the same flavor symmetry, thus guaranteeing our construction
is giving rise to genuine 5d conformal matter. Indeed, in most cases we consider, the resulting
singularities are not embedded into F-theory models as local limits sending the F-theory
torus to infinite volume.7 As a further result, we demonstrate that these quivers undergo 5d
dualities that generalize fiber/base dualities to D and E-type diagrams. From our results, it
follows that linear A quivers of the type depicted in equation (1.1) enjoy a flavor symmetry
algebra enhancement of the form

GUV = g× g× su(n1)× · · · × su(nν)× u(1)ν−1, (1.5)

with ni and ν determined by the specific choice of quiver. We refer our readers to section 5.3
for the detailed list of generalized 5d dualities we obtain in this paper.

Moreover, we rule out P -valent junctions of the form

g

(g,g)xi1

g

(g,g)xi2

· · · g

(g,g)xiP

g

(1.6)

for all P ≥ 3 by requiring the resulting singularities are at finite distance in the CY moduli
space. Therefore, 5d bifundamental conformal matter theories of types (g, g)xi can only
form linear quivers with gauge nodes g.

7We note that, however, it is still possible that the theories we study descend in a non-obvious way by
some parent theories in 6d, as per the conjecture of [39].
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g singularity g singularity

Enhanced singularity

u-a
xis

v-axis
Figure 1. Pictorial representation of a threefold with two transversely intersecting lines of g

singularities.

1.4 Outline of this paper

The structure of this paper is as follows. In section 2.1 we quickly review the dictionary
between geometric data and physics of the 5d SCFT and its low-energy quiver gauge theory
phase. In section 2.2 we introduce the basics of our construction, in particular in section 2.2.1
we briefly review the theory of ADE singularities and in section 2.2.2 we discuss the threefold
singularities X

(i)
g in details. In section 3 we illustrate the resolution procedure of the threefold

singularities following an example, characterizing the corresponding 5d SCFT and its low-
energy quiver. We generalize this example in section 4 providing the construction of all the
(g, g)xi conformal matter theories. In particular, in section 4.4 we write down the low-energy
quivers for all the 5d SCFTs engineered by the threefolds introduced in the previous sections.
In all cases, we compute the candidate UV enhanced flavor symmetry both from geometry
and from gauge theory. We also make contact with existing constructions in the literature and
6d uplifts. In section 5, we roll out a natural generalization of our construction, producing
quivers with nodes displaying exceptional groups, showing that indeed these SCFTs have
the right flavor symmetries to earn the name of 5d bifundamental conformal matter theories,
serving as building blocks for 5d exceptional linear quivers. As an outcome we obtain a novel
plethora of 5d dualities, which are summarized in section 5.3. We present our conclusion and
outline some future directions we are currently developing in section 6. Several more technical
appendices complement the results presented in this work. In particular, we rigorously present
the explicit resolution maps of Du Val singularities in appendix A, the toric tools employed
throughout the main text in appendix B, and go through a consistency check of the quiver
gauge theories via standard techniques involving their prepotential in appendix C.

2 Geometric origin of generalized 5d bifundamentals

In this section we start by briefly reviewing the M-theory geometric engineering of 5d N = 1
SCFTs, in order to fix few notations and conventions we are using below in 2.1. In 2.2 we
illustrate the relevant geometries that give rise to 5d conformal matter theories of generalized
bifundamental type.

– 7 –
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2.1 Geometric engineering 5d SCFTs: lightning review

It is well-known that M-theory reduced on a Calabi-Yau threefold X with a canonical
singularity gives rise to a 5d N = 1 SCFT on flat spacetime, denoted by T5d [6–8] — see
also [127] and [38, 39, 128], where the role of tensionless 5d BPS strings was emphasized
in the constraints arising from 5d Coulomb branches. It was actually conjectured that all
5d SCFTs have such an engineering [109]. The Calabi-Yau threefolds we will consider are
precisely of such kind. The geometric features of the compactification space have a direct
correspondence in terms of the properties of the 5d theory. Roughly speaking, the moduli
spaces of vacua of the 5d SCFT can be described as follows:

Resolutions of X ←→ Coulomb branch of T5d

Deformations of X ←→ Higgs branch of T5d

In this work we focus on the resolution of X, and hence on exploring the Coulomb branch
of the 5d SCFTs under examination. In this fashion, we will be able to (indirectly) extract
information on an intrinsic Higgs branch feature, namely the flavor symmetry.

M-theory geometric engineering further provides a precise way to translate information
on a resolved phase X̃ of X to data of the Coulomb branch of the SCFT. Schematically,
the dictionary goes as follows:

• Compact divisors in H4(X̃,Z) are dual to harmonic normalizable 2-forms, which from
the reduction of the M-theory C-field, give rise to the U(1) vector fields in the 5d N = 1
vector multiplets. The scalar components of these vector multiplets arise from Kähler
moduli corresponding to the volumes of those compact curves that are dual to compact
divisors. These volumes give the Coulomb branch vevs of the SCFT. Wrapping M5
branes on compact divisors gives rise to BPS monopole strings;

• Non-compact divisors encode the flavor symmetry. Curves arising from the intersections
of compact divisors with non-compact ones correspond to relevant deformations of the
SCFT (i.e. masses or gauge couplings);

• Wrapping M2 branes on curves gives rise to BPS particles with spins obtained quantizing
the resulting moduli spaces [132]. In particular, P1’s with normal bundle OP1(−1)⊕
OP1(−1) are rigid, and give rise to 5d hypermultiplets in this way.

Different resolutions corresponding to birational CYs related to one another via flop transitions
are interpreted as different chambers in the Coulomb phase of the 5d SCFT, which are
separated by codimension-one walls where a given BPS particle becomes massless. The
resulting jump in the prepotential by integrating such a particle back in, corresponds to the
change in the triple intersection numbers among the birationally equivalent threefolds. In the
singular limit, all the volumes of the compact divisors and compact curves have to vanish
as we reach the SCFT point and all scales must disappear. In general, such limit can be
reached if all compact divisors and curves are shrinkable in the sense of [39]: if one adopts a
top-down approach, i.e. conjures up a resolved geometry composed of a collection of compact
divisors and curves, this is a non-trivial check. On the other hand, in the following we will
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adopt a bottom-up stance, starting from a singular geometry and performing a sequence of
crepant blowups:8 for such cases, shrinkability is guaranteed by construction.

Non-compact curves of singularities in M-theory can be interpreted as higher dimensional
degrees of freedom which in the 5d case happen to decouple from the conformal fixed point,
leading to a (generalized) flavor symmetry for these theories [104, 125]. Hence in the search
of 5d bifundamentals, we are naturally lead to look at a non-isolated singularity located at
the collision of two ADE singularities of type g.

Given an SCFT fixed point T5d in the UV, we can ask which are the possible weakly-
coupled quiver gauge theories that arise as its mass deformations. We can explicitly write
down one of these quiver gauge theory limits by choosing a specific resolution of X, say
X̃. Different choices are equally valid and correspond to different mass deformations of the
same SCFT and/or different chambers of the 5d Coulomb branch. This gives rise to the
phenomenon of 5d dualities [133] (see also eg. [128, 134, 135]). The examples we discuss in
this paper all admit Coulomb branch chambers with a 5d gauge theory interpretation, more
precisely we obtain 5d quiver gauge theories with gauge algebras ∏i su(ni). Focusing on a
specific choice X̃ compatible with such a gauge theory phase, it is immediate to translate
the 5d SCFT data into its low-energy quiver counterpart:

• Compact divisors and their intersection patterns encode the data of the gauge nodes
and bifundamental matter for the quiver [121];

• Non-compact divisors dictate the presence of flavor nodes;9

• The compact divisors turn out to be ruled surfaces, possibly blown-up at a number of
points. The blow-up pattern dictates finer details of the quiver node (such as e.g. the
Chern-Simons levels).10

Keeping this dictionary in mind, in the next section we explicitly construct the singular
threefolds we covet, in order to retrieve the five-dimensional conformal matter.

2.2 Intersecting families of ADE singularities

In this section we begin in 2.2.1 by quickly settling our conventions for the well-known
theory of Du Val singularities and their resolutions. In section 2.2.2 we illustrate the singular
threefold geometries corresponding to 5d generalized bifundamentals. Readers not interested
in the mathematical details of these singularities can safely skip to the next section.

8Notice that working with crepant blowups is a crucial requirement: indeed, for more general blowups
shrinkability is not guaranteed.

9The complete UV flavor symmetry of the quiver gauge theory can be determined employing the techniques
of [129] which we will briefly summarize in section 3.3. A different approach to flavor symmetry was also
discussed in [41, 136, 137]: when overlapping, our results agree.

10Chern-Simons levels can also be computed by comparing the prepotential computed from the quiver with
the expectation given by the triple intersections in the geometry. In large quivers this may prove a daunting
task, and we will indeed recur to a different argument for gleaning the CS levels.
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YAk

k nodes︷ ︸︸ ︷
· · ·

YDk · · ·︸ ︷︷ ︸
k nodes

YE6

YE7

YE8 .

Table 2. The dual graph of the exceptional locus of the crepant resolution of the Du Val singularities.

2.2.1 ADE singularities and their resolution

Recall that there are only five families of isomorphism classes of absolutely isolated rational
double points of dimension 2, called ADE or Du Val or Kleinian singularities [138].11 More
precisely, there are two infinite families (that we denote as YAk

and YDk
) and three sporadic

examples (YE6 , YE7 and YE8). In this work, we fix as representatives Yg for each isomorphism
class the zero loci of the polynomials in table 1 (with k ≥ 1 in the Ak case and k ≥ 4
in the Dk case):

Recall that each of these singularities has trivial canonical bundle. Moreover, they can
be characterized as the only surface singularities admitting a resolution of singularities with
trivial canonical bundle, i.e., in this setting, a crepant resolution.

The exceptional locus of the crepant resolution of a Du Val singularity Yg is a collection
of P1’s with normal bundles of degree -2 intersecting each other according to the Dynkin
diagram of g, as displayed in table 2.

In appendix A we show explicit maps for the resolutions of the ADE singularities of
type Ak, D4, D5, E6, E7, E8, that will be best suited for our needs in the course of the work.

In the next section, we show how we can construct threefolds displaying the desired
properties to yield five-dimensional conformal matter, employing the ADE singularities as
building blocks.

2.2.2 Singular geometries for 5d bifundamentals

We are interested in describing affine Calabi-Yau threefold hypersurface singularities arising
by the transversal collision of two lines of Yg singularities. This, from an M-theory perspective,
corresponds to the fact that we expect to find a flavor symmetry of type g× g coupled to
the five-dimensional degrees of freedom trapped at the point where the two lines collide. To
obtain this construction we proceed by “gluing” the singular surface Yg along two colliding

11We will employ these denominations interchangeably.
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lines that we model as the zero locus, in (u, v) ∈ C2, of the monomial uv. Mathematically,
this procedure is implemented by a “base-change”. Intuitively this corresponds to substituting,
in the equation defining Yg, one among • = x, y, z with uv.12

We can readily visualize such prescription in an example: we take Yg = E6 and use
• = x. Hence we get:

YE6 : x2 + y3 + z4 = 0 x=uv−−−→ Xx
E6 : (uv)2 + y3 + z4 = 0. (2.1)

The singular locus of the threefold Xx
E6

is:

Sing(Xx
E6) = {(uv, y, z) = 0} ⊂ C4. (2.2)

The singular locus stratifies into two parts where we have, respectively (u, v) ̸= (0, 0) and
(u, v) = (0, 0). The former consists of two one-dimensional families of E6 singularities.
The latter component is an enhanced singularity supported at the collision point. This
configuration can be pictorially represented as in figure 1.

The general prescription is the following: call • one among x, y, z and replace it with the
monomial uv in the equation defining Yg. We obtain a singular threefold, that we denote by X•

g :

X•
g ≡ { Pg(x, y, z)|•=uv = 0 } ⊂ C4, (2.3)

where the coordinates of C4 are u, v and the two coordinates among (x, y, z) that we did not
substitute with the monomial uv. The singular locus of X•

g is, by direct computation,

Sing(X•
g ) = { (x, y, z)|•→uv = 0 } ⊂ C4, (2.4)

which is stratified as in the previous example, with two lines of Yg singularities intersecting at
a point where an enhanced singularity resides. Let us remark the relevance of the threefolds
defined in (2.3):

The singular threefolds X•
g are the basic building blocks of this work. The expectation

is that M-theory geometric engineering on X•
g , with g = A, D, E, produces an interacting

5d N = 1 SCFT with matter charged under the flavor group g× g. We will prove this fact
in the subsequent sections, highlighting the due caveats.

12 More formally, we can draw the following commutative diagram:

C2 ×
C1

Yg X (x, y, z)

C2 C ∋ t t = •

(u, v) t = uv

π•

where • is either x, y, or z. For example we can re-obtain the coordinate ring R of Xx
E6 = C2 ×

C1
Yg defined

in (2.1) applying the definition of base-change:

R = C[u, v, x, y, z, t]
(t − uv, t − x, x2 + y3 + z4)

∼=
C[x, z, u, v]

((uv)2 + y3 + z4) .
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To substantiate the above claim we must perform a crepant resolution of the singularities
X•

g and directly probe the Coulomb branch. Indirectly, this will give us information [130]
on the flavor symmetry of the SCFT. In general, the threefolds X•

g admit many possible
crepant resolutions, each one corresponding to a certain chamber of the X•

g Kähler cone. In
order to study the geometry and the physics of X•

g it is convenient to exhibit the recipe to
compute a specific (full) resolution. This resolution, in section 3.2, will allow us to write
down a quiver that describes, physically, the Coulomb phase of the 5d SCFT obtained by
M-theory geometric engineering on X•

g .
Let us add a few remarks, before delving into the core of the work:

• Consider the Ak singularities in a slightly different notation with respect to table 1,
namely written as x̃ỹ = zk+1. Applying the base changes introduced in (2.3) can yield
two substantially different outcomes, that we will not explore, as they have already
been profusely studied in the literature:

– if we apply the base change z = uv, we fall into the cases analyzed in the seminal
paper [121], that yield a collection of hypermultiplets localized on the origin,
charged only under su(k + 1)× su(k + 1) flavor symmetry. This happens because
the resulting threefold singularity is of compound Du Val (cDV) type, and can
thus give rise only to a small resolution [139];

– if we apply the base change x̃ = uv (or, equivalently, ỹ = uv) we obtain the famous
Tk+1 theories (introduced in the 5d setting in [124]). Since the resolution of these
singularities displays compact exceptional divisors they give rise to a non-trivial
gauge dynamics. These singularities are not of cDV type, as it is evident from
their presentation.

• Now go back to the Ak singularities written as:

x2 + y2 = zk+1, (2.5)

If we substitute x = uv or y = uv, for k > 1 we obtain a non cDV singularity, and
hence we expect some interesting interacting 5d SCFT.13 We will come back to these
theories in the following sections.

• Any base change of the kind displayed in equation (2.3) transforms D and E singularities
into a threefold which is not of cDV type. Thus, it is natural to expect that the geometry
gives rise to compact divisors on top of the origin (we will rigorously prove this fact in
section 3 and 4), resulting in a non-trivial 5d theory. These are the theories that we
are going to investigate right away.

Let us start in the next section by computing the resolution in a concrete example.

13The k = 1 case is evidently of cDV type and thus cannot yield an interacting theory. Furthermore,
choosing x = uv or y = uv is completely equivalent for symmetry reasons: we will stick to considering the
x = uv case in the following.
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3 A concrete example: (E6, E6)x conformal matter

In this section we present a detailed analysis for the (E6, E6)x conformal matter. In section 3.1
we present the detailed resolution of the singularity Xx

E6
. In section 3.2 we interpret our

result through the lense of geometric engineering and we identify a quiver gauge theory
phase. In section 3.3 we confirm our prediction on the UV flavor symmetry from geometric
engineering exploiting field theoretical methods [129].

3.1 Resolution of the singularity Xx
E6

This section is also slightly technical and our readers that are not interested in the details of
the resulting algebraic geometry can skip to section 3.2 after having a quick glance at the
intuitive description of the resulting resolved geometry in figure 7.

Consider the threefold Xx
E6

, that we already encountered in (2.1). Xx
E6

sports two lines
of E6 singularities intersecting transversally at the origin, parametrized by the coordinates
u and v appearing in the base change x = uv. We repeat the presentation of Xx

E6
as a

hypersurface equation, for ease and clarity:

Xx
E6 : (uv)2 + y3 + z4 = 0. (3.1)

We now give a recipe to completely resolve the singularity and extract the related physical
consequences. We remark here that, if we forget about the Chern-Simons levels and the
θ-angles, following the resolution procedure up to step 2 already permits to give a 5d quiver
describing a (fully) resolved phase ˜̃Xx

E6
of Xx

E6
. The resolution procedure involves the

following steps:

1. The singularities outside of the origin of (3.1) are E6 Du Val singularities, lying on
top of the lines y = z = u = 0 and y = z = v = 0. Replacing x → uv in the
resolution maps (A.13), (A.14) we can fully resolve the singularities outside the origin
y = z = u = v = 0. As we will see in section 4.1, this corresponds to lifting to the
resolved Du Val surface ỸE6 the base-change (2.1) that we used to obtain Xx

E6
from the

singular Du Val surface YE6 . We call X̃x
E6

the partially resolved threefold obtained in
this way and ε the partial resolution map

ε : X̃x
E6 −→ Xx

E6 . (3.2)

The singular locus of X̃x
E6

is all contained in the subvariety ε−1(0) contracted to the
origin y = z = u = v = 0. ε−1(0) consists of a collection of P1

i ’s, with i = 1, . . . , 6. Each
of the P1

i ’s is a line of singularities of type Ari with ri ≥ 0, with enhanced singularities
at the intersection points qij = P1

i ∩ P1
j . Intuitively, the situation after the first blowup

is depicted in figure 2.

2. To compute the labels ri we proceed as follows. After replacing x → uv in the
E6 resolution map (A.13), (A.14) we obtain a hypersurface equation for each chart
U0, . . . , U6 of (A.13), (A.14). We display these local data in table 3. Such hypersurface
equations are threefolds built as intersections of singularities of type A:

uv = anbkQ(a, b)j , (3.3)
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smooth︷ ︸︸ ︷ smooth︷ ︸︸ ︷

︸ ︷︷ ︸
singular

u
=

0 v
=

0

Figure 2. Pictorial representation of X̃x
E6

. On top of the origin there remains a collection of singular
P1’s, arranged like a E6 Dynkin diagram.

α3 α4α2

α6

α5α1

Figure 3. Labeling convention of the E6 Dynkin diagram.

with Q(a, b) an irreducible polynomial of a, b. Equation (3.3) displays a line of An−1
singularities14 on u = v = a = 0, a line of Ak−1 on u = v = b = 0 and a line of Aj−1
singularities on15 Q(a, b) = 0. Hence, labeling the nodes of E6 as in figure 3 we can
read off the ri by looking at the exponents of the irreducible factors of the r.h.s. of the
equations appearing in the second column of table 3.

In the U0 chart the subset D : u = v = (a0 + 1)2b0 + 2 = 0 (that also appears in the
other charts) is a non-compact line16 of single-center Taub-NUT A0. Summing up, from
table 3 we can conclude that:

• over each point of the nodes α1 and α5 of ε−1(0) there is a A1 singularity;

• over each point of the node α6 there is a A2 singularity;
14As we will see there might be some P1 ⊂ ε−1(0) over which X̃x

E6 is, locally, a trivial fibration of the single-
center Taub-NUT space

{
(x, y, z) ∈ C3|xy = z

}
(isomorphic to C2). We denote the single-center Taub-NUT

space as A0. There might also be non-compact curves, outside ε−1(0), over which the X̃x
E6 looks like an A0

trivial fibration.
15This is true because in all the considered examples Q(a, b) = 0 is a non-singular curve inside C2 ∋ (a, b).
16We can see from (A.3) that the C ∋ b1 is not compactified into a P1 and hence the associated divisor

supports a flavor symmetry.
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Vi Hypersurface equation

U0 uv = b3
0︸︷︷︸

α6

(
(a0 + 1)2 b0 + 1

)4︸ ︷︷ ︸
α2

(
(a0 + 1)2 b0 + 2

)︸ ︷︷ ︸
D

U1 uv = b2
1︸︷︷︸

α1

(
a3

1b2
1 − 1

)3

︸ ︷︷ ︸
α6

(
a3

1b2
1 + 1

)
︸ ︷︷ ︸

D

U2 uv = a2
2︸︷︷︸

α1

b4
2︸︷︷︸

α2

(
a2

2b2 − 1
)3

︸ ︷︷ ︸
α6

(
a2

2b2 + 1
)

︸ ︷︷ ︸
D

U3 uv = a4
3︸︷︷︸

α2

b6
3︸︷︷︸

α3

(a3 − 1)3︸ ︷︷ ︸
α6

(a3 + 1)︸ ︷︷ ︸
D

U4 uv = a6
4︸︷︷︸

α3

b4
4︸︷︷︸

α4

(b4 − 1)3︸ ︷︷ ︸
α6

(b4 + 1)︸ ︷︷ ︸
D

U5 uv = a4
5︸︷︷︸

α4

b2
5︸︷︷︸

α5

(
a5b2

5 − 1
)3

︸ ︷︷ ︸
α6

(
a5b2

5 − 1
)

︸ ︷︷ ︸
D

U6 uv = a2
6︸︷︷︸

α5

(
a2

6b3
6 − 1

)3

︸ ︷︷ ︸
α6

(
a2

6b3
6 + 1

)
︸ ︷︷ ︸

D

Table 3. Hypersurface equations in resolution charts for X̃x
E6

. Subscripts refer to the Dynkin nodes
pertaining to each factor. D indicates a non-compact curve.

• over each point of the nodes α2 and α4 there is a A3 singularity;
• over each point of the node α3 there is a A5 singularity.

We are now left to resolve the Ari singularities over each P1
i ⊂ ε−1(0). We can do this

via the resolution map π (we will be more specific momentarily):

π : ˜̃Xx
E6 → X̃x

E6 . (3.4)

The irreducible components of π−1(P1
i ) will then be compact ruled surfaces intersecting

according to the Ari Dynkin diagram.17 This configuration is peculiar of our specific
crepant resolution π ◦ ε but, using the geometric engineering dictionary, we can already
exploit it to determine some aspects of the quiver gauge theory describing the considered
resolution of Xx

E6
:

(a) each irreducible component P1
i of ε−1(0) corresponds to a gauge node of the quiver,

the points qij correspond to bifundamental hypers between the gauge nodes;
(b) the gauge group associated to P1

i is su(ri + 1);
(c) flavor nodes are associated to the component D appearing in table 3. Since D is a

non-compact line of A0 inside X̃x
E6

, they correspond to one flavor.

We note that, if we forget about the Chern-Simons levels and the θ angles, we already
have all the information to write down the quiver in figure 8 that captures the relevant

17More precisely, every node of the Ari diagram represents a compact surface ruled over P1
i and every edge

represents some P1s being the intersection of two of these compact surfaces.
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(0, 2)

(0, 0) (1, 0)

(1, 4)

Figure 4. Example of the toric planar diagram for (3.5).

dynamics of M-theory on Xx
E6

. The following steps of the singularity resolution, in
terms of the quiver, will just add this finer information.

3. We now want to understand the enhanced singularities at the intersection points
qij = P1

i ∩P1
j . For example, on q12 we have a collision of A1 and A3 lines of singularities

that we model as
uv = a2b4. (3.5)

Equation (3.5) is the zero locus of a binomial, hence it is toric; in appendix B we will
recall the proof that shows that (3.5) is Calabi-Yau. We depict the corresponding toric
diagram in figure 4. Consequently, we can use the toric model defined in figure 4 to
describe a neighborhood of q12 inside X̃x

E6
. We can proceed analogously to associate a

local toric model to each qij .

4. The global threefold X̃x
E6

is obtained by gluing the local toric models as in figure 5. In
figure 5 we are employing the usual orthonormal system in R3 spanned by the vectors
î, ĵ, k̂. Notice that the fact that the gluing cannot happen in R2 indicates that the
threefold is globally non-toric. Below each vertical line we indicate the corresponding
Ari singularity (according to table 3).

We remark that the dashed lines that we draw in figure 5 are just a graphical tool to
help the reader to reconstruct the gluing of the local toric models, but do not represent
compact curves and divisors. In the same way, only the vertices of the solid edges
in figure 5 are associated with divisors of X̃x

E6
. To describe X̃•

g , one can pictorially
construct a 3d analogue of a toric diagram, delimited by the solid edges and obtained
by gluing the two diagrams appearing in figure 5 along the “A5” vertical line. We
remark that this intuitive 3d picture must not be formally interpreted as a proper toric
diagram.

5. The resolution map π that we have introduced in (3.4) corresponds to a triangulation
of the toric diagram in figure 5. The colored nodes represent compact divisors, and
the gluing between the local model on the right and the one on the left happens by
identifying (with non-toric maps) the red nodes, as well as the two black nodes directly
above and below them.
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A1 A3 A5 A3 A1

îĵ plane.

A0 A5 A2

ĵk̂ plane.

Figure 5. Example of the gluing of local toric models in the X̃x
E6

case.

A1 A3 A5 A3 A1

îĵ plane.

A0 A5 A2

ĵk̂ plane.

Figure 6. Example of the gluing of local toric models in the ˜̃Xx
E6

case.

We note that each vertical line of the toric diagram is invariant w.r.t. a reflection around
its center.18 As we will see in section 4.3, this will correspond to the parity invariance
of the quiver gauge theory associated with the resolution in figure 6, and will set to
zero all the Chern-Simons levels.

At this point, we have completely resolved the starting singular threefold Xx
E6

.
We can tentatively draw a picture of the resulting preimage of the origin π−1(ε−1(0))

through the blowup, representing compact divisors with the colors with which they appear in
figure 6. One can further compute the normal bundle of the intersection curves following
the usual conventions (summarized in appendix B), checking that they are such that the
resolved threefold respects the Calabi-Yau condition, and that the global gluing can only
happen in a three-dimensional space (as already shown in figure 6), signaling that the global
threefold is not toric. In the figure we write down the normal bundles of the curves: each

18By this we mean that, if we call n1, n2 the number of edges terminating in two vertices p1, p2 exchanged
by the reflection, then n1 = n2.
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-1

-1

0 -2 0 0-2

-1
-1

-1

-1
-1

-1

-1

-1

-1

-1-1

-1

-1-1

-1-1

-1

-1

-1 -1-1

-1-1

-1-1

-1

Figure 7. Pictorial representation of the compact divisors in the preimage of the origin after a
specific resolution of the Xx

E6
threefold. Curves in this figure correspond to P1s, and the numbers

represent their self-intersection inside the respective compact divisor. The plaquettes correspond to
compact divisors in the threefold geometry. We stress here that all of these are ruled surfaces, and
hence we expect a gauge theory interpretation.

number expresses the self-intersection of the curve inside the corresponding compact divisor.
Notice that the curved black lines in 7 correspond to the edges joining diagonally a red node
with a black node in the rightmost diagram of figure 6. Furthermore, figure 7 is manifestly
invariant with respect to a Z2 reflection along a straight horizontal line that cuts the picture
horizontally in half. As we will see momentarily, this has repercussions in terms of the
Chern-Simons levels of the gauge nodes of the quiver corresponding to the picture (we identify
this isometry with the action of parity).

In the next section, we flesh out the physical interpretation of the compact divisors
configurations such as the one depicted in figure 7.

3.2 5d gauge theory phase

The information that we have fleshed out in the previous section allows us to build the
low-energy quiver gauge theory counterpart of the 5d SCFT arising from M-theory on Xx

E6
.

All the surfaces in figure 7 are ruled surfaces that have fibration by curves of self-intersection
zero. Due to the Calabi-Yau condition, these have a normal bundle O(−2)⊕O(0). Hence we
can interpret them as resolutions of singularities in the vertical direction. The green divisor
has a single -2 curve, and hence shrinking it down one obtains an A1 singularity. The blue
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su(6)0 su(4)0su(4)0

su(3)0

su(2)su(2)

1

Figure 8. Low-energy quiver gauge theory for M-theory on Xx
E6

.

surfaces are ruled by a curve that is not irreducible and splits into three distinct -2 curves,
corresponding to the three irreducible compact divisors in the geometry. Shrinking that
down one obtains an A3 singularity. Similarly, the red divisors give an A5 singularity and
the purple ones an A2. Notice that at the intersections these singularities enhance, hence
using the Katz-Vafa method we can read off the corresponding bifundamentals from Adjoint
Higgsing [121]. For instance at the collision of the blue and the red divisors in figure 7 we
see an enhanced singularity consisting of 9 curves, and shrinking those down we obtain an
A9 singularity corresponding to the Adjoint Higgsing SU(10)→ SU(4)× SU(6)×U(1) from
which we read off the matter content

99 = 15⊕ 35⊕ (4, 6)⊕ (4, 6)⊕ (1, 1)

that indeed gives rise to a full bifundamental. Shrinking all the curves in the vertical direction
down to zero size, all the divisors go to zero volume, but we do not reach the conformal
point. Instead we are left with a collection of rational curves, call them, P1)b,i, where b

stands for the base of the ruling, that intersect along an E6 diagram. These curves have a
dual interpretation in geometry as the relevant deformation of the 5d SCFT to the 5d gauge
theory phase. In particular, vol(P1

b,i) ∼ 1/g2
i where g2

i are the gauge couplings for the various
gauge groups in the quiver. Sending these gauge couplings to infinity, amounts to sending
the volumes of the P1

b,i to zero, and flowing to the conformal point.
Schematically, it suffices to look at the non-toric gluing depicted in figure 6: compact

divisors correspond to gauge nodes, and non-compact ones to flavor nodes. We depict the
quiver for Xx

E6
in figure 8, where we used the same color-code of figure 7 to associate the

compact divisors to the corresponding quiver nodes.
The Chern-Simons levels of each gauge node have been gleaned thanks to the fact that

there exists a triangulation of the global resolved threefold ˜̃Xx
E6

(such as the one in figure 6)
that is invariant under a Z2 reflection: we claim that such symmetry would not be preserved
if any of the Chern-Simons levels were different from zero. We present a rigorous proof
of this fact in section 4.3.

3.3 UV flavor symmetry

We would now like to extract the flavor symmetry of the SCFT that arises as the UV
completion of the quiver gauge theory presented above. To this end, we can employ the
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technique developed in [129, 130]. For the full details of the construction we refer to the
original works. In our context, the central result that is needed to extract the sought-after
UV flavor symmetry can be stated as follows, provided that all the Chern-Simons levels and
θ angle parameters of the nodes are equal to zero, as is in our cases:

• consider a quiver whose gauge nodes are joined according to the Dynkin diagram of g.
Let Aij be the Cartan matrix of g, let fi be the number of flavors connected to i-th
gauge node (with i = 1, . . . rank(g)) and su(ri + 1) be its gauge algebra.

• If: ∑
j

Aij(rj + 1)− fi = 0 ∀i, (3.6)

then the total UV flavor symmetry GTOT
UV contains at least the following non-abelian

factor:
GTOT

UV ⊇ GUV = g× g. (3.7)

In our specific quiver depicted in figure 8, a trivial computation shows that the UV flavor
symmetry contains at least the factor:

GUV = E6 × E6. (3.8)

Thus, we have proven that:
The 5d SCFT geometrically engineered by M-theory on the threefold Xx

E6
exhibits at

least a E6 × E6 flavor symmetry.
As we will see in section 4.4, this theory is not a direct descendant of the 6d E6×E6 con-

formal matter theory. Thus, it genuinely earns the name of five-dimensional conformal matter.
In the next section we recap the general resolution procedure for the threefolds X•

g , with
an eye more focused on the mathematical rigour.

4 5d (g, g)• conformal matter and X•
g singularities

In this section we discuss the general properties of the 5d (g, g)• conformal matter theories.
We begin in section 4.1 by illustrating the mathematical details of the resolution of the
threefolds X•

g defined in (2.3), giving a recipe that generalizes the procedure outlined in
section 3. In section 4.2 we generalize the discussion of section 3.2 to describe the quivers
arising along the 5d Coulomb branch of the 5d SCFT in terms of resolutions obtained by
glueing toric local models. The resulting theories are described in section 4.3 where in
particular we argue that they are parity invariant. The precise structure of the models is
outlined in 4.4, where we give all the 5d quiver gauge theory phases for all the 5d conformal
matter theories of (g, g)• type, we determine their flavor symmetries and we comment on
their interplay with the 6d conformal matter theories.

4.1 A partial resolution via base change

For convenience, let us recall the definition of the X•
g singularities:19

X•
g ≡ { Pg(x, y, z)|•=uv = 0 } ⊂ C4, (4.1)

19Recall that, for g = A, we only consider the • = x case.
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as well as their singular locus:

Sing(X•
g ) = { (x, y, z)|•=uv = 0 } ⊂ C4. (4.2)

Since outside the stratum u = v = 0 of (4.2), we have a trivial family Du Val singularities,
then any two crepant resolutions of X•

g agree outside the origin 0 ∈ X•
g ⊂ C4. Since the

singularities X•
g are obtained by base-change of Yg, a way to obtain a partial crepant20

resolution ε : X̃•
g → X•

g is to lift the base-change21 that we used to obtain (4.1) from the
singular Du Val Yg to the resolved Du Val Ỹg:

C2 ×
C1

Ỹg Ỹg

C2 ×
C1

Yg Yg (x, y, z)

C2 C1 •
(u, v) uv

ε

π•

(4.3)

where • ∈ { x, y, z }. As for (2.1), the base-change (4.3) boils down to substituting22 the
variable • with uv in all the resolution maps of appendix A. We saw that, substituting
• = uv in the equation of Yg corresponds to “sticking” a Yg singularity over each point
(u, v) ̸= (0, 0) of uv = 0 ⊂ C2. Similarly, (4.3) corresponds to sticking a resolved Ỹg over each
point (u, v) ̸= (0, 0) of uv = 0 ∈ C2. This completely resolves the singularities of X•

g outside
of the origin 0 ∈ X•

g ⊂ C4 (as presented in (2.3)). The threefold X̃•
g has residual singularities

supported on the preimage ε−1(0) of the origin 0 ∈ X•
g ⊂ C4 via the partial resolution map ε.

One can explicitly check that ε−1(0) consists of a bunch of P1’s intersecting according
to the Dynkin diagram23 of g. Besides, the threefold X̃•

g has a singularity of type A over
each P1 appearing in ε−1(0). We call ri ≥ 0 the rank of the A-type singularity24 appearing
on the i-th irreducible component P1

i ⊂ ε−1(0).
In general, these residual singularities can be resolved via a sequence of blow-ups with

reduced centers:

π : ˜̃X•
g X̃•

g . (4.4)

The fiber π−1(P1
i ) can be described as follows:

20The fact that ε is a crepant resolution is guaranteed by a result of [139].
21We remark that the subscript C1 under the × symbol in (4.3) is a common notation for the algebraic

notion of “fibered product” [140].
22The map ε is well-defined and unique by the universal property of the fibered-product.
23This is true in the sense that different irreducible components of ε−1(0) intersect according to the Dynkin

diagram of g but we do not extract from the Dynkin diagram the datum on the self-intersection of the
P1’s entering in ε−1(0). The reason is that ε−1(0) is not included in an obvious way in any surface inside
X̃•

g ; furthermore many irreducible components of ε−1(0) are singular in X̃•
g , making their normal bundles

ill-defined.
24As we will see there might be, according the base-change that we choose, some P1 ⊂ ε−1(0) over which

X̃•
g is, locally, a trivial fibration of the single-center Taub-NUT space

{
(x, y, z) ∈ C3|xy = z

}
(isomorphic to

C2). We denote the single-center Taub-NUT space as A0.
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• on p ∈ P1
i \ ∪j ̸=iP1

j , the fiber ε−1(p) is the union of ri “vertical” P1’s coming from the
resolution of the YAri

singularity;

• at the intersection points qij ≡ P1
i ∩P1

j the fiber ε−1(qij) consists of ri + rj +1 “vertical”
P1’s intersecting according to the Dynkin diagram of Ari+rj+1.25

We can then conclude that π−1(P1
i ) is isomorphic to ri (non-necessarily geometrically [141])

ruled compact surfaces, i.e. Hirzebruch surfaces Fnj , with j = 1, . . . , ri, blown up at some
points (producing multiple-fibers). The ruling of each of these surfaces is the restriction of π

and the reducible fibers (containing more than one P1) are contracted over the intersection
points qij . The irreducible components of π−1(P1

i ) intersect according to the Ari Dynkin
diagram, where every node represents a compact surface ruled over P1

i and every edge
represents a P1 being the intersection of two of these compact surfaces. We stress that this
configuration is peculiar to our specific crepant resolution π ◦ ε.

To compute subtle geometrical aspects of these ruled surfaces we can use that, outside
qij , nothing fancy happens and, for each irreducible component of π−1(P1

i ), we do not have
multiple fibers. To understand neighborhoods of π−1(qij) we can use that they can be locally
described by toric geometry (despite the full geometry X̃•

g being non-toric). We embark on
the toric analysis of π−1(qij) in the next section.

4.2 The resolution of two transversal families of A singularities

The neighbourhoods of the points qij ∈ X̃•
g can be locally described with the following toric

models, already considered in [121]:

Xhk =
{
(a, b, u, v) ∈ C4

∣∣∣ uv − ahbk = 0
}

, (4.5)

for h, k ≥ 0, with qij corresponding to the origin of (4.5). Thus, using (4.5) to resolve all
the neighborhoods of qij ∈ X̃•

g and gluing together these local constructions, we will be able
to completely smooth out the initial threefold X•

g and glean the structure of the compact
divisors blown-up on top of the origin.

Example 4.1. For h = k = 0 Xhk is trivially smooth. Besides, for h = k = 1 we find the
conifold singularity.

Notice that Xhk is a toric variety with singularities of type Ak−1 on the x axis and
of type Ah−1 on the y axis.

The fan Σhk of Xhk has a unique maximal cone σmax generated by the following prim-
itive vectors:

w1 =

00
1

 , w2 =

0
h

1

 , w3 =

1
k

1

 , w4 =

10
1

 . (4.6)

Xhk is Calabi-Yau (since all the wi lie on a plane) and its toric diagram Phk ⊂ R2 is a
lattice polygon which encodes all the information about the geometry of Xhk and its crepant
resolutions (see figure 9). We now want to outline general features of these toric diagrams.
We can readily check that the lattice polygon Phk has

25This is precisely the same enhancement observed in [121].
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(0, 4)

(0, 0) (1, 0)

(1, 2)

Figure 9. Example of the planar diagram Phk for h = 4 and k = 2.

flop flop

Figure 10. Possible triangulations of P21.

A B

C

D

E

F

G

H

Z2 reflection

E D

C

B

A

H

G

F

Figure 11. Z2-transformation that leaves invariant the toric diagram. The transformation exchanges
A↔ E, F ↔ H, B ↔ D. Non-trivially, the number of edges ending on a pair of vertices exchanged
by the Z2 action is the same.

• no internal points,

• k + 1 lattice points on the edge of Phk corresponding to the pair (w3, w4),

• h + 1 lattice points on the edge of Phk corresponding to the pair (w1, w2).

Consequently, there are h + k − 2 non-compact divisors after the resolution, and they
are, on the (u, v) ̸= 0 component of the singular locus, the exceptional loci of the resolution
of the trivial families of Ah−1 and Ak−1 singularities.

Every crepant resolution of Xhk corresponds to a triangulation of Phk which has, as set
of vertices, exactly the marked points on Phk. This triangulation produces h + k − 1 P1’s on
the origin a = b = u = v = 0, arranged as a Ah+k−2 Dynkin diagram, as noticed in [121].

Example 4.2. For h = 2 and k = 1, we have only three possible crepant resolutions which
correspond to the triangulations of P21 in figure 10.

Notice that there always exists a triangulation of Phk that is invariant w.r.t. a Z2-
transformation that reflects the edges of each vertical line Phk w.r.t. the center of the
vertical line:
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As we will see in the section 4.3, we can employ this fact to extract the Chern-Simons levels
of the nodes of the quiver that arises as the IR dual of the SCFT coming from M-theory on X•

g .
We can now proceed to glue the local toric models to reproduce the full X̃•

g . The
procedure is exactly analogous to the one explained in section 3: each edge of the Dynkin
diagram of the g singularity corresponds to a certain qij , and hence to a certain local toric
model. Then, we torically26 glue together the toric diagrams associated to the Arank(g)−1
subalgebra of g (as in the leftmost part of figures 5 and 6). Finally we glue, to the trivalent
node of g, the toric diagram of the local toric model associated to the intersection between
the trivalent and the upmost node of the Dynkin diagram of g, for g = D, E (corresponding
to the rightmost part of figures 5 and 6). For the g = A case the gluing is the obvious one.

In the next section we recap the procedure to extract the physical data of the 5d SCFT
from the geometric perspective outlined above.

4.3 Quiver gauge-theory and parity invariance

M-theory reduced on a threefold X•
g gives rise to a 5d N = 1 SCFT. Upon mass deformation

such SCFT flows to weakly-coupled quiver gauge theory, with only su nodes.
In section 4.1 we introduced the partial resolution ε : X̃•

g → X•
g defined via the base-

change (4.3). The five-dimensional degrees of freedom are trapped in the submanifold
ε−1(0) ⊂ X̃•

g contracted on 0 ∈ X•
g and can be described using a five-dimensional quiver

capturing the physics of M-theory on this resolved phase of the X•
g singularity. In order to

write down such quiver explicitly, we gather the following data:

• the quiver has i = 1, . . . , rank(g) su(ri + 1) gauge nodes, connected according to the
g Dynkin diagram. The numbers ri can be extracted directly by looking at the base-
change of the resolution maps presented in appendix A, as concretely explained in the
recipe of section 3.

• flavor groups (if present) are associated to non-compact families of Ak singularities
(or single-center Taub-NUT spaces) fibered over non-compact lines that intersect the
outmost nodes of ε−1(0).

• The (minimal) UV flavor symmetry of the quiver gauge theory can be extracted with
the techniques of [129, 130], as outlined in section 3.3.

• To completely specify the quiver we also need to compute the Chern-Simons levels
of each node. We claim these are all identically zero (and so the flavor symmetry
of these theories enhances to g × g at the SCFT point [130]). In order to argue for
this it is not necessary to analyze the detailed geometry of the ruled surfaces π−1(P1

i )
(with π the blowup map presented in equation (4.4)), rather it is enough to show that
the five-dimensional SCFT is parity invariant. We present an argument to argue for
this below.

When the SCFT has a (p, q)-web construction in IIB, the parity of the 5d SCFT arises from
the parity of the type IIB spacetime. In particular, the action of parity is equivalent to

26By this, we mean that the transition functions are defined by binomial relations between the coordinates.
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the reflection around the origin of the (p, q)-plane, and the 5d SCFT is parity invariant if
the dual (p, q)-web is invariant with respect to such an action. X•

g is not globally dual to a
(p, q)-web, but the neighborhoods of the points qij are described by the local models (4.5) that
display the required Z2 reflection symmetry. One can check that these local Z2 reflections
glue together into a Z2 automorphism that exchanges u and v

X̃•
g X̃•

g

(u, v, . . .) (v, u, . . .)

Ψ

(4.7)

At this point, Ψ is an order-two automorphism of the partially resolved threefold X̃•
g . In

order to promote it to the (complete) resolution ˜̃X•
g we need to perform the blowup sequence

π, defined in (4.4), in such a way as to treat the coordinates u and v “democratically”.27 At
the level of the local toric diagrams, this amounts to choosing a triangulation of the local toric
model (4.5) that is invariant w.r.t. to the reflection along the vertical axis. It is easy to check
that this is always possible for the geometries we consider. We therefore can then promote Ψ
to an automorphism of ˜̃X•

g , which we claim corresponds to the invariance of the 5d theory
with respect to a parity reflection. We therefore expect the Chern-Simons levels to vanish.
We can confirm this expectation exploting a different duality frame which allows to explicitly
compute the relevant Chern-Simons levels, as discussed in [128, 147]. All the geometries
we consider have a C∗ action u → λu, v → v

λ , with λ ∈ C∗. This allows to identify a U(1)
bundle, arising from the U(1) ⊂ C∗. We can therefore perform a fiberwise duality to Type
IIA interpreting this circle as an M-theory circle for our theories. The action has a D-term

|u|2 − |v|2 = x9, (4.8)

where x9 is a (free to vary) coordinate in the IIA spacetime, over which the Du Val singularity
of type g is fibered. The Ψ automorphism we have constructed above exchanges u and v and
hence sends x9 → −x9. From the analysis in [128] it is clear that all Chern-Simons levels must
vanish if the IIA system is invariant upon this reflection. We review this analysis in appendix D
where it is proven that the existence of such Ψ sets to zero all the Chern-Simons levels. Hence,
we can conclude that the five-dimensional SCFT is parity invariant and, consequently, that
the Chern-Simons levels of each su node of the quiver are zero. It can be easily proven that a
Ψ-invariant triangulation exists for all our models ˜̃X•

g , leading us to the conclusion that:
Given a threefold X•

g , there always exists a complete resolution ˜̃X•
g that respects the Z2

reflection as defined above. Therefore, all the gauge nodes in the related 5d quiver gauge
theory can be chosen to have vanishing Chern-Simons levels.

In the next section we employ the above recipe to exhibit the quivers and the UV flavor
symmetries for the threefolds X•

g , showing that they engineer 5d conformal matter.

4.4 Low-energy quiver theories and their properties

In this section, we explicitly show the low-energy gauge theory quivers corresponding to the
geometries X•

Ak
(for every k > 1 and • = x, which is completely equivalent to • = y), X•

Dk
(for

27By this we mean that the centers of the various blowups defining π have to be subvarieties of X̃g preserved
by Ψ.
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every k), X•
E6

, X•
E7

, X•
E8

, with • = x, y, z. We then use these quivers to extract the UV flavor
symmetry of the considered conformal matter theories and to exclude the presence of electric
one-form symmetries. Finally, we comment on the 6d uplift of the aforementioned theories.
In appendix C we go through consistency checks that ensure that the quivers yield a sensible
UV SCFT completion, computing their prepotential for an example, according to [127].

4.4.1 List of low-energy quiver gauge theories

All the nodes of the quivers in this section are of su(ni) type, with ni the number written
inside each node. As proven in section 4.3, all nodes have vanishing Chern-Simons levels
(or vanishing θ angle, for su(2) nodes).

We note that, due to the presence of fundamental hypermultiplets, there is no one-
form electric symmetry for the considered theories. The fact that the electric one-form
symmetry is explicitly broken by the presence of fundamental matter also excludes magnetic
two-form symmetries.

•Xx
A2j+1 1 . . . j2 j + 1

1

1

j . . . 2 1

•Xx
A2j+1 1 . . . j2 j + 1

1

1

j . . . 2 1

•Xx
A2j

1 . . . j − 12 j

1

j j − 1 . . . 2 1

•Xx
D2j+2

2j + 1 2jj + 1

j + 1

2j − 1 . . . 2 11

1
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•Xx
D2j+3 2j + 2 2j + 1j + 1

j + 1

2j . . . 2 1

1

•Xy
D2j+2 2j 2j − 1j

j

2j − 2 . . . 1

1

•Xy
D2j+3

2j + 1 2jj + 1

j + 1

2j − 1 . . . 11

1

•Xz
Dj

2 2 . . . 2 21

1

•Xx
E6 6 44

3

22

1

•Xy
E6

4 33

2

22 11
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•Xz
E6

3 22

2

11

1

•Xx
E7

9 76

5

53 3 1

1

•Xy
E7

6 54

3

42 3 2

•Xz
E7

4 33

2

22 11

•Xx
E8

15 1210

8

95 6 3

1

•Xy
E8

10 87

5

64 4 21
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•Xz
E8

6 54

3

42 3 2 1

4.4.2 UV flavor symmetry

We would now like to extract the flavor symmetry of the SCFTs that arise as the UV
completion of the quiver gauge theories presented above. To this end, we can employ the
technique developed in [129, 130] and recapped in section 3.3.

A straightforward computation shows that condition (3.6) is satisfied in all the quivers
listed in this section. In physical terms, this means that the UV flavor symmetry contains as
a subgroup at least the symmetry given by the direct product of two copies of the Dynkin
diagram corresponding to the gauge nodes.

Let us summarize this result in table 4, also writing down the total rank of the expected
UV flavour symmetry, thus accounting also for abelian factors. The total rank can be readily
computed by keeping track of one topological instanton symmetry u(1)T for each gauge
node, and one factor for each hypermultiplet in the quiver, and a su(ni) contribution, with
i = 1, . . . , ν, for each of the flavor nodes, labelled by ni in the low-energy quiver descriptions
of the previous section. Notice that theories with the same flavor rank are not equivalent, as
they have different gauge nodes, as can be seen directly by looking at the quivers written
in the previous section.

Furthermore, it is immediate to observe that threefolds X•
g with different label • = x, y, z,

corresponding to different low-energy 5d quiver gauge theories, contain in their UV flavor
symmetry the same factor g× g. This implies that 5d conformal matter comes in different
“species”, labelled precisely by •.28 This yields a striking difference with respect to 6d
conformal matter, and produces a rich duality structure that we will examine in section 5.

To summarize, it holds:
The theories X•

g enjoy a UV flavor symmetry which is at least:29

GUV = g× g× su(n1)× · · · × su(nν)× u(1)ν−1, (4.9)

with ν the number of flavor nodes in the quiver description corresponding to X•
g . The

appearance of the extra u(1) factors was already pointed out by means of a careful tracking
of flavor symmetry enhancement, from the field theoretic viewpoint, in [129].

4.4.3 Relation to 6d conformal matter

Let us add a quick remark, that can be readily noticed by looking at the quivers depicted above.
It can be seen that, if we take the quiver gauge theories corresponding to Xy

D4
, Xy

D5
,

Xz
E6

, Xy
E6

, Xz
E7

, Xz
E8

and gauge the flavor nodes, we get precisely the quivers written
28Notice that the only interacting conformal matter theory for the A cases comes from the choice • = x

(which is equivalent to • = y). As we have previously observed, one can formally define a “5d conformal matter
theory” for • = z, provided that one bears in mind that it is just a theory of bifundamental hypermultiplets.

29Notice that the rank of the total UV flavor symmetry cannot be higher than that of (4.9). This implies
that non-abelian rank-preserving enhancements cannot be ruled out.
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Singularity GUV Rank of GTOT
UV

Xx
A2j+1

A2j+1 ×A2j+1 × u(1) 4j + 3

Xx
A2j

A2j ×A2j × u(1) 4j + 1

Xx
D2j+2

D2j+2 ×D2j+2 × u(1)2 4j + 6

Xx
D2j+3

D2j+3 ×D2j+3 × u(1) 4j + 7

Xy
D2j+2

D2j+2 ×D2j+2 4j + 4

Xy
D2j+3

D2j+3 ×D2j+3 × u(1) 4j + 7

Xz
Dj

Dj ×Dj × su(2) 2j + 1

Xx
E6

E6 × E6 12

Xy
E6

E6 × E6 × u(1) 13

Xz
E6

E6 × E6 12

Xx
E7

E7 × E7 × u(1) 15

Xy
E7

E7 × E7 × su(2) 15

Xz
E7

E7 × E7 14

Xx
E8

E8 × E8 16

Xy
E8

E8 × E8 16

Xz
E8

E8 × E8 16

Table 4. UV flavor enhancement for X•
g . Quivers with the same flavor rank are not equivalent, as

they have manifestly different rank of the gauge nodes, as can be seen by their presentation in the
previous section.

down by Tachikawa in [129], corresponding to affine E6, E6, E6, E7, E7, E8 Dynkin diagrams,
respectively. This corresponds to a symmetry enhancement in the UV:

Xy
D4

: GUV = D4 ×D4
gauging−−−−−→ Ê6 × E6

Xy
D5

: GUV = D5 ×D5
gauging−−−−−→ Ê6 × E6

Xz
E6

: GUV = E6 × E6
gauging−−−−−→ Ê6 × E6

Xy
E6

: GUV = E6 × E6
gauging−−−−−→ Ê7 × E7

Xz
E7

: GUV = E7 × E7
gauging−−−−−→ Ê7 × E7

Xz
E8

: GUV = E8 × E8
gauging−−−−−→ Ê8 × E8

, (4.10)

where ĝ× g denotes the flavor algebra ĝ× ĝ with the flavor symmetries associated to the affine
nodes identified.30 The appearance of affine flavor symmetries is decisively hinting at the fact

30In particular, we note that the rank of the flavor enhanced ĝ× g flavor symmetry is 2rank(g) + 1.
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that these theories have an intrinsically six-dimensional origin. In fact, the choices y = uv for
D4, D5 and E6, and z = uv for E6, E7, E8, correspond to the “F-theoretic base change”, as the
resulting threefold is explicitly in the form of an elliptic fibration.31 Indeed we can consider
the six-dimensional theories obtained from F-theory compactified on the threefolds Xy

D4
, Xy

D5
,

Xy
E6

, Xz
E6

, Xz
E7

, Xz
E8

, that now are hypersurfaces in a weighted projective space. We can
then reduce these theories on a circle transverse to the Calabi-Yau, obtaining 5d Kaluza-Klein
theories. Decoupling the Kaluza-Klein modes we obtain the quivers in section 4.4 with gauged
flavor nodes. In order to reconcile with our M-theory setup, we must hence remove the points
at infinity of the projective space: this has the neat effect of decompactifying the divisors
that ultimately correspond to the flavor nodes in the M-theory picture.32

The theories that we have just described are nothing but the 6d conformal matter theories
introduced in [60], and whose 5d descendants were written down explicitly in [41].33 Notice
that, in particular, Xy

D4
uplifts in 6d to the rank 1 E-string theory with E8 flavor symmetry, as

reviewed e.g. in [47, 60, 144]. We remark here that, instead, the other examples we presented
in section 4.4 possess a genuine g× g UV flavor symmetry in 5d, with g = D4, D5, E6, E7, E8,
and can be easily constructed via a M-theoretic approach, while lacking an immediately
transparent F-theoretic interpretation. This is because, in that case, the base-change we
performed in (2.3) is not compatible with the structure of elliptic fibration of Yg. We can
also give a somewhat more heuristic explanation as to why these other base changes do not
admit a manifest F-theory uplift: if we gauge the flavor nodes of their quivers, we simply
do not obtain the Dynkin diagram of a Lie algebra, be it finite or affine, but instead we
produce some more complicated quiver.

Nevertheless, it has been conjectured that all 5d N = 1 SCFTs descend from 6d (1, 0)
theories reduced on a circle with holonomies [39]. Thus, also our examples should share
such parentage: indeed, we will prove in an upcoming work [106] that one can obtain all
5d conformal matter theories from the 6d ones, in a non trivial fashion.

5 Exceptional linear quivers and 5d dualities

After having shown that M-theory on X•
g engineers five-dimensional bifundamental g × g

matter, the next step is to use this construction to geometrically engineer quivers with nodes
of type g. Of course, we are particularly interested in the cases g = D, E, in which the
bifundamental matter gets properly promoted to conformal matter (as well as the A case
with the choice x = uv). In this section, we will give the general rules to gauge together the
conformal matter theories that we introduced in the previous sections. The most general
quiver that we can obtain from conformal matter is a linear quiver, with decorated edges
each being of type (g, g)•i , with i = 1, . . . , nedges. We start by considering linear quivers
with conformal matter edges all of the same type, and then we gradually generalize to linear
quivers with different kinds of conformal matter edges.

31We note that, as in the Xy
E6

case, the threefold might not be in Weierstrass form, but still being an elliptic
fibration over y ∈ C.

32In the Xz
g cases with g = E6, E7, E8, this operation simply amounts to ungauging the affine node of g.

33Our quivers and the ones of [41] can be readily seen to agree, provided that one exchanges (after gauging
the affine node) our su(1) gauge nodes with a node with 2 flavors, as pointed out in [142, 143].
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E6
(E6, E6)x(E6, E6)x

E6E6

Figure 12. Quiver with gauge nodes of type E6 and edges of type (E6, E6)x.

5.1 Linear generalized quiver with edges of the same type

In this section, we are going to glue two conformal matter theories of the same type (g, g)•
via a gauging procedure. We will use this to build generalized linear quivers with all edges
being conformal matter theories of type •.

In order to do so, we recall that each g factor of the UV flavor symmetry corresponds,
in X•

g , to one of the irreducible components of the lines of Yg singularities on uv = 0 ⊂ C2.
Let gu (resp. gv) be the flavor symmetry factor associated to the v = 0 line (resp. u = 0
line) of Yg singularities. To gauge gu we have to compactify the u coordinate into a P1,
leaving the v direction non-compact. More precisely, we glue two affine spaces C2

u,v and
C2

u′,v′ to get the total space of a line bundle OP1(−n),34 where (u, u′) span the base-space
P1 and (v, v′) span the fiber.

Let us concentrate, for ease of exposition, on the g = E6 and • = x case (everything
proceeds similarly for • = y or • = z). At the level of threefolds we have two singularities
Xx

E6
⊂ C4

y,z,u,v and
(
Xx

E6

)′
⊂ C4

y,z,u′,v′ , explicitly given by:

(uv)2 + y3 + z4 = 0
(u′v′)2 + y3 + z4 = 0

. (5.1)

We then patch them together with the following transition function:

χ : U ⊂ Xx
E6 U ′ ⊂

(
Xx

E6

)′
(y, z, u, v) (y, z, u′, v′) = (y, z,

1
u

, unv).
(5.2)

where U and U ′ are, respectively, the open subsets of Xx
E6

and
(
Xx

E6

)′
with u ̸= 0 and

u′ ̸= 0. We note that, to consistently patch Xx
E6

and
(
Xx

E6

)′
, we want u′v′ = un−1v to

coincide with uv, hence we have to pick n = 2. Consequently, gauging the singular E6 lines
respectively parameterized by u and u′ of two bifundamental E6 × E6 5d matter amounts to
partly compactifying (u, v) to a resolved Du Val singularity of type A1 (by gluing them with
another C2 spanned by (u′, v′)). The construction outlined in (5.2) applies also to the cases
• = y or • = z, opportunely permuting the roles of (x, y, z). Of course, the reasoning can be
generalized to any g = ADE in lieu of E6. The system (5.1) thus corresponds to the quiver:
where we indicate with (E6, E6)x the conformal matter lying at the collision between E6
singularities corresponding to each edge of the quiver. We emphasize the following remark,
which is a novel aspect of the theories we are considering in this section:

34We write “n” in red to emphasize that it is the same that appears in equation (5.2).

– 32 –



J
H
E
P
0
5
(
2
0
2
4
)
3
0
6

In a usual quiver gauge theory the nodes of the quiver are enough to identify the nature
of the bifundamental matter associated to the edges linking quiver nodes. On the other hand,
for the low-energy 5d quiver emerging from M-theory on (5.1), we need to specify the “species”
• of the edges (E6, E6)• of the quiver nodes (corresponding to different types of collision
of YE6 singularities in the threefold).

As a result, the gauge rank of the quiver in figure 12 must35 be computed as follows:

rkTOT = rk(E6)︸ ︷︷ ︸
gauge node

+2rk
[
(E6, E6)x

]︸ ︷︷ ︸
edges

= 6 + 2 · 15 = 36. (5.3)

We can now contract the u ∈ P1 line36 producing a singularity, that we call Xx
E6,1,

defined by two equations in C5: x2 + y3 + z4 = 0
UV = x2

, (5.4)

with coordinates (x, y, z, U, V ). The subscript “1” in Xx
E6,1 refers to the second equation,

which is a A1 singularity. We have already given a quiver gauge theory interpretation of (5.4),
in figure 12. It turns out, though, that there exists a dual quiver gauge theory corresponding
to (5.4): to see it, notice that it is very similar to the complete intersectionx2 + y3 + z4 = 0

UV = x
, (5.5)

which is nothing but the threefold Xx
E6

that we have already vastly analyzed in sections 3
and 3.2. Therefore, we can extract the corresponding 5d low-energy quiver of (5.4) by
employing the hypersurface equations in table 3, taking care of squaring their right-hand
side, as now we have UV = x2, as opposed to UV = x in the Xx

E6
case. Proceeding in this

way we can explicitly construct the quiver, obtaining the duality:
Notice that, according to (4.9), the theory in figure 13 enjoys a flavor symmetry which

is at least of the form

GUV = E6 × E6 × su(2). (5.6)

Such symmetry can be motivated both from the field-theoretic point of view, thanks to
the work of [129] and [130], and the geometric side. As regards the latter, indeed, one can
manifestly see that (5.4) has three lines of singularities: two are of E6 type, and one is of
A1 type. This is in perfect agreement with (5.6).

The previous procedure can be generalized, maintaining the Calabi-Yau condition, to
obtain quivers shaped as the Dynkin diagram of type An−1, with nodes of type g, and
flavor nodes of type g attached to the rightmost and leftmost nodes of the An−1 Dynkin

35We gleaned the data to compute (5.3) by counting the number of the compact divisors in the threefold
geometry, as explained in section 4 and shown in the quivers of section 4.4.

36The contraction map is (u, v) → (vu2, v, uv) = (U, V, x).
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xy
E6

(E6, E6)x(E6, E6)x
E6E6

Figure 13. A new 5d duality.

diagram (following the convention of figure 2). The resulting singularity X•
g,n−1 is a complete

intersection in C5 defined by the following two equations:Pg(x, y, z) = 0
UV = (•)n

, (5.7)

where Pg are equations defining the ADE singularity of type g according to table 1, • is one
among x, y, z and the coordinates of the C5 ambient space are x, y, z, U, V .

One might now be tempted to generalize the construction considering as second equation
of (5.7) some Du Val singularity different from An−1: the gluing condition (5.2) would naively
admit also these cases. However, one can check that for all the cases in which one picks
a Dk, E6, E7, E8 singularity as second equation of (5.7), then such generalization is not at
finite distance in the moduli space of the Calabi-Yau threefold.37

37More specifically, the candidate threefolds would be:{
Pg(x, y, z) = 0
Pg′ (U, V, •) = 0

, (5.8)

where both g and g′ are of type D, E (not necessarily the same), and • is chosen among x, y, z. Notice
that (5.8) admits a quasi-homogeneous action, acting on the variables with weights wi defined as:

(x, y, z, U, V ) → (λwx x, λwy y, λwz z, λwU U, λwV V ).

This implies that the two defining equations of (5.8) have weights d1 and d2 under the quasi-homogeneous
action.

Hence, the requirement for the singularity (5.8) to be at finite distance in the moduli space of the
Calabi-Yau threefold can be derived imposing that the nowhere-vanishing (3,0) form Ω has positive scaling
dimension [66, 145], and it reads:

5∑
i=1

wi −
2∑

i=1

di > 0. (5.9)

A direct computation shows that (5.9) is never satisfied for the threefolds (5.8) with g and g′ of type D, E.
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g
(g, g)•(g, g)• · · ·· · ·

(g, g)•(g, g)•
gg

(g, g)•(g, g)•
gg

︸ ︷︷ ︸
n− 1 gauge nodes

Figure 14. Quiver of type Q•
n−1,g.

Finally, we note that, imposing n = 1 in (5.7) (with A0 the single-center Taub-NUT), we
re-obtain the bifundamental matter that we treated in the previous sections: X•

g,0 = X•
g .

As we have already pointed out in figure 13, the roles of g and An−1 in (5.7) can be
exchanged, giving the following 5d duality:

Let (g, g)• be the bifundamental matter associated to X•
g . Let Q•

n−1,g be a quiver of type
An−1, with gauge nodes of type g, flavor nodes of type g attached to the rightmost and leftmost
nodes of the quiver and edges of type (g, g)•. Namely, we are referring to the quiver in figure 14.

Let Q•
g,n−1 be the quiver obtained taking the quiver of the X•

g theory of section 4.4 and
replacing, for each gauge and flavor node, su(Ni) with → su(nNi). Then, Q•

n−1,g and Q•
g,n−1

are both mass deformations of M-theory on X•
g,n−1.

Notice that when g is of A type (and the edges are not of (A, A)x type) we reproduce
a duality which is transparent from the Type IIB (p, q)-brane web language, as it amounts
to an S-duality transformation that rotates the web by π/2.

In figures 15, 16 and 17 we represent the duality for the cases X•
E6,n−1, with • = x, y, z

(indicating with (E6, E6)• the conformal matter edges). As we have previously pointed out in
a specific example, in order to completely characterize the quivers in figures 15, 16 and 17,
namely for the low-energy duals arising from M-theory on (5.7), in the cases g = D, E, we must
specify the “species” (g, g)• of the edges of the quiver nodes (corresponding to different types
of collision of Yg singularities in the threefold), thus decorating the quiver with additional data.

The UV flavor symmetry enjoyed by such theories is at least of the form:

• Figure 15: GUV = E6 × E6 × su(n),

• Figure 16: GUV = E6 × E6 × su(n)× su(n)× u(1),

• Figure 17: GUV = E6 × E6 × su(n).

As it happened in the (5.6) example, one can manifestly observe the non-abelian part of
these symmetries from the geometric point of view, noticing that they appear as non-compact
lines of singularities of the appropriate type.

We conclude this section by noticing that, as we just gauged together two conformal
matter theories, one would be naturally tempted to gauge together more than two conformal
matter theories. It is easy to see that this does not produce a SCFT, or, geometrically,
a Calabi-Yau threefold. Indeed, to glue together two (g, g)• factors we started with two
equations (as in (5.1)) of the Du Val singularity Yg with, respectively • ≡ R = uv and
• ≡ R′ = u′v′. These equations were glued together imposing u′ = 1

u and v′ = u2v. The logic
behind this construction is that, in the first chart, to each irreducible factor of R corresponds
a line of Yg. The line at u = 0 is described by varying v, and is non-compact as v is the
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Figure 15. Duality between quivers of type Qx
E6,n−1 and quivers of type Qx

n−1,E6
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Figure 16. Duality between quivers of type Qy
E6,n−1 and quivers of type Qy

n−1,E6
.
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Figure 17. Duality between quivers of type Qz
E6,n−1 and quivers of type Qz

n−1,E6
.

variable describing the fibers of the O(−2) bundle. Vice versa, the factor v = 0 is spanned by
the coordinate u and is compact as u′ = 1/u. In the other chart, a similar argument applies:
the line at v′ = 0 is compact while u′ = 0 corresponds to the fiber at u′ = 0 of the O(−2)
bundle. We could try to generalize this by gluing together N lines of Yg by considering0 = Pg(x, y, z)|•=RN (u,v),

0 = Pg(x, y, z)|•=R′
N (u′,v′),

(5.10)

with u = 1/u′ and v = ukv′, with RN (u, v) being

RN = u(u− u1) . . . (u− uN−2)︸ ︷︷ ︸
N−1 factors

v. (5.11)

and R′
N = RN (1/u′, u′kv′). We note that we have, for (5.11), N − 1 non-compact lines of Yg

at u = uj , for j = 1, . . . , N − 2, and at u = 0. The explicit expression for R′
N is

R′
N (u′, v′) = u′k−N+1

(
u′ − 1

u1

)
. . .

(
u′ − 1

uN−2

)
v′, (5.12)

where the factors u′ = 1
uj

correspond to the same non-compact lines of Yg associated with
u = uj . To get in total N non-compact lines of Yg, we then need to impose k = N obtaining,
at u′ = 0 (or, equivalently, at u → ∞), a new non-compact line of Yg.

Summing up, we just showed that the only way to glue together N non-compact lines of
Yg along the compact line v = v′ = 0 is to consider (u, v) as coordinates on O(−N). This
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construction does not yield a Calabi-Yau variety: assuming • ̸= x, from the equations in
table 1 the holomorphic volume form of (5.10) is

Ω = dy ∧ du ∧ dv

2x
= (u′)N−2 dy ∧ du′ ∧ dv′

2x
(5.13)

and hence degenerates at u′ = 0 for N ̸= 2. The argument works similarly for the • = x

case. Hence, we conclude that we cannot gauge together more than two (g, g)• conformal
matter theories. Nonetheless, this does not exclude “trifundamental” conformal matter
theories, or trinions, constructed in some other fashion. We will have more to say on this
topic in upcoming work.

5.2 Further generalizations and 5d dualities

In this section we gradually introduce two natural generalizations of the 5d dualities out-
lined above.
5d dualities and the conifold

For the sake of clarity, consider the following example: suppose that we wish to “glue”
a singularity of type Xz

E6
with one of type Xy

E6
. This cannot happen on a P1 with normal

bundle OP1(−2). This setup can, however, be realized by gluing the two singularities along a
P1 with normal bundle OP1(−1)⊕OP1(−1), which is the normal bundle of the P1 inflated
by the small crepant resolution of the conifold. To see how this comes about, write down
the complete intersection of the threefolds as:x2 + (uv)3 + w4 = 0

x2 + w′3 + (u′v′)4 = 0
, (5.14)

where the coordinates (u, v, w) and (u′, v′, w′) are in principle independent. Now we proceed
with the gluing: we impose that the two patches C3

u,v,w and C3
u′,v′,w′ are related precisely

as the two charts on the conifold resolution [146]:

χ : C3
u,v,w C3

u′,v′,w′

(u, v, w) (u′, v′, w′) = (wv,
1
v

, uv).
(5.15)

This implies that the blowdown of (5.14) reduces to the system:x2 + y3 + z4 = 0
UV = yz

, (5.16)

namely the intersection of a E6 singularity with the conifold equation. Reasoning as in the
previous section, we can hence write down the following 5d duality: The corresponding UV
flavor symmetry, following (4.9), is:

GUV = E6 × E6 × u(1)2. (5.17)
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Figure 18. Duality between quiver of shape E6 with su nodes and linear quiver with an edge of type
(E6, E6)x and one of type (E6, E6)y.

We can further generalize the system (5.16) to:x2 + y3 + z4 = 0
UV = ynzk

, (5.18)

which corresponds to the 5d duality: Indeed, we have proven in section 4.2 that the small
crepant resolution of the singularity UV = ynzk, appearing as the second equation of (5.18),
inflates n + k − 1 P1’s on top of the origin U = V = y = z = 0. These P1’s correspond to
the gauge nodes of the rightmost quiver of figure 19. Besides, notice that in the rightmost
quiver of figure 19 we have conformal matter edges of two different “species”, namely of
type (E6, E6)z and (E6, E6)y.

It is easy to see that the gauge ranks of the quivers on the two sides of the dualities
in figure 18 and 19 match, as a consistency check of the duality. Recall from section 4.4
that the edges (E6, E6)z and (E6, E6)y have rank 5 and 10, respectively. The quiver at
the bottom has rank:

rk(QuiverB) = 16n + 11k − 6. (5.19)

The quiver at the top has rank:

rk(QuiverT ) = k · (5)︸ ︷︷ ︸
(E6,E6)z edges

+ n · (10)︸ ︷︷ ︸
(E6,E6)y edges

+(n + k − 1) · 6︸ ︷︷ ︸
E6 nodes

= 16n + 11k − 6, (5.20)

and we see that the two ranks match for any n and k greater than 0. This is a consequence
of the fact that, in the geometric picture of section 4, the rank of the nodes on the left-hand
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Figure 19. Duality between quiver of shape E6 with su nodes and linear quiver with mixed E6 edges
of type (E6, E6)y and (E6, E6)z, with a total of n + k − 1 gauge nodes.

side of figure 19 arise from the ranks of the edges on the right, so that the matching is
automatically guaranteed.

Let us conclude this section with two remarks:
Remark 1: it can be readily checked, with the techniques reviewed in section 3.3 and 4.4.2,

that the quivers in figure 19 possess a flavor symmetry that enhances to at least E6 × E6 ×
su(n)× su(n)× su(k)× u(1)2 in the UV, for all n and k greater than 0. This is in agreement
with the geometric picture offered by (5.18), that spots lines of singularities corresponding
to the non-abelian factors.

Remark 2: the complete intersection (5.18) can be alternatively taken by swapping
the variables (y, z) with either (x, y) or (x, z). Extracting the corresponding quivers is
straightforward. Again, it can be checked that the flavor symmetry enhances to at least
E6 × E6 in the UV. Naturally, one can also substitute the first equation of (5.18) with any
Du Val singularity of type Ak, Dk or E7, E8, yielding further quivers and 5d dualities in
an algorithmic manner, retracing the same steps of the E6 case.38 These dualities have
been collected in section 5.3.

Furthermore, notice that the quivers at the top of figure 19 were already obtained in [147],
with comparable techniques.

Finally, it is easy to check, with techniques similar to those used at the end of section 5.1,

38As usual, in the Ak case one can only mix two “species” of conformal matter theories: the genuine
interacting 5d SCFT arising from • = x and the well-known non-interacting bifundamental theory with • = z.
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that even using different kinds of conformal matter, it is not possible to gauge the diagonal
combination of more than two conformal matter theories on the same curve.
5d dualities and a fourfold singularity

A straightforward generalization of (5.16) is the complete intersection:x2 + y3 + z4 = 0
UV = xyz

. (5.21)

We wonder which is the resolved phase of this system, and whether it admits an interpretation
in terms of a quiver with E6 gauge nodes, as we observed in a similar instance in the previous
section. Let us see how we can elucidate this point.

Simply considering the second equation of (5.21) we get a toric fourfold hypersurface
of C5 that possesses three lines of singularities intersecting at the origin, each taking the
shape of a conifold. Carrying out a small complete crepant resolution, it is easy to show that
the preimage of the origin through the resolution is constituted by two P1’s, intersecting in
the shape of a A2 Dynkin diagram and with normal bundle O(0)⊕O(−1)⊕O(−1). Indeed,
on the resolved phase we can write the complete intersection (5.21) as:

(uv)2 + x3 + w4 = 0
x′2 + (u′v′)3 + w′4 = 0
x′′2 + w′′3 + (u′′v′′)4 = 0

. (5.22)

where the patches C4
x,u,v,w, C4

x′,u′,v′,w′ and C4
x′′,u′′,v′′,w′′ are related by the transition functions

on the two P1’s with normal bundle O(0) ⊕ O(−1) ⊕ O(−1):

χ : C4
x,u,v,w C3

x′,u′,v′,w′

(x, u, v, w) (x′, u′, v′, w′) = (vu,
1
u

, xu, w).
(5.23)

χ̃ : C4
x′,u′,v′,w′ C3

x′′,u′′,v′′,w′′

(x′, u′, v′, w′) (x′′, u′′, v′′, w′′) = (x′, w′v′,
1
v′

, u′v′).

The system (5.22) contains three equations of type, respectively, Xx
E6

, Xy
E6

and Xz
E6

. Thus,
proceeding as in the previous section, we can write down a new 5d duality described by (5.21)
in the singular phase (again, the ranks can be quickly checked to be matching, as ensured
by the geometric construction of section 4): Notice that in figure 20 we have three distinct
species of (E6, E6)• edges. Of course, the roles of x, y, z can be swapped, obtaining equivalent
quivers, and leaving the quiver at the top unchanged. As usual, the UV flavor symmetry
is at least E6 × E6 × u(1)3.

This example leads us to the most general case, encoding all the 5d dualities previously
presented in this work: Pg(x, y, z) = 0

UV = xhynzk
, (5.24)
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Figure 20. Duality between quiver of shape E6 with su nodes and linear quiver with mixed edges of
type (E6, E6)x, (E6, E6)y and (E6, E6)z.

where Pg(x, y, z) is a Du Val singularity and h, n, k are integers greater or equal to zero.39

Writing down the corresponding quivers for all cases is straightforward on both sides of the
duality, following the recipe we have just outlined.40

We conclude by noticing that three or more species of different conformal matters can
not be glued together on a single compact P1, in the spirit of section 5.1.

5.3 Complete list of the five-dimensional dualities

In the previous sections, we have analyzed various instances of 5d SCFTs admitting a low-
energy quiver gauge theory description, arising from M-theory on the singular threefolds (5.24).
A notable subcase is given by h = n = 0 and k = 1 (and analogous permutations of h, n, k).
This choice yields the 5d conformal matter that has played a paramount part in this work.

In this section we collect the general expressions governing the new 5d dualities arising
from (5.24) for generic h, n, k (taken to be integers equal or greater than 0). These are dualities
between low-energy quiver gauge theories of shape g with su nodes and linear quivers with

39Although at least one of them must not vanish.
40As previously mentioned, one feels the urge to further generalize the second equation of (5.24) to a

(possibly deformed) singularity of type D or E. Unfortunately, in this case the complete intersection (5.24)
would not respect the finite distance condition of [145]. Physically, this condition, for quasi-homogeneous
singularities, is also crucial to guarantee the existence of an R-symmetry for the five-dimensional theory
obtained from the geometric engineering, and hence to obtain N = 1 supersymmetry in 5d.
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nodes of type A, D, E, with edges expressed in terms of 5d conformal matter. In the tables
below we list these new 5d dualities, first giving the general shape of the quivers with su(mi)
nodes, and then specifying a vector that encodes the number mi. We further write down the
UV flavor symmetry GUV enjoyed by the theories, for h, n, k ̸= 0 (as remarked in the main
text, the total UV flavor symmetry will in general contain GUV, and exactly match its rank).

In practice, given a choice of g and of the exponents h, n, k in (5.24), one proceeds in
two steps in order to construct the 5d duality:

• To write down the low-energy quiver side with su nodes, one uses as basic building
blocks the quivers exhibited in section 4.4, arising from the geometries X•

g . Given a
labelling of the nodes of these quivers, we can specify the corresponding su(mi) group
for each node with a vector v•g , whose entries are nothing but the mi. Then, one
obtains the vector v

(h,n,k)
g that specifies the quiver (5.24) as follows. For each factor

of • = x, y, z on the right-hand side of the equation UV = xhynzk, we linearly add
the vectors of the basic building blocks, with the appropriate multiplicity given by the
exponents h, n, k:

v
(h,n,k)
g = hvx

g + nvy
g + kvz

g . (5.25)

Formula (5.25) is an immediate consequence of the blowup maps for the algebras g

presented in appendix A. Let us add a crucial physical remark:

By construction, all the low-energy quiver gauge theories defined by the vector v
(h,n,k)
g

flow to a 5d SCFT in the UV sporting at least g× g flavor symmetry.

• The other side of the duality, involving edges with 5d conformal matter, can be written
down as a linear quiver with two outermost flavor nodes of type g. Between them there
are (arranged in a linear fashion):

– h edges of type (g, g)x,
– n edges of type (g, g)y,
– k edges of type (g, g)z,
– h + n + k − 1 gauge nodes of type g.

For g = A we consider only (g, g)x edges (or equivalently (g, g)y edges), as the (g, g)z

one is simply a bifundamental theory with no compact divisors. As we have mentioned
in section 5, the order of the edges does not matter, namely we can freely exchange
edges of different conformal matter species (as long as we keep the number that each
species appears fixed), since this operation does not change the corresponding singular
geometry.

Let’s clarify this apparently involved construction by listing the explicit dualities for g =
Ak, Dk, E6, E7, E8. We specify the shape of the quivers, along with a labelling of their nodes,
and the vectors vx

g , vy
g , vz

g , v
(h,n,k)
g . Vector entries pertaining to gauge nodes of type su(mi)

contain the number mi. For vector entries referring to a flavor node, we specify the number
of flavors, say #, and add a subscript #f to distinguish them from gauge ones. A null entry
in the vector means that the node is not present.
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We note that, as in the case of the (g, g)• theories, also the generalized quivers built
from bifundamental conformal matter display no electric one-form symmetry nor magnetic
two-form symmetry in five dimensions. Indeed, as we show in the remaining part of this
section, all the generalized quivers can be dualized to quivers with nodes of type su that always
display fundamental matter that explicitly breaks the central symmetry of the gauge nodes.

A2j+1

Node labelling: 1 . . . j2 j + 1

(j + 1)f

(j + 1)f

j + 2 . . . 2j 2j + 1

Vectors:
vx

A2j+1
= (1, 2 . . . , j, j + 1, j, . . . , 2, 1, 1f , 1f )

v
(h,n,k)
A2j+1

= hvx
A2j+1

Linear quiver dual:

A2j+1 · · ·· · · · · ·A2j+1A2j+1 A2j+1A2j+1 A2j+1

︸ ︷︷ ︸
h(A2j+1, A2j+1)x edges

UV flavor symmetry: GUV = A2j+1 ×A2j+1 × su(h)2 × u(1)

A2j

Node labelling:

1 . . . j − 12 j

1f

j + 1 j + 2 . . . 2j − 1 2j

Vectors:
vx

A2j
= (1, 2 . . . , j − 1, j, j, j − 1, . . . , 2, 1, 1f )

v
(h,n,k)
A2j

= hvx
A2j

Linear quiver dual:

A2j · · ·· · · · · ·A2jA2j A2jA2j A2j

︸ ︷︷ ︸
h(A2j , A2j)x edges

UV flavor symmetry: GUV = A2j ×A2j × su(h)
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D2j+2

Node labelling:

3 41

2

. . . 2j + 2 (2j + 3)f(2j + 5)f

(2j + 4)f

(2j + 6)f

Vectors:

vx
D2j+2

= (j + 1, j + 1, 2j + 1, 2j, . . . , 2, 1f , 1f , 1f , 0f )

vy
D2j+2

= (j, j, 2j, 2j − 1, . . . , 1, 0f , 0f , 0f , 1f )

vz
D2j+2

= (1, 1, 2, 2, . . . , 2, 2f , 0f , 0f , 0f )

v
(h,n,k)
D2j+2

= hvx
D2j+2 + nvy

D2j+2
+ kvz

D2j+2

Linear quiver dual:

D2j+2 · · ·· · · · · ·D2j+2D2j+2 D2j+2D2j+2 D2j+2

︸ ︷︷ ︸
h(D2j+2, D2j+2)x edges

︸ ︷︷ ︸
n(D2j+2, D2j+2)y edges

︸ ︷︷ ︸
k(D2j+2, D2j+2)z edges

UV flavor symmetry: GUV = D2j+2 ×D2j+2 × su(h + 2k)× su(h)× su(h)× su(n)× u(1)3

D2j+3

Node labelling:

3 41

2

. . . 2j + 3 (2j + 4)f(2j + 6)f

(2j + 5)f

(2j + 7)f

Vectors:

vx
D2j+3

= (j + 1, j + 1, 2j + 2, 2j + 1, . . . , 2, 1f , 0f , 0f , 1f )

vy
D2j+3

= (j + 1, j + 1, 2j + 1, 2j, . . . , 1, 0f , 1f , 1f , 0f )

vz
D2j+3

= (1, 1, 2, 2, . . . , 2, 2f , 0f , 0f , 0f )

v
(h,n,k)
D2j+3

= hvx
D2j+3 + nvy

D2j+3
+ kvz

D2j+3

Linear quiver dual:

D2j+3 · · ·· · · · · ·D2j+3D2j+3 D2j+3D2j+3 D2j+3

︸ ︷︷ ︸
h(D2j+3, D2j+3)x edges

︸ ︷︷ ︸
n(D2j+3, D2j+3)y edges

︸ ︷︷ ︸
k(D2j+3, D2j+3)z edges

UV flavor symmetry: GUV = D2j+3 ×D2j+3 × su(h + 2k)× su(n)× su(n)× su(h)× u(1)3
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E6

Node labelling:

3 42

6

519f

8f

7f

10f

Vectors:

vx
E6

= (2, 4, 6, 4, 2, 3, 0, 0, 0, 1f )

vy
E6

= (2, 3, 4, 3, 2, 2, 1f , 0, 1f , 0)

vz
E6

= (1, 2, 3, 2, 1, 2, 0, 1f , 0, 0)
v

(h,n,k)
E6

= (2h + 2n + k, 4h + 3n + 2k, 6h + 4n + 3k, 4h + 3n + 2k, 2h + 2n + k,

3h + 2n + 2k, nf , kf , nf , hf )

Linear quiver dual:

E6 · · ·· · · · · ·E6E6 E6E6 E6

︸ ︷︷ ︸
h(E6, E6)x edges

︸ ︷︷ ︸
n(E6, E6)y edges

︸ ︷︷ ︸
k(E6, E6)z edges

UV flavor symmetry: GUV = E6 × E6 × su(n)× su(k)× su(n)× su(h)× u(1)3

E7

Node labelling:

3 42

7

5110f

9f

6 8f

Vectors:

vx
E7

= (3, 6, 9, 7, 5, 3, 5, 1f , 1f , 0)

vy
E7

= (2, 4, 6, 5, 4, 3, 3, 2f , 0, 0)

vz
E7

= (2, 3, 4, 3, 2, 1, 2, 0, 0, 1f )
v

(h,n,k)
E7

= (3h + 2n + 2k, 6h + 4n + 3k, 9h + 6n + 4k, 7h + 5n + 3k, 5h + 4n + 2k,

3h + 3n + k, 5h + 3n + 2k, (h + 2n)f , hf , kf )

Linear quiver dual:

E7 · · ·· · · · · ·E7E7 E7E7 E7

︸ ︷︷ ︸
h(E7, E7)x edges

︸ ︷︷ ︸
n(E7, E7)y edges

︸ ︷︷ ︸
k(E7, E7)z edges

UV flavor symmetry: GUV = E7 × E7 × su(h + 2n)× su(h)× su(k)× u(1)2

– 46 –



J
H
E
P
0
5
(
2
0
2
4
)
3
0
6

E8

Node labelling:

3 42

8

5111f

10f

6 7 9f

Vectors:

vx
E8

= (5, 10, 15, 12, 9, 6, 3, 8, 0, 1f , 0)

vy
E8

= (4, 7, 10, 8, 6, 4, 2, 5, 0, 0, 1f )

vz
E8

= (2, 4, 6, 5, 4, 3, 2, 3, 1f , 0, 0)
v

(h,n,k)
E8

= (5h + 4n + 2k, 10h + 7n + 4k, 15h + 10n + 6k, 12h + 8n + 5k, 9h + 6n + 4k,

6h + 4n + 3k, 3h + 2n + 2k, 8h + 5n + 3k, kf , hf , nf )

Linear quiver dual:

E8 · · ·· · · · · ·E8E8 E8E8 E8

︸ ︷︷ ︸
h(E8, E8)x edges

︸ ︷︷ ︸
n(E8, E8)y edges

︸ ︷︷ ︸
k(E8, E8)z edges

UV flavor symmetry: GUV = E8 × E8 × su(k)× su(h)× su(n)× u(1)2

6 Conclusions and outlook

In this work we have introduced new 5d SCFTs featuring “5d conformal matter” with
g× g flavor symmetry, for g = Ak, Dk, E6, E7, E8, following the spirit of M-theory geometric
engineering. This has led us to identify different species of g×g 5d conformal matter, that must
therefore be decorated with an additional label, in order to keep track of the threefold that
engineered them in the first place. Theories of different species (but with the same g×g flavor
in the UV) have different Coulomb branch dimensions, and thus are genuinely inequivalent.

Crucially, the 5d conformal matter theories that we have constructed do not straight-
forwardly descend from a simple KK reduction of their 6d cousins, except for selected cases
that we have highlighted in the text.

Furthermore, the theories we have introduced in this work provide the basic building
blocks to construct linear quiver gauge theories with gauge nodes of type A, D and E,
much alike the well-known 6d conformal matter theories. The additional feature, in the 5d
context, is that such linear quivers can be built concatenating elementary building blocks
of different 5d conformal matter species, along with more standard cases with conformal
matter of the same species. The entirety of these linear quiver gauge theories has a neat
interpretation in terms of M-theory geometric engineering on a class of threefolds built as
complete intersections: thanks to this geometric interpretation, we introduced a plethora of
new 5d dualities between linear quiver gauge theories with conformal matter of type g× g (of
all possible species) and quivers of type g with su nodes. This expands and fully generalizes
the results of [16, 147], providing a unified perspective on these works.

Plenty of aspects pertaining to 5d conformal matter remain to be investigated. In
particular, the following directions are subject of current investigation [45]:
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• Classification program for 5d conformal matter of type g× g′, with g ̸= g′. These can
be easily engineered through M-theory compactified on hypersurface threefolds with
collisions of suitable non-compact singularities, such as:

Dk ×Dn : x2 + uvy2 + uk−1vn−1 = 0

D4 × E7 : x2 + zu2v3 + z3 = 0

E6 × E7 : x2 + y3 + u3v3y + u4v5 = 0

E6 × E8 : x2 + y3 + u4v5 = 0

E7 × E8 : x2 + y3 + u3v4y + u5v5 = 0

Their resolution requires slightly different (yet straightforward) methods compared
to the g = g′ examples presented in this work, but notice that all the mixed D − E

and E − E examples descend from 6d conformal matter, as they are in Weierstrass
form. It would be interesting to understand more thoroughly if there exists g × g′

conformal matter of intrinsic 5d origin: hints in this direction can be found in a
geometric construction that we will present in upcoming work.

• Determine whether the structure of 5d conformal matter theories is more akin to its 6d
parents, or to its 4d descendants; namely if we can construct, respectively, only linear
5d quiver gauge theories built out of bifundamental conformal matter, or also more
general quivers, with e.g. trivalent nodes. This entails figuring out whether a 5d trinion
theory displaying at least a factor g× g× g with g of type Dk or E6, E7, E8 exists. In
five-dimensions, toric orbifold trinions with gauge algebra AN ×AN ×AN can be built
as C3/ (ZN+1 × ZN+1) [124], suggesting that this might be possible also for other types
of ADE algebras. Indeed, one can check that, for example, the singularity

x2 + zu2v2(u− v)2 + z3 = 0 (6.1)

satisfies the [145] criterium for being at finite distance in the moduli space of Calabi-Yau
threefolds, and sports three lines of D4 singularities, suggesting a flavor symmetry with
at least a D4 ×D4 ×D4 subgroup.

• Determine the circle reduction to four spacetime dimensions of the 5d conformal matter
theories, for all species. It turns out that all such 5d theories admit a class S construction
that describes their 4d descendant. A related aspect is to explicitly compute the Higgs
branches of the 5d conformal matter SCFTs, understanding the action of the g × g

flavor groups. At the moment, this looks like an interesting challenge on its own, since
the dynamics of M-theory on non-isolated singularities is still to be completely clarified.
Nonetheless, its quaternionic dimension can be explicitly computed and matched with
the class S descendants. We will present all these aspects in full details in future work.

• Finally, on a related note, one might want to precisely track down the influence of
T-branes on 5d conformal matter theories: similarly to what happens in the 6d case,
our threefold geometries can in general be supplemented by T-brane data, classified by
nilpotent orbits of the appropriate ADE algebra. This can have a bipartite effect: on
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the one hand, the flavor group of 5d conformal matter theories g× g might be partially
broken; in a complementary fashion, switching on a T-brane background for the gauge
nodes might disrupt part of the gauge symmetry. As usual, both cases keep the geometry
intact, and only affect symmetries and moduli spaces dimensions. Notice that the effect
of T-branes on the flavor group can be neatly given a Type IIA interpretation in terms
of bound states of D6-branes for a subset of the g = A cases [111, 114, 115] (namely,
the ones that only yield bifundamental matter with trivial Coulomb branch). Pursuing
this path for D×D and E×E 5d conformal matter theories would constitute a further
interesting direction for future inquiry.
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A Atlases for the crepant resolutions of Du Val Singularities

Although the theory of Du Val singularities is classic and their crepant resolution is very
well understood [148], we present here special atlases on the resolutions which will help us
in the computations of the main text. We tackle the Ak, D4, D5, E6, E7, E8 cases explicitly
(all the other Dk cases can be examined analogously). We will start recalling the definition
of crepant resolution of a singularity.

Definition A.1. Let X be a quasi-projective variety and let ωX be its canonical bundle. A
crepant resolution of singularities is the datum of a birational projective morphism ε : X̃ → X

such that X̃ is smooth and ωX̃ = ε∗ωX . Sometimes, with abuse of notation, we will call
resolution the variety X̃.
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A2 Dynkin diagram︷ ︸︸ ︷

U1 U2 U3

Figure 21. Our preferred choice for an atlas covering the resolution of A2. Each large gray circle
represents a chart. Inside the large circles we indicate, using a color-code, which P1’s of the resolution
of the A2 Dynkin diagram are visible in the considered chart. Gray dots represent points of the P1’s
that are at infinity in the given chart.

We will say that a projective-birational morphism is a partial crepant resolution if
ωX̃ = ε∗ωX , without asking X̃ to be smooth.

A.1 Crepant resolution of Ak singularities

Let us start with the Ak case. Let YAk
be the surface in table 1, rewritten as:

xy = zk+1. (A.1)

Its crepant resolution ỸAk
is covered by k + 1 charts Uj

∼= C2 for j = 1, . . . , k + 1. Let
φ : ỸAk

→ YAk
be the resolution morphism, let φj be its restriction to the j-th chart, for

j = 1, . . . , k + 1, and let aj , bj be affine coordinates on Uj . We can write (see [149] for
more details) φj as follows:

Uj YAk

(aj , bj) (x, y, z) =
(

ak−j+2
j bk+1−j

j , aj−1
j bj

j , ajbj

)
φj=φ|Uj

(A.2)

The transition functions between (aj , bj) and (aj+1, bj+1), are obtained from (A.2) and read as:

aj = 1
bj+1

, bj = aj+1b2
j+1. (A.3)

As expected from a resolved Du Val singularity, from (A.3) we recognize the transition
functions of OP1(−2), with (aj , bj+1) spanning the basis of the line bundle and (bj , aj+1)
spanning the fiber direction.

It is worth, for the resolution of the remaining Du Val singularities, to further comment
on (A.3). Let us consider, for example, the YA2 singularity. Its resolution ỸA2 is covered
by three charts, U1, U2, U3, all isomorphic to C2, glued as (A.3). We depict such charts
in figure 21.

The transition functions for ỸA2 are

a1 = 1
b2

, b1 = a2b2
2 (A.4)
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between the charts U1 and U2 and

a2 = 1
b3

, b2 = a3b2
3 (A.5)

between41 the charts U2 and U3. U1 ∪U2 coincides with the total space of the normal bundle
OP1(−2) of the blue P1

blue in figure 21 and the zero section is obtained setting b1 = a2 = 0
and leaving a1 and b2 free to vary. In order to obtain the total space of YA2 , we need to
compactify one of the fibers of U1 ∪ U2 ∼= OP1(−2): this can be achieved using (A.4). (A.4)
tells us that the fiber that we want to compactify is the one over the point42 b2 = 0 in the
P1

blue. If we want to compactify another fiber over, say, b2 = p ̸= 0 ∈ P1
blue we simply shift

b2 → b2 − p in the second equation of (A.5).
In the remaining part of this appendix we will resolve the Yg singularities with the

following recipe:

1. by standard blowup techniques, we will first find a partial resolution φpart : Y part
g → Yg

that leaves a residual Ak singularity. We will then compose φpart with (A.2) to get a
(full) resolution φ : Ỹg → Yg of Yg. In particular, one of the charts U1 ∋ (a1, b1) of Ỹg

will be isomorphic to C2 and we will have an explicit expression for φ|U1 giving (x, y, z)
in terms of (a1, b1).

2. At this point, not all the subsets covering Ỹg will be (in general) isomorphic to C2: they
might be (e.g.) defined as hypersurfaces of C3. To obtain an atlas with all the charts
isomorphic to C2, we will glue (a1, b1) with new coordinates (aj , bj) ∈ Uj

∼= C2 in such
a way that ⋃rank(g)

j=0 Uj
∼= Ỹg. This is equivalent to requiring that ⋃rank(g)

j=0 Uj contains
exactly rank(g) P1’s, each one with normal bundle O(−2) and intersecting each other
according to the Dynkin diagram of g.

This apparently involved procedure sparks an immediate question: why bother with
it, when other recipes give an equally valid resolution of ADE singularities? The answer
is clear: at the end of the day, this resolution technique produces a way to read off the
low-energy gauge theory quivers presented in section 4.4 in an automatic way, as we have
explained in the example of table 3.

A.2 Crepant resolution of D4 singularity

To find the resolution φ : ỸD4 → YD4 we start with the first step of the procedure outlined
at the end of appendix A.1. We construct a resolution by first blowing up along the non-
Cartier43 divisor x = z = 0 leaving a residual A3 singularity. This will give the map

41We note that the charts Uj are dense in the resolved ỸA2 , hence U1 ∩ U3 ̸= ∅. The transition function
between U1 and U3 can be obtained solving (A.4) to get (a2, b2) in terms of (a1, b1), and plugging the resulting
expressions (A.5).

42We can show this as follows: for each fixed fiber over a point b2 ∈ P1
blue, the point at infinity of the fiber is

obtained sending a2 → ∞, or, equivalently, b3 → 0. By using the second equation of (A.5), we see that this is
possible just for b2 = 0 (since b3 = 0 gives b2 = 0) by (A.5)). Hence, the only fiber of U1 ∪ U2 ∼= P1

blue that
gets compactified (becoming P1

red in figure 21) is the one over b2 = 0 ∈ P1
blue.

43We say that D is a non-Cartier divisor if we can not find an atlas for the YD4 surface such that, on each
chart, we can describe D as the zero-locus of a certain polynomial.
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φpart : Y part
D4
→ YD4 for the YD4 singularity. We can then apply (A.2) to obtain a resolution

of YD4 . The total space of the resolution is covered by five charts (V0, V1, V2, V3, V4). The
resolution map restricted to V0 is

V0 ∼=
{

a2
0c0 + b0 + b2

0c3
0 = 0

}
YD4

(a0, b0, c0) (x, y, z) = (b0, a0, b0c0)

φ0=φ|V0

(A.6)

The restrictions of the resolution map to V1, . . . V4 (that cover the P1’s associated to the A3
subalgebra represented by the blue, red and black P1’s in figure 22) are

Vj YD4

(aj , bj) (x, y, z) =
(
− ic

(
a− b− 2ic2)
√
2

,
a + b

2 ,−c2 − 1
2 i(a− b)

)
,

φ|Vj

(A.7)

where (a, b, c) depends on (aj , bj) according to (A.2). Unpleasantly, the chart V0 is described
by three variables, (a0, b0, c0) constrained by the equation a2

0c0 + b0 + b2
0c3

0 = 0. To fix
this and obtain a more elegant presentation, we have to go through the second step of the
procedure outlined at the end of appendix A.1. To this end, we repackage the information
contained in (A.6), (A.7) constructing a local geometry consisting of four P1, intersecting
according to the D4 Dynkin diagram, each with normal bundle O(−2), and identifying it
with ỸD4 . This is achieved considering five charts: U0, . . . , U4, with Uj

∼= Vj for j > 0, and
U0 ∼= C2 ∋ (a0, b0). We then glue together Uj , with j > 0, according to (A.3), and glue U0
to U2 with the following transition function:

a0 = 1
b2

, b0 = b2
2(a2 − i), (A.8)

with i2 = −1. We have depicted our construction in figure 22: in the upper part we depict
the usual D4 Dynkin diagram, and below the individual charts are represented, along with
the curves that are visible in each chart. Points at infinity in some chart are represented
by marked dashed dots in the corresponding P1.

We note that, since in the second equation of (A.8) appears the combination a2 − i, the
fiber of the normal bundle of the P1

red (corresponding to the red node of figure 22) over the
point a2 = i ∈ P1

red is compactified by (A.8). To conclude, we give the blowup equations in the
new coordinates U0, . . . , U4. The blowup maps φ|Uj with i > 0 coincide with the ones on the
Vj . To obtain the blowup map over U0 we insert (A.8) inside the blowup map φ|U2 , obtaining

U0 ∼= C2 YD4

(a0, b0) (x, y, z) =

(
−

ia0b2
0
(

a2
0b0 + i

)
2

√
2

,
1
2

b0
(

a2
0b0 + i

) (
a2

0b0 + 2i
)

,
1
2

a2
0b2

0
(

1 − ia2
0b0
))

φ0=φ|V0

(A.9)

We note that all the φ|Uj can be obtained also considering the expression φ|U1 and substituting,
inside φ|U1 , (a1, b1) with (aj , bj) using the transition functions.
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D4 Dynkin diagram︷ ︸︸ ︷

U0 U1 U2 U3 U4

Figure 22. Our preferred choice for an atlas covering the resolution of D4. Each large gray circle
represents a chart. Inside the large circles we indicate, using a color-code, which P1’s of the resolution
of the D4 Dynkin diagram are visible in the considered chart. Gray dots represent points of the P1’s
that are at infinity in the given chart.

Figure 23. D5 Dynkin diagram. We have highlighted in blue the P1 that is partially covered by
U1 defined in the text, as well as the A3 subalgebra covered by Uj , j = 1, . . . , 4, encircling it with a
dashed line.

A.3 Crepant resolution of D5 singularity

We will skip, from now on, the first step of the procedure outlined at the end of appendix A.1,
giving

1. an atlas {Uj}, with j = 0, . . . rank(g) such that
(⋃rank(g)

j=0 Uj

)
∼= Ỹg and

2. the restriction of the resolution map to one of the charts of the U1 ∈ {Uj}.

The remaining φ|Uj can be obtained inserting the transition functions inside φ|U1 .
For the YD5 singularity, we take the U1 to cover the P1 in blue44 in figure 23 (except

for the intersection point with the next P1).
The blowup map φ|U1 is

U1 ∼= C2 YD5

(a1, b1) (x, y, z) =
(

x →
1
16

b2
(

1 + ia2b
) (

a2b + i
)3

, y →
1
4

iab2
(

a2b + i
)2

, z →
1
4

ib
(

a2b + i
)2
)

φ|U1

(A.10)
44We remark that also other P1’s can be visible in this chart. This happens also for the resolution of the

exceptional singularities.
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Figure 24. E6 Dynkin diagram. We have highlighted in blue the P1 that is partially covered by
U1 defined in the text, as well as the A5 subalgebra covered by Uj , j = 1, . . . , 6, encircling it with a
dashed line.

The Uj , with j = 1, . . . , 4 cover the P1’s associated to the A3 subalgebra of the D5 Dynkin
diagram enclosed by dashed lines in figure 23. We glue Uj , with j = 1, . . . , 4 together
using (A.3). The remaining two rightmost nodes of the D5 Dynkin diagram are covered using
coordinates (a0, b0) ∈ U0 and (a−1, b−1) ∈ U1 glued with

a0 = 1
b2

, b0 = (i + a2)b2
2, (A.11)

with i the imaginary unit and

a−1 = 1
b0

, b−1 = a0b2
0. (A.12)

A.4 Crepant resolution of the E6, E7 and E8 singularities

For the YE6 singularity, we take U1 to cover the blue P1 of figure 24 (except the intersection
point with the next P1).

The blowup map φ|U1 is

U1 ∼= C2 YE6

(a1, b1) (x, y, z) =
(1

4
ib2

1
(

a3
1b2

1 − 1
)3 (

a3
1b2

1 + 1
)

,
1

22/3 a1b2
1
(

a3
1b2

1 − 1
)2

,
1
2

b1
(

a3
1b2

1 − 1
)2
)

φ|U1

(A.13)

The transition functions for the Uj , with j = 1, . . . , 6, are (A.3) (covering the P1’s corre-
sponding to the A5 subalgebra of the E6 Dynkin diagram). The remaining node is covered
using coordinates (a0, b0) ∈ U0 defined as

a0 = 1
b3

, b0 = (a3 − 1)b2
3. (A.14)

For the YE7 singularity, we take U1 to cover the blue P1 of figure 25 (except the intersection
point with the next P1).

The blowup map φ|U1 is

U1 ∼= C2 YE7

(a1, b1) (x, y, z) =

((
−

1
4

+
i

4

)
b3

1
(

a3
1b2

1 − 1
)5

,
1
2

ib2
1
(

a3
1b2

1 − 1
)3

,
a1b2

1
(

a3
1b2

1 − 1
)2

22/3

)
φ|U1

(A.15)
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Figure 25. E7 Dynkin diagram. We have highlighted in blue the P1 that is partially covered by
U1 defined in the text, as well as the A6 subalgebra covered by Uj , j = 1, . . . , 7, encircling it with a
dashed line.

Figure 26. E8 Dynkin diagram. We have highlighted in blue the P1 that is partially covered by
U1 defined in the text, as well as the A7 subalgebra covered by Uj , j = 1, . . . , 8, encircling it with a
dashed line.

The transition function for the Uj , with j = 1, . . . , 7, are (A.3) (covering the P1’s associated
to the A6 subalgebra of the E7 algebra). The remaining uppermost node is covered using
coordinates (a0, b0) ∈ U0 defined as

a0 = 1
b3

, b0 = (a3 − 1)b2
3. (A.16)

For the YE8 singularity, we take U1 to cover the blue P1 of figure 26 (except the intersection
point with the next P1).

The blowup map φ|U1 is

U1 ∼= C2 YE8

(a1, b1) (x, y, z) =

((
−

1
8
−

i

8

)
b5

1
(

a3
1b2

1 − 1
)8

,
ia1b4

1
(

a3
1b2

1 − 1
)5

2 22/3 ,
1
2

ib2
1
(

a3
1b2

1 − 1
)3

)
φ|U1

(A.17)

The transition function for the Uj , with j = 1, . . . , 8, are (A.3) (covering the P1’s corresponding
to the A7 subalgebra of the E8 algebra). The remaining uppermost node of the E8 Dynkin
diagram is covered using coordinates (a0, b0) ∈ U0 defined as

a0 = 1
b3

, b0 = (a3 − 1)b2
3. (A.18)

B Derivation of the toric fan for transversal families of A singularities

In this appendix we derive the properties of the local toric models that we introduced in
section 4.2, giving also a formula to extract the normal bundle of the compact curves contained
in their resolutions. We are interested in singularities of the form

Xhk =
{
(a, b, u, v) ∈ C4

∣∣∣ uv − ahbk = 0
}

, (B.1)
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for h, k ≥ 0. The threefold Xhk is a toric variety with a family of Ak−1 singularities on the a

axis and a family of Ah−1 singularities on the b axis. We can give the following embedding
that endows Xhk with the structure of a toric variety:

(C∗)3 Xhk

(t1, t2, t3)
(
tk−h
1 t−1

2 th
3 , t2, t−1

1 t3, t1
)

.

ϕ

Let v1, . . . , v4 ∈ Z3 be the vectors of the exponents in the entries of ϕ, i.e.

v1 =

k − h

−1
h

 , v2 =

01
0

 , v3 =

−10
1

 , v4 =

10
0

 .

Let also M denote the lattice M ∼= Z3 generated by the vi’s, i.e. M = ⟨v1, v2, v3, v4⟩Z ⊂ Z3.
Then, we have

Xhk = Spec(C[σ∨]),

where σ∨ ⊂ M is the semigroup generated by v1, . . . , v4.
In order to better understand the geometry of Xhk and its crepant resolutions, we will

focus now on the fan Σhk of Xhk. Recall that Σhk is a set of cones in R3 ∼= R⊗Z N , where
N = M∨ is the dual lattice of M . Since Xhk is an affine variety, Σhk contains only one cone
σmax of maximal dimension, namely 3. Now, a direct computation shows that the set of
primitive generators of the rays, i.e. one-dimensional cones, ρ̃i ∈ Σ(1)

hk ⊂ Σhk, is the following

w1 =

00
1

 , w2 =

0
h

1

 , w3 =

1
k

1

 , w4 =

10
1

 . (B.2)

Notice that the wi are also generators of σmax and that the third coordinate of all the wi

equals to one. This ensures that Xhk is a CY variety. Furthermore, from the fan we directly
see that there are two smooth toric lines respectively corresponding to the cones generated
by w1, w4 and w2, w3, and two singular toric lines respectively corresponding to the cones
generated by w1, w2 and w3, w4.

Let Phk ⊂ R2 be the toric diagram of Xhk, which encodes all the information about the
geometry of the singularity and of its crepant resolutions (see figure 9).

We now compute the normal bundles of the compact toric curves appearing in the crepant
resolutions of Xhk. This can, in principle, be deduced from the general theory of toric CY
threefold [150], but we show an ad hoc computation in our setting.

Proposition B.1. Let X̃hk be a crepant resolution of Xhk and let C ⊂ X̃hk be a compact
toric curve. In particular C ∼= P1. Then, for the normal bundle of C in X̃hk there are only
two possibilities, namely

NC/X
∼= OP1 ⊕OP1(−2) or NC/X

∼= OP1(−1)⊕OP1(−1).
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Proof. Locally, near the cones defining C (generated by (v2, v4) and (ṽ1, ṽ4)), Phk may be of
two kinds, namely

v1

v2

v3

v4 or
ṽ3

ṽ1̃

v2

ṽ4

Now, the statement is a consequence [150] of the following two relations:

v3 + v1 + (0) · v4 + (−2) · v2 = 0 and ṽ2 + ṽ3 + (−1) · ṽ1 + (−1) · ṽ4 = 0.

C Explicit prepotential computation

In the main body of this work, we have adopted a top-down approach in the construction of
5d SCFTs, starting from a singular threefold and analyzing its resolution. As, by definition,
the blow-up operations we have performed can be reversed, the compact divisors that appear
on the origin are shrinkable in the sense of [39], and thus the geometry gives rise to a sensible
5d SCFT. It is nevertheless a useful exercise to check the consistency of the UV description
employing a bottom-up point of view. Namely, we can start from the quiver gauge theories
listed in section 4.4 and compute their prepotential F in terms of the scalars appearing in
the vector multiplets ϕi: as is well known [38, 127], one should check that there exists a
continuous path connecting the origin of the scalars moduli space to every point that satisfies:

∂F
∂ϕi
≥ 0 and ∂F

∂ϕi∂ϕj
positive definite, (C.1)

namely where the string monopole tensions are positive (or at most null) and the metric
is positive definite.

We show this procedure at work in the case of the quiver theory arising from Xz
E6

: in
general, it is not feasible to solve the problem analitically. We will thus resort to finding
numerically at least one point satisfying (C.1) and then show that it lies inside a cone that is
connected to the origin of the moduli space, where all the volumes of the compact divisors,
parametrized by the scalars, vanish. This is of course not a complete proof, yet a strong
hint that the 5d quiver theory is sound.

The quiver for Xz
E6

appearing on page 34 has 5 independent scalars coming from the
gauge multiplets, let us write them as:

Φ= {a1,a2,a3︸ ︷︷ ︸
su(3)

, b1, b2︸ ︷︷ ︸
su(2)

, c1, c2︸ ︷︷ ︸
su(2)

,d1,d2︸ ︷︷ ︸
su(2)

}, with
∑

i

ai =
∑

j

bj =
∑

k

ck =
∑

l

dl =0, (C.2)

with the text below the brackets indicating the corresponding node.
The generic IMS prepotential reads [127]:

F(ϕ)= 1
2m0hijϕiϕj+

κ

6dijkϕiϕjϕk+
1
12

 ∑
r∈roots

|r ·ϕ|3−
∑

f

∑
w∈Rf

|w ·ϕ+mf |3
 , (C.3)
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where m0 is the inverse squared gauge coupling of the various factors, mf are the flavor
masses, κ are the Chern-Simons levels, and the sums run along the roots r of the quiver
gauge group and the weights w of the hypermultiplet representations Rf .

We set:

• all the masses to zero, as adding a mass can do nothing but relax the conditions (C.1);
namely, if we can find a point in the moduli space satisfying (C.1) with the masses
set to zero, we are guaranteed to satisfy the bound also with the masses turned on.
Furthermore, we are interested in investigating the SCFT limit, where the masses go
to zero;

• the gauge coupling to infinity, as we want to approach the SCFT point;

• the Chern-Simons levels to zero, as we have shown that we can always resolve the
geometry in such a way as to ensure this happens.

With these assumptions, the prepotential for the Xz
E6

quiver gauge theory reads, in terms
of the five independent scalars:

F(a1, a2, b1, c1, d1) =
1
12

[
|a1 − a2|3 + |2a1 + a2|3 + |a1 + 2a2|3 + 8 |b1|3 + 8 |c1|3 + 8 |d1|3︸ ︷︷ ︸

roots contribution

+

− |−a1 − a2 − b1|3 − |−a1 − a2 + b1|3 − |−a1 − a2 − c1|3 − |a2 + d1|3︸ ︷︷ ︸
weights contribution

+

− |−a1 − a2 + c1|3 − |−a1 − a2 − d1|3 − |−a1 − a2 + d1|3 − |a1 − b1|3︸ ︷︷ ︸
weights contribution

+

− |a1 + b1|3 − |a1 − c1|3 − |a1 + c1|3 − |a1 − d1|3 − |a1 + d1|3︸ ︷︷ ︸
weights contribution

+

− |a2 − b1|3 − |a2 + b1|3 − |a2 − c1|3 − |a2 + c1|3 − |a2 − d1|3︸ ︷︷ ︸
weights contribution

+

−2 |b1|3 − 2 |c1|3 − 2 |d1|3︸ ︷︷ ︸
flavor contribution

]
.

(C.4)

Employing numeric techniques, it is easy to find a continuous path connecting the origin
of the moduli space to a point that satisfies (C.1):

{a1, a2, b1, c1, d1} =
{151
100λ,

103
100λ,−26

25λ,−21
20λ,−11

10λ

}
, (C.5)

where λ ∈ [0, 1] parameterizes the path.

D Computation of the Chern-Simons levels in the type IIA limit

In this section, we will review the result of [128], where a prescription to compute the
Chern-Simons levels of the 5d gauge theories arising in the type IIA limit of M-theory on a
Calabi-Yau threefold is provided. Let X be a Calabi-Yau threefold built as a C∗-fibration
over a Du Val surface Yg. Let us consider a partial resolution π : X̃ → X such that X̃

can be described as a C∗ ∼= Rx9 × U(1) fibration over the resolved Du Val singularity Ỹg.
We can reduce to type IIA along the circle U(1) ⊂ C∗, obtaining a fibration of Ỹg over the
non-compact direction x9 ∈ Rx9 ⊂ C∗. We denote with χi(x9) the Kähler volumes of the P1

i
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resolving Yg as functions of x9. For the threefolds presented in this paper, the aforementioned
C∗ action acts on the u, v coordinates as follows:

u→ λu, v → v

λ
, λ ∈ C∗, (D.1)

with U(1) ⊂ C is parametrized by the phase of λ.
D6 branes appear at the degeneration loci of the U(1) ⊂ C∗, which correspond to the

(compact, and non-compact) two-cycles of Ỹg, at specific values of x9. More precisely, we
can tune the Kähler parameters of X̃ in such a way that all the D6 branes are placed on
the Du Val at x9 = 0. We will have ri + 1 D6 branes wrapping the P1

i , and nj D6 branes
wrapping the non-compact two-cycles of Ỹg. In this phase, M-theory on X̃ can be described,
as in section 4.4, via a gauge theory with nodes SU(ri + 1) forming a quiver whose shape is
the Dynkin diagram of g. Furthermore, we have flavor SU(nj) or U(1) symmetries associated
with the non-compact divisors of Yg. Separating the D6 branes wrapping the P1

i along
x9 moves us along the Coulomb branch of the quiver theory. For each SU(ri + 1) gauge
node we can have Chern-Simons terms, whose effective levels can be computed from the
geometry of X̃ as follows:

1. The worldvolume R1,4 × P1
i of the i-th stack of D6 branes supports the following

Wess-Zumino coupling:

SW.Z. =
∫
R1,4×P1

i

C1 ∧ F2 ∧ F2 ∧ F2, (D.2)

with C1, F2 being, respectively, the RR one-form potential and two-form flux of type IIA.

2. The D6 branes are magnetic sources for F2. Hence, integrating by parts, SW.Z. produces
the following effective Chern-Simons level ki in the worldvolume theory on the considered
D6 stack

ki = −
1
2π

∫
P1

i

F2. (D.3)

3. In the presence of F2 magnetic fluxes, supersymmetry requires

χ′(x9,0 + ϵ) + χ′(x9,0 − ϵ) = 1
π

∫
P1

i

F2, (D.4)

where 1 ≫ ϵ > 0 and with x9,0 the position of the D6 branes generating the flux
along x9.

Consequently, we can compute the Chern-Simons levels as:

ki = −
1
2(χ

′
i,+∞ + χ′

i,−∞), (D.5)

where we denoted with χi,±∞ the limits of the slopes of the χi for x9 → ±∞.
Let us now consider the specific setup of section 4.4. In that case, the reflection x9 → −x9

is an automorphism of X̃, and hence the χ′
i,+∞ = −χ′

i,−∞. This sets the Chern-Simons levels
ki to zero via (D.5). It is paramount to emphasize that, despite the fact that the result
of [128] was presented in the realm of toric Calabi-Yau threefolds, nothing requires X̃ to
be toric in the previous argument. Indeed, the only crucial ingredient is the presence of
the U(1)-bundle structure associated with (D.1), and hence the result of [128] holds also
in the (non-toric) case considered in this work.
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