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1 Introduction

Semi-inclusive deep inelastic scattering (SIDIS) plays an important role in hadronic physics.
Experiments with SIDIS offer golden opportunities for probing the inner structure of the
nucleon (see e.g. [1, 2] for reviews). The kinematic regions of SIDIS can be roughly divided into
two parts [3–7], known as the current fragmentation region (CFR) and the target fragmentation
region (TFR). The two regions are complementary and both provide us insights into the
internal structure of the nucleon, as well as the properties of strong interactions and QCD. In
the CFR, the final state hadron moves into the forward region of the virtual photon. One can
use the conventional collinear factorization [8–11] or transverse-momentum-dependent (TMD)
factorization [2, 12–17] to describe the process. While in the TFR, the measured hadron
predominantly travels in the forward direction of the incoming nucleon. The concept of
fracture functions [18–20] was introduced for describing the factorization of the hadron
production in the TFR. The factorization with these functions has been proven to hold
at leading twist in QCD [21].

Considerable progress has been made in studies on hadron production in the CFR. For
example, higher-order αs corrections to various SIDIS structure functions in the CFR have
been calculated in refs. [14, 15, 22–30] within the TMD or collinear formalism, as well as
in refs. [31–33] within the small-x formalism. Although not as intensively studied as those
for the CFR case, there has been continuous progress in research on TFR processes. For
Drell-Yan lepton-pair production associated with one hadron in the forward- or backward
regions, factorization with fracture functions have been shown to hold at one-loop level [34, 35].
The classification of quark TMD fracture functions for a polarized nucleon has been obtained
in [36], and the two-hadron production in the current and target fragmentation regions are
investigated [37, 38]. Studies on the factorization properties for fracture functions in different
kinematic regions have also been carried out [39–45]. For instance, the small-x behavior of
diffractive fracture functions is studied in [42–48]. Additionally, twist-3 contributions for
SIDIS in the TFR have been calculated at large hadron transverse momentum [40] and small
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transverse momentum in [49]. Moreover, energy correlators have been applied in DIS to
probe the physics of TFR in recent works [50–54].

On the experimental side, the observation of hadron production in the TFR has been first
made in HERA experiment [55]. Phenomenological studies based on the fracture function
formalism were conducted in [56–60]. The CLAS Collaboration at JLab has recently reported
the novel beam-spin asymmetries in the dihadron correlation which provide a first access
to TMD fracture functions [61]. A possible explanation for the asymmetries can be found
in [41]. The TFR physics is expected to be studied more intensively through the potential
SIDIS experiments, such as the JLab@22GeV program [62] and the planned electron-ion
colliders in the USA [63–67] and China [68]. In light of these experimental advancements,
it is crucial to conduct theoretical researches in advance.

In general, there are eighteen structure functions describing polarized lepton-nucleon
SIDIS with unpolarized or spin-0 hadron production [69]. At twist-2 and tree-level, it has been
shown that there are only four nonzero structure functions for SIDIS in the TFR [36, 49]. Only
quark fracture functions contribute to these four structure functions at this order. However,
SIDIS experiments in the TFR can provide information more than that contained in the four
structure functions. In order to probe more about TFR physics, one needs to make predictions
about other structure functions, and more accurately about the aforementioned four structure
functions. With this motivation we study at leading twist the one-loop correction of SIDIS
in the TFR. Including the one-loop correction, one expects that more structure functions
would become nonzero. At one-loop, gluon contributions are involved. They lead to novel
asymmetries which cannot be generated by quarks. This provides us a unique way to probe
the gluon fracture functions and to understand the role played by gluons in the process.
Some structure functions at twist-2 have been studied beyond tree-level in [70–73], where the
transverse momentum of the produced hadron is integrated over. In the current work, we
derive one-loop contributions to all structure functions at twist-2 with the fixed transverse
momentum of the final hadron.

The rest of this paper is organized as follows. In section 2, we provide the notations
and discuss the general form of the cross section in terms of the structure functions for
SIDIS in the TFR. The tree-level structure function results are also presented in this section.
In section 3, we present detailed one-loop calculations of the gluonic contribution to the
hadronic tensor. In section 4, we give the complete one-loop results for the structure functions,
including contributions from quark fracture functions. A short summary is given in section 5.

2 The notations and structure functions for SIDIS in the TFR

Through out this paper, we use the light-cone coordinate system, in which a four-vector
aµ is expressed as aµ = (a+, a−, a⃗⊥) =

(
(a0 + a3)/

√
2, (a0 − a3)/

√
2, a1, a2). With the

light cone vectors nµ = (0, 1, 0, 0) and n̄µ = (1, 0, 0, 0), the transverse metric is defined as
gµν
⊥ = gµν−n̄µnν−n̄νnµ, and the transverse antisymmetric tensor is given as εµν

⊥ = εµναβn̄αnβ

with ε0123 = −ε0123 = 1. We also use the notation ãµ
⊥ ≡ εµν

⊥ a⊥ν .
We consider the SIDIS process with a polarized electron beam and nucleon target, i.e.,

e(l, λe) + hA(P, S) → e(l′) + h(Ph) +X. The momenta of the incident electron, the outgoing
electron, the initial nucleon and the detected final-state hadron are denoted by l, l′, P , and
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Ph, respectively. At the leading order of quantum electrodynamics, there is an exchange of
one virtual photon with momentum q = l − l′ between the electron and the nucleon. The
helicity of the electron is denoted by λe, and S is the polarization vector of the nucleon. We
consider the production of a spin-0 or unpolarized final-state hadron h. The set of Lorentz
invariant variables used for SIDIS in the TFR are conventionally defined by [4, 36, 70]

Q2 = −q2, xB = Q2

2P · q
, y = P · q

P · l
, ξh = Ph · q

P · q
. (2.1)

We work in the reference frame where the nucleon hA moves along the z-direction and
the virtual photon moves in the −z-direction. In this frame, the momenta of the particles
are given by

Pµ ≈ (P+, 0, 0, 0), Pµ
h = (P+

h , P
−
h , P

1
h⊥, P

2
h⊥),

lµ =
(
1− y

y
xBP

+,
Q2

2xByP+ ,
Q
√
1− y

y
, 0
)
, qµ =

(
−xBP

+,
Q2

2xBP+ , 0, 0
)
. (2.2)

We use Ph⊥ to denote the length of the transverse vector Pµ
h⊥ given by Ph⊥ ≡

√
−g⊥µνP

µ
h P

ν
h .

For the case that the produced hadron h has small transverse momentum and in the TFR,
we have P+

h ≫ Ph⊥ ≫ P−
h and ξh ≈ P+

h /P
+, which specifies the longitudinal momentum

fraction of the nucleon taken by the final-state hadron h. The polarization vector of the
nucleon can be decomposed by

Sµ = SL
P+

M
n̄µ + Sµ

⊥ − SL
M

2P+n
µ, (2.3)

where M is the nucleon mass, SL denotes the longitudinal polarization of the nucleon and
Sµ
⊥ = (0, 0, S1

⊥, S
2
⊥) is the transverse polarization vector.

The incoming and outgoing electron span the lepton plane. We define the azimuthal
angle ϕh for Pµ

h⊥ with respect to the lepton plane, and ϕS is that for Sµ
⊥. The azimuthal angle

of the outgoing lepton around the lepton beam with respect to the spin vector is denoted
by ψ. In the kinematic region of SIDIS with large Q2, one has dψ ≈ dϕS [74]. With these
specifications, the differential cross section is given by

dσ

dxBdydξhdψd2Ph⊥
= α2y

Q4 Lµν(l, λe, l
′)Wµν(q, P, S, Ph), (2.4)

where α is the fine structure constant. The leptonic tensor is

Lµν(l, λe, l
′) = 2(lµl′ν + lν l′µ − l · l′gµν) + 2iλeϵ

µνρσlρl
′
σ. (2.5)

The hadronic tensor is defined by

Wµν(q, P, S, Ph) =
1
4ξh

∑
X

∫
d4x

(2π)4 e
iq·x⟨S;hA|Jµ(x)|hX⟩⟨Xh|Jν(0)|hA;S⟩, (2.6)

where Jµ(x) =
∑

f ef ψ̄(x)γµψ(x) is the electromagnetic current with f for all flavors. Con-
tracting the general form of the hadronic tensor from kinematic analysis with the leptonic
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tensor in eq. (2.5), one can get the differential cross section in terms of the structure functions.
The general form of the differential cross section can be expressed by eighteen structure
functions as follows: [49, 69]

dσ

dxBdydξhdψd2Ph⊥
=

α2

xByQ2

{
A(y)FUU,T +E(y)FUU,L+B(y)F cosϕh

UU cosϕh+E(y)F cos2ϕh

UU cos2ϕh

+λeD(y)F sinϕh

LU sinϕh+SL

[
B(y)F sinϕh

UL sinϕh+E(y)F sin2ϕh

UL sin2ϕh

]
+λeSL

[
C(y)FLL+D(y)F cosϕh

LL cosϕh

]
+|S⃗⊥|

[(
A(y)F sin(ϕh−ϕS)

UT,T +E(y)F sin(ϕh−ϕS)
UT,L

)
sin(ϕh−ϕS)

+E(y)F sin(ϕh+ϕS)
UT sin(ϕh+ϕS)+B(y)F sinϕS

UT sinϕS+B(y)F sin(2ϕh−ϕS)
UT sin(2ϕh−ϕS)

+E(y)F sin(3ϕh−ϕS)
UT sin(3ϕh−ϕS)

]
+λe|S⃗⊥|

[
D(y)F cosϕS

LT cosϕS+C(y)F cos(ϕh−ϕS)
LT cos(ϕh−ϕS)

+D(y)F cos(2ϕh−ϕS)
LT cos(2ϕh−ϕS)

]}
. (2.7)

Here the functions of y defined for convenience are given by

A(y) = y2 − 2y + 2, B(y) = 2(2− y)
√
1− y, C(y) = y(2− y),

D(y) = 2y
√
1− y, E(y) = 2(1− y). (2.8)

It should be noted that if one works in D-dimension with D = 4− 2ϵ, there would be terms
proportional to ϵ in the definition of the y-functions, e.g. A(y) = y2 − 2y + 2 − ϵy2. All
the structure functions in eq. (2.7) are scalar functions depending on xB, ξh, Q2 and P 2

h⊥.
The first and second subscripts of the structure functions denote the polarization of the
electron and the nucleon, respectively. The third subscript, if any, specifies the polarization
of the virtual photon.

At tree level, the structure functions only receive contributions from quark fracture
functions. At the leading twist, it has been shown that there exist four nonzero structure
functions. They are given by [37, 49]

FUU,T = xBu1(xB, ξh, Ph⊥), FLL = xBl1L(xB, ξh, Ph⊥),

F
sin(ϕh−ϕS)
UT,T = Ph⊥

M
xBu

h
1T (xB, ξh, Ph⊥), F

cos(ϕh−ϕS)
LT = Ph⊥

M
xBl

h
1T (xB, ξh, Ph⊥), (2.9)

where u1, l1L, uh
1T , and lh1T are twist-2 quark fracture functions. They are defined through

the quark fracture matrix as [49]

Mij(x)=
∫

dη−

2ξh(2π)4 e
−ixP +η−∑

X

⟨hA(P )|ψ̄j(η−)L†
n(η−)|hX⟩⟨Xh|Ln(0)ψi(0)|hA(P )⟩

= (γ−)ij

2Nc

(
u1−

Ph⊥ ·S̃⊥
M

uh
1T

)
− (γ−γ5)ij

2Nc

(
SLl1L−

Ph⊥ ·S⊥
M

lh1T

)
+· · · , (2.10)

where · · · denote the contributions beyond twist-2 or the chirality-odd parts. The chirality-
odd parts can not contribute because of the helicity conservation in perturbative QCD. At
one-loop level, the gluon fracture functions are involved. These gluon contributions not only
produce corrections to the leading-order results, but also give rise to new types of structure
functions. We shall focus on the gluon contributions in the next section.
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Figure 1. Gluonic contributions to the hadronic tensor.

3 The hadronic tensor at one-loop

3.1 The gluonic contribution to the hadronic tensor

Now we calculate in perturbation theory for the hadronic tensor at one-loop. We focus on the
gluon channels which are shown by diagrams in figures 1(a)-(d). The gray boxes represent
the gluonic correlators with a hadron h identified in the final state. These contributions
can be summarized as the following form:

Wµν(q,P,S,Ph)=αsTF

∑
f

e2
f

∫
dx

x

∫
dΦk1k2H

µναβ(kg,k1,k2)MG,αβ(x,ξh,Ph⊥), (3.1)

where TF = 1/2. We have applied the collinear approximation where the gluon momentum
obeys kµ

g ≈ (xP+, 0, 0, 0). The momenta of the quark and anti-quark in the final states are
denoted by k1 and k2, respectively. The symbol

∫
dΦk1k2 stands for the two-body phase

space integral over k1 and k2, i.e.,∫
dΦk1k2 ≡

∫
dDk1
(2π)D

∫
dDk2
(2π)D

(2π)δ(k2
1)(2π)δ(k2

2)(2π)4δ(4)(q + kg − k1 − k2)θ(q0 + k0
g).

(3.2)

We use the dimensional regularization with D = 4 − 2ϵ. The hard scattering functions
Hµναβ(kg, k1, k2) in eq. (3.1) receive contributions from figures 1(a)-(d). We have Hµναβ =
Hµναβ

(a)+(b) + Hµναβ
(c)+(d), and

Hµναβ
(a)+(b)(kg, k1, k2) = Tr

[
/k1γ

ν (/kg − /k2)
(kg − k2)2 γ

β/k2γ
α (/kg − /k2)
(kg − k2)2 γ

µ

]
+ (k1 ↔ k2),

Hµναβ
(c)+(d)(kg, k1, k2) = Tr

[
/k1γ

ν (/kg − /k2)
(kg − k2)2 γ

β/k2γ
µ (/k1 − /kg)
(k1 − kg)2 γ

α

]
+ (k1 ↔ k2). (3.3)

Mαβ
G (x, ξh, Ph⊥) is the gluonic correlation function defined by:

Mαβ
G (x, ξh, Ph⊥) =

1
2ξh(2π)3

1
xP+

∫
dλ

2πe
−iλxP + ∑

X

〈
hA(P )

∣∣(G+α(λn)L†
n(λn))a

∣∣Xh(Ph)
〉

×
〈
h(Ph)X

∣∣(Ln(0)G+β(0)
)a∣∣hA(P )

〉
, (3.4)

where α and β are both transverse indices. Ga,µν is the gluon strength tensor, where the
color index a ranges from 1 to 8. Ln(x) is the light-cone gauge link defined by

Ln(x) = P exp
{
−igs

∫ ∞

0
dη A+(ηn+ x)

}
, (3.5)
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where Aµ = Aµ
c t

c with tcab = −ifabc is the gluon potential in the adjoint representation. We
discuss the decomposition and parametrization of Mαβ

G later in section 3.3.

3.2 The results for the hard scattering functions

To evaluate the explicit form of the hard scattering functions and the phase space integral, it
is convenient to take the photon-gluon center-of-mass frame, where the initial gluon moves
along the z-direction with k+

g = −q+/z and z = xB/x. Then the relevant momenta scalar
products can be written as

q · kg = Q2

2z , q · k1 = Q2

4z (1 + cos θ)− Q2

2 , q · k2 = Q2

4z (1− cos θ)− Q2

2 ,

kg · k2 = Q2

4z (1 + cos θ), kg · k1 = Q2

4z (1− cos θ), k1 · k2 = Q2 z̄

2z , (3.6)

where z̄ = 1− z, and θ is the polar angle of the final quark with the momentum k1. We also
notice that the light-cone vectors n̄µ and nµ can be constructed by

n̄µ = − z

q+k
µ
g , nµ = −2q+

Q2 (qµ + zkµ
g ). (3.7)

Then, the phase space integral in eq. (3.2) can be further simplified and evaluated as∫
dΦk1k2 = 1

(2π)2−2ϵ

1
8
(

z̄
4zQ

2)2ϵ

∫ π

0
dθ(sin θ)1−2ϵ

∫
dΩT , (3.8)

with the normalization of the azimuthal angle integral given by
∫
dΩT = 2π1−ϵ/Γ(1− ϵ).

To calculate the hard scattering functions, we divide them into two categories based on
the polarization states of the virtual photon. Specifically, we express them as follows:

Hµναβ = Hµναβ
L +Hµναβ

T , (3.9)

where

Hµναβ
L = n̄µn̄νH++αβ + nµnνH−−αβ + n̄{µnν}H+−αβ , Hµναβ

T = gµµ′

⊥ gνν′
⊥ H αβ

µ′ν′ . (3.10)

Note that both α and β in eqs. (3.9) and (3.10) are transverse indices. The calculation of
Hµναβ

L and Hµναβ
T is straightforward. Utilizing eq. (3.7), we obtain

Hµναβ
L = 32z2(csc θ)2

[
n̄µn̄ν

(q−)2 + nµnν

(q+)2 + 2n̄{µnν}

Q2

]
kα

2⊥k
β
2⊥,

Hµναβ
T = (csc θ)4

Q4

{
8Q2

[
8zkβ

2⊥(cos
2 θkν

2⊥g
µα
⊥ + 2zkα

2⊥g
µν
⊥ )

− 8zkν
2⊥k

α
2⊥g

µβ
⊥ +Q2 sin2 θ(cos2 θgµα

⊥ gνβ
⊥ − gµβ

⊥ gνα
⊥ + gµν

⊥ gβα
⊥ )
]

− 64zkµ
2⊥

[
Q2kβ

2⊥g
να
⊥ + kα

2⊥(8zkν
2⊥k

β
2⊥ −Q2 cos2 θgνβ

⊥ )
]}
. (3.11)
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With these results for Hµναβ, upon integrating over the phase space, we obtain:∫
dΦk1k2H

µναβ =

−gαβ
⊥

2zz̄
πQ2 q̄

µq̄ν

+
(16πz
Q2z̄

)ϵ −πϵ− 1
2

2(2−ϵ)(1−ϵ)ϵΓ
(

3
2−ϵ

){1
2(ϵ−2)(ϵ−1)

[
gαµ
⊥ gβν

⊥ +(2ϵ−1)
(
gαν
⊥ gβµ

⊥ −gαβ
⊥ gµν

⊥

)]

+z̄2ϵ
(
gαν
⊥ gβµ

⊥ +gαµ
⊥ gβν

⊥ +gαβ
⊥ gµν

⊥

)
+z̄(ϵ−2)

[
gαµ
⊥ gβν

⊥ +(2ϵ−1)
(
gαν
⊥ gβµ

⊥ −zgαβ
⊥ gµν

⊥

)]}
, (3.12)

where q̄µ ≡ qµ + 2xBP
+n̄µ. The first term on the right hand side of eq. (3.12) originates

from the contribution of Hµναβ
L . The second term arises from Hµναβ

T , and it has a collinear
divergence represented by the pole in ϵ. This divergence can be subtracted, as discussed
in the next section.

3.3 Parametrization of the correlation function and the gluon fracture functions

The gluonic correlation function Mαβ
G defined in eq. (3.4) obeys constraints from parity

and hermiticity. Its parametrization closely resembles that of gluon TMD PDFs, see e.g.,
eq. (2.141) in the TMD handbook [2]. In dimensional regularization with D = 4− 2ϵ, the
parametrization takes the form:

Mαβ
G =− 1

2−2ϵg
αβ
⊥ u1g+

1
2M2

(
Pα

h⊥P
β
h⊥+ 1

2−2ϵg
αβ
⊥ P 2

h⊥

)
th1g+SL

[
i
ϵαβ
⊥
2 l1gL+

P̃
{α
h⊥P

β}
h⊥

4M2 th1gL

]
+ gαβ

⊥
2−2ϵ

Ph⊥ ·S̃⊥

M
uh

1gT +Ph⊥ ·S⊥

M

[
i
ϵαβ
⊥
2 lh1gT − P̃

{α
h⊥P

β}
h⊥

4M2 thh
1gT

]
+ P̃

{α
h⊥S

β}
⊥ +S̃{α

⊥ P
β}
h⊥

8M th1gT +· · · .

(3.13)

Here, · · · represent power-suppressed terms beyond the twist-2 level. The shorthand notation
a{αbβ} ≡ aαbβ + aβbα is used. We adopt the HVBM scheme [75, 76] where the Levi-
Civita tensor εµναβ is a genuinely four-dimensional object and its components vanish in
all unphysical dimensions.

The u’s, l’s, and t’s are scalar functions of x, ξh, and P 2
h⊥, referred to as gluon fracture

functions. Here, We adopt naming conventions akin to those used for quark fracture func-
tions [49]. The subscript “1g” denotes the leading twist and gluon case, while “L” or “T”
indicates dependence on nucleon longitudinal or transverse polarizations. The symbol “h”
appears in the superscript when there is an explicit dependence on the transverse momentum
of the final-state hadron h in the decomposition.

Specifically, u1g and uh
1gT represent the unpolarized gluon fracture functions for the

unpolarized and transversely polarized nucleons, respectively. l1gL and lh1gT denote the
circularly polarized gluon fracture functions of the longitudinally and transversely polarized
nucleons, respectively. th1g can be understood as an analogy to the so-called linearly polarized
gluon distribution in an unpolarized nucleon, and we notice that a novel method based
on the nucleon energy-energy correlator [50] for probing the linearly polarized gluon has
been investigated recently [52]. We have six gluon fracture functions associated with the
nucleon polarization.
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4 Results of structure functions up to one loop

Substituting eqs. (3.12) and (3.13) into eq. (3.1), we obtain the gluon contributions to the
hadronic tensor. By further contracting with the leptonic tensor given in eq. (2.5) and
comparing with the cross section expressed by structure functions in eq. (2.7), we obtain the
final results for the gluon contributions to the structure functions, presented as follows.

We first present the results of structure functions which are zero at tree-level. There
are four structure functions, which are generated by the gluon contributions only at O(αs).
They are:

F cos2ϕh

UU =−αsTF

2π
P 2

h⊥
2M2xB

∑
q,q̄

e2
q

∫ 1

xB/ξ̄h

dz

z
z2th1g(xB/z,ξh,Ph⊥),

F sin2ϕh

UL = αsTF

2π
P 2

h⊥
2M2xB

∑
q,q̄

e2
q

∫ 1

xB/ξ̄h

dz

z
z2th1gL(xB/z,ξh,Ph⊥),

F
sin(3ϕh−ϕs)
UT = αsTF

2π
P 3

h⊥
4M3xB

∑
q,q̄

e2
q

∫ 1

xB/ξ̄h

dz

z
z2thh

1gT (xB/z,ξh,Ph⊥),

F
sin(ϕh+ϕs)
UT = αsTF

2π
Ph⊥

2M xB

∑
q,q̄

e2
q

∫ 1

xB/ξ̄h

dz

z
z2
[
th1gT (xB/z,ξh,Ph⊥)+

P 2
h⊥

2M2 t
hh
1gT (xB/z,ξh,Ph⊥)

]
,

(4.1)

where ξ̄h = 1− ξh. The limits on the integration are imposed by the kinematic constraint
xB < x = xB/z < 1 − ξh. These structure functions in eqs. (4.1) cannot be generated by
the twist-2 quark fracture functions even at one-loop. Thus, they are uniquely generated
from gluon contributions. These structure functions give rise to four kinds of azimuthal
asymmetries, two of which depend on the nucleon transverse polarization. At leading twist,
quark fracture functions can not contribute to these structure functions because of angular
momentum conservation. We note in particular that, if one uses tree-level approximation, all
these four structure functions will only have contributions beyond twist-3 [49].

Besides the four structure functions given in the above, there exist other two structure
functions, namely FUU,L and F

sin(ϕh−ϕS)
UT,L , generated not only by the gluon contributions but

also by the quark contributions. It is well known in inclusive DIS that the quark distributions
also contribute to FUU,L at one-loop. The calculation here for the TFR SIDIS goes through
the same procedure. Therefore, the hard scattering coefficient functions here for TFR SIDIS
coincide with those for inclusive DIS up to overall kinematic factors absorbed in the definition
of the fracture functions. The relevant results can be found, e.g. in [77]. The same principle
applies to the nucleon transverse polarization-dependent counterpart F sin(ϕh−ϕS)

UT,L . We have:

FUU,L = αs

2πxB

∑
q,q̄

e2
q

∫ 1

xB/ξ̄h

dz

z

[
4TF zz̄u1g(xB/z,ξh,Ph⊥)+2CF zu1(xB/z,ξh,Ph⊥)

]
,

F
sin(ϕh−ϕS)
UT,L = αs

2π
Ph⊥

M
xB

∑
q,q̄

e2
q

∫ 1

xB/ξ̄h

dz

z

[
4TF zz̄u

h
1gT (xB/z,ξh,Ph⊥)+2CF zu

h
1T (xB/z,ξh,Ph⊥)

]
.

(4.2)

We note that, at tree-level, these two structure functions only have nonzero contributions
beyond twist-3 [49]. However, there are indications suggesting that the ratio of the longitudinal
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to transverse cross sections of SIDIS, i.e, FUU,L/FUU,T , could be sizeable (see the discussions
in section 5.2 of [62] and reference therein). We see from eq. (4.2) that, besides the kinematic
power suppressed effects, the one-loop corrections should also be taken into account properly
to provide a more comprehensive explanation of this ratio especially in the TFR.

Now we turn to one-loop contributions to the four structure functions in eq. (2.9) which
are already nonzero at tree-level. At one-loop they receive both quark and gluon channels
contributions. For these contributions, one needs to subtract the collinear divergences because
they are already included in parton fracture functions. The subtraction is similar to that
in inclusive DIS. After the subtraction of these divergences, we obtain finite contributions
to the structure functions. Again, these finite contributions can also be found in literature,
e.g., in [77] for the unpolarized parton case, and in [78–80] for the polarized parton case.
We note that for the polarization dependent case, the coefficients generally depend on the
γ5-scheme in D-dimensions. In our calculations, as mentioned in section 3.3, we utilize the
HVBM scheme [75, 76]. We include the quark contributions for completeness and present
the full results of these four structure functions. They are given by

FUU,T =xB

∑
q,q̄

e2
q

∫ 1

xB/ξ̄h

dz

z

[
Hg(z)u1g(xB/z,ξh,Ph⊥)+Hq(z)u1(xB/z,ξh,Ph⊥)

]
,

F
sin(ϕh−ϕS)
UT,T = Ph⊥

M
xB

∑
q,q̄

e2
q

∫ 1

xB/ξ̄h

dz

z

[
Hg(z)uh

1gT (xB/z,ξh,Ph⊥)+Hq(z)uh
1T (xB/z,ξh,Ph⊥)

]
,

FLL =xB

∑
q,q̄

e2
q

∫ 1

xB/ξ̄h

dz

z

[
∆Hg(z)l1gL(xB/z,ξh,Ph⊥)+∆Hq(z)l1L(xB/z,ξh,Ph⊥)

]
,

F
cos(ϕh−ϕS)
LT = Ph⊥

M
xB

∑
q,q̄

e2
q

∫ 1

xB/ξ̄h

dz

z

[
∆Hg(z)lh1gT (xB/z,ξh,Ph⊥)+∆Hq(z)lh1T (xB/z,ξh,Ph⊥)

]
,

(4.3)

where we have suppressed the renormalization scale µ-dependence in the arguments of the hard
coefficient functions and the fracture functions. The hard coefficient functions are given by

Hq(z)= δ(z̄)+ αs

2π

{
Pqq(z) ln

Q2

µ2 +CF

[
2
( ln z̄

z̄

)
+
− 3

2

(1
z̄

)
+
−(1+z) ln z̄− 1+z2

z̄
lnz+3−

(
π2

3 + 9
2

)
δ(z̄)

]}
,

∆Hq(z)= δ(z̄)+ αs

2π

{
∆Pqq(z) ln

Q2

µ2 +CF

[
(1+z2)

( ln z̄

z̄

)
+
− 3

2

(1
z̄

)
+
− 1+z2

z̄
lnz+2+z−

(
π2

3 + 9
2

)
δ(z̄)

]}
,

Hg(z)=
αs

2π

[
Pqg(z) ln

Q2z̄

µ2z
−TF (1−2z)2

]
, ∆Hg(z)=

αs

2π

[
∆Pqg(z)

(
ln Q2z̄

µ2z
−1
)
+2TF z̄

]
, (4.4)

with the lowest-order parton splitting functions [81]

Pqq(z) = CF

[
1 + z2

(1− z)+
+ 3

2δ(1− z)
]
, Pqg(z) = TF

[
z2 + (1− z)2

]
,

∆Pqq(z) = Pqq(z) , ∆Pqg(z) = TF (2z − 1) . (4.5)

Our results at the leading twist show that there are 6 structure functions which become
nonzero at one-loop. The four structure functions which are nonzero at tree-level, receive
one-loop corrections. The remaining 8 structure functions of the total 18 structure functions
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are zero at leading twist or twist-2. They become nonzero when twist-3 contributions are
included [49]. With the twist-3 contributions and the results presented in this work, all
18 structure functions of SIDIS in the TFR are predicted as convolutions of perturbative
coefficient functions with fracture functions.

5 Summary

We have studied one-loop contribution for SIDIS in the TFR at leading twist. Complete
information of the studied process is encoded in eighteen structure functions. At tree-level
and leading twist there are only four structure functions which are nonzero and associated
with quark fracture functions. At one-loop other six structure functions become nonzero.
Special attention is paid to the gluon channel. It is interesting to note that four of the six
structure functions receive contributions only from gluon fracture functions. Hence, it is
important to measure these four structure functions for understanding the role played by
gluons in the process. Complete one-loop results are derived for all structure functions at
twist-2. With the results presented in this work, more fracture functions, especially gluon
fracture functions can be extracted from results of relevant experiments.
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