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1 Introduction

The Heavy Quark Expansion (HQE) has become a pillar in the theoretical description of
inclusive decays of heavy hadrons, allowing the derivation of precise predictions with reliable
estimates of the uncertainties. One of its main applications is the study of the inclusive decay
B → Xcℓν̄ℓ. Thanks to its relatively large rate and clean experimental signature, studies of
inclusive semileptonic decays have lead to precise determinations of the magnitude of the
Cabibbo-Kobayashi-Maskawa matrix element Vcb.

The HQE allows to describe both the total decay rate and various kinematic distributions
as a double series expansions in the strong coupling constant αs and ΛQCD/mb. Various
measurements of moments of the charged lepton energy and the hadronic invariant mass in
B → Xcℓν̄ℓ decays have been performed by BABAR [1, 2], BELLE [3, 4], CLEO [5], CDF [6]
and DELPHI [7]. The comparison of experimental measurements with the predictions
calculated within the HQE has lead to determinations of |Vcb| with a 1.1% accuracy [8–
10] and the so called “HQE parameters”, the non-perturbative matrix elements, such as
µ2

π, µ2
G, ρ3

D and ρLS .
The HQE parameters are important theoretical inputs not only for the extraction of

|Vcb|, but also for the extraction of |Vub| from B → Xuℓν̄ℓ decays since the moments of the
shape functions can be related to the HQE parameters extracted in b → c decays. Moreover
predictions for other kinds of processes require precise knowledge of the HQE parameters, as
for instance the B-meson lifetimes [11, 12] and the rare decay B → Xd,sℓℓ̄ [13, 14].

An alternative method for the determination of |Vcb| has been proposed in ref. [15]
and is based on the measurement of the leptonic invariant mass (q2) spectrum and the
branching ratio as a function of a lower cut on q2. These observables are invariant under
reparametrization, a symmetry within the HQE reflecting Lorentz invariance of the underlying
QCD. Reparametrization invariant (RPI) quantities depend on a reduced set of HQE
parameters [15, 16]. The smaller set of parameters necessary in a global fit of these observables
(eight instead of 13 up to 1/m4

b) enabled to extract |Vcb| and the HQE parameters up to
1/m4

b in a completely data-driven way [17], based on recent measurements of q2 moments
by Belle [18] and Belle-II [19]. The new measurements of the q2 moments have also been
included in a global fit of |Vcb| [10], together with the lepton energy and MX moments, finding
that the new data are compatible with the other measurements and slightly decreasing the
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uncertainty on the HQE parameters and on |Vcb|. Recently, the RPI operator basis has
been extended up to order 1/m5

b [20].
Given the precision achieved by experimental measurements, which show a percent or

even sub-percent relative accuracy for certain observables, a good control of perturbative
and non-perturbative effects in the HQE is mandatory, also in light of the rather large value
of the strong coupling constant αs(mb) ≃ 0.22. At the partonic level, next-to-leading order
(NLO) corrections are available from refs. [21–23]. The O(αs) triple differential distribution
up to the power-suppressed terms µ2

π and µ2
G were presented in refs. [24–26], while NLO

corrections proportional to ρD are available only for the total rate and the q2 spectrum [27].
The O(α2

s) corrections to the free quark decay b → Xcℓν̄ℓ are also required for a consistent
theoretical description and to match the experimental accuracy. The next-to-next-to-leading
order (NNLO) corrections to the hadronic invariant mass and charged-lepton energy moments
have been calculated in [28, 29]. No result is available for the q2 spectrum for arbitrary
values of q2, only for q2 = 0 [30], q2 = (mb − mc)2 [31, 32] and q2 = m2

c [33]. While the
calculations in these three special points allowed the authors of ref. [33] to estimate the
non-BLM corrections at O(α2

s) with a relative 30% uncertainty, their result is unsuited to
calculate higher moments of the q2 spectrum with sufficient precision.1 Analytic expressions
up to O(α3

s) for the q2 moments without threshold selection cuts have been presented in
ref. [34], while ref. [10] presented an evaluation of the α2

sβ0 corrections, utilizing the BLM
correction to the triple differential rate from ref. [23].

The goal of this paper is to present the complete NNLO QCD corrections to the q2

spectrum of b → Xcℓν̄ℓ. At variance with the numerical approach used in [28, 29], based on
sector decomposition, recent developments in analytic approaches to multi-loop computations
allow us to calculate the differential rate w.r.t. q2 in an analytic form and write it in terms
of generalized polylogarithms (GPLs) [35, 36]. Our results can be used to calculate the
NNLO corrections to the q2 moments with arbitrary cuts on q2. The inclusion of the results
presented in this paper into global fits will allow to better assess the theoretical uncertainty
in the prediction.

The paper is organized as follows. In section 2 we present the details of the calculation,
in particular we discuss how we obtain analytic results for the three-loop master integrals at
NNLO. Section 3 presents our numerical results for the differential rate and the moments in
the on-shell scheme and the kinetic scheme. We will discuss also the impact on the decay
B → Xcτ ν̄τ . We conclude in section 4.

2 Details of the calculation

Let us now discuss the details of the calculation. We consider the semileptonic decay of a
bottom quark mediated by the weak interaction

b(pb) → Xc(pX)ℓ(pℓ)ν̄ℓ(pν), with ℓ = e, µ, τ, (2.1)

where Xc generically denotes a state containing a charm quark, plus additional gluons and/or
quarks. The mass of the charged lepton ℓ is denoted by mℓ while the neutrino is considered

1We contacted the authors of ref. [29], however they could not retrieve their original Monte Carlo code.
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massless. The masses of the bottom and charm quark are mb and mc, respectively, and we
introduce their ratio ρ = mc/mb. In the following we study the spectrum of the leptonic
invariant mass q2 = p2

L with pL = pℓ+pν . We begin by writing the differential rate w.r.t. q2 as

dΓ
dq̂2 = G2

F m5
b

192π3 |Vcb|2
[
F0(ρ, q̂2) + αs

π
F1(ρ, q̂2) +

(
αs

π

)2
F2(ρ, q̂2)

]
+ O

(
1

m2
b

)
, (2.2)

where q̂2 = q2/m2
b and Fi stands for the differential decay rate at leading, next-to-leading and

next-to-next-to-leading order, respectively. The functions F0 and F1 are known since a long
time [21]. For the power corrections up to 1/m3

b the NLO corrections have been presented in
refs. [27, 37, 38]. The quark masses mb and mc are renormalized in the on-shell scheme. The
strong coupling constant αs = α

(5)
s (µs) is renormalized in the MS scheme with five active

flavours with µs being the renormalization scale.
In order to calculate the NNLO QCD corrections to the q2 spectrum, we follow the method

of refs. [27, 37]. The idea is to consider the differential rate in the presence of a constraint
on q2. The phase-space decomposition suitable for b → Xcℓν̄ℓ is carried out by assuming a
sequence of two two-body decays. First, the bottom quark decays into an off-shell W -boson
and the charm quark, then the virtual W -boson decays into the lepton and the neutrino:

dΓ = (2π)d

2mb
δ(p2

L − q2)WµνLµνdΦ2(pb; pL, pX)dΦ2(pL; pℓ, pν)(2π)d−1dq2 (2.3)

where the integration is performed in a d-dimensional space, with d = 4− 2ϵ. W µν and Lµν

are the hadronic and leptonic tensors. The element of n-body phase space is given by

dΦn(P ; p1, . . . , pn) = δ(d)
(

P −
n∑

i=1
pi

)
n∏

i=1

dd−1pi

(2π)d−12Ei
. (2.4)

The constraint δ(p2
L − q2) enforces the dilepton system to have an invariant mass equal to q2.

Since the hadronic tensor depends only on pL and pb, we can integrate the leptonic tensor
with respect to the phase-space of charged lepton and neutrino [38]:

Lµν(pL) =
∫

LµνdΦ2(pL; pe, pν)

= 1
384π5

(
1− m2

ℓ

p2
L

)2 [(
1 + 2m2

ℓ

p2
L

)
pµ

Lpν
L − gµνp2

L

(
1 + m2

ℓ

2p2
L

)]
+O(ϵ). (2.5)

Higher order terms in ϵ are not necessary since the leptonic tensor does not enter into
the renormalization, i.e. Lµν is always contracted with the renormalized hadronic tensor.
After inserting eq. (2.5) into the differential rate formula, we represent the δ function as
the imaginary part of a propagator:

δ(p2
L − q2) → 1

2πi

[
1

p2
L − q2 − i0

− 1
p2

L − q2 + i0

]
. (2.6)

In other words, we treat δ(p2
L − q2) as an on-shell condition for a “fake” particle. Next we

apply the reverse unitarity method [39] and map the calculation of the various interference
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δ(p2L − q2) ×
b b

c

e

νe

−→

c

b b

Figure 1. Phase space intergration in the presence of the constraint on the leptoinc invariant mass
δ(p2

L − q2) is mapped into the cuts of forward b → b scattering amplitude where the two leptons are
replaced by a fake spin-1 massive particle.

terms integrated over the final state phase-space into the evaluation of “cuts” of forward
b → b scattering amplitudes. In this way, the differential rate can be obtained from the
imaginary part of a b → b two-point amplitude, where the two leptons with constrained
invariant mass are replaced by a fake (colorless) spin-1 particle with mass equal to q2 (see
figure 1). Note that with this method, we need to consider loop diagrams with one loop less
compared to the original diagrams, i.e. to calculate the q2 spectrum at LO, NLO and NNLO
we have to consider one-, two- and three-loop diagrams. One the other hand, the Feynman
integrals now depend on two dimensionless variables: ρ and q̂2.

Let us now discuss the technical details of the calculation. We generate with qgraf [40]
one, two and three loop diagrams (as the ones on the r.h.s. of figure 1) and use Tapir [41] to
map each diagram to a predefined integral family. We use the program exp [42] to rewrite
the output to FORM [43] notation. In this way we express the three-loop b → b amplitude as
linear combinations of scalar Feynman integrals with nine indices, where eight correspond
to the exponents of propagators and the remaining one to the exponent of an irreducible
numerator. In total we have 21 integral families at three loops.

Before performing the IBP reduction, we find with a basis of master integrals such that
the denominators in the reduction tables completely factorize into polynomials depending
either on ρ and q̂2 or d (see refs. [44, 45]). To construct this basis, we first reduce a set of
seed integrals up to two dots and one scalar product for every integral family individually
with the help of Kira [46, 47] and Fermat [48]. As initial basis we simply take the default
master integrals. These reduction tables then serve as input to search for a good basis for
every family with the help ImproveMasters.m developed in ref. [44].

The IBP reduction of the integrals appearing in the amplitude is then performed with
Kira. First, we reduce the integrals for every family individually to the good basis of this
family. Then we employ symmetries between the families to reduce the number of master
integrals. Afterwards we identify the master integrals which have an imaginary part while
setting to zero those which are purely real, e.g. tadpole integrals. We find one, six and 98
master integrals at one, two and three loops.

We solve the master integrals in an analytic way by using the method of differential
equations [49, 50]. We establish a set of differential equations by differentiating the 98
master integrals with respect to ρ and q̂2 and reducing the resulting integrals again to master
integrals with Kira. We obtain a system of the form

∂J

∂ρ
= Mρ(ρ, q̂2, ϵ)J ,

∂J

∂q̂2 = Mq2(ρ, q̂2, ϵ)J , (2.7)
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(a) Class I.

(b) Class II.



 

(c) Class III.

Figure 2. Sample of master integrals. Black, red and green lines denoted massive propagators with
mass equal to mb, mc and

√
q2. Dashed lines are massless propagators. The master integrals can

have cuts through only one charm propagator (a), only three charm propagators (b) and both kind of
cuts (c).

where J = (J1, . . . , J98) is the set of master integrals, ϵ is the dimensional regularization
parameter while Mρ and Mq2 are 98 × 98 matrices, rational in ρ, q̂2 and ϵ.

For the decay rate, we need only the imaginary parts of the master integrals, i.e. the
sum of all possible cuts. Before discussing their solution, it is useful to divide them into
three classes according to their cuts:

(i) master integrals with cuts only through one charm quark propagator (and the fake
particle with mass q2). A sample integral is shown in figure 2(a).

(ii) integrals where the cuts go through three charm propagators (see figure 2(b)).

(iii) integrals with both kind of cuts, i.e. one and three charm cuts (see figure 2(c)).

We would like to bring the system of differential equations in canonical form (or ϵ-form) [51]
and express the master integrals in terms of GPLs. Class II contains integrals beyond GPLs
such as the sunrise diagram in figure 2(b) with two unequal masses.

However, as observed already for the analytic calculation of the total rate at NNLO
presented in ref. [52], the contribution given by cuts through three charm quarks can be
neglected for realistic values of the ratio mc/mb. It corresponds to the decay channel
b → cc̄cℓν̄ℓ, which is rare and present only if 0 < ρ < 1/3. For mc/mb ≃ 0.25, the branching
ratio is very small, O(10−7), because of the phase-space suppression and totally negligible
compared to the current experimental accuracy.

Our strategy therefore is to solve the differential equations by considering only the cuts
with one charm quark and neglecting the cuts with three charm quarks. To this end, we can
effectively remove the masters in class II, while for class III we pick up only the one-charm
cut contributions in the boundary conditions.

After such simplifications, the number of master integrals reduces to 87 and we proceed
to find a basis transformation T(ρ, q̂2, ϵ) such that the masters in the new basis J = TJ̃

satisfy a set of differential equations in canonical form. We change variables from ρ and q̂2 to

x± = 1
2
(
1− q̂2 + ρ2 ± λ1/2(1, q̂2, ρ2)

)
, (2.8)

with 0 ≤ x− ≤ x+ ≤ 1 and λ(a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc. To find a rational
transformation T, we use Libra [53], which implements the Lee’s algorithm [54], in combination
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with Fermatica [55] to speed up the matrix transformations via the interface to the CAS
program Fermat.

As a first step, we find suitable transformations acting on the diagonal blocks that put
them into ϵ-form. At NLO, we observe that it is possible to bring the system of differential
equations in canonical form when written in terms of the variables x±, however at NNLO
this is not possible anymore. The eigenvalues of the residue matrices of some blocks are of
the form aϵ ± 1/2, with a an integer number. Balanced transformations can only raise or
lower the eigenvalues by an integer, so in order to bring such blocks into ϵ-form, we need to
apply an additional variable change. We find that all such eigenvalues with half-integers can
be removed by switching from x+ and x− to the variables u and v defined by

ρ = v, q̂2 = (1− uv)
(
1− v

u

)
, (2.9)

with 0 < v ≤ u ≤ 1. However, we find it convenient not to perform the variable transformation
globally because this would increase the degree of the poles in the residue matrices, making
the reduction to ϵ-form computationally more challenging. Instead we take advantage of
the Notations mechanism implemented in Libra. The idea is to work with a system still
expressed in terms of x+ and x−, but with the introduction of the notation

u2 = x−
x+

. (2.10)

In each subblock, all variables x+, x− and u appear. However the dependence of the
latter on x+ and x− is always taken into account when computing derivatives and it is
automatically simplified to first-order polynomial in u. After bringing all diagonal blocks
to ϵ-form, Libra automatically reduces the off-diagonal blocks to Fuchsian form and finds a
suitable transformation independent ofn x+ and x− to factorize out ϵ. In the end, we bring
the system of differential equation in canonical form:

dJ̃(u, v, ϵ) = ϵ dA(u, v)J̃(u, v, ϵ), (2.11)

where

A(u, v) =
14∑

i=1
Ai log(αi). (2.12)

Ai are 87 × 87 matrices with rational numbers and αi are the letters

α1 = 1− u, α2 = u, α3 = 1 + u,

α4 = 1− v, α5 = v, α6 = 1 + v,

α7 = u − v, α8 = u + v, α9 = 1− uv,

α10 = 1 + u2 − 2uv, α11 = 1 + u2 − uv, α12 = 1 + uv,

α13 = u − v − u2v, α14 = 2u − v − u2v. (2.13)

Since all letters are linear in v, we write the solution of the differential equation in terms
of GPLs in v and letters that might depend on u, as well as Harmonic polylogarithms in u.
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The boundary conditions to the differential equations are obtained using the auxiliary
mass flow method [56, 57] as implemented in AMFlow [58]. We compute all 87 master integrals
in four different kinematic points:

(q2/m2
b , m2

c/m2
b) ∈ {(1/5, 1/5), (4/25, 4/25), (1/32, 1/16), (1/16, 1/32)} . (2.14)

These points are sufficient to fix all boundary constants and at least have two additional
kinematic points to check the resulting integrals.2 The master integrals are computed with
sufficient numerical precision in order to obtain the boundary constants of the differential
equations written in terms of transcendental numbers using the PSLQ algorithm [59].

3 Results

After the evaluation of the master integrals (one-charm cuts), we insert them into the amplitude
and perform the wave function and mass renormalization in the on-shell scheme [60–64],
while we use MS for the strong coupling constant.

Our main results are the analytic expressions for the functions F0, F1 and F2 in the
differential decay rate in eq. (2.2). They are written in terms of GPLs depending on u and
v, as defined in eq. (2.9), which can be evaluated numerically to high accuracy, e.g. with
GiNaC [65] and PolyLogTools [66]. The explicit expressions for F0, F1 and F2 are given
as ancillary files [67].

Moments of the q2 spectrum are defined by

Qn(q2
cut) =

1
Γ0

∫
q2>q2

cut

(q2)n dΓ
dq2 dq2, (3.1)

where Γ0 = G2
F m5

b |Vcb|2/(192π3). The moments can be expressed as series expansions in αs:

Qn =
∑
i≥0

Q(i)
n

(
αs(µs)

π

)i

. (3.2)

From the expressions for Fi, we calculate the coefficients in the perturbative expansion via
one-dimensional numerical integrations of the functions Fi:

Q
(i)
n (q2

cut)
m2n

b

=
∫

q̂2>q̂2
cut

(q̂2)nFi(ρ, q̂2) dq̂2

=
∫ 1

umin

[
(1− uρ)

(
1− ρ

u

)]n (1− u2)ρ
u2 F

(
ρ, q̂2(ρ, u)

)
du, (3.3)

where
umin = 1

2ρ

[
1− q̂2

cut + ρ2 − λ1/2(1, q̂2
cut, ρ2)

]
, (3.4)

which reduces to umin = ρ for q̂2
cut = 0 . We also define the normalized q2 moments as

⟨(q2)n⟩q2≥q2
cut

= Qn(q2
cut)

Q0(q2
cut)

, (3.5)

2Aside from integrals in class III, here the last two points allow for the three-charm cut and thus are
not used.
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and the centralized moments as

q1(q2
cut) = ⟨q2⟩q2≥q2

cut
, qn(q2

cut) =
〈 (

q2 − ⟨q2⟩
)n 〉

q2≥q2
cut

forn ≥ 2. (3.6)

Moreover, with q̂n we denote q̂n = qn/m2n
b .

On-shell scheme. We now present our results for the centralized moments in the on-shell
scheme. We set the quark masses to mOS

b = 4.6GeV and mOS
c = 1.15GeV and numerically

evaluate the coefficients in the perturbative expansions for Qn, with n = 1, . . . . , 4. Afterwards,
we reexpand the ratios in eqs. (3.5) and (3.6) in αs up to second order. Our results for the
moments without cuts (q2

cut = 0GeV2) read

q̂1 = 0.2185
[
1 + 0.1276

(
α

π

)
+ 0.4460

(
α

π

)2
]

,

q̂2 = 0.02040
[
1 + 0.1382

(
α

π

)
+ 0.9197

(
α

π

)2
]

,

q̂3 = 1.1042× 10−3
[
1− 0.2271

(
α

π

)
+ 1.097

(
α

π

)2
]

,

q̂4 = 8.895× 10−4
[
1 + 0.1677

(
α

π

)
+ 1.591

(
α

π

)2
]

, (3.7)

which are in good agreement with the NNLO results presented in ref. [34]. For a cut of
q2

cut = 3GeV2, we obtain

q̂1 = 0.3022
[
1 + 0.06894

(
α

π

)
+ 0.3428

(
α

π

)2
]

,

q̂2 = 0.01151
[
1 + 0.1433

(
α

π

)
+ 1.209

(
α

π

)2
]

,

q̂3 = 5.1013× 10−4
[
1− 0.2171

(
α

π

)
+ 0.5447

(
α

π

)2
]

,

q̂4 = 2.857× 10−4
[
1 + 0.1634

(
α

π

)
+ 1.849

(
α

π

)2
]

. (3.8)

Kinetic scheme. We discuss now the impact of higher-order QCD corrections to q2

moments once a short-distance mass scheme is adopted for the quark masses. We concentrate
on the kinetic scheme employed in the global fits of refs. [8–10, 17, 68]. In this scheme the
on-shell mass of the bottom quark is replaced by the kinetic mass [64, 69–71] via the relation

mkin
b (µ) = mOS

b − [Λ(µ)]pert −
[µ2

π(µ)]pert
2mkin

b (µ)
− O

(
1

(mkin
b )2

)
, (3.9)

while the charm quark mass is converted to the MS scheme. At the same time, we include
the contribution from power corrections to the moments up to 1/m3

b (the relevant expressions
can be retrieved from [15, 27]). In the kinetic scheme, we redefine the HQE parameters
µ2

π and ρ3
D in the following way:

µ2
π(0) = µ2

π(µ)− [µ2
π(µ)]pert, ρ3

D(0) = ρ3
D(µ)− [ρ3

D(µ)]pert. (3.10)
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Note that µ2
π drops out for centralized q2 moments, leaving a dependence only on ρ3

D. The
perturbative version of µ2

π and ρ3
D up to O(α3

s) can be found in the appendix of ref. [64]. The
Wilsonian cutoff µ plays the role of scale separation between the short- and long-distance
regimes in QCD.

In order to present our benchmark predictions of the q2 moments for validation and
comparison, we report the series expansion for centralized moments with q2

cut = 0 GeV2 and
q2

cut = 4 GeV2. We adopt the HQE parameter definitions employed in refs. [8, 9, 72] (the
so-called perp basis). We use scheme (A) as defined in ref. [34]: in a first step the expressions
for centralized moments are obtained in the on-shell scheme where we retain terms up to
O(α2

s) at partonic level (1/m0
b) while we discard higher QCD corrections for the subleading

power corrections. Afterwards we apply the transition to the kinetic scheme.
We set the renormalization scale of the strong coupling constant µs = mkin

b and use
α

(4)
s (mkin

b ) as expansion parameter, i.e. we decouple the bottom quark from the running of αs,
and we reexpand the leading 1/mb term in α

(4)
s up to second order. We use the input values

mkin
b (1GeV) = 4.526GeV, mc(3GeV) = 0.989GeV,

µ = 1GeV, α(4)
s (mkin

b ) = 0.2186. (3.11)

In the following we present the results for the various contribution at leading order in the
1/mb expansion for two different values of q2

cut. We do not report the contribution from
power suppressed terms, however the terms originating from [ρ2

D(µ)]pert are included. Our
results for the moments for q2

cut = 0GeV2 read

q̂1 = 0.2329
[
1− 0.1524

(
αs

π

)
− 1.791

(
αs

π

)2
]

,

q̂2
2 = 0.02353

[
1− 0.516

(
αs

π

)
− 4.474

(
αs

π

)2
]

,

q̂3 = 0.001451
[
1− 1.007

(
αs

π

)
− 7.408

(
αs

π

)2
]

,

q̂4 = 0.001202
[
1− 0.8404

(
αs

π

)
− 8.724

(
αs

π

)2
]

. (3.12)

In case we apply a cut of q2
cut = 4GeV2 we obtain

q̂1 = 0.3503
[
1− 0.1628

(
αs

π

)
− 1.437

(
αs

π

)2
]

,

q̂2 = 0.01102
[
1− 0.7408

(
αs

π

)
− 6.236

(
αs

π

)2
]

,

q̂3 = 0.0005113
[
1 + 0.06583

(
αs

π

)
+ 4.269

(
αs

π

)2
]

,

q̂4 = 0.0002659
[
1− 0.5384

(
αs

π

)
− 11.69

(
αs

π

)2
]

. (3.13)
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We performed a comparison also with the corrections of order α2
sβ0 (the so-called BLM

corrections [73]) recently presented in table 1 of ref. [10] and found good agreement. From
the knowledge of the complete NNLO corrections, we observe that in the kinetic scheme the
non-BLM contribution to the moments at O(α2

s) has in general the opposite sign of the BLM
contribution, and is of comparable size. We conclude that the BLM approximation tends
to overestimate the NNLO corrections, especially in case one uses mc(3GeV) as reference
mass for the charm quark.

Let us now discuss the size of the NNLO corrections and the impact on the global fits for
Vcb. In figures 3 and 4 we show our results for the first four centralized moments as a function
of q2

cut. The predictions are compared with the Belle and Belle II measurements [18, 19]. At
variance with the numerical values given in eqs. (3.12) and (3.13), in the plots we adopt the
RPI basis from refs. [15, 16] and the values from the fit in ref. [17] for the HQE parameters,
mb and mc.

The green curves correspond to the LO prediction with power corrections up to 1/m3
b .

The blue curves include QCD NLO correction up to 1/m3
b , where we also include the αs

corrections to µ2
G and ρ3

D calculated in ref. [27]. The red curves, compared to the blue ones,
additionally include the NNLO corrections at leading order in 1/mb calculated in this article,
which are denoted by NNLO’ in the plots. The error bands are obtained by varying the
renormalization scale in the range mkin

b /2 < µs < 2mkin
b and choosing µs = mkin

b as reference
scale for the central value. We do not show the parametric uncertainty stemming from
the HQE parameters. The lower panel in each plot shows the ratio between the prediction
at NNLO and NLO.

In figure 3, we show the moments obtained with charm mass at a scale of 2 GeV, which
is the default choice in the fit in ref. [17]. We observe that the NNLO corrections shift the
prediction for q1 and q2 by a few percent in the low q2

cut range. For the third and fourth
moment the impact is larger and close to a 10–15% effects. The relative contribution at higher
values of q2

cut becomes larger since the LO central value tends to vanish close to the end point.
Note that the use of mc(2GeV) leads to accidentally small corrections at O(αs) for all the
moments. For q1 and q2 one can observe the overlap between the blue and green bands, while
the red lines are much more separated. Consequently, scale-variation alone does not provide a
reliable uncertainty estimate for the NLO prediction. In fact in this approximation, the scale
uncertainty comes only from the variation of αs. Since αs is multiplied by a small number in
case one uses mc(2GeV), a rather small uncertainty is obtained. Improving the prediction
from the NLO to the NNLO, we observe that the O(α2

s) coefficient is not suppressed anymore
and therefore NNLO error bands become larger than the NLO ones.

A better behaviour of the perturbative series is observed utilizing instead mc(3GeV) =
0.993GeV. The results are presented in figure 4. Notice that now the O(α2

s) corrections are
smaller than the O(αs) ones, indicating a much better behaved expansion. For the first and
second moment the scale uncertainty is reduced from NLO to NNLO and the error bands
overlap. Even though the error bands overlap for the third and fourth moment, we still
observe a larger uncertainty at NNLO. This can be explained by the fact that the third and
fourth moments, especially at high values of q2

cut, receive sizable contributions form the power
suppressed terms, which include perturbative corrections only up to NLO. The uncertainty is
not reduced in this case because cancellation of the µs dependence at partonic level is spoiled
by the lower accuracy in the perturbative expansion of the 1/m2

b and 1/m3
b terms.
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Figure 3. The first four q2 moments of B → Xcℓν̄ℓ as a function of the lower cut q2
cut. The heavy

quark masses are mkin
b (1GeV) = 4.562GeV and mc(2GeV) = 1.094GeV. For the HQE parameter

we adopt the RPI basis up to 1/m3
b [15, 16] and values from the fit in ref. [17]. Measurements from

Belle [18] and Belle II [19].

Another notable effect observed in figure 3 is that after inclusion of the NNLO corrections
the curves move to values higher than the experimental data points. This does not indicate
a tension between data and theory. In fact, since we use the HQE parameters from a fit
accurate only up to NLO at partonic level [17], we naturally expect the NLO curves to
show better agreement with the data. Notice that the blue curves include also the NLO
corrections at 1/m2

b and 1/m3
b , which was not the case in ref. [17]. The major effect in

global fits after including the NNLO corrections would be a change of the favoured values
of the HQE parameters in order to shift downwards the red curves and accommodate the
predictions with the data. In particular, since ρD has a major impact in the q2 moments
and enters with negative coefficients, a fit with NNLO corrections would prefer higher values
for ρD compared to ref. [17].

In addition to the analysis of the moments in the RPI basis, we analyzed also the
prediction with the fit setup from ref. [10] and using the perp basis for defining the HQE
parameters. We reached similar conclusions for what concerns the use of a charm mass at a
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Figure 4. The first four q2 moments of B → Xcℓν̄ℓ as a function of the lower cut q2
cut. The heavy

quark masses are mkin
b (1GeV) = 4.562GeV and mc(3GeV) = 0.993GeV. For the HQE parameter

we adopt the RPI basis up to 1/m3
b [15, 16] and values from the fit in ref. [17]. Measurements from

Belle [18] and Belle II [19].

scale of 2 GeV or 3 GeV: a charm mass at 3 GeV yields a better behaviour of the pertubative
series while a 2 GeV charm mass underestimates uncertainties at NLO. For completeness, we
report in figure 5 our results for a charm mass mc(2GeV) = 1.092GeV, the default scheme in
ref. [10]. We also mention that since the α2

sβ0 corrections overestimates the α2
s corrections, the

NNLO predictions shown by the red curves in figure 5 lie below the experimental data. A curve
showing the q2 moment prediction with only the α2

sβ0 corrections would appear above the red
curves, more in agreement with data. We conclude that the inclusion of the complete NNLO
corrections in the fit of [10] would bring the red curves upwards, towards the experimental
data, preferring a lower value for ρD (also in the perp basis the coefficient of ρD is negative).

Decay into a massive tau lepton. While the O(α2
s) contributions to the q2 spectrum

are most relevant for the decay into light leptons, our expressions also apply to inclusive
b → Xcτ ν̄τ decays. The first measurement of the ratio

R(X) = ΓB→Xτν̄τ

ΓB→Xℓν̄ℓ

(3.14)

– 12 –



J
H
E
P
0
5
(
2
0
2
4
)
2
8
7

0

2

4

6

8

0 2 4 6 8
0.96
0.98
1.00
1.02
1.04

0

2

4

6

8

0 2 4 6 8
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

0

2

4

6

0 2 4 6 8
0.4
0.6
0.8
1.0
1.2
1.4

0

20

40

60

80

100

120

0 2 4 6 8
0.4
0.6
0.8
1.0
1.2
1.4

Figure 5. The first four q2 moments of B → Xcℓν̄ℓ as a function of the lower cut q2
cut. The heavy

quark masses are mkin
b (1GeV) = 4.573GeV and mc(2GeV) = 1.092GeV. For the HQE parameter

we adopt the perp basis up to 1/m3
b [72] and values from the fit in ref. [10]. The central values are

obtained for a renormalization scale µs = mkin
b /2. Measurements from Belle [18] and Belle II [19].

was recently performed by the Belle II experiment [74]. The current level of experimental
precision is severely limited by systematic uncertainties related to the modelling of B →
Xτ/ℓν̄τ/ℓ decays. However, recent progress in the description of B meson decays into excited
charm meson states [75] will allow to address this issue in a data-driven way in the future,
making the inclusion of O(α2

s) corrections relevant.
In the on-shell scheme, our results for the integrated b → Xcτ ν̄τ decay rate without

cut on q2 agrees with ref. [29]. In the kinetic scheme, with mkin
b (1GeV) = 4.526GeV,

mc(3GeV) = 0.993GeV and at leading order in 1/mb, we obtain

R(Xc) = 0.241
[
1− 0.156

(
αs

π

)
− 1.766

(
αs

π

)2
]

. (3.15)

The perturbative convergence is similar to the case of the q2 moments. This prediction can
be improved by incorporating 1/mb suppressed terms at LO and NLO [38].
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Our results allow to obtain predictions for R(Xc) with a lower cut on q2. For q2
cut = 6GeV2,

we obtain

R(Xc)
∣∣∣
q2>6 GeV2

= 0.350
[
1− 0.782

(
αs

π

)
− 8.355

(
αs

π

)2
]

. (3.16)

The higher order corrections clearly become more relevant if a cut is introduced.
Furthermore, the ratio increases with increasing q2

cut, as terms proportional to m2
τ /q2 and

phase-space effects become less relevant. Consequently, it could be advantageous to perform
measurements of R(X) using a lower cut on q2 in the future, as it enriches the fraction
of B → Xτν̄τ decays, rejects backgrounds and cuts away the regions where the B → Xℓν

modelling is most problematic. In addition a lower cut on q2 allows for the improved inclusion
of momentum requirements on signal leptons due to detector thresholds and the reduction of
uncertainties associated to the modelling of final state radiation [76]. Most of the analysis
strategy of the Belle measurement of the q2 moments [18] could thus carry over to a future
measurement of R(X), with the exception of a cut on the difference of the missing energy
and the missing momentum in a given event.3

4 Conclusions

In this article we presented the complete NNLO QCD corrections to the q2 spectrum of
inclusive semileptonic B decays. The differential rate with respect to the leptonic invariant
mass q2 is obtained by calculating the imaginary part of the b → b 2-point function in the
presence of a constraint on q2, which can be implemented in a convenient way by replacing
the charged lepton-neutrino loop with a fake particle with mass q2. After reduction to
master integrals, we leverage the method of differential equations to calculate the decay rate
analytically. To this end, we restricted the calculation to the cuts through only one charm
line which allowed us to bring the system of differential equations in canonical form and
express the master integrals in terms of GPLs.

In light of the recent measurements of Belle and Belle II of the q2 moments, we studied
the impact of the NNLO corrections on the moments as a function of q2

cut. We observe
that the O(α2

s) corrections are sizable especially for the default choice of the charm mass
mc(2GeV) in the global fits of [10, 17]. The relative ratio to the NLO prediction reaches
the 1–5% level, depending on the cut on q2, while for the higher moments it is larger and of
about 10–20%. For a charm mass at the scale of mc(3GeV) we observe a better behaviour
of the perturbative series, with the expected reduction of theoretical uncertainties when
including the O(α2

s) corrections. We applied our results also to the decay into a tau lepton,
and proposed a measurement of R(Xc) using a lower cut on q2 to enrich the fraction of
B → Xcτ ν̄τ events. We provide our results for the q2 spectrum in electronic form as ancillary
files. They can be employed to incorporate the NNLO corrections into global fits of inclusive
semileptonic B-decays, in particular to take advantage of the recent measurements of q2

moments by Belle and Belle II.
3The main strategy to improve the q2 resolution in the Belle II measurement [19] can not be applied to

semitauonic decays as it depends on the presence of exactly one neutrino in the event.
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