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1 Introduction and summary

Historically, anomalies were first discovered by means of perturbative computations [1, 2].
The BRST formulation of gauge theories uncovered a cohomological, non-perturbative,
interpretation of anomalies as cocycles of ghost number 1 of the BRST operator acting on the
infinite-dimensional space of fields [3]. Later on it was understood that the anomaly cocycles
of both Yang-Mills and gravitational theories are simply related to (a natural extension of the)
secondary Chern-Simons characteristic classes [4, 5]. This beautiful topological understanding
of Yang-Mills and gravitational anomalies simplified enormously their computation in arbitrary
dimensions and for general gauge groups. It was also fruitful in many applications to string
theory [6] and holography [7, 8].

While the BRST cohomological interpretation of anomalies is universal, the link between
BRST anomaly cocycles and Chern-Simons classes is not. To date, neither Weyl anomalies
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nor supersymmetry anomalies have been associated with Chern-Simons invariants. This is
at least one reason why their computation and classification are both less comprehensive
and more intricate compared to Yang-Mills and gravitational theories [9–19]. In this article
we extend to conformal and supersymmetric theories the connection between anomalies and
secondary Chern-Simons classes. Specifically, we will show that the generalized Chern-Simons
invariant associated to the d = 4, N = 1 Lie superconformal algebra computes one of the
two independent anomalies of 4-dimensional superconformal gravity.

To put this result in the appropriate context, let us review the connection between Yang-
Mills anomalies and Chern-Simons polynomials as uncovered by Stora and Zumino [4, 20–22].1
Their idea is to introduce on d-dimensional space-time Md a generalized connection A with
values in the Lie algebra g of the gauge group: A is defined to be the sum of the gauge
field A and its corresponding ghost c,

A = c+A. (1.1)

They also introduced a generalized BRST operator δ

δ = s+ d, (1.2)

where s is the BRST operator and d the de Rham exterior differential acting on forms. A
is a generalized form of total degree — defined to be the sum of ghost number and form
degree — equal to +1.2 δ increases the total degree by 1. It is essential to keep in mind
that, unlike ordinary forms, generalized forms of total degree n greater than the space-time
dimension d do not in general vanish.

d and s are taken to anticommute with each other: hence the nilpotency of δ is equivalent
to the nilpotency of the BRST operator s. The cohomology of δ on the space of generalized
local forms is isomorphic to the cohomology of s modulo d on the space of local ordinary
forms. Therefore anomalies are obtained by integrating δ-cocycles with total degree d+ 1 on
the space-time manifold Md. These are local functionals of ghost number 1.

Given the generalized connection A and the generalized BRST operator δ one can define
the corresponding curvature

F = δA+A2, (1.3)

which is a generalized form of total degree +2 with values in the adjoint representation of
the gauge Lie algebra g. The generalized curvature satisfies the Bianchi identity

δF + [A,F ] = 0, (1.4)

by virtue of the nilpotency of δ. Therefore, when d is even, g-invariant polynomials P d
2 +1(F )

of F of degree d
2 + 1 are δ-cocycles of total degree d + 2

δ P d
2 +1(F ) = 0. (1.5)

1In appendix A we review the details of the relation between the Stora-Zumino formulation of anomalies
by means of generalized forms and the so-called “two-step descent” procedure in which one extends ordinary
forms to higher-dimensions.

2Generalized forms Ωn =
∑

p+q=n
Ω(p)

q of total degree n are the sum of ordinary forms Ω(p)
q of different

form degrees p and ghost numbers q, such that q + p = n.
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Because of the curvature definition (1.3), P d
2 +1(F ) is also δ-exact

P d
2 +1(F ) = δ Qd+1(A,F ), (1.6)

where Qd+1(A,F ) are the celebrated (generalized) Chern-Simons polynomials. They are
(non-gauge invariant) generalized forms of total degree d+ 1. The dependence of Qd+1(A,F )
on the generalized connection A and curvature F is just the same as the dependence of
ordinary Chern-Simons polynomials in d+ 1 dimensions on the ordinary connection A and
curvature F . However, as stressed above, generalized Chern-Simons polynomials Qd+1(A,F )
do not in general vanish in d dimensions.

The relevance of Chern-Simons polynomials in ordinary form cohomology is the following:
ordinary Chern-Simons forms Qd+1(A,F ) are not in general closed and, as such, they do not
define de Rham cohomology classes. However there are situations in which some ordinary
curvature characteristic class P d

2 +1(F ), “accidentally” vanishes on manifolds Mn of dimension
n ≥ d+ 2: in that case the corresponding Qd+1(A,F ) is closed and it defines a characteristic
class on Mn of form degree d + 1, which is called secondary for this reason.

Going back to the BRST cohomology, the central observation of Stora and Zumino was
that, for Yang-Mills (and gravitational [23]) gauge theories, the generalized curvature F is
actually “horizontal”, which means that its higher ghost number components vanish

F = F. (1.7)

It follows that

P d
2 +1(F ) = P d

2 +1(F ) = 0, (1.8)

as ordinary forms of degree d+ 2 do vanish in dimension d. Hence, in the Yang-Mills BRST
context one finds oneself in the precise analogue of the situation in which ordinary secondary
characteristic classes arise in ordinary form cohomology: the (“primary”) characteristic class
P d

2 +1(F ) vanishes and hence the generalized secondary Qd+1(A,F ) is δ-closed

δ Qd+1(A,F ) = 0. (1.9)

By integrating Qd+1(A,F ) on Md one obtains an anomaly cocycle. For Yang-Mills and
gravitational theories all anomaly cocycles can be obtained in this way [24].

The basic novelty one encounters when considering either supersymmetry or conformal
symmetries is that the generalized curvature F defined by the corresponding BRST transfor-
mations ceases to be horizontal. Characteristic classes P d

2 +1(F ) are then not guaranteed to
vanish and this potentially negates the relevance of the generalized Chern-Simons polynomial
Qd+1(A,F ) to anomalies.

Although the non-horizontality of the generalized F is a generic feature of both conformal
and supersymmetry transformations, let us illustrate how it comes about in d = 4 , N = 1
conformal supergravity, the field theory we are going to explore in this paper [25–29].3

3For a recent review of 4-dimensional N = 1 superconformal gravity see also [30]. The BRST formulation
of the same theory was first worked out in [31].
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Conformal supergravity is a “pure gauge” theory: it has neither auxiliary nor “matter” fields.
Its gauge fields are 1-forms with values in the appropriate bundles

Ai = { ea, ωab, b, a, fa, ψα, ψ̃α}, (1.10)

each one in correspondence with the generators of the su(2, 2|1) Lie superconformal algebra:4

Ti = {P a, Jab, W, R, Ka, Qα, Sα}. (1.11)

When one attempts to define the analogue of the generalized connection (1.1) one faces a
complication which is common to all theories which include gravity: the ghosts associated to
translations P a are not valued in the frame bundle but are instead valued in the space-time
tangent bundle. We denote the BRST ghosts of conformal supergravity as:

ci = {ξµ, Ωab, σ, α, θa, ζα, ηα}. (1.12)

Diffeomorphisms must therefore be treated differently to the rest of the Lie superalgebra
transformations. As we will explain in section 2, this has a twofold effect [31–34]. First, one
has to introduce a novel BRST operator ŝ, “equivariant” with respect to diffeomorphisms

ŝ = s+ Lξ, (1.13)

where Lξ denotes the Lie derivative along the vector field ξµ. The sign in (1.13) is chosen so that
the (diffeomorphism) equivariant ŝ includes all transformations other than diffeomorphisms.
Correspondingly, the generalized connection (1.1) is defined to be5

Ai = {ea, Ωab + ωab, σ + b, α+ a, θa + fa, ζα + ψα, ηα + ψ̃α}. (1.14)

In other words, the ghost number 1 component of the generalized connection along P a is taken
to vanish. Let us observe that the (1-form) components of the generalized connection along
the bosonic (fermionic) generators of the Lie superalgebra are respectively anti-commuting
(commuting). Hence it is convenient to introduce

A ≡ Ai Ti (1.15)

and take (fermionic) bosonic generators Ti to be (anti)commuting: in this way A is anti-
commuting.

Supersymmetric theories require one more step: the definition of the generalized BRST
operator (1.2) must be modified to include one third term [33]

δ = ŝ+ d− iγ . (1.16)
4We will use the index i as the index running along all the 24 generators Ti of su(2, 2|1). P a and Jab are

the generators of translations and Lorentz transformations, the Weyl (dilatation) generator is denoted by
W , the R-symmetry charge by R, Ka denotes the special conformal generators, Qα and Sα are, respectively,
the supersymmetry charges and conformal supersymmetry charges. Our conventions for the d = 4, N = 1
superconformal algebra are reviewed in appendix B and properties of the supertrace in appendix C.

5We will denote with bold letters the generalized forms: Ai for the generalized connections and F i for the
generalized curvatures.
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iγ is the nilpotent operator which contracts an ordinary form along the commuting vector
field γµ bilinear in the supersymmetry ghost ζα:6

γµ ≡ ζ̄ Γµ ζ. (1.17)

Nilpotency of the generalized δ is equivalent to that of the BRST operator s:7

δ2 = 0 ⇔ s2 = 0. (1.20)

Given these ingredients, one proceeds to define the generalized curvatures associated
to the su(2, 2|1) Lie superconformal algebra exactly as in (1.3)

F = δA+A2, (1.21)

where
F ≡ F i Ti (1.22)

is a commuting generalized form of total fermionic number +2 which satisfies the generalized
Bianchi identity (1.4). However, unlike the Yang-Mills and gravitational case, F does not
turn out to be “horizontal”: rather one finds that

F = F + λ0. (1.23)

F is an ordinary 2-form of ghost number 0 and λ0 is a (non-vanishing) 1-form with ghost
number 1, with values in the Lie superconformal algebra su(2, 2|1). We will denote the
components λi0 of λ0 as

λi0 = {λP0 , λJ0 , λW0 , λR0 , λ
K
0 , λ

Q
0 , λ

S
0 }, (1.24)

following the same order of the generators as in eq. (1.11).
The emergence of a non-vanishing non-horizontal curvature component λ0 is intimately

tied with presence of the extra term iγ in the definition of the generalized BRST operator (1.16):
this term encodes the effect of coupling supergravity to YM gauge fields. The BRST
transformations of the ghost fields are — for both bosonic YM and conformal supergravity —
“geometric”: they are fixed by the structure constants of the underlying Lie (super)algebra and
nilpotency is ensured by the (super)Jacobi identities of the corresponding Lie (super)algebras.
In the bosonic YM and gravitational case, the BRST transformation rules for the ghosts
also uniquely fix the familiar, “geometric” BRST transformation rules for the connections:
those transformation rules are not deformable. In short, the BRST transformations of both

6In this article Dirac gamma matrices are denoted by Γµ to avoid confusing them with the ghost bilinear γµ.
7This is a consequence of the BRST transformation of the diffeomorphism ghost ξµ

s ξµ = −1
2Lξξ

µ + γµ (1.18)

and the relations, valid on forms, for ŝ, d, and iγ

ŝ2 = Lγ , Lγ = {d, iγ}, i2γ = 0. (1.19)
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ghosts and connections are, for both YM and gravity, completely dictated by the geometry
of the underlying Lie algebra. This ceases to be true in the supersymmetric context: as
we will explain in section 2, nilpotency of the BRST operator on the ghosts of conformal
supergravity determines the transformations of the connections only up to 1-forms of ghost
number 1 which are iγ-closed — precisely because of the presence of iγ in the definition of
the generalized δ, eq. (1.16). These 1-forms of ghost number 1 are the λ0’s which appear
in eq. (1.23), which indeed do satisfy

iγ(λ0) = 0. (1.25)

Eq. (1.25) restricts the general form of the λ0’s to be

λ0 = ea ζ̄ ΓaX, (1.26)

where X has ghost number 0 and is valued in su(2, 2|1). X is fixed by the requirement
of nilpotency of BRST transformations on connections themselves, as we will explain in
sections 2 and 3: it turns out to be non-vanishing.

Nilpotency of BRST transformations on gauge fields has one more implication: the
ghost number 0 components F i of the generalized curvatures must satisfy certain constraints,
which we will also review in section 2. These are supersymmetric extensions of the familiar
zero-torsion constraint of general relativity. Superconformal gravity constraints are algebraic
equations for the gauge fields {ωab, fa, ψ̃α}, which can be solved to express them locally in
terms of the physical fields {ea, b, a, ψα}. It is an interesting fact that the non-horizontal
components λi0 take values only in the “unphysical” directions {Jab, Ka, Sα} of the Lie
superconformal algebra su(2, 2|1).

A priori, the lack of horizontality of the generalized curvature jeopardizes the Stora-
Zumino mechanism to produce BRST anomaly cocycles. However, horizontality of the
generalized curvature is a sufficient but not necessary condition for the existence of secondary
Chern-Simons classes. It is the vanishing of the characteristic classes P3(F ) that is strictly
necessary for the secondary classes to emerge. We therefore searched for su(2, 2|1) invariant
cubic polynomials and found that there exists only one of them, up to a multiplicative
constant. We computed the corresponding Chern class P3(F )

P3(F ) = d̃ijk F
i F j F k (1.27)

and found, remarkably, that it indeed vanishes — despite the non-horizontality of F ! The cor-
responding Chern Simons generalized form Q5(A,F ) does therefore define, upon integration
over space-time M4, a superconformal anomaly which we compute explicitly, in components
and exactly to all orders in the number of fields, and present in section 4, eqs. (4.13)–(4.16).

The Chern-Simons anomaly cocycle Q5(A,F ) is, by construction, invariant under rigid
su(2, 2|1) transformations. It depends on all the ghosts (1.12) of the su(2, 2|1) Lie superalgebra,
with the exception of the diffeomorphism ghosts ξµ.8 In particular it also depends on the ghosts

8There are no diffeomorphism anomalies in 4-dimensions, so this is expected from the start. In our scheme,
the functional space does not contain ξµ at all. In other dimensions, diffeomorphism anomalies would translate
into Lorentz anomalies.
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Ωab and θa associated, respectively, with local Lorentz and special conformal transformations.
In section 5 we will show that one can add BRST-trivial cocycles to the Chern-Simons
cocycle Q5(A,F ) to obtain equivalent anomaly cocycles Qequiv5 (A,F ) (eq. (5.50)) which are
independent of the Lorentz ghosts Ωab. We call the Ωab-independent representatives of the
anomaly “Lorentz-equivariant” cocycles. They lead to anomalous Ward identities which
involve a symmetric, conserved but not traceless stress-energy tensor Tµν .

In section 5 we will show that one can also choose representatives of the anomaly, which
beyond being independent of Ωab, are also independent of θa. Such anomaly cocycles do not
depend on the Weyl gauge connection b either: this is so since b and (a suitable completion
of) θa ea form a BRST trivial pair.

It should be emphasized that the Ωab and θa independent cocycles are no longer invariant
under the full rigid su(2, 2|1) Lie superconformal algebra. They lead to anomalous Ward
identities which involve the symmetric, conserved but not traceless stress-energy tensor
Tµν , the R-symmetry current Jµ and the supersymmetry current Sµ associated with the
supersymmetry Qα. These are the (anomalous) Ward identities which are usually discussed
in the literature.

We will show that the superconformal Chern-Simons anomaly cocycle is equivalent
to the so-called a-anomaly of superconformal gravity. We select among all the equivalent
Lorentz equivariant and θa independent cocycles a particular one that simplifies the explicit
expressions for the supersymmetry anomalies. We write it down in components, to all order
in the number of both fermionic and bosonic fields, in appendix D.

The rest of this paper is organized as follows:
In section 2 we review the BRST formulation of d = 4 , N = 1 superconformal gravity,

which was first worked out in [31], by following a slightly different logic and formalism.
This will allow us to describe the ingredients relevant to the computation of the anomaly.
Our formalism will keep manifest the underlying covariance under the full Lie superalgebra
su(2, 2|1) of the equations that determine the λi0’s. In this section we also take the opportunity
to elucidate why and how translations P a must be dealt with differently than other symmetries
in the BRST context and why this entails, in the supersymmetric case, introducing the iγ
term in the definition of the generalized BRST operator.

In section 3, which also reproduces results already presented in [31], we describe how to
solve the BRST nilpotency equations that both determine λi0’s and generate the constraints
on the ordinary curvatures of superconformal gravity. Our presentation possibly clarifies why
the solution to the BRST nilpotency conditions found in [31] is the only possible solution.
We solve the constraints to express the fields {ωab, fa, ψ̃α} explicitly in terms of the physical
fields {ea, b, a, ψα}. The main purpose of this section of pointing out that while the
superconformal algebra uniquely fixes the BRST rules of the ghosts, it determines the BRST
rules of the gauge fields only up to the λ0 terms, which in turn are fixed by BRST nilpotency.

In section 4 we describe the unique completely symmetric (in the graded sense) su(2, 2|1)
invariant tensor and show that the corresponding generalized characteristic class P3(F )
vanishes. To perform this latter computation we made use of FieldsX [35]. We then present
the ensuing secondary generalized Chern-Simons class which captures a superconformal
anomaly. This is our main result.

– 7 –



J
H
E
P
0
5
(
2
0
2
4
)
2
7
7

In section 5 we describe an anomaly cocycle equivalent to the Chern-Simons su(2, 2|1)
cocycle, which is independent of Ωab, θa and b. We show, by working out its explicit form,
that it is equivalent to the superconformal a-anomaly.

In section 6 we draw our conclusions and describe open problems.

2 BRST formulation of conformal supergravity

As mentioned in the Introduction, d = 4, N = 1 conformal supergravity is a “pure” gauge
theory: all of its fields are 1-form connections taking values in the appropriate bundles

Ai = {ea, ωab, b, a, fa, ψα, ψ̃α}, (2.1)

in correspondence to the generators of the su(2, 2|1) Lie superconformal algebra:

Ti = {P a, Jab, W, R, Ka, Qα, Sα}. (2.2)

The generators Ti are graded:9 they satisfy (anti)commutation relations

[Ti, Tj ] = fi
k
j Tk, (2.3)

where fikj are the structure constants of the d = 4 ,N = 1 Lie superconformal algebra.10

The BRST formulation of conformal supergravity differs from that of pure (super)
Yang-Mills theories in one crucial aspect. Let us delve a bit deeper into this distinction.

In (super)YM theories, one introduces in correspondence to each generator Ti a ghost
field ci with opposite statistics −(−1)|i|. The resulting Lie superalgebra valued combination

c = ci Ti (2.4)

is anti-commuting, and its BRST transformations are completely fixed by the structure
constants of the Lie superalgebra:

s c = −1
2 [c, c], (2.5)

or, equivalently,

s ci = −1
2 f̃j

i
k c

j ck, (2.6)

where, as reviewed in appendix B,

f̃ i
j k ≡ (−)|j|(|k|+1)f i

j k. (2.7)

The (super)Jacobi identity

[c, [c, c]] = 0 (2.8)
9We denote by (−1)|i| the grading of the generator Ti, i.e. (−1)|i| = +1 for the bosonic generators

{P a, Jab, W, R, Ka} and (−1)|i| = −1 for the fermionic ones {Qα, Sα}. We denote with the bracket the
(anti)-commutator: [Ti, Tj ] ≡ TiTj − (−)|i||j|TjTi.

10We list them in appendix B.

– 8 –



J
H
E
P
0
5
(
2
0
2
4
)
2
7
7

ensures that the BRST rules (2.6) are nilpotent. Furthermore, the BRST transformations
for the (anti-commuting) Lie superalgebra valued connection

A = Ai Ti (2.9)

are also completely specified by the structure constants of the Lie superalgebra

sA = − d c− [A, c]. (2.10)

For conformal supergravity — and for any theory which includes gravity — one has to
proceed differently. In correspondence to diffeomorphisms one introduces an anti-commuting
ghost ξµ which is a vector field: there is no ghost valued in the P a sub-algebra. The BRST
operator s acts on generic tensor fields ϕ via the Lie derivative Lξ11

s ϕ = −Lξ ϕ+ other gauge transformations, (2.11)

and on the ghost ξµ as follows

s ξµ = −1
2 Lξ ξµ + γµ. (2.12)

γµ is a quadratic function of the other ghosts whose precise form depends on the details of the
gravitational theory one considers. We are going to exhibit its expression for superconformal
gravity momentarily. Nilpotency of s requires that

s γµ = −Lξ γµ. (2.13)

The way to deal with this situation is to disentangle translations from the other local
symmetries. One introduces an “equivariant” (with respect to diffeomorphisms) BRST
operator ŝ, whose action is defined on the smaller functional space of ghosts and connections
which does not include ξµ:

ŝ = s+ Lξ. (2.14)

ŝ involves only the ghosts cI corresponding to the gauge transformations other than trans-
lations. In the superconformal case these ghosts are:

cI = {Ωab, σ, α, θa, ζα, ηα}. (2.15)

Nilpotency of s is equivalent to the following relation for the equivariant BRST operator:

ŝ2 = Lγ , (2.16)

valid on the reduced field space which does not involve ξµ.
The action of ŝ on the ghosts cI cannot be simply defined by truncating the BRST

transformation rule for the ghosts (2.6) to the cI : since the {TI}’s do not span a subalgebra,
the truncated BRST transformations

ŝ0 c
I = −1

2 f̃J
I
K c

J cK (2.17)

11The minus sign in front of the Lie derivative is traditional in a certain stream of literature.
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would not be in general nilpotent. Indeed, let {i} = {a, I} be the index running along the
full Lie superalgebra and a the index running along the translations subalgebra: the Jacobi
identity relevant for the nilpotency of (2.17) writes

f̃J
I
K f̃L

J
M = −f̃aIK f̃LaM . (2.18)

Hence
ŝ2

0 c
I = −f̃J IK ŝ0 c

J cK = −f̃aIK γa cK , (2.19)

where we introduced the ghost bilinear with values in the translations subalgebra

γa ≡ 1
2 f̃L

a
M cL cM . (2.20)

We need therefore to introduce a suitable deformation of ŝ0. One can start from the ansätz,
dictated by ghost number conservation, which includes a term proportional to the gauge
connection AI :

ŝ cI = ŝ0 c
I + iγ(AI) = −1

2 f̃J
I
K c

J cK + iγ(AI), (2.21)

where γ = γµ ∂µ is the ghost number 2 vector field which appears in the BRST transformations
of the diffeomorphism ghost (2.12) and iγ is the contraction of a form with the commuting
vector field γµ. Note that

i2γ = 0, (2.22)

since γµ is commuting. Moreover we must impose

ŝ γµ = 0, (2.23)

as consequence of (2.13). Therefore

ŝ2 cI = −f̃J IK ŝ cJ cK + iŝγ (AI)− iγ (ŝAI) =
= −f̃aIK (γa − iγ e

a) cK − iγ(ŝ AI + f̃j
I
K A

j cK). (2.24)

We see therefore that we must take

γa = 1
2 f̃L

a
M cL cM = iγ e

a (2.25)

and
ŝ AI = −d cI − f̃j

I
K A

j cK + λI0, (2.26)

where λI0 are iγ-closed 1-forms which take value in the Lie superalgebra

iγ(λI0) = 0. (2.27)

Eq. (2.25) fixes the vector field γµ which appears in the BRST transformation (2.12) of the
ghost ξµ in terms of the structure constants of the Lie superalgebra: for su(2, 2|1) we obtain12

γµ = ζ̄ Γa ζ eµa. (2.28)
12The γ deformation is a signal of topological gravity [33] or supersymmetry [32, 34]. Note that in the bosonic

conformal case, f̃L
a

M = 0, because no commutator of generators TI gives P a (unlike the supersymmetric
case, where {Q,Q} ∼ P ). Therefore, even if the truncation does not define an algebra, the truncated BRST
operator is nilpotent and the γ deformation does not arise.

– 10 –



J
H
E
P
0
5
(
2
0
2
4
)
2
7
7

Condition (2.13) fixes the BRST rule for the connection ea, which is therefore “universal”
for supergravity theories:

ŝ ea = −Ωab eb − σ ea − 2 ζ Γaψ. (2.29)

In conclusion, the requirement of nilpotency of the BRST transformations on both the cI ’s
ghosts and the diffeomorphisms ghost ξµ completely determines the BRST transformations
of the ghosts, eqs. (2.12) and (2.21), which can be read off from the structure constants
of the gauge superalgebra. On the other hand, nilpotency of the BRST transformations
on ghosts determines BRST rules for the connections AI , eqs. (2.26), only up to iγ-closed
1-forms λI0: we will see shortly that the λI0 are determined by the requirement of nilpotency
of s on the connections AI : the λI0’s do not have an immediate interpretation in terms of
the geometry of the gauge superalgebra.

We can now introduce the generalized-connection Ai:

Ai = Ai + ci, (2.30)

where i runs along all the generators Ti of the Lie superalgebra, with the understanding that
the generalized connection along translations has no ghost number 1 component

Aa = ea. (2.31)

Moreover eqs. (2.21) and (2.26), dictate the form of the generalized BRST operator

δ = ŝ+ d− iγ , (2.32)

which differs from the Stora-Zumino analogue (1.2) for the iγ term, which encodes, in the
BRST formalism, the “coupling” to supergravity. Generalized curvatures are defined in terms
of the generalized differential δ and generalized connections in the usual way

F i = δAi + 1
2[A,A]i = δAi + 1

2 f̃j
i
kA

jAk. (2.33)

We can compute F by making use of eqs. (2.21) and (2.26) to obtain

F i = F i + λi0. (2.34)

In other words the generalized-curvatures fail to be “horizontal” because of the λI0 which
were left undetermined by the condition of nilpotency of the BRST operator on the ghosts.13

One must therefore investigate the restrictions on the λI0’s coming from nilpotency of BRST
transformations on the generalized connections:

δ2Ai = δ2Ai = −iγ(F i) + ŝ λi0 − f̃j
i
k λ

j
0 c

k = 0, (2.35)

where F i are ordinary 2-form curvatures

F i = dAi + 1
2 f̃j

i
k A

j Ak. (2.36)

13Note that the BRST transformation rules for the vierbein, eq. (2.29), which are universal, imply however
that λP

0 = 0.
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Equation (2.35) shows that not all the λi0’s can be taken to vanish, unless we impose F i = 0
for all curvatures, which would eliminate all propagating degrees of freedom from the theory.

As we made clear, eq. (2.35) is quite general: it is valid for any gravitational theory based
on a Lie superalgebra with generators {Ti}. A solution of this equation for the d = 4, N = 1
superconformal algebra su(2, 2|1) was found in [31]. This solutions for the λi0’s also requires a
set of constraints on the ordinary (both bosonic and fermionic) curvatures F i. We conducted
with the help of FieldsX [35] a somewhat more systematic analysis of (2.35), which we
summarize in section 3 with the intent to ascertain if more general solutions exist. We
recovered the same solution of [31] and nothing more.

Let us conclude this section by presenting the details of this solution. The BRST rules
for the ghosts of su(2, 2|1) can be read off from (2.12) and (2.21):

s ξ = −1
2Lξ ξ + ζ Γa ζ eµa, (2.37a)

ŝΩab = iγ(ωab)− (Ω2)ab + 2 i ζ Γab η, (2.37b)
ŝ σ = iγ(b) + 2 i ζ η, (2.37c)
ŝ α = iγ(a) + 2 ζ Γ5 η, (2.37d)
ŝ θa = iγ(fa)− Ωab θb + σ θa + η Γa η, (2.37e)

ŝ ζ = iγ(ψ)−
(1
4 Ωab Γab +

1
2 σ − 3

2 i αΓ5

)
ζ, (2.37f)

ŝ η = iγ(ψ̃)−
(1
4 Ωab Γab −

1
2 σ + 3

2 i αΓ5

)
η + i θa Γa ζ. (2.37g)

The BRST rules for the connections follow from (2.29) and (2.26):14

ŝ ea = −Ωab eb − σea − 2 ζ Γa ψ, (2.38a)
ŝ ωab = −(dΩab + ωacΩcb − ωbcΩca)− 2 e[aθb] + 2 i (ψ Γabη + ζ Γab ψ̃) + (λJ0 )ab, (2.38b)
ŝ b = −dσ − 2 eaθa + 2 i (ψ η + ζ ψ̃) + λW0 , (2.38c)
ŝ a = −dα+ 2 (ψ Γ5 η + ζ Γ5 ψ̃) + λR0 , (2.38d)
ŝ fa = −(d θa + ωac θ

c − b θa)− Ωab f b + σfa + 2 η Γa ψ̃ + (λK0 )a, (2.38e)

ŝ ψ = −
(
d + 1

4 ω
abΓab +

1
2 b−

3
2 i aΓ5

)
ζ −

(1
4 Ωab Γab +

1
2 σ − 3

2 i αΓ5

)
ψ+

− i ea Γa η + λQ0 , (2.38f)

ŝ ψ̃ = −
(
d + 1

4 ω
ab Γab −

1
2 b+

3
2 i aΓ5

)
η −

(1
4Ω

ab Γab −
1
2 σ + 3

2 i αΓ5

)
ψ̃+

+ ifa Γa ζ + iθa Γa ψ + λS0 , (2.38g)

where the square brackets denote anti-symmetrization (with no numerical factors).

14We describe in the next section how to compute the λi
0’s by imposing BRST nilpotency on the gauge

fields. The resulting expression for the non-vanishing λi
0’s are listed in the next page.
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The explicit expressions for the two-form curvatures15

F i = {T a, R̃ab, F̃W , F̃R, T̃ a, ρ, ρ̃} , (2.39)

which include contributions from the full superconformal algebra, are:

T a = (d ea + ωab e
b + b ea) + ψ Γa ψ = D ea + ψ Γa ψ, (2.40a)

R̃ab = Rab(ω) + 2 e[af b] − 2 i ψ Γab ψ̃, (2.40b)
F̃W = d b+ 2 ea fa − 2 i ψ ψ̃, (2.40c)
F̃R = d a− 2ψ Γ5 ψ̃, (2.40d)

ρ =
(
d + 1

4 ω
ab Γab +

1
2 b−

3
2 i aΓ5

)
ψ + i eaΓaψ̃ = Dψ + i ea Γa ψ̃, (2.40e)

T̃ a = (dfa + ωab f
b − b fa)− ψ̃ Γa ψ̃ = Dfa − ψ̃ Γa ψ̃, (2.40f)

ρ̃ =
(
d + 1

4 ω
ab Γab −

1
2 b+

3
2 i aΓ5

)
ψ̃ − i fa Γa ψ = D ψ̃ − i fa Γa ψ, (2.40g)

where D is the covariant derivative with respect to Lorentz, Weyl and U(1)R symmetries.
The non-vanishing λI0’s turn out to be:

(λJ0 )ab = 2 ec ζ Γc ρab, (2.41a)

λS0 = 1
4 Γ5 Γmn Γc ζ F̃Rmnec, (2.41b)

(λK0 )a = −i ec ζ ΓcΓb ρ̃′ab, (2.41c)

where we defined

ρ ≡ 1
2 ρab e

a eb, ρ̃ ≡ 1
2 ρ̃ab e

a eb, F̃R ≡ 1
2 F̃

R
ab e

a eb, (2.42)

and introduced the “modified” 2-form curvatures

R̃′ab = R̃ab − 2 ee ψ Γc ρab, (2.43a)

ρ̃′ = ρ̃− 1
4 Γ5 Γmn Γc ψF̃Rmn ec, (2.43b)

T̃ ′a = T̃ a + i ec ψ Γc Γb ρ̃′ab, (2.43c)

which have the property of transforming without derivatives of the supersymmetry ghost
ζ under BRST transformations.

Eqs. (2.35) which ensure the nilpotency of the generalized BRST operator δ on all
fields, are satisfied by the λi0’s in (2.41a)–(2.41c) only on the subspace of fields defined by
the set of constraints

T a = 0, (2.44a)
F̃W = −⋆F̃R, (2.44b)

15The ˜ on the superconformal curvatures R̃ab, F̃W and F̃R is meant to distinguish them from the standard
curvatures, Rab, d b and d a. The ˜ on ρ̃ and T̃ a is a reminder that these are the conformal partners of the
usual torsion T a and gravitino curvature ρ. ˜ should not be confused with the Hodge dual which we denote
by ⋆.
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Γa ρab = 0, (2.44c)
R̃′
µν = −F̃Wµν , (2.44d)

where R̃′
µν is the Ricci tensor constructed with the modified curvature R̃′ab:

R̃′
µν ≡ R̃′

µρ
ab eb

ρ eνa. (2.45)

As we will review in the next section, these constraints can be solved algebraically to express
the fields {ωab, ψ̃, fa} as local functions of the independent fields {ea, ψ, a, b}.

3 Non-horizontal components of the curvatures and constraints

This section, which can be skipped at a first reading and whose results reproduce those found
in [31], is devoted to solving eqs. (2.35). In the generalized form approach, the failure of
BRST nilpotency in the “big” field space of unconstrained generalized connections is the
failure of the generalized Bianchi identity:

δF + [A,F ] = δ2A, (3.1)

where δ is defined in (2.32). Since the BRST rules of the ghosts are nilpotent in the “big”
field space, the previous equation simplifies to

δF + [A,F ] = δ2A, (3.2)

or equivalently, in components,

δF i − f ikjA
j F k = δ2Ai. (3.3)

Filtering in the ghost number, one gets:

a) the Bianchi identities for the ordinary curvatures (ghost number zero);

b) the BRST transformation rules for the ordinary curvatures (ghost number one);

c) s2 on the gauge fields or equivalently the BRST transformation rules for the λi0’s (ghost
number two), and

d) the iγ-closeness of the λi0’s (ghost number three):

dF i − fk
i
j A

j F k = 0, (3.4a)
ŝ F i − fk

i
j c
j F k = −dλi0 + fk

i
j A

j λk0, (3.4b)
s2Ai = −iγ(F i) + ŝ λi0 − fk

i
j c
j λk0 = 0, (3.4c)

iγ (λi0) = 0. (3.4d)

The equations at ghost number two are the same as eqs. (2.35). The trilinear Fierz identity
for the commuting spinor ζ:

Γµ ζ ζ̄ Γµ ζ = 0, (3.5)
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together with eq. (3.4d), fixes the general structure of the λi0’s:

λi0 = ea ζ ΓaXi, for the bosonic fields, (3.6a)
λi0 = Xi Γa ζ ea, for the fermionic fields. (3.6b)

Xi is a zero-form of ghost number 0. When λi0 is associated to a bosonic generator, Xi is
a Majorana spinor; when λi0 is associated to a fermionic generator, Xi is a matrix acting
on the spinorial indices of ζ.

Eq. (3.4c) can be projected onto one component quadratic in the supersymmetry ghosts
ζ and one component linear in ζ. Let us therefore correspondingly separate the part S in the
BRST operator ŝ which is proportional to ζ and associated to local supersymmetry [34]:

ŝ = S + ŝ′. (3.7)

The projection of eq. (3.4c) onto the component linear in ζ becomes

ŝ′ λi0 −
∑
j ̸=ζ

f i
k j c

j λk0 = 0. (3.8)

This equation states simply that the λi0’s transform covariantly under all the transformations
of the superconformal algebra other than the supersymmetry transformations. The projection
of eq. (3.4c) onto the component quadratic in ζ, after taking into account eqs. (3.6a)–
(3.6b), writes

−iγ (F ′ i)− ea ζ Γa S X i − f i
k ζ ζ λ

k
0 = 0, (3.9)

where we introduced the “modified” curvatures

F ′ i ≡ F i − ec ψ ΓcXi. (3.10)

The dependence on the derivative of the ghost ζ in the BRST variation of F ′ i cancels
between the first term and the BRST variation of ψ. Hence the modified curvatures F ′ i

are supercovariant — i.e. their variations under (local) supersymmetry do not depend on
derivatives of the supersymmetry ghosts — if we take Xi proportional to the modified
curvatures themselves. The possible modified curvatures involved in each Xi are fixed by
superconformal covariance (3.8).16 In particular the mass dimension of Xi must be the
same as that of Ai increased by one half.

We already determined the BRST rule of the vierbein in eq. (2.29), which implies that
the corresponding λ0 vanishes:

λP0 = 0. (3.11)

Therefore T ′a = T a, and the nilpotency equation for the vierbein reads:

s2 ea = −iγ (T a)− 2 ζ̄ Γa λQ0 . (3.12)
16Weyl weights and R-charges of ghosts and connections are summarized in appendix B.
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λQ0 is necessarily proportional to the torsion, because the mass dimension of Xψ is 1 and
the torsion is the unique curvature with the required mass dimension. The most general
ansätz for λQ0 consistent with superconformal covariance is

λQ0 = 1
2 (t1 Tmnm Γn + t2 Tmn

p εmnpq Γ5 Γq) Γc ζ ec, (3.13)

where
T a = 1

2 Tmn
a em en. (3.14)

By plugging (3.13) into the nilpotency equation (3.12), one obtains

s2 ea = t2 e
b Tbc

c γa + t2 T
ac
c γ

β + 2 i t1 eb T abcγc − 2 i t1 eb T acb γc+
+ (1 + 2 i t1) eb Tbca γc − t2 e

a Tcb
b γc. (3.15)

Thus, BRST nilpotency on ea requires both the vanishing of the torsion

T a = 0 (3.16)

and of λQ0

λQ0 = 0. (3.17)

It follows that

ρ′ = ρ. (3.18)

The torsion constraint (3.16) can be algebraically solved for the spin connection, expressing
it in terms of ea, b and ψ:

ωµ
ab = 1

2 e
ν[a ∂[µ eν]

b] − 1
2 e

νa eρb eµ
c ∂[ν eρ]c + eµ

[a bb] + ψµ Γ[a ψb] + ψ̄a Γµ ψb. (3.19)

The torsion constraint is necessary to ensure BRST nilpotency in any supergravity theory,
independently of any equations of motion. Note that bosonic connections of conformal
supergravity have 48 off-shell degrees of freedom, while the fermionic connections have 24.
Since the spin connection has precisely 24 components, the torsion constraint (3.16) ensures
the matching between bosonic and fermionic degrees of freedom.

Let us turn to the λ0’s associated to the Lorentz, Weyl and R-symmetry generators.
Superconformal covariance dictates their form to be

(λJ0 )ab = ec ζ̄ Γc (x1 ρ
ab + x2 Γ5 ε

abmn ρmn), (3.20a)
λW0 = ec ζ̄ Γc (y1 Γab ρab + y2 Γ5 Γab εabmn ρmn), (3.20b)
λR0 = ec ζ̄ Γc (z1 Γ5 Γab ρab + z2 Γab εabmn ρmn). (3.20c)

Nilpotency of the BRST operator implies that the BRST variation of a constraint is a linear
combination of constraints. Hence

0 = ŝ T a +Ωab T b + σ T a = −(λJ0 )ab eb + λW0 ea + 2 ζ̄ Γa ρ. (3.21)
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By plugging the ansätz for λJ0 and λW0 into this equation, one obtains:

0 = ec ζ̄

(
Γa ρcb + x1

2 Γc ρba + x1
2 Γb ρac+

− x2 Γc Γ5 ε
abmn ρmn + 2 i y2 Γmn ηab ρmn+

+ i y1 Γ5 Γp εcmnp ηab ρmn − y1 η
c[m Γn] ηab ρmn

)
eb. (3.22)

This is equivalent to

0 = Γa ρcb + x1
2 Γc ρba + x1

2 Γb ρac (3.23)

and
x2 = 0, y1 = y2 = 0 ⇒ λW0 = 0. (3.24)

Eq. (3.23) is consistent with ρ not identically vanishing only if

x1 = 2, (3.25)

which in turns implies

0 = Γ[a ρbc]. (3.26)

This equation, which we will call fermionic constraint, is equivalently written as

Γa ρab = 0. (3.27)

From eqs. (3.26)–(3.27) and (3.20b)–(3.20c) we deduce that

λR0 = 0. (3.28)

A Majorana spinorial two-form ρ carries the following representation of the Lorentz group:

ρ ∼ 4 ⊕ 12 ⊕ 8, (3.29)

where 4 = (1
2 , 0)⊕(0, 1

2) is the Dirac representation, 8 = (3
2 , 0)⊕(0, 3

2) and 12 = (1
2 , 1)⊕(1, 1

2).
The fermionic constraint imposes 16 equations which put the 4 ⊕ 12 to zero.17

These 16 equations can be solved to express the conformal gravitino ψ̃ algebraically
in terms of the other fields:

ψ̃a =
i

2 ΓbD[bψa] −
i

12 Γa ΓbcD[bψc]. (3.30)

Therefore matching fermionic and bosonic degrees of freedom requires that 16 bosonic off-shell
degrees of freedom also be eliminated: we will see momentarily that these composite degrees
of freedom are the fa fields.

17The 4 corresponds to the spinor Γab ρab. The self-dual combination ⋆ρ+iΓ5 ρ is the 12 and the anti-self-dual
part ⋆ρ− iΓ5 ρ is the 4 ⊕ 8, where ⋆ρab ≡ 1

2 εabcd ρ
cd.
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Since eqs. (3.24) and (3.25) have determined the λ0 associated to Lorentz transforma-
tions (3.20a) to be

(λJ0 )ab = 2 ec ζ̄ Γc ρab, (3.31)

BRST nilpotency on the gravitino ψ is equivalent to

s2 ψ = −iγ (ρ)−
1
4 (λJ0 )ab Γab ζ = ρbc γ

b ec − 1
2 ec ζ̄ Γ

c ρab Γab ζ = 0, (3.32)

where ρ ≡ 1
2 ρbc e

b ec. One can verify that this equation is indeed satisfied by using both the
Fierz identity for ζ and the fermionic constraint (3.26) for ρ.

By taking the covariant derivative of the torsion we obtain

0 = DT a = Rab e
b + FW ea + 2 ψ̄ Γa Dψ = R̃ab e

b + F̃W ea + 2 ψ̄ Γa ρ, (3.33)

or in components18

R̃[mn
a
b] + δa[b F̃

W
mn] − 2 ψ̄[b Γaρmn] = 0. (3.34)

We call this equation Bianchi constraint, because it is a modified algebraic Bianchi identity
for R̃ab. This equation, together with the fermionic constraint, allows one to write the anti-
symmetric part of the Ricci tensor of R̃mnab in terms of the Weyl and fermionic curvatures as

1
2 R̃[ab] − F̃Wab + ψ̄c Γc ρab = 0, (3.35)

or equivalently, in terms of the modified superconformal Ricci tensor,

R̃′
ab − R̃′

ba = −2 F̃Wab . (3.36)

Superconformal covariance dictates the following form for λS0 :

λS0 = i

4
(
x ⋆F̃Rab + y F̃Wab

)
Γab Γc ζ ec +

i

4 z R̃
′ Γc ζ ec, (3.37)

where x, y, z are constants and

⋆F̃Rab =
1
2 εab

mn F̃Rab. (3.38)

We did not include a term proportional to R̃′
[ab] Γab in ansätz (3.37) since this term is

equivalent to the one proportional to F̃Wab thanks to eq. (3.36). Inserting (3.37) into the
BRST nilpotency equations for a and b, one arrives at

s2 a = −iγ
(
(1− x) F̃R + y ⋆F̃W

)
− 1

2 t R̃
′ γc e

c, (3.39a)

s2 b = −iγ
(
x ⋆F̃R + (1 + y) F̃W

)
− 1

2 t R̃
′ γc e

c. (3.39b)

18We take the last two indices of R̃mn,ab as valued in the Lorentz bundle.
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These equations impose the following constraint on the Weyl and R-symmetry superconformal
curvatures

F̃W = − ⋆F̃R, (3.40)
together with

y = x− 1, t = 0. (3.41)

We will call (3.40) the Weyl-chiral constraint. By plugging both (3.41) and the Weyl-chiral
constraint into eq. (3.37) we determine λS0 to be

λS0 = 1
4 Γ5 Γmn Γc ζ F̃Rmn ec. (3.42)

The BRST variation of the fermionic constraint leads to the equation for the Ricci
tensor of R̃′

ab

R̃′
ab = ⋆F̃Rab, (3.43)

which we will call the Ricci constraint. This equation, together with the Weyl-chiral constraint,
again implies eq. (3.36) for the antisymmetric part of the Ricci tensor of R̃′

ab, but it also
sets its symmetric part to zero.

The tensor R̃′
mn,ab has 6×6 = 36 components. It transforms in the following representation

of the Lorentz group:

R̃′
mn,ab ∼ 10s ⊕ 9s ⊕ 1s ⊕ 1′

s ⊕ 9a ⊕ 6a, (3.44)

where the suffix s (a) denotes that the representation is symmetric (anti-symmetric) with
respect to the exchange of the two pairs of indices of R̃′

mn,ab. 1s is the Ricci scalar R̃′,
1′
s its dual εmnab R̃′

mn,ab, 9s ⊕ 1s ⊕ 6a is the Ricci tensor R̃′
ab and 10s is the Weyl tensor

representation.
The Ricci constraint puts the 9s ⊕ 1s to zero and the 6a equal to F̃Wab . The Bianchi

constraint sets the 1′
s ⊕ 9a to zero, beyond also putting the 6a equal to the F̃Wab . The

independent components of R̃′
mn,ab are hence captured by the Weyl tensor 10s.

The 16 independent equations (3.43) associated to the Ricci constraint can be solved
algebraically for the 16 independent fµa:

fab ≡ eb
µ fµ

a = − 1
4 Rab +

1
24 R ηab +

1
4 (⋆F̃R)ab+

− 1
2 ψ̄

c Γb ρac −
i

2 ψ̄
c Γca ψ̃b +

i

2 ψ̄b Γca ψ̃
c + i

6 ηab ψ̄
c Γcd ψ̃d. (3.45)

In conclusion, the superconformal Lorentz curvature R̃′
mn

ab, upon constraints, describes the
10s Weyl tensor degrees of freedom of the physical (non-superconformal) curvature Rmnab.
The Ricci degrees of freedom of the physical (non-superconformal) Riemann tensor Rmnab,
which sit in the 9s⊕1s representation, are instead described by the symmetric part of fab. The
remaining independent (off-shell) bosonic curvatures are the physical (non-superconformal)
curvature tensors FWmn and FRmn.19

19Indeed, Rmn
ab, FW

mn, FR
mn, fab have, before constraints, respectively, 36, 6, 6 and 16 components, for a total

of 64 bosonic components. The Bianchi, Ricci and Weyl-chiral constraints impose (1+ 9+6)+ (1+9)+6 = 32
conditions. Of the 64− 32 = 32 free components, 20 are the components of the physical Riemann tensor, 6 are
the components of FR

mn and 6 those of FW
mn.
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Nilpotency of the BRST transformation for ωab

s2ωab = −iγ(R̃ab) + ŝ (λJ0 )ab +Ωac (λJ0 )cb + 2 i ζ̄ Γab λS0 (3.46)

is now ensured thanks to the Bianchi and Weyl-chiral constraints, along with expressions (3.31)
and (3.42) for λJ0 and λS0 . The nilpotency equation for ψ̃

s2ψ̃ = −iγ (ρ̃′)+ ŝ λS0 +
1
4 Ωab Γab λS0 +

1
2 σ λ

S
0 −

3
2 i αΓ5 λ

S
0 −

1
4(λ

J
0 )abΓabη+ i(λK0 )aΓaζ (3.47)

involves the yet to be determined λK0 , for which superconformal invariance dictates the
following ansätz:

(λK0 )a = −i x ec ζ̄ Γc Γb ρ̃′ab, (3.48)

with x constant. By plugging this expression into the nilpotency equation (3.47) one obtains

s2 ψ̃ = − iγ (ρ̃′) +
1
2 (ζ̄ Γ5 ρ̃

′
ab) Γab Γ5 Γc ζ ec − x ζ̄ Γc Γb ρ̃′ba Γa ζ ec+

− 1
2 ec ζ̄ Γ

c ρab Γab η +
1
2 (η̄ Γ5 ρab) Γab Γ5 Γc ζ ec. (3.49)

The ζη terms cancel out thanks to the fermionic constraint. The remaining terms ζ̄ζ terms
all vanish thanks to the identity

Γab ρ̃′ab = 0, (3.50)

which descends from the solution (3.30) of the fermionic constraint, if one also takes x =
1, that is

(λK0 )a = −i ec ζ̄ Γc Γb ρ̃′ab. (3.51)

Finally, the nilpotency equation for fa

s2fa = −iγ(T̃ a) + ŝ (λK0 )a +Ωab (λK0 )b − σ (λK0 )a + 2 η̄ Γa λS0 (3.52)

holds thanks to the Ricci constraint, which also ensures that the trace of the fa curvature
T̃ vanishes

T̃ ′
ab
a = 0. (3.53)

4 The Chern-Simons superconformal anomaly

When the constraints are satisfied, the superconformal generalized curvatures

F = F i Ti (4.1)

satisfy the generalized Bianchi identities

δF + [A,F ] = 0. (4.2)
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We can therefore construct generalized Chern classes of total degree 6 by considering cubic
polynomials of the curvatures

P3(F i) = d̃ijkF
iF jF k, (4.3)

which are superconformal invariant. From its definition, d̃ijk is a “completely symmetric”
(in the graded sense) tensor

d̃ijk = (−)|i||j| d̃jik, d̃ijk = (−)|j||k| d̃ikj . (4.4)

P3(F i) is superconformal invariant if d̃ijk is a superconformal invariant tensor, that is if
it satisfies:

fm
l
i d̃ljk + (−)|j||m|fm

l
j d̃ilk + (−)|m||k|+|m||j| fm

l
k d̃ijl = 0. (4.5)

Superconformal invariance of d̃ijk, together with the generalized Bianchi identity (4.2),
ensures that P3(F i) is δ-closed:

δP3(F i) = 0. (4.6)

We searched for solutions of eq. (4.5) with symmetry properties (4.4) and found a single
solution, up to a multiplicative constant:

P3(F i) = + 15 (F̃R)3 + 3 F̃R (F̃W )2 − 3
4εabcd F̃

W R̃ab R̃cd − 3
2 F̃

R R̃ab R̃
ab+

− 6 ρ̄ΓabΓ5 ρ̃ R̃ab + 60 i ρ̄ ρ̃ F̃R + 12 ρ̄Γ5 ρ̃ F̃
W − 12 i ρ̄ΓaΓ5 ρ T̃a+

+ 12 F̃R T a T̃a − 6 εabcd R̃cd T a T̃ b − 12 i ¯̃ρΓaΓ5 ρ̃ Ta. (4.7)

Since the super-covariant generalized curvatures are not horizontal

F i = F i + λi0, (4.8)

it is not “a priori” guaranteed that the BRST-invariant generalized polynomial P3(F i) gives
rise to a secondary generalized Chern-Simons class of degree 5, i.e. to an anomaly cocycle.
Since the non-horizontal components of the generalized curvatures are 1-forms, P3(F i) has,
in principle, components of form degrees 4 and 3:

P3 = P
(4)
2 + P

(3)
3 . (4.9)

However, it is easy to see that P (3)
3 = 0, due to the specific form of the superconformal

invariant (4.7) that we found, and the fact that only {λK0 , λJ0 , λS0 } are non-vanishing. Hence

P3(F i) = −3
4 εabcd (λ

J
0 )ab (λJ0 )cd F̃W − 3

2 (λJ0 )ab (λJ0 )ab F̃R − 6 ρ̄Γab Γ5λ
S
0 (λJ0 )ab. (4.10)

It is quite remarkable that, by taking into account both the expressions for λi0’s (2.41a)–(2.41c)
and the constraints on curvatures (2.44a)–(2.44d), this 4-form turns out to vanish

P3(F i) = 0. (4.11)
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The vanishing of P3(F i) triggers the Chern-Simons secondary class mechanism: the generalized
Chern-Simons polynomial of total degree 5 is an anomaly cocycle

P3(F ) = δ Q(5)(A,F ) = 0. (4.12)

The Chern-Simons polynomial is completely determined by the super-invariant tensor
d̃ijk and the structure constants f̃ ijk according to the universal formula

Q(5)(A,F ) = d̃ijkA
i F j F k − 1

4 f̃
i
mn d̃ijkA

mAnAj F k + 1
40 f̃

i
pq f̃

l
nj d̃ilkA

pAqAnAjAk.

(4.13)
If we denote by Q5,N the part of the Chern-Simons polynomial (4.13) of degree N in the
number of generalized forms A and F , we obtain the following explicit expressions, to all
orders in all the fermionic fields20

Q5;3 =+15a(F̃R)2 +2 F̃RbF̃W +a(F̃W )2+

− 1
2εabcdω

ab R̃cd F̃W− 1
4εabcd bR̃

ab R̃cd+

−ωab R̃ab F̃
R− 1

2 aR̃ab R̃
ab+

− 2 ρ̃ΓabΓ5ψR̃ab+2 ρ̄ΓabΓ5 ψ̃ R̃ab−2 ρ̄ΓabΓ5 ρ̃ωab+
+20iψρ̃F̃R− 20i ρ̄ ψ̃ F̃R+20i ρ̄ ρ̃a+
+4ψΓ5 ρ̃ F̃

W − 4 ρ̄Γ5 ψ̃ F̃
W +4 ρ̄Γ5 ρ̃b+

+8i ρ̄ΓaΓ5ψT̃
a− 4ifa ρ̄ΓaΓ5ρ+

+4ea F̃R T̃a− 2εabcd ea T̃ b R̃cd− 4iea ρ̃ΓaΓ5 ρ̃, (4.14)

Q5;4 =−4iψρ̃ab−8ψΓaρfaa−8ψ̃Γa ρ̃aea−
1
4ψΓaρfbωcdεabcd+

+1
4 ψ̃Γa ρ̃ebωcdεabcd+2iψΓab ρ̃aωab+

3
2 iψΓab ρ̃fcedεabcd+

− 1
2 iψΓab ρ̃ωceωdeεabcd−

1
4ψΓaΓbcρfaωdeεbcde+3ψΓ5 ρ̃f

aea+

−4iψΓ5Γaρfa b+
5
2 iψΓ5Γaρf bωab+4iψ̃Γ5Γa ρ̃ea b+

+7
2 iψ̃Γ5Γa ρ̃ebωab+ψΓ5ΓaΓb ρ̃faeb+

1
4 iψΓ5ΓbcΓaρfaωbc+

+1
4 iψ̃Γ5ΓbcΓa ρ̃eaωbc−4iρψ̃ab+2iaωabρΓab ψ̃+

− 3
2 ifcedεab

cdρΓab ψ̃+1
4 iωc

eωdeεab
cdρΓab ψ̃+ 1

16 iωabωefεcd
ef ρΓcdΓab ψ̃+

−3faeaρΓ5 ψ̃−2iψψ̃ρΓ5 ψ̃−10iψΓ5 ψ̃ρψ̃+

−faebρΓaΓbΓ5 ψ̃− 1
2εabcdψΓab ψ̃ρΓcd ψ̃+3faea bF̃R+

+3faebωab F̃R−
1
4 ω

abωa
cωbc F̃

R−3iψΓab ψ̃ωab F̃R−6ψΓaψfa F̃R+

+30ψΓ5 ψ̃aF̃
R+6ψ̃Γa ψ̃ F̃Rea+6iψψ̃ F̃R b− eaf

aaF̃W

20We simplified these expressions slightly by inserting the torsion constraint T a = 0.
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+1
2 faebωcdε

abcd F̃W− 1
8 ωabωc

eωdeε
abcd F̃W− 1

2 iψεabcdΓ
ab ψ̃ωcd F̃W +

−iψΓ5Γaψfa F̃W−2iψψ̃aF̃W+iψ̃ΓaΓ5 ψ̃ea F̃
W +

+2ψΓ5 ψ̃ bF̃
W−ψΓ5 ψ̃ω

ab R̃ab+iψΓ5Γaψf b R̃ab+

+iψΓab ψ̃aR̃ab+iψ̃ΓaΓ5 ψ̃e
b R̃ab− ebfaaR̃

ab− 1
4 aωa

cωbc R̃
ab+

+3
2 fced bεab

cd R̃ab+1
2 fce

eωdeεab
cd R̃ab+1

2 f
eecωdeεab

cd R̃ab− 1
4 f

eeeωcdεab
cd R̃ab+

− 1
8 bωc

eωdeεab
cd R̃ab− 1

2 iψψ̃εabcdω
ab R̃cd+εabcdψΓaψf b R̃cd+

+εabcd ψ̃Γa ψ̃eb R̃cd− 1
2 iεabcdψΓab ψ̃ bR̃cd+2iψ̃Γa ψ̃ψΓ5Γa ρ+

+10iψΓ5 ψ̃ψ ρ̃+2iψΓ5 ρ̃ψ ψ̃+1
2εabcdψΓab ψ̃ψΓcd ρ̃+

−2iψ̃Γ5Γa ρ̃ψΓaψ+2ψΓaψaT̃a+4ψΓ5 ψ̃e
a T̃a+

+iψΓ5ΓaψbT̃a+aea bT̃ a+aebωab T̃ a−2fbecedεabcd T̃ a+
1
2ebωc

eωdeεa
bcd T̃ a+

+1
2eb bωcdεa

bcd T̃ a− 1
2e

eωbcωdeεa
bcd T̃ a+εabcdψΓaψωcd T̃ b+

−iψΓ5Γaψωab T̃ b−2iεabcdψΓcd ψ̃ ea T̃ b, (4.15)

Q5;5 =−2fafbeced bεabcd−
4
5 fafbece

eωdeε
abcd+

+4
5 faf

eebecωdeε
abcd− 2

5 faf
eebeeωcdε

abcd+

+3
5 faeb bωc

eωdeε
abcd+1

5 fae
eωbeωc

lωdlε
abcd− 1

5 fae
e bωbcωdeε

abcd+

+1
5 f

eeaωbeωc
lωdlε

abcd+1
5 f

eea bωbcωdeε
abcd− 1

10 f
eeeωabωc

lωdlε
abcd+

− 1
5 f

eelωabωceωdlε
abcd− 1

40 bωa
eωbeωc

lωdlε
abcd+6iψψ̃faaea+

+iψψ̃faebωcdεabcd−
1
4 iψψ̃ωabωc

eωdeε
abcd−3ψ̃Γa ψ̃aea b+

−3ψ̃Γa ψ̃aebωab−2ψ̃Γa ψ̃ fbecedεabcd+
7
20 ψ̃Γa ψ̃ebωceωdeεabcd+

+1
2 ψ̃Γa ψ̃ eb bωcdεabcd−

23
40 ψ̃Γa ψ̃ eeωbcωdeεabcd+

+ 3
40 ψ̃Γa ψ̃ ebωacωdeεbcde+6iψΓab ψ̃ faaeb+

3
2 iψΓab ψ̃aωacωbc+

+3iψΓab ψ̃ fced bεabcd+
19
20 iψΓab ψ̃ fceeωdeεabcd+

17
20 iψΓab ψ̃ f eecωdeεabcd+

− 3
5 iψΓab ψ̃ f eeeωcdεabcd−

9
40 iψΓab ψ̃ bωceωdeεabcd+

+ 3
20 iψΓab ψ̃ fbecωdeεacde+

1
20 iψΓab ψ̃ fcebωdeεacde+

− 1
20 iψΓab ψ̃ωbcωdf ωefεacde+

1
40 iψΓab ψ̃ bωbcωdeεacde+

+6ψΓ5 ψ̃ f
aea b+6ψΓ5 ψ̃ f

aebωab−
1
2ψΓ5 ψ̃ω

abωa
cωbc+

– 23 –



J
H
E
P
0
5
(
2
0
2
4
)
2
7
7

+3
5ψψ̃ψΓab ψ̃εabcdωcd−

14
5 iψΓ5 ψ̃ψΓab ψ̃ωab+

+3ψΓaψfaab−3ψΓaψf baωab−2ψΓaψfbfcedεabcd+

+ 9
20ψΓaψfbωceωdeεabcd−

1
2ψΓaψfb bωcdεabcd−

21
40ψΓaψf eωbcωdeεabcd+

+ 1
40ψΓaψfbωacωdeεbcde−

28
5 ψΓaψψΓ5 ψ̃ fa+

+6
5 iψΓaψψΓcd ψ̃εabcdf b−

3
5 ψ̃Γa ψ̃ψΓbψεabcdωcd+

+2
5 iψ̃ΓaΓ5 ψ̃ψΓbψωab+2ψψ̃ψψ̃a+

−ψΓab ψ̃ψΓab ψ̃a+18ψΓ5 ψ̃ψΓ5 ψ̃a+

+2ψ̃Γa ψ̃ψΓaψa− 4
5 ψ̃ΓaΓ5 ψ̃ψ ψ̃ea+

+28
5 ψ̃Γa ψ̃ψΓ5 ψ̃ea+

6
5 iψ̃Γa ψ̃ψΓcd ψ̃ eb εabcd+

− 4
5 ψ̃ΓaΓ5 ψ̃ψΓab ψ̃eb+

28
5 iψΓ5 ψ̃ψ ψ̃b+

+ 3
10ψΓab ψ̃ψΓcd ψ̃ εabcd b+

2
5 iψ̃ΓaΓ5 ψ̃ψΓaψb. (4.16)

5 An equivalent anomaly cocycle

Anomalies are BRST equivalence classes. In this section we want to describe the class of
all the anomaly representatives equivalent to the Chern-Simons cocycle (4.13) which can be
obtained by adding to it δ-exact polynomials of generalized connections Ai and generalized
curvatures F i. We will also restrict ourselves to polynomials of generalized connections Ai

and generalized curvatures F i which are invariant under rigid Lorentz transformations. It
turns out that the space of δ-trivial Lorentz invariant generalized polynomials of total degree
5 has dimension 29. There are therefore 29 gauge parameters that describe this class of
anomaly cocycles equivalent to (4.13).21

It is easily seen that the superconformal invariant cocycle (4.13) is the unique anomaly
representative in this class which enjoys full rigid N = 1 superconformal invariance. Indeed any
other superconformal invariant equivalent cocycle must be the δ-variation of a superinvariant
cocycle of (generalized) degree 4. This cocycle of degree 4 would necessarily involve an even
number of generalized connections Ai: but there are no superconformal tensors (super)-
antisymmetric with an even number of indices i. Hence there are no superconformal invariant
representatives other than (4.13).

The superconformal invariant anomaly cocycle (4.13) depends on the ghosts {cI} of the
superconformal algebra. Therefore the corresponding anomalous Ward identities involve
all the currents associated to the superconformal algebra generators {TI}. One can ask if
one can pick representatives which put to zero anomalies relative to specific subalgebras of

21Let us make clear that these are not all the possible equivalent representatives of the anomaly cocycle (4.13).
“A priori” one could also consider trivial cocycles which are the δ variation of polynomials of ordinary connections
and curvatures which cannot be written as the δ variation of polynomials of generalized connections and
curvatures.
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the superconformal gauge symmetry. In the BRST formalism this is equivalent to choosing
anomaly representatives which are independent of a subset of the ghosts {cI}.

The superconformal invariant anomalous cocycle (4.13) does not depend on the diffeo-
morphism ghost ξµ: as mentioned in the introduction this reflects the fact that there are no
diffeomorphism anomalies in 4-dimensions. General arguments suggest that, for the same
reason, it should be possible to choose an equivalent cocycle which does not contain the
Lorentz ghosts Ωab [23]. To our knowledge this has been formally proven only for bosonic
theories. In the next subsection we therefore present a general proof that one can choose
representatives in the same δ-cohomology class as (4.13) which are both invariant under rigid
Lorentz transformations and independent of the Lorentz generalized connection ωab. In the
following, we will refer to such representatives as Lorentz equivariant cocycles. The anoma-
lous Ward identities associated to Lorentz equivariant representatives describe stress-energy
tensors which are both conserved and symmetric.

Requiring that the anomaly representative be Lorentz equivariant does not uniquely fix it.
All Lorentz-equivariant representatives differ by the δ-variation of a degree 4 Lorentz-invariant
polynomial of the Ai’s and the F i’s not involving ωab. It can be checked that this is a vector
space of dimension 19. Hence there are 19 gauge parameters, out of the original 29, that one
can choose still preserving both local reparametrizations and local Lorentz symmetry.

One can further fix these 19 gauge parameters by imposing renormalization conditions
on perturbative diagrams involving the (non)-conserved currents. To efficiently describe these
renormalization conditions it is useful to introduce the concept of perturbative degree of a
given monomial obtained by expanding the generalized connections and curvatures of the
anomaly polynomials into ordinary forms. The perturbative degree is defined by assigning
degree 1 to all ordinary field forms, with the exception of the vierbein form ea which is
given degree 0. Therefore generalized connections Ai = ci + Ai other than the vierbein
have perturbative degree 1. Generalized “horizontal” non-vanishing curvatures {F̃R, F̃W , ρ}
associated to physical connections also have perturbative degree 1. Non-horizontal generalized
curvatures {R̃ab, T̃ a, ρ̃} have a component of perturbative degree 1, i.e. the ordinary curvatures
{R̃ab, T̃ a, ρ̃}, and a component of perturbative degree 2, i.e. (λJ0 )ab, λS0 , (λK0 )a.

The usefulness of the concept of perturbative degree is the following. By expanding a
generalized anomaly polynomial into ordinary forms one obtains monomials of perturbative
degree 3, 4 and 5. Monomials of perturbative degree n describe anomalous Feynman diagrams
involving n currents.

For example we verified that the coefficients of the monomials of perturbative degree 3
describing “triangular” anomalies of U(1)R and Weyl symmetries involving two additional
bosonic currents are independent of the 19 gauge parameters describing Lorentz equivariant
anomalies. However “triangular” U(1)R and Weyl anomalies involving two fermionic currents
do depend on (some of) the 19 gauge parameters. Their specific values are renormalization
prescription choices, compatible with local Lorentz symmetry.

We verified that one can choose the gauge parameters to obtain anomaly representatives
whose “triangular” Q-supersymmetry anomalies vanish: this requires fixing 9 out of the 19
gauge parameters. These are the anomaly representatives for which all the coefficients of
the monomials of perturbative degree 3 involving the supersymmetry ghost ζ vanish: the
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corresponding (anomalous) Ward identities ensure that the diagrams involving the divergence
of the Q-supercurrent with two additional currents vanish.

We checked that the remaining 10 parameters cannot be chosen to make all the coefficients
of perturbative degree 4 monomials involving ζ vanish. Hence it is not possible to choose the
anomaly representative in our class in such a way that the correlators of the divergence of
the Q-supercurrent with three other currents all vanish.22 It is however possible to choose
6 of the 10 gauge parameters to put to zero most of these monomials. We will present the
corresponding form of the Q-anomaly of perturbative degree 4 in the next subsection. With
this choice of the representative one also puts to zero all triangular U(1)R anomalies involving
two fermionic currents and all U(1)R anomalies of perturbative degree 4 (involving 3 extra
currents). In this same gauge the triangular Weyl anomaly involving two supercurrents
takes a particularly simple form. Furthermore, the remaining 4 gauge parameters do not
affect the anomalies of perturbative degree 4: they could be fixed in principle by choosing
renormalization conditions for the pentagon anomalous Feynman diagrams.

In the next subsection we present the generalized anomaly cocycle which satisfies all the
renormalization conditions we just stated, in which we fixed the last 4 parameters somewhat
arbitrarily to maximize the vanishing monomials relevant for the pentagon anomalous Feynman
diagrams.

The resulting generalized anomaly polynomial depends on the generalized connection
fa = θa + fa associated to special conformal transformations. We will show in subsection 5.2
that one can further choose a representative in the same BRST class as (4.13) which is also
independent of the ghost θa associated to special conformal transformations. The reason
is that the gauge connection b and (a suitable completion of) the 1-form ea θ

a make up a
so-called BRST trivial doublet. Therefore one can add a BRST exact term to the anomaly to
eliminate both b and θa from the anomaly cocycle: this is an example of a δ-trivial term which
cannot be written as the δ-variation of a polynomial of generalized connections and curvatures.

In conclusion there exists a family of anomaly cocycles equivalent to (4.13) independent
of Ωab and θa which describes an effective action which is invariant under diffeomorphisms,
local Lorentz transformations and local special conformal transformations. The anomalous
Ward identities associated to this cocycle encode the non-conservation of the R-symmetry
current J µ and of the supersymmetry current Sµ, together with the non-vanishing of both
the trace of the conserved stress-energy tensor, Tµµ, and the trace of the supercurrent, Γµ Sµ.
This is the form in which the anomalies of superconformal gravity are usually presented [38].

22As we explained above, our class of equivalent anomalies is not the most general possible. We considered
all BRST trivial cocycles which can be written as the δ variation of generalized connections and curvatures. It
is a priori possible that by considering trivial terms which are the BRST variation of polynomials of ordinary
connections and curvatures one could find other equivalent presentations of the same anomaly. In particular
our results do not rule out that by using these more general counterterms one could also make the quartic and
quintic Q anomaly vanish. It is also worth adding that our results are also not in conflict with arguments based
on the superspace formalism [36, 37] affirming that there exists a choice of counterterms which makes the Q
anomaly fully vanish. Indeed these works consider counterterms involving additional (auxiliary) fields beyond
the ones which we work with. It should be kept in mind however that the Q anomaly (non-)removability
question is a perfectly well defined problem in our framework since the BRST transformations close on our set
of fields (vierbein, U(1)R gauge field and gravitino) without the need of auxiliary fields.
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5.1 Removing the Lorentz anomaly

We want to investigate if there exists a generalized form X4 of degree 4 such that the cocycle

Q̃5(A,F ) = Q5(A,F ) + δ X4, (5.1)

equivalent to the Chern-Simons superconformal invariant anomaly cocycle (4.13), does not
depend on the generalized Lorentz connection ωab. One expects such a representative to exist
because it is generally understood that Lorentz anomalies are equivalent to diffeomorphism
anomalies: since there are no diffeomorphism anomalies in 4-dimensions the Lorentz anomaly
should be removable [23]. However we are not aware of a constructive proof of existence
of such a cocycle in the general superconformal context we are considering. Hence in the
following we describe how to explicitly construct a Lorentz equivariant anomaly cocycle.

It is useful to introduce a set of commuting and constant ghosts κab of degree +2 and
the “topological” nilpotent operator ∂ω which shifts ωab

∂ω ω
ab = κab, ∂ω κ

ab = 0, ∂2
ω = 0. (5.2)

The action of ∂ω on all other fields is taken to be trivial. The anti-commutator of δ and ∂ω
is (minus) a (rigid) Lorentz transformation δLorentzκ with commuting parameter κab:

−δLorentzκ = {δ, ∂ω}. (5.3)

A Lorentz equivariant representative Q̃5 of the Q5 class is therefore a Lorentz-invariant
cocycle satisfying

δ Q̃5 = ∂ω Q̃5 = δLorentzκ Q̃5 = 0. (5.4)

To solve (5.4) it is convenient to introduce a filtration for δ on the space of polynomials
in A and F . Let

N ≡ NA +NF (5.5)

be the total degree of a monomial ANA FNF . We can then decompose δ

δ ≡ δ0 + δ1 (5.6)

as the sum of δ0 which commutes with N

δ0A = F , δ0 F = 0, (5.7)

while δ1 increases N by 1

δ1A = −A2, δ1 F = −[A,F ]. (5.8)

Let us also define the operator i0, which commutes with N

i0A = 0, i0 F = A. (5.9)
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It is immediate to verify that

N ≡ NA +NF = {δ0, i0}. (5.10)

Both δ0 and i0 are nilpotent

δ2
0 = i20 = 0. (5.11)

Moreover
{δ0, δ1} = 0, [δ0, N ] = 0. (5.12)

The operator l1

l1 ≡ {δ1, i0} (5.13)

increases the number of fields N by 1 and acts trivially on connections

l1 F = A2, l1A = 0. (5.14)

Any polynomial Q5 of total degree 5 can therefore be decomposed in the sum of polynomials
Q5;N of fixed degree N :

Q5 = Q5;3 +Q5;4 +Q5;5. (5.15)

Evidently Q5;N contains 5 − N curvatures:

Q5;3 ∼ AF F , Q5;4 ∼ AAAF , Q5;5 ∼ AAAAA. (5.16)

Q5 is a δ-cocycle if and only if

δ0Q5;3 = 0,
δ0Q5;4 + δ1Q5;3 = 0,
δ0Q5;5 + δ1Q5;4 = 0,

δ1Q5;5 = 0. (5.17)

Moreover two δ-cocycles Q̃5 and Q5 are equivalent if and only if

Q̃5;3 = Q5;3 + δ0X4,3,

Q̃5;4 = Q5;4 + δ1X4,3 + δ0X4,4,

Q̃5;5 = Q5;5 + δ1X4,4. (5.18)

Relation (5.9) ensures that any δ0-closed monomial QN with N ̸= 0 is δ0-exact:

N QN = {δ0, i0}QN = δ0 (i0QN ) ⇒ QN = δ0

( 1
N
i0QN

)
. (5.19)

Hence, given any δ0-closed polynomial

δ0Q5;3 = 0, (5.20)
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we can extend it to a δ-cocycle by means of the formulae23

Q5;4 = −1
4 i0 δ1 (Q5;3), (5.21)

Q5;5 = −1
5 i0 δ1 (Q5;4). (5.22)

Let us therefore start from the cubic polynomial Q5;3 in (4.14) associated to the superconformal
invariant Q5 (A,F ) (4.13). This polynomial does not include any pure “Lorentz” anomaly (in
agreement with the fact that there is no 3-index totally symmetric SO(4) invariant tensor),
which would have the form

ω R̃ R̃. (5.23)

Hence the terms in Q5;3 proportional to ω contain at least one curvature other than the
Lorentz curvature R̃:

Q5;3 ∼ ω R̃F ′, ωF ′ F ′′, (5.24)

where F ′ and F ′′ denote generic curvatures associated to generators different from Lorentz.
Since

F ′ = δ0A
′ (5.25)

and
δ0ω

ab = R̃ab, (5.26)

one can move, by adding δ0-exact terms, the δ0 from F ′ = δ0A
′ to hit the Lorentz connection

and produce R̃ab. Hence one can add to Q5;3 a δ0-trivial term which eliminates the ωab
dependence. Explicitly, by choosing

X4,3 =+ ωab ρ̄Γab Γ5 ψ̃ − ωab ρ̃Γ5Γabψ +

− ωab aRab − 1
2ϵab

cdωcd bR
ab − ϵa

bcdωcd f b T
a − ϵa

bcd ebωcdT̃
a, (5.27)

one produces a trilinear δ0-cocycle Q̃5,3 equivalent to the superconformal invariant Q5;3
in (4.14):

Q̃5,3 =Q5;3 + δ0X4,3 (5.28)

which does not depend on the Lorentz generalized connection ω:

∂ω Q̃5,3 = 0. (5.29)

The task is now to show that there exists a δ-closed extension of Q̃5,3 which is also Lorentz-
equivariant. One starts by considering the quartic extension of Q̃5,3

Q̂5;4 = −1
4 i0 (δ1 Q̃5;3), (5.30)

23δ1 Q5,5 = 0 thanks to (5.14) and the fact that Q5,5 does not contain curvatures.
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which satisfies the second of the equations (5.17):

δ0 Q̂5;4 + δ1 Q̃5;3 = 0. (5.31)

From (5.3) we deduce

{δ0, ∂ω} = 0, −δLorentzκ = {δ1, ∂ω}. (5.32)

We can also introduce the bosonic operator ∂R̃ which shifts the Lorentz curvature by κab

∂R̃R̃
ab ≡ κab, ∂R̃ = [∂ω, i0], [∂R̃, δ0] = ∂ω. (5.33)

Since Q̃5;3 is Lorentz-invariant, δ1 Q̃5;3 does not depend on ω:

∂ω δ1 (Q̃5;3) = −δLorentzκ (Q̃5;3) = 0. (5.34)

The action of i0 on δ1(Q̃5;3) in (5.30) may introduce an ω-dependence which is at most linear :

Q̂5;4 = ωab Vab(A′,F ) + Q̊5;4(A′,F ) =
= ωabNab;cd(A′)R̃cd + ωab V ′

ab(A′,F ′) + Zab(A′) R̃ab +Q′
5;4(A′,F ′), (5.35)

where A′ and F ′ denote connections and curvatures different from Lorentz and where we
used the fact that Q̂5;4 is linear in the generalized curvatures.

From (5.31) we obtain that

δ0 (∂ω Q̂5;4) = δ0 (κab Vab(A′,F )) = 0. (5.36)

Therefore, since the polynomial Vab(A′,F ) has degree N = 3, we have

Vab(A′,F ) = Nab;cd(A′)R̃cd + V ′
ab(A′,F ′) = 1

3 δ0(i0 (Vab(A′,F )) =

= 1
3 δ0({i0, ∂ωab} Q̂5;4) =

1
3 δ0(∂R̃ab Q̂5;4) =

= 1
3 δ0(ωcdNcd;ab(A′) + Zab(A′)) =

= 1
3 R̃

cdNcd;ab(A′)− 1
3 ω

cd δ0Ncd;ab(A′) + 1
3 δ0 Zab(A′). (5.37)

We conclude that

Ncd;ab(A′) = 0, V ′
ab(A′,F ′) = 1

3 δ0 Zab(A′), (5.38)

and hence

Q̂5;4 = 1
3 ω

ab δ0 Zab(A′) + Zab(A′) R̃ab +Q′
5;4(A′,F ′) =

= −1
3 δ0

(
ωab Zab(A′)

)
+ 4

3 Zab(A
′) R̃ab +Q′

5;4(A′,F ′). (5.39)

We can therefore pick

Q̃5;4 = 4
3 Zab(A

′) R̃ab +Q′
5;4(A′,F ′) (5.40)
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as the quartic extension of Q̃5;4 which is both equivalent to Q̂5;4 and independent of ω.
The quintic extension

Q̃5;5 = − 1
5 i0 δ1 Q̃5;4 (5.41)

is now also independent of ω. Indeed, ∂ω Q̃5;5 is both δ0-closed and i0-closed, and has
N = 5. Hence,

∂ω Q̃5;5 = 1
5 δ0 i0 ∂ω Q̃5;5 = 1

5 δ0 {i0, ∂ω} Q̃5;5 = 1
5 δ0 ∂R̃ Q̃5;5 = 0, (5.42)

since Q̃5;5 contains no curvatures.
Summarizing, the δ-cocycle

Q̃5 = Q̃5,3 + Q̃5,4 + Q̃5,5 (5.43)

is both equivalent to the superconformal invariant Q5(A,F ) and Lorentz-equivariant.

5.2 Removing the special conformal anomaly

The BRST rules for the Weyl connection bµ are

ŝ bµ = ∂µ σ + 2 eµa θa + 2 i (ψµ η + ζ ψ̃µ). (5.44)

If we define a new ghost θ̃µ associated to special conformal transformations:

θ̃µ ≡ ∂µ σ + 2 eµa θa + 2 i (ψµ η + ζ ψ̃µ), (5.45)

the (bµ, θ̃µ) are, by construction, a trivial BRST doublet

ŝ bµ = θ̃µ, ŝ θ̃µ = Lγ bµ. (5.46)

Relation (5.45) can be inverted to express the original ghost θa in terms of the new θ̃µ

θa =
1
2 e

µ
a
[
θ̃µ − ∂µ σ − 2 i (ψµ η + ζ ψ̃µ

)]
. (5.47)

The only ghost whose transformation rules contain θ̃ is the special supersymmetry ghost η:

ŝ η = iγ(ψ̃)−
(1
4 Ωab Γab −

1
2 σ + 3

2 i αΓ5

)
η −

[
i

2 ∂µ σ + (ψµ η + ζ ψ̃µ)
]
Γµ ζ + i

2 θ̃µ Γ
µ ζ.

(5.48)

If we redefine the special supersymmetry ghost as

η̃ = η − i

2 bµ Γ
µ ζ, (5.49)

then both b and θ̃ disappear from the BRST transformation rules of all the other fields.
The implication of this is that if we put to zero θ̃ and b in the Lorentz-equivariant

cocycle we obtain an anomaly cocycle

Qequiv5 ≡ Q̃5
∣∣∣
b→0 ;θ̃→0

= Q̃5
∣∣∣
b→0 ; θa→− 1

2 e
aµ

[
∂µσ+2 i (ψµ η+ζψ̃µ)

], (5.50)

which is equivalent to the Chern-Simons cocycle Q5(A,F ), is Lorentz-equivariant and does
not contain either b or θ. Note that for b = 0, η̃ = η.
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5.3 A special Lorentz equivariant cocycle

In this section we present the Lorentz equivariant cocycle which satisfies the renormalization
prescriptions we described at the beginning of this Section. To summarize:

a) This cocycle preserves local Lorentz symmetry. This fixes 10 parameters out of
the original 29.

b) This cocycle leads to zero Q-supercurrent anomaly at perturbative degree 3, i.e.
correlators involving the divergence of the supercurrent with two extra currents vanish. This
fixes 9 more gauge parameters.

c) This cocycle has no fermionic cubic corrections and no quartic corrections to the
R-anomaly. It has a single contribution to the cubic conformal supersymmetry S-anomaly,
involving, beyond the trace of the supercurrent, another supercurrent and the R-current.

Properties a), b) and c) still leave 4 free gauge parameters, which affect only anomaly
terms of perturbative degree 5.

We divide the cocycle in terms cubic, quartic and quintic in the filtration degree N in
equation (5.5) which counts the number of generalized forms:24

Q̃5;3 =12i ρ̄Γa Γ5 fa ρ− 60iρ̄ ψ̃ F̃R + 15a (F̃R)2 − 12 ρ̄Γ5 ψ̃ F̃
W +

+ 3a (F̃W )2 + 6ρ̄Γab Γ5 ψ̃ R̃ab −
3
2 a R̃ab R̃

ab − 3
4 εabcd b R̃

ab R̃cd+

+ 12i ρ̃Γa Γ5 ψ̃ Ta + 6 εabcd fa R̃cd T b + 12aT aT̃a , (5.51)

Q̃5;4 =− 24 ψ̃ Γab Γ5 ρfaeb + 24 ψ̃ Γ5 ρf
aea + 24ρ̄Γaψ fa a+ 12i ψ̃ Γa ψ̃ρ̄Γa Γ5ψ+

− 60 ψ̃ Γ5ψa F̃
R + 30 ψ̃ Γa ψ̃ F̃Rea − 12i ψ̃ ψ a F̃W − 6i ψ̃ ΓabψaR̃ab+

− 6 ψ̃ Γab Γ5ψ b R̃ab + 6fced b εabcd R̃ab + 3 ψ̃ εabcd Γa ψ̃ eb R̃cd+

+ 12i ψ̃ Γab Γ5 ρ̃ ψ Γabψ + 12 ψ̃ Γ5ψ f
a Ta + 12 ψ̃ Γa ψ̃ aTa+

+ 12fb fc ed εabcd T a + 12 ψ̃ Γab Γ5ψ f
a T b , (5.52)

Q̃5;5 =− 12fa fb b ec ed εabcd − 12 ψ̃ Γa ψ̃ fb ec ed εabcd − 24iψ Γab ψ̃ fa a eb+
+ 12iψ Γab ψ̃ b fc ed εabcd − 24iψ ψ̃ fa a ea+

− 48
5 ψ Γ5 ψ̃ ψ Γaψ fa +

24
5 iψ Γcd ψ̃ ψ εabcd Γaψ f b+

− 36
5 iψ Γcdψψ εabcd Γa ψ̃ f b −

72
5 ψ Γabψψ Γa Γ5 ψ̃ f

b+

+ 18 ψ̃ Γa ψ̃ ψ Γaψa+ 3 ψ̃ Γab ψ̃ ψ Γabψa+

+ 96
5 ψ̃ Γa ψ̃ ψ Γ5 ψ̃ ea +

24
5 i ψ̃ Γcd ψ̃ ψ εabcd Γa ψ̃ eb+

− 48
5 ψ̃ Γab ψ̃ ψ Γa Γ5 ψ̃ e

b − 3
2 ψ̃ εabcd Γ

ab ψ̃ ψ Γcdψ b . (5.53)

In appendix D we present the ghost number 1 component of this cocycle — the anomaly
proper — written in terms of ordinary forms.

24Let us remind, to avoid confusions, that the degree N is not the same as the perturbative degree. The
reason is that perturbative grading assigns degree 0 to the vierbein; degree 1 to the other connections, to the
ghosts and to the ghost number 0 component of the generalized curvatures; degree 2 to the ghost number 1
components of the non-horizontal generalized curvatures.
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5.4 Bosonic anomalies

Let us consider the quantum effective action, a (non-local) functional of the independent
fields of superconformal gravity:

W [e, b, a, ψ] = −i logZ[e, b, a, ψ]. (5.54)

We can define the corresponding currents

Taµ = e−1 δW

δeµa
, Bµ = e−1 δW

δbµ
, J µ = e−1 δW

δaµ
, Sµ = e−1 δW

δψ̄µ
. (5.55)

In the renormalization scheme in which the anomaly is described by the Lorentz-equivariant,
θ-independent cocycle (5.50) we have

sW [e, b, a, ψ] =
∫
M4

Qequiv5 =

≡
∫

d4x e
[
σAW + αAR + ζ̄ AQ + ¯̃ηAS

]
, (5.56)

which is equivalent to the Ward identities

0 = 1
2 T[ab] −

1
4 ψ̄µ Γab S

µ, (5.57a)

0 = Bµ, (5.57b)

AW = −Tµµ −
1
2 ψ̄µ S

µ, (5.57c)

AR = −Dµ J µ + 3
2 i ψ̄µ Γ5 Sµ, (5.57d)

AQ = Dµ Sµ − 2Γa ψµ Taµ + 2Γ5 ψ̃µ J µ, (5.57e)
AS = −2Γ5 ψµ J µ + iΓµ Sµ, (5.57f)

where the non-vanishing densities AW , AR, AQ and AS can be read-off eq. (5.56).
In order to compare our Chern-Simons anomaly cocycle with the a and c anomalies

of [15],25 we look at the R-symmetry and Weyl anomalies, keeping the terms of perturbative
degree 3. These terms capture anomalous Feynman diagrams with three external currents.

The R-anomaly of perturbative degree 3 of our chosen Lorentz-equivariant cocycle is

αA(3)
R = −3

2 α R̃ab R̃
ab + 3α (F̃W )2 + 15α (F̃R)2. (5.58)

Note that the first term in this expression depends only on the Weyl tensor: the Ricci compo-
nents of the Riemann tensors are encoded in the fa terms. By replacing the superconformal
curvatures with the standard curvatures

R̃ab = Rab(ω) + 2 e[af b] − 2 i ψ Γab ψ̃, (5.59a)
F̃W = 2 ea fa − 2 i ψ ψ̃, (5.59b)

25A recent work on the interpretation of the anomaly coefficients a, c in d = 4, N = 1 SCFTs as central
extensions of a higher Virasoro symmetry algebra is [39].
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F̃R = d a− 2ψ Γ5 ψ̃, (5.59c)

T̃ a = Dfa − ψ̃ Γa ψ̃, (5.59d)
ρ = Dψ + i ea Γa ψ̃, (5.59e)
ρ̃ = D ψ̃ − i fa Γa ψ, (5.59f)

all the fa dependence cancels out in (5.58) to give the result

A(3)
R = −3

2 RabR
ab + 15 (FR)2, (5.60)

proportional to the so-called a-anomaly. Let us now turn to the bosonic part of the Weyl
anomaly of perturbative degree 3:

σA(3),bos
W = −3

4εabcd R̃
ab R̃cdσ + 6 fc ed σεabcd R̃ab − 12σ ϵabcd fa fb ec ed. (5.61)

Once again, the first term depends only on the Weyl-tensor: by itself it would be c-type
anomaly. However, after replacing superconformal curvatures with standard curvatures,
eq. (5.59), the fa dependence cancels out and one obtains

σA(3),bos
W = −3

4 εabcdR
abRcd σ, (5.62)

thereby confirming that our superconformal cocycle is equivalent to the a-anomaly.26

Summarizing, the dependence on the geometric Riemann tensor of the superconformal
cocycle is contained both in the superconformal curvature R̃ab and the special conformal
connection fa. Thanks to the constraints (the bosonic part of) R̃ab is essentially the Weyl
tensor built with the geometric Riemann tensor Rab, while fa encodes the Ricci components
of Rab. The superconformal Chern-Simons cocycle has the precise combinations of R̃ab and
fa to produce the a-anomaly, thanks to the cancellation of the fa dependence in the cocycle.

Let us also consider the terms of perturbative degree 4 in both the R and the Weyl
anomaly and let us also include the fermionic terms. It turns out that the correction at
perturbative degree 4 in the R-anomaly vanishes, when going from the conformal curvatures
to the Riemannian ones and taking into account the fermionic corrections:

α (A(3)
R +A(4)

R ) = α

[
−3
2 RabR

ab + 15 (FR)2
]
, (5.63)

The Weyl anomaly up to perturbative degree 4 (thus neglecting the O(ψ4) terms which are
of perturbative degree at least 5) turns out to be

σ (A(3)
W +A(4)

W ) = −3
4 εabcdR

abRcd σ + 6 iD ψ̄ Γµ Γ5Dψ∇µ σ − 12 aD ψ̄ Γµ ψ∇µ σ. (5.64)
26The relative coefficients of the R2, F 2 and R⋆R tensor structures which appear in the U(1)R and

Weyl anomalies of superconformal gravity are implicitly contained in the formulas derived in [12], in which
superconformal anomalies are expressed in terms of superfields. In [40] the same anomalies were written out
in components and the relation between the coefficients of these tensor structures was explicitly exhibited,
with a numerical error which was corrected in both [41] and [42]. [38] rederives the correct result solving
the Wess-Zumino consistency condition. Our results for the coefficients of the chiral anomaly and the Weyl
anomaly — eqs. (5.60) and (5.62) — match the ones of [41, 42] and [38], after taking into account that our
U(1)R gauge field aµ and the gauge parameter α are normalized differently with respect to [38]: aref. [38]

µ = 3
2 aµ,

αref. [38] = 3
2 α. The numerical a-coefficient, as defined in [38], which gives the overall normalization of our

cocycle is a = 12π2.
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5.5 Fermionic anomalies

The full fermionic anomalies in appendix D include terms linear, cubic and quintic in
the gravitino field. We present below the terms of these fermionic anomalies linear in
the gravitino and up to perturbative degree 4. These expressions describe anomalous
contributions to correlators involving the divergence or the trace of the supercurrent, one
additional supercurrent and either 1 or 2 bosonic currents.

ζA(4)
Q =− 5 aµ ζ̄ ΓµD[νψρ] (FR)νρ + 10 aµ ζ̄ ΓνD[µψρ] (FR)νρ+

+ 10 i aµ ζ̄ ΓνΓ5D
[νψρ] εµρσα (FR)σα − 6 aµ εµρσα ζ̄ ΓνD[ρψσ]Sν

α+
+ 2 aµ ενσαβ ζ̄ ΓνD[ρψσ]Wµ

α
ρ
β − 4 aµ εµσαβ ζ̄ ΓνD[ρψσ]Wνρ

αβ +

+ 1
2 a

µ εµναβ ζ̄ ΓνD[ρψσ]Wρσ
αβ , (5.65)

where Wµν
ρσ is the Weyl tensor and Sµν is the Schouten tensor:

Wµν;ρσ = Rµνρσ −
1
2gσν Rµρ +

1
2gρν Rµσ +

1
2gσµRνρ −

1
2gρµRνσ −

1
6gρνgσµR+ 1

6gρµgσν R,

Sµν = 1
2 Rµν −

1
12 gµν R, (5.66)

AS receives a contribution already at perturbative degree 327

η̄ (A(3)
S +A(4)

S ) =− 15 i η̄ D[αψβ]εαβγδ (FR)γδ + 30 aα η̄ Γ5 ψ
β εαβγδ (FR)γδ +

− 12 i η̄ ΓαγD[αψβ]Rβγ + 3 i η̄ ΓαβD[αψβ]R+ 3 i η̄ ΓγδD[αψβ]Rαβγδ +
+ 3 i aν η̄ ενβλµ ΓγδψβRγδλµ. (5.67)

6 Conclusions and open problems

We have remarked that the d = 4, N = 1 Lie superconformal algebra admits a single
invariant completely symmetric (in the graded sense) tensor with 3 indices in the super-
adjoint representation. We have also shown that the corresponding invariant polynomial,
cubic in the generalized curvatures of superconformal gravity, vanishes — despite those
generalized curvatures not being horizontal. Therefore the corresponding superconformal
secondary Chern-Simons class is an anomaly cocycle. We computed this cocycle explicitly,
in components and to all orders in the independent propagating fields of superconformal
gravity. We showed that it is equivalent to the so-called a-anomaly of superconformal gravity,
a superconformal extension of the Euler Weyl anomaly of bosonic gravity. Our result is best
viewed as an extension of the Stora-Zumino paradigm for producing anomaly cocycles out of
secondary Chern-Simons classes — generalizing it to the case, characteristic of supersymmetry
and conformal invariance, in which generalized curvatures are not horizontal.

27Our result for the AS anomaly agrees with the one in [38], with the same anomaly coefficient a = 12π2

as the R and W anomalies. Our gravitino field ψ and supersymmetry ghosts ζ, η are normalized differently
with respect to [38]: ψ = 1

2 ψ
ref. [38], ζ = 1

2 ζ
ref. [38], η = 1

2 η
ref. [38]. The terms in A(4)

Q involving two U(1)R

fields also agree with the corresponding ones in [38], including the overall normalization. This fixes completely
the dependence of the anomaly on the remaining gauge parameters. However the terms in A(4)

Q involving the
gravitational curvatures do not agree with [38].
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Superconformal gravity is believed to possess a second independent anomaly known as the
c-anomaly, a superconformal extension of the Weyl anomaly of bosonic gravity constructed
from the Weyl tensor. Hence, it is natural to inquire whether the c-anomaly also lends itself
to a Chern-Simons formulation. The fact that the d = 4, N = 1 Lie superconformal algebra
admits a single 3-index completely symmetric (in the graded sense) invariant tensor — which
we proved to correspond to the a-anomaly — would seem at first to rule this out. However,
as we stressed throughout the paper, the superconformal curvatures must satisfy certain
constraints. Therefore, although invariant polynomials of the curvatures are necessarily
BRST invariant, it is possible in principle that non-invariant but BRST closed polynomials of
generalized connections and curvatures exist, thanks to the constraints. This could give rise to
the emergence of extra BRST cohomology classes: it is worth noting, in this respect, that the
superconformal formalism that we developed naturally gives rise to the (supersymmetrization
of the) Weyl tensor out of which the c-anomaly is built.

Another interesting open problem is to provide a holographic 5-dimensional interpretation
of our main result, the Chern-Simons formula for the superconformal anomaly eq. (4.13). If
one extends all fields to 5 dimensions, the generalized Chern-Simons form in this equation
does develop a non-vanishing 5-form Q

(5)
0 component. This would be a candidate for a

5-dimensional Chern-Simons presentation of the 4-dimensional superconformal anomaly,
thus unifying the holographic descriptions of both Yang-Mills [8] and Weyl anomalies [43].
However, the constraints which curvatures must satisfy are formulated in 4 dimensions: to
substantiate the 5-dimensional reading of eq. (4.13) one needs to understand if and how
these constraints can be extended to 5 dimensions.
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A Relation between the Stora-Zumino formulation of anomalies and the
so-called “two-step descent”

In this appendix we review in detail the relationship between the Stora-Zumino (SZ) formula-
tion of anomalies and the so-called “two-step descent” procedure [44]. In essence, the two
“descents” are equivalent because they are algebraic in nature, not geometrical. The technical
difference between the formalisms is the following: in the SZ formalism anomalies are de-
scribed by a single generalized form, while in the “two-step descent” procedure anomalies are
captured by a collection of ordinary forms. In both cases one starts by considering connection
and curvature with values in the same Lie (super)algebra. In the “two-step descent” method,
the connection is an ordinary 1-form whose curvature is an ordinary 2-form:

F = dA+A2, (A.1)
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where d is the de Rham differential acting on ordinary forms. In the SZ-BRST framework
the connection

A = c+A, (A.2)

is a generalized form of total degree (defined as the sum of form degree and ghost number)
equal to 1, whose curvature is a generalized form of total degree 2

F = δA+A2. (A.3)

Here δ is the generalized nilpotent BRST coboundary operator, which for Yang-Mills theories
is written as follows

δ = s+ d, (A.4)

where s is the nilpotent BRST operator acting on fields. In the case of supergravity, in order
to preserve nilpotency, one needs to define instead

δ = ŝ+ d− iγ , (A.5)

where γµ = ζ̄ Γµ ζ is the supersymmetry ghost bilinear and ŝ is the BRST operator equivariant
with respect to diffeomorphisms.28

Both the ordinary and generalized curvature satisfy the Bianchi identities which are
purely algebraic statements encoding the nilpotency of the relevant differentials:

d2 = 0 ⇒ dF = −[A,F ], (A.6)
δ2 = 0 ⇒ δF = −[A,F ]. (A.7)

To construct the descent one picks a completely (super)symmetric 3-index invariant tensor
dabc of the (super)Lie algebra. Correspondingly, one can define either an ordinary Chern
polynomial

P3(F ) = TrF 3 ≡ dabc F
a F b F c, (A.8)

or a generalized one

P3(F ) = TrF 3 ≡ dabc F
a F b F c. (A.9)

Both ordinary and generalized Chern polynomials are closed with respect to the relative
differentials thanks to the Bianchi identities (A.6)–(A.7):

dP3(F ) = 0, δP3(F ) = 0. (A.10)

The second fact that the descent depends on is the triviality of the cohomology of d (δ) on
the space of non-zero degree polynomials of ordinary (generalized) connections and ordinary
(generalized) curvatures. Again, this fact is a purely algebraic property which descends merely

28Anomalies of bosonic gravity in the metric description can be obtained, in the dimensions in which they
exist, by starting with the same definition (A.5) for δ involving the equivariant ŝ with the superghost dependent
term γµ put to zero.
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from the definitions of curvatures, which are identical for both ordinary (eq. (A.1)) and
generalized ones (eq. (A.3)). Therefore triviality holds for either d or δ for the same identical
reason.29 One concludes that both P3(F ) and P3(F ) are exact

P3(F ) = dQ5(A,F ), (A.11)
P3(F ) = δ Q5(A,F ), (A.12)

and the Chern-Simons polynomial of connections and curvatures Q5 is a universal algebraic
object: it only depends on the completely (super)symmetric invariant 3-index tensor dabc. It
is the same polynomial for both the ordinary and generalized Chern polynomial.

One difference between the two formalisms is the following. In the “two-step” descent
one needs to make ordinary forms depend on two “unphysical” extra-coordinates: eq. (A.11)
is empty in 4-dimensions since both the ordinary 6-form P3(F ) and the 5-form Q5(A,F )
trivially vanish in 4-dimensional space-time. On the other hand, extending fields to higher
dimensions is not necessary in the SZ formalism since generalized forms of degree greater
than 4 do not identically vanish in 4 dimensions.

The derivation of the anomaly for Yang-Mills theories in the ordinary form formalism
relies on the fact that the Yang-Mills curvature F transforms in the adjoint representation
of the Lie algebra under BRST (gauge) transformations:

s F = −[c, F ]. (A.13)

This is of course a consequence of the BRST (gauge) transformation rules for Yang-Mills
connections

sA = −D c. (A.14)

Hence the Yang-Mills ordinary Chern polynomial P3(F ) (extended to 6-dimensions) is s-
invariant

s P3(F ) = 0.

Since d and s anti-commute, one has

0 = d (sQ5(A,F )).

From the (local) triviality of d one deduces

sQ5(A,F ) = −dQ4,1(c, A, F ), (A.15a)
sQ4,1(c, A, F ) = −dQ3,2(c, A, F ). (A.15b)

Q4,1(c, A, F ) is a 4-form of ghost number 1 which satisfies the anomaly consistency condition.
By pulling this form back to 4-dimensional space-time, considered as a submanifold of
higher-dimensional unphysical space, one recovers the 4-dimensional anomaly.

29The triviality of the local cohomology of either d or δ can be proven by means of standard filtration
arguments from the fact that curvatures are, by definition, exact up to non-linear terms.
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In the SZ formalism both descent equations (A.15a) and (A.15b) are contained in a single
equation, eq. (A.12), which captures the triviality of the generalized Chern polynomial. This
is seen by first expanding the generalized Chern-Simons polynomial in powers of c

Q5(A,F ) = Q5(c+A,F ) = Q5,0(A,F ) +Q4,1(c, A, F ) +Q3,2(c, A, F )+
+Q2,3(c, A, F ) +Q1,4(c, A, F ) +Q0,5(c). (A.16)

The “descendants” Qn,5−n(c, A, F ), are n-forms of ghost number 5− n.30 One also observes
that, in the case of Yang-Mills, the BRST rules for both connection (A.13) and ghost
s c = −c2 are summarized by the horizontality equation

F = F, (A.17)

which implies

P3(F ) = P3(F ). (A.18)

Hence eq. (A.12) becomes for Yang-Mills theories:

P3(F ) = dQ5,0(A,F ), (A.19a)
0 = dQ4,1(c, A, F ) + sQ5,0(A,F ), (A.19b)
0 = dQ3,2(c, A, F ) + sQ4,1(c, A, F ), (A.19c)
0 = dQ2,3(c, A, F ) + sQ3,2(c, A, F ), (A.19d)
0 = dQ1,4(c, A, F ) + sQ2,3(c, A, F ), (A.19e)
0 = dQ0,5(c) + sQ1,4(c, A, F ), (A.19f)
0 = sQ0,5(c). (A.19g)

which are completely equivalent to the “two-step descent” equations (A.15a)–(A.15b).
As we remarked above, there is no need in the SZ framework to extend fields to higher-

dimensions. In 4-dimensions the first two equations (A.19a)–(A.19b) above are trivial and
the SZ descent actually starts from eq. (A.19c) which is the anomaly consistency condition
for Q4,1(c, A, F ). From this perspective the SZ formalism explains the connection between
4-dimensional anomalies and the 5-dimensional Chern-Simons polynomial and 6-dimensional
Chern invariant. In the two-step approach this relation emerges, somewhat mysteriously, by
extending fields to unphysical higher dimensions. The SZ formalism also makes trivial writing
down the “descendants” Qn,5−n(c, A, F ) by simply expanding the universal Chern-Simons
polynomial Q5(c + A,F ) in powers of the ghost.

Of course one has the option to extend fields to higher dimensions in the SZ framework
too. Notably, in the holographic context, one gives “physical” meaning to extra-dimensions,
by thinking of (closed) 4-dimensional space-time M4 as the boundary of a 5-dimensional
“ball” B5. In this case, eq. (A.19a) is still trivial but eq. (A.19b) is not. By integrating
it on B5 one obtains ∫

M4
Q4,1(c, A, F ) = −s

∫
B5
Q5(A,F ). (A.20)

30Q5,0(A,F ) = Q5(A,F ) is the original Chern-Simons polynomial.
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which states that the integrated 4-dimensional anomaly is the BRST variation of a 5-dimen-
sional local functional, the integral in the “bulk” of the ordinary Chern-Simons polynomial.

In supergravity (and conformal) theories horizontality of the generalized curvature does
not hold. The generalized curvature writes

F = F + λ, (A.21)

where λ is a 1-form of ghost number 1. This is so because in the super-Lie algebra case
the BRST variation of the ordinary connection is not a mere gauge transformation since
it also includes λ:

ŝ A = −D c+ λ (A.22)

and consequently the ordinary curvature does not transform in the adjoint

ŝ F = −[c, F ]−Dλ. (A.23)

It follows that the ordinary Chern polynomial is not ŝ-invariant

ŝ P3(F ) = −dTrλF 2. (A.24)

Hence the ordinary “two-step” descent equations (A.15a)–(A.15b) break down.
The SZ formalism makes transparent the necessary and sufficient condition under which

the generalized Chern polynomial still encodes an anomaly. From eq. (A.12), one reads
that δ Q5(A,F ) = 0 iff

P3(F ) = 0 (A.25)

in 4-dimensions. We have seen that this is precisely what happens in 4-dimensional super-
conformal gravity, notwithstanding the fact that F is not horizontal. When (A.25) holds,
exactness of the generalized Chern polynomial (A.12) directly leads to the 4-dimensional
descent equations

0 = dQ3,2(c, A, F ) + ŝ Q4,1(c, A, F ), (A.26a)
0 = dQ2,3(c, A, F ) + ŝ Q3,2(c, A, F )− iγ(Q4,1(A,F )), (A.26b)
0 = dQ1,4(c, A, F ) + ŝ Q2,3(c, A, F ))− iγ(Q3,2(A,F )), (A.26c)
0 = dQ0,5(c) + ŝ Q1,4(c, A, F )− iγ(Q2,3(A,F )), (A.26d)
0 = ŝ Q0,5(c)− iγ(Q1,4(A,F )). (A.26e)

The Chern-Simons descendant Q4,1(c, A, F ) is therefore an anomaly of superconformal gravity
just as it is for Yang-Mills theories.

It should be emphasized that we proved the vanishing of the generalized Chern polynomial,
eq. (A.25), by using the constraints of conformal supergravity, which hold in 4-dimensional
space-time. Conformal supergravity constraints do not have obvious extensions to 5 di-
mensions. If this extension were possible, while preserving at the same time the vanishing
of the generalized Chern polynomial, then one could write the superconformal anomaly
holographically as in eq. (A.20). We leave to the future the investigation of the validity of the
holographic equation for the superconformal Chern-Simons anomaly. One attractive feature
of the SZ formalism is that it connects anomalies to Chern-Simons polynomials without
making any reference to higher dimensions.
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Bosonic Symmetry Generator Gauge field Ghost
Local Lorentz Jab spin connection ωµ

ab Ωab

Weyl W dilaton bµ σ

U(1)R chiral R-symmetry R U(1)R-gauge field aµ α

Diffeomorphisms Pa vierbein eµ
a ξµ

Special conformal Ka conformal vierbein fµ
a θa

Fermionic Symmetry Generator Gauge field Ghost
Supersymmetry Qα gravitino ψµ

α ζα

Conformal supersymmetry Sα conformal gravitino ψ̃µ
α ηα

Table 1. su(2, 2|1) symmetries and generators, with their associated gauge fields and BRST ghosts.

B d = 4, N = 1 Lie superconformal algebra

In this appendix we review our conventions for the d = 4, N = 1 superconformal algebra.
The bosonic and fermionic generators, the corresponding gauge fields and BRST ghosts
are listed in table 1.

The (anti)-commutation relations defining the d = 4, N = 1 superconformal algebra are:31

[Jab, Jcd] = ηac Jdb − ηbc Jda + ηbd Jca − ηad Jcb,

[Jbc, Pa] = ηac Pb − ηab Pc, [Jbc,Ka] = ηacKb − ηabKc,

[Pa, Pb] = 0, [Ka,Kb] = 0,
[W,Pa] = Pa, [W,Ka] = −Ka,

[Pa,Kb] = 2 (ηabW + Jab),

[Jab, Qα] =
1
2 (Γab)αβQβ , [Jab, Sα] =

1
2 (Γab)αβ Sβ ,

[W,Q] = 1
2 Q, [W,S] = −1

2 S,

[R,Qα] = −3
2 i (Γ5)αβ Qβ , [R,Sα] =

3
2 i (Γ5)αβSβ ,

[Pa, Q] = 0, [Ka, S] = 0,
[Pa, Sα] = i (Γa)αβ Qβ , [Ka, Qα] = −i (Γa)αβ Sβ ,

{Qα, Qβ} = −2 (Γa)αβ Pa, {Sα, Sβ} = 2 (Γa)αβKa,

{Qα, Sβ} = 2 iWδαβ + 2 i (Γab)αβ
1
2 Jab + 2 (Γ5)αβ R. (B.1)

If we collectively denote such generators by {Ti} with 1 ≤ i ≤ 24, Ti is bosonic for 1 ≤ i ≤ 16
and fermionic for 17 ≤ i ≤ 24. The grading |i| of Ti is defined to be:

|i| =

0 (mod 2), if Ti is bosonic (1 ≤ i ≤ 16),
1 (mod 2), if Ti is fermionic (17 ≤ i ≤ 24).

(B.2)

31We take spinor contractions in the ↘ direction. Hence λαχα = −λαχ
α. E.g. ζα(Γa)αβζ

β =
−ζα(Γa)α

βζβ = −ζ Γaζ.
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Ghosts are fields which have opposite statistics, (i.e. Z2 gradings) with respect to the
generator Ti to which they correspond:

|ci| = |i|+ 1. (B.3)

The superLie bracket is written as

[Tj , Tk] = fj
i
k Ti, (B.4)

where [·, ·] denotes the commutator or anti-commutator

[Ti, Tj ] ≡ Ti Tj − (−)|i||j|Tj Ti, (B.5)

Hence
fj
i
k = −(−)|j||k|fkij (B.6)

The super-Jacobi equation is equivalent to the statement that fj ik is a super-invariant tensor:

(−)|i||k|filj flmk + (−)|j||i|fj lk flmi + (−)|k||j|fkli flmj = 0. (B.7)

Both ghosts ci and generators Ti are graded, so that g ≡ ci Ti is odd. Hence

[g, g] = f̃j
i
k c

j ck Ti, (B.8)

where the “Grassmann envelope structure constants” f̃j ik are related to the structure constants
fj
i
k as follows

f̃j
i
k = (−)|j|(|k|+1)fj

i
k. (B.9)

Hence
f̃k
i
j = (−)(1+|j|)(1+|k|) f̃j

i
k. (B.10)

The structure constants of su(2, 2|1) are:

f
[ef ]
[ab][cd] = η[c[a δ

[e
d] δ

f ]
b] ,

fd[bc],a = ηa[c δ
d
b], f d̃[bc],ã = ηã[c δ

d̃
b],

f bW,a = δab , f b̃W,ã = −δb̃ã,

f
[cd]
a,b̃

= δ[c
a δ

d]
b̃
, fW

a,b̃
= 2 ηab̃,

fβ[ab],α = 1
2 (Γab)αβ , f β̃[ab],α̃ = 1

2 (Γab)α̃β̃ ,

fαW,β = 1
2 δ

α
β , f α̃

W,β̃
= −1

2 δ
α̃
β̃
,

fβR,α = −3
2 i (Γ5)αβ , f β̃R,α̃ = 3

2 i (Γ5)α̃β̃ ,

fβa,α̃ = i (Γa)α̃β , f β̃ã,α = −i (Γa)αβ̃ ,
faαβ = −2 (Γa)αβ , f ã

α̃β̃
= 2 (Γã)α̃β̃ ,

fW
αβ̃

= 2 i δαβ̃ , fab
αβ̃

= 2 i (Γab)αβ̃ , fR
αβ̃

= 2 (Γ5)αβ̃ . (B.11)
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A W -weight R-charge
ea 1 0
ωab 0 0
b 0 0
a 0 0
fa −1 0
ψα 1

2 −3
2

ψ̃α −1
2

3
2

Table 2. Weyl weights and R-charges of the connections.

The mass dimensions of ghosts and gauge fields in d = 4, N = 1 conformal supergravity
are fixed by their BRST transformations taking into account that s is dimensionless. For
the standard bosonic YM symmetries for which s c = −c2, one has

[Ωab] = [σ] = [α] = 0. (B.12)

From the BRST transformation rules for the diffeomorphism ghost ξµ we obtain

[γµ] = [ξµ] = −1. (B.13)

From the BRST transfomations for the supersymmetry ghosts we deduce

[ζ] = −1
2 , [η] = 1

2 , [θ] = 1. (B.14)

For tensorial connections and curvatures we have

[Aµ] = [c] + 1, [Fµν ] = [Aµ] + 1. (B.15)

Note that the physical fields eµa, aµ, bµ and ψµ
α have canonical mass dimensions, 0, 1, 1, 1

2
respectively.32 Instead the composite fields fµa, ωµab, ψ̃µα have non-canonical higher mass
dimensions 2, 1, 3

2 . Table 2 lists the W and R charges of the fields of the theory, that we took
into account in section 3 to construct the possible forms for the λi0’s.

C Supertrace for Lie superalgebras

In this appendix we review a few general properties of supertraces for Lie superalgebras,
relevant for superconformal anomalies. For more details see [45, 46].

If V = V0̄ ⊕ V1̄ is a Z2 graded vector space, a homogeneous basis of V = V0̄ ⊕ V1̄, where
m = dim V0̄ and n = dim V1̄ is of the form

{e(b)
1 , . . . e(b)

m , e
(f)
m+1, . . . e

(f)
m+n}, (C.1)

where the superscripts b and f stand for “bosonic” (even) and “fermionic” (odd) respectively.
32Restoring the gravitational constant, which we put to 1, graviton and gravitino would get the familiar

mass dimensions, 1 and 3
2 .
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One can define linear representations of Lie superalgebras, by associating to each algebra
generator an element of End(V ) = l(V )0̄ ⊕ l(V )1̄, which are matrices in a given basis, and by
defining the super-Lie bracket in terms of the graded-commutator of matrices.

The matrices representing bosonic B ∈ l(V )0̄ and fermionic F ∈ l(V )1̄ operators re-
spectively have the form

B =

Bbb 0
0 Bff

, F =

 0 Fbf

Ffb 0

. (C.2)

Let A ∈ l(V ) be a generic operator. In block-diagonal form it is written as

A =

α γ

δ β

. (C.3)

The supertrace of A is defined as

str(A) = tr(α)− tr(β). (C.4)

The supertrace is independent of the choice of (homogeneous) basis. It has the following
properties

• Consistency: str(BF ) = 0 = str(FB) where B ∈ l(V )0̄ and F ∈ l(V )1̄.

• Supersymmetry: str(TA) = (−)|T ||A|str(AT ) ∀T,A ∈ l(V ).

• Invariance: str([T,A]) = 0 ∀ T,A ∈ l(V ) where [·, ·] denotes the super-Lie bracket.

If {Ti}i∈I are a linear representation R of a super-Lie-algebra one can define a super-
invariant tensor as follows

KR
ijk = 2 strR(TiTjTk) = strR([Ti, Tj ]Tk) + strR({Ti, Tj}Tk) = C(R)fijk + dijk(R). (C.5)

KR
ijk satisfies the following equation, consequence of the properties of the supertrace:33

fm
l
iK

R
ljk + (−)|l||i| fmlj KR

ilk + (−)|l|(|i|+|j|) fm
l
kK

R
ijl = 0. (C.6)

C(R) is the index of the representation, such that

strR(TiTj) = C(R)gij (C.7)

and gij is the Lie superalgebra Cartan-Killing metric, defined as34

gij = strsuper-adj(TiTj). (C.8)

fijk are therefore related to the structure constants filj as follows:

fijk = fi
l
j glk. (C.9)

330 = str([Tl, TiTjTk]) = str([Tl, Ti]TjTk) + (−)|l||i|str(Ti[Tl, Tj ]Tk) + (−)|l|(|i|+|j|)str(TiTj [Tl, Tk]).
34For su(2, 2|1) this metric is non-degenerate.
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fijk does not depend on the representation R because the Cartan-Killing metric is the unique
rank-two (super)-symmetric invariant tensor for a given Lie-superalgebra. fijk is completely
“anti-symmetric” in the graded sense, that is

fjik = −(−)|i||j|fijk, fikj = −(−)|k||j|fijk. (C.10)

dijk(R) is instead completely “symmetric” in the graded sense

djik(R) = (−)|i||j|dijk(R), dikj(R) = (−)|k||j|dijk(R). (C.11)

The tensor dijk(R) could in principle, for a generic superalgebra, depend on the representation.
However we computed solutions to the invariance equation (C.6) for the d = 4, N = 1
superconformal algebra and we obtained two linearly independent solutions: one which
coincides (up to a multiplicative constant) with the lowered structure constants fijk and
another solution with precisely the symmetry properties of dijk(R). Hence there is a unique
rank three invariant tensor of su(2, 2|1) with its symmetry properties, up to a multiplicative
constant. Therefore,

dijk(R) = 2A(R) dijk, (C.12)

where dijk is independent of the representation R.
dijk is related to the tensor d̃ijk which defines the invariant polynomial P3(F ), (see

eq. (4.3)), as follows

strR(F 3) = A(R) (−)|i||j|+|i||k|+|j||k| dijk F
i F j F k ≡ A(R) d̃ijkF iF jF k = A(R)P3(F ),

(C.13)
that is

d̃ijk = (−)|i||j|+|i||k|+|j||k| dijk. (C.14)

The sign factor relating dijk to d̃ijk, which is caused by the fact that both the curvatures
and generators are graded, is invariant under exchange and cyclic permutation of its indices.
Therefore it does not change the symmetry properties (C.11). It is important to keep in mind
that the “invariance” equation satisfied by the tensor d̃ijk — which ensures BRST invariance
of P3(F ) — is different, although equivalent, to eq. (C.6) valid for dijk:

fm
l
i d̃ljk + (−)|j||m|fm

l
j d̃ilk + (−)|m||k|+|m||j| fm

l
k d̃ijl = 0. (C.15)

The coefficient A(R) in equation (C.12) is the anomaly coefficient: it describes the contribution
to the superconformal anomaly of matter in a representation R of the superconformal algebra.

D The special Lorentz equivariant anomaly cocycle

In this section we write the ghost number 1, 4-form components of the special Lorentz
equivariant anomaly cocycle, eqs. (5.51)–(5.53). We separate the components associated
to each ghost.
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Let us introduce the combinations

θ(σ)a ≡ −1
2 e

aµ ∂µσ, (D.1a)

θ(ζ)a ≡ −i eaµ ζ ψ̃µ, (D.1b)
θ(η)a ≡ −i eaµ ψµ η, (D.1c)

corresponding to the replacement

θa → −1
2 e

aµ [∂µ σ + 2 i (ψµ η + ζ ψ̃µ
)]
, (D.2)

which eliminates the trivial BRST doublet b and θ̃ from the Lorentz-equivariant cocycle (5.50).
Therefore, after performing the substitutions (D.1a)–(D.1c), the K-anomaly contributes to
the Weyl, the Q and the S anomaly. To obtain explicit results from the formulae below one
needs to replace ψ̃ and fa with their expressions (3.30) and (3.45) in terms of the fundamental
fields ea, ψ and a (after having put b to zero).

D.1 Cubic anomalies

αA(3)
R =15α (F̃R)2 + 3α (F̃W )2 − 3

2 α R̃ab R̃
ab , (D.3)

σA(3)
W = − 12σ fa fb ec ed εabcd + 6σ fc ed εabcd R̃ab −

3
4 εabcd σ R̃

ab R̃cd , (D.4)

θa (A(3)
K )a = − 24 θa ψ̃ Γ5 ρ e

a − 12i θa ρ̄Γa Γ5 ρ+

− 24 θb ψ̃ Γab Γ5 ρ ea − 12 θd ψ̃ Γaψ̃ eb ec εabcd , (D.5)

ζ A(3)
Q =0 , (D.6)

η̄A(3)
S =24 η̄ Γ5 ρ f

a ea − 24 η̄ Γab Γ5 ρ fa eb − 24 η̄ Γaψ̃ fb ec ed εabcd+
+ 60 η̄ Γaψ̃ F̃Rea + 6 η̄ εabcd Γaebψ̃ R̃cd + 6 η̄ Γ5 Γab ρ R̃ab+
+ 60i η̄ ρ F̃R + 12 η̄ Γ5 ρ F̃

W . (D.7)

D.2 Quartic anomalies

αA(4)
R = − 24i α ψ̃ ψ faea − 12i α ψ̃ ψ F̃W + 24α ρ̄Γa ψ fa+

+ 24i α ψ̃ Γabψ fa eb − 60α ψ̃ Γ5ψ F̃
R − 6i α ψ̃ Γabψ R̃ab , (D.8)

σA(4)
W =12i σ ψ̃ Γabψ fc ed εabcd − 6σ ψ̃ Γ5 Γabψ R̃ab , (D.9)

θa (A(4)
K )a =24i θa ψ̃ ψ a ea + 24 θa a ρ̄Γaψ + 24i θb ψ̃ Γabψ a ea , (D.10)

ζ A(4)
Q = − 24 ζ̄ Γa ρ a fa + 24i ζ̄ ψ̃ a fa ea + 12i ζ̄ ψ̃ a F̃W + 96

5 ψ̃ Γaeaψ̃ ζ̄ Γ5ψ̃+

+ 48
5 ζ̄ Γaebψ̃ ψ̃ Γab Γ5ψ̃ − 48

5 ζ̄ Γa Γ5e
bψ̃ ψ̃ Γabψ̃ + 24i ζ̄ Γabψ̃ a fa eb+

+ 60 ζ̄ Γ5ψ̃ a F̃
R − 6i ζ̄ Γabψ̃ a R̃ab − 12i ζ̄ Γa Γ5 ρ ψ̃ Γaψ̃ + 24i ζ̄ Γabψ ψ̃ Γab Γ5 ρ̃+

− 3 a R̃ab (λJ0 )ab + 6 ψ̃ Γab Γ5 ρ(λJ0 )ab + 3 ψ̃ εabcd Γaebψ̃ (λJ0 )cd , (D.11)
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η̄A(4)
S = 24

5 i η̄ εabcd Γ
aψ ψ̃ Γcdebψ̃ + 48

5 i η̄ Γ
cdebψ̃ ψ̃ εabcd Γaψ +

− 24i η̄ ψ a fa ea − 12i η̄ ψ F̃Wa− 192
5 η̄ Γaeaψ̃ ψ̃ Γ5ψ − 96

5 η̄ Γ5ψ ψ̃ Γaeaψ̃+

− 96
5 η̄ Γabebψ̃ ψ̃ Γ5 Γaψ − 48

5 η̄ Γ5 Γaψ ψ̃ Γabebψ̃+

+ 24i η̄ Γaψ̃ ρ̄Γa Γ5ψ + 24i η̄ Γabψ a fa eb+
− 60 η̄ Γ5ψ a F̃

Rψ − 6i η̄ Γabψ a R̃ab + 12i η̄ Γab Γ5 ρ̃ ψ̄ Γabψ . (D.12)

D.3 Quintic anomalies

αA(5)
R =18α ψ̃ Γaψ̃ ψ̄ Γaψ + 3α ψ̃ Γabψ̃ ψ̄ Γabψ , (D.13)

σA(5)
W = − 3

2 σ ψ̃ εabcd Γ
abψ̃ ψ̄ Γcdψ , (D.14)

θa (A(5)
K )a =

48
5 θa ψ̃ Γ5ψ ψ̄ Γaψ + 24

5 i θ
b ψ̃ Γcdψ ψ̄ εabcd Γaψ+

− 36
5 i θ

b ψ̃ εabcd Γaψ ψ̄ Γcdψ + 72
5 θb ψ̃ Γa Γ5ψ ψ̄ Γabψ , (D.15)

ζ A(5)
Q = − 48

5 ζ̄ Γ5ψ̃ ψ̄f
a Γaψ − 48

5 ζ̄ Γab Γ5ψ̃ ψ̄f
a Γbψ+

+ 36 ζ̄ Γaψ a ψ̃ Γaψ̃ + 6 ζ̄ Γabψ a ψ̃ Γabψ̃ + 12i ψ̄ Γab Γ5ψ λS0 Γabψ̃+

+ 96
5 ζ̄fa Γaψ ψ̃ Γ5ψ + 72

5 ζ̄fa Γbψ̃ ψ̄ Γab Γ5ψ + 72
5 ζ̄fa Γb Γ5ψ̃ ψ̄ Γabψ+

− 96
5 ζ̄fa Γbψ ψ̃ Γab Γ5ψ + 144

5 ζ̄ Γab Γ5ψ ψ̃f
a Γbψ+

− 144
5 ζ̄ Γabψ ψ̃fa Γb Γ5ψ − 6i a ψ̃ Γabψ (λJ0 )ab , (D.16)

η̄A(5)
S = 36 η̄ Γaψ̃ a ψ̄ Γaψ + 6 η̄ Γabψ̃ a ψ̄ Γabψ+

+ 36
5 i η̄ εabcdf

a Γbψ ψ̄ Γcdψ − 24
5 i η̄ Γ

cdψ ψ̄ εabcdf
a Γbψ+

+ 48
5 η̄ Γ5ψ ψ̄f

a Γaψ + 72
5 η̄ Γ5f

a Γbψ ψ̄ Γabψ . (D.17)
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