PUBLISHED FOR SISSA BY 4) SPRINGER

1

RECEIVED: November 14, 2023
REVISED: April 12, 2024
ACCEPTED: April 27, 2024
PUBLISHED: May 24, 2024

Superconformal anomalies from superconformal
Chern-Simons polynomials

Camillo Imbimbo®,%? Davide Rovere %% and Alison Warman ¢

¢ Dipartimento di Fisica, Universita di Genova,

Via Dodecaneso 33, 16146 Genoa, Italy

YINFN, Sezione di Genova,

Genoa, Italy

¢Dipartimento di Fisica e Astronomia “Galileo Galilei”, Universita di Padova,
Via F. Marzolo 8, 35131 Padua, Italy

dINFN, Sezione di Padova,

Padua, Italy

¢Mathematical Institute, University of Oxford,

Woodstock Road, Ozford, OX2 6GG, United Kingdom

E-mail: camillo.imbimbo@ge.infn.it, davide.rovere@pd.infn.it,
warman@maths.ox.ac.uk

ABSTRACT: We consider the 4-dimensional A/ = 1 Lie superconformal algebra and search
for completely “symmetric” (in the graded sense) 3-index invariant tensors. The solution
we find is unique and we show that the corresponding invariant polynomial cubic in the
generalized curvatures of superconformal gravity vanishes. Consequently, the associated
Chern-Simons polynomial is a non-trivial anomaly cocycle. We explicitly compute this
cocycle to all orders in the independent fields of superconformal gravity and establish that
it is BRST equivalent to the so-called superconformal a-anomaly. We briefly discuss the
possibility that the superconformal c-anomaly also admits a similar Chern-Simons formulation
and the potential holographic, 5-dimensional, interpretation of our results.

KEYWORDS: Anomalies in Field and String Theories, BRST Quantization, Scale and
Conformal Symmetries, Supergravity Models

ARXI1v EPRINT: 2311.05684

OPEN AccEss, © The Authors.

Article funded by SCOAP? https://doi.org/10.1007/JHEP05(2024)277


https://orcid.org/0000-0003-2734-3006
https://orcid.org/0009-0000-6918-2373
https://orcid.org/0009-0001-7199-5426
mailto:camillo.imbimbo@ge.infn.it
mailto:davide.rovere@pd.infn.it
mailto:warman@maths.ox.ac.uk
https://doi.org/10.48550/arXiv.2311.05684
https://doi.org/10.1007/JHEP05(2024)277

Contents

1 Introduction and summary 1
2 BRST formulation of conformal supergravity 8
3 Non-horizontal components of the curvatures and constraints 14
4 The Chern-Simons superconformal anomaly 20
5 An equivalent anomaly cocycle 24
5.1 Removing the Lorentz anomaly 27
5.2 Removing the special conformal anomaly 31
5.3 A special Lorentz equivariant cocycle 32
5.4 Bosonic anomalies 33
5.5 Fermionic anomalies 35
6 Conclusions and open problems 35

A Relation between the Stora-Zumino formulation of anomalies and the

so-called “two-step descent” 36
B d = 4, N =1 Lie superconformal algebra 41
C Supertrace for Lie superalgebras 43
D The special Lorentz equivariant anomaly cocycle 45
D.1 Cubic anomalies 46
D.2 Quartic anomalies 46
D.3 Quintic anomalies 47

1 Introduction and summary

Historically, anomalies were first discovered by means of perturbative computations [1, 2].
The BRST formulation of gauge theories uncovered a cohomological, non-perturbative,
interpretation of anomalies as cocycles of ghost number 1 of the BRST operator acting on the
infinite-dimensional space of fields [3]. Later on it was understood that the anomaly cocycles
of both Yang-Mills and gravitational theories are simply related to (a natural extension of the)
secondary Chern-Simons characteristic classes [4, 5]. This beautiful topological understanding
of Yang-Mills and gravitational anomalies simplified enormously their computation in arbitrary
dimensions and for general gauge groups. It was also fruitful in many applications to string
theory [6] and holography [7, 8].

While the BRST cohomological interpretation of anomalies is universal, the link between
BRST anomaly cocycles and Chern-Simons classes is not. To date, neither Weyl anomalies



nor supersymmetry anomalies have been associated with Chern-Simons invariants. This is
at least one reason why their computation and classification are both less comprehensive
and more intricate compared to Yang-Mills and gravitational theories [9-19]. In this article
we extend to conformal and supersymmetric theories the connection between anomalies and
secondary Chern-Simons classes. Specifically, we will show that the generalized Chern-Simons
invariant associated to the d = 4, A’ = 1 Lie superconformal algebra computes one of the
two independent anomalies of 4-dimensional superconformal gravity.

To put this result in the appropriate context, let us review the connection between Yang-
Mills anomalies and Chern-Simons polynomials as uncovered by Stora and Zumino [4, 20-22].!
Their idea is to introduce on d-dimensional space-time My a generalized connection A with
values in the Lie algebra g of the gauge group: A is defined to be the sum of the gauge
field A and its corresponding ghost c,

A=c+ A (1.1)
They also introduced a generalized BRST operator §
0=s+d, (1.2)

where s is the BRST operator and d the de Rham exterior differential acting on forms. A
is a generalized form of total degree — defined to be the sum of ghost number and form
degree — equal to +1.2 § increases the total degree by 1. It is essential to keep in mind
that, unlike ordinary forms, generalized forms of total degree n greater than the space-time
dimension d do not in general vanish.

d and s are taken to anticommute with each other: hence the nilpotency of § is equivalent
to the nilpotency of the BRST operator s. The cohomology of § on the space of generalized
local forms is isomorphic to the cohomology of s modulo d on the space of local ordinary
forms. Therefore anomalies are obtained by integrating d-cocycles with total degree d + 1 on
the space-time manifold M,. These are local functionals of ghost number 1.

Given the generalized connection A and the generalized BRST operator ¢ one can define
the corresponding curvature

F=0A+A% (1.3)

which is a generalized form of total degree +2 with values in the adjoint representation of
the gauge Lie algebra g. The generalized curvature satisfies the Bianchi identity

SF+[A F] =0, (1.4)

by virtue of the nilpotency of §. Therefore, when d is even, g-invariant polynomials Pq +1(F)
2

of F of degree % + 1 are d-cocycles of total degree d + 2
6P%+1(F) =0. (1.5)

'In appendix A we review the details of the relation between the Stora-Zumino formulation of anomalies
by means of generalized forms and the so-called “two-step descent” procedure in which one extends ordinary
forms to higher-dimensions.

2 : . —

Generalized forms Q,, = Zp taen
form degrees p and ghost numbers ¢, such that ¢ + p = n.

QE,” ) of total degree n are the sum of ordinary forms Qgp ) of different



Because of the curvature definition (1.3), Pa_,(F) is also d-exact
2
Pg+1(F) = 6Qd+1(A7F)7 (16)

where Qg+1(A, F) are the celebrated (generalized) Chern-Simons polynomials. They are
(non-gauge invariant) generalized forms of total degree d + 1. The dependence of Q4+1(A, F)
on the generalized connection A and curvature F is just the same as the dependence of
ordinary Chern-Simons polynomials in d + 1 dimensions on the ordinary connection A and
curvature F'. However, as stressed above, generalized Chern-Simons polynomials Qg4.1(A, F)
do not in general vanish in d dimensions.

The relevance of Chern-Simons polynomials in ordinary form cohomology is the following:
ordinary Chern-Simons forms Qg4.1(A, F') are not in general closed and, as such, they do not
define de Rham cohomology classes. However there are situations in which some ordinary
curvature characteristic class Pq +1(F), “accidentally” vanishes on manifolds M, of dimension
n > d+ 2: in that case the corﬁesponding Qa+1(A, F) is closed and it defines a characteristic
class on M, of form degree d + 1, which is called secondary for this reason.

Going back to the BRST cohomology, the central observation of Stora and Zumino was
that, for Yang-Mills (and gravitational [23]) gauge theories, the generalized curvature F is
actually “horizontal”, which means that its higher ghost number components vanish

F=F (1.7)
It follows that
Py (F)=Pa,(F) =0, (1.8)

as ordinary forms of degree d + 2 do vanish in dimension d. Hence, in the Yang-Mills BRST
context one finds oneself in the precise analogue of the situation in which ordinary secondary
characteristic classes arise in ordinary form cohomology: the (“primary”) characteristic class
Pg 41 (F) vanishes and hence the generalized secondary Qu41(A, F') is d-closed

0 Qat1(A, F) = 0. (1.9)

By integrating Qg+1(A, F) on M, one obtains an anomaly cocycle. For Yang-Mills and
gravitational theories all anomaly cocycles can be obtained in this way [24].

The basic novelty one encounters when considering either supersymmetry or conformal
symmetries is that the generalized curvature F' defined by the corresponding BRST transfor-

mations ceases to be horizontal. Characteristic classes P4 ,(F') are then not guaranteed to

441
vanish and this potentially negates the relevance of the ge%&alized Chern-Simons polynomial
Qad+1(A, F) to anomalies.

Although the non-horizontality of the generalized F' is a generic feature of both conformal
and supersymmetry transformations, let us illustrate how it comes about in d =4, N =1

conformal supergravity, the field theory we are going to explore in this paper [25-29].

3For a recent review of 4-dimensional A/ = 1 superconformal gravity see also [30]. The BRST formulation
of the same theory was first worked out in [31].



Conformal supergravity is a “pure gauge” theory: it has neither auxiliary nor “matter” fields.
Its gauge fields are 1-forms with values in the appropriate bundles

A' = {e" W b, a, [ 0%, ), (1.10)
each one in correspondence with the generators of the su(2,2|1) Lie superconformal algebra:*
T; = {P% J® W, R, K% Q% 5°}. (1.11)

When one attempts to define the analogue of the generalized connection (1.1) one faces a
complication which is common to all theories which include gravity: the ghosts associated to
translations P% are not valued in the frame bundle but are instead valued in the space-time
tangent bundle. We denote the BRST ghosts of conformal supergravity as:

¢ ={¢", Q® 0, a, 0% ¢*, °}. (1.12)

Diffeomorphisms must therefore be treated differently to the rest of the Lie superalgebra
transformations. As we will explain in section 2, this has a twofold effect [31-34]. First, one

has to introduce a novel BRST operator §, “equivariant” with respect to diffeomorphisms
§=s+ L, (1.13)

where L¢ denotes the Lie derivative along the vector field £#. The sign in (1.13) is chosen so that
the (diffeomorphism) equivariant § includes all transformations other than diffeomorphisms.
Correspondingly, the generalized connection (1.1) is defined to be®

Al = {2 QP 1w o +b, a+a, 0%+ f2, C Y, n® 4O (1.14)

In other words, the ghost number 1 component of the generalized connection along P® is taken
to vanish. Let us observe that the (1-form) components of the generalized connection along
the bosonic (fermionic) generators of the Lie superalgebra are respectively anti-commuting

(commuting). Hence it is convenient to introduce
A= AT, (1.15)

and take (fermionic) bosonic generators T; to be (anti)commuting: in this way A is anti-
commuting.

Supersymmetric theories require one more step: the definition of the generalized BRST
operator (1.2) must be modified to include one third term [33]

§=38+d—i. (1.16)

“We will use the index i as the index running along all the 24 generators T; of su(2,2|1). P* and J® are
the generators of translations and Lorentz transformations, the Weyl (dilatation) generator is denoted by
W, the R-symmetry charge by R, K denotes the special conformal generators, Q% and S are, respectively,
the supersymmetry charges and conformal supersymmetry charges. Our conventions for the d = 4, N' =1
superconformal algebra are reviewed in appendix B and properties of the supertrace in appendix C.

5We will denote with bold letters the generalized forms: A° for the generalized connections and F* for the
generalized curvatures.



i is the nilpotent operator which contracts an ordinary form along the commuting vector
field v# bilinear in the supersymmetry ghost (,:%

= (THC. (1.17)
Nilpotency of the generalized § is equivalent to that of the BRST operator s:”
=0 & =0 (1.20)

Given these ingredients, one proceeds to define the generalized curvatures associated
to the su(2,2|1) Lie superconformal algebra exactly as in (1.3)

F=§A+ A% (1.21)

where
F=F'T, (1.22)

is a commuting generalized form of total fermionic number +2 which satisfies the generalized
Bianchi identity (1.4). However, unlike the Yang-Mills and gravitational case, F' does not
turn out to be “horizontal”: rather one finds that

F=F+)\. (1.23)

F is an ordinary 2-form of ghost number 0 and )\ is a (non-vanishing) 1-form with ghost
number 1, with values in the Lie superconformal algebra su(2,2|1). We will denote the
components A} of g as

b= AL N AR A, A8 (1.24)

following the same order of the generators as in eq. (1.11).

The emergence of a non-vanishing non-horizontal curvature component g is intimately
tied with presence of the extra term i, in the definition of the generalized BRST operator (1.16):
this term encodes the effect of coupling supergravity to YM gauge fields. The BRST
transformations of the ghost fields are — for both bosonic YM and conformal supergravity —
“geometric”: they are fixed by the structure constants of the underlying Lie (super)algebra and
nilpotency is ensured by the (super)Jacobi identities of the corresponding Lie (super)algebras.
In the bosonic YM and gravitational case, the BRST transformation rules for the ghosts
also uniquely fix the familiar, “geometric” BRST transformation rules for the connections:
those transformation rules are not deformable. In short, the BRST transformations of both

5Tn this article Dirac gamma matrices are denoted by I'* to avoid confusing them with the ghost bilinear v*.
"This is a consequence of the BRST transformation of the diffeomorphism ghost &*

1
S8 = —SLe +" (1.18)
and the relations, valid on forms, for §, d, and i,

#=L, Ly={di,}, ii=0. (1.19)



ghosts and connections are, for both YM and gravity, completely dictated by the geometry
of the underlying Lie algebra. This ceases to be true in the supersymmetric context: as
we will explain in section 2, nilpotency of the BRST operator on the ghosts of conformal
supergravity determines the transformations of the connections only up to 1-forms of ghost
number 1 which are i,-closed — precisely because of the presence of i, in the definition of
the generalized J, eq. (1.16). These 1-forms of ghost number 1 are the A\y’s which appear
in eq. (1.23), which indeed do satisfy

iy(Xo) = 0. (1.25)
Eq. (1.25) restricts the general form of the A¢’s to be
Ao =e*(T, X, (1.26)

where X has ghost number 0 and is valued in su(2,2|1). X is fixed by the requirement
of nilpotency of BRST transformations on connections themselves, as we will explain in
sections 2 and 3: it turns out to be non-vanishing.

Nilpotency of BRST transformations on gauge fields has one more implication: the
ghost number 0 components F* of the generalized curvatures must satisfy certain constraints,
which we will also review in section 2. These are supersymmetric extensions of the familiar
zero-torsion constraint of general relativity. Superconformal gravity constraints are algebraic
equations for the gauge fields {wab, fe, @a}, which can be solved to express them locally in
terms of the physical fields {e%, b, a, ¥*}. It is an interesting fact that the non-horizontal
components )\6 take values only in the “unphysical” directions {J“b, K® S} of the Lie
superconformal algebra su(2,2|1).

A vpriori, the lack of horizontality of the generalized curvature jeopardizes the Stora-
Zumino mechanism to produce BRST anomaly cocycles. However, horizontality of the
generalized curvature is a sufficient but not necessary condition for the existence of secondary
Chern-Simons classes. It is the vanishing of the characteristic classes P3(F') that is strictly
necessary for the secondary classes to emerge. We therefore searched for su(2,2|1) invariant
cubic polynomials and found that there exists only one of them, up to a multiplicative
constant. We computed the corresponding Chern class Ps(F)

P3(F) = d;;, F' FJ F* (1.27)

and found, remarkably, that it indeed vanishes — despite the non-horizontality of F'! The cor-
responding Chern Simons generalized form Q5(A, F') does therefore define, upon integration
over space-time My, a superconformal anomaly which we compute explicitly, in components
and exactly to all orders in the number of fields, and present in section 4, egs. (4.13)—(4.16).

The Chern-Simons anomaly cocycle Q5(A, F') is, by construction, invariant under rigid
su(2,2|1) transformations. It depends on all the ghosts (1.12) of the su(2, 2|1) Lie superalgebra,
with the exception of the diffeomorphism ghosts £€#.8 In particular it also depends on the ghosts

8There are no diffeomorphism anomalies in 4-dimensions, so this is expected from the start. In our scheme,
the functional space does not contain £ at all. In other dimensions, diffeomorphism anomalies would translate

into Lorentz anomalies.



Q% and 0% associated, respectively, with local Lorentz and special conformal transformations.
In section 5 we will show that one can add BRST-trivial cocycles to the Chern-Simons
cocycle Qs(A, F) to obtain equivalent anomaly cocycles QE"(A, F) (eq. (5.50)) which are
independent of the Lorentz ghosts Q%. We call the Q*-independent representatives of the
anomaly “Lorentz-equivariant” cocycles. They lead to anomalous Ward identities which
involve a symmetric, conserved but not traceless stress-energy tensor 7,,.

In section 5 we will show that one can also choose representatives of the anomaly, which
beyond being independent of Q. are also independent of %. Such anomaly cocycles do not
depend on the Weyl gauge connection b either: this is so since b and (a suitable completion
of) 0%e, form a BRST trivial pair.

It should be emphasized that the Q% and # independent cocycles are no longer invariant
under the full rigid su(2,2|1) Lie superconformal algebra. They lead to anomalous Ward
identities which involve the symmetric, conserved but not traceless stress-energy tensor
Tuv, the R-symmetry current J, and the supersymmetry current S, associated with the
supersymmetry Q%. These are the (anomalous) Ward identities which are usually discussed
in the literature.

We will show that the superconformal Chern-Simons anomaly cocycle is equivalent
to the so-called a-anomaly of superconformal gravity. We select among all the equivalent
Lorentz equivariant and 6 independent cocycles a particular one that simplifies the explicit
expressions for the supersymmetry anomalies. We write it down in components, to all order
in the number of both fermionic and bosonic fields, in appendix D.

The rest of this paper is organized as follows:

In section 2 we review the BRST formulation of d = 4, A/ = 1 superconformal gravity,
which was first worked out in [31], by following a slightly different logic and formalism.
This will allow us to describe the ingredients relevant to the computation of the anomaly.
Our formalism will keep manifest the underlying covariance under the full Lie superalgebra
su(2,2|1) of the equations that determine the Aj’s. In this section we also take the opportunity
to elucidate why and how translations P® must be dealt with differently than other symmetries
in the BRST context and why this entails, in the supersymmetric case, introducing the i,
term in the definition of the generalized BRST operator.

In section 3, which also reproduces results already presented in [31], we describe how to
solve the BRST nilpotency equations that both determine \j’s and generate the constraints
on the ordinary curvatures of superconformal gravity. Our presentation possibly clarifies why
the solution to the BRST nilpotency conditions found in [31] is the only possible solution.
We solve the constraints to express the fields {w®, f, 150‘} explicitly in terms of the physical
fields {e® b, a, ¥®}. The main purpose of this section of pointing out that while the
superconformal algebra uniquely fixes the BRST rules of the ghosts, it determines the BRST
rules of the gauge fields only up to the Ag terms, which in turn are fixed by BRST nilpotency.

In section 4 we describe the unique completely symmetric (in the graded sense) su(2,2|1)
invariant tensor and show that the corresponding generalized characteristic class Ps(F)
vanishes. To perform this latter computation we made use of FIELDSX [35]. We then present
the ensuing secondary generalized Chern-Simons class which captures a superconformal
anomaly. This is our main result.



In section 5 we describe an anomaly cocycle equivalent to the Chern-Simons su(2,2|1)
cocycle, which is independent of Q% % and b. We show, by working out its explicit form,
that it is equivalent to the superconformal a-anomaly.

In section 6 we draw our conclusions and describe open problems.

2 BRST formulation of conformal supergravity

As mentioned in the Introduction, d = 4, N' = 1 conformal supergravity is a “pure” gauge
theory: all of its fields are 1-form connections taking values in the appropriate bundles

AP = {e®, w® b, a, f, P, P}, (2.1)
in correspondence to the generators of the su(2,2|1) Lie superconformal algebra:
T; = {P% J%® W, R, K% Q% S%}. (2.2)
The generators T; are graded:® they satisfy (anti)commutation relations
(T;, T3] = fi* T (2.3)

where f;* ; are the structure constants of the d = 4, N = 1 Lie superconformal algebra.!’
The BRST formulation of conformal supergravity differs from that of pure (super)

Yang-Mills theories in one crucial aspect. Let us delve a bit deeper into this distinction.
In (super)YM theories, one introduces in correspondence to each generator T; a ghost

field ¢* with opposite statistics —(—1)'“. The resulting Lie superalgebra valued combination

c=cT; (2.4)

is anti-commuting, and its BRST transformations are completely fixed by the structure
constants of the Lie superalgebra:

1
sc=—3 e, ], (2.5)
or, equivalently,
i Lzi ik
sc :—ifjkcjc, (2.6)
where, as reviewed in appendix B,
fjik = (—)Ijmk'H)fjik- (2.7)
The (super)Jacobi identity
e, [eyel) = 0 (2.8)

"We denote by (—1)!l the grading of the generator T}, i.e. (—1)I!l = +1 for the bosonic generators
{P2, J®® W, R, K°} and (—1)!" = —1 for the fermionic ones {Q“, S“}. We denote with the bracket the
(anti)-commutator: [T}, T;] = T;Tj — (=)

10We list them in appendix B.



ensures that the BRST rules (2.6) are nilpotent. Furthermore, the BRST transformations
for the (anti-commuting) Lie superalgebra valued connection

A=A'T, (2.9)
are also completely specified by the structure constants of the Lie superalgebra
sA=—dc—[A,c]. (2.10)

For conformal supergravity — and for any theory which includes gravity — one has to
proceed differently. In correspondence to diffeomorphisms one introduces an anti-commuting
ghost &* which is a vector field: there is no ghost valued in the P* sub-algebra. The BRST
operator s acts on generic tensor fields ¢ via the Lie derivative £§11

s ¢ = —L¢ ¢ + other gauge transformations, (2.11)

and on the ghost &* as follows
1
s&h = D) Le &M +AH. (2.12)

~# is a quadratic function of the other ghosts whose precise form depends on the details of the
gravitational theory one considers. We are going to exhibit its expression for superconformal
gravity momentarily. Nilpotency of s requires that

syt = —Le M. (2.13)

The way to deal with this situation is to disentangle translations from the other local
symmetries. One introduces an “equivariant” (with respect to diffeomorphisms) BRST
operator §, whose action is defined on the smaller functional space of ghosts and connections
which does not include &*:

§=s+Le. (2.14)

§ involves only the ghosts ¢! corresponding to the gauge transformations other than trans-
lations. In the superconformal case these ghosts are:

' ={Q%, o, a, 6% ¢ 0} (2.15)
Nilpotency of s is equivalent to the following relation for the equivariant BRST operator:
8 =L, (2.16)

valid on the reduced field space which does not involve &£*.

The action of § on the ghosts ¢! cannot be simply defined by truncating the BRST
transformation rule for the ghosts (2.6) to the ¢!: since the {T7}’s do not span a subalgebra,
the truncated BRST transformations

1 -
S0l = —5 frilg el & (2.17)

"The minus sign in front of the Lie derivative is traditional in a certain stream of literature.



would not be in general nilpotent. Indeed, let {i} = {a, I} be the index running along the
full Lie superalgebra and a the index running along the translations subalgebra: the Jacobi
identity relevant for the nilpotency of (2.17) writes

e fulu = —fa' ik fLu. (2.18)

Hence

§%CI:—fJIKéochK:—fa]K’yacK, (2.19)

where we introduced the ghost bilinear with values in the translations subalgebra

1 -
~* = 5 frln et M. (2.20)

We need therefore to introduce a suitable deformation of §3. One can start from the ansétz,
dictated by ghost number conservation, which includes a term proportional to the gauge
connection A’:

1.
sch =30c +i,(4") = —3 frlg el & iy (AD), (2.21)

where v = «* 9, is the ghost number 2 vector field which appears in the BRST transformations
of the diffeomorphism ghost (2.12) and i is the contraction of a form with the commuting
vector field v#. Note that

iZ =0, (2.22)

since v* is commuting. Moreover we must impose

gt =0, (2.23)

as consequence of (2.13). Therefore

§Fc=—fr"xsc! M +ig (AT) =iy (8AT) =

= —fu k(" =iy ) —i (AT 4 fiT g AT K. (2.24)

We see therefore that we must take

1 -
v = 3 friauct M =i e (2.25)
and

AT = —de! — fil i AT B 10, (2.26)

where \} are iy-closed 1-forms which take value in the Lie superalgebra
in(M) =0. (2.27)

Eq. (2.25) fixes the vector field 4* which appears in the BRST transformation (2.12) of the
ghost &* in terms of the structure constants of the Lie superalgebra: for su(2,2|1) we obtain'?

fyl“ = EraCe“a, (228)

12The ~ deformation is a signal of topological gravity [33] or supersymmetry [32, 34]. Note that in the bosonic
conformal case, fr.%y = 0, because no commutator of generators T; gives P® (unlike the supersymmetric
case, where {Q, Q} ~ P). Therefore, even if the truncation does not define an algebra, the truncated BRST
operator is nilpotent and the v deformation does not arise.

,10,



Condition (2.13) fixes the BRST rule for the connection e, which is therefore “universal”
for supergravity theories:

et = —Q% el — et —2¢T . (2.29)

In conclusion, the requirement of nilpotency of the BRST transformations on both the ¢!’s
ghosts and the diffeomorphisms ghost £* completely determines the BRST transformations
of the ghosts, egs. (2.12) and (2.21), which can be read off from the structure constants
of the gauge superalgebra. On the other hand, nilpotency of the BRST transformations
on ghosts determines BRST rules for the connections A’ egs. (2.26), only up to i,-closed
1-forms /\6 : we will see shortly that the )\(I] are determined by the requirement of nilpotency
of s on the connections A’: the \]’s do not have an immediate interpretation in terms of
the geometry of the gauge superalgebra.
We can now introduce the generalized-connection A’:

Al = A 4 ¢ (2.30)

where i runs along all the generators T; of the Lie superalgebra, with the understanding that
the generalized connection along translations has no ghost number 1 component

A% = e, (2.31)
Moreover egs. (2.21) and (2.26), dictate the form of the generalized BRST operator
§=s+d—i, (2.32)

which differs from the Stora-Zumino analogue (1.2) for the i, term, which encodes, in the
BRST formalism, the “coupling” to supergravity. Generalized curvatures are defined in terms
of the generalized differential 6 and generalized connections in the usual way

: 1 ‘ R
F'=0A'+ [A A =0 A + [’ A Ak, (2.33)

We can compute F' by making use of egs. (2.21) and (2.26) to obtain
Fi=F' 4 )\, (2.34)

In other words the generalized-curvatures fail to be “horizontal” because of the A} which
were left undetermined by the condition of nilpotency of the BRST operator on the ghosts.'?
One must therefore investigate the restrictions on the A}’s coming from nilpotency of BRST

transformations on the generalized connections:
82 A =62 A' = —i (FY) + 8\ — [l NycF =0, (2.35)
where F' are ordinary 2-form curvatures

) 01 . .
Fr=dA'+ o fj'y A AP, (2.36)

13Note that the BRST transformation rules for the vierbein, eq. (2.29), which are universal, imply however
that AY = 0.

— 11 —



Equation (2.35) shows that not all the \}’s can be taken to vanish, unless we impose F' = 0
for all curvatures, which would eliminate all propagating degrees of freedom from the theory.

As we made clear, eq. (2.35) is quite general: it is valid for any gravitational theory based
on a Lie superalgebra with generators {T;}. A solution of this equation for the d =4, N =1
superconformal algebra su(2,2|1) was found in [31]. This solutions for the \}’s also requires a
set of constraints on the ordinary (both bosonic and fermionic) curvatures F*. We conducted
with the help of FIELDSX [35] a somewhat more systematic analysis of (2.35), which we
summarize in section 3 with the intent to ascertain if more general solutions exist. We

recovered the same solution of [31] and nothing more.

Let us conclude this section by presenting the details of this solution. The BRST rules
for the ghosts of su(2,2|1) can be read off from (2.12) and (2.21):

1 _
s€=— L&+ (T Cely, (2.37a)
Q% =g (W) — (23 +2iCT%p, (2.37b)
80 =i (b) +2i(n, (2.37¢)
Sa=iy(a)+2(T5n, (2.37d)
80" =i (f*) — Q% 6" + 00" 47T, (2.37¢)
1 1 3
. R 1 . 1 3. . a
§n=1iy(¢) — ZQ Fab750+§zo¢f‘5 n+i0°T, . (2.37g)
The BRST rules for the connections follow from (2.29) and (2.26):
get = —Q% e’ — ge® — 2C %), (2.38a)
Sw® = —(dQ™ 4w QP — W Q) —2el99% 4 20 (YT +CTP ) + (M), (2.38D)
§b=—do —2e%, +2i(pn+CP)+ Ay, (2.38c¢)
da=—da+2WTsn+C5v0) + A\, (2.38d)
§f% = —(dO% + w0 —bY) — Q% fP + o f 27T + (MDY, (2.38¢)
S0 — Loap oy 1y 3, _(Lgw 1,3,
Sy = (d—|—4w Fab—|—2b 22af5>C <4Q Fab+20 210zf‘5>1/)—|—
—ie®Tan+ Y, (2.38f)
cim(as o, Ly, oo, 1o 3o
sw——<d+4w T 2b+21af5>17 (49 Tup 20+22af5)w+
Fif' T C+i0°Tq) + A, (2.38g)

where the square brackets denote anti-symmetrization (with no numerical factors).

1We describe in the next section how to compute the \y’s by imposing BRST nilpotency on the gauge
fields. The resulting expression for the non-vanishing A\§’s are listed in the next page.
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The explicit expressions for the two-form curvatures'®

F'={T" R, FV, F¥ T p, p}, (2.39)

which include contributions from the full superconformal algebra, are:

T = (de® + w%e® +be®) + T = De + T, (2.40a)
R™ = R%®(w) 4+ 2elof — 29T, (2.40D)
FV =db+2e* f, — 200, (2.40c)
FER=da—-29Ts9, (2.40d)
1 1 N .
p= <d—|— ZwabI‘ab—i— ib_ ZiaFg,) Y+ieTegp =D +ie* Ty, (2.40e)
T = (df* + w f* — b f*) — ¢ T% = D o — 3 T%4), (2.40f)
p=(d+ W Tw — 3o+ Jials) G- if'Tav=Do—if'Tav, (2409

where D is the covariant derivative with respect to Lorentz, Weyl and U(1)g symmetries.
The non-vanishing A\}’s turn out to be:

(\)™ =2€° (T, p™, (2.41a)
1 .
Ay = LA I CFER e (2.41b)
(A\KYe = —ieCT.Ty 71, (2.41c¢)
where we defined
— 1 a b ~ L a b R _— 1 R _a b
p= g5 Papee p= g5 Pae e F :§Fabe e’, (2.42)

and introduced the “modified” 2-form curvatures

R =R 2 YT p®, (2.43a)
1 -

J=p— LR YER e, (2.43b)

T =T+ ie“YT Ty g%, (2.43c)

which have the property of transforming without derivatives of the supersymmetry ghost
¢ under BRST transformations.

Eqgs. (2.35) which ensure the nilpotency of the generalized BRST operator ¢ on all
fields, are satisfied by the \})’s in (2.41a)—(2.41c) only on the subspace of fields defined by
the set of constraints

T =0, (2.44a)
FW = —«F%, (2.44D)

15The ~ on the superconformal curvatures B*®, F" and F'® is meant to distinguish them from the standard
curvatures, R®, db and da. The ~ on j and T is a reminder that these are the conformal partners of the
usual torsion T* and gravitino curvature p. ~ should not be confused with the Hodge dual which we denote
by *.
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' pap = 0, (2.44c)
Riw = —F, (2.44d)
~ ~ ab
where R, is the Ricci tensor constructed with the modified curvature R/ “,
R, =R ," e eva. (2.45)
As we will review in the next section, these constraints can be solved algebraically to express

the fields {w®, 1), f*} as local functions of the independent fields {e®, v, a,b}.

3 Non-horizontal components of the curvatures and constraints

This section, which can be skipped at a first reading and whose results reproduce those found
in [31], is devoted to solving egs. (2.35). In the generalized form approach, the failure of
BRST nilpotency in the “big” field space of unconstrained generalized connections is the
failure of the generalized Bianchi identity:

SF+[A F)=4%A, (3.1)

where 0 is defined in (2.32). Since the BRST rules of the ghosts are nilpotent in the “big”
field space, the previous equation simplifies to

SF +[A F] =4 A, (3.2)
or equivalently, in components,
SF' — fil; AV FF =5 A", (3.3)
Filtering in the ghost number, one gets:
a) the Bianchi identities for the ordinary curvatures (ghost number zero);
b) the BRST transformation rules for the ordinary curvatures (ghost number one);

c) s? on the gauge fields or equivalently the BRST transformation rules for the \}’s (ghost
number two), and

d) the i,-closeness of the \}’s (ghost number three):

dFt — fi,5 AT FF =0, (3.4a)
§F' — fi'd FP = —d\§ + fi.l; AT NE (3.4b)
s?A' = —i (F) + 5N — fil; N =0, (3.4c)
i (N)) = 0. (3.4d)

The equations at ghost number two are the same as egs. (2.35). The trilinear Fierz identity
for the commuting spinor (:

T, (T ¢ =0, (3.5)
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together with eq. (3.4d), fixes the general structure of the \J’s:

L =e%(T, X", for the bosonic fields, (3.6a)
L =X'T,Ce for the fermionic fields. (3.6b)

X' is a zero-form of ghost number 0. When A} is associated to a bosonic generator, X' is
a Majorana spinor; when )} is associated to a fermionic generator, X* is a matrix acting
on the spinorial indices of (.

Eq. (3.4¢) can be projected onto one component quadratic in the supersymmetry ghosts
¢ and one component linear in . Let us therefore correspondingly separate the part S in the
BRST operator § which is proportional to ¢ and associated to local supersymmetry [34]:

§=5+4. (3.7)
The projection of eq. (3.4c) onto the component linear in ¢ becomes
I =D fii NG =0. (3.8)
J#¢

This equation states simply that the A\)’s transform covariantly under all the transformations
of the superconformal algebra other than the supersymmetry transformations. The projection
of eq. (3.4c) onto the component quadratic in (, after taking into account egs. (3.6a)—
(3.6b), writes

—iy (F'") =" (Tq S X' — fil: CAf =0, (3.9)
where we introduced the “modified” curvatures
F''=F' —e“yT X" (3.10)

The dependence on the derivative of the ghost ¢ in the BRST variation of F'* cancels
between the first term and the BRST variation of ¥. Hence the modified curvatures F”*
are supercovariant — i.e. their variations under (local) supersymmetry do not depend on
derivatives of the supersymmetry ghosts — if we take X* proportional to the modified
curvatures themselves. The possible modified curvatures involved in each X* are fixed by
superconformal covariance (3.8).!% In particular the mass dimension of X? must be the
same as that of A’ increased by one half.

We already determined the BRST rule of the vierbein in eq. (2.29), which implies that
the corresponding Ay vanishes:

A =o0. (3.11)
Therefore T'® = T%, and the nilpotency equation for the vierbein reads:

s2e® = —i, (T%) —2( T AS. (3.12)

16Weyl weights and R-charges of ghosts and connections are summarized in appendix B.
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)\DQ is necessarily proportional to the torsion, because the mass dimension of X¥ is 1 and
the torsion is the unique curvature with the required mass dimension. The most general

ansatz for /\82 consistent with superconformal covariance is

1
A9 = 5 (00 T ™ T b Ty €7y T5 T T C e, (3.13)

where 1
T = Ty ™ " (3.14)

By plugging (3.13) into the nilpotency equation (3.12), one obtains

s2e® = ty el Tp.C N+t T, 'yﬁ +2it1ep T“bcfyc —2ity b T, Ve +
+ (14 2it1) ¥ Tp 2 7 — ty e* TP ~C. (3.15)

Thus, BRST nilpotency on e* requires both the vanishing of the torsion

T =0 (3.16)
and of )\82

A =o. (3.17)
It follows that

P =p. (3.18)

The torsion constraint (3.16) can be algebraically solved for the spin connection, expressing
it in terms of e, b and :

w“ab = % eVl Iy el,]b] — % eV Pt en O eple + eu[“ v+ Yy, rle bl 4 e ry, P, (3.19)

The torsion constraint is necessary to ensure BRST nilpotency in any supergravity theory,
independently of any equations of motion. Note that bosonic connections of conformal
supergravity have 48 off-shell degrees of freedom, while the fermionic connections have 24.
Since the spin connection has precisely 24 components, the torsion constraint (3.16) ensures
the matching between bosonic and fermionic degrees of freedom.

Let us turn to the Ag’s associated to the Lorentz, Weyl and R-symmetry generators.
Superconformal covariance dictates their form to be

(A = e, CT€ (1 p® + 29 D5 €™ pn), (3.20a)
A = ecCTe (yi T pap + y2 s T apmn o), (3-20b)
)\OR =e.(T° (2115 % pop + 29 gy e20m7 Pmn)- (3.20¢)

Nilpotency of the BRST operator implies that the BRST variation of a constraint is a linear

combination of constraints. Hence

0=38T"+Q%WT° +0T% = —(\))% e’ + A\ e +2(T7p. (3.21)
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By plugging the ansitz for \J and A} into this equation, one obtains:

0=e.C (Fapcb+3;1Pcpba+9521Fbpac+
— 2o DT p + 20y T™ % p +
+iy s L) nab Prmn — Y1 nc[m ™ n“b pmn> ep. (3.22)
This is equivalent to
0=rp% + % Ie ph + % b pee (3.23)
and
T2=0, y=y2=0= A}V =0. (3.24)

Eq. (3.23) is consistent with p not identically vanishing only if
x] =2, (3.25)
which in turns implies
0 =Tl pbd. (3.26)
This equation, which we will call fermionic constraint, is equivalently written as
' pap = 0. (3.27)
From eqs. (3.26)—(3.27) and (3.20b)—(3.20c) we deduce that
A =o. (3.28)
A Majorana spinorial two-form p carries the following representation of the Lorentz group:
p~4D1208, (3.29)

).

where 4 = (1,0)& (0, 3) is the Dirac representation, 8 = (3,0)&(0,3) and 12 = (3,1)& (1,
17

The fermionic constraint imposes 16 equations which put the 4 & 12 to zero.

N[

These 16 equations can be solved to express the conformal gravitino i algebraically
in terms of the other fields:

~ { i
o =5 T Dby — 75 Da T Dyt (3.30)

Therefore matching fermionic and bosonic degrees of freedom requires that 16 bosonic off-shell
degrees of freedom also be eliminated: we will see momentarily that these composite degrees
of freedom are the f¢ fields.

1"The 4 corresponds to the spinor T pap. The self-dual combination *p+i I's p is the 12 and the anti-self-dual
part xp — i 's p is the 4 @ 8, where *pq, = %aabcd pCd.
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Since egs. (3.24) and (3.25) have determined the g associated to Lorentz transforma-
tions (3.20a) to be

(A)™ =2e.CT°p™, (3.31)

BRST nilpotency on the gravitino 1 is equivalent to
2 . 1 Jyab b _c 1 ~1c ab
29 =iy (p) = 1 )P T C = prer e = S ecCTp T =0, (3.32)

where p = % pe €2 €€, One can verify that this equation is indeed satisfied by using both the
Fierz identity for ¢ and the fermionic constraint (3.26) for p.
By taking the covariant derivative of the torsion we obtain

0=DT%=R%e"+ FW e +2¢T?De) = R% e’ + FW e +2¢T%p, (3.33)
or in (:omponents18

Ry + 0% Foyry = 203 T pry = 0. (3.34)

mn]

We call this equation Bianchi constraint, because it is a modified algebraic Bianchi identity
for R®. This equation, together with the fermionic constraint, allows one to write the anti-
symmetric part of the Ricci tensor of Ry,,® in terms of the Weyl and fermionic curvatures as

1 - - _
B) R[ab} - szl[)/ + T pay = 0, (335)

or equivalently, in terms of the modified superconformal Ricci tensor,
5 5 AW
izb - g)a =2 Fab : (336>

Superconformal covariance dictates the following form for )\g :

AS:%(x*ﬁﬁ+yﬁjg)r“brcg&+%zfz’rcgea (3.37)
where z,y, z are constants and
R 1 mn 7R
*Fab = 5 Eab Fab' (338)

We did not include a term proportional to 7~2’[ab] I in ansitz (3.37) since this term is

equivalent to the one proportional to F'Y thanks to eq. (3.36). Inserting (3.37) into the
BRST nilpotency equations for a and b, one arrives at

_ 3 1 -
s*a=—iy (1 —x) FF 4 yxF") — 3 tR . e, (3.39a)

- ~ 1 =
s2b= —iy (z * B4 (1+y) FW) -5 tR e ef. (3.39b)

18We take the last two indices of Rmn,ab as valued in the Lorentz bundle.
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These equations impose the following constraint on the Weyl and R-symmetry superconformal
curvatures
FW = PR (3.40)

together with
y=x—1, t=0. (3.41)

We will call (3.40) the Weyl-chiral constraint. By plugging both (3.41) and the Weyl-chiral
constraint into eq. (3.37) we determine A5 to be

1 ~
Ay = 7T e ER e, (3.42)

The BRST variation of the fermionic constraint leads to the equation for the Ricci
tensor of R/,

R, = +EE (3.43)

which we will call the Ricci constraint. This equation, together with the Weyl-chiral constraint,

/

b, but it also

again implies eq. (3.36) for the antisymmetric part of the Ricci tensor of R
sets its symmetric part to zero.
The tensor R;nn b Das 6x6 = 36 components. It transforms in the following representation

of the Lorentz group:
Rimap ~ 10, ©9, 81,81, &9, & 6, (3.44)

where the suffix s (a) denotes that the representation is symmetric (anti-symmetric) with

respect to the exchange of the two pairs of indices of R’ . 1, is the Ricci scalar R/,
p g b mn,ab

1/ its dual " R/ 9, ® 1, ® 6, is the Ricci tensor ﬁ;b and 10, is the Weyl tensor

mn,ab’
representation.

The Ricci constraint puts the 95 & 15 to zero and the 6, equal to F;X . The Bianchi
constraint sets the 1, & 9, to zero, beyond also putting the 6, equal to the FZX. The

/
mn,a
The 16 independent equations (3.43) associated to the Ricci constraint can be solved

independent components of R , are hence captured by the Weyl tensor 10s.

algebraically for the 16 independent f,*:

1 1 1 -
Jab = e fu® = = 5 Rab + 57 Rtap + 7 (F)ap +
1 - 1 - - 1 - ~ ) - -
- 5 Wz Pb Pac — 5 1/10 Fca % + 5 wb Fca ¢C + 6 Nab T/Jc ch ¢d~ (345)

In conclusion, the superconformal Lorentz curvature R;,m“b, upon constraints, describes the
10, Weyl tensor degrees of freedom of the physical (non-superconformal) curvature R,,,.
The Ricci degrees of freedom of the physical (non-superconformal) Riemann tensor Ry,
which sit in the 9, ® 1, representation, are instead described by the symmetric part of fu;. The
remaining independent (off-shell) bosonic curvatures are the physical (non-superconformal)
curvature tensors FW and FZE .19

¥Tndeed, Rmn®, FV., FE. . fa» have, before constraints, respectively, 36, 6, 6 and 16 components, for a total
of 64 bosonic components. The Bianchi, Ricci and Weyl-chiral constraints impose (1+9+6) + (1+9)+6 = 32
conditions. Of the 64 — 32 = 32 free components, 20 are the components of the physical Riemann tensor, 6 are
the components of F¥, and 6 those of F\. .
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Nilpotency of the BRST transformation for w®
2wt = —iV(R“b) +5ONL + QU NP +2i (TN (3.46)

is now ensured thanks to the Bianchi and Weyl-chiral constraints, along with expressions (3.31)
and (3.42) for A and \j. The nilpotency equation for ¢

. o 1 ., 1 3 1, . _ .
§%h = —i,, (p’)—i—s/\g—i—ZQ brabxg+§axg—§zar5 xg—z(xg) "L +i(AE) T (3.47)

involves the yet to be determined /\é( , for which superconformal invariance dictates the
following ansétz:

(A)* = —iwe. (T, j*, (3.48)
with x constant. By plugging this expression into the nilpotency equation (3.47) one obtains
= . - b -
5% = =iy (i) + 5 ((T5 ) D" 5 T Cee = w (TTy 5™ Do Cee +

1 - 1,
— g ce CTep®Tyn + 3 (705 pap) TP T5T¢ C e (3.49)

The ¢n terms cancel out thanks to the fermionic constraint. The remaining terms (¢ terms
all vanish thanks to the identity

re ﬁ;b =0, (3.50)

which descends from the solution (3.30) of the fermionic constraint, if one also takes = =
1, that is

(MK = —ie.CTCTy po. (3.51)
Finally, the nilpotency equation for f¢
§2f0 = —i (T + 3 (M) + Q% M) — o A\ + 27720 (3.52)

holds thanks to the Ricci constraint, which also ensures that the trace of the f® curvature
T vanishes

T, =0. (3.53)

4 The Chern-Simons superconformal anomaly
When the constraints are satisfied, the superconformal generalized curvatures

F=F'T, (4.1)
satisfy the generalized Bianchi identities

SF+[A F)=0. (4.2)
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We can therefore construct generalized Chern classes of total degree 6 by considering cubic
polynomials of the curvatures

P3(F') = d;j, F'FIF*, (4.3)

which are superconformal invariant. From its definition, Jijk is a “completely symmetric”
(in the graded sense) tensor

diji, = (=) dj,, diji, = (—)IH dyy. (4.4)

P;(F") is superconformal invariant if Jijk is a superconformal invariant tensor, that is if
it satisfies:

Fli dige + ()M £ dygy, 4 (=) ImlIFHmIGE L gy = 0. (4.5)

Superconformal invariance of Jijk, together with the generalized Bianchi identity (4.2),
ensures that P3(F?) is 6-closed:

§ P3(F") = 0. (4.6)

We searched for solutions of eq. (4.5) with symmetry properties (4.4) and found a single
solution, up to a multiplicative constant:

Py(F) =415 (FR)* + 3 B (FY)? = oy W ROV R D PR Ry R4
—6pT ¥ p Ry +60ipp FE+12pT5 pFY —12i pTTs p T, +
+12FRTOT, — 6enpeg REOTOT® — 120 pTTs 5 T,,. (4.7)
Since the super-covariant generalized curvatures are not horizontal
F'=F 4 )\, (4.8)

it is not “a priori” guaranteed that the BRST-invariant generalized polynomial P3(F?) gives
rise to a secondary generalized Chern-Simons class of degree 5, i.e. to an anomaly cocycle.
Since the non-horizontal components of the generalized curvatures are 1-forms, P3(F?) has,
in principle, components of form degrees 4 and 3:

Py =P+ P®. (4.9)

However, it is easy to see that P§3) = 0, due to the specific form of the superconformal
invariant (4.7) that we found, and the fact that only {\, A\, A\§'} are non-vanishing. Hence

7 3 a cd 17 3 a I = a
Py(F?) = = cana ) O FY = 2 ) ) PR = 6 5T TsA ™. (4.10)

It is quite remarkable that, by taking into account both the expressions for \j’s (2.41a)—(2.41c)
and the constraints on curvatures (2.44a)—(2.44d), this 4-form turns out to vanish

P3(F") = 0. (4.11)
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The vanishing of P3(F?) triggers the Chern-Simons secondary class mechanism: the generalized
Chern-Simons polynomial of total degree 5 is an anomaly cocycle

P3(F)=6QY) (A, F) =0. (4.12)

The Chern-Simons polynomial is completely determined by the super-invariant tensor
d;j, and the structure constants f;k according to the universal formula

- . 1 .. - ) 1 - - - )
QYA F)=diyjy A FIF* — = fi d;,, A™ A" AT FF 4 10 75 fLidu, AP AT A™ AT AR

4 mn
(4.13)
If we denote by Q5 n the part of the Chern-Simons polynomial (4.13) of degree N in the
number of generalized forms A and F', we obtain the following explicit expressions, to all
orders in all the fermionic fields?

Qs3=+15a(FR)?2 1 2FBb FW 1+ a(FW)2 4

1 ~ o= 1 L
_ §5abcd wab Rcd FW _ Z‘Sabcd bRab Rcd +

~ ~ 1 - ~
—w“bRabFR—iaRabR“b—i—
—2pTT54p Ry +2pT"T59p Rop—2 pT L5 pwap +
+20ip pFE —20i pp FE +20ippa+
+ 495 pFW —4pTsp FW +4pT5 pb+
+8ipl Isp T —4i f* pI',I's p+
+4e" FRT, — 2e,p0qe® TP R* — 4ie® pT,I's p, (4.14)
R— R— T~ 17
Q5;4:—4i¢ﬁab—8¢Fanaa—8¢Faﬁa€a—Z¢Fapfbwcd6ab0d+
1= _ 3 _
+Z'(;braﬁebwcdgade_‘_zi/lpFabﬁawab+ii";brabﬁfcedgabwl"i_
_liarab—- e cd_}irarbc de 3*11 ~ pa
2 PWe Wde€ab 4'¢' pfawdegbc + ’l/) 5p.f €q+

_ 5 _ —
—4i1,bF5F“pfab+§i1/)F5Fapfbwab+4i1/)F5Fa peq b+

7. = . — 5 1. —
SIPTsT? pe’ wap+ PTST T p fuey + Lip TsTT* p fowiet

1 = - -
+Zz‘¢r5rbcraﬁeawbc—zupqpab+2iawabprab¢+
3. _ _o1 3
_52fcedgadeﬁFab'@b‘i‘Z'LwcewdegadeﬁFabw+T62wabwef€cdefﬁFCdFabw+
—3f%aplsth—2iph pl'sp—10ip 59 pip +
~ 1 _ - - -
— s PT T s = Ccanea P T PP p+3 foea bFT+

+

- 1 - _ - - _ -
—|—3f“ebwabFR—Zw“bwacwchR—Si1/)F“b1pwabFR—61/)I‘“1pfaFR+

+30EF5&aF‘R+6EF“1/~;FRea+6iEJ;F’Rb— ea faFW

20We simplified these expressions slightly by inserting the torsion constraint 7% = 0.
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1 ~ 1 . 1. — - -
+ 5 .faeb wcd6ab0d FW _ g Wab wce wdeﬁade FW _ 51 d’eabcd Fab 'l,b LUCd FW +

—ipTsT% £, FW —2ippa FW +ip DT e, FW +
+24L5 P b FY — Y5 pw™ Ry +ip TsT o f° Rap+

_ - o~ — ~ - - 1 ~
+ipT%ha Ry +ip ToT s de’ Ry — e faa,l!zab—Z aw, wp R +

3 ~ 1 ~ 1 - 1 ~
+ 5 fced bgade Rab + 5 .fcee wdegade Rab+ 5 feec wdegade Rab - feee wcdgade Rab +

4

1 S _ _ N
- g bwce wdegade Rab_ §Z¢¢€abcd wab RCd‘i‘gabcd/l;b re "p fb RCd +

—— ~ - 1 . _ B _ L

+eabeap T Pe’ RCd—§i€abcd¢rab¢bRCd+2i1,bF“¢¢F5Fa p+
— -~ -1 o L )
+10@¢F5¢¢P+2Z¢F5P¢¢+§€abcd¢rab¢¢FCdp+
—2ipT5Ty pPT th+ 29 T h a Ty + 49T 5 pe’ T +
+ip DT bT,+ ae, bT+ ae’ wo T —2 becedgabchaJrlebwcewdegabcd,fa+
2
1 N 1 _ B )
+§ebbw6d€“deTa_566wbcwdegawTa+5abcd¢ra¢deTb+
— P TsT 4 wap TP — 2ic poq YT 4P T, (4.15)
4
Q5§5 =—2 fa .fbeced bgade— g fa fbecee wdegade—F

4 2
+ 5 Ja feebec wdeeade - 5 Ja feebee wcd5ab6d+

3
+ 5 faeb bwce wdegade

l abed

1
tr fae’ Whewe wae abed 1.

1
5 faee bwbc Wde€

1 1 1
+ < Foeqwpewe W™+ = feeq bwpewgee™ — —

) 5 10

1 1 .
- Feel Wap Wee wae®d — 10 b Wi wel wae™+6ivpah fae, +

- 1 — -~ — ~
+i¢'¢faebwcdgab‘:d_Zilp’wwabwcewdeaawd_?)wFawaea b+

Fleewapwe wye® 4

= -~ T~ -~ 7 T~ -~
39T Pac’we—29P TP freceasa" + 50 T erwc” waega" !+
23 =

1—= ~ = ~
+§ ¢Fa web bwcdgade_ E 'd) re ¢ e’ Whe wdeEQde +
3 =__ = — ~ 3. — ~
+E ¢Fa'¢)ebwacwdesb0d6+6i¢rab¢ faaep+ §i¢Fab¢awacwbc+

+3ip T4 foeqbeay™ + ;%Z@Fab P foef waeear ™+ ;%Z@Fab P flecwaeea™ +
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+fwrawwr5wea+—z‘¢rawrcd¢e Eabed +
—gwarwwrabwe +*wr5«zw
+%¥P b PT NP eqpeabt = “,bF Ts T, (4.16)

5 An equivalent anomaly cocycle

Anomalies are BRST equivalence classes. In this section we want to describe the class of
all the anomaly representatives equivalent to the Chern-Simons cocycle (4.13) which can be
obtained by adding to it d-exact polynomials of generalized connections A* and generalized
curvatures F*. We will also restrict ourselves to polynomials of generalized connections A’
and generalized curvatures F which are invariant under rigid Lorentz transformations. It
turns out that the space of §-trivial Lorentz invariant generalized polynomials of total degree
5 has dimension 29. There are therefore 29 gauge parameters that describe this class of
anomaly cocycles equivalent to (4.13).2!

It is easily seen that the superconformal invariant cocycle (4.13) is the unique anomaly
representative in this class which enjoys full rigid N’ = 1 superconformal invariance. Indeed any
other superconformal invariant equivalent cocycle must be the §-variation of a superinvariant
cocycle of (generalized) degree 4. This cocycle of degree 4 would necessarily involve an even
number of generalized connections A’: but there are no superconformal tensors (super)-
antisymmetric with an even number of indices ¢. Hence there are no superconformal invariant
representatives other than (4.13).

The superconformal invariant anomaly cocycle (4.13) depends on the ghosts {c’} of the
superconformal algebra. Therefore the corresponding anomalous Ward identities involve
all the currents associated to the superconformal algebra generators {T7}. One can ask if
one can pick representatives which put to zero anomalies relative to specific subalgebras of

211et us make clear that these are not all the possible equivalent representatives of the anomaly cocycle (4.13).
“A priori” one could also consider trivial cocycles which are the § variation of polynomials of ordinary connections
and curvatures which cannot be written as the ¢ variation of polynomials of generalized connections and
curvatures.
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the superconformal gauge symmetry. In the BRST formalism this is equivalent to choosing
anomaly representatives which are independent of a subset of the ghosts {c!}.

The superconformal invariant anomalous cocycle (4.13) does not depend on the diffeo-
morphism ghost £#: as mentioned in the introduction this reflects the fact that there are no
diffeomorphism anomalies in 4-dimensions. General arguments suggest that, for the same
reason, it should be possible to choose an equivalent cocycle which does not contain the
Lorentz ghosts Q% [23]. To our knowledge this has been formally proven only for bosonic
theories. In the next subsection we therefore present a general proof that one can choose
representatives in the same d-cohomology class as (4.13) which are both invariant under rigid
Lorentz transformations and independent of the Lorentz generalized connection w?. In the
following, we will refer to such representatives as Lorentz equivariant cocycles. The anoma-
lous Ward identities associated to Lorentz equivariant representatives describe stress-energy
tensors which are both conserved and symmetric.

Requiring that the anomaly representative be Lorentz equivariant does not uniquely fix it.
All Lorentz-equivariant representatives differ by the d-variation of a degree 4 Lorentz-invariant
polynomial of the A%’s and the F*’s not involving w?. It can be checked that this is a vector
space of dimension 19. Hence there are 19 gauge parameters, out of the original 29, that one
can choose still preserving both local reparametrizations and local Lorentz symmetry.

One can further fix these 19 gauge parameters by imposing renormalization conditions
on perturbative diagrams involving the (non)-conserved currents. To efficiently describe these
renormalization conditions it is useful to introduce the concept of perturbative degree of a
given monomial obtained by expanding the generalized connections and curvatures of the
anomaly polynomials into ordinary forms. The perturbative degree is defined by assigning
degree 1 to all ordinary field forms, with the exception of the vierbein form e® which is
given degree 0. Therefore generalized connections A’ = ¢ + A’ other than the vierbein
have perturbative degree 1. Generalized “horizontal” non-vanishing curvatures {F‘R, FW, p}
associated to physical connections also have perturbative degree 1. Non-horizontal generalized
curvatures {flab, T, p} have a component of perturbative degree 1, i.e. the ordinary curvatures
{Re T%, p}, and a component of perturbative degree 2, i.e. (A, NS, (A

The usefulness of the concept of perturbative degree is the following. By expanding a
generalized anomaly polynomial into ordinary forms one obtains monomials of perturbative
degree 3, 4 and 5. Monomials of perturbative degree n describe anomalous Feynman diagrams
involving n currents.

For example we verified that the coefficients of the monomials of perturbative degree 3
describing “triangular” anomalies of U(1)z and Weyl symmetries involving two additional
bosonic currents are independent of the 19 gauge parameters describing Lorentz equivariant
anomalies. However “triangular” U(1)z and Weyl anomalies involving two fermionic currents
do depend on (some of) the 19 gauge parameters. Their specific values are renormalization
prescription choices, compatible with local Lorentz symmetry.

We verified that one can choose the gauge parameters to obtain anomaly representatives
whose “triangular” Q-supersymmetry anomalies vanish: this requires fixing 9 out of the 19
gauge parameters. These are the anomaly representatives for which all the coefficients of
the monomials of perturbative degree 3 involving the supersymmetry ghost ¢ vanish: the
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corresponding (anomalous) Ward identities ensure that the diagrams involving the divergence
of the Q-supercurrent with two additional currents vanish.

We checked that the remaining 10 parameters cannot be chosen to make all the coefficients
of perturbative degree 4 monomials involving ¢ vanish. Hence it is not possible to choose the
anomaly representative in our class in such a way that the correlators of the divergence of
the Q-supercurrent with three other currents all vanish.?? It is however possible to choose
6 of the 10 gauge parameters to put to zero most of these monomials. We will present the
corresponding form of the Q-anomaly of perturbative degree 4 in the next subsection. With
this choice of the representative one also puts to zero all triangular U(1)z anomalies involving
two fermionic currents and all U(1)g anomalies of perturbative degree 4 (involving 3 extra
currents). In this same gauge the triangular Weyl anomaly involving two supercurrents
takes a particularly simple form. Furthermore, the remaining 4 gauge parameters do not
affect the anomalies of perturbative degree 4: they could be fixed in principle by choosing
renormalization conditions for the pentagon anomalous Feynman diagrams.

In the next subsection we present the generalized anomaly cocycle which satisfies all the
renormalization conditions we just stated, in which we fixed the last 4 parameters somewhat
arbitrarily to maximize the vanishing monomials relevant for the pentagon anomalous Feynman
diagrams.

The resulting generalized anomaly polynomial depends on the generalized connection
% =0%4 f® associated to special conformal transformations. We will show in subsection 5.2
that one can further choose a representative in the same BRST class as (4.13) which is also
independent of the ghost 8% associated to special conformal transformations. The reason
is that the gauge connection b and (a suitable completion of) the 1-form e, % make up a
so-called BRST trivial doublet. Therefore one can add a BRST exact term to the anomaly to
eliminate both b and 6% from the anomaly cocycle: this is an example of a J-trivial term which
cannot be written as the d-variation of a polynomial of generalized connections and curvatures.

In conclusion there exists a family of anomaly cocycles equivalent to (4.13) independent
of Q% and #® which describes an effective action which is invariant under diffeomorphisms,
local Lorentz transformations and local special conformal transformations. The anomalous
Ward identities associated to this cocycle encode the non-conservation of the R-symmetry
current J* and of the supersymmetry current S*, together with the non-vanishing of both
the trace of the conserved stress-energy tensor, 7,/, and the trace of the supercurrent, I', S*.
This is the form in which the anomalies of superconformal gravity are usually presented [38].

22 As we explained above, our class of equivalent anomalies is not the most general possible. We considered
all BRST trivial cocycles which can be written as the § variation of generalized connections and curvatures. It
is a priori possible that by considering trivial terms which are the BRST variation of polynomials of ordinary
connections and curvatures one could find other equivalent presentations of the same anomaly. In particular
our results do not rule out that by using these more general counterterms one could also make the quartic and
quintic Q anomaly vanish. It is also worth adding that our results are also not in conflict with arguments based
on the superspace formalism [36, 37] affirming that there exists a choice of counterterms which makes the Q
anomaly fully vanish. Indeed these works consider counterterms involving additional (auxiliary) fields beyond
the ones which we work with. It should be kept in mind however that the Q anomaly (non-)removability
question is a perfectly well defined problem in our framework since the BRST transformations close on our set
of fields (vierbein, U(1)r gauge field and gravitino) without the need of auxiliary fields.
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5.1 Removing the Lorentz anomaly

We want to investigate if there exists a generalized form X4 of degree 4 such that the cocycle

Q5(A7F) = QB(AaF) + 0 Xy, (5'1)

equivalent to the Chern-Simons superconformal invariant anomaly cocycle (4.13), does not
depend on the generalized Lorentz connection w?. One expects such a representative to exist
because it is generally understood that Lorentz anomalies are equivalent to diffeomorphism
anomalies: since there are no diffeomorphism anomalies in 4-dimensions the Lorentz anomaly
should be removable [23]. However we are not aware of a constructive proof of existence
of such a cocycle in the general superconformal context we are considering. Hence in the
following we describe how to explicitly construct a Lorentz equivariant anomaly cocycle.
It is useful to introduce a set of commuting and constant ghosts kK% of degree +2 and
the “topological” nilpotent operator 8, which shifts w®
O w® = K™, Oy K™ =0, 92 = 0. (5.2)

w

The action of d,, on all other fields is taken to be trivial. The anti-commutator of ¢ and 9,

ab.

SLorentz wwith commuting parameter k:

is (minus) a (rigid) Lorentz transformation
—gLerentz — £5.9,,}. (5.3)

A Lorentz equivariant representative Qs of the Qs class is therefore a Lorentz-invariant
cocycle satisfying

6 Qs = 8, Q5 = dLorentz Q5 = 0. (5.4)

To solve (5.4) it is convenient to introduce a filtration for ¢ on the space of polynomials
in A and F. Let

N =Ny + Np (5.5)
be the total degree of a monomial ANA FNF_ We can then decompose &
d =00+ 61 (5.6)
as the sum of §p which commutes with NV
0g0A=F, doF =0, (5.7)
while J; increases N by 1
51A=-A%  § F=—[AF). (5.8)
Let us also define the operator ig, which commutes with N

iWA=0, i F=A. (5.9)
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It is immediate to verify that
N =Njg+ Np = {50,i0}.

Both gy and 4y are nilpotent

Moreover
{0,601} =0, [00, N] = 0.

The operator [y
ll = {(51, i()}
increases the number of fields NV by 1 and acts trivially on connections

LF=A? ILA=0.

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

Any polynomial Q5 of total degree 5 can therefore be decomposed in the sum of polynomials

Qs.n of fixed degree N:

Q5 = @53 + Q54 + Qs5.
Evidently @5.n contains 5 — N curvatures:
Q53 ~AFF, Qsa~AAAF, Qs5~AAAAA.
Qs is a d-cocycle if and only if

0 Qs;3 = 0,
60 Q54 + 01 Q5,3 = 0,
60 Qs;5 + 01 Q5,4 = 0,
01 Q55 = 0.

Moreover two d-cocycles Qs and Qs are equivalent if and only if

Q53 = Q5.3 + 00X 43,
Q5.4 = Q5.4+ 01 X4 3 + 00X 44,
Q55 = Q5.5 + 01 X44.

Relation (5.9) ensures that any dp-closed monomial Qn with N # 0 is Jp-exact:

. . 1.
NQn = {do,i0} Qn = do (i0 QN) = QN = do (N i QN)-
Hence, given any dg-closed polynomial

0o @s5,3 = 0,
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we can extend it to a d-cocycle by means of the formulae?

1

Q5,4 = ~1 i0 01 (@5;3), (5.21)
Q55 = —é i0 01 (@s5:4)- (5.22)

Let us therefore start from the cubic polynomial Q5.3 in (4.14) associated to the superconformal
invariant Qs (A, F') (4.13). This polynomial does not include any pure “Lorentz” anomaly (in
agreement with the fact that there is no 3-index totally symmetric SO(4) invariant tensor),
which would have the form

wRR. (5.23)

Hence the terms in 5.3 proportional to w contain at least one curvature other than the
Lorentz curvature R:

Qs3~wRF, wF'F" (5.24)

where F” and F” denote generic curvatures associated to generators different from Lorentz.
Since
F' =5 A (5.25)

and
Sow® = R, (5.26)

one can move, by adding dp-exact terms, the dy from F’ = §y A’ to hit the Lorentz connection

and produce R Hence one can add to @s5:3 a dp-trivial term which eliminates the wab

dependence. Explicitly, by choosing
X3 =4 wap pPTT59 — wey 509 +

1 -
— Wep @ Rab — ieade Wed b Rab — Eade Wed fb Ta — Eade €p wch"“, (5.27)

one produces a trilinear dg-cocycle C:)573 equivalent to the superconformal invariant Qs.3
in (4.14):

Q53 =Qs3 + 60 Xu3 (5.28)
which does not depend on the Lorentz generalized connection w:
O Q5,3 = 0. (5.29)

The task is now to show that there exists a J-closed extension of Q5,3 which is also Lorentz-
equivariant. One starts by considering the quartic extension of Q5,3

Q54 = —% io (01 Qs:3), (5.30)

2361 Q5,5 = 0 thanks to (5.14) and the fact that Q5,5 does not contain curvatures.
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which satisfies the second of the equations (5.17):
30 Q5.4 + 01 Q5.3 = 0. (5.31)
From (5.3) we deduce
{60,0,} =0, —oLorentz — 15,.9,}. (5.32)
We can also introduce the bosonic operator dz which shifts the Lorentz curvature by K
OaR™ =k, 95 = [0u,i0], [0, 00] = O (5.33)
Since Q5;3 is Lorentz-invariant, 01 Q~5;3 does not depend on w:
081 (Qs3) = —0L7"*(Qs3) = 0. (5.34)
The action of ig on 6;(Qs5.3) in (5.30) may introduce an w-dependence which is at most linear:

Qs = W V(A F) + Qs.4(A', F) =
= W Napea( A )R + W Vi (A', F') + Zap(A') R™ + Q54(A', F), (5.35)

where A’ and F’ denote connections and curvatures different from Lorentz and where we
used the fact that Q5;4 is linear in the generalized curvatures.
From (5.31) we obtain that

50 (&,, Q5;4) = (50 (K,ab Vab(A/, F)) = 0. (5.36)
Therefore, since the polynomial V,;(A’, F) has degree N = 3, we have

- 1
Vab(A/a F) = Nab;cd(A,)RCd + Va/b(A,a F,) = g 60(i0 (Vab(A,> F)) =

= 3 dol{io, Dyus} Q) = 5 B0(Opn Qi) =
= 2 do(w Nuan (A) + Zu(A))) =
1 pcd ! 1 cd / 1 /
= 3 R Negan(A)) = 5w 60 Nagan(A) + 5 80 Zan(A"). (5.37)
We conclude that
Netal A) =0, V(A F') = 200 Za(A) (539
and hence
Q54 = %wab 00 Zap(A') + Zay(A') R + Qs4(A' F') =
= 2 00 (w0 Zuy(A) + 5 Zun(A) R + Qo (A F). (5.39)
We can therefore pick
st = = Zup(A) R + Q (A, F') (5.40)

3
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as the quartic extension of Q5;4 which is both equivalent to Q5;4 and independent of w.
The quintic extension

. 1 -
Qsi5 = — <1001 Q54 (5.41)

is now also independent of w. Indeed, 0, Q5;5 is both dg-closed and igp-closed, and has
N = 5. Hence,

R R T -1 -
Ow Q555 = R 0010 Ow Q5,5 = 3 0 {90, 0w} @55 = 5 00 0 Q5,5 = 0, (5.42)

since (5.5 contains no curvatures.
Summarizing, the J-cocycle

Q5 =Qs53+ Q54+ Qs (5.43)
is both equivalent to the superconformal invariant Q5(A, F') and Lorentz-equivariant.

5.2 Removing the special conformal anomaly
The BRST rules for the Weyl connection b, are

8by=0u0+2e," 00+ 2i (P, + ). (5.44)
If we define a new ghost 9~# associated to special conformal transformations:

O =00 +2e," 00+ 2i (1h,n+ ), (5.45)

the (buaéu) are, by construction, a trivial BRST doublet

§b, =10,  80,=1Lb,. (5.46)
Relation (5.45) can be inverted to express the original ghost 6, in terms of the new éu
1, P
Oazie“a [GM—aua—Qz(wunﬁ—Cwu)]. (5.47)

The only ghost whose transformation rules contain 6 is the special supersymmetry ghost 7:

(1, 13 i . i
sn:zy(w)—<4Qbrab—20+2za1"5>77—[28#0+(@D”77+Cwu) F“C+§9uF“C-
(5.48)

If we redefine the special supersymmetry ghost as
ﬁ:n—%bﬂ“(, (5.49)

then both b and 0 disappear from the BRST transformation rules of all the other fields.
The implication of this is that if we put to zero 6 and b in the Lorentz-equivariant
cocycle we obtain an anomaly cocycle

gquw = Qs = Qs‘

5.50
b—0 ;6—0 ( )

— — - ;
b—0; 9“—)—% ek [8M0'+2i (¥, 77+C¢M)]

which is equivalent to the Chern-Simons cocycle Q5(A, F'), is Lorentz-equivariant and does
not contain either b or . Note that for b = 0, 7 = 7.
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5.3 A special Lorentz equivariant cocycle

In this section we present the Lorentz equivariant cocycle which satisfies the renormalization
prescriptions we described at the beginning of this Section. To summarize:

a) This cocycle preserves local Lorentz symmetry. This fixes 10 parameters out of
the original 29.

b) This cocycle leads to zero Q-supercurrent anomaly at perturbative degree 3, i.e.
correlators involving the divergence of the supercurrent with two extra currents vanish. This
fixes 9 more gauge parameters.

¢) This cocycle has no fermionic cubic corrections and no quartic corrections to the
R-anomaly. It has a single contribution to the cubic conformal supersymmetry S-anomaly,
involving, beyond the trace of the supercurrent, another supercurrent and the R-current.

Properties a), b) and c) still leave 4 free gauge parameters, which affect only anomaly
terms of perturbative degree 5.

We divide the cocycle in terms cubic, quartic and quintic in the filtration degree N in

equation (5.5) which counts the number of generalized forms:?*

Q53 =121 pT°T5 fup — 60ipp FE +15a (FB)? —12pT5¢ FW +

+3a(FY)2 4 65T Ty b Ry — gaRab R }abcd b R R 4

+12i pToT5 ) T, + 6 £gpeq f¢ RAT® 4+ 12 TT,, (5.51)
Q54 = — 24P T D5 p faey + 249 U5 p foea + 24pT 4 foa + 120 p T Pp T Ts 1 +

609 TshaFR 1309 T7) FRe, — 12ippa FW — 6ih T vpa Ryt

—6PTPT54h bRy + 6 feeqbeay™ RY + 39) cpeq TP e? R+

+ 12T s ppToptp + 129 T £2 Ty + 129 T p a T, +

F12F foeqca™ T + 124 Ty T ap F4 T, (5.52)
Q55 = —12 fa fobecea =™ — 12T fiec a2 — 20 T ) fo ae +

+ 12T P b foegea™ — 24i PP fae, +

- DU PRI fot LG PP nea T f 4

— T Y Peaea TP~ LGS BTT5 6 0+

+ 18T pPpTatpa+ 3P T pplyvpa+

+%Eraiarmﬁeﬁ-%iEFCw@EabchaﬁzebJr

S LT B PTG B TG T, (55

In appendix D we present the ghost number 1 component of this cocycle — the anomaly
proper — written in terms of ordinary forms.

24LLet us remind, to avoid confusions, that the degree N is not the same as the perturbative degree. The
reason is that perturbative grading assigns degree 0 to the vierbein; degree 1 to the other connections, to the
ghosts and to the ghost number 0 component of the generalized curvatures; degree 2 to the ghost number 1
components of the non-horizontal generalized curvatures.
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5.4 Bosonic anomalies
Let us consider the quantum effective action, a (non-local) functional of the independent
fields of superconformal gravity:

Wle,b,a,] = —ilog Zle, b, a,]. (5.54)

We can define the corresponding currents

o BH = —1% ju:e—l%

Y%
e
de,®’ 6b,’ da,’

8y

In the renormalization scheme in which the anomaly is described by the Lorentz-equivariant,

Tl =e! F=e

(5.55)

f-independent cocycle (5.50) we have

sH e, b,a, ] = /M ng“i” —
4

E/d4xe[aAW+a.AR+§AQ+ﬁAS], (5.56)
which is equivalent to the Ward identities
1 1 - "
0= 5 7—[01)} — z '(/JN FabS y (557&)
0=B,, (5.57Db)
1 -
Aw = =T/ — 3 Yu SH, (5.57c)
Ap=-D,J" + ;“/_m s SH, (5.57d)
Ag =D, S" —2T%, To! +2T5 4, J", (5.57¢)
Asg =—-2T5¢, J" +iI', S, (5.57f)

where the non-vanishing densities Aw, Agr, Ag and Ag can be read-off eq. (5.56).

In order to compare our Chern-Simons anomaly cocycle with the a and ¢ anomalies
of [15],25 we look at the R-symmetry and Weyl anomalies, keeping the terms of perturbative
degree 3. These terms capture anomalous Feynman diagrams with three external currents.

The R-anomaly of perturbative degree 3 of our chosen Lorentz-equivariant cocycle is

. _ _
a A = —Za Ry R +3a (FV) + 150 (FR). (5.58)

Note that the first term in this expression depends only on the Weyl tensor: the Ricci compo-
nents of the Riemann tensors are encoded in the f® terms. By replacing the superconformal
curvatures with the standard curvatures

R — Rab(w) +2 e[afb} — Qiﬂf‘lb @57 (5.59a)
FW _ 9.0 fo— 27;@77/;’ (5.59Db)

25A recent work on the interpretation of the anomaly coefficients a, ¢ in d = 4, N' = 1 SCFTs as central
extensions of a higher Virasoro symmetry algebra is [39].
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FR=da—2¢T51, (5.59¢

)
T =D f* — T, (5.59d)
p=D+ie* Ty, (5.59%)
p=Dip—if'Ta, (5.59f)

all the f* dependence cancels out in (5.58) to give the result
3
AR = =5 Ry R +15 (F")?, (5.60)
proportional to the so-called a-anomaly. Let us now turn to the bosonic part of the Weyl
anomaly of perturbative degree 3:

3 . -
o AP — — Eabed R® R + 6 foeqoen™ R® — 120 €™ £, f, e 4. (5.61)

Once again, the first term depends only on the Weyl-tensor: by itself it would be c-type
anomaly. However, after replacing superconformal curvatures with standard curvatures,
eq. (5.59), the f* dependence cancels out and one obtains

0S 3
o Ao — — % area R R o, (5.62)

thereby confirming that our superconformal cocycle is equivalent to the a-anomaly.?®

Summarizing, the dependence on the geometric Riemann tensor of the superconformal
cocycle is contained both in the superconformal curvature R® and the special conformal
connection f¢. Thanks to the constraints (the bosonic part of) R is essentially the Weyl
tensor built with the geometric Riemann tensor R, while f® encodes the Ricci components
of R%. The superconformal Chern-Simons cocycle has the precise combinations of R% and
f% to produce the a-anomaly, thanks to the cancellation of the f* dependence in the cocycle.

Let us also consider the terms of perturbative degree 4 in both the R and the Weyl
anomaly and let us also include the fermionic terms. It turns out that the correction at
perturbative degree 4 in the R-anomaly vanishes, when going from the conformal curvatures
to the Riemannian ones and taking into account the fermionic corrections:

a (AP + APy =a —g Rap R +15 (FF)?|, (5.63)

The Weyl anomaly up to perturbative degree 4 (thus neglecting the O(1)*) terms which are
of perturbative degree at least 5) turns out to be

3 _ )
o (A + AWy = —ZsabcdR“bRCda+6tiI‘“F5 DYV, 0—12a Dy eV, 0. (5.64)

26The relative coefficients of the R?, F? and R*R tensor structures which appear in the U(1)r and
Weyl anomalies of superconformal gravity are implicitly contained in the formulas derived in [12], in which

superconformal anomalies are expressed in terms of superfields. In [40] the same anomalies were written out
in components and the relation between the coefficients of these tensor structures was explicitly exhibited,
with a numerical error which was corrected in both [41] and [42]. [38] rederives the correct result solving
the Wess-Zumino consistency condition. Our results for the coefficients of the chiral anomaly and the Weyl
anomaly — egs. (5.60) and (5.62) — match the ones of [41, 42] and [38], after taking into account that our

U(1)r gauge field a, and the gauge parameter « are normalized differently with respect to [38]: a,rff' 58] — Say,

ref. [38]

o = 2 a. The numerical a-coefficient, as defined in [38], which gives the overall normalization of our

cocycle is a = 1272
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5.5 Fermionic anomalies

The full fermionic anomalies in appendix D include terms linear, cubic and quintic in
the gravitino field. We present below the terms of these fermionic anomalies linear in
the gravitino and up to perturbative degree 4. These expressions describe anomalous
contributions to correlators involving the divergence or the trace of the supercurrent, one
additional supercurrent and either 1 or 2 bosonic currents.

CAY = —5a#CT,DPYP (FRY),, + 104, ¢ TV Dlyd (FR),, +
+10ia" {0, D5 DY P) ) ppe (FRYTY — 6.a# €ppoa C TV DIPYlS, > 4
+ 20" €150 CTVDIPYIIW,2 P — 40 €105 CTV DY, 28 4
1 _
+ 5 0" Epap € TV DIPyoIW,, 8, (5.65)

where W77 is the Weyl tensor and S, is the Schouten tensor:

1 1 1 1 1 1
Wiwipo = Ryvpo — 5901/ Ryp+ §gpv Ry + §gcm Ryp — §9pu Ryo — 69171/90# R+ 69;)#901/ R,
1 1
SMV = 5 RHV - ﬁ [my R7 (566>

Ag receives a contribution already at perturbative degree 327

7 (AP + AY) = = 1517 Dy eaps (FRY +300% 775 0 capys (FR) +
—12i7T " DI Ry, + 37 Toag DY R + 30T DIy Ry 5+
+ 30 a” feyan, TP Rys™. (5.67)

6 Conclusions and open problems

We have remarked that the d = 4, N = 1 Lie superconformal algebra admits a single
invariant completely symmetric (in the graded sense) tensor with 3 indices in the super-
adjoint representation. We have also shown that the corresponding invariant polynomial,
cubic in the generalized curvatures of superconformal gravity, vanishes — despite those
generalized curvatures not being horizontal. Therefore the corresponding superconformal
secondary Chern-Simons class is an anomaly cocycle. We computed this cocycle explicitly,
in components and to all orders in the independent propagating fields of superconformal
gravity. We showed that it is equivalent to the so-called a-anomaly of superconformal gravity,
a superconformal extension of the Euler Weyl anomaly of bosonic gravity. Our result is best
viewed as an extension of the Stora-Zumino paradigm for producing anomaly cocycles out of
secondary Chern-Simons classes — generalizing it to the case, characteristic of supersymmetry
and conformal invariance, in which generalized curvatures are not horizontal.

270Our result for the Ag anomaly agrees with the one in [38], with the same anomaly coefficient a = 12 7*
as the R and W anomalies. Our gravitino field ¥ and supersymmetry ghosts (, n are normalized differently
with respect to [38]: ¢ = %wref' B8] ¢ = é(ref' B8] g = %nref' 8] The terms in Ag) involving two U(1)r
fields also agree with the corresponding ones in [38], including the overall normalization. This fixes completely
the dependence of the anomaly on the remaining gauge parameters. However the terms in Ag) involving the
gravitational curvatures do not agree with [38].
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Superconformal gravity is believed to possess a second independent anomaly known as the
c-anomaly, a superconformal extension of the Weyl anomaly of bosonic gravity constructed
from the Weyl tensor. Hence, it is natural to inquire whether the c-anomaly also lends itself
to a Chern-Simons formulation. The fact that the d = 4, ' =1 Lie superconformal algebra
admits a single 3-index completely symmetric (in the graded sense) invariant tensor — which
we proved to correspond to the a-anomaly — would seem at first to rule this out. However,
as we stressed throughout the paper, the superconformal curvatures must satisfy certain
constraints. Therefore, although invariant polynomials of the curvatures are necessarily
BRST invariant, it is possible in principle that non-invariant but BRST closed polynomials of
generalized connections and curvatures exist, thanks to the constraints. This could give rise to
the emergence of extra BRST cohomology classes: it is worth noting, in this respect, that the
superconformal formalism that we developed naturally gives rise to the (supersymmetrization
of the) Weyl tensor out of which the c-anomaly is built.

Another interesting open problem is to provide a holographic 5-dimensional interpretation
of our main result, the Chern-Simons formula for the superconformal anomaly eq. (4.13). If
one extends all fields to 5 dimensions, the generalized Chern-Simons form in this equation

)

does develop a non-vanishing 5-form Q(()5 component. This would be a candidate for a
5-dimensional Chern-Simons presentation of the 4-dimensional superconformal anomaly,
thus unifying the holographic descriptions of both Yang-Mills [8] and Weyl anomalies [43].
However, the constraints which curvatures must satisfy are formulated in 4 dimensions: to
substantiate the 5-dimensional reading of eq. (4.13) one needs to understand if and how

these constraints can be extended to 5 dimensions.
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A Relation between the Stora-Zumino formulation of anomalies and the
so-called “two-step descent”

In this appendix we review in detail the relationship between the Stora-Zumino (SZ) formula-
tion of anomalies and the so-called “two-step descent” procedure [44]. In essence, the two
“descents” are equivalent because they are algebraic in nature, not geometrical. The technical
difference between the formalisms is the following: in the SZ formalism anomalies are de-
scribed by a single generalized form, while in the “two-step descent” procedure anomalies are
captured by a collection of ordinary forms. In both cases one starts by considering connection
and curvature with values in the same Lie (super)algebra. In the “two-step descent” method,
the connection is an ordinary 1-form whose curvature is an ordinary 2-form:

F=dA+ A% (A1)
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where d is the de Rham differential acting on ordinary forms. In the SZ-BRST framework
the connection

A=c+A, (A.2)

is a generalized form of total degree (defined as the sum of form degree and ghost number)
equal to 1, whose curvature is a generalized form of total degree 2

F=6A+ A% (A.3)

Here § is the generalized nilpotent BRST coboundary operator, which for Yang-Mills theories
is written as follows

0=s+d, (A4)

where s is the nilpotent BRST operator acting on fields. In the case of supergravity, in order
to preserve nilpotency, one needs to define instead

§=3+d—iy, (A.5)

where y* = (" ( is the supersymmetry ghost bilinear and § is the BRST operator equivariant
with respect to diffeomorphisms.?®
Both the ordinary and generalized curvature satisfy the Bianchi identities which are

purely algebraic statements encoding the nilpotency of the relevant differentials:

d?=0 = dF=—[AF], (A.6)
=0 = O0F=—[AF)].
To construct the descent one picks a completely (super)symmetric 3-index invariant tensor
dgpe of the (super)Lie algebra. Correspondingly, one can define either an ordinary Chern

polynomial
Py(F) = Tr F3 = dy. F* F° F©, (A.8)

or a generalized one
Py(F) = Tr F3 = dy, F* F® F°. (A.9)

Both ordinary and generalized Chern polynomials are closed with respect to the relative
differentials thanks to the Bianchi identities (A.6)—(A.7):

dPy(F)=0, 6P3(F)=0. (A.10)

The second fact that the descent depends on is the triviality of the cohomology of d (d) on
the space of non-zero degree polynomials of ordinary (generalized) connections and ordinary
(generalized) curvatures. Again, this fact is a purely algebraic property which descends merely

28 Anomalies of bosonic gravity in the metric description can be obtained, in the dimensions in which they
exist, by starting with the same definition (A.5) for ¢ involving the equivariant § with the superghost dependent
term " put to zero.
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from the definitions of curvatures, which are identical for both ordinary (eq. (A.1)) and
generalized ones (eq. (A.3)). Therefore triviality holds for either d or ¢ for the same identical
reason.?? One concludes that both P3(F) and P3(F) are exact

Py(F) =dQs(A, F), (A.11)
P3(F) =0Q5(A, F), (A.12)

and the Chern-Simons polynomial of connections and curvatures Q5 is a universal algebraic
object: it only depends on the completely (super)symmetric invariant 3-index tensor dgpe. It
is the same polynomial for both the ordinary and generalized Chern polynomial.

One difference between the two formalisms is the following. In the “two-step” descent
one needs to make ordinary forms depend on two “unphysical” extra-coordinates: eq. (A.11)
is empty in 4-dimensions since both the ordinary 6-form P;(F') and the 5-form Qs(A, F)
trivially vanish in 4-dimensional space-time. On the other hand, extending fields to higher
dimensions is not necessary in the SZ formalism since generalized forms of degree greater
than 4 do not identically vanish in 4 dimensions.

The derivation of the anomaly for Yang-Mills theories in the ordinary form formalism
relies on the fact that the Yang-Mills curvature F' transforms in the adjoint representation
of the Lie algebra under BRST (gauge) transformations:

sF =—[c, F]. (A.13)

This is of course a consequence of the BRST (gauge) transformation rules for Yang-Mills
connections

sA=-Dec. (A.14)

Hence the Yang-Mills ordinary Chern polynomial P3(F') (extended to 6-dimensions) is s-
invariant

S P3 (F) =0.
Since d and s anti-commute, one has
0=d(sQs5(A, F)).
From the (local) triviality of d one deduces

sQ5(A, F) = —dQu.(c, A, F), (A.15a)
S Q4’1(C, A, F) =—d Qg’g(c, A, F) (A.15b>

Q4,1(c, A, F) is a 4-form of ghost number 1 which satisfies the anomaly consistency condition.
By pulling this form back to 4-dimensional space-time, considered as a submanifold of
higher-dimensional unphysical space, one recovers the 4-dimensional anomaly.

29The triviality of the local cohomology of either d or § can be proven by means of standard filtration
arguments from the fact that curvatures are, by definition, exact up to non-linear terms.
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In the SZ formalism both descent equations (A.15a) and (A.15b) are contained in a single
equation, eq. (A.12), which captures the triviality of the generalized Chern polynomial. This
is seen by first expanding the generalized Chern-Simons polynomial in powers of ¢

Q5(A1F) = Q5(C+ A7 F) = Q5,0(A7F) + Q4,1(ca A7F) + Q3,2(67 Aa F)+
+ Q23(c, A, F) + Q1,4(c, A, F) + Qo 5(c). (A.16)

The “descendants” @, 5—n(c, A, F'), are n-forms of ghost number 5 — n.3% One also observes

that, in the case of Yang-Mills, the BRST rules for both connection (A.13) and ghost

sc = —c? are summarized by the horizontality equation

F=F, (A.17)
which implies
P3(F) = P3(F). (A.18)

Hence eq. (A.12) becomes for Yang-Mills theories:

P3(F) =d@Qs50(A, F), (A.19a)
0=dQu1(c, A, F)+sQs0(A, F), (A.19Db)
0=dQ32(c, A, F)+5Qu1(c, A, F), (A.19c¢)
0=dQ23(c, A, F) +5Q32(c, A, F), (A.19d)
0=dQ14(c, A, F)+5sQ23(c, A, F), (A.19e)
0=dQos(c)+sQia(c, A F), (A.19f)
0= 5 Qus(0) (A.19g)

which are completely equivalent to the “two-step descent” equations (A.15a)—(A.15b).

As we remarked above, there is no need in the SZ framework to extend fields to higher-
dimensions. In 4-dimensions the first two equations (A.19a)—(A.19b) above are trivial and
the SZ descent actually starts from eq. (A.19¢) which is the anomaly consistency condition
for Q4,1(c, A, F'). From this perspective the SZ formalism ezplains the connection between
4-dimensional anomalies and the 5-dimensional Chern-Simons polynomial and 6-dimensional
Chern invariant. In the two-step approach this relation emerges, somewhat mysteriously, by
extending fields to unphysical higher dimensions. The SZ formalism also makes trivial writing
down the “descendants” Q, 5—n(c, A, F') by simply expanding the universal Chern-Simons
polynomial Q5(c + A, F') in powers of the ghost.

Of course one has the option to extend fields to higher dimensions in the SZ framework
too. Notably, in the holographic context, one gives “physical” meaning to extra-dimensions,
by thinking of (closed) 4-dimensional space-time M, as the boundary of a 5-dimensional
“ball” Bs. In this case, eq. (A.19a) is still trivial but eq. (A.19b) is not. By integrating
it on By one obtains

Quile, A, F) = —s / Qs(A, F). (A.20)
My Bs

30Q5,0(A, F) = Qs(A, F) is the original Chern-Simons polynomial.
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which states that the integrated 4-dimensional anomaly is the BRST variation of a 5-dimen-
sional local functional, the integral in the “bulk” of the ordinary Chern-Simons polynomial.

In supergravity (and conformal) theories horizontality of the generalized curvature does
not hold. The generalized curvature writes

F=F+)\ (A.21)

where A is a 1-form of ghost number 1. This is so because in the super-Lie algebra case
the BRST variation of the ordinary connection is not a mere gauge transformation since
it also includes A:

SA=—-Dc+ X (A.22)
and consequently the ordinary curvature does not transform in the adjoint
SF=—[c,F]—DA. (A.23)
It follows that the ordinary Chern polynomial is not §-invariant
§P3(F) = —dTr A F2. (A.24)
Hence the ordinary “two-step” descent equations (A.15a)—(A.15b) break down.
The SZ formalism makes transparent the necessary and sufficient condition under which

the generalized Chern polynomial still encodes an anomaly. From eq. (A.12), one reads
that 0 Q5(A, F) = 0 iff

P;(F)=0 (A.25)
in 4-dimensions. We have seen that this is precisely what happens in 4-dimensional super-
conformal gravity, notwithstanding the fact that F' is not horizontal. When (A.25) holds,

exactness of the generalized Chern polynomial (A.12) directly leads to the 4-dimensional

descent equations

0=d@32(c, A, F) +8Qu(c, A F), (A.26a)
0=dQ23(c,A,F) +5Q32(c, A, F) —i(Qu,1(A, F)), (A.26D)
0=dQ14(c, A, F) +3Q23(c, A, F)) —i,(Q32(A, F)), (A.26¢)
0=dQos(c) +3Q14(c, A, F) — iy (Q23(A, F)), (A.26d)
0=258Qos(c) — iy (Qua(A, F)). (A.26¢e)

The Chern-Simons descendant Q4,1(c, A, F') is therefore an anomaly of superconformal gravity
just as it is for Yang-Mills theories.

It should be emphasized that we proved the vanishing of the generalized Chern polynomial,
eq. (A.25), by using the constraints of conformal supergravity, which hold in 4-dimensional
space-time. Conformal supergravity constraints do not have obvious extensions to 5 di-
mensions. If this extension were possible, while preserving at the same time the vanishing
of the generalized Chern polynomial, then one could write the superconformal anomaly
holographically as in eq. (A.20). We leave to the future the investigation of the validity of the
holographic equation for the superconformal Chern-Simons anomaly. One attractive feature
of the SZ formalism is that it connects anomalies to Chern-Simons polynomials without
making any reference to higher dimensions.
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Bosonic Symmetry Generator Gauge field Ghost
Local Lorentz Jub spin connection w,ﬂb Qab
Weyl w dilaton by o
U(1)g chiral R-symmetry R U(1) g-gauge field a, a
Diffeomorphisms P, vierbein e’ &
Special conformal K, conformal vierbein  f,* ¢
Fermionic Symmetry Generator Gauge field Ghost
Supersymmetry Qa gravitino P e
Conformal supersymmetry Sa conformal gravitino 1/~Jua n

Table 1. su(2,2|1) symmetries and generators, with their associated gauge fields and BRST ghosts.

B d =4, N =1 Lie superconformal algebra

In this appendix we review our conventions for the d = 4, N' = 1 superconformal algebra.
The bosonic and fermionic generators, the corresponding gauge fields and BRST ghosts
are listed in table 1.

The (anti)-commutation relations defining the d = 4, N’ = 1 superconformal algebra are:3!

[Jab, Jed] = Nac Jab — Mo Jda + Mod Jea — Nad Jebs

] =
[Jves Pa] = Nac Py — Nap Pe, [Jver Ka] = Nac Ky — nap K,
[Pa, Py] = 0, [Ka, K3) =0,
(W, Py = P, (W, Ko] = — K,
[Pm K] =2na W + Jup),
ot @al = 5 (Tat)a® Q. o 5a] = 5 (Tan)a® s,
Q=0 W8] =~ 5,
R, Qal = —5 i (T)a” Q5. [R.5:] = 5 i (T3)a S5,
[P, Q] =0, [Ka, S] =0,
[Pa, Sal =i (Ta)o” Qg [Kas Qa] = =i (Ta)a” Sp,
{Qm@ﬁ} = -2 (Fa)aﬁ P, {Sowsﬁ} - Q(Fa)aﬁ Ko,
{Qa, S5} = 2i Wiap + 20 (T%) 05 % Jab +2(T5)ap R. (B.1)

If we collectively denote such generators by {7;} with 1 <14 < 24, T; is bosonic for 1 <i < 16
and fermionic for 17 < ¢ < 24. The grading |i| of T; is defined to be:

i {O (mod 2), if T; is bosonic (1 <i<16),
2 =
1

(B.2)
(mod 2), if T; is fermionic (17 < < 24).
31We take spinor contractions in the \, direction. Hence A%xa = —XaX®. E.g. (*(I%)apC? =

—C*(T)a¢p = —CTC.
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Ghosts are fields which have opposite statistics, (i.e. Zy gradings) with respect to the
generator T; to which they correspond:

'] = [i] + 1. (B.3)
The superLie bracket is written as
[T, ] = fi' T, (B.4)
where [-, -] denotes the commutator or anti-commutator
1,1 = 1T = (=)W T3, (B:5)
Hence
Itk = —(=) g (B.6)
The super-Jacobi equation is equivalent to the statement that fjik is a super-invariant tensor:
()R EL e+ ()BT g+ ()Rl gL 7y = 0. (B.7)
Both ghosts ¢’ and generators T; are graded, so that g = ¢! T} is odd. Hence
l9,9] = fi's & F T, (B.8)

where the “Grassmann envelope structure constants” sz i are related to the structure constants
fi'k as follows

Fite = ()Wl piip (B.9)

Hence
szj _ (_)(1+\J\)(1+Ik|) szk- (B.10)

The structure constants of su(2,2[1) are:

lef] _ le ¢f]
Fabjlea) = Mcla 5d] O] »

Fibel.a = Mafe O3] e = Nale 01,
fW,a = 5ba flév,a = —527
fzgflf)l] = 51[10‘55]7 JV,, =20,
Fona=3 T’ Fga- ;mb)ﬂ,
fivs = 59, fos=—3%
fha= 51007 fha=5iT9a
fia=1Ta)a", f~ = —i(Ta)a”,
o= —2()as, @ =2(I%),
fW =2i0,3 f;l% :2i(rab)a5a ffg =2(I5) 5 (B.11)
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A W-weight | R-charge
e® 1 0
wab 0 0
b 0 0
a 0 0
re -1 0
Y° ; -5
I T

Table 2. Weyl weights and R-charges of the connections.

The mass dimensions of ghosts and gauge fields in d = 4, N' = 1 conformal supergravity

are fixed by their BRST transformations taking into account that s is dimensionless. For

2

the standard bosonic YM symmetries for which sc = —c¢®, one has

Q%] = [0] = [a] = 0. (B.12)
From the BRST transformation rules for the diffeomorphism ghost £* we obtain
7] = 6] = —1. (B.13)

From the BRST transfomations for the supersymmetry ghosts we deduce

=5 =z 0] =1. B.14
€] 5 l 5 0] (B.14)

For tensorial connections and curvatures we have
(A =[d+1,  [Fu]=[A]+1. (B.15)

Note that the physical fields e,%, a,, b, and v, have canonical mass dimensions, 0, 1,1, %
respectively.?? Instead the composite fields fu®s wuab, 1;#0‘ have non-canonical higher mass
dimensions 2, 1, % Table 2 lists the W and R charges of the fields of the theory, that we took
into account in section 3 to construct the possible forms for the \j’s.

C Supertrace for Lie superalgebras

In this appendix we review a few general properties of supertraces for Lie superalgebras,
relevant for superconformal anomalies. For more details see [45, 46].

If V=V;®Vjis a Zy graded vector space, a homogeneous basis of V. = V; @ V;, where
m = dim Vj and n = dim Vj is of the form

{egb), e® o) el (C.1)

€’y Emi1r - Cmin s

where the superscripts ® and / stand for “bosonic” (even) and “fermionic” (odd) respectively.

32Restoring the gravitational constant, which we put to 1, graviton and gravitino would get the familiar

mass dimensions, 1 and %

— 43 —



One can define linear representations of Lie superalgebras, by associating to each algebra
generator an element of End(V) = [(V); ®(V)1, which are matrices in a given basis, and by
defining the super-Lie bracket in terms of the graded-commutator of matrices.

The matrices representing bosonic B € (V) and fermionic F' € (V)] operators re-
spectively have the form

By 0 0 |F
B= |2 . F= R (C.2)
0 |Byy Fp| 0

Let A € (V) be a generic operator. In block-diagonal form it is written as

A= (5 6)' (C.3)

str(A) = tr(a) — tr(f). (C.4)

The supertrace of A is defined as

The supertrace is independent of the choice of (homogeneous) basis. It has the following
properties

o Consistency: str(BF') =0 = str(F'B) where B € [(V); and F € [(V)5.
o Supersymmetry: str(TA) = (=) T4lstr(AT) VT,A (V).
o Invariance: str([T, A]) =0 VT,A € (V) where [-, -] denotes the super-Lie bracket.

If {T;}icr are a linear representation R of a super-Lie-algebra one can define a super-
invariant tensor as follows

ng = 2StI‘R(TZ‘Tka) = StI‘R([TZ‘,Tj]Tk) + StI‘R({TZ‘, Tj}Tk) = C(R)f”k + dwk(R) (05)

K gk satisfies the following equation, consequence of the properties of the supertrace:3

fmliKl?k + (_)Illli\ fmlj K;l%k + (_)\l\(|i|+ljl) fmleiI]%'l —=0. (C.6)
C(R) is the index of the representation, such that
strr(TiT;) = C(R)gi (C.7)
and g;; is the Lie superalgebra Cartan-Killing metric, defined as>
917 = STuper-ndi (T T). (C8)
fijk are therefore related to the structure constants fil ; as follows:

fijre = fi'5 qun- (C.9)

330 = str([Ty, Ty T Tx)) = str([Ti, T T Tx) + (=) ste (T[T, T4 T ) 4 (=) 1D str (T, 1517, Th)).
34Tor su(2,2|1) this metric is non-degenerate.
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fijx does not depend on the representation R because the Cartan-Killing metric is the unique
rank-two (super)-symmetric invariant tensor for a given Lie-superalgebra. f;j; is completely
“anti-symmetric” in the graded sense, that is

Fiw = =) £, firg = —(=)FlaL £, (C.10)
dijr(R) is instead completely “symmetric” in the graded sense
djiw(R) = () Wldj(R),  dikj(R) = (=) dyj(R). (C.11)

The tensor d;j;(R) could in principle, for a generic superalgebra, depend on the representation.
However we computed solutions to the invariance equation (C.6) for the d = 4, N’ =1
superconformal algebra and we obtained two linearly independent solutions: one which
coincides (up to a multiplicative constant) with the lowered structure constants f;;; and
another solution with precisely the symmetry properties of d;jx(R). Hence there is a unique
rank three invariant tensor of su(2,2|1) with its symmetry properties, up to a multiplicative
constant. Therefore,

dijr(R) = 2 A(R) dyjp, (C.12)

where d;j;, is independent of the representation R.
d;ji, is related to the tensor Jijk which defines the invariant polynomial P3(F), (see
eq. (4.3)), as follows

strr(F3) = A(R) (—)lWIHIRHIE g, PRI R = A(R) dijp FPFIFY = A(R) P3(F),
(C.13)
that is

diji = (—)lEllalellkl+ k] dijk- (C.14)

The sign factor relating d;;; to Jijk, which is caused by the fact that both the curvatures
and generators are graded, is invariant under exchange and cyclic permutation of its indices.
Therefore it does not change the symmetry properties (C.11). It is important to keep in mind
that the “invariance” equation satisfied by the tensor Jijk — which ensures BRST invariance
of P3(F) — is different, although equivalent, to eq. (C.6) valid for d;;p:

s digre + ()M £t dyge + (=) ImIFHmIGT g 0y = 0. (C.15)

The coefficient A(R) in equation (C.12) is the anomaly coefficient: it describes the contribution
to the superconformal anomaly of matter in a representation R of the superconformal algebra.

D The special Lorentz equivariant anomaly cocycle

In this section we write the ghost number 1, 4-form components of the special Lorentz
equivariant anomaly cocycle, egs. (5.51)—(5.53). We separate the components associated
to each ghost.
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Let us introduce the combinations

e = —% e 0,0, (D.1a)
90 = —i e, (D.1b)
ema = _j eor P, (D.1c)

corresponding to the replacement
1 L
0“—)—56‘”‘ [Opo+2i(,n+CPu)], (D.2)

which eliminates the trivial BRST doublet b and 6 from the Lorentz-equivariant cocycle (5.50).
Therefore, after performing the substitutions (D.la)—(D.1c), the K-anomaly contributes to
the Weyl, the Q and the S anomaly. To obtain explicit results from the formulae below one
needs to replace ¥ and f* with their expressions (3.30) and (3.45) in terms of the fundamental
fields e?, ¢ and a (after having put b to zero).

D.1 Cubic anomalies

- . 3 . .
a AP =150 (FR)2 430 (FV)? - §odlzabRab, (D.3)
- 3 o
o A = —120 fo freceq e+ 60 foeq e RY — 1 Eabea 0 R R (D.4)
0 (AP, = — 240, 0T5 pe® — 12i0, pT°T5 p+
— 240, 0T s peq — 12049 T4 ep ec 67, (D.5)
AW o, (D.6)

T AD) =247T5p f o — 247TT5 p faep — 247 T4 fyeceqea” +
+ 607 0% FRey + 61 qpeqg %€ R + 67705 T p Ryp +
+60iqpFE+120T5p FW . (D.7)

D.2 Quartic anomalies

a A = —2uiag g fleq — 12y WV + 240 pT% ¢ f,+

+24i ap T £, ep — 60 ) Dsp FE — 6 e T Ry (D.8)
o A =120 T foeq e — 60 T5s T Ry, (D.9)
0% (ASD)y =24i 0, Db ae® + 240, apT %) + 24i 0, ) T ae, (D.10)

CAY = — 20T pafu + 2000 f eg + 1210 G0 FY + 0 P10, (To) +
A8 - ., - = .48 - = o
+5¢ 1% ) Ty T50) — - (T D5eP) P Topth + 24i (T a fu e +
+60CT50aF® —6i (T a Ry — 12iCToT5 pth T%) + 24i C Tyt p T T -+
—3aR® (A])ap + 65T T5 p(Aab + 30 Eapea T2 (A), (D.11)
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B 24 - ~ 48 vt
77/4?) - 371 1 Eabed L) chebw + 37’ n FCdebw Y Eabea LY +

- .= 192 _ - 96 _ —= ~
—2inafiea =120y Fla— == T Y Tt — = nlsp ¥ eat) +

96 _ S 48 = .
—anabebwwrsr¢—gnr5rwwrabebw+

5
+24i T pT2T51p + 24i 7T % a f, e +
— 607050 a Ff — 6iT%) a Rap + 1277 Tgp T's p1p T4 . (D.12)

D.3 Quintic anomalies

a A =18 P T Tot) + 3 T b T, (D.13)
O-‘Ag/?/) - = ; O'Zgabcd Fab'l; 15 Fde ) (D14)
48 = = - 24, = -
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