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1 Introduction

Identifying physical properties of dark matter (DM) particles such as masses, spins, lifetimes,
and any additional quantum numbers is one of the fundamental problems in (astro-)particle
physics and cosmology, both for theoretical and experimental physicists. The most important
characteristic of DM would be that DM should either be absolutely stable or have lifetime
much longer than the age of the Universe, the latter of which can readily be realised if
DM is light enough.

Usually, the DM stability or longevity is associated with some dark symmetry that is
either global or local, and exact or approximate. In case it is global and approximate, dark
symmetry-breaking terms in the Lagrangian should be from small explicit symmetry breaking
so that DM lifetime can be much longer than the age of the Universe. Another possibility is
that a global dark symmetry is an exact one which can protect DM from decaying.1 However,
it is unlikely that a global dark symmetry is exact according to our current understanding
of quantum field theory in the presence of gravity. It is a longtime folklore that any global
symmetry would generically be broken in the presence of gravity; see, e.g., ref. [1] for a recent
review. Notably, there will be 1/MPlanck-scale suppressed dimension-5 operators that violate
the global dark symmetry, thereby inducing electroweak (EW)-scale DM to decay too fast to
be a good DM candidate. Assuming that couplings of these dangerous dimension-5 operators
are ∼ O(1), one finds that the lifetime of EW-scale DM would become too short [2].2 It is a

1This is implicitly assumed in most works on DM physics.
2For light bosonic (fermionic) DM of mass mboson ≲ O(10) keV (mfermion ≲ O(1) GeV), its lifetime induced

by dimension-5 operators that are suppressed by the Planck scale MPlanck can be long enough for DM to be
stable in cosmological timescale [2]. Invisible axion and light sterile neutrino are good examples.
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generic problem for the DM stability or longevity relying on a global dark symmetry. This
disastrous situation can be rescued if we consider a local dark gauge symmetry instead of a
global dark symmetry to accommodate the DM stability or longevity [2, 3]. If dark symmetry
is an exact one, and the DM particle is absolutely stable, it is better to implement a dark
local gauge symmetry, just like in QCD or QED in the Standard Model (SM). In this way,
the dark gauge boson (or dark photon) enters the game in a natural manner.

Amongst possible dark gauge symmetry groups, Abelian U(1)D is the simplest and
has been most studied in various contexts; see ref. [4] for a recent review and references
therein. DM models with a dark photon belong to this category, and the kinetic mixing
between the dark U(1)D and the SM U(1)Y or U(1)em field-strengths is generically allowed
at the renormalisable level. In case the dark photon is massless, DM is mini-charged after
the kinetic mixing is removed by the field redefinition [4], and one can envisage interesting
phenomenology in both (astro-)particle physics and cosmology; see refs. [5–7] for some cases
of the massless dark photon and mini-charged DM. If the dark photon is massive, on the
other hand, the SM fields can couple to the dark photon through the U(1) kinetic mixing [4].
If one assumes that the kinetic mixing is very small or forbidden by dark CP symmetry,
massive dark photon can make a vector DM. The massive dark photon case is usually
described in the Stückelberg mechanism, without paying much attention to the origin of
dark photon mass. However, this approach sometimes suffers from unitarity violation in
the high energy or massless dark photon limit, and physics results obtained within that
framework could be misleading, catastrophic, or puzzling. This issue could be resolved when
one includes an agency that provides the dark photon mass. The simplest well-known way
is to consider dark Higgs mechanism where the dark Higgs is also charged under the dark
gauge group and develops a nonzero vacuum expectation value (VEV). Once the dark Higgs
comes into play, unitarity will be restored and some puzzles for the massless dark photon
limit in the Higgs decay width into the pair of dark photons disappear [8, 9]. Also, we can
observe how the unitarity is violated/restored in models without/with the dark Higgs field in
the DM pair productions at the International Linear Collider [10]. Finally, the dark Higgs
field opens new channels for DM pair annihilations in the p-wave, and one can realise the
light thermal WIMP scenarios evading most stringent bounds from CMB constraints [11].
Depending on the charge assignments of DM and dark Higgs fields, one can enjoy very rich
phenomenology with theoretically and mathematically consistent frameworks. The dark
U(1)D can be completely broken, which could be a generic case, in which the situation
becomes similar to the global dark symmetry cases with explicit symmetry breaking. The
dark U(1)D can also be broken to its ZN subgroups; for general discussions, see refs. [12, 13],
and specific discussions on some detailed DM phenomenology including the importance of
the dark Higgs boson can be found in, e.g., refs. [11, 14, 15] for Z2 scalar or fermion DM,
and refs. [16, 17] for Z3 complex scalar DM.

For dark gauge symmetries, one can also consider non-Abelian dark gauge symmetries,
where DM model buildings and phenomenology become even more interesting and richer. For
example, one can consider a possibility that the dark gauge sector is confining, similar to
the QCD sector in the SM [18–22]. In this case, there can appear a new mass scale without
a Higgs field due to the dimensional transmutation in the strongly interacting, confining
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dark sector, and the lightest dark mesons and baryons could make good DM candidates.
Furthermore, both the EW symmetry breaking and cold DM can originate from the strongly
interacting hidden sector [18, 20]. Alternatively, one may consider a perturbative dark SU(N),
which is broken completely [23, 24] or to its subgroup such as the continuous SU(M) (with
M < N) [25] or discrete ZN subgroups [26] including N -ality [3]. If a dark SU(2) is broken to
U(1) by a VEV of a real triplet dark Higgs field, there could also appear a topological soliton,
such as the dark monopole that can make another stable DM for topological reasons [27].
In this work, however, we shall consider a simple dark U(1)D gauge symmetry and study
the interplay between DM phenomenology and Higgs inflation.

For dark Higgs fields, one may consider two types: a pure gauge singlet S or a ϕD with
nonzero dark charge. A singlet S has nothing to do with the dark photon mass, since it
does not carry any dark charge.3 The singlet S can have renormalisable and gauge-invariant
couplings to the SM sector through the H†H operator, where H is the SM Higgs field, as well
as to the dark sector, such as to ψψ for a dark fermion ψ or ϕ†ϕ for a dark scalar ϕ( ̸= ϕD).4
For a dark Higgs ϕD with a nonzero dark charge, one can consider suitable matter contents
and their dark charges such that composite operators made of them have renormalisable
and gauge-invariant couplings to ϕD. Depending on the VEV of the dark Higgs ϕD, one can
have a massless or massive dark gauge boson. This way, not only DM particles but also
dark gauge bosons (or dark photons) and dark Higgs fields become key players in the dark
sector in a natural manner; for a review, see refs. [28, 29].

Another important problem in cosmology is to embed cosmic inflation in underlying
particle physics models that describe microscopic world. Within the SM, there is only one
scalar field that can play the role of inflaton which drives inflation: the SM Higgs field. This
SM Higgs inflation model [30, 31], with the help of the so-called nonminimal coupling of
the SM Higgs field to gravity of the form |H|2R, where R is the Ricci scalar, is one of the
most favoured models by the latest observations [32, 33]; see, e.g., refs. [34, 35] for a recent
review. The presence of such a nonminimal coupling term may be seen natural as it has
mass-dimension of four. Furthermore, the term would generically arise through radiative
corrections; see, e.g., ref. [36]. The SM Higgs inflation model requires the nonminimal coupling
parameter to be ≃ 47000

√
λH , where λH is the SM Higgs quartic coupling, to match the

amplitude of the curvature power spectrum. For λH ≃ 0.125, for instance, the nonminimal
coupling parameter should thus be large ∼ 104.5 Such a large nonminimal coupling parameter
has led to the discussion of the unitarity violation [38–42]. In ref. [43], it is shown that the
cutoff scale coming from the unitarity violation depends on the background inflaton field
value, and the cutoff scale becomes larger than the relevant scale of inflation. In DM models
with local dark gauge symmetries, there would appear additional scalar fields, namely dark
Higgs fields, which can also play the role of inflaton, inducing dark Higgs inflation just like

3We call S a dark Higgs, although it does not carry any dark charge, for convenience.
4In principle, dark sector fields (DM, dark Higgs, etc.) can carry nonzero SM quantum numbers, and it

would be straightforward to extend the above discussions to such cases.
5Once the renormalisation group (RG) running is taken into account, it is possible to realise a scenario

where λH becomes tiny at the inflation scale in which case the nonminimal coupling parameter could take a
small value. While such a scenario is hard to realise in the pure SM as the top-quark pole mass needs to be
about 3σ away from the central value [37], extensions of the SM could make such a scenario possible.
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the SM Higgs inflation. The dark Higgs fields may also nonminimally couple to gravity. For
instance, a singlet S can have nonminimal couplings of the form SR and/or S2R, while a dark
Higgs field with nonzero dark charge can have |ϕD|2R. We note that the quartic couplings
of the dark Higgs fields could be small. As such, the corresponding nonminimal coupling
parameters need not be as large as the one required in the pure SM Higgs inflation model.

Connecting between cosmic inflation and DM physics in models with extra symmetries is
an interesting subject; see, e.g., refs. [44–59]. In order to link two different scales, it is vital
to connect coupling parameters at different energy scales with the RG running. In the pure
SM case, once quantum corrections are taken into account, the quartic coupling of the SM
Higgs field λH falls below zero as we move to high-energy scales. As such, the SM Higgs
inflation may become unstable. On the other hand, in DM models with local dark gauge
symmetries, the existence of extra dark Higgs fields may lift the SM Higgs quartic coupling
in such a way that it stays positive all the way up to the inflation scale, resurrecting the SM
Higgs inflation [47]. Moreover, as there are more than one scalar field, inflation may occur
along the SM Higgs direction, the dark Higgs direction, or the combination of the two. In
this work, we will study correlations between DM phenomenology and Higgs inflation in a
dark U(1)D-extended model. We shall perform both the classical and quantum analyses and
map different inflation scenarios in a parameter space.

This paper is organised as follows. In section 2, we propose a model based on the dark
U(1)D, which is supposed to be broken by the nonzero VEV of dark Higgs field ϕD with
dark charge 1. We also introduce dark fermion ψ with U(1)D charge equal to nψ, which
will be (a part of) DM of the Universe. Section 3 discusses DM phenomenology in detail.
In particular, we shall focus on a two-component DM scenario, where dominant component
of DM is almost hidden from direct detection experiments. In section 4, we discuss Higgs
inflation with or without dark Higgs field, both at classical level and at quantum level. In
section 5, correlations between DM physics and inflation, focusing on the SM Higgs inflation
scenario, are discussed. We then summarise the paper in section 6. Explicit expressions
for various scattering cross-sections and RG equations relevant to our study are presented
in appendices A and B, respectively.

2 Model

We consider6

L = LSM + ψ̄ (iγµDµ −Mψ)ψ − |DϕD|2 − |DH|2 − V (ϕD, H) , (2.1)

where LSM is the SM Lagrangian barring the SM Higgs sector, H (ϕD) is the SM (dark) Higgs
field, the covariant derivative for the dark sector is defined as DµA = ∂µA − igDWDnAA,
with A = {ψ, ϕD}, gD is the dark U(1)D gauge coupling, WD is the gauge boson, usually
called the dark photon, associated with U(1)D, and nA is the U(1)D charge. We choose
nϕD

= 1 without loss of generality and consider nψ ≥ 1; the nψ = 1/2 case is thoroughly
studied in refs. [11, 14] and refs. [11, 60] for scalar and fermion DM, respectively. Pure vector
DM with dark Higgs mechanism was proposed in refs. [61, 62], and the comparison with the
effective field theory is discussed in refs. [8, 9] in detail.

6We use the metric convention of (−, +, +, +).

– 4 –



J
H
E
P
0
5
(
2
0
2
4
)
2
5
0

Gauge
Group
SU(2)L

U(1)Y

Baryon Fields
QiL = (uiL, diL)T uiR diR

2 1 1
1/6 2/3 −1/3

Lepton Fields
LiL = (νiL, eiL)T eiR

2 1
−1/2 −1

Scalar Field
H

2
1/2

Table 1. SM particle contents and their corresponding charges under the SM gauge groups.

Gauge
Group
U(1)D

Fermionic Fields
ψ

nψ

Scalar Field
ϕD

1

Table 2. Dark particle contents and their corresponding charges under the additional Abelian U(1)D
gauge group. They are all SM singlets.

The scalar potential V is given by

V (ϕD, H) = −µ2
Dϕ

†
DϕD + λD(ϕ†DϕD)

2 − µ2
HH

†H + λH(H†H)2 + λHDϕ
†
DϕDH

†H . (2.2)

In unitary gauge, one may express the SM and dark Higgs fields as

H = 1√
2

(
0

vH + h

)
, ϕD = vD + ϕ√

2
, (2.3)

where vH and vD are the VEVs of the SM Higgs field and the dark Higgs field, respectively.
The mass matrix for the scalars in the basis of (h, ϕ) is given by

Mhϕ =
(

2λHv2
H λHDvHvD

λHDvHvD 2λDv2
D

)
, (2.4)

while the mass eigenstates are as follows:(
h1
h2

)
=
(
cos θ − sin θ
sin θ cos θ

)(
h

ϕ

)
. (2.5)

We summarise the SM and dark sector particle contents as well as their corresponding
charges in tables 1 and 2.

In general, the dark U(1)D gauge boson can couple to the U(1)Y gauge boson through
the gauge kinetic mixing term, through which it will decay into the SM particles. In this
work, we assume the charge conjugation invariance in the dark sector [60]:

ϕD → ϕ†D , WDµ → −WDµ , ψ → ψC ≡ −iγ2ψ
∗ , (2.6)

which forbids the U(1) kinetic mixing term.7 Once the U(1)D symmetry gets broken, the
additional gauge boson acquires the mass of

MWD
= gDvD . (2.7)

7One may alternatively consider a tiny kinetic mixing angle so that the dark U(1)D gauge boson lives
longer than the age of the Universe. In this case, the kinetic mixing parameter needs to be smaller than
O(10−26) [63].
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ψ

ψ

ψ

WD

WD

WD

WD

h1,2

f

f̄

WD

WD

h1,2

h1,2

h1,2

WD

WD

h1,2

h1,2

Figure 1. Feynman diagrams relevant for our DM analysis.

3 Dark matter phenomenology

The model under consideration contains two DM candidates; one is the gauge boson WD

associated with the dark U(1)D, and the other is the dark fermion ψ. The Boltzmann
equations for the yields, Yi (i = {ψ,WD}), are given by

dYi
dx

= −MWD

x2
1

3H(T )
ds

dT
⟨σv⟩ii

(
Y 2
i − Y eq,2

i

)
, (3.1)

where x = MWD
/T , H(T ) =

√
π2gρ(T )/90(T 2/MP) is the Hubble parameter, s(T ) =

(2π2/45)gs(T )T 3 is the entropy density, gs(T ) and gρ(T ) are the entropic and matter degrees
of freedom of the Universe, and MP is the reduced Planck mass. Figure 1 shows the Feynman
diagrams relevant for our DM study. The relevant cross-sections are given in appendix A.
Once the yield is given, the DM relic density can be determined as

Ωih2 = 2.755× 108
(
Mi

GeV

)
Yi . (3.2)

To determine the DM relic density, we have used micrOMEGAs [64], which essentially solves
the Boltzmann equations mentioned above, together with FeynRules [65] and CalcHEP [66].

In our analysis of DM phenomenology, we have considered the following constraints,
derived from various terrestrial to space-based experiments:

• DM relic density. The total DM relic density, ΩDMh
2, is given by the sum of the

relic densities of each DM component, ΩWD
h2 and Ωψh2. We have taken the upper

range of the DM relic density put by the Planck data [67, 68] and chosen the lower
value of DM relic density to be 10−4,

10−4 ≤ ΩDMh
2 (= ΩWD

h2 +Ωψh2) ≤ 0.1226 . (3.3)
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WD WD

h1,2

N N

WD

WD

h1,2

SM

SM

Figure 2. Relevant Feynman diagrams for the direct detection (left) and indirect detection
(right) prospects.

The lower value of DM total relic density 10−4 is deliberately chosen to boost the
computational runtime. The ψ DM relic density depends on its dark U(1)D charge as
Ωψh2 ∝ n−4

ψ . It indicates that a parameter set that gives rise to a low DM relic density
can readily be adjusted to achieve the desired DM relic density by reducing the U(1)D
charge of the dark fermion nψ. We note that the shift in nψ has no effect on the WD

contribution to the total DM relic density. Moreover, due to the non-dependence on
nψ, the direct and indirect detection of the WD DM are not affected. The reduction of
nψ has thus no adverse impact on other aspects of our work.

• Collider bounds. The additional SM-neutral Higgs can dominantly decay to W+W−,
ZZ, fSMfSM, and WDWD. Amongst the three modes, the first two decay modes
further decay to SM particles, while the last mode becomes missing energy. On the
other hand, the SM Higgs can decay to the DM sector as well and may contribute as
missing energy at the collider. In particular, the interference between the SM and dark
Higgs bosons can be important in certain parameter space for both fermion and vector
DM [10, 69–74]. Moreover, there is a precise measurement of Higgs signal strength
which can further constrain the Higgs mixing angle θ (see, for example, ref. [75]). In
order to consider all of these bounds, we have used HiggsBounds [76], which mainly
constrains the beyond-the-SM Higgs, and HiggsSignal [77], which mainly constrains
the SM Higgs. All the data points presented in the resultant plots have passed those
checks.

• Direct detection. We note that, while ψ has no direct detection prospects, WD may
be detected by the WIMP-type DM direct detection experiments, as shown in the left
panel (LP) of figure 2. The analytical estimate for WDN →WDN (N is nucleon) takes
the form [62],

σSI =
µ2
∗ sin2 2θ g2

D

4πv2
h

(
1

M2
h1

− 1
M2
h2

)2 [
Zf̃p + (A− Z)f̃n

A

]2

, (3.4)

where µ∗ =MWD
MN/(MWD

+MN ) is the reduced mass, MN is the nucleon mass, Z
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(A) is the atomic (mass) number, and f̃α (α = p, n) can be expressed as

f̃α
MN

=

7
9
∑

q=u,d,s
fαTq

+ 2
9

 , (3.5)

with f
p(n)
Tu

= 0.020(0.026), fp(n)
Td

= 0.026(0.020), and fp,nTs
= 0.043 [78]. We shall

show that, using the spin-independent direct detection cross-sections, a portion of the
parameter space could already be ruled out by the LUX-ZEPLIN data [79].

• Indirect detection. The DM candidate WD may also annihilate to SM particles
and can be detected at indirect detection experiments. The generic process by which
the DM can be detected is shown in the right panel (RP) of figure 2. The thermal
average of cross-section times velocity for the process, WDWD → AA, with A being
SM particles, can be expressed as

⟨σv⟩WDWD→AA = 1
8M4

WD
K2

2 (MWD
/T )

∫ ∞

4M2
WD

ds
σWDWD→AA√

s
pWD

K1

(√
s

T

)
, (3.6)

where pWD
= s(s−4M2

WD
) and Ki(x) is the modified Bessel function of the second kind

for the ith order. Expressions for the relevant cross-sections are given in appendix A.
In the resultant plots, we shall show indirect detection bounds associated with bb̄ and
W+W− channels.

For the numerical analysis, we have varied the input model parameters as follows:

50 ≤Mh2 [GeV] ≤ 1050 , 50 ≤MWD
[GeV] ≤ 1050 , 1 ≤ (Mψ −MWD

) [GeV] ≤ 100 ,
10−3 ≤ gD ≤ 1 , 10−3 ≤ sin θ ≤ 0.5 , 1 ≤ nψ ≤ 100 . (3.7)

We have considered Mψ > MWD
so that we always have ψψ̄ → WDWD annihilation mode

open and assist ψ DM to freeze out when its annihilation rate is smaller than the Hubble
rate. Moreover, we have varied nψ ≥ 1. The nψ < 1 scenario will make the ψ DM departure
from the thermal bath earlier which results in overproducing the ψ DM for most of the nψ
values. Therefore, to be on the safe side from the Planck upper bound on the DM relic
density, we have focused on nψ ≥ 1 so that for most of the nψ values, we do not overproduce
ψ DM candidate. After varying the parameters, we have selected points which satisfy the DM
relic density constraint (3.3) and the perturbativity constraint, in particular, nψgD <

√
4π.

In the following, we show resultant plots which exhibit correlations amongst the model
parameters. We also discuss various DM observables such as the DM relic density, direct
detection cross-section, and indirect detection cross-section.

Figure 3 shows the ψ contribution to the total DM relic density in the Mψ–gD plane
(LP) and gD–nψ plane (RP), with the colour representing the percentage of the ψ relic in
the total DM relic density. The only process which governs the DM relic density for ψ is
shown in figure 1, from which it is clear that the cross-section of the process would depend
on the gauge coupling gD, the U(1)D-charge nψ, and the mass gap between the initial and
final particles. Moreover, the DM relic density is also proportional to the DM mass as shown

– 8 –
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Figure 3. Ratio between the relic density of ψ and the total DM relic density in the Mψ–gD plane
(left) and gD–nψ plane (right). All the points satisfy the relic constraint (3.3). The colour bar
represents the percentage of the ψ contribution in total DM relic density. The blue-shaded region
corresponds to nψgD ≥

√
4π which violates the perturbativity.

in eq. (3.2). From the LP, we see that the region where the ψ contribution is negligible
situates in the top-left corner; it is mainly due to the fact that higher values of gD lead to
more efficient annihilation. The same region also contains cases where the ψ contribution is
dominant; it is mainly due to a close mass gap between the initial and final particles and/or
smaller values of nψ. As Mψ increases, we mainly see the ψ-dominant cases because of the
linear dependence of the DM density on its mass. For smaller values of gD < 0.1, we get
≥ 10% of the ψ-contribution in the total DM density. From the RP of figure 3, we see that
the top-right corner consists of negligible ψ-contributions; it is mainly due to larger values
of both nψ and gD. The blue-shaded region represents nψgD ≥

√
4π, i.e., violation of the

perturbativity. We note that data points that violate the perturbativity are less important
due to the negligible contribution to the DM relic density. We observe anti-correlation
between the magenta points which represent the ψ-dominant cases; this happens as we get
≥ 50% contributions for particular values of the product nψgD. We stress that figure 3 serves
to showcase the dependence behaviour of the DM relic density on the parameters. As we
discussed earlier, a data point that results in a low total DM relic density can be adjusted
to obtain the desired DM relic density by shifting nψ. The reduction of nψ shall push, for
instance, green points, which represent the case of smaller fraction of dark fermion in the
total DM relic density, towards magenta points, which represent the case of larger fraction
of dark fermion DM relic. Importantly, except when we explicitly exhibit the fraction of
dark fermion contribution to the total DM relic density, other plots will remain unchanged
by the shift of nψ, maintaining the final conclusion intact.

In the LP of figure 4, the spin-independent cross-section is shown in the Mh2–sin θ plane.
One may see that, after taking into account all the relevant bounds, an upper bound is found

– 9 –
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Figure 4. Spin-independent cross-section in the Mh2–sin θ plane (left) and the ratio between the relic
density of ψ and the total DM relic density in the Mψ–∆M plane (right), where ∆M =Mψ −MWD

.
All the points satisfy the relic constraint (3.3) and pass the HiggsBounds and HiggsSignal checks.

for the Higgs mixing angle, sin θ ≲ 0.27. We also see that the spin-independent cross-section
has a weak dependence on the dark Higgs mass. On the other hand, the spin-independent
cross-section strongly depends on the Higgs mixing angle sin θ which can be clearly seen
from eq. (3.4). Moreover, near to the SM Higgs resonance, there is a mutual cancellation
between the SM Higgs and dark Higgs channel [62, 69] which is clearly seen by the green
points even for the higher values of the mixing angle sin θ. In the RP of figure 4, the ratio
between the ψ relic density and the total DM relic density is shown in the Mψ–∆M plane,
where ∆M =Mψ −MWD

. We find that if the mass gap between the initial- and final-state
particles for the process ψψ →WDWD is small, then ψ tends to contribute more to the DM
relic density due to the phase space suppression. On the contrary, if the mass gap is large,
then there will be less phase space suppression so the thermal average of cross-section times
velocity will become large; this reduces ψ relic density which is represented by the green
points. The empty space in the top-left corner is due to the lower mass range of WD mass.

The LP and RP of figure 5 present scatter plots in the MWD
–σSI and gD–sin θ planes,

respectively. In the LP, the colour bar represents the value of sin θ. As can be seen from
eq. (3.4), σSI is proportional to the mixing angle sin2 2θ, which is clearly visible from the colour
variation in the figure. The recent LUX-ZEPLIN results [79] already ruled out the sin θ > 0.15
region. Moreover, a large portion of the parameter space will be explored in the near future by
the DARWIN experiment with its 200 tones × year exposure [80], as depicted by the magenta
dashed line in the LP of figure 5. In the RP, the colour bar depicts the spin-independent
cross-section σSI. We see that, once gD ≳ 0.08 is considered, the sin θ dependence becomes
weaker. This happens because the dominant process in our setup is WDWD → h2h2, when
this process is kinematically allowed. Then, the rate is proportional to g2

D(1− sin2 θ), which
implies weaker dependence on sin θ. Moreover, as we can see from eq. (3.4), σSI depends
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Figure 5. Scatter plots in the MWD
–σSI plane (left) and gD–sin θ plane (right). All the points

satisfy the relic constraint (3.3) and pass the HiggsBounds and HiggsSignal checks. In the left
panel, the colour bar represents the Higgs mixing angle, sin θ, whereas in the right panel, it is the
spin-independent direct detection cross-section, σSI.

on both gD and sin θ, and the transition of colour from green to magenta is observed if we
increase either gD or sin θ. In principle, we also have DM annihilation like WDWD → SM SM
mediated by h1,2. However, if we lie outside the resonance region, we always overproduce DM.
Having a parameter set in the exact resonance region, MWD

∼Mh2/2, is less probable than
having the MWD

> Mh2 case during the random scanning of the parameters (3.7). Therefore,
the DM phenomenology for WD is mainly governed by the process WDWD → h2h2.

As we discussed above, the DM candidate WD mainly annihilates to h2h2, satisfying
the constraint on the DM relic density. We thus expect that the DM annihilation to SM
particles will be suppressed; otherwise, they would dominate the relic density. The LP of
figure 6 shows the DM annihilation to bb̄. The y-axis is the rescaled thermal average of
the cross-section times velocity with fWD

= ΩWD
/ΩDM, and the x-axis is the mass of WD.

We find that the combined bound from Fermi-LAT and MAGIC [81] on bb̄ channel shown
by the black line is ruling out a small region of the parameter space and for most of the
parameter space, the bound is well above our predictions. The prediction for bb̄ from the
Galactic Centre (GC) by the Cherenkov Telescope Array (CTA) [82], shown by the magenta
dashed line, has already been explored partly by the Fermi-LAT and MAGIC observations.
Moreover, the red dashed line represents the future sensitivity reach after combining Large
Synoptic Survey Telescope (LSST) discoveries and continued data collection by Fermi-LAT
for 18 years [83]. Future indirect detection experiments might explore the parameter space
shown in the figure. Moreover, we see that the colour variation in sin θ exhibits a linear
correlation between ⟨σv⟩bb and MWD

, but there are also a few variations in the colour which
happen due to the values of gD that can also alter the DM annihilation to the SM sector.
The RP of figure 6 presents the DM annihilation to W+W−. One may observe that the
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Figure 6. Scatter plots in the MWD
–⟨σv⟩bb̄ (left) and MWD

–⟨σv⟩WW (right) planes. The colour bars
in both panels represent the Higgs mixing angle, sin θ. Here, the thermal averages of the cross-section
times velocity, ⟨σv⟩, are properly rescaled by f2

WD
= (ΩWD

/ΩDM)2. All the points are obtained after
imposing the relic constraint (3.3) on the total DM relic density.

Figure 7. Total DM relic density, ΩDMh
2(= ΩWD

h2 +Ωψh2), in terms of the dark fermion mass Mψ.
The colour bar represents different values of the product of dark charge and gauge coupling gDnψ.

low-mass region of DM has already been explored by the Fermi-LAT and MAGIC W+W−

mode. We expect a little more parameter space to be explored in the future by the CTA [82]
and a combined analysis of LSST and Fermi-LAT [83] as represented by the magenta dashed
line and the red dashed line, respectively.

Finally, figure 7 presents the total DM relic density, ΩDMh
2(= ΩWD

h2 +Ωψh2), in terms
of the dark fermion mass Mψ. The colour variation indicates different values of gDnψ. We
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see that no points are allowed in the lower right corner due to the perturbative bound,
gDnψ <

√
4π. We note that small gDnψ values, represented by green points, give rise to the

dominant contribution of the ψ DM, whereas magenta points represent less contribution from
the ψ DM because of the large gDnψ values. In general, ψ-DM relic density depends on the
charge, gauge coupling, and its mass as Ωψh2 ∝M3

ψ/(gDnψ)4. This behaviour is observed in
figure 7; for a fixed value of Mψ, green points start to appear as we move to the larger relic
density region. The presence of magenta points at ΩDMh

2 = 0.1226 is due to the fact that,
when the dark gauge boson DM WD contributes significantly, the ψ-DM contribution has to
be small due to the upper bound on total DM relic density, i.e., ΩDMh

2 = 0.1226.

4 Inflation

Having discussed in detail the DM phenomenology of the model, let us now move on to the
possible realisation of cosmic inflation in the same model. The action relevant for inflation
is, in unitary gauge, given by

S =
∫
d4x

√
−gJ

[
M2

P
2

(
1+ξH

h2

M2
P
+ξD

ϕ2

M2
P

)
RJ−

1
2g

µν
J ∂µh∂νh−

1
2g

µν
J ∂µϕ∂νϕ−V (ϕ,h)

]
,

(4.1)

where we have put the subscript J to denote that we are in the Jordan frame. The presence of
the nonminimal couplings of the Higgs fields to the Ricci scalar, namely ξHh

2R and ξDϕ
2R,

may be seen natural as they have the mass-dimension of four. Moreover, even if we set the
nonminimal couplings to zero at some energy scale, they will generically be generated through
radiative corrections. In this work, we focus on positive nonminimal coupling parameters.
The scalar potential at tree level can be taken as

V (ϕ, h) = 1
4λHh

4 + 1
4λDϕ

4 + 1
4λHDϕ

2h2 , (4.2)

where we have omitted the quadratic mass terms which are negligible during inflation. We
note that the model reduces to the standard Higgs inflation model [31] in the ϕ→ 0 limit.
Inflation with the Higgs-portal coupling is thoroughly studied in, e.g., ref. [84] which we
closely follow. We first discuss the aspect of inflation at the classical level, setting the
notations. We then perform the quantum analysis, taking into account the suitable RG
running of the coupling parameters.

4.1 Classical analysis

One may bring the Jordan-frame action (4.1) to the Einstein frame, denoted by the subscript
E, via Weyl rescaling,

gJµν → gEµν = Ω2gJµν , (4.3)

with the conformal factor

Ω2 = 1 + ξH
h2

M2
P
+ ξD

ϕ2

M2
P
. (4.4)

– 13 –



J
H
E
P
0
5
(
2
0
2
4
)
2
5
0

The Einstein-frame action is then obtained as

S =
∫
d4x

√
−gE

[
M2

P
2 RE − 3

4M
2
Pg

µν
E ∂µ ln Ω2∂ν ln Ω2

− 1
2Ω2 g

µν
E ∂µh∂νh− 1

2Ω2 g
µν
E ∂µϕ∂νϕ− V

Ω4

]
. (4.5)

Defining

φ ≡
√

3
2MP ln Ω2 , χ ≡ ϕ

h
, (4.6)

we obtain

S =
∫
d4x

√
−gE

[
M2

P
2 RE − 1

2Kφg
µν
E ∂µφ∂νφ− 1

2Kχg
µν
E ∂µχ∂νχ−Kφχg

µν
E ∂µφ∂νχ− U

]
,

(4.7)
where

Kφ = e

√
2
3

φ
MP (1 + 6ξH + (1 + 6ξD)χ2)− 6(ξH + ξDχ

2)

6(ξH + ξDχ2)
(
e

√
2
3

φ
MP − 1

) , (4.8)

Kχ = M2
P(ξ2

H + ξ2
Dχ

2)
(ξH + ξDχ2)3

(
1− e

−
√

2
3

φ
MP

)
, (4.9)

Kφχ = MP(ξH − ξD)χ√
6(ξH + ξDχ2)2 , (4.10)

and U is the Einstein-frame potential given by

U = V

Ω4 = λH + λHDχ
2 + λDχ

4

4(ξH + ξDχ2)2

(
1− e

−
√

2
3

φ
MP

)2
M4

P . (4.11)

We are interested in the large-field inflation where Ω2 ≫ 1. In this limit,

Kφ ≈ 1 , Kχ ≈ M2
P(ξ2

H + ξ2
Dχ

2)
(ξH + ξDχ2)3 , Kφχ ≈ MP(ξH − ξD)χ√

6(ξH + ξDχ2)2 . (4.12)

Canonically normalising the χ field via(
dχc
dχ

)2
= M2

P(ξ2
H + ξ2

Dχ
2)

(ξH + ξDχ2)3 , (4.13)

we obtain the effective action that is relevant for our consideration of inflation as follows:

S =
∫
d4x

√
−gE

[
M2

P
2 RE − 1

2g
µν
E ∂µφ∂νφ− 1

2g
µν
E ∂µχc∂νχc

− gµνE ∂µφ∂νχc
(ξH − ξD)χ

√
6
√
ξ2
H + ξ2

Dχ
2
√
ξH + ξDχ2

− U

]
. (4.14)

We note that for a finite, non-zero χc, the kinetic mixing term vanishes when ξH = ξD.
When ξH ̸= ξD, the kinetic term gets suppressed for a large nonminimal coupling. We are
primarily interested in the case where at least one of the nonminimal couplings is large
enough for us to safely ignore the kinetic mixing term. Inflation may take along the SM
Higgs direction, the dark Higgs direction, or the mixture of the SM and dark Higgs directions,
which we call, respectively, SM Higgs inflation, dark Higgs inflation, and mixed inflation.
We now look at each case in detail.
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(i) SM Higgs inflation scenario. Let us first focus on the SM Higgs inflation scenario. The
SM Higgs inflation corresponds to the χ = 0 case. We first note that

∂U

∂χc

∣∣∣∣
χ=0

= 0 , (4.15)

∂2U

∂χ2
c

∣∣∣∣
χ=0

= M2(λHDξH − 2λHξD)
2ξ2
H

(
1− e

−
√

2
3

φ
MP

)2
. (4.16)

Thus, χ = 0 becomes the minimum of the potential when

λHDξH − 2λHξD > 0 , (4.17)

or, equivalently, for ξH > 0,

λHD − 2λH
ξD
ξH

> 0 . (4.18)

Once the condition (4.18) is satisfied, we can work with the action,

S =
∫
d4x

√
−gE

[
M2

P
2 RE − 1

2g
µν
E ∂µφ∂νφ− M4

PλH
4ξ2
H

(
1− e

−
√

2
3

φ
MP

)2 ]
, (4.19)

which coincides with the standard nonminimally-coupled single-field model, to find inflationary
observables such as the spectral index ns and the tensor-to-scalar ratio r. In terms of the
slow-roll parameters, defined as

ϵ = M2
P
2

(
U ′

U

)2
, η =M2

P
U ′′

U
, κ2 =M4

P
U ′U ′′′

U2 , (4.20)

where the prime denotes the φ-field derivative, the spectral index and the tensor-to-scalar
ratio are given, up to the second order in the slow-roll parameters, by [85–87]

ns = 1− 6ϵ+ 2η − 2
3(5 + 36c)ϵ2 + 2(8c− 1)ϵη + 2

3η
2 +

(2
3 − 2c

)
κ2 , (4.21)

r = 16ϵ
[
1 +

(
4c− 4

3

)
ϵ+

(2
3 − 2c

)
η

]
, (4.22)

while the amplitude of the curvature power spectrum is given by

As =
U

24π2M4
Pϵ
, (4.23)

where c = γ + ln 2− 2 with γ ≈ 0.5772, and the quantities are understood to be evaluated
at the horizon exit. The number of e-folds is given by

N = − 1
M2

P

∫ φe

φ∗

U

U ′dφ , (4.24)

where the subscript e (∗) denotes the end of inflation (the horizon exit). For typical scenarios
of reheating, we may take N = 60 at the horizon exit. Using ϵ ≃ 1 for the end of inflation,
we can then get

φ(N) ≃
√

3
2MP ln

(4
3N

)
, (4.25)
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or, in terms of the original h field,

h(N) ≃
√

4N
3ξH

MP . (4.26)

Substituting eq. (4.25) it into eqs. (4.21) and (4.22) gives

ns ≈ 1− 2
N

− 19/6 + 2c
N2 − 12c− 3/2

N3 − 15/4− 27c
2N4 , (4.27)

r ≈ 12
N2 − 8(1− 3c)

N3 − 12(1− 3c)
N4 . (4.28)

For N = 60, we find ns ≈ 0.966 and r ≈ 0.003 which are in good agreement with the latest
observational bounds [32, 33].

(ii) Dark Higgs inflation scenario. Let us now discuss the dark Higgs inflation scenario.
The dark Higgs inflation corresponds to the χ = ∞ case. Noting that

∂U

∂χc

∣∣∣∣
χ=∞

= 0 , (4.29)

∂2U

∂χ2
c

∣∣∣∣
χ=∞

= M2(λHDξD − 2λDξH)
2ξ2
D

(
1− e

−
√

2
3

φ
MP

)2
, (4.30)

we see that, similar to the SM Higgs inflation case, χ = ∞ is always an extremum. The
χ = ∞ direction becomes the minimum of the potential when

λHDξD − 2λDξH > 0 , (4.31)

or, equivalently, for ξH > 0,

λHD
ξD
ξH

− 2λD > 0 . (4.32)

Once the condition (4.32) is satisfied, we can work with the action,

S =
∫
d4x

√
−gE

[
M2

P
2 RE − 1

2g
µν
E ∂µφ∂νφ− M4

PλD
4ξ2
D

(
1− e

−
√

2
3

φ
MP

)2 ]
, (4.33)

which becomes the same as the action for the SM Higgs inflation when we change the subscript
D to H. We can follow the same steps we performed above to find the spectral index and
the tensor-to-scalar ratio. As the nonminimal coupling parameter and the quartic coupling
parameter do not enter in the final expressions for ns and r, we conclude that we get the
same prediction, namely ns ≈ 0.966 and r ≈ 0.003.

(iii) Mixed SM-dark Higgs inflation scenario. We finally consider the case where χ takes
a finite, non-zero value, which we call χm. In order for inflation to take places along the
combined direction of h and ϕ with χ = χm, we need the conditions,

∂U

∂χc

∣∣∣∣
χ=χm

= 0 , ∂2U

∂χ2
c

∣∣∣∣
χ=χm

> 0 . (4.34)
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The first condition gives

(2λDξH − λHDξD)χ2
m − 2λHξD + λHDξH = 0 , (4.35)

from which we find

χ2
m = 2λHξD − λHDξH

2λDξH − λHDξD
. (4.36)

Note that χ2
m > 0 is required. On the other hand, the second condition states

0 < 2λDξHχ2
m(3ξ3

H + 2ξHξ2
Dχ

2
m − ξ3

Dχ
4
m)− 2λHξD(ξ3

H − 2ξDξ2
Hχ

2
m − 3ξ3

Dχ
4
m)

+ λHD(ξ4
H − 5ξDξ3

Hχ
2
m − 5ξHξ3

Dχ
4
m + ξ4

Dχ
6
m) , (4.37)

or, upon using eq. (4.36),

0 < (2λHξD − λHDξH)
(
λHξ

2
D + λDξ

2
H − λHDξHξD

)
×
[
2λHξ3

D + 2λDξ3
H − λHDξHξD(ξH + ξD)

]
. (4.38)

For positive ξH and ξD, the condition (4.38) is equivalent to

2λH
ξD
ξH

− λHD > 0 , 2λD − λHD
ξD
ξH

> 0 . (4.39)

Once the conditions χ2
m > 0 and (4.39) are satisfied, we can work with the action,

S =
∫
d4x

√
−gE

[
M2

P
2 RE − 1

2g
µν
E ∂µφ∂νφ− M4

Pλm
4ξ2
m

(
1− e

−
√

2
3

φ
MP

)2 ]
, (4.40)

where

λm ≡ 4λHλD − λ2
HD , (4.41)

ξ2
m ≡ 4λDξ2

H + 4λHξ2
D − 4λHDξHξD . (4.42)

The action again becomes the same as the action for the SM Higgs inflation when we change
the subscript m to H. We get thus the same prediction, namely ns ≈ 0.966 and r ≈ 0.003.

In figure 8, we present regions where inflation take place along the SM Higgs direction
(green), the dark Higgs direction (blue), and the mixed direction (red) for {λH , ξD/ξH} =
{0.13, 1}, {0.13, 5}, {0.2, 1}, and {0.2, 5}, in the λD–λHD plane. We observe that, as ξD/ξH
increases, the allowed region for the SM Higgs inflation shrinks, while the allowed region for
the dark Higgs inflation expands. We also see that, as λH increases, the allowed region for
the SM Higgs inflation shrinks. While the allowed mixed inflation region shows a decreasing
behaviour as ξD/ξH increases on the plane we considered, it is not a universal tendency.
From the mixed inflation condition (4.39), we see that the maximum value of λHD is given
by 2λHξD/ξH , which increases as λH and ξD/ξH become larger, while the lower bound on
λD for a given λHD, which is given by (ξD/ξH)λHD/2, becomes larger at the same time.
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Figure 8. Allowed regions of classical SM Higgs inflation (green), dark Higgs inflation (blue), and
mixed inflation (red), in the λD–λHD plane. In the upper (lower) panel, λH = 0.13 (0.2) is chosen,
together with ξD/ξH = 1 (left) and ξD/ξH = 5 (right). As ξD/ξH increases, the allowed region for the
dark Higgs inflation expands. The allowed region for the SM Higgs inflation becomes smaller as λH
or ξD/ξH takes a larger value. The allowed mixed inflation region shows a decreasing behaviour as
ξD/ξH increases on the plane we considered.
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4.2 Quantum analysis

In order to connect the high-energy scale of inflation to the low-energy scale of DM physics,
it is vital to consider the RG running of the coupling parameters. For such a quantum
analysis, we follow the procedures outlined in ref. [47] and consider the RG-improved effective
action in the Jordan frame. In section 4.1, we have shown that the action relevant for
inflation may effectively be given by a single-field action. We thus consider the following
leading effective action:

Γeff =
∫
d4x

√
−gJ

[
M2

P
2 Ω2(t)RJ −

1
2g

µν
J G2(t)∂µΦ(t)∂νΦ(t)− Veff(t)

]
, (4.43)

where t = ln(µ/Mt), µ is the renormalisation scale, Mt is the top-quark pole mass, and

Ω2(t) = 1 + ξΦ(t)G2(t)Φ
2(t)
M2

P
, (4.44)

Veff(t) =
λΦ(t)
4 G4(t)Φ4(t) , (4.45)

G(t) = exp
(
−
∫ t

dt′
γΦ

1 + γΦ

)
, (4.46)

with Φ being the inflaton; for the SM (dark) Higgs inflation, Φ = h (Φ = ϕ), and for the
mixed inflation case, Φ =

√
1 + χ2

mh and

ξΦ = ξH + ξDχ
2
m

1 + χ2
m

, (4.47)

λΦ = λH + λDχ
4
m + λHDχ

2
m

(1 + χ2
m)2 . (4.48)

The RG equations as well as the anomalous dimensions are presented in appendix B. In
the Einstein frame, the effective action is given by

Γeff =
∫
d4x

√
−gE

[
M2

P
2 RE − 1

2g
µν
E ∂µΨ(t)∂νΨ(t)− Ueff(t)

]
, (4.49)

where Ψ is the canonically-normalised field,

(
∂Ψ
∂Φ

)2
= G2

Ω2 + 3M2
P

2Ω4

(
dΩ2

dΦ

)2

, (4.50)

and the Einstein-frame effective potential is

Ueff(t) =
λΦ(t)G4(t)Φ4(t)

4(1 + ξΦ(t)G2(t)Φ2(t)/M2
P)2 . (4.51)

The conditions for the SM Higgs inflation, dark inflation, and the mixed inflation are the
same as eqs. (4.18), (4.32), and (4.39), respectively. The only difference is that the conditions
should be met at the inflation scale. The scheme we use to find the inflation scale is as
follows (see also ref. [47]). The package mr [88, 89] is utilised to read the MS-running, EW
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parameters at the top-quark pole mass Mt with the latest PDG values [90], Mt = 172.5GeV,
MW = 80.377GeV, MZ = 91.1876GeV, Mh1 = 125.25GeV, GF = 1.1664 × 10−5 GeV−2,
α = 1/127.951, and αs = 0.118, where GF is the Fermi coupling constant, α is the fine-
structure constant at MZ , and αs is the strong coupling constant at MZ ; see also ref. [37].
For a given set of parameters at µ =Mt, {λH , λHD, λD, nψ, gD, ξD/ξH}, we run to the Planck
scale using the RG equations presented in appendix B. One may notice from the beta function
expressions in appendix B that the Higgs-portal coupling λHD positively contributes to the
running of the SM Higgs quartic coupling λH . Thus, the instability problem of the SM
Higgs potential can be lifted, and the SM Higgs quartic coupling can stay positive up to the
inflation scale as advertised in the introduction. We find the scale for end of inflation through
the condition ϵ = 1 and the horizon-exit scale by imposing 60 e-folds. We then examine
the inflation conditions (4.18), (4.32), and (4.39) together with the perturbativity conditions
as well as the instability conditions, λΦ > 0. Note that one of the nonminimal coupling
parameters is not a free parameter. Rather, it is given by the normalisation condition that
the amplitude of the curvature power spectrum (4.23) is As ≃ 2.1× 10−9 at the pivot scale;
for the SM Higgs inflation, for instance, ξH shall be fixed in this manner, leaving only the
ratio ξD/ξH as a free input parameter.

The results are shown in figure 9. The allowed regions of the SM Higgs inflation (green),
dark Higgs inflation (blue), and mixed inflation (red) are presented in the λD–λHD plane.
Similar to the classical cases, we have considered {λH , ξD/ξH} = {0.13, 1}, {0.13, 5}, {0.2, 1},
and {0.2, 5}, while fixing nψ = 1 and gD = 0.1. We stress that the input parameters are
chosen at the top-quark pole mass Mt. In particular, the choice of ξD/ξH = 1, in which case
the kinetic mixing term vanishes as we mentioned below eq. (4.14), is given at Mt and does
not hold at all scales due to the RG running; see appendix B. As stated before, one of the
nonminimal couplings is fixed to match As ≃ 2.1× 10−9 at the inflation scale. For instance,
in the case of the scan presented in figure 9, the value of ξH for the SM Higgs inflation falls
in the region ξH = {975.81, 8603.5} (top-left), {558.69, 7604.8} (top-right), {9245.4, 14495}
(bottom-left), and {4838.1, 10299} (bottom-right). It agrees with our understanding that
smaller values of λH at the inflation scale requires smaller values of ξH .8 While ξH ≫ 1 causes
the unitarity issue for the SM Higgs inflation, the inflationary analysis is not compromised
as the unitarity violation scale is higher than the inflation scale [43]; see also our discussion
in the introduction. The viable SM Higgs inflation region becomes larger as we increase
λH . It is mainly due to the fact that the instability of λH < 0 disappears. The allowed
dark Higgs inflation region expands as ξD/ξH takes a larger value. This is similar to the
classical case. On the parameter space we considered here, no mixed inflation is possible with
λH = 0.13. One may easily notice that the quantum analysis gives a very different result
from the classical analysis shown in figure 8, and thus, it is crucial to properly take into
account the quantum effects when attempting to make connections with DM physics.

With the Einstein-frame potential (4.51), we can compute inflationary observables such
as the spectral index ns and the tensor-to-scalar ratio r as sketched in section 4.1. Let

8It is also possible to make λH take an extremely small value at the inflation scale by tuning the input
parameters, thereby further reducing the value of ξH . We do not consider such a highly fine-tuned case in
this work.
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Figure 9. Allowed regions of SM Higgs inflation (green), dark Higgs inflation (blue), and mixed
inflation (red), in the λD–λHD plane at the inflation scale after taking into account the RG running.
In the upper (lower) panel, λH = 0.13 (0.2) is chosen, together with ξD/ξH = 1 (left) and ξD/ξH = 5
(right). For all the cases, we have chosen nψ = 1 and gD = 0.1. See the main text for all the conditions
imposed. The SM Higgs inflation becomes more viable as λH increases. The allowed region of the
dark Higgs inflation expands as ξD/ξH takes a larger value. In the parameter space we considered
here, no mixed inflation is possible with λH = 0.13.
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Figure 10. Scalar spectral index ns (left) and tensor-to-scalar ratio r (right) in the λH–λHD plane.
While the spectral index may take a very small number of 0.9 or a large number of 1, in the wide
range of the parameter space, ns ≃ 0.96, which is preferred by the latest observational data. We
observe that the tensor-to-scalar ratio always remains to be smaller than 0.01, being compatible with
the latest observational bound.

us consider the SM Higgs inflation. In order to compute ns and r for a wide range of
parameter sets, we scan over

10−3 ≤ ξD
ξH

≤ 10 , (4.52)

in addition to eq. (3.7). When performing the random scan, in addition to the SM Higgs
inflation condition (4.18), we have also demanded that the quartic couplings stay positive
up to the Planck scale, i.e., the stability condition, and always less or equal to 4π, i.e., the
perturbativity condition. The results for ns and r are presented in figure 10 in the λH–λHD
plane. From the LP, we see that λH ∼ 0.19 is in tension with the latest observational bound,
0.958 ≤ ns ≤ 0.975 (95% C.L.) [32, 33], as the spectral index becomes too small. The region
λHD > 0.1 is also in tension with the bound due to higher values of ns. In the wide range of
parameter space, however, we obtain ns ≃ 0.96 which is preferred by the latest observations.
The tensor-to-scalar ratio is shown in the RP. We observe that the tensor-to-scalar ratio
always remains to be smaller than 0.01, which is well within the latest observational bound
of r ≤ 0.036 (95% C.L.) [32, 33].

For the same scanned points presented in figure 10, values of the nonminimal coupling
ξH are shown in figure 11. We see that the nonminimal coupling ξH , which is obtained by
requiring that the amplitude of the curvature power spectrum matches As ≃ 2.1× 10−9 at
the inflation scale, takes values of ξH ∼ O(104). As the nonminimal coupling is much larger
than unity, ξH ≫ 1, we anticipate the unitarity violation. Nevertheless, as the inflation scale
is well below the unitarity violation scale, the computation of the inflationary observables
such as the scalar spectral index ns and the tensor-to-scalar ratio r is still credible. From
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Figure 11. Nonminimal coupling ξH in the λH–λHD plane. Points correspond to the same scanned
points presented in figure 10. For a given input parameter set, the nonminimal coupling ξH is obtained
by requiring that the amplitude of the curvature power spectrum matches As ≃ 2.1 × 10−9 at the
inflation scale.

figure 11, one can also observe that larger values of the SM Higgs quartic coupling λH require
larger values of the SM Higgs nonminimal coupling ξH . This behaviour agrees well with our
finding in figure 9 and with our understanding that ξH ∝

√
λH discussed in the introduction.

5 Correlations between inflation and dark matter

In this section, we investigate the allowed parameter space, by performing a scan over the
range (3.7) and (4.52), after imposing the various bounds from DM as well as from inflation.
In the case of DM, we mainly use the DM relic density bound, DM direct detection bound,
and indirect detection bound. Moreover, we also use the bounds on the Higgs sector using
HiggsBound and HiggsSignal. For inflation, one may consider either the SM Higgs inflation,
dark Higgs inflation, or the mixed inflation. While different choices of inflation would result
in different allowed parameter spaces, all the three scenarios are qualitatively equivalent.
From the viewpoint of the RG running, the SM Higgs inflation may be considered hard to
realise as, in the pure SM, the SM Higgs quartic coupling becomes negative, i.e., instability,
before reaching the inflation scale. Therefore, in this work, we focus on the SM Higgs
inflation scenario, leaving detailed analyses for the other two scenarios as future work. We
impose the bounds on the spectral index ns and the scalar-to-tensor ratio r, together with
the inflation condition (4.18).

In the LP of figure 12, the allowed parameter space is shown in the Mh2–sin θ plane.
All the points satisfy ΩDMh

2 > 10−4, the perturbativity condition, and the inflation-related
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Figure 12. Allowed parameter space in the Mh2–sin[θ] (left) and MWD
–gD (right) planes. All the

points shown here satisfy ΩDMh
2 > 10−4. Together with the inflation-related bounds (referred to as

HI), we obtain the magenta, circle points. The green, triangle points are obtained after imposing bounds
on the strength of the couplings associated with the SM Higgs and dark Higgs using HiggsSignal
(referred to as HS) and HiggsBounds (referred to as HB) together with the inflation-related bounds.
Finally, the violet, cross points are obtained after further demanding the DM relic density to be less
than the total density of the Universe, i.e., ΩDMh

2 ≤ 0.12.

bounds (referred to as HI in the plot) such as 0.958 ≤ ns ≤ 0.975, r ≤ 0.036, the instability
condition, and the SM Higgs inflation condition (4.18). Imposing the bound associated with
the Higgs sector using HiggsSignal (denoted by HS) and HiggsBound (denoted by HB) on
top of HI leaves us the green, triangle points. The violet, cross points are obtained after
further imposing the upper limit of the DM relic density ΩDMh

2 ≤ 0.12. We see a nice
correlation between Mh2 and the mixing angle sin θ. This is because we need a relatively
large SM Higgs quartic coupling in order to avoid it becoming negative at high-energy scales.
The relation λH ∝ sin2 θM2

h2
is exactly the behaviour we observe in the plot. The bounds

associated with the SM Higgs precision data and dark Higgs exclude the small h2 mass,
Mh2 < 300GeV, and large Higgs mixing angle, sin θ > 0.27. This region is shown by the green,
triangle points. Finally, imposing the upper bound on the DM relic density ΩDMh

2 ≤ 0.12
excludes further points, leaving us the violet, cross points.

The RP of figure 12 presents the allowed parameter space in the MWD
–gD plane. One

may notice that a large region is allowed if only the inflation-related bounds are imposed.
If we screen the points by further using HiggsBound and HiggsSignal, we are left with the
green, triangle points. We see that for MWD

< 200GeV and gD > 0.1, a part of the region
gets ruled out. This is because the region below MWD

< Mh1/2 is disfavoured mostly due
to the Higgs invisible decay width, and beyond this kinematical limit, it is due to the SM
Higgs signal strength. The violet, cross points are obtained after imposing the DM relic
density limit as well. We see a line at MWD

∼Mh1/2 which implies the SM Higgs resonance
region; due to the presence of the Higgs resonance, those points are allowed from the DM
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Figure 13. f2
WD

⟨σv⟩bb̄ (left) and fWD
σSI (right) in terms of MWD

. The black lines indicate the
bounds from Fermi-LAT (left) and LUX-ZEPLIN (right). The magenta dashed lines represents the
future projection by the CTA (left) and by the DARWIN (right). Finally, the red dashed line on the
LP indicates the future sensitivity after combining LSST discoveries and continued data collection by
Fermi-LAT for 18 years. The same colour scheme is adopted as in figure 12. All the points satisfy
ΩDMh

2 > 10−4.

relic density bound. A gap in Mh1/2 ≲ MWD
≲ Mh1 is because of the over-production of

DM. Once the WDWD → h1h1 channel opens, we start getting points again; as the mass of
WD increases, we get more points due to the resonance associated with h2. We also observe
that low values of gD are disfavoured; this is due to the over-production of DM.

In the LP and RP of figure 13, we present scatter plots in the MWD
–f2
WD

⟨σv⟩bb̄ and
MWD

–fWD
σSI planes, respectively. In the LP, we see that a small part near the SM Higgs

resonance region is in conflict with the Fermi-LAT indirect detection bound for the bb̄ channel.
The region MWD

> Mh1 is, on the other hand, well below the present Fermi-LAT bound. We
have also shown, with the magenta dashed line, the future projection by the CTA aiming to
study the DM signal from the GC [82]. On the other hand, the red dashed line represents
the future projection after combining the LSST discoveries with continued data collection
of Fermi-LAT for 18 years [83]. The RP shows a rescaled spin-independent cross-section
together with the severe bound of LUX-ZEPLIN. We see that a small portion near the SM
Higgs resonance and a large portion of larger MWD

ranges are already ruled out by the direct
detection bound imposed by the LUX-ZEPLIN data. Moreover, the full parameter space will
be explored by the DARWIN experiment in the future with its 200 tones × year exposure [80].

6 Conclusion

Considering a dark U(1)D extension of the Standard Model, we have investigated dark matter
phenomenology. In addition to the Standard Model fields, the model includes three dark
fields, namely a dark Higgs field, a dark fermion, and a dark vector boson that is associated
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with the dark U(1)D. The dark fermion and the dark vector boson naturally become dark
matter candidates, and thus, the model could feature a two-component dark matter scenario.
We have performed a detailed numerical analysis with various constraints such as the dark
matter relic density, collider bounds, as well as direct and indirect detection bounds to identify
allowed regions in the parameter space. We have found that a large portion of the parameter
space may accommodate the two-component dark matter scenario. In particular, the fermion
dark matter ψ is not accessible by direct detection experiments. Therefore, negative results
from dark matter direct detection experiments do not necessarily mean that WIMP scenario
is strongly disfavoured. Our model is a proof of existence for such a case.

We have also investigated the possibility of realising cosmic inflation in the same model.
As the model contains two scalar fields, inflation may be realised as three different scenarios:
the Standard Model Higgs inflation, the dark Higgs inflation, and the mixed case. We have
first analysed at the classical level all these three scenarios with the inclusion of nonminimal
coupling terms and identified the parameter space in which these scenarios could be realised.
We have then performed the quantum analysis by utilising the renormalisation group running
of the coupling parameters and the renormalisation group-improved effective action, focusing
on the Standard Model Higgs inflation scenario. We have found that a small portion of the
parameter space becomes incompatible with the latest observational bounds as the spectral
index becomes either too small or too large. However, a wide range of the parameter space
resulted in spectral index values that sit within the allowed bound. The tensor-to-scalar
ratio turned out to be always smaller than the current upper limit.

Through the running of the coupling parameters, the high-energy scale physics of inflation
could be connected to the low-energy scale physics of dark matter. We have performed a
thorough scan with the imposition of both the dark matter-related constraints and the inflation-
related constraints. We have found that while the model is capable of accommodating both
dark matter and inflation, the model becomes tightly constrained, and only a small section
of the parameter space survives. As more and more observational data become accessible,
and with future experiments, we expect to test the remaining small section of the parameter
space. We may be able to even rule out the model entirely as a unified framework for both
dark matter and the Standard Model Higgs inflation.

While we have examined the allowed parameter space for the three inflation scenarios,
we have paid extra attention to the Standard Model Higgs inflation case when connecting
inflation to dark matter. However, it is certainly possible that inflation takes place along
the dark Higgs field or the direction of the combination of the Standard Model Higgs and
the dark Higgs fields. The other inflation scenarios may open up the allowed parameter
regions. We plan to explore these possibilities in the future.
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A Cross-section expressions

We summarise expressions for the cross-sections relevant for our study.

• WDWD → W +W−

The cross-section takes

σ = 1
16πs

(
s− 4M2

W

s− 4M2
WD

)1/2

|M |2WW , (A.1)

where s is the Mandelstam variable, and the amplitude |M |WW is expressed as

|M |2WW = 4
9

∣∣∣∣∣ gh1WDWD
gh1WW

(s−M2
h1
) + iΓh1Mh1

+ gh2WDWD
gh2WW

(s−M2
h2
) + iΓh2Mh2

∣∣∣∣∣
2

×
(
1 +

(s− 2M2
WD

)2

8M4
WD

)(
1 + (s− 2M2

W )2

8M4
W

)
. (A.2)

The vertices are given by

gh1(2)WDWD
= −2gDMWD

sin θ(− cos θ) ,

gh1(2)W W
= v

2s2
w

cos θ (sin θ) , (A.3)

where s2
w = 0.23 is the Weinberg angle.

• WDWD → ZZ

The cross-section takes

σ = 1
32πs

(
s− 4M2

Z

s− 4M2
WD

)1/2

|M |2ZZ . (A.4)

The amplitude |M |WW is expressed as

|M |2ZZ = 4
9

∣∣∣∣∣ gh1WDWD
gh1ZZ

(s−M2
h1
) + iΓh1Mh1

+ gh2WDWD
gh2ZZ

(s−M2
h2
) + iΓh2Mh2

∣∣∣∣∣
2

×
(
1 +

(s− 2M2
WD

)2

8M4
WD

)(
1 + (s− 2M2

Z)2

8M4
Z

)
. (A.5)

The vertex is given by

gh1(2)ZZ
= v

2c2
ws

2
w

cos θ (sin θ) , (A.6)

where c2
w = 1− s2

w.

• WDWD → ff̄

The cross-section takes

σ = 1
16πs

(
s− 4M2

f

s− 4M2
WD

)1/2

|M |2ff (A.7)
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where the amplitude |M |WW is given by

|M |2ff = 4
9
(
s− 4M2

f

) ∣∣∣∣∣ gh1WDWD
gh1ff

(s−M2
h1
) + iΓh1Mh1

+ gh2WDWD
gh2ff

(s−M2
h2
) + iΓh2Mh2

∣∣∣∣∣
2

×
(
1 +

(s− 2M2
WD

)2

8M4
WD

)
, (A.8)

with

gh1(2)ff
= −Mf

v
cos θ (sin θ) . (A.9)

• WDWD → hihj

The cross-section takes

σ = 1
16πsSij

(
s− 4M2

f

s− 4M2
WD

)1/2

|M |2hihj
, (A.10)

where Sij = 1(2) for i ̸= j(i = j) and i, j = 1, 2. The amplitude |M |hihj
is expressed as

|M |2hihj
= 2

9

∣∣∣∣∣ gh1WDWD
gh1hihj

(s−M2
h1
) + iΓh1Mh1

+
gh2WDWD

gh2hihj

(s−M2
h2
) + iΓh2Mh2

− gWDWDhihj

∣∣∣∣∣
2

×
(
1 +

(s− 2M2
WD

)2

8M4
WD

)
. (A.11)

The vertices are given by

gh2h2h2 = −3
[
λHD sin θ cos θ(vD sin θ + v cos θ) + 2λDvD cos3 θ + 2λHv sin3 θ

]
,

gh1h1h1 = 3
[
λHD sin θ cos θ(vD cos θ − v sin θ) + 2λDvD sin3 θ − 2λHv cos3 θ

]
,

gh1h2h2 = 2(3λD − λHD)vD sin θ cos2 θ + 2(−3λH + λHD)v cos θ sin2 θ

+ λHD(vD sin3 θ − v cos3 θ) ,
gh2h1h1 = 2(−3λH + λHD)v sin θ cos2 θ + 2(−3λD + λHD)vD cos θ sin2 θ

− λHD(vD cos3 θ + v sin3 θ) ,
gWDWDh2h2 = 2 cos2 θg2

D ,

gWDWDh1h1 = 2 sin2 θg2
D ,

gWDWDh1h2 = −2 cos θ sin θg2
D . (A.12)

B Renormalisation group equations

The beta functions are given by

(4π)2βg1 = 81 + sH
12 g3

1 , (B.1)

(4π)2βg2 = −39− sH
12 g3

2 , (B.2)

(4π)2βg3 = −7g3
3 , (B.3)
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(4π)2βgD =
2n2

ψ + sD

3 g3
D , (B.4)

(4π)2βyt = yt

[(23
6 + 2

3sH
)
y2
t −

(
8g2

3 + 17
12g

2
1 + 9

4g
2
2

)]
, (B.5)

(4π)2βλH
= 6(1 + 3s2

H)λ2
H + 1 + s2

D

2 λ2
HD − 3g2

1λH − 9g2
2λH

+ 3
8g

4
1 + 3

4g
2
1g

2
2 + 9

8g
4
2 + 12λHy2

t − 6y4
t , (B.6)

(4π)2βλD
= 2(1 + 9s2

D)λ2
D + 3 + s2

H

2 λ2
HD − 12g2

DλD + 6g4
D , (B.7)

(4π)2βλHD
= 6(1 + s2

H)λHλHD + 2(1 + 3s2
D)λDλHD + 4sHsDλ2

HD

− 3
2g

2
1λHD − 9

2g
2
2λHD − 6g2

DλHD + 6λHDy2
t , (B.8)

where sH and sD are the suppression factors given by

sH = 1 + ξHh
2/M2

P
1 + (1 + 6ξH)ξHh2/M2

P
, sD = 1 + ξDϕ

2/M2
P

1 + (1 + 6ξD)ξDϕ2/M2
P
. (B.9)

In the absence of the nonminimal coupling, the suppression factor becomes unity. The beta
functions for the nonminimal couplings are as follows:

(4π)2βξH
=
[
6(1 + sH)λH − 3

2(g
2
1 + 3g2

2) + 6y2
t

](
ξH + 1

6

)
+ (1 + sD)λHD

(
ξD + 1

6

)
,

(B.10)

(4π)2βξD
=
[
2(1 + 3sD)λD − 6g2

D

] (
ξD + 1

6

)
+ (3 + sH)λHD

(
ξH + 1

6

)
. (B.11)

Finally, the anomalous dimensions are

(4π)2γH = −3
4g

2
1 − 9

4g
2
2 + 3y2

t , (B.12)

(4π)2γD = −3g2
D . (B.13)
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