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1 Introduction

Fracton excitation, a new kind of quasiparticle with restricted mobility, has appeared in new
types of exotic phases of matter and received attention from both condensed matter physics [1–
10] and high energy physics [11–15]. Fracton phases of matter, originally constructed as a
candidate for quantum memory [1, 2], are famous for their extensive ground state degeneracy [1–
3], restricted mobility of excitation [3] and large subleading corrections to the entanglement
entropy [16, 17]. More detail can be found in the reviews [18, 19]. Models with fractons also
attract the interest of field theorists because their low energy effective description allows
discontinuous field configurations and exhibits exotic UV-IR mixing behavior [11–15], which
challenges our conventional understanding of field theory.
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One valid construction of fracton models arises from generalizing the ordinary gauge
principal [20] by introducing the tensor gauge theories [21–24], where gauge fields are tensor
representations of the symmetry group. There is another foliation construction [6–8, 25–27]
where the spacetime manifold is a foliation of lower dimensional submanifold. The gauge
invariant operators have restricted mobility in the foliated directions but are topological
in the other directions without foliation.1 The two constructions are equivalent through
the exotic-foliated duality [30, 31].

From a symmetry point of view, fracton models are often realized by gauging the
subsystem symmetry [26, 32] or dipole symmetry [33, 34] which generalizes the notion of
symmetry by relaxing the topologicalness of the symmetry operators. Therefore, studying
these generalized symmetries is of equal importance and will shed light on the underlying
structure of fracton models. In this paper, we will focus on the subsystem symmetry.
Subsystem symmetry allows symmetry transformations acting on rigid spatial submanifolds
and it is sometimes referred to as “gauge-like” symmetry [35–37]. However, it should be
viewed as a global symmetry rather than gauge symmetry because the subsystem symmetry
operator acts nontrivially on the Hilbert space. It is natural to study subsystem symmetry
by generalizing corresponding ideas in ordinary global symmetry, like selection rules [38],
spontaneously breaking [39–41], anomaly inflow [42] and constraints on IR dynamics [11–15].
In particular, we will study the duality web and the generalization of symmetry topological
field theory (SymTFT) for subsystem symmetry.

Duality is a powerful tool in theoretical physics, where the two apparently different
Lagrangians describe the same theory. Here we focus on (1 + 1)d quantum field theories
(QFTs) where the duality web has been revisited recently from the perspective of gauging
a discrete symmetry [43–49]. We are interested in the duality transformation generated
by symmetry manipulations such as gauging and stacking invertible phases [50–52]. For
example, gauging the non-anomalous Z2 symmetry of (1 + 1)d Ising conformal field theory
(CFT) is a self-duality and the corresponding duality defect gives the simplest example of
non-invertible symmetry [53, 54]. Another famous example is the boson-fermion duality [55–
57], where the Ising CFT is dual to a free Majorana fermion by first stacking a topological
phase given by the Arf-invariant (Kitaev Majorana chain) and then gauging the diagonal
Z2 symmetry. Recently, generalizations of Kramers-Wannier (KW) and Jordan-Wigner
(JW) duality has been studied in the context of subsystem symmetry [58–61], where a new
subsystem non-invertible symmetry has been found.

SymTFT is another powerful tool that provides a unified picture to study duality
transformations and symmetry manipulations [49, 62–74]. The idea of SymTFT is illustrated
in figure 1. Given a d-dimensional theory TS with a finite symmetry S, the SymTFT is a
(d+ 1)-dimensional topological quantum field theory Z(S) that allows a topological boundary
Bsym

S encoding the symmetry S of the original theory TS . The original theory TS can be
expressed as an interval compactification of Z(S) with two boundaries. In the condensed
matter literature, the similar idea of SymTFT has been proposed as symmetry/topological
order correspondence [75–77].

1In [28, 29], the restricted mobility and UV-IR mixing are also found in rank 2 gauge theory, resulting
from the subsystem higher form symmetry.
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⟨Bsym
S | |Bphys

TS
⟩

Z(S)

TS = ⟨Bsym
S |Bphys

TS
⟩

D

⟨Bsym
S | |Bphys

TS
⟩ ⟨Bsym

S |D |Bphys
TS

⟩ D(TS)

Figure 1. Illustration of the SymTFT. We will get boundary theory after shrinking the slab. When
fusing on the boundary, a co-dimension one symmetry defect D in the SymTFT will change the
boundary condition, which corresponds to a symmetry manipulation/duality transformation of the
boundary theory.

The power of SymTFT is that the information of symmetry S and the dynamics are
separately stored in the two boundaries. The left boundary is the topological boundary Bsym

S
supporting the symmetry S and all symmetry manipulations take place on this boundary.
The symmetry manipulations are implemented by fusing a co-dimension one symmetry defect
of the SymTFT to the topological boundary. The right boundary is the dynamical (physical)
boundary Bphys

TS
that depends on the details of TS . As a concrete example, we give a review

of the (2 + 1) BF theory as a SymTFT in appendix A.
In this paper, we will propose a SymTFT for subsystem symmetry. We will focus on

subsystem Z2 symmetry in (2 + 1)d, which is a 2-foliated theory with one-dimensional layers
foliated in all spacial directions x, y. The natural candidate for the SymTFT is a theory
with the same foliation structure but with an extra topological direction, which turns out
to be the 2-foliated BF theory in (3 + 1)d [31, 78].2 This principle to construct subsystem
SymTFT can apply to theories in higher dimensions, like the X-cube model, which we leave
for future investigation.

Here is the organization of this paper. In section 2, we review the (2 + 1)d subsystem
Z2 symmetry on the lattice and subsystem KW/JW duality transformation. In section 3,
we propose the (3 + 1)d SymTFT for subsystem Z2 symmetry in (2 + 1)d and study the
topological boundary conditions. In section 4, we consider the SL(2,Z2) symmetry of the
subsystem SymTFT and the duality web of the boundary theories. In section 5, we construct
the condensation defects and twist defects of S-transformation in the subsystem SL(2,Z2).
Finally, we conclude and point out interesting future directions in section 6.

2Strictly speaking, it is not a topological field theory in the ordinary sense since the theory is only topological
in the directions without foliation.
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2 Subsystem symmetry and duality in (2+1) d

In this section, we will review the subsystem Z2 symmetry in (2 + 1)d regularized on a 2d
square lattice and the duality transformations including the subsystem Kramers-Wannier
(KW) transformation [60] and the subsystem Jordan-Wigner (JW) transformation [61].

2.1 Subsystem Z2 symmetry on lattice

Consider a closed Lx × Ly square lattice. On each site there is a spin-1/2 state |s⟩i,j

where s = ±1, i = 1, · · · , Lx and j = 1, · · · , Ly. Denote the Pauli matrices at each site as
Xi,j , Yi,j , Zi,j and they act on the site in a canonical way

Xi,j |s⟩i,j = | − s⟩i,j , Zi,j |s⟩i,j = s|s⟩i,j . (2.1)

The generators of subsystem Z2 global symmetry are line operators acting on each row
and column

Ux
j =

Lx∏
i=1

Xi,j , Uy
i =

Ly∏
j=1

Xi,j . (2.2)

They satisfy (Ux
j )2 = (Uy

i )2 = 1 and flip the spin of all sites of jth-row or ith-column as
illustrated in figure 2. We will denote the eigenvalues of Ux

j , Uy
i as (−1)ux

j , (−1)uy
i where

ux
j , uy

i = 0, 1 are Z2-valued integers. These Lx + Ly operators are not independent and they
are restricted by the constraint

Ly∏
j=1

Ux
j

Lx∏
i=1

Uy
i =

Ly∏
j=1

(−1)ux
j

Lx∏
i=1

(−1)uy
i = 1, (2.3)

and there are Lx + Ly − 1 independent symmetry generators.
One can also insert the subsystem Z2 defects along the time direction (represented by z)

as shown in the middle diagram in figure 2. If the lattice is infinite, they are implemented
by the Z2 twist operators (e.g. Uxz

0j in figure 2) on half line

Uxz
0,j =

∏
i′<0

Xi′,j , Uyz
i,0 =

∏
j′<0

Xi,j′ . (2.4)

The operator Uxz
0,j is mobile along the x-direction and is not mobile along the y-direction.

Similarly, Uyz
i,0 is mobile along the y-direction and is not mobile along the x-direction. For

periodic lattice, inserting defects on the lattice will twist the boundary condition for each
row and column by

|si+Lx,j⟩ = |(−1)tx
j si,j⟩, |si,j+Ly⟩ = |(−1)ty

i si,j⟩, |si+Lx,i+Ly⟩ = |(−1)txy+tx
j +ty

i si,j⟩, (2.5)

where tx
j , ty

i = 0, 1 are twist variables and txy = 0, 1 is the boundary condition of the twist
variables

ty
i+Lx

= ty
i + txy, tx

j+Ly
= tx

j + txy. (2.6)
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j Ux
j

i

Uy
i

symmetry operator Ux
j , Uy

i

j

defect operator Ux
j

j

twist operator Uxz
0,j

Figure 2. Examples of subsystem Z2 symmetry operators, defect operators and twist operators.

Although there are Lx + Ly + 1 twist parameters but the Hamiltonian with subsystem Z2
symmetry depends only on the combinations tx

j+ 1
2
, ty

i+ 1
2

[60, 61],

tx
j+ 1

2
≡ tx

j + tx
j+1, ty

i+ 1
2
≡ ty

i + ty
i+1,

Ly∑
j=1

ty

i+ 1
2
=

Lx∑
i=1

tx
j+ 1

2
= txy, (2.7)

and only Lx + Ly − 1 twist variables are independent.
Given a (2 + 1)d theory Tsub with the subsystem Z2 symmetry, the eigenvalues of

subsystem symmetry and twist boundary conditions will divide the Hilbert space into sectors
with Z2-valued symmetry-twist labels ({ux

j }, {uy
i }, {tx

j+ 1
2
}, {ty

i+ 1
2
}). Here {· · · } denotes the

collection of variables for all j = 1, · · · , Ly and i = 1, · · · , Lx. The symmetry-twist labels
have overall constraints

Ly∏
j=1

(−1)ux
j

Lx∏
i=1

(−1)uy
i = 1,

Ly∏
j=1

(−1)
tx

j+ 1
2

Lx∏
i=1

(−1)
ty

i+ 1
2 = 1. (2.8)

With the above constraints, the Hilbert space is divided into 22(Lx+Ly−1) different sectors
and the partition function for each sector is

ZTsub [{ux
j }, {uy

i }, {tx
j+ 1

2
}, {ty

i+ 1
2
}] = TrHt

(
Lx∏
i=1

1 + (−1)uy
i Uy

i

2

) Ly∏
j=1

1 + (−1)ux
j Ux

j

2

 e−βH ,

(2.9)
where Ht is the Hilbert space of the twist sector with label ({tx

j+ 1
2
}, {ty

i+ 1
2
}).

For simplicity, we will write any quartet ({ux
j }, {uy

i }, {tx
j+ 1

2
}, {ty

i+ 1
2
}) or doublet

({tx
j+ 1

2
}, {ty

i+ 1
2
}) as (ux

j , uy
i , tx

j+ 1
2
, ty

i+ 1
2
) and (tx

j+ 1
2
, ty

i+ 1
2
) in the following discussion.

Coupling to background field. We can introduce background subsystem Z2 symmetry
gauge field (Az, Axy) on the lattice. Consider a cubic spacetime lattice M3 with Lx ×Ly ×Lz

sites and the topological z-direction is the time direction. The space component of the
gauge field Axy lives on the xy-plaquette and the time component Az lives on the z-link,
as shown in figure 3.

The Z2-valued holonomies are regularized by summing the gauge fields along different
cycles on the lattice. The holonomy of Az along the time direction is

wz;i,j =
Lz∑

k=1
Az

i,j,k+ 1
2
= wz,x;j + wz,y;i, (2.10)
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x

z

y

(i, j, k + 1)

Az
i,j,k+ 1

2

(i, j, k) (i + 1, j, k)

(i + 1, j + 1, k)
Axy

i+ 1
2 ,j+ 1

2 ,k

Figure 3. Background gauge field for subsystem Z2 symmetry on lattice.

which is highly reducible and we can decompose it into wz,x;j , wz,y;i detecting the insertion
of symmetry operator (Ux

j )wz,x;j and (Uy
i )wz,y;i respectively. The constraint (2.3) on the

symmetry operators imposes a gauge redundancy

(wz,x;j , wz,y;i) ∼ (wz,x;j + 1, wz,y;i + 1). (2.11)

On the other hand, the holonomy of Axy along x and y directions are

wx;j+ 1
2
=

Lx∑
i=1

Axy

i+ 1
2 ,j+ 1

2 ,k
= tx

j+ 1
2

wy;i+ 1
2
=

Ly∑
j=1

Axy

i+ 1
2 ,j+ 1

2 ,k
= ty

i+ 1
2

. (2.12)

They detect the insertion of symmetry defects along the z-direction and are the same as the
twist variables tx

j+ 1
2
, ty

i+ 1
2

introduced in (2.7). They obey the same constraint

Ly∏
j=1

(−1)w
x;j+ 1

2

Lx∏
i=1

(−1)w
y;i+ 1

2 = 1. (2.13)

For a generic subsystem Z2 symmetry background (wz,x;j , wz,y;i, wx;j+ 1
2
, wy;i+ 1

2
), the

partition function is

ZTsub [wz,x;j , wz,y;i, wx;j+ 1
2
, wy;i+ 1

2
] = TrHt

 Ly∏
j=1

(Ux
j )wz,x;j

(Lx∏
i=1

(Uy
i )wz,y;i

)
e−βH . (2.14)

It is related to the partition function in the sector with symmetry-twist label (2.9) by a
discrete Fourier transformation

ZTsub [wz,x;j , wz,y;i, wx;j+ 1
2
, wy;i+ 1

2
]=

∑
uy

i ,ux
j =0,1

(−1)
∑

i
uy

i wz,y;i+
∑

j
ux

j wz,x;j ZTsub [ux
j , uy

i , tx
j+ 1

2
, ty

i+ 1
2
],

(2.15)
where wx;j+ 1

2
= tx

j+ 1
2
, wy;i+ 1

2
= ty

i+ 1
2

and the summation over (uy
i , ux

j ) should obey the
constraint (2.8).
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i − 1 i i + 1

j − 1

j

j + 1

uy
i−1

ûy

i+ 1
2

t̂y
i−1

ty

i+ 1
2

ûx
j+ 1

2

ux
j−1

tx
j+ 1

2

t̂x
j−1

Figure 4. Mapping of symmetry-twist sectors. The original lattice is in black while the dual lattice is
in red. For example, the symetry variable ux

j−1 is mapped to the dual twist variable t̂x
j−1 = t̂x

j− 3
2
+ t̂x

j− 1
2
.

2.2 Subsystem KW transformation

We can gauge the subsystem Z2 symmetry by doing a subsystem KW transformation N sub [60]
which maps the original lattice with spin {|s⟩i,j} to the dual lattice with spin {|ŝ⟩i+ 1

2 ,j+ 1
2
}

living on the plaquette of the original lattice. In terms of Pauli operators, the explicit
transformation of N sub is

N subZi,jZi,j+1Zi+1,jZi+1,j+1 = X̂i+ 1
2 ,j+ 1

2
N sub,

N subXi,j = Ẑi− 1
2 ,j− 1

2
Ẑi+ 1

2 ,j− 1
2
Ẑi− 1

2 ,j+ 1
2
Ẑi+ 1

2 ,j+ 1
2
N sub,

(2.16)

where X̂i+ 1
2 ,j+ 1

2
, Ẑi+ 1

2 ,j+ 1
2

are Pauli operators acting on the dual lattice. After gauging, the
dual theory T̂sub lives on the dual lattice and has a dual subsystem Z2 symmetry. The
Hilbert space of the dual theory T̂sub is similarly divided into sectors labelled by the dual
symmetry-twist variables (ûx

j+ 1
2
, ûy

i+ 1
2
, t̂x

j , t̂y
i ) with the constraints

Ly∏
j=1

(−1)
ûx

j+ 1
2

Lx∏
i=1

(−1)
ûy

i+ 1
2 = 1,

Ly∏
j=1

(−1)t̂x
j

Lx∏
i=1

(−1)t̂y
i = 1. (2.17)

They are related to the symmetry-twist variables (ux
j , uy

i , tx
j+ 1

2
, ty

i+ 1
2
) in the original the-

ory Tsub as

ûx
j+ 1

2
= tx

j+ 1
2
, ûy

i+ 1
2
= ty

i+ 1
2
, t̂x

j = ux
j , t̂y

i = uy
i . (2.18)

where symmetry/twist sectors are exchanged as shown in figure 4.
The holonomy variables of the dual gauge fields (Âz, Âxy) are (ŵz,x;j+ 1

2
, ŵz,y;i+ 1

2
, ŵx;j , ŵy;i),

with the gauge redundancy and constraints

(ŵz,x;j+ 1
2
, ŵz,y;i+ 1

2
) ∼ (ŵz,x;j+ 1

2
+ 1, ŵz,y;i+ 1

2
+ 1),

Ly∏
j=1

(−1)ŵx;j
Lx∏
i=1

(−1)ŵy;i = 1. (2.19)
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As before, one has ŵx;j = t̂x
j , ŵy,i = t̂y

i and (ŵz,x;j+ 1
2
, ŵz,y;i+ 1

2
) are the Fourier partners of

(ûx
j+ 1

2
, ûx

j+ 1
2
) as in (2.15). Implied by (2.18), the partition function of the dual theory T̂sub is

related to the partition of the original theory Tsub in (2.14) as

ZT̂sub
[ŵz,x;j+ 1

2
, ŵz,y;i+ 1

2
, ŵx;j , ŵy;i]

= 1
2Lx+Ly−1

∑
wz,x;j ,wz,y;i,wx;j+ 1

2
,w

y;i+ 1
2
=0,1

ZTsub [wz,x;j , wz,y;i, wx;j+ 1
2
, wy;i+ 1

2
]

× (−1)
∑

i
(ŵ

z,y;i+ 1
2

w
y;i+ 1

2
+ŵy;iwz,y;i)+

∑
j
(ŵ

z,x;j+ 1
2

w
x;j+ 1

2
+ŵx;jwz,x;j)

.

(2.20)

The summation of (wz,x;j , wz,y;i, wx;j+ 1
2
, wy;i+ 1

2
) should obey the restrictions in (2.11)

and (2.13).
Suppose the theory Tsub is invariant under the subsystem KW transformation, which

means T̂sub = Tsub. The subsystem KW transformation becomes a symmetry and we can
insert the KW operator/defect N sub along a 2-dimensional surface M2 by gauging half of
the spacetime. If M2 is the x-y plane, N sub is an operator acting on the Hilbert space. The
fusion between the symmetry operator N sub and its orientation reversal N sub† is

N sub† ×N sub = 1
2

Lx∏
i=1

(
1 + (−1)t̂y

i Uy
i

) Ly∏
j=1

(
1 + (−1)t̂x

j Ux
j

)
. (2.21)

On the other hand, if M2 is the z-x (or z-y) plane then N sub is a defect twisting the boundary
condition. The fusion rule of the subsystem KW defect on the z-x plane is

N sub† ×N sub =
∑

ty
i =0,1

Lx∏
i

(Uyz
0,i)ty

i . (2.22)

The fusion rules are first derived in [60]. We give an alternative derivation in appendix C
following [65].

Subsystem KW transformation on one lattice. The subsystem KW transforma-
tion (2.16) maps from the lattice to the dual lattice [60]. We can also define another
subsystem KW transformation on one lattice

N̄ subZi,jZi,j+1Zi+1,jZi+1,j+1 = Xi+1,j+1N̄ sub,

N̄ subXi,j = Zi,jZi+1,jZi,j+1Zi+1,j+1N̄ sub,
(2.23)

and the fusion rule of N̄ sub × N̄ sub will mix with the one-site translation in the diagonal
direction T

N̄ sub × N̄ sub = 1
2

Lx∏
i=1

(
1 + (−1)t̂y

i Uy
i

) Ly∏
j=1

(
1 + (−1)t̂x

j Ux
j

)
T ,

N̄ sub† × N̄ sub = 1
2

Lx∏
i=1

(
1 + (−1)t̂y

i Uy
i

) Ly∏
j=1

(
1 + (−1)t̂x

j Ux
j

)
.

(2.24)

This is a natural generalization of the ordinary KW transformation [79] whose fusion rule on
lattice is different from the fusion rule in the continuum theory by a one-site translation.

– 8 –
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Figure 5. Subsystem JW transformation winding around x and y directions.

2.3 Subsystem JW transformation

Besides the subsystem KW transformation that maps a bosonic Tsub theory to another
bosonic theory T̂sub, we also have the subsystem JW transformation that maps the bosonic
theory Tsub to a fermionic theory TF,sub [61].

The subsystem JW transformation maps Pauli operators Xi,j , Yi,j , Zi,j to Majorana
fermion operators γi,j , γ′

i,j and vice versa. To preserve the standard anticommutation relation
among Majorana fermions, one must attach a 1d JW tail (product of Pauli X operators)
whose winding directions will lead to different choices of subsystem JW transformation. In
figure 5, we give examples where the tail winds around the x direction and y direction and
we will denote the two fermionic theories after each transformation separately as TF,x,sub
and TF,y,sub.

For the first choice, the explicit transformation is

γi,j =

 Lx∏
i′=1

j−1∏
j′=1

Xi′,j′

( i−1∏
i′=1

Xi′,j

)
Zi,j ,

γ′
i,j = −

 Lx∏
i′=1

j−1∏
j′=1

Xi′,j′

( i−1∏
i′=1

Xi′,j

)
Yi,j .

(2.25)

The fermionic theory has subsystem Z2 fermion parity symmetry (−1)F . Considering the
symmetry operators and twists of (−1)F , the Hilbert space is divided into 22(Lx+Ly−1) sectors
with labels (ux

f,j , uy
f,i, tx

f,j+ 1
2
, ty

i+ 1
2
). Using the transformation (2.25), one can work out the

mapping between symmetry-twist sectors in the bosonic and fermionic theory

ux
f,j = ux

f , uy
f,i = uy

i , tx
f,j+ 1

2
= tx

j+ 1
2
+ ux

j + ux
j+1, ty

f,i+ 1
2
= ty

i+ 1
2
. (2.26)

We can introduce the background fields for subsystem Z2 fermion parity symmetry (−1)F

and define the corresponding holonomy variables as (sz,x;j , sz,y;i, sx;j+ 1
2
, sy;i+ 1

2
). Similar to

the bosonic case, the space direction holonomy has the following identification

sx;j+ 1
2
= tx

f,j+ 1
2
, sy;i+ 1

2
= ty

f,i+ 1
2
, (2.27)

From the sector correspodence (2.26), we can derive the relation between the partition
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functions of the bosonic theory Tsub and the fermionic theory TF,x,sub

ZTF,x,sub [sz,x;j , sz,y;i, sx;j+ 1
2
, sy;i+ 1

2
]

=
∑

ux
f

,uy
f
=0,1

(−1)
∑

i
uy

f,i
sz,y;i+

∑
j

ux
f,jsz,x;j ZTF,x,sub [ux

f , uy
f , sx;j+ 1

2
, sy;i+ 1

2
]

=
∑

ux,uy=0,1
(−1)

∑
i

uy
i sz,y;i+

∑
j

ux
j sz,x;j ZTsub [ux, uy, sx;j+ 1

2
+ ux

j + ux
j+1, sy;i+ 1

2
]

= 1
2Lx+Ly−1

∑
ux,uy ,wz,x,wz,y=0,1

(−1)
∑

i
uy

i (sz,y;i+wz,y;i)+
∑

j
ux

j (sz,x;j+wz,x;j)

× ZTsub [wz,x;j , wz,y;i, sx;j+ 1
2
+ ux

j + ux
j+1, sy;i+ 1

2
]. (2.28)

If the subsystem JW transformation winds along the y direction, we have a different
transformation and a different symmetry-twist sector mapping

ux
f,j = ux

f , uy
f,i = uy

i , tx
f,j+ 1

2
= tx

j+ 1
2
, ty

f,i+ 1
2
= ty

i+ 1
2
+ uy

i + uy
i+1. (2.29)

Moreover, one can first perform a JW transformation winds along the x direction and
then do an inverse JW transformation winds along the y direction, which ends to another
bosonic theory Txy,sub. One can easily check that now the symmetry-twist sector labels
(u′x

j , u′y
i , t′x

j+ 1
2
, t′y

i+ 1
2
) in this new bosonic theory are

u′x
j = ux

j , u′y
i = uy

i , t′x
j+ 1

2
= tx

j+ 1
2
+ ux

j + ux
j+1, t′y

i+ 1
2
= ty

i+ 1
2
+ uy

i + uy
i+1. (2.30)

Combining different subsystem JW transformation, we get a duality web relating two
bosonic theoies and two fermionic theories. A simple realization of the duality web starts
from the plaquette Ising model

HPlaqIsing = −
∑
i,j

Zi,jZi+1,jZi,j+1Zi+1,j+1 − h
∑
i,j

Xi,j . (2.31)

Applying the subsystem JW transformation winding along x and y direction seperately, we
get two different plaquette fermion models

HPfer,x =
∑
i,j

γ′
i,jγi+1,jγ′

i,j+1γi+1,j+1 + ih
∑
i,j

γi,jγ′
i,j ,

HPfer,y =
∑
i,j

γ′
i,jγi,j+1γ

′
i+1,jγi+1,j+1 + ih

∑
i,j

γi,jγ′
i,j .

(2.32)

Further applying the inverse subsystem JW transformation along y direction to HPfer,x, or
along x direction to HPfer,y, we will get another bosonic theory

H ′
bos = −

∑
i,j

Zi,jYi+1,jYi,j+1Zi+1,j+1 − h
∑
i,j

Xi,j . (2.33)

The duality web will be enlarged by further considering the subsystem KW transformation,
which is elaborated in section 4.
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3 2-foliated theory as the subsystem SymTFT

In this section, we will give the analogy of SymTFT for subsystem ZN symmetry in (2 + 1)d.
The candidate theory is the (3 + 1)d 2-foliated BF theory with level N (3.1) where the
foliation is along x, y directions. The theory is topological along the remaining directions z, τ .
From the exotic-foliated duality [30, 31], we will focus on the dual formulation, the exotic
tensor gauge theory (3.2) where the subsystem symmetry is more obvious. We will quantize
the theory by picking the topological direction τ as the time direction. After quantization,
we will see this theory supports a topological boundary Bsym

sub with a (2 + 1)d subsystem ZN

symmetry. We will explore various bosonic and fermionic topological boundaries of the bulk
theory. As an application, the subsystem KW and JW transformations have a subsystem
SymTFT interpretation as switching between different topological boundaries.

3.1 2-foliated BF theory revisited

The candidate for subsystem SymTFT of our interest is the (3 + 1)d 2-foliated BF theory
with level N

S2-foliated = N

2π

∫
b ∧ dc +

∑
k=1,2

dBk ∧ Ck ∧ dxk +
∑

k=1,2
b ∧ Ck ∧ dxk. (3.1)

The first term is a usual 4d BF theory where b is a 2-form gauge field and c is a 1-form
gauge field, the second term gives a foliation of 3d BF theories along x1, x2 direction where
B1, B2, C1, C2 are 1-form gauge fields, and the third term is the interaction term that
couples the foliated fields and the bulk fields. In the following we will label the coordinates
(x0, x1, x2, x3) as (τ, x, y, z).

The 2-foliated BF theory (3.1) is equivalent to the exotic tensor gauge theory [31, 78]

Sexotic =
N

2π

∫ [
Aτ (∂zÂxy − ∂x∂yÂz)− Az(∂τ Âxy − ∂x∂yÂτ )− Axy(∂τ Âz − ∂zÂτ )

]
. (3.2)

The foliated-exotic duality is sketched in appendix B by integrating out some auxiliary fields
and redefining the others. In the action (3.2), A = {Aτ , Az, Axy} and Â = {Âτ , Âz, Âxy} are
electric and magnetic gauge fields with the following gauge transformations

Aτ ∼ Aτ + ∂τ λ, Az ∼ Az + ∂zλ, Axy ∼ Axy + ∂x∂yλ,

Âτ ∼ Âτ + ∂τ λ̂, Âz ∼ Âz + ∂zλ̂, Âxy ∼ Âxy + ∂x∂yλ̂,
(3.3)

where λ, λ̂ are gauge parameters. The equations of motion for gauge fields A and Â are

∂zAτ − ∂τ Az = 0, ∂τ Axy − ∂x∂yAτ = 0, ∂zAxy − ∂x∂yAz = 0,

∂zÂτ − ∂τ Âz = 0, ∂τ Âxy − ∂x∂yÂτ = 0, ∂zÂxy − ∂x∂yÂz = 0.
(3.4)

In the exotic theory (3.2), there exists a naive SL(2,ZN ) symmetry

S : A → Â, Â → −A,

T : A → A, Â → Â + A.
(3.5)
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with S2 = C the charge conjugation symmetry

C : A → −A, Â → −Â, (3.6)

which is hard to see in the original 2-foliated formulation. We will elaborate more on this
SL(2,ZN ) symmetry regularized on the lattice in the next section.

The gauge invariant operators have restricted mobility due to the foliation. There exist
the electric/magnetic line operators that are topological in the z-τ plane but cannot move
freely along the x, y directions

W (Cz,τ (x, y)) = exp
(

i

∮
Cz,τ (x,y)

Aτ dτ + Azdz

)
,

Ŵ (Cz,τ (x, y)) = exp
(

i

∮
Cz,τ (x,y)

Âτ dτ + Âzdz

)
,

(3.7)

where Cz,τ (x, y) is a curve in the z-τ plane and is localized at (x, y) in the ambient space.
The exotic theory also has gauge invariant strip operators spanned along x or y directions

W (x1, x2, Cy,z,τ (x)) = exp
(

i

∫ x2

x1
dx

∮
Cy,z,τ (x)

Axydy + ∂xAzdz + ∂xAτ dτ

)
,

W (y1, y2, Cx,z,τ (y)) = exp
(

i

∫ y2

y1
dy

∮
Cx,z,τ (y)

Axydx + ∂yAzdz + ∂yAτ dτ

)
,

(3.8)

for electric gauge field A. There are also hat versions for magnetic gauge field Â. Here
Cx,z,τ (y) is a curve in the x-z-τ plane with fixed y, and Cy,z,τ (x) is a curve in the y-z-τ plane
with fixed x. The curve Cx,z,τ (y) can be deformed in x-z-τ plane but not along y direction
and the similar restricted mobility for Cy,z,τ (x). The above properties of restricted mobility
follow from the equations of motion (3.4) of the gauge fields A and Â.

Quantization. We can quantize the exotic theory (3.2) by picking τ as the time direction
with the Coulomb gauge Aτ = Âτ = 0. The action (3.2) becomes

Sexotic =
N

2π

∫ [
−Axy(∂τ Âz)− Az(∂τ Âxy)

]
. (3.9)

with the canonical commutation relations between conjugate fields A and Â

[
Axy(x, y, z), Âz(x′, y′, z′)

]
= 2πi

N
δ3(x − x′, y − y′, z − z′), (3.10)[

Az(x, y, z), Âxy(x′, y′, z′)
]
= 2πi

N
δ3(x − x′, y − y′, z − z′).

The Gauss laws

∂x∂yÂz − ∂zÂxy = 0, ∂x∂yAz − ∂zAxy = 0, (3.11)

imply the flat condition.
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We will consider the 2-foliated theory (or exotic tensor theory) on a spatial manifold
M3 = T 2 × S1, where (x, y) parameterize the torus T 2 and z is the coordinate of S1. The
gauge invariant operators (3.7), (3.8) restricting to M3 gives the electric line/strip operators

W (x, y) = exp
(

i

∮
dzAz

)
,

W (x1, x2) = exp
(

i

∫ x2

x1
dx

∮
dyAxy

)
,

W (y1, y2) = exp
(

i

∫ y2

y1
dy

∮
dxAxy

)
,

(3.12)

and the magnetic line/strip operators

Ŵ (x, y) = exp
(

i

∮
dzÂz

)
,

Ŵ (x1, x2) = exp
(

i

∫ x2

x1
dx

∮
dyÂxy

)
,

Ŵ (y1, y2) = exp
(

i

∫ y2

y1
dy

∮
dxÂxy

)
.

(3.13)

They are ZN valued operators

W N = Ŵ N = 1, (3.14)

with the following commutation relations

W (x1, x2)Ŵ (x, y) = exp(2πi/N)Ŵ (x, y)W (x1, x2), if x1 < x < x2,

W (y1, y2)Ŵ (x, y) = exp(2πi/N)Ŵ (x, y)W (y1, y2), if y1 < y < y2,
(3.15)

and,

Ŵ (x1, x2)W (x, y) = exp(−2πi/N)W (x, y)Ŵ (x1, x2), if x1 < x < x2,

Ŵ (y1, y2)W (x, y) = exp(−2πi/N)W (x, y)Ŵ (y1, y2), if y1 < y < y2,
(3.16)

where the extra phase exp(±2πi/N) indicates a mixed t’ Hooft anomaly between the two
sets of subsystem ZN symmetry generated by the electric and magnetic line/strip operators.

3.2 Topological boundaries with subsystem symmetry

In this subsection, we will study the topological boundaries of the exotic theory (3.2), which
are also the topological boundaries of the 2-foliated theory because of the foliated-exotic
duality. The boundary theory has subsystem ZN symmetry. For simplicity, we will present
the case for N = 2 which is straightforward to be extended to general N . We will study
the bosonic topological boundaries corresponding to the Dirichlet boundary condition for A

and Â and the fermionic boundary from the subsystem JW transformation on the bosonic
boundary. In addition, we will give a bulk-boundary point of view of subsystem KW and
JW transformation.

As reviewed in section 2, it is natural to regularize theories with subsystem symmetry on
a lattice. On a finite lattice, the Gauss laws impose nontrivial constraints between gauge
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invariant operators. For example, using the Gauss laws (3.11), the holonomy of electric
gauge field Az can be split as ∮

dzAz = Ay(x) +Ax(y), (3.17)

where Ay(x) and Ax(y) are operators only depend on x and y. The split of holonomy (3.17)
implies the decomposition of the line operator

W (x, y) = Wz,y(x)Wz,x(y), (3.18)

where Wz,y(x), Wz,x(y) are two line operators along z-directions that are separately mobile
along y and x directions. However, this decomposition is not unique because of the gauge
redundancy

Ay(x) → Ay(x) + π, Ax(y) → Ax(y) + π, (3.19)

which leaves
∮

dzAz invariant modulo 2π. Both Wz,y(x) and Wz,x(x) flip the sign under
the transformation but the combination W (x, y) is invariant. On the other hand, the strip
operators W (x1, x2) and W (y1, y2) are mobile along z directions with the constraint

W (x, x + Lx) = W (y, y + Ly) = exp
(

i

∮
dxdyAxy

)
. (3.20)

There are similar gauge redundancy and constraint for magnetic operators Ŵ .

Discretization on a lattice. Discretizing the boundary manifold M3 as a Lx × Ly × Lz

periodic lattice with label {xi, yj , zk}, we have in total 2(Lx+Ly) electric operators: line oper-
ators Wz,y(xi), Wz,x(yj) and strip operators W (xi, xi+1), W (yj , yj+1) with i = 1, · · · , Lx, j =
1, · · · , Ly. On the lattice, the gauge redundancy (3.19) and the constraint (3.20) become

(Wz,y(xi), Wz,x(yj)) ∼ (−Wz,y(xi),−Wz,x(yj)), (3.21)

and,
Lx∏
i=1

W (xi, xi+1)
Ly∏
j=1

W (yj , yj+1) = 1, (3.22)

leaving only 2(Lx + Ly − 1) operators independent. Similarly, there are 2(Lx + Ly −
1) independent magnetic Ŵ operators: line operators Ŵz,y(xi+ 1

2
), Ŵz,x(yj+ 1

2
) and strip

operators Ŵ (xi− 1
2
, xi+ 1

2
), Ŵ (yj− 1

2
, yj+ 1

2
) on the dual lattice with similar gauge redundancy

and constraint.
The discretized version of the algebras between W and Ŵ (3.15), (3.16) is

W (xi, xi+1)Ŵz,y(xi+ 1
2
) = −Ŵz,y(xi+ 1

2
)W (xi, xi+1),

W (yi, yi+1)Ŵz,x(yj+ 1
2
) = −Ŵz,x(yj+ 1

2
)W (yi, yi+1),

(3.23)

and

Ŵ (xi− 1
2
, xi+ 1

2
)Wz,y(xi) = −Wz,y(xi)Ŵ (xi− 1

2
, xi+ 1

2
),

Ŵ (yj− 1
2
, yj+ 1

2
)Wz,x(yj) = −Wz,x(yj)Ŵ (yj− 1

2
, yj+ 1

2
).

(3.24)
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Dirichlet boundary condition for gauge field A. The gauge redundancy (3.21) and
constraint (3.22) for electric operators W are consistent to those satisfied by the holonomies
(wz,x;j , wz,y;i, wx;j+ 1

2
, wy,i+ 1

2
) introduced in (2.10), (2.11), (2.12) and (2.13) with the following

correspondence

W (xi, yj) ↔ (−1)wz;i,j , Wz,x(yj) ↔ (−1)wz,x;j , Wz,y(xi) ↔ (−1)wz,y;i (3.25)

and
W (yj , yj+1) ↔ (−1)w

x;j+ 1
2 , W (xi, xi+1) ↔ (−1)w

y;i+ 1
2 . (3.26)

Therefore, we can introduce a canonical basis of the Hilbert space of the 2-foliated BF
theory on the boundary M3

|w⟩ := |wz,x;j , wz,y;i, wx;j+ 1
2
, wy;i+ 1

2
⟩, (3.27)

and the electric operators W are diagonalized as
Wz,x(yj)|w⟩ = (−1)wz,x;j |w⟩
Wz,y(xi)|w⟩ = (−1)wz,y;i |w⟩
W (yj , yj+1)|w⟩ = (−1)w

x;j+ 1
2 |w⟩

W (xi, xi+1)|w⟩ = (−1)w
y;i+ 1

2 |w⟩

. (3.28)

This canonical basis (3.27) defines the Dirichlet boundary condition for gauge field A where
the values of A are fixed at the boundary.

On the other hand, the magnetic operators Ŵ conjugate to electric operators W will
shift the eigenvalues when acting on the state |w⟩

Ŵ (yj′− 1
2
, yj′+ 1

2
)|w⟩ = |wz,x;j + δj,j′ , wz,y;i, wx;j+ 1

2
, wy;i+ 1

2
⟩

Ŵ (xi′− 1
2
, xi′+ 1

2
)|w⟩ = |wz,x;j , wz,y;i + δi,i′ , wx;j+ 1

2
, wy;i+ 1

2
⟩

Ŵz,x(yj′+ 1
2
)|w⟩ = |wz,x;j , wz,y;i, wx;j+ 1

2
+ δj,j′ , wy;i+ 1

2
⟩

Ŵz,y(xi′+ 1
2
)|w⟩ = |wz,x;j , wz,y;i, wx;j+ 1

2
, wy;i+ 1

2
+ δi,i′⟩

(3.29)

which follows from the algebras (3.23) and (3.24). Because the magnetic operators Ŵ along
the spatial/temporal cycle shift the temporal/spatial holonomies w of electric gauge field A,
they are identified one-to-one to the subsystem Z2 symmetry and twist operators in (2.2), (2.4)

Ŵ (yj− 1
2
, yj+ 1

2
) ↔ Ux

j , Ŵ (xi− 1
2
, xi+ 1

2
) ↔ Uy

i ,

Ŵz,x(yj+ 1
2
) ↔

∏
j′≤j

Uxz
0,j′ , Ŵz,y(xi+ 1

2
) ↔

∏
i′≤i

Uyz
0,i′ .

(3.30)

Therefore, the boundary represented by the |w⟩ basis is a topological boundary supporting
the subsystem Z2 symmetry generated by the magnetic operators Ŵ . The general boundary
state |w⟩ with nontrivial W -holonomies is created by acting magnetic operators Ŵ on the
vacuum state |0⟩ where all W -holonimies are trivial

|w⟩ =
∏

i

(
Ŵz,y(xi+ 1

2
)
)w

y;i+ 1
2
(
Ŵ (xi− 1

2
, xi+ 1

2
)
)wz,y;i

×
∏
j

(
Ŵz,x(yj+ 1

2
)
)w

x;j+ 1
2
(
Ŵ (yj− 1

2
, yj+ 1

2
)
)wz,x;j |0⟩.

(3.31)
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As a consistency check, the invariance of |w⟩ under the gauge redundancy of magnetic
operators Ŵ implies the constraints (2.13) and the constraint among magnetic operators Ŵ

requires the invariance of the state |w⟩ under the gauge transformation (2.11).

Dirichlet boundary condition for gauge field Â. Alternatively, one can consider
the dual basis

|ŵ⟩ := |ŵz,x;j+ 1
2
, ŵz,y;i+ 1

2
, ŵx;j , ŵy;i⟩, (3.32)

where Ŵ operators are diagonalized

Ŵz,x(yj+ 1
2
)|ŵ⟩ = (−1)ŵ

z,x;j+ 1
2 |ŵ⟩

Ŵz,y(xi+ 1
2
)|ŵ⟩ = (−1)ŵ

z,y;i+ 1
2 |ŵ⟩

Ŵ (yj− 1
2
, yj+ 1

2
)|ŵ⟩ = (−1)ŵx;j |ŵ⟩

Ŵ (xi− 1
2
, xi+ 1

2
)|ŵ⟩ = (−1)ŵy;i |ŵ⟩

. (3.33)

The dual basis (3.32) defines the Dirichlet boundary condition for the gauge field Â. Acting
on the state |ŵ⟩, the electric operators W will shift the dual holonomies

W (yj′ , yj′+1)|ŵ⟩ = |ŵz,x;j+ 1
2
+ δj,j′ , ŵz,y;i+ 1

2
, ŵx;j , ŵy;i⟩

W (xi′ , xi′+1)|ŵ⟩ = |ŵz,x;j+ 1
2
, ŵz,y;i+ 1

2
+ δi,i′ , ŵx;j , ŵy;i⟩

Wz,x(yj′)|ŵ⟩ = |ŵz,x;j+ 1
2
, ŵz,y;i+ 1

2
, ŵx;j + δj,j′ , ŵy;i⟩

Wz,y(xi′)|ŵ⟩ = |ŵz,x;j+ 1
2
, ŵz,y;i+ 1

2
, ŵx;j , ŵy;i + δi,i′⟩

. (3.34)

Therefore, the electric operators W can be identified as the symmetry and twist operators.
The boundary state |ŵ⟩ corresponds to a topological boundary supporting the subsystem
Z2 symmetry generated by electric operators W .

The dual state |ŵ⟩ is related to original state |w⟩ via a discrete Fourier transformation,

|ŵ⟩ = 1
2(Lx+Ly−1)

∑
w∈Mv

(−1)
∑

i
(ŵ

z,y;i+ 1
2

w
y;i+ 1

2
+ŵy;iwz,y;i)+

∑
j
(ŵ

z,x;j+ 1
2

w
x;j+ 1

2
+ŵx;jwz,x;j)|w⟩,

(3.35)
where we introduce Mv as the set of Z2-valued vector w satisfying the gauge redundancy
and constraint,

Mv =

w
∣∣∣ Ly∏

j=1
(−1)w

x;j+ 1
2

Lx∏
i=1

(−1)w
y;i+ 1

2 = 1; (wz,x;j , wz,y;i) ∼ (wz,x;j + 1, wz,y;i + 1)

 .

(3.36)
The restrictions in (3.36) for w automatically impose restrictions for ŵ.

Subsystem KW transformation. Based on the SymTFT picture, we consider the 2-
foliated BF theory on the 4-dimensional manifold M3 × [0, 1] where τ is the coordinate of the
time interval. The initial state at τ = 0 is the dynamical boundary state |χ⟩ and the final
state at τ = 1 is the topological boundary state. Given any (2 + 1)-dimensional theory Tsub
with a subsystem Z2 symmetry, we can write down the dynamical boundary state as,

|χ⟩ =
∑

w∈Mv

ZTsub [w]|w⟩, (3.37)
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where the coefficient is the partition function of Tsub on M3 coupled with the subsystem
Z2 symmetry background w.

Choosing |w⟩ as the topological boundary state at τ = 1, one has,

ZTsub = ⟨w|χ⟩, (3.38)

which projects back to the partition function of Tsub. Alternatively, choosing the dual
boundary state |ŵ⟩ at τ = 1 reproduces the partition function of the dual theory

ZT̂sub
(ŵ) = ⟨ŵ|χ⟩

= 1
2(Lx+Ly−1)

∑
w∈Mv

(−1)
∑

i
(ŵ

z,y;i+ 1
2

w
y;i+ 1

2
+ŵy;iwz,y;i)+

∑
j
(ŵ

z,x;j+ 1
2

w
x;j+ 1

2
+ŵx;jwz,x;j)

ZTsub(w)

(3.39)

The change of boundary conditions in the 2-foliated BF theory recovers the subsystem KW
transformation (2.20) between the boundary theories.

Fermionic boundary conditions. Based on the discussion of the subsystem JW trans-
formation in the previous section, we can further consider the fermionic topological state
|s⟩ = |sz,x;j , sz,y;i, sx;j+ 1

2
, sy;i+ 1

2
⟩ and write the partition function of (2 + 1)d fermionic theory

with subsystem symmetry as the path integral ⟨s|χ⟩.
For example, the fermionic topological boundary state corresponding to the fermionic

theory TF,x,sub after the subsystem JW transformation (2.28) is

|s⟩ =
1

2Lx+Ly−1

∑
(u,wz)∈Mu,wz

(−1)
∑

i
uy

i (sz,y;i+wz,y;i)+
∑

j
ux

j (sz,x;j+wz,x;j)|wz,x;j , wz,y;i, wx;j+ 1
2
, wy;i+ 1

2
⟩,

(3.40)

with wx;j+ 1
2
= sx;j+ 1

2
+ ux

j + ux
j+1, wy;i+ 1

2
= sy;i+ 1

2
and Mu,wz the set,

Mu,wz =(uy
i , ux

j , wz,x;j , wz,y;i)
∣∣∣ Ly∏

j=1
(−1)ux

j

Lx∏
i=1

(−1)uy
i = 1, (wz,x;j , wz,y;i) ∼ (wz,x;j + 1, wz,y;i + 1)

 .

(3.41)

The fermionic state |s⟩ diagonalizes the electric operators W along the y direction, and the
composite operators along x direction made up by the electric operators W sandwiched by
a pair of magnetic operators Ŵ nearby

Ŵz,x(yj− 1
2
)Wz,x(yj)Ŵz,x(yj+ 1

2
)|s⟩ = (−1)sz,x;j |s⟩

Wz,y(xi)|s⟩ = (−1)sz,y;i |s⟩
Ŵ (yj− 1

2
, yj+ 1

2
)W (yj , yj+1)Ŵ (yj+ 1

2
, yj+ 3

2
)|s⟩ = (−1)s

x;j+ 1
2 |s⟩

W (xi, xi+1)|s⟩ = (−1)s
y;i+ 1

2 |s⟩

(3.42)
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The fermionic subsystem Z2 parity symmetry is generated by magnetic operators Ŵ

Ŵ (yj′− 1
2
, yj′+ 1

2
)|s⟩ = |sz,x;j + δj,j′ , sz,y;i, sx;j+ 1

2
, sy;i+ 1

2
⟩

Ŵ (xi′− 1
2
, xi′+ 1

2
)|s⟩ = |sz,x;j , sz,y;i + δi,i′ , sx;j+ 1

2
, sy;i+ 1

2
⟩

Ŵz,x(yj′+ 1
2
)|s⟩ = |sz,x;j , sz,y;i, sx;j+ 1

2
+ δj,j′ , sy;i+ 1

2
⟩

Ŵz,y(xi′+ 1
2
)|s⟩ = |sz,x;j , sz,y;i, sx;j+ 1

2
, sy;i+ 1

2
+ δi,i′⟩

. (3.43)

There exists another fermionic topological state |s′⟩ = |s′z,x;j , s′z,y;i, s′
x;j+ 1

2
, s′

y;i+ 1
2
⟩ which

produces the fermionic theory TF,y,sub after the subsystem JW transformation along y

direction. The fermionic topological state |s′⟩ diagonalizes the line operators,

Wz,x(yj), Ŵz,y(xi− 1
2
)Wz,y(xi)Ŵz,y(xi+ 1

2
),

and strip operators,

W (yj , yj+1), Ŵ (xi− 1
2
, xi+ 1

2
)W (xi, xi+1)Ŵ (xi+ 1

2
, xi+ 3

2
),

where Wz,y(xi), W (xi, xi+1) are sandwiched by a pair of Ŵ operators instead. The fermionic
subsystem Z2 parity symmetry is still generated by magnetic operators Ŵ .

Subsystem JW transformation. Consider the subsystem SymTFT with the dynamical
boundary state (3.37) at τ = 0 given by the (2 + 1)-dimensional bosonic theory Tsub.
Implementing the fermionic topological boundaries |s⟩, |s′⟩ at τ = 0 and shrinking the slab
gives two fermionic theories TF,x,sub and TF,y,sub whose partition functions are,

ZTF,x,sub(s) = ⟨s|χ⟩, ZTF,y,sub(s′) = ⟨s′|χ⟩. (3.44)

They are related to the bosonic theory Tsub by performing the subsystem JW transformations
along x and y directions respectively.

4 Subsystem SL(2,Z2) transformation and the duality web

In the previous section, we propose the 2-foliated BF theory in (3 + 1)d as the subsystem
SymTFT for subsystem ZN symmetry in (2 + 1)d and explore various bosonic and fermionic
topological boundaries. In this section, we will see that different topological boundaries
are transformed from one to the other via the topological operators associated with the
global symmetries of the bulk theory.

In the exotic theory (3.2), we identify a naive 0-form SL(2,Z2) symmetry

S : A → Â, Â → −A,

T : A → A, Â → Â + A.
(4.1)

There should exist corresponding co-dimension one symmetry defects implementing this
symmetry. Here, we will mainly focus on the co-dimension one symmetry defects extended
along the manifold M ′

3 parallel to the boundary manifold M3 such that they act on the
Hilbert space as operators. Fusing the topological operators with the boundary implements
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the SL(2,ZN ) transformation of the boundary theory. We will see the S-transformation
generates the subsystem KW transformation, while the T -transformation stacks a phase

exp
(
− iN

2π

∫
dxdydzAzAxy

)
(4.2)

to the boundary theory. The phase (4.2) is the subsystem symmetry protected topological
(SSPT) phase [42]3 in (2 + 1)d.

However, the naive SL(2,Z2) transformation (4.1) has ambiguities on the lattice. For
example, when we do S-transformation on line operators ∑k Az

i,j,k+ 1
2
, the holonomy of electric

gauge field A along the z-direction, one expects to map the electric gauge field Az operators
to the nearby magnetic gauge field Âz on the dual lattice. This leads to four inequivalent
choices ∑z Az

i± 1
2 ,j± 1

2 ,k
because the line operators cannot move freely at the x-y plane. We

also need to make a smart choice to avoid the following inconsistencies.

Inconsistency with the quantum algebra. Consider the following choice of regularized
S-transformation between the line operators,

Wz,y(xi) ↔ Ŵz,y(xi+ 1
2
), Wz,x(yj) ↔ Ŵz,x(yj+ 1

2
), (4.4)

and strip operators,

W (xi, xi+1) ↔ Ŵ (xi+ 1
2
, xi+ 3

2
), W (yj , yj+1) ↔ Ŵ (yj+ 1

2
, yj+ 3

2
). (4.5)

It maps between the site (i, j) and dual site (i+ 1
2 , j+ 1

2). However, the quantum algebras (3.23)
and (3.24) are not preserved under the transformation. For example, consider the following
commutation relation,

W (xi, xi+1)Ŵz,y(xi+ 1
2
) = −Ŵz,y(xi+ 1

2
)W (xi, xi+1). (4.6)

If we apply the S-transformation given above, we have,

Ŵ (xi+ 1
2
, xi+ 3

2
)Wz,y(xi) = −Wz,y(xi)Ŵ (xi+ 1

2
, xi+ 3

2
) (4.7)

which is clearly wrong because the nontrivial phase only appears after the exchange of electric
operators and magnetic operators with intersection.

Inconsistency with the topological property. For another choice, we can keep (4.4)
and modify (4.5) to,

W (xi, xi+1) ↔ Ŵ (xi− 1
2
, xi+ 1

2
), W (yj , yj+1) ↔ Ŵ (yj− 1

2
, yj+ 1

2
), (4.8)

and we will denote this choice as S̃. It is straightforward to check S̃ preserve the quantum
algebras (3.23) and (3.24) and it satisfies S̃2 = 1. However, S̃ assumes different site trans-
formations for line operators and strip operators: it maps (i, j) to (i + 1

2 , j + 1
2) for line

3In [42], the Lagrangian of this SSPT is

LSSPT = iN

2π
Φxy(∂zAxy − ∂x∂yAz) − iN

2π
AzAxy, (4.3)

where the auxiliary field Φxy guarrentees the flat condition of the gauge field A.
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operators and to (i − 1
2 , j − 1

2) for strip operators. This is inconsistent with the fact that
we can bend the strip operators to a pair of line operators.

S̃ will generate the subsystem KW transformation on the boundary by mapping the
topological boundary state |w⟩ to the dual state |ŵ⟩. For example, applying S̃ on |w⟩ leads to

S̃|w⟩ = S̃

(∏
i

(
Ŵz,y(xi+ 1

2
)
)w

y;i+ 1
2
(
Ŵ (xi− 1

2
, xi+ 1

2
))
)wz,y;i

×
∏
j

(
Ŵz,x(yj+ 1

2
)
)w

x;j+ 1
2
(
Ŵ (yj− 1

2
, yj+ 1

2
)
)wz,x;j |0⟩


=
∏

i

(Wz,y(xi))
w

y;i+ 1
2 (W (xi, xi+1))wz,y;i

×
∏
j

(Wz,x(yj))
w

x;j+ 1
2 (W (yj , yj+1))wz,x;j |0̂⟩

= |ŵ⟩,

(4.9)

where the dual holonomies ŵ is the same to the original ones w in value,

ŵz,x;j+ 1
2
= wz,x;j , ŵz,y;i+ 1

2
= wz,y;i, ŵx;j = wx,j+ 1

2
, ŵy;i = wy,i+ 1

2
. (4.10)

Here |0̂⟩ = S̃|0⟩ is the vacuum of the dual state and it is the eigenstate of the operators
Ŵ with trivial eigenvalues.

Subsystem SL(2,Z2) transformation on the lattice. In this section, we will formulate
the proper S- and T -transformations on the lattice and study their action on the operators
and topological states with a focus on N = 2. The proper SL(2,Z2) symmetry transformation
after discretization should have the following properties

1. It should be a symmetry of the discretized version of the exotic action (3.2) and preserve
quantum algebras (3.23) and (3.24).

2. It should be consistent with the topological property of the operators, for example, the
bending of strip operators in z direction (3.8).4

We will denote the SL(2,Z2) transformation on the lattice as subsystem SL(2,Z2) transfor-
mation. Besides recovering the subsystem KW and JW transformations, we will find more
duality transformations by implementing the subsystem SL(2,Z2) transformation on the
boundary. The whole duality transformations are summarized in the duality web (figure 6).

4.1 Subsystem S-transformation

The proper S-transformation on the lattice is implemented by changing the double-headed
arrows in (4.4) and (4.5) to one-headed arrows and let the S-transformation maps the dual
site (i + 1

2 , j + 1
2) to (i + 1, j + 1) for line operators,

Ŵz,y(xi+ 1
2
) → Wz,y(xi+1), Ŵz,x(yj+ 1

2
) → Wz,x(yj+1), (4.11)

4Thanks to Wilbur Shirley for raising this issue to us.
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Figure 6. The duality web between four bosonic theories Tsub,Txy,sub, T̂sub, T̂xy,sub and four
fermionic theories TF,x,sub,TF,y,sub, T̂F,x,sub, T̂F,y,sub with susbsytem Z2 symmetry. The duality
transformation is generated by subsystem SL(2,Z2) transformation on the lattice: (1) The subsystem S-
transformation implements the subsystem KW transformation. (2) There exist nontrivial compositions
of T -transformations T 2

+−, T 2
−+, T 2

−− generate the phase SSPT+−, SSPT−+, SSPT−−. (3) Subsystem
JW transformation is a composition of subsystem SL(2,Z2) transformations. For example, the bosonic
theory Tsub and the fermionic theory TF,x,sub(TF,y,sub) are related by subsystem JW transformation,
which is equivalent to performing S−1, T 2

+−(T 2
−+) and S transformation sequentially.

and for strip operators,

Ŵ (xi− 1
2
, xi+ 1

2
) → W (xi, xi+1), Ŵ (yj− 1

2
, yj+ 1

2
) → W (yj , yj+1), (4.12)

such that S2 = T is the translation T : (i, j) → (i+ 1, j + 1) on lattice. This choice preserves
the quantum algebra and is also consistent with the bending of operators at the expense of
giving up S2 = 1. Similarly, it will also generate the subsystem KW transformation on the
boundary by mapping the topological boundary state |w⟩ to the dual state |ŵ⟩ = S|w⟩ as

ŵz,x;j+ 1
2
= wz,x;j , ŵz,y;i+ 1

2
= wz,y;i, ŵx;j = wx,j− 1

2
, ŵy;i = wy,i− 1

2
, (4.13)

and also

S2|w⟩ = T |w⟩, (4.14)

where T will shift the holonomies as

wz,x;j → wz,x;j−1, wz,y;i → wz,y;i−1, wx;j+ 1
2
→ wx;j− 1

2
, wy;i+ 1

2
→ wy;i− 1

2
. (4.15)
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As a summary, we have two possible definitions of S-transformation on lattice denoted
as S̃ and S and both of them preserve the quantum algebra. The first one satisfies the
naive relation S̃2 = 1 but is not consistent with the bending of operators. Therefore it is
not a suitable choice on the lattice. We will denote S̃ as field theory S-transformation since
it implements the naive S-transformation of the exotic tensor theory in (4.1). The second
one is consistent with the bending on the lattice but S2 is a translation T instead. We
will also denote S as lattice S-transformation. Both of them will map |w⟩ to dual state
|ŵ⟩ with different assignments of ŵ.

4.2 Subsystem T -transformation

For the subsystem T -transformation in (4.1), one needs to dress every magnetic operator Ŵ

with a nearby electric operator W . Again we need to avoid the following inconsistencies.

Inconsistency with the quantum algebra. Naively one could have for example,

Ŵz,y(xi+ 1
2
) → Ŵz,y(xi+ 1

2
)Wz,y(xi+1), Ŵ (xi− 1

2
, xi+ 1

2
) → Ŵ (xi− 1

2
, xi+ 1

2
)W (xi, xi+1),

(4.16)
where the W -operators are on the right of Ŵ -operators. However, just as the S-transformation
cases the quantum algebras (3.23) and (3.24) are not preserved and T -transformation is
not a good symmetry on the lattice.

Inconsistency with the topological property. One can try to modify the transforma-
tion (4.16) in a way consistent with the algebra

+ : Ŵz,y(xi+ 1
2
) → Wz,y(xi)Ŵz,y(xi+ 1

2
), Ŵ (xi− 1

2
, xi+ 1

2
) → Ŵ (xi− 1

2
, xi+ 1

2
)W (xi, xi+1),

− : Ŵz,y(xi+ 1
2
) → Ŵz,y(xi+ 1

2
)Wy(xi+1), Ŵ (xi− 1

2
, xi+ 1

2
) → W (xi−1, xi)Ŵ (xi− 1

2
, xi+ 1

2
),

(4.17)
and there are two similar choices for operators depending on y: Ŵ (yj− 1

2
, yj+ 1

2
) and Ŵx(yj+ 1

2
).

In total, we have four choices and they are denoted as T++, T+−, T−+, T−−. However, none
of the four choices T±± are compatible with the bending of operators. Nevertheless, we
will elaborate on their actions because they are useful later when we consider the proper
T 2 transformation on the lattice.

The transformations (4.17) will stack an extra phase when acting on the topological
boundary. For example, with the expression (3.31) of the topological boundary state |w⟩,
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applying T++ leads to a new topological boundary state

T++|w⟩ = T++
∏

i

(
Ŵz,y(xi+ 1

2
)
)w

y;i+ 1
2
(
Ŵ (xi− 1

2
, xi+ 1

2
)
)wz,y;i

×
∏
j

(
Ŵz,x(yj+ 1

2
)
)w

x;j+ 1
2
(
Ŵ (yj− 1

2
, yj+ 1

2
)
)wz,x;j |0⟩

=
∏

i

(
Wz,y(xi)Ŵz,y(xi+ 1

2
)
)w

y;i+ 1
2
(
Ŵ (xi− 1

2
, xi+ 1

2
)W (xi, xi+1)

)wz,y;i

×
∏
j

(
Wz,x(yj)Ŵz,x(yj+ 1

2
)
)w

x;j+ 1
2
(
Ŵ (yj− 1

2
, yj+ 1

2
)W (yj , yj+1)

)wz,x;j
T++|0⟩

= (−1)
∑

j
wz,x;jw

x;j+ 1
2
+
∑

i
wz,y;iwy;i+ 1

2 |w⟩
(4.18)

where T++|0⟩ ∼ |0⟩ because they satisfy the same operators equation (3.28), and we will
assume |0⟩ is invariant under the action of T++. In general, acting T±± on the topological
boundary |w⟩ will stack the phase

(−1)
∑

j
wz,x;jw

x;j± 1
2
+
∑

i
wz,y;iwy;i± 1

2 . (4.19)

As we mentioned before, T±± are not good transformations on lattice and we should not
take those phases seriously.

Proper T 2 transformation on the lattice. When we compose different T±± on the
lattice, there exist T 2 -transformations which are consistent with both the algebras and
the bending. In the naive SL(2,Z2) transformation (4.1) of the field theory, acting T -
transformation twice is the identity transformation. However, on the lattice, composing
different T -transformations will lead to four distinct operations

T 2
++ ≡ T++T++ = T−−T−− = T+−T+− = T−+T−+,

T 2
−− ≡ T++T−− = T−−T++ = T+−T−+ = T−+T+−,

T 2
+− ≡ T++T+− = T−−T−+ = T+−T++ = T−+T−−,

T 2
−+ ≡ T++T−+ = T−−T+− = T+−T−− = T−+T++,

(4.20)

where the indices follow the sign rule

T 2
pp′,qq′ = Tp,qTp′,q′ , p, q = ±. (4.21)

We can also write down the transformation of operators for T 2
±±. T 2

++ is the identity
transformation and T 2

−− is realized by,

T 2
−− :



Ŵz,y(xi+ 1
2
) → Wz,y(xi)Ŵz,y(xi+ 1

2
)Wz,y(xi+1)

Ŵz,x(yj+ 1
2
) → Wz,x(yj)Ŵz,x(yj+ 1

2
)Wz,x(yj+1)

Ŵ (xi− 1
2
, xi+ 1

2
) → W (xi−1, xi)Ŵ (xi− 1

2
, xi+ 1

2
)W (xi, xi+1)

Ŵ (yj− 1
2
, yj+ 1

2
) → W (yj−1, yj)Ŵ (yj− 1

2
, yj+ 1

2
)W (yj , yj+1)

(4.22)
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where all Ŵ operators are sandwiched by a pair of W operators in a symmetric way. The
other two choices T 2

+− and T 2
−+ are given by,

T 2
+− :



Ŵz,y(xi+ 1
2
) → Ŵz,y(xi+ 1

2
)

Ŵz,x(yj+ 1
2
) → Wz,x(yj)Ŵz,x(yj+ 1

2
)Wz,x(yj+1)

Ŵ (xi− 1
2
, xi+ 1

2
) → Ŵ (xi− 1

2
, xi+ 1

2
)

Ŵ (yj− 1
2
, yj+ 1

2
) → W (yj−1, yj)Ŵ (yj− 1

2
, yj+ 1

2
)W (yj , yj+1)

(4.23)

and,

T 2
−+ :



Ŵz,y(xi+ 1
2
) → Wz,y(xi)Ŵz,y(xi+ 1

2
)Wz,y(xi+1)

Ŵz,x(yj+ 1
2
) → Ŵz,x(yj+ 1

2
)

Ŵ (xi− 1
2
, xi+ 1

2
) → W (xi−1, xi)Ŵ (xi− 1

2
, xi+ 1

2
)W (xi, xi+1)

Ŵ (yj− 1
2
, yj+ 1

2
) → Ŵ (yj− 1

2
, yj+ 1

2
)

(4.24)

where only part of Ŵ operators are sandwiched by W operators. Obviously, we have
T 2
−+T 2

+− = T 2
−− and they all satisfy

(
T 2
±±
)2 = 1. The corresponding subsystem symmetric

protected topological (SSPT) phases are

SSPT++(w) = 1,

SSPT+−(w) = (−1)
∑

j
wz,x;j(wx;j− 1

2
+w

x;j+ 1
2
)
,

SSPT−+(w) = (−1)
∑

i
wz,y;i(wy;i− 1

2
+w

y;i+ 1
2
)
,

SSPT−−(w) = (−1)
∑

j
wz,x;j(wx;j− 1

2
+w

x;j+ 1
2
)+
∑

i
wz,y;i(wy;i− 1

2
+w

y;i+ 1
2
)
.

(4.25)

4.3 Duality web from the subsystem SL(2,Z2) transformation

The duality web (figure 6) is generated by implementing the subsystem SL(2,Z2) transforma-
tions S and T 2 consecutively. In particular, the subsystem JW transformation is equivalent
to performing S, T 2

+−(or T 2
−+) and S−1 transformation sequentially. This is easy to see in

the transformation of the operators. Begin with the bosonic state |w⟩ which are eigenstates
of W operators. If we do an S-transformation the roles of W and Ŵ are exchanged and we
get the dual state |ŵ⟩ which are eigenstates of Ŵ operators. Then applying T 2

+− we find
Wz,y(xi) and W (xi, xi+1) should be sandwiched by a pair of Ŵ operators according to (4.23)
(notice that the roles of W and Ŵ have been exchanged due to the S transformation). It
will stack the phase SSPT+−(ŵ) to |ŵ⟩. If we do another S−1 transformation then we will
obtain some states which are the eigenstates of line operators,

Ŵz,x(yj− 1
2
)Wz,x(yj)Ŵz,x(yj+ 1

2
), Wz,y(xi), (4.26)

and strip operators,

Ŵ (yj− 1
2
, yj+ 1

2
)W (yj , yj+1)Ŵ (yj+ 1

2
, yj+ 3

2
), W (xi, xi+1). (4.27)

According to (3.42) they are the same set of operators that diagonalize the fermion topological
state |s⟩. Therefore we have,

|s⟩ = S−1T 2
+−S|w⟩, (4.28)
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with s = w. By similar argument, if we perform T 2
+− and S transformation sequentially

the resulting states are eigenvalues of (4.26) and (4.27) with W, Ŵ exchanged. We obtain
a new fermionic topological state,

|ŝ⟩ ≡ ST 2
+−|w⟩ (4.29)

where the relation between ŝ and w are suggested in (4.13). They are the JW transformations
of the dual state |ŵ⟩.

Let’s check explicitly the state |ŝ⟩ can be written as a JW transformation of |ŵ⟩ by
summing over all sectors of the dual bosonic state with proper phases. Following the definition,
we stack the phase SSPT+−(w′) on the state |w′⟩ introduced in (3.27) and consider the
KW transformation given by,

|ŝ⟩ = 1
2Lx+Ly−1

∑
w′∈Mv

(−1)
∑

i
(ŝ

z,y;i+ 1
2

w′
y;i+ 1

2
+ŝy;iw′

z,y;i)+
∑

j
(ŝ

z,x;j+ 1
2

w′
x;j+ 1

2
+ŝx;jw′

z,x;j)

× (−1)
∑

j
w′

z,x;j(w
′
x;j− 1

2
+w′

x;j+ 1
2
)
|w′⟩.

(4.30)

We can rewrite |w′⟩ into |ŵ′⟩ using the KW relation (3.35) and get

|ŝ⟩ = 1
2Lx+Ly−1

∑
w′∈Mv

(−1)
∑

i
(ŝ

z,y;i+ 1
2

w′
y;i+ 1

2
+ŝy;iw′

z,y;i)+
∑

j
(ŝ

z,x;j+ 1
2

w′
x;j+ 1

2
+ŝx;jw′

z,x;j)

× (−1)
∑

j
w′

z,x;j(w
′
x;j− 1

2
+w′

x;j+ 1
2
)

× 1
2Lx+Ly−1

∑
ŵ′∈Mv

(−1)
∑

i
(ŵ′

z,y;i+ 1
2

w′
y;i+ 1

2
+ŵ′

y;iw
′
z,y;i)+

∑
j
(ŵ′

z,x;j+ 1
2

w′
x;j+ 1

2
+ŵ′

x;jw′
z,x;j)|ŵ′⟩.

(4.31)

Summing w′
z,x;j and w′

z,y;i produces two restrictions,

ŵ′
x;j = ŝx;j + w′

x;j− 1
2
+ w′

x;j+ 1
2
, ŵ′

y;i = ŝy;i. (4.32)

After relabelling ûx
j+ 1

2
≡ w′

x;j+ 1
2
, ûy

i+ 1
2
≡ w′

y,i+ 1
2
, (4.31) becomes

|ŝ⟩ = 1
2Lx+Ly−1

∑
û,ŵ′

z∈Mû,ŵ′
z

(−1)
∑

i
(ŝ

z,y;i+ 1
2
+ŵ′

z,y;i+ 1
2
)ûy

i+ 1
2
+(ŝ

z,x;j+ 1
2
+ŵ′

z,x;j+ 1
2
)ûx

j+ 1
2 |ŵ′⟩ (4.33)

which shows that the dual fermionic state |ŝ⟩ is the subsystem JW transformation of the
dual state |ŵ′⟩ resembling (3.40).

As a summary, begin with a bosonic state |w⟩ the JW transformation can be written as

S−1T 2
+−S = JWx, S−1T 2

−+S = JWy (4.34)

acting on the state |w⟩ and therefore the phases SSPT+− and SSPT−+ are both fermionic
subsystem SPT phases.5 With these identifications, we can generate other path in the
duality web. For example,

(JWy)−1JWx = S−1(T 2
−+)−1SS−1T 2

+−S = S−1T 2
−+T 2

+−S = S−1T 2
−−S (4.35)

5We thank Kantaro Ohmori and Yunqin Zheng for pointing out this to us.
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shows that the subsystem KW transformation of SSPT−−|w⟩ leads to the bosonic topological
boundary state which is obtained by performing inverse subsystem JW transformation along
the y direction after a subsystem JW transformation along the x-direction. From (4.35),
the phase SSPT2

−− is a bosonic phase.
Based on the above analysis, we can obtain a duality web as shown in figure 6.

5 S-defects in the subsystem SymTFT

In this section, we will construct the co-dimensional one symmetry defects generating the
SL(2,Z2) 0-form symmetry with a focus on S-defect. It was shown in [65, 80, 81] that in a
(d + 1)-dimensonal TFT, such kind of symmetry defects D extending along a co-dimension
one hypersurface Md are built by condensing certain types of topological defects L along Md.
If the topological defects L generate a q-form symmetry inside Md, the condensation defect D
is equivalently understood as gauging the q-form symmetry inside Md which is referred to as
1-gauging of the q-form symmetry. In the appendix A, we give an example of the condensation
defect generating the electric-magnetic Z2 symmetry in (2 + 1)d BF theory with level N .

As discussed in the previous section, the proper S-transformation defined on the lattice
satisfies S2 = T where T is the translation (i, j) → (i + 1, j + 1) on the lattice. We will
construct the condensation defects in 2-foliated BF theory along M3, a 3d manifold parallel
to the boundary, by condensing line/strip operators on M3. We will also discuss the twist
defects by putting a“Dirichlet” boundary condition for the condensation defects. We will
re-derive the subsystem non-invertible fusion rules by the fusion of twist defects.

5.1 Conventions on operators and algebras

For later convenience, we introduce UI and ÛI as the collection of electric and magnetic
line/strip operators respectively

UI =


W (yI , yI+1) I = 1, · · · , Ly

W (xI−Ly , xI−Ly+1) I = Ly + 1, · · · , Ly + Lx

Wz,x(yI−Lx−Ly) I = Ly + Lx + 1, · · · , 2Ly + Lx

Wz,y(xI−Lx−2Ly) I = 2Ly + Lx + 1, · · · , 2Ly + 2Lx

(5.1)

ÛI =



Ŵ (yI− 1
2
, yI+ 1

2
) I = 1, · · · , Ly

Ŵ (xI−Ly− 1
2
, xI−Ly+ 1

2
) I = Ly + 1, · · · , Ly + Lx

Ŵz,x(yI−Lx−Ly+ 1
2
) I = Ly + Lx + 1, · · · , 2Ly + Lx

Ŵz,y(xI−Lx−2Ly+ 1
2
) I = 2Ly + Lx + 1, · · · , 2Ly + 2Lx

(5.2)

where I = 1, · · · , 2Lx + 2Ly. We will use the lattice size integer n ≡ Lx + Ly for simplicity.
In this convention, the quantum algebras (3.23) and (3.24) between electric and magnetic
operators has a compact and symmetric form,

UI ÛJ = −ΩIJ ÛJUI , (5.3)

where ΩIJ is a 2n × 2n symmetric matrix,

ΩIJ =
(

0 In×n

In×n 0

)
. (5.4)
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We will then formulate the general operators, the algebras between them and their
actions on the boundary states. The general operator

K[α, α̂] :=
2n∏

I=1
UαI

I

2n∏
J=1

Û α̂J
J (5.5)

is parametrized by two 2n-dimensional vectors with Z2-valued entries

α = (a, b) := (a1, a2, · · · , an, b1, b2, · · · , bn),
α̂ = (â, b̂) := (â1, â2, · · · , ân, b̂1, b̂2, · · · , b̂n).

(5.6)

From the quantum algebra (5.3), the general operators K[α, α̂], K[α′, α̂′] have the following
fusion rule

K[α, α̂]K[α′, α̂′] = (−1)−α̂·α′
K[α + α′, α̂ + α̂′], (5.7)

together with the commutation algebra

K[α, α̂]K[α′, α̂′] = (−1)α·α̂′−α̂·α′
K[α′, α̂′]K[α, α̂]. (5.8)

where the symmetric inner product between two 2n-dimensional vectors is defined by

α · α̂ =
∑
IJ

ΩIJαI α̂J . (5.9)

Here are some comments about the parameters α, α̂. Due to the gauge redundancy (3.21)
and constraint (3.22) among the electric operators, as well as their magnetic counterparts,
these parameters have the identification

a ∼ a + 1, â ∼ â + 1 (5.10)

of the n-dimensional vectors a and â and the constraint
n∑

i=1
bi =

n∑
i=1

b̂i = 0 (5.11)

among the n-dimensional vectors b and b̂. The inner product (5.9) is invariant under the
gauge transformation (5.10) providing the constraints (5.11).

On the boundary manifold M3, we can identify the vector α with the holonomies

α ≡ (wz,x;j , wz,y;i, wx;j+ 1
2
, wy;i+ 1

2
), (5.12)

Similarly, we can define α̂ as the dual parameter of α, which is

α̂ ≡ (ŵz,x;j+ 1
2
, ŵz,y;i+ 1

2
, ŵx;j , ŵy;i). (5.13)

The lattice S-defect will map |α⟩ = |a, b⟩ to the dual state |α̂⟩ = |â, b̂⟩ with

â = a, b̂ ≡ (bLy , b1, · · · , bLy−1, bLx+Ly , bLy+1, · · · , bLx+Ly−1) ≡ bT , (5.14)
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which is equivalent to (4.13). In the rest of the paper, we will use bT to denote the shifted
vector introduced above. On the other hand, the field theory S-defect maps |α⟩ = |a, b⟩ to
the dual state |α̂⟩ = |â, b̂⟩ with â = a and b̂ = b.

From now on, we will use |α⟩ and |α̂⟩ for the boundary state and its subsystem KW
dual. We can rewrite the actions of electric and magnetic operators on topological boundary
states (3.28), (3.29), (3.33), (3.34) as

K[γ, 0]|α⟩ = (−1)γ·α|α⟩, K[0, γ]|α⟩ = |α + γ⟩. (5.15)
K[0, γ̂]|α̂⟩ = (−1)γ̂·α̂|α̂⟩, K[γ̂, 0]|α̂⟩ = |α̂ + γ̂⟩, (5.16)

together with the subsystem KW transformation (3.35) between the boundary state |α⟩
and its dual |α̂⟩ as

|α̂⟩ = 1
2Lx+Ly−1

∑
α∈Mv

(−1)α̂·α|α⟩, (5.17)

where Mv denote the set of 2n-dimensional vectors satisfying the restrictions,

Mv =
{

α = (a, b)|a ∼ a + 1,
n∑

i=1
bi = 0

}
. (5.18)

With the orthogonality ⟨β|α⟩ = δαβ, one has

⟨β|α̂⟩ = 1
2Lx+Ly−1 (−1)α̂·β . (5.19)

The inverse transformation is,

|α⟩ = 1
2Lx+Ly−1

∑
α̂∈Mv

(−1)α̂·α|α̂⟩, (5.20)

and for consistency, we should have the orthogonality relation,

1
22(Lx+Ly−1)

∑
α∈Mv

(−1)α·β = δβ,0. (5.21)

This is not obviously true because α, β are not free and they should satisfy the restrictions
given above. Before ending this section, let us check this relation explicitly. Decompose
α = (a, b), β = (c, d), one has,

1
22(Lx+Ly−1)

∑
(a,b)∈Mv

(−1)a·d(−1)b·c. (5.22)

In the first factor (−1)a·d we have a ∼ a + 1 and ∑
d = 0. Therefore we can relax the

restriction a ∼ a + 1 and write,

1
2Lx+Ly−1

∑
a∼a+1

(−1)a·d = 1
2Lx+Ly−1 × 1

2
∑

a

(−1)a·d = δd,0. (5.23)
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UI

=
ÛI

S-defect

Figure 7. Action of S-defect on line/strip operators.

In the second factor (−1)b·c we have ∑ b = 0 and c ∼ c + 1. We can also relax the restriction∑
b = 0 by adding an Lagrangian multiplier λ ∈ Z2,

1
2Lx+Ly−1

∑
b|
∑

b=0

(−1)b·c

= 1
2Lx+Ly−1 × 1

2
∑

λ

(−1)λ(
∑

b)∑
b

(−1)b·c

= 1
2Lx+Ly

∑
λ

∑
b

(−1)b·(c+λ) = δc,0 + δc+1,0, (5.24)

where in the last line λ is understood as the constant vector (λ, · · · , λ). This is also consistent
with the fact c ∼ c + 1. Combined everything together we have proven the orthogonality
relation.

5.2 S-defect

In the last section, we discuss two kinds of S-transformation, the lattice S-transformation
S and the field theory S-transformation S̃. We will discuss both lattice S-defect and field
theory S-defect in the following.

As shown in figure 7, the lattice S-defect (or field theory S-defect) maps the electric
operator UI to magnetic operator ÛI and vice versa. Fusing to the boundary, it maps the
boundary state to its KW dual. As we mentioned before, the lattice S-defect will map
|α⟩ ≡ |a, b⟩ to the dual state |α̂⟩ = |â, b̂⟩ with â = a and b̂ = bT where bT is related to b as,

bT ≡ (bLy , b1, · · · , bLy−1, bLx+Ly , bLy+1, · · · , bLx+Ly−1). (5.25)

We will construct the condensation defect on M3 in the bulk using the bra-ket trick,

S =
∑

(â,b̂)=(a,bT )∈Mv

|â, b̂⟩⟨a, b|, (5.26)

which manifests its action on the state. We use (â, b̂) = (a, bT ) to emphasize that the values
of the holonomies b̂ of the dual states are related to the holonomies b of the original state via
a shift. In the following, we will omit the Mv notation and assume every vector α = (a, b) or
α̂ = (â, b̂) should satisfy the constraints automatically. Notice that S†S = 1 by construction.
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Before moving on, it is convenient to decompose the S-operators as,

S = T̃ S̃, (5.27)

where T̃ and S̃ are defined as,

T̃ =
∑
(â,b̂)

|â, b̂T ⟩⟨â, b̂|, S̃ =
∑

(a,b)=(â,b̂)

|â, b̂⟩⟨a, b|, (5.28)

where b̂T is defined as the hat version of (5.25). One can check

T̃ S̃ =
∑

(â′,b̂′)

∑
(a,b)=(â,b̂)

|â′, b̂′T ⟩⟨â′, b̂′|â, b̂⟩⟨a, b|

=
∑

(â′,b̂′)

∑
(a,b)=(â,b̂)

δâ′,âδb̂′,b̂|â
′, b̂′T ⟩⟨a, b|

=
∑

(â,b̂)=(a,b)

|â, b̂T ⟩⟨a, b| = S. (5.29)

Here S̃ is the field theory S-defect which implements the field theory S-transformation
defined in (4.9) in the previous section and it satisfies

UI S̃ = S̃ÛI , ÛI S̃ = S̃UI , (5.30)

using (5.7) and (5.8). Moreover, one can check S̃2 is identity

S̃2 =
∑

(a,b)=(â,b̂),(c,d)=(ĉ,d̂)

|â, b̂⟩⟨a, b|ĉ, d̂⟩⟨c, d|

= 1
2Lx+Ly−1

∑
(a,b)=(â,b̂),(c,d)=(ĉ,d̂)

(−1)ĉ·b+d̂·a|â, b̂⟩⟨c, d|

=
∑
(c,d)

|c, d⟩⟨c, d| ≡ I, (5.31)

where we use the subsystem KW transformation (5.17) in the second line. On the other
hand, the operator T̃ will shift the holonomies such that the combination T̃ S̃ implements
the transformation (4.13). To be concrete, let’s evaluate and check (T̃ S̃)2 = T where T
is the translation. First, we have∑

(â,b̂)

|â, b̂T ⟩⟨â, b̂|S̃ =
∑

(a,b)=(â,b̂)

|â, b̂T ⟩⟨a, b|. (5.32)

Moreover we have the following identities∑
(â,b̂)

|â, b̂T ⟩⟨â, b̂| =
∑
(a,b)

|aT , b⟩⟨a, b|,
∑
(â,b̂)

|âT , b̂⟩⟨â, b̂| =
∑
(a,b)

|a, bT ⟩⟨a, b|, (5.33)

and also ∑
(â,b̂)

|âT , b̂T ⟩⟨â, b̂| =
∑
(a,b)

|aT , bT ⟩⟨a, b|. (5.34)
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It is easy to check them by acting both sides on a state |a, b⟩. For example, for the first
identity, acting the l.h.s. on |a, b⟩ we get∑

â,b̂

|â, b̂T ⟩⟨â, b̂|a, b⟩

=
∑
â,b̂

|â, b̂T ⟩
1

2Lx+Ly−1 (−1)â·b+b̂·a

=
∑
â,b̂

|â, b̂T ⟩
1

2Lx+Ly−1 (−1)â·b+b̂T ·aT = |aT , b⟩, (5.35)

where we use the subsystem KW transformation and the fact b̂T ·aT = b̂ ·a. It exactly matches
the result obtained by acting the r.h.s. on |a, b⟩. Using those identities we can examine∑

(â,b̂)

S̃|âT , b̂⟩⟨â, b̂| =
∑
(a,b)

S̃|a, bT ⟩⟨a, b| =
∑

(â,b̂)=(a,b)

|â, b̂T ⟩⟨a, b|. (5.36)

Therefore we have the following commutation relation∑
(â,b̂)

|â, b̂T ⟩⟨â, b̂|S̃ =
∑
(â,b̂)

S̃|âT , b̂⟩⟨â, b̂| (5.37)

and we have ∑
â,b̂

|â, b̂T ⟩⟨â, b̂|S̃

2

=
∑
â′,b̂′

∑
â,b̂

|â′, b̂′T ⟩⟨â′, b̂′|S̃|â, b̂T ⟩⟨â, b̂|S̃

=
∑
â′,b̂′

∑
â,b̂

|â′, b̂′T ⟩⟨â′, b̂′|S̃2|âT , b̂⟩⟨â, b̂|

=
∑
(â,b̂)

|âT , b̂T ⟩⟨â, b̂| =
∑
(a,b)

|aT , bT ⟩⟨a, b| ≡ T (5.38)

where T is an operator which shifts (a, b) to (aT , bT ). Remember that a = (wz,x;j , wz,y;i) and
b = (wx;j+ 1

2
, wy;i+ 1

2
) so that T shifts the holonomies as,

wz,x;j → wz,x;j−1, wz,y;i → wz,y;i−1, wx;j+ 1
2
→ wx;j− 1

2
, wy;i+ 1

2
→ wy;i− 1

2
. (5.39)

which indicates T is the translation operator.
To write the lattice S-defect as a condensation of the line/strip operators, we param-

eterize it as,

S =
∑

α,α̂∈Mv

λα,α̂K[α, α̂]. (5.40)

We will use the property that the operators K[α, α̂] with different α = (a, b) and α̂ = (â, b̂)
are orthogonal to each other in the trace

Tr
(
K[α, α̂]†K[α′, α̂′]

)
:=
∑

γ

⟨γ|K[α, α̂]†K[α′, α̂′]|γ⟩ = 22(Lx+Ly−1)δα,α′δα̂,α̂′ (5.41)
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to project out the coefficients λα,α̂,

λα,α̂ = 1
22(Lx+Ly−1)Tr

K[α, α̂]†
∑

(c,d)=(ĉ,d̂)

(|ĉ, d̂T ⟩)⟨c, d|


= 1
22(Lx+Ly−1)

∑
(c,d)=(ĉ,d̂)

⟨c, d|K[0, (â, b̂)]K[(a, b), 0]|ĉ, d̂T ⟩

= 1
22(Lx+Ly−1)

∑
(c,d)=(ĉ,d̂)

(−1)â·(d̂T +b)+b̂·(ĉ+a)⟨c, d|ĉ + a, d̂T + b⟩

= 1
23(Lx+Ly−1)

∑
(c,d)

(−1)(â+c)·(b+dT )+(b̂+d)·(a+c)

= 1
23(Lx+Ly−1)

∑
(c,d)

(−1)((c,d)+α̂)·((c,dT )+α), (5.42)

and the condensation defect can be written in the compact form,

S = 1
23(Lx+Ly−1)

∑
(c,d),α,α̂

(−1)((c,d)+α̂)·((c,dT )+α)K[α, α̂]

= 1
23(Lx+Ly−1)

∑
(c,d),(a,b),(â,b̂)

(−1)(c+â,d+b̂)·(c+a,dT +b)K[(a, b), (â, b̂)]

= 1
23(Lx+Ly−1)

∑
(c,d),(a,b),(â,b̂)

(−1)(c+â,b̂)·(c+a,b)K[(a, b + dT ), (â, b̂ + d)]

= 1
22(Lx+Ly−1)

∑
a,â,b,d

(−1)(a+â)·bK[(a, b + dT ), (â, b + d)]. (5.43)

It is also illuminating to write down the condensation defect for S̃, which is the field theory
S-defect, and T̃ . Using the same method, one can obtain

S̃ = 1
23(Lx+Ly−1)

∑
γ,α,α̂

(−1)γ·(α+α̂)K[α, α̂] = 1
2Lx+Ly−1

∑
α

K[α, α]. (5.44)

Expanding K[α, α] using UI , ÛJ gives

S̃ = 1
2Lx+Ly−1

∑
α

2n∏
I=1

UαI
I

2n∏
J=1

ÛαJ
J = 1

2Lx+Ly−1

∑
α

(−1)
α·α

2

2n∏
I=1

(UI ÛI)αI , (5.45)

which is a condensation of all possible insertions of operators UI ÛI built from line and strip
operators. The orientation reversal of the field theory S-defect is itself S̃† = S̃ and it is
also unitary: S̃†S̃ = 1. Similarly, one has

T̃ = 1
2Lx+Ly−1

∑
â,b

(−1)â·bK[(0, bT + b), (â, 0)]. (5.46)
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M2

M3

Ṽ0(M2, M3)⟨Bsym
sub | |Bphys

Tsub
⟩

D(Tsub)

Tsub

N sub

Figure 8. Twist S-defect Ṽ0(M2, M3) on M3 with a boundary M2. After shinking the slab, the twist
defect will create a duality defect as an interface between the original boundary theory TS and the
theory D(Tsub) after gauging subsystem Z2 symmetry.

One can also check the fusion between T̃ and S̃ straightforwardly,

T̃ × S̃ = 1
22(Lx+Ly−1)

∑
a,â,d,b

(−1)â·dK[(0, dT + d), (â, 0)]K[(a, b), (a, b)]

= 1
22(Lx+Ly−1)

∑
a,â,d,b

(−1)â·(d+b)K[(a, b + dT + d), (a + â, b)]

= 1
22(Lx+Ly−1)

∑
a,â,d,b

(−1)(â+a)·bK[(a, b + dT ), (â, b + d)] = S, (5.47)

which reproduces the lattice S-defect.

5.3 Twist S-defect

In this subsection, we will consider twist S-defect on a 3d manifold M3 with a boundary
∂M3 = M2, where the boundary can be x-y plane, x-z plane or y-x plane. In the last section,
we consider both lattice S-defect S and field theory S-defect S̃, and they are related by
S = T̃ × S̃. Here S̃ satisfies S̃2 = 1 and T̃ shifts the holonomies and makes S2 = T a
translation along x-y directions on the lattice.

We will first discuss the twist defects for the field theory S-defect S̃ and then move to
the twist defect for the lattice S-defect S. Also, we will mainly focus on the case where the
boundary M2 is the x-y plane. Since the lattice S-defect involves a translation along x-y
plane, the discussions of the corresponding twist defects located at a fixed x or y are subtle
and we will not consider them. Nevertheless, one can still consider the cases where M2 is
x-z plane or y-z plane for the field theory S-defect in a similar way.

From (5.45) we see the field theory S-defect is a condensation of the operator UI ÛI

where UI , ÛI are related to line/strip operators according to (5.1) and (5.2). We impose
the Dirichlet boundary condition for the defects UI ÛI condensing along M3. The Dirichlet
boundary condition is defined as follows. The operators {UI ÛI} generate a subsystem Z2
symmetry along M3 and we denote the corresponding gauge fields as (A′z, A′xy). For x-y
plane we require the x-y component A′xy to vanish at the boundary. The Dirichlet boundary
is topological along the normal direction given these boundary conditions and see appendix C
for a detailed discussion about this.
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We will denote the twist defect as Ṽ0(M2, M3) with M2 the x-y plane, for example at
z = 0 . As shown in figure 8, after shrinking the slab, the twist defect will implement
a half-space gauge and create a subsystem KW duality defect N sub. The z-direction is
topological and the strip operators can move along the z-direction and fuse with the twist
defect. Since M2 satisfies the Dirichlet boundary condition A′xy = 0, the strip operators
K[(a, 0), (a, 0)] can be absorbed by the twist defect,

K[(a, 0), (a, 0)]× Ṽ0[M2, M3] = Ṽ0[M2, M3], (5.48)

where we split the 2n-dimensional vector α, α̂ into a pair of n-dimensional vector

α = (a, b), α̂ = (â, b̂), (5.49)

such that a, â label the strip operators and b, b̂ label the line operators. On the other hand,
since K[(a, 0), (0, 0)] and K[(0, 0), (a, 0)] do not belong to the condensate, fusing them with
Ṽ0 produces new twist defects,

Ṽa[M2, M3] := K[(a, 0), (0, 0)]× Ṽ0[M2, M3] = K[(0, 0), (a, 0)]× Ṽ0[M2, M3]. (5.50)

In general, the fusion rule between the strip operators K[(a, 0), (â, 0)] with Ṽa′ [M2, M3] is,

K[(a, 0), (â, 0)]× Ṽa′ [M2, M3] = Ṽa′+a+â[M2, M3]. (5.51)

We can also discuss the fusion between twist defects and it is sufficient to discuss the
fusion between Ṽ0 and Ṽ †

0 . Let’s put another twist defect Ṽ0[M2|ϵ, M3] at z = ϵ and consider
the fusion between Ṽ0[M2|0, M3] × Ṽ0[M2|ϵ, M3] with ϵ → 0. Here we use M2|0 (M2|ϵ) to
emphasize M2 is located at z = 0 (z = ϵ). Since the condensation defects can also be
understood as gauging the (2 + 1)d subsystem symmetry on M3, we can derive the fusion
rule in a similar way following the discussion in appendix C and get,

lim
ϵ→0

Ṽ †
0 (M2|z=0, M z≥0

3 )× Ṽ0(M2|z=ϵ, M z≥ϵ
3 )

=1
2

Lx∏
i=1

(1 + W (yi, yi+1)Ŵ (yi− 1
2
, yi+ 1

2
))

Ly∏
j=1

(1 + W (xj , xj+1)Ŵ (xj− 1
2
, xj+ 1

2
)). (5.52)

where Ṽ †
0 = χ[M z≥ϵ

3 ,Z2]Ṽ0 with χ[M z≥ϵ
3 ,Z2] the Euler factor introduced in (C.22). We have

a condensation of strip operators that are mobile along z-direction. If we put (5.52) on the
top of the topological boundary |0⟩ at τ = 1 where A = 0 at the boundary, then electric strip
operators W (xj , xj+1), W (yi, yi+1) are absorbed into the boundary and we have,

Ṽ0[M2, M3]† × Ṽ0[M2, M3]|τ=1 =
1
2

Lx∏
i=1

(1 + Uy
i )

Ly∏
j=1

(1 + Ux
j ), (5.53)

where Uy
i = Ŵ (yi− 1

2
, yi+ 1

2
) and Ux

j = Ŵ (xj− 1
2
, xj+ 1

2
) are generators for subsystem Z2

symmetry at the boundary. The fusion of twist defects (5.53) recovers the fusion rules of
the subsystem KW operators in the untwisted sector [60].6 On the other hand, if we put

6For twisted sectors, we need to consider more general Dirichlet boundaries of the condensation defects
such that corresponding gauge field A′xy is a non-zero fixed value at the boundary.
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it on the top of the dual boundary |0̂⟩ where Â = 0, then magnetic strip operators Ŵ are
absorbed instead and electric strip operators W serve as the symmetry generators. (5.53)
becomes the fusion rule in the untwisted sector of the dual theory.

We then move to the twist defect V0 for the lattice S-defect. Put two twist defect
V0[M2|0, M3] and V0[M2|ϵ, M3] at z = 0 and z = ϵ, the fusion rule is similarly obtained by
sending ϵ → 0. There are two differences here. First, since S2 = T is the translation, the
spatial lattice at z > ϵ is related to that at z < 0 by the translation T . Second, we need
to impose proper Dirichlet boundary condition at the boundary M2 = ∂M3. Recall that
the condensation defect for S is,

S = 1
22(Lx+Ly−1)

∑
a,â,b,d

(−1)(a+â)·bK[(a, b + dT ), (â, b + d)]. (5.54)

We will assume the Dirichlet boundary condition is defined such that only the strip operators
which are mobile along z-direction survive in the limit ϵ → 0, then one expects the fusion is,

1
22(Lx+Ly−1)

∑
a,â

K[(a, 0), (0, 0)]K[(0, 0), (â, 0)]. (5.55)

If we put it on the top of the topological boundary |0⟩ or |0̂⟩ at τ = 1, one of the two
K-operators will be absorbed and we get the same result as before. Combined with the
translation T , we have the similar fusion rule,

V0[M2, M3]× V0[M2, M3]|τ=1 =
1
2

Lx∏
i=1

(1 + Uy
i )

Ly∏
j=1

(1 + Ux
j )× T . (5.56)

One can also consider the fusion between V † and V ,

V0[M2, M3]† × V0[M2, M3]|τ=1 =
1
2

Lx∏
i=1

(1 + Uy
i )

Ly∏
j=1

(1 + Ux
j ). (5.57)

where we do not have the translation operator T on the r.h.s. since S†S = 1.

6 Conclusion and discussion

In this paper, we initiate the study of the subsystem symmetry and the associated dualities
from a bulk SymTFT point of view. To demonstrate this idea, we study the example of
2-foliated BF theory with level N in (3 + 1)d as the subsystem SymTFT of the subsystem
ZN symmetry in (2+ 1)d. We analyze the topological boundaries and construct condensation
defects of this specific model with N = 2. We interpret the duality transformations of the
boundary theory, such as subsystem KW and JW transformation, as the change of topological
boundaries which is further implemented by fusing condensation defects of the subsystem
SL(2,Z2) symmetry of the bulk subsystem SymTFT on the boundary. On the lattice, the
subsystem SL(2,Z2) symmetry has a richer structure than in the field theory. The subsystem
T transformation will stack a subsystem SPT phase whose bosonic or fermionic feature
depends on the regularization of the lattice. We will leave the detailed study and classification
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of subsystem SPT phases in the future work. From the subsystem SL(2,Z2) symmetry, we
find new dualities among bosonic and fermionic models with subsystem Z2 symmetry. We
summarize the duality web in figure 6.

There are many interesting follow-up directions. First, it is natural to extend the study
of subsystem SymTFT to other models. For the subsystem ZN symmetry in (2 + 1)d, the
subsystem SymTFT is expected to have more diverse topological boundaries that can support
subsystem parafermionic structures. Furthermore, we can study models with subsystem
symmetry in higher dimensions, for example, the X-cube model [3], where there are fracton
excitations. The ZN X-cube model is a 3-foliated theory in (3 + 1)d and the corresponding
subsystem SymTFT should be the 3-foliated BF theory with level N in (4 + 1)d

S3-foliated = N

2π

∫
b ∧ dc +

∑
k=1,2,3

dBk ∧ Ck ∧ dxk +
∑

k=1,2,3
b ∧ Ck ∧ dxk. (6.1)

where the first term is bulk BF term with 3-form gauge field b and 1-form gauge field c,
the second term is the foliated BF term with 2-form gauge field Bk and 1-form gauge field
Ck and the third term is the interaction term. It is interesting to classify the topological
boundaries and topological operators of this subsystem SymTFT and explore the duality
web of the X-cube model.

Finally, subsystem SymTFT provides a bulk-boundary point of view to study subsystem
symmetry. Recently, there are other efforts to study fracton models from bulk-boundary
correspondence [82–85]. Subsystem SymTFT also provides hints to study fracton statistics [86,
87]. The quantum algebras (3.15) and (3.16) resemble the braiding statistics in (2 + 1)d
ZN gauge theory. Besides, one more topological direction in the bulk will give fracton (or
excitations with other restricted mobility) an extra direction to move, which might lead to
interesting braiding structures. We will leave these interesting questions for future study.
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A A review on ordinary BF theory as SymTFT

To illustrate the basic idea of SymTFT, we consider a (1+1)d theory TZN
with ZN symmetry.

The corresponding SymTFT Z(ZN ) is the (2 + 1)d BF theory with level N ,

SBF = N

2π

∫
Â ∧ dA, (A.1)
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where Â, A are 1-form gauge fields. It is a ZN gauge theory and is the low energy description
of the toric code for N = 2 in the condensed matter literature [88]. Fix a gauge A0 = Â0 = 0,
the canonical quantization gives,[

Ai(x, y), Âj(x′, y′)
]
= 2πi

N
ϵijδ(x − x′, y − y′). (A.2)

A and Â are conjugated with each other like position and momentum. For simplicity, we
place the BF theory on a spatial torus T 2, the physical operators are Wilson loops defined as,

W [Γ] = exp
(

i

∮
Γ

A

)
, Ŵ [Γ] = exp

(
i

∮
Γ

Â

)
, (A.3)

with Γ ∈ H1(T 2,Z). Since the holonomies of A and Â are periodic, they are quantized as,

N

2π

∮
Γ

A = 0, 1, · · · , N − 1,
N

2π

∮
Γ

Â = 0, 1, · · · , N − 1, (A.4)

and W N [Γ] = Ŵ N [Γ] = 1. The operators satisfy the commutation relation,

W [Γi]Ŵ [Γj ] = ω−
∫

γi∧γj Ŵ [Γj ]W [Γi], (A.5)

where γ ∈ H1(T 2,Z) is the Poincare dual of Γ defined as
∫
Γ · · · =

∫
γ ∧ · · · .

Let’s focus on the partition function ZTZN
of the theory and see how the SymTFT

applies. We can introduce a canonical basis of the Hilbert space of the BF model on T 2

where either W [Γ] or Ŵ [Γ] are diagonalized. The two different choices give two kinds of
topological boundary states Bsym

ZN
written as a boundary state,

• Dirichlet boundary state |a⟩ for A,{
W [Γ]|a⟩ = ω

∫
γ∧a|a⟩,

Ŵ [Γ]|a⟩ = |a − γ⟩,
(A.6)

• Neumann boundary state |â⟩ for A,{
Ŵ [Γ]|â⟩ = ω

∫
γ∧â|â⟩,

W [Γ]|â⟩ = |â − γ⟩,
(A.7)

where a = NA/2π, â = NÂ/2π and we have a, â ∈ H1(T 2,ZN ). The integration
∫

γ∧a =
∫
Γ a

gives the holonomy along Γ. The two bases are related by a discrete Fourier transformation,

|â⟩ = 1
2

∑
a∈H1(T 2,ZN )

ω
∫

a∧â|a⟩. (A.8)

On the other hand, the physical boundary Bphys
TZN

gives a dynamical boundary state |χ⟩ which
depends on the partition function of theory TZN

with given the ZN holonomies of TZN

|χ⟩ =
∑

a∈H1(T 2,ZN )
ZTZN

[a]|a⟩. (A.9)
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Choosing different topological boundary states, the path-integral of the BF theory on the
slab gives,

Z[a] = ⟨a|eiHt|χ⟩ = ⟨a|χ⟩, Z[â] = ⟨â|eiHt|χ⟩ = ⟨â|χ⟩. (A.10)

where Z[a] = ZTZN
[a] agrees with the torus partition function of TZN

and,

Z[â] = 1
2
∑

a

ω
∫

â∧aZTZN
[a] ≡ ZTZN

/ZN
[â], (A.11)

which is the partition function of the orbifold theory TZN
/ZN , the Kramers-Wannier duaity

of TZN
. In other words, the ZN gauging of TZN

can be viewed from the SymTFT as switching
the topological boundary state from |a⟩ to |â⟩.

When N = 2, there also exists a topological boundary |s⟩, where s ∈ H1(T 2,Z2) stands
for the spin structure, such that JW transformation can be encoded as ZF [s] = ⟨s|χ⟩.7 The
states |s⟩ are eigenstates of the operators WF [Γ] ≡ W [Γ]Ŵ [Γ] and satisfy,{

WF [Γ]|s⟩ = (−1)Arf(s+γ)−Arf(s)|s⟩
Ŵ [Γ]|s⟩ = |s + γ⟩

(A.12)

where Arf(s) ≡ s1s2 is the Arf-invariant where si =
∫
Γi

s is the spin structure along Γi-cycle
(si = 0 is chosen to be the NS boundary condition). The topological boundary state |s⟩
can also be expressed as,

|s⟩ = 1
2

∑
a∈H1(T 2,Z2)

(−1)Arf(s+a)|a⟩, (A.13)

and the transition amplitude ⟨s|χ⟩ is,

ZF [s] = ⟨s|χ⟩ = 1
2

∑
a∈H1(T 2,Z2)

(−1)Arf(s+a)ZTZN
[a] (A.14)

which gives the partition function of the fermionic theory after JW transformation.
The (2 + 1)d BF theory has a Z2 symmetry which exchanges the two gauge field,

A → Â, Â → A. (A.15)

The corresponding symmetry defect DZ2 [M2] along a surface M2 can be constructed as,

DZ2 = 1√
|H1(M2,ZN )|

∑
Γ∈H1(M2,ZN )

W [Γ]Ŵ [Γ]−1, (A.16)

which is a condensation of the defect WŴ−1 along M2. If M2 is a time slice, one can check,

DZ2 [M2]W [Γ] = Ŵ [Γ]DZ2 [M2], DZ2 [M2]Ŵ [Γ] = W [Γ]DZ2 [M2], (A.17)

and,
DZ2 [M2]× DZ2 [M2] = 1. (A.18)

using the quantum algebra.
7For general N , there is a generalized JW transformation that leads to parafermion theories, see [49, 89, 90].
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B Duality between (3.1) and (3.2)

In this appendix, we sketch the duality between the 2-foliated BF theory (3.1) and the exotic
tensor gauge theory (3.2). See also [31]. Begin with the 2-foliated theory (3.1),

S2-foliated = N

2π

∫ ∑
k=1,2

(dBk + b) ∧ Ck ∧ dxk + b ∧ dc, (B.1)

we split the coordinates (x0, x1, x2, x3) as (τ, xi) with i = 1, 2, 3 and denote (x1, x2, x3) as
(x, y, z). The action can be written as,

S2-foliated = N

2π

∫
dτd3x

[
ϵijk

(
−Bx

i ∂τ Cx
j δx

k − By
i ∂τ Cy

j δy
k + 1

2bij∂τ ck

)

+ ϵijkCx
τ

(
∂iB

x
j + 1

2bij

)
δx

k + ϵijkCy
τ

(
∂iB

y
j + 1

2bij

)
δy

k + 1
2ϵijkcτ ∂ibjk

+ ϵijkbτi

(
∂jak + Cx

j δx
k + Cy

j δy
k

)
+ ϵijkBx

τ ∂iC
x
j δx

k + ϵijkBy
τ ∂iC

y
j δy

k

]
, (B.2)

up to total derivatives. Integrate Cx
τ , Cy

τ , bτx, bτy, one gets

byz = ∂zBx
y − ∂yBx

z , bxz = ∂zBy
x − ∂xBy

z , (B.3)

for Cx
τ , Cy

τ and

Cy
z = ∂ycz − ∂zcy, Cx

z = ∂xcz − ∂zcx, (B.4)

for bτx, bτy. We can solve byz, bxz, Cy
z , Cx

z and substitute them back to the action. Moreover,
integrating bτz gives,

Cy
x + ∂xcy = Cx

y + ∂ycx, (B.5)

such that we can define Axy = Cy
x + ∂xcy = Cx

y + ∂ycx. After renaming other variables,

Aτ ≡ cτ , Az ≡ cz, (B.6)

Âxy = ∂xBx
y − ∂yBy

x + bxy, Âτ = Bx
τ − By

τ , Âz = Bx
z − By

z , (B.7)

the action is rewritten as,

Sexotic =
N

2π

∫ [
Aτ (∂zÂxy − ∂x∂yÂz)− Az(∂τ Âxy − ∂x∂yÂτ )− Axy(∂τ Âz − ∂zÂτ )

]
. (B.8)

which reproduces the exotic tensor gauge theory (3.2).

C Derivation of fusion rule of subsystem KW defects

In this section, we will re-derive the fusion rule between two subsystem KW defects N sub×N sub

after the formulation of gauging a subsystem symmetry in a cohomology language.8 The
derivation is a direct generalization from the fusion of duality defects of guaging 0-form ZN

symmetry [65]. For simplicity, we will keep N = 2.
8The original derivation on lattice can be found in [60].
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C.1 Conventions

Denote the gauge fields A and its dual Â for subsystem Z2 symmetry as the pair,

A = (Az, Axy), Â = (Âz, Âxy). (C.1)

The gauge transformation is,

A → A + δλ, Â → Â + δλ̂, (C.2)

where the action of δ on a function is defined as,

δf(x, y, z) = (∂zf(x, y, z), ∂x∂yf(x, y, z)). (C.3)

The flatness condition is written as,

δA ≡ ∂x∂yAz − ∂zAxy = 0, (C.4)

and one can check δ2f(x, y, z) = 0 automatically.
To perform the summation formally, it is useful to introduce the 0-cochain C0

sub(M3) as
the set of functions f on M3, 1-cochain C1

sub(M3) as the set of the pairs g = (gz, gxy) where
gz, gxy are both functions on M3, and 2-cochain C2

sub(M3) as the set of functions denoted
by hxyz on M3. The coboundary operator δ acts on C∗

sub as,

δf = (∂zf, ∂x∂yf), δg = ∂x∂ygz − ∂zgxy, δhxyz = 0, (C.5)

and it satisfies δ2 = 0. One can define a product ∗ · ∗ which sends Cm
sub(M3)× Cn

sub(M3) to
Cm+n

sub (M3) where Cm+n
sub (M3) with m + n > 2 is defined to be trivial. For example, when

one of C∗
sub is C0

sub whose elements are functions, the product is the usual multiplication;
and for g, g′ ∈ C1

sub(M3) one can assign g · g′ ≡ gxyg′z + g′xygz.
Let’s consider the cohomology9 H∗ = Z∗/B∗ where Z∗(B∗) contains closed (exact)

cochains. For example

H0
sub(M3,Z2) = Z0

sub(M3,Z2), (C.6)

contains scalar functions that only have x or y dependence. Because of the flatness condition,
the subsystem gauge field A and Â belong to H1

sub(M3,Z2), closed 1-cochains modulo out the
exact 1-cochain (the gauge transformation), and we have |H1

sub(M3,Z2)| = |Mv| = 22(Lx+Ly−1),
where the dimension of H1

sub(M3,Z2) is equal to the number gauge invariant holonomies w.
Now we will take a formal, continuous route and only make it discrete at the final step.

For example, the subsystem KW transformation

ZT̂sub
[ŵz,x;j+ 1

2
, ŵz,y;i+ 1

2
, ŵx;j , ŵy;i]

= 1
2Lx+Ly−1

∑
wz,x;j ,wz,y;i,wx;j+ 1

2
,w

y;i+ 1
2
=0,1

ZTsub [wz,x;j , wz,y;i, wx;j+ 1
2
, wy;i+ 1

2
]

× (−1)
∑

i
(ŵ

z,y;i+ 1
2

w
y;i+ 1

2
+ŵy;iwz,y;i)+

∑
j
(ŵ

z,x;j+ 1
2

w
x;j+ 1

2
+ŵx;jwz,x;j)

(C.7)

9Strictly speaking, H∗ are not cohomology groups because the closeness condition is not preserved under
the product. For example, given f ∈ H0

sub(M3) and g ∈ H1
sub(M3) one can check,

δ(f · g) = ∂x∂y(fgz) − ∂z(fgxy) = ∂xf∂ygz + ∂yf∂xgz,

which does not vanish. Nevertheless, we do not need this property in the proof.
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will be written formally as,

Z[Â] = 1
|H0

sub(M3,Z2)|
∑

A∈H1
sub(M3,Z2)

Z[A](−1)
∫

M3
A·Â

, (C.8)

where |H0
sub(M3,Z2)| is the dimension of the cohomology group H0

sub(M3,Z2). The labels
of partition functions are omitted for more concise expressions. The gauge field A will
take values in its gauge equivalent class H1

sub(M3,Z2) and the integral is regularized by
the sum of holonomies,∫

M3
A · Â =

∫
M3

(AxyÂz + AzÂxy)

=
∑

i

(ŵz,y;i+ 1
2
wy;i+ 1

2
+ ŵy;iwz,y;i) +

∑
j

(ŵz,x;j+ 1
2
wx;j+ 1

2
+ ŵx;jwz,x;j),

(C.9)

where w and ŵ are holonomies of A and Â. The formal expression (C.8) differs from the reg-
ularized one (C.7) by the normalization factor |H0

sub(M3,Z2)| (instead of
√
|H1

sub(M3,Z2)| =
2Lx+Ly−1) as suggested in [65].

We also need to define relative cohomology H1
sub(M3, M2,Z2) where M2 = ∂M3 is the

boundary where the gauge fields A = (Az, Axy) should satisfy the “Dirichlet” boundary
condition at the boundary M2. First, we need to define what the “Dirichlet” boundary
condition means for the gauge fields Az and Axy. If M2 is the x-y plane we can just
set Axy = 0 at the boundary. The holonomy of

∫
Azdz split into Ay(x) and Ax(y) and

they depend on x and y separately. There also exists a gauge transformation which shifts
Ay(x) → Ay(x) + θ and Ax(y) → Ax(y)− θ by some constant θ so that

∫
Azdz is invariant.

If M2 is the x-z plane we will require Ay(x) to be a constant at the boundary and it is gauge
equivalent to zero. Therefore we impose ∂xAz = 0 at the boundary.

In the next subsection, we will consider the KW defects defined by gauging the subsystem
Z2 symmetry in half of the spacetime M3 with the “Dirichlet” boundary condition imposed at
the boundary. To do this, we need to couple the theory to a dynamical subsystem Z2 gauge
theory with flat gauge field (Az, Axy). The subsystem Z2 gauge theory can be represented as10

1
π

∫
dxdydz ϕδA = 1

π

∫
dxdydz ϕ(∂zAxy − ∂x∂yAz), (C.11)

where ϕ is a periodic scalar field that serves as a Lagrangian multiplier enforcing (Az, Axy)
to be properly quantized and Z2-valued. The Dirichlet boundary condition introduced above
is topological along the normal direction. To see this, we need to deform the locus of the
boundary slightly and see the variation of the action. For example, if the boundary is x-y
plane at z = 0 and we deform it to z = ϵ, the difference can be written as the surface integral

10This is a generalization that ordinary q-form ZN gauge theory in D-dimenson can be represented by the
BF theory with level N [91–94],

N

2π

∫
dDxBD−q−2dAq+1 (C.10)

where Aq+1 is the (q + 1)-form gauge field and BD−q−2 is the Lagrange multiplier enforcing Aq+1 to be
ZN -valued.
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z = 0 z = ϵ

N N

Figure 9. Fusion of two subsystem KW operators along z direction.

at z = 0 and z = ϵ using Stokes theorem∫
z=0

dxdyϕAxy −
∫

z=ϵ
dxdyϕAxy, (C.12)

which is zero due to the boundary condition Axy = 0. On the other hand, if the boundary
is x-z plane at y = 0 and we deform it to y = ϵ, the difference is,

−
∫

y=0
dxdzϕ∂xAz +

∫
y=ϵ

dxdzϕ∂xAz, (C.13)

and the boundary condition ∂xAz = 0 is sufficient to set it zero.
We will also see how these choices of boundary conditions give the correct fusion rule

in the following derivation.

C.2 Fusion rule of subsystem KW defects

We first consider the case where the defect N sub is along the x-y plane and acts as a symmetry
operator. Our strategy, as shown in figure 9, is to put two parallel subsystem KW operators
with a separation of ϵ and compute the partition function in the region between two operators.
As we take the limit ϵ → 0, we get the fusion of two operators. It is equivalent to performing
1-gauging on a co-dimension one surface [81].

Consider the symmetry operator N sub located at z = 0 as an example. The theory
at z ≥ 0 is defined to be,

Z[M≥0
3 , Â] = 1

|H0
sub(M

≥0
3 , M2|0,Z2)|

∑
A∈H1

sub(M
≥0
3 ,M2|0,Z2)

Z[M≥0
3 , A](−1)

∫
M

≥0
3

A·Â
, (C.14)

where H1
sub(M

≥0
3 , M2|0,Z2) is the relative cohomology such that Axy = 0 at the boundary M2|0

and we use M2|0 to emphasize M2 is located at z = 0. To compute the fusion N sub ×N sub,
we insert another N sub at z = ϵ such that the theory living on M≥0

3 is given by,

1
|H0

sub(M
≥0
3 , M2|0,Z2)||H0

sub(M
≥ϵ
3 , M2|ϵ,Z2)|∑

A∈H1
sub(M

≥0
3 ,M2|0,Z2)

Ã∈H1
sub(M

≥ϵ
3 ,M2|ϵ,Z2)

Z[M≥0
3 , A](−1)

∫
M

[0,ϵ)
3

A·Â+
∫

M
≥ϵ
3

(A−Â)·Ã
.

(C.15)
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Using the relations |H1| = |Z1|/|B1|, we can write the sum over cohomologies into a sum
over cocycles as ∑A∈H1 = 1

|B1|
∑

A∈Z1 . Moreover, notice that |B1| = |C0|/|Z0| and |B0| = 1,
we can rewrite the integral as,

1
|C0

sub(M
≥0
3 , M2|0,Z2)||C0

sub(M
≥ϵ
3 , M2|ϵ,Z2)|∑

A∈Z1
sub(M

≥0
3 ,M2|0,Z2)

Ã∈Z1
sub(M

≥ϵ
3 ,M2|ϵ,Z2)

Z[M≥0
3 , A](−1)

∫
M

[0,ϵ)
3

A·Â+
∫

M
≥ϵ
3

(A−Â)·Ã
.

(C.16)

The cocycle condition can further be relaxed by introducing Lagrange multiplier ϕ ∈
C0(M≥0

3 ,Z2) and ϕ̃ ∈ C0(M≥ϵ
3 ,Z2),

1
|C0

sub(M
≥0
3 ,M2|0,Z2)||C0

sub(M
≥ϵ
3 ,M2|ϵ,Z2)||C0

sub(M
≥0
3 ,Z2)||C0

sub(M
≥ϵ
3 ,Z2)|

×
∑

A∈C1
sub(M

≥0
3 ,Z2)

Ã∈C1
sub(M

≥ϵ
3 ,Z2)

ϕ∈C0
sub(M

≥0
3

Z2),ϕ̃∈C0
sub(M

≥ϵ
3 ,Z2)

Z[M≥0
3 ,A](−1)

∫
M

[0,ϵ)
3

A·Â+
∫

M
≥ϵ
3

(A−Â)·Ã+
∫

M>0
3

ϕδA−
∫

M2|0
ϕAxy+

∫
M>ϵ

3
ϕ̃δÃ−

∫
M2|ϵ

ϕ̃Ãxy

.

(C.17)

Summing over ϕ in the bulk M≥0
3 enforces A to be a cocycle due to the coupling

∫
M>0

3
ϕδA,

and summing over ϕ on the boundary M2|0 enforces Axy = 0, which makes the cocycle
relative to M2|0. Same to Â.

We can firstly perform the sum over Ã and one has,

(−1)
∫

M>ϵ
3

ϕ̃δÃ−
∫

M2|ϵ
ϕ̃Ãxy

= (−1)
∫

M
≥ϵ
3

δϕ̃·Ã
, (C.18)

where we use integration by part and δϕ̃ · Ã = ∂zϕ̃Ãxy + ∂x∂yϕ̃Ãz. Sum over Ã will produce
a factor |C1

sub(M
≥ϵ
3 ,Z2)| and enforce A − Â − δϕ̃ = 0,

|C1
sub(M

≥ϵ
3 ,Z2)|

|C0
sub(M

≥0
3 , M2|0,Z2)||C0

sub(M
≥ϵ
3 , M2|ϵ,Z2)||C0

sub(M
≥0
3 ,Z2)||C0

sub(M
≥ϵ
3 ,Z2)|

×
∑

A∈C1
sub(M

≥0
3 ,Z2)

ϕ∈C0
sub(M

≥0
3 ,Z2),ϕ̃∈C0

sub(M
≥ϵ
3 ,Z2)

Z[M≥0
3 , A](−1)

∫
M

[0,ϵ)
3

A·Â+
∫

M>0
3

ϕδA−
∫

M2|0
ϕAxy

δ(A − Â − δϕ̃)|
M≥ϵ

3
.

(C.19)

We then integrate out ϕ, which produces a factor |C0
sub(M

≥0
3 ,Z2)| and enforces

A ∈ Z1
sub(M

≥0
3 , M2|0,Z2),

|C1
sub(M

≥ϵ
3 ,Z2)|

|C0
sub(M

≥0
3 , M2|0,Z2)||C0

sub(M
≥ϵ
3 , M2|ϵ,Z2)||C0

sub(M
≥ϵ
3 ,Z2)|

×
∑

A∈Z1
sub(M

≥0
3 ,M2|0,Z2)

ϕ̃∈C0
sub(M

≥ϵ
3 ,Z2)

Z[M≥0
3 , A](−1)

∫
M

[0,ϵ)
3

A·Â
δ(A − Â − δϕ̃)|

M≥ϵ
3

. (C.20)
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The summand is independent of ϕ̃ and we can set ϕ̃ to zero in the delta function and add
a normalization factor |C0

sub(M
≥ϵ
3 ,Z2)|. The delta function then fixes A = Â in M≥ϵ

3 and
make A an element of Z1

sub(M
[0,ϵ]
3 , M2|0 ∪ M2|ϵ,Z2),

|C1
sub(M

≥ϵ
3 ,Z2)|

|C0
sub(M

≥0
3 , M2|0,Z2)||C0

sub(M
≥ϵ
3 , M2|ϵ,Z2)|∑

A∈Z1
sub(M

[0,ϵ]
3 ,M2|0∪M2|ϵ,Z2)

Z[M≥0
3 , A + Â

M≥ϵ
3
](−1)

∫
M

[0,ϵ]
3

A·Â
,

(C.21)

where Â|
M≥ϵ

3
is equal to Â if we are on M≥ϵ

3 and vanishes elsewhere.

Let’s introduce the Euler factor χ[M≥ϵ
3 ,Z2] as,

χ[M≥ϵ
3 ,Z2] ≡

|H2
sub(M

≥ϵ
3 ,Z2)||H0

sub(M
≥ϵ
3 ,Z2)|

|H1
sub(M

≥ϵ
3 ,Z2)|

= |C2
sub(M

≥ϵ
3 ,Z2)||C0

sub(M
≥ϵ
3 ,Z2)|

|C1
sub(M

≥ϵ
3 ,Z2)|

. (C.22)

where in the second expression we use the fact H0 = Z0, Z2 = C2 since C2 is the top one
and |Bn+1| = |Cn|/|Zn|. The normalization factor in (C.21) can be written as,

|C2
sub(M

≥ϵ
3 ,Z2)||C0

sub(M
≥ϵ
3 ,Z2)|

|C0
sub(M

≥0
3 , M2|0,Z2)||C0

sub(M
≥ϵ
3 , M2|ϵ,Z2)|

χ[M≥ϵ
3 ,Z2]−1. (C.23)

The first factor can be further simplified by using |C2
sub(M

≥ϵ
3 ,Z2)| = |C0

sub(M
≥ϵ
3 , M2|ϵ,Z2)|

since the elements in C0
sub(M

≥ϵ
3 , M2|ϵ,Z2) and the elements in C2

sub(M
≥ϵ
3 ,Z2) are Fourier

partners under integration over M3. Finally, use the fact that,

|Cn
sub(M

≥0
3 , M2|0,Z2)| = |Cn

sub(M
≥ϵ
3 ,Z2)||Cn

sub(M
[0,ϵ]
3 , M2|0 ∪ M2|ϵ,Z2)|, (C.24)

which is a decomposition of cochains on M≥0
3 into the sum of cochains on M

[0,ϵ]
3 with fixed

boundary condition at M2|ϵ and cochains on M≥ϵ
3 with free boundary conditions. Substituting

the simplified normalization into (C.21) we have,

χ[M≥ϵ
3 ,Z2]−1

|C0
sub(M

[0,ϵ]
3 , M2|0 ∪ M2|ϵ,Z2)|

∑
A∈Z1

sub(M
[0,ϵ]
3 ,M2|0∪M2|ϵ,Z2)

Z[M≥0
3 , A + Â

M≥ϵ
3
](−1)

∫
M

[0,ϵ]
3

A·Â
.

(C.25)
Write the summation of Z1

sub(M
[0,ϵ]
3 , M2|0 ∪ M2|ϵ,Z2) back to H1

sub(M
[0,ϵ]
3 , M2|0 ∪ M2|ϵ,Z2) as∑

A∈Z1 = |B1|
∑

A∈H1 , we obtain the finial result,

χ[M≥ϵ
3 ,Z2]−1

|H0
sub(M

[0,ϵ]
3 , M2|0 ∪ M2|ϵ,Z2)|

∑
A∈H1

sub(M
[0,ϵ]
3 ,M2|0∪M2|ϵ,Z2)

Z[M≥0
3 , A + Â

M≥ϵ
3
](−1)

∫
M

[0,ϵ]
3

A·Â
,

(C.26)
where we use the relations |B1||Z0| = |C0| and |B0| = 1 again.
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Now let’s evaluate the integral
∫

M
[0,ϵ)
3

A · Â with Dirichlet boundary condition Axy|z=0 =
Axy|z=ϵ = 0. At this stage, we need to regularize the spacetime and write,∫

M2×[0,ϵ]
(AxyÂz+AzÂxy)=

Lx∑
i=1

wy,i+ 1
2

[
Lϵ∑

k=1
Âz

i+ 1
2 ,j+ 1

2 ,k

]y
+

Ly∑
j=1

wx,j+ 1
2

[
Lϵ∑

k=1
Âz

i+ 1
2 ,j+ 1

2 ,k

]x


+
Lx∑
i=1

wz,y;i

Ly∑
j=1

Âxy

i,j,k+ 1
2

+
Ly∑
j=1

(
wz,x;j

Lx∑
i=1

Âxy

i,j,k+ 1
2

)
, (C.27)

where Lϵ is the number of sites between [0, ϵ) and ω are the holonomies of A.∑Ly

j=1 Âxy

i,j,k+ 1
2
,
∑Lx

i=1 Âxy

i,j,k+ 1
2

are strip operators of the dual field Â and they generate the
subsystem symmetry as mentioned in (3.30),

Uy
i = exp

iπ

Ly∑
j=1

Âxy

i,j,k+ 1
2

 , Ux
j =

(
iπ

Lx∑
i=1

Âxy

i,j,k+ 1
2

)
. (C.28)

The line operator ∑ϵ
k=1 Âz

i+ 1
2 ,j+ 1

2 ,k
of the dual field Âz are subsystem symmetry defects.

Recall that the line operator can be decomposed into two line operators separately movable
along x and y directions and we use the labels [· · · ]x and [· · · ]y to represent them.

We will take the limit ϵ → 0 while fixing the holonomies w. The first line vanishes in
the limit. Another point of view is, since Axy|z=0 = Axy|z=ϵ = 0 the holonomies of Axy

vanishes and wy,i+ 1
2
= wx,j+ 1

2
= 0 and first line is trivial. Therefore we only need to consider

the second line which implies the fusion rule,

N sub† ×N sub =
∑

wz,y;i,wz,x;j/∼
(Uy

i )wz,y;i(Ux
j )wz,x;j = 1

2

Lx∏
i=1

(1 + Uy
i )

Ly∏
j=1

(
1 + Ux

j

)
, (C.29)

where we have used |H0
sub(M

[0,ϵ]
3 , M2|0∪M2|ϵ,Z2)| = 1 11 and N sub† is normalized as N sub† =

χ[M≥0
3 ,Z2]N sub. In the sum, we mod out the gauge redundancy ∼ of the holonomies.
Let’s then consider the case where the defect N sub is along the x-z plane and acts as a

symmetry defect. The derivation of the fusion rule is similar and we have,
1

|C0
sub(M

≥0
3 ,M2|0,Z2)||C0

sub(M
≥ϵ
3 ,M2|ϵ,Z2)||C0

sub(M
≥0
3 ,Z2)||C0

sub(M
≥ϵ
3 ,Z2)|

×
∑

A∈C1
sub(M

≥0
3 ,Z2)

Ã∈C1
sub(M

≥ϵ
3 ,Z2)

ϕ∈C0
sub(M

≥0
3 ,Z2)

ϕ̃∈C0
sub(M

≥ϵ
3 ,Z2)

Z[M≥0
3 ,A](−1)

∫
M

[0,ϵ)
3

A·Â+
∫

M
≥ϵ
3

(A−Â)·Ã+
∫

M>0
3

ϕδA+
∫

M2|0
ϕ∂xAz+

∫
M>ϵ

3
ϕ̃δÃ+

∫
M2|ϵ

ϕ̃∂xÃz

.

(C.30)
where the difference is that M2|0 and M2|ϵ are the x-z plane located at y = 0 and y = ϵ,
and summing over the Lagrangian multiplier ϕ at M2 enforces ∂xAz = 0 as discussed at the
beginning of this section. It has the advantage that,

(−1)
∫

M>ϵ
3

ϕ̃δÃ+
∫

M2|ϵ
ϕ̃∂xÃz

= (−1)
∫

M
≥ϵ
3

δϕ̃·Ã
, (C.31)

11The elements f in H0
sub(M [0,ϵ]

3 , M2|0 ∪ M2|ϵ,Z2) should satisfies ∂x∂yf = ∂zf = 0 and f = 0 at the
boundary. They fix f to be trivial.
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which is the same as before. The remaining derivations are exactly the same and we get,

χ[M≥ϵ
3 ,Z2]−1

|H0
sub(M

[0,ϵ]
3 , M2|0 ∪ M2|ϵ,Z2)|

∑
A∈H1

sub(M
[0,ϵ]
3 ,M2|0∪M2|ϵ,Z2)

Z[M≥0
3 , A + Â

M≥ϵ
3
](−1)

∫
M

[0,ϵ]
3

A·Â
.

(C.32)
We then regularize the integral

∫
M

[0,ϵ)
3

A · Â in the same way,

∫
M2×[0,ϵ]

(AxyÂz+AzÂxy)=
Lx∑
i=1

wy,i+ 1
2

[
Lz∑

k=1
Âz

i+ 1
2 ,j+ 1

2 ,k

]y
+

Lϵ∑
j=1

wx,j+ 1
2

[
Lz∑

k=1
Âz

i+ 1
2 ,j+ 1

2 ,k

]x


+
Lx∑
i=1

wz,y;i

Lϵ∑
j=1

Âxy

i,j,k+ 1
2

+
Lϵ∑

j=1

(
wz,x;j

Lx∑
i=1

Âxy

i,j,k+ 1
2

)
. (C.33)

If we take ϵ → 0 while fixing the holonomies w, we only need to keep the first term. Recall
that from (3.30) we have,

exp

iπ

[
Lz∑

k=1
Âz

i+ 1
2 ,j+ 1

2 ,k

]y
 ≡ Ŵz,y(xi+ 1

2
) ↔

∏
i′≤i

Uyz
0,i . (C.34)

The fusion rule is then,

N sub† ×N sub =
∑

w
y,i+ 1

2

Lx∏
i=1

∏
i′≤i

Uyz
0,i

w
y,i+ 1

2

. (C.35)

We can recover (2.22) using wy,i+ 1
2
= ty

i + ty
i+1.
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