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1 Introduction

In the AdS/CFT correspondence, the Witten model [1], corresponding to a scaling M → ∞
of a Schwarzschild-AdS black hole, or to a near-horizon near-extremal limit of D3-branes, is
interpreted as dual to N = 4 SYM at finite temperature or, after a double Wick rotation by
replacing the periodic time t with a Kaluza-Klein (KK) angular coordinate ϕ, and a reduction
on ϕ, as dual to 3-dimensional pure glue theory (≡ QCD3; fermions are antiperiodic, so
massive and scalars gain a mass at one-loop, from the fermions), coupled to extra modes at
the KK scale TKK = 1/Rϕ, and one obtains a discrete spectrum of states. This is also similar
to what one obtains by cutting off AdS space in the IR (the “hard-wall” model).

But there are other behaviours possible from deforming N = 4 SYM. One such is the
“Coulomb Branch (CB)” deformation of N = 4 SYM, by a scalar operator of dimension ∆ = 2,
studied in [2]. One obtains two possible metrics, described by dimensionless parameters
±ℓ2/L2, describing either discrete states (for minus sign) or continuous above a mass gap
(for plus sign).
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In another development, in asymptotically flat spacetime, the boundary conditions
associated with the KK soliton [3], a double Wick rotation of the Schwarzschild black hole,
makes the KK vacuum with antiperiodic boundary conditions for the fermions unstable
towards decay, as the gravitational Hamiltonian is unbounded from below in this case.
However, the AdS soliton [4], which also has antiperiodic conditions for the fermions on an S1,
is perturbatively stable, though susy- breaking. Recently it was shown that supersymmetric
AdS solitons exist [5–9], and the charged solitons (for the AdS Einstein-Maxwell theory)
generate phase transitions in the dual field theory. These ideas have also been generalized to
10 dimensions, representing new models of holographic confinement [10–13].

In this paper, we will find AdS soliton-like solutions in the well known STU model of
type IIB supergravity. In general its field content is that of 3 U(1) gauge fields and 2 scalars.
It is a consistent truncation of the 5-dimensional maximal gauged supergravity that one gets
from type IIB supergravity compactified on an S5. As such, this solution should describe a
deformation of N = 4 SYM, and we will find that there is a deformation of the Coulomb
branch solution of [2], that interpolates between various possibilities for the spectrum, thus
generating phase transitions in the field theory in 2+1 dimensions. For every possible value of
the boundary sources, there are two possible AdS soliton like solutions [5]. In the field theory,
we find that there are two possible vacua in N = 4 Super Yang-Mills when the fermions are
anti-periodic on an S1. Thus, the solitons nicely describe this degeneracy and holography
yields the strongly coupled phase diagram of N = 4 Super Yang-Mills in the large N limit.

The paper is organized as follows. In section 2 we describe the model and the super-
symmetric solutions. In section 3 we describe the general solutions, have a first go at a field
theory interpretation, and the parametrization of the space of solutions. In section 4 we
describe holographic renormalization and describe the phase diagram from the point of view
of gravity. Then we show that when the fermions are anti-periodic on the S1, one can have
two possible states in the dual N = 4 Super Yang-Mills, and we match these two results. In
section 5 we uplift the solution to 10 dimensions, describe the result in terms of deformations
of distributions of D3-branes, and analyze the mass spectra in order to obtain a field theory
interpretation of the phase transitions. In section 6 we conclude, and the appendices give
details on solving a relevant equation and the integrability conditions for the supersymmetry
transformations. We also have an appendix on a possible interpretation of the solutions in
terms of the Wick rotation of rotating D3-branes in 10 dimensions.

2 The model

We are interested in studying a truncation of type IIB supergravity compactified over the
S5 with action

S0 = 1
2κ

∫ √
−g

×
(
R− (∂Φ1)2

2 − (∂Φ2)2

2 +
3∑

i=1
4L−2X−1

i − 1
4X

−2
i (F i)2 + 1

4ϵ
µνρσλA1

µF
2
νρF

3
σλ

)
d5x,

(2.1)
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where F i are two forms, related with gauge fields in the standard way, Fi = dĀi, Xi = e−
1
2 a⃗i·Φ⃗,

Φ⃗ = (Φ1,Φ2) and

a⃗1 =
( 2√

6
,
√
2
)
, a⃗2 =

( 2√
6
,−

√
2
)
, a⃗3 =

(
− 4√

6
, 0
)
. (2.2)

We remark that we have changed the standard coupling constant of the gauged supergrav-
ity by the AdS radius L through the relation g = 1

L . We will be interested in purely magnetic
solutions, in which case it is consistent to truncate the axions to zero. The Lagrangian (2.1)
can be obtained from the compactification of ten dimensional type IIB supergravity over
the five sphere with the ansatz [14]

ds2
10 = ∆̃1/2ds2

5 + L2∆̃−1/2
3∑

i=1
X−1

i

(
dµ2

i + µ2
i

(
dϕi +

1
L
Ai

)2
)
, (2.3)

F5 = G5 + ∗G5, (2.4)

G5 = 2
L
ϵ5

3∑
i=1

(
X2

i µ
2
i − ∆̃Xi

)
− L

2X
−1
i ∗5 dXi ∧ dµ2

i (2.5)

+ L2∑
i

X−2
i µidµi ∧

(
dϕi +

1
L
Ai

)
∧ ∗5Fi, (2.6)

where ∗ is the Hodge dual with respect to the ten-dimensional metric, ∗5 is the Hodge dual
with respect to the five-dimensional metric ds2

5, ϵ5 is its volume form, and F5 is the self-dual
five-form field strength of type IIB supergravity. The ϕi are 2π periodic angular coordinates
parametrizing the three independent rotations on S5, ∆̃ =

∑
iX

iµ2
i and

∑
i µ

2
i = 1. We will

be interested in considering the higher-dimensional interpretation of some of our solutions
using this uplift.

The equations of ten-dimensional IIB supergravity in the metric-dilaton-F5 sector are
given by

Rµν + 2∇µ∇νϕD − e2ϕD

4

( 1
4!Fµρ1...ρ4F

ρ1...ρ4
ν − 1

2gµν
1
5!Fρ1...ρ5F

ρ1...ρ5

)
= 0 . (2.7)

R− 4 (∂ϕD)2 + 4□ϕD = 0 , (2.8)
dF5 = 0 , (2.9)

where ϕD is the ten dimensional dilaton. One then has to add by hand the self-duality
condition F5 = ∗F5. The lift of the solution has vanishing dilaton, and therefore the
spacetime is Ricci flat, which is consistent with the trace of the Einsteins’ equations.

The Einstein’s field equations in 5 dimensions are

T i
µν = Fµρ

iF i
ν

ρ − 1
4gµνF

i
ρσF

iρσ , (2.10)

TΦ
µν = ∂µΦ1∂νΦ1 + ∂µΦ2∂νΦ2 − gµν

(
(∂Φ1)2

2 + (∂Φ2)2

2 −
3∑

i=1
4L−2X−1

i

)
, (2.11)

Gµν = 1
2T

Φ
µν +

3∑
i=1

1
2X2

i

T i
µν , (2.12)

plus the equations for the five-dimensional matter fields.
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2.1 Supersymmetry in type D = 5 gauged supergravity

The supersymmetry transformation of gravitino and the two dilatinos, that are the equations
for the Killing spinor, for the D = 5 gauged supergravity (2.1) are [15]

δψµdx
µ = (d+W )Ψ = 0 , (2.13)

δλ1 =
∑

i

Ωi
∂Xi

∂Φ1
Ψ = 0 , (2.14)

δλ2 =
∑

i

Ωi
∂Xi

∂Φ2
Ψ = 0 , (2.15)

where

Ai = Ai
µdx

µ (2.16)

Ωi = −1
8 (Xi)−2 γabF i

ab −
i

4 (Xi)−2
(
∂Xi

∂Φ1
/∂Φ1 +

∂Xi

∂Φ2
/∂Φ2

)
+ i

2L , (2.17)

W = 1
4ωabγ

ab − i

2L
∑

i

Ai + i

4!
(
γcγ

ab − 6δa
c γ

b
)
ec
∑

i

(Xi)−1 F i
ab +

1
3!Lγce

c
∑

i

Xi .

The 1-form ec stands for the vielbein basis and ωab is the Levi-Civita spin connection 1-form.
The complex spinor Ψ is defined in terms of the symplectic Majorana spinor ϵa as Ψ = ϵ1 + iϵ2

(see for instance [16]). We use the following basis for the Clifford algebra:

γ0 = −i
(

0 σ2
σ2 0

)
, γ1 = −

(
σ3 0
0 σ3

)
, γ2 = i

(
0 −σ2
σ2 0

)
,

γ3 =
(
σ1 0
0 σ1

)
, γ4 = iγ0γ1γ2γ3 . (2.18)

The 2-form integrability conditions is defined as

(dW +W ∧W )Ψ = 0. (2.19)

This equation leads a non-trivial solution only when the determinant of the components
of dW + W ∧ W is equal to zero.

2.2 Supersymmetry in type IIB

We are going to present new supersymmetric solutions in this theory. The general SUSY
variations in the bosonic sector of type IIB is

δλ = 1
2

(
Γµ∂µϕ+ 1

2
/H3σ3

)
ϵ− 1

2e
ϕD

(
/F 1iσ2 +

1
2
/F 3σ1

)
ϵ , (2.20)

δψµdx
µ = dϵ+ 1

4ωabΓabϵ+ 1
4
1
2!HµabΓabdxµσ3ϵ (2.21)

+1
8e

ϕD

(
/F 1iσ2 + /F 3σ1 +

1
2
/F 5iσ2

)
Γµdx

µϵ ,

where the slash for any p−form is defined as

/F p = 1
p!Fa1...apΓa1...ap . (2.22)
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Note that in our configuration ϕD = 0 and F1 = F3 = H3 = 0, then the susy trans-
formations are

δψµdx
µ = dϵ+ 1

4ωabΓabϵ+ 1
8
1
2
/F 5iσ2Γae

aϵ ≡ Dϵ . (2.23)

The 2-form integrability conditions obtained by computing the commutator of the
derivative defined in (2.23), as it is explained in detail in appendix B, are

Ξ = 1
4RabΓab + 1

16
1
5! iσ2DFb1...b5Γb1...b5Γae

a − 1
128

1
4!
/F 5Fad1...d4Γd1...d4ea ∧ Γce

c . (2.24)

3 New AdS soliton in Type IIB supergravity

AdS soliton type solutions with magnetic fluxes where found in the minimal gauged super-
gravity in five dimensions in [5]. We shall generalize these solutions now by including a
non-trivial scalar profile. These solutions are double analytic continuations of a particular
case of the electrically charged black hole solutions of the U(1)3 truncation of the maximal
gauged supergravity in five dimensions theory [14], which oxidize to spinning D3 branes in
10 dimensions. The vierbein and matter fields are

e0 = Ω(x)1/2dt ,

e1 = Ω(x)1/2

2x[(x− 1)F (x)η]1/2dx ,

e2 = Ω(x)1/2F (x)1/2Ldϕ ,
e3 = Ω(x)1/2dz ,
e4 = Ω(x)1/2dy ,

Φ1 =
√

2
3 ln(x) ,

Φ2 = 0 ,
A1 = q1

(
x−1 − x−1

0

)
Ldϕ ,

A2 = q1
(
x−1 − x−1

0

)
Ldϕ ,

A3 = q2 (x− x0)Ldϕ , (3.1)

with

Ω(x) = x2/3η

x− 1 ,

F (x) = L−2 + (−1 + x)2(q2
1 − q2

2x)
ηx2 . (3.2)

As we shall see, the conformal boundary of the metric is located at x = 1. When
the integration constant η > 0, then the range of the coordinate x is constrained to be
1 ≤ x ≤ x0, with F (x0) = 0, the center of the spacetime (this would be a “horizon” if
F (x) would be in front of −dt2). When η < 0, then x0 ≤ x ≤ 1. These two cases are not
diffeomorphic to each other, as the scalar field is either everywhere positive or negative
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depending on which case one considers. Therefore the above configuration describe two
physically inequivalent physical situations.

We should note that, in fact, there F (x0) = 0 does not always have solutions:
-if η < 0, then q2 = 0 means there is an x0, but q1 = 0 means there isn’t. Note, however,

that even a very small q1 is enough to guarantee that there is an x0.
-if η > 0, then q2 = 0 means there is no x0, but q1 = 0 means there is one. Note, however,

that even a very small q2 is enough to guarantee that there is an x0.
-if |q1| = |q2| = q, so, as we shall see, this is the supersymmetric solution, then if η < 0,

there always is an x0 (independently of q), but if η > 0, for large q there is a solution, but
for small q (and in particular for q1 = q2 = 0) there isn’t.

The canonical form of an asymptotically locally AdS5 spacetime is achieved with the
transformation (valid for η > 0, the other case corresponds to changing η into −η)

x = 1 + ηL2

ρ2 + 2η2L4

3ρ4 + η3L6

3ρ6 +O(ρ−8),

Ω(x) = ρ2

L2 +O(ρ−4),

gϕϕ = Ω(x)F (x) = ρ2

L2 − µ

ρ2 +O(ρ−4),

gρρ = L2

ρ2 −
2
9η

2L6 − µL4

ρ6 +O(ρ−8),

µ = −ηL4(q2
1 − q2

2). (3.3)

3.1 Supersymetric solution

We shall prove now that the configuration with q2 = −q1 is supersymmetric, using the
five dimensional supersymmetric tranformations. However we show that once we uplift
the configuration to type IIB SUGRA the configuration is also supersymmetric in the case
|q1| = |q2|. One can see that when this is replaced in the integrability condition (2.19), its
determinant is equal to zero. To integrate the equations of the Killing spinor we introduce
the radial coordinate r, which is the same one as the one we will introduce later for the uplift
to 10 dimensions, through the change of coordinate

x =
(
1 + ϵ

ℓ2

r2

)−1

, (3.4)

where ϵ = ±1, and ℓ is related to η as η = −ϵℓ2/L2. The five dimensional vielbeins that
we will use are

e0 = r

L
λ(r)dt , e1 = dr

rλ(r)2
√
F (r)

, e2 = r

L
λ(r)dy (3.5)

e3 = r

L
λ(r)dz , e4 = rλ(r)

√
F (r)dϕ , (3.6)

F (r) = 1
L2 − ϵ

ℓ2L2

r4

(
q2

1 − q2
2λ (r)

−6
)
, λ (r)6 = 1 + ϵ

ℓ2

r2 . (3.7)
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From the supersymmetry transformations (2.14), we integrate the Killing spinors when
q1 = −q2, which gives two linearly independent complex spinors

Ψ1 = e−
iπϕ

δ
+σ(r)


1

ϵλ(r)3r3

ℓ2L2q1

(
LF (r)1/2 − 1

)
0
0

 , (3.8)

Ψ2 = e−
iπϕ

δ
+σ(r)


0
0
1

−ϵλ(r)3r3

ℓ2L2q1

(
LF (r)1/2 − 1

)
 , (3.9)

where

σ(r) =
∫ r

1

(
1 + 2λ (u)6

) (
3− 2LF (u)1/2

)
6uλ (u)6 LF (u)1/2 du , (3.10)

and δ is the period of the coordinate ϕ, implying that the Killing spinor are anti-periodic.
The presence of two complex Killing spinors means that the solution is 1/8 BPS. As a
cross-check, we verify that in these conventions AdS5 has four independent complex Killing
spinors, constructed as given in section 3.1 of [17] within the N = 2 theory. The Killing
spinors are anti-periodic in the coordinate ϕ, with period δ. The most general Killing spinor
is a linear combination of (3.8) and (3.9)

Ψ = c1Ψ1 + c2Ψ2 , (3.11)

with complex coefficients c1 and c2. The Killing vector constructed from the Killing
spinors (3.11) gives a combination of all the Killing vectors of the spacetime

Ψ†γ0γµΨ∂µ = −L
(
|c1|2 + |c2|2

)
∂t +

(
|c1|2 − |c2|2

)
∂y − (c∗1c2 + c1c

∗
2) ∂z

+i (c∗1c2 − c1c
∗
2) ∂φ . (3.12)

3.2 Dual interpretation: basic analysis

Below we will make clear that µ is proportional to the energy of the configuration. The
expansion of the scalar field yields

Φ1 = Φ0
ρ2 +

√
6Φ2

0
12ρ4 +O(ρ−8), (3.13)

Φ0 =
√
2L2η√
3

. (3.14)

Hence, these solitons excite a VEV of an operator of conformal dimension ∆ = 2 in the
dual field theory, more precisely, in terms of N = 4 SYM, the symmetric traceless operator in
the 20′ representation of SO(6), Tr[XIXJ − 1

6δ
IJX2], restricted to the neutral singlet (1, 1)0

under the decomposition of SO(6) → SO(2) × SO(4) ≃ SO(2) × SO(3) × SO(3).
The case of operators with ∆ = 2 in d = 4 is very special and has to be treated separately,

as considered in [18], for the case of the “Coulomb Branch” (CB) flow of [2] which, as we will
shortly see, corresponds to our own solution (as our solution is a generalization of that flow).

– 7 –
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In the standard case (2∆ − d ̸= 0, with d the dimension of the spacetime where the
conformal field theory is defined), the expansion of the scalar of mass m =

√
∆(∆− d)/R

in terms of z = R2/ρ is [19]

Φ = zd−∆
[
ϕ(0) + z2ϕ(2) + . . .+ z2∆−d

(
ϕ(2∆−d) + log z2ϕ̃(2∆−d)

)
+ . . .

]
, (3.15)

where the independent coefficients are: the non-normalizable mode ϕ(0), corresponding to the
operator source in the dual, and ϕ(2∆−d), sometimes also called ϕ(1), corresponding to the
operator VEV. ϕ(2), . . . , ϕ̃(2∆−d), . . . are dependent on ϕ(0), for instance

ϕ̃(2∆−d) = − 1
22∆−dΓ

(
∆− d

2

) (
∆− d−2

2

)(∂i∂i)∆− d
2ϕ(0)

ϕ(2) = 1
2 (2∆− d− 2)∂i∂iϕ(0) , (3.16)

while ϕ(2∆−d) gives the operator VEV by

⟨O⟩ϕ(0) = −(2∆− d)ϕ(2∆−d) + F (ϕ(0)) , (3.17)

with F a scheme-dependent function.
But when ∆ = d/2 like in our case (∆ = 2, d = 4), one has to treat things separately,

since there are several zero prefactors in the above, and as we see, ϕ(0) and ϕ(2∆−d) (normally
the source and VEV) appear at the same order in the expansion. Another way to see this is
that the mass formula has a double root, at the saturation of the BF bound (m2R2 ≥ −d2/4):
m2R2 = (∆ − d/2)2 − d2/4. The expansion in our case (d = 4,∆ = 2) is, instead,

Φ = z2
[
log z2

(
ϕ(0) + z2ϕ(2) + z2 log z2ψ(2) + . . .

)
+
(
ϕ̃(0) + z2ϕ̃(2) + . . .

)]
, (3.18)

where now ϕ(0) is the operator source, and ϕ̃(0) is the operator VEV.
The expansion of the scalar in [18] coincides with our own (3.13) in the η < 0 case. That

means that there is no source, only an operator VEV Φ0 ∝ η, parametrizing the Coulomb
Branch (in [18], the operator VEV was constant). In this ∆ = d/2 = 2 case, the prefactor
(2∆ − d) of the operator is replaced by 2, so (since ϕ̃(0) ≡ Φ0 for us)

⟨O⟩ = 2ϕ̃(0) ≡ 2Φ0 = 2
√
2L2

√
3

η. (3.19)

The solution we have found is a generalization of the Coulomb Branch case in [2, 18] both
by the VEV parameter η above, and by the parameters q1, q2 proportional to the boundary
value of the gauge fields. Next we shall discuss the phase space of these solutions.

3.3 The space of solutions

A soliton solution is fully characterized in terms of its boundary conditions. Above we discused
the solution in terms of the parameters (η, q1, q2), the last two of which do not have a direct
physical meaning (η is the operator VEV in the field theory). A good set of physical variables
are the boundary values of the gauge fields and the period ϕ ∈ [0, δ]. Indeed, solitons exist
provided a regularity condition is imposed. This yields a boundary condition, namely the

– 8 –
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period δ of the S1 is fixed by requiring the absence of conical singularities at x0 (in the case
when there is an 0 < x0 such that F (x0) = 0, otherwise no soliton exists). In the Wick-rotated
(in t) Euclidean black hole case, this would correspond to no singularities at the horizon, and
would fix the temperature of the black hole. In the case at hand, one is actually working
at zero temperature. Therefore, the scale is set by the KK scale δ, for compactification of
the 4-dimensional theory onto ϕ, down to 2+1 dimensions. At this scale, the dimensionally
reduced theory becomes just the 4-dimensional theory, KK expanded onto 2+1 dimensions.

The usual calculation, together with the condition F (x0) = 0, gives the period of the
angle ϕ ∈ [0, δ], with1

δ = 2πx0
|−q2

2x
2
0 − q2

2x0 + 2q2
1|

√√√√∣∣∣∣∣−q2
2x0 + q2

1
−1 + x0

∣∣∣∣∣ = 2πx2
0
√
η/L2

|−q2
2x

2
0 − q2x0 + 2q2

1||x0 − 1|3/2 . (3.20)

Since x0 = x0(q1, q2, η), it follows that, in the interpretation of the period of ϕ as
inverse Kaluza-Klein temperature for compactification, we have, in terms of the previous
set of parameters,

1
δ
≡ TKK = TKK(x0, q1, q2, η) = TKK(q1, q2, η). (3.21)

We want to understand how TKK (governing the coupling of the KK reduced boundary
3 dimensional field theory) and η (governing its operator VEV) vary, as the parameters of
the bulk solution (q1, q2, η) are varied.

It is difficult to calculate the general situation, so we restrict to the supersymmetric
solution, with |q1| = |q2| ≡ q. Then

1
TKK

= δ = 2πx0
q|x2

0 + x0 − 2|
= 2π

√
η

√
|1− x0|
x0 + 2 , q =

x0
√
η

|1− x0|3/2 , (3.22)

which means that:

– δ → ∞, so TKK → 0, ⇔ η → 0 at fixed x0, or x0 → ∞ at fixed η, both of which imply
q → 0.

– δ → 0, so TKK → ∞, ⇔ η → ∞ at fixed x0, or x0 → 0 at fixed η, both of which imply
q → ∞.

Thus the KK temperature TKK is varied between 0 and ∞ by the variation of the q’s, allowed
by the solution.

On the other hand, at fixed q, we have:

– η → 0 gives x0 → 1, so in turn δ → ∞, so TKK → 0.

– η → ∞ gives x0 → 0 (or ∞), so in turn δ → 0, so TKK → ∞.

1Note that since F (x0) = 0 gives ηx2
0 = (x0 − 1)2(q2

1 − q2
2x0), we have x0 = x0(q1, q2, η).
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Thus at fixed q, TKK tunes the VEV η, or the VEV η tunes TKK, which gives a phase
transition at TKK = 0 between the (no VEV, no “horizon”) and (VEV, “horizon”) phases.

We now note that, if we consider the 4-dimensional gauge coupling g2
YM fixed, then TKK

can be exchanged for the 3-dimensional gauge coupling (the coupling of the dimensionally
reduced theory), since

g2
3d,YM = g2

YMTKK. (3.23)

Then, instead of the interpretation of phase transition in KK temperature TKK, one has a
phase transition in coupling, i.e., a quantum critical phase transition, happening at g2

3d,YM = 0.
We will reinforce this interpretation later, when describing the mass spectrum coming

from the gravity dual.
Finally, we find that it is more convenient to parametrize the system in terms of the

normalized 5-dimensional (gravity dual) gauge invariant “Wilson lines” (ψ1, ψ2), integrated
on a curve C = ∂Σ2,2 parametrized by ϕ at the boundary x = 1, defined as

lim
x→1

∮
A1 = q1

(
1− x−1

0

)
Lδ ≡ 2πLψ1 ,

lim
x→1

∮
A3 = q2 (1− x0)Lδ ≡ 2πLψ2 . (3.24)

In terms of these sources it is very easy to see that the location of the supersymmetric
solution discussed above, with q1 = −q2, yields

x0 = ψ2
ψ1
. (3.25)

Hence, we find that for every value of the pair (ψ1, ψ2) there is one and only one
supersymmetric soliton with q1 = −q2.

More generally, we can use the definition of (ψ1, ψ2) to eliminate the integration constants
(q1, q2) in the definition of δ, (3.20). This determines x0 in terms of the sources (ψ1, ψ2),

ψ2
1x

3
0 + (ψ4

2 + 4ψ4
1 − 4ψ2

2ψ
2
1 − ψ2

2 − ψ2
1)x2

0 − ψ2
2(4ψ2

1 − 2ψ2
2 − 1)x0 + ψ4

2 = 0. (3.26)

We see that the advantage of this parametrization is that the dependence on δ, which
would be present in F (x0) = 0 in terms of the boundary values of the gauge fields, and was also
present in the previous form x0 = x0(q1, q2, η), drops out. Hence, we have only a 2-parameter
set (ψ1, ψ2) defining x0. Note that F (x0) = 0 in the previous form means η = η(x0, q1, q2),3

but x0 = x0(ψ1, ψ2) from (3.26), while q1 = q1(ψ1, x0, δ) and q2 = q2(ψ2, x0, δ) from their
definition,4 which finally means that, up to some possible discrete choices, η = η(δ, ψ1, ψ2).

2From the point of view of the 5-dimensional bulk; note that by using a 2-dimensional surface Σ2

between infinity, x = 1, and the origin, x = x0, and Stokes’ law, we could write this as
∫

Σ2
ByzdΣyz ≡∫

Σ2
ϵyztρϕ∂ρAϕdρdϕ, so would be some 5-dimensional generalization of magnetic flux, but would not correspond

in the boundary 4 dimensions to magnetic flux, unlike the AdS4 case.
3Specifically, η = (x0 − 1)2(q2

1 − q2
2x0)/x2

0.
4Specifically, q1 = 2πψ1/[(1 − x−1

0 )δ] and q2 = 2πψ2/[(1 − x−1
0 )δ].
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0.0 0.1 0.2 0.3 0.4 0.5
ψ10

1

2

3

4

5
x0

Possible Solitons as Function of the Magnetic Fluxes

Figure 1. The different colors are different physical roots of (3.24). The x0 in the y axis are plotted
vs the dimensionless Wilson line ψ1 in the x-axis. The blue and yellow lines have ψ2 = 0.1 and the
red and green line have ψ2 = 0.3. Either both solutions have a positive scalar field VEV or both
have a negative scalar field VEV. The only roots that contribute to the physics are x01 and x03 (see
appendix A for their definition).

Indeed then, the general solution is completely characterized once we give 3 parameters
(δ, ψ1, ψ2). Note that in the (ψ1, ψ2) parametrization, we can cover both the η < 0 and
the η > 0 solutions.

The cubic equation (3.26) is solved in the appendix A. We find that generically there
are two solitons for each value of the pair (ψ1, ψ2). In figure 1 we plot possibles x0i (see
appendix A for their definition), as a function of ψ1, with ψ2 fixed. Note that for a fixed,
say, ψ2, there is a maximum ψ1 for which there is a solution (that is consistent with the
existence of a 0 < x0, with F (x0) = 0). The different branches intersect at infinity, x = 1,
where they yield the soliton of the Einstein-Maxwell theory in five dimensions [5]. The plot
points towards the existence of a non-trivial phase diagram in the canonical ensemble, as
ψ1 and ψ2 are varied. Indeed, on the gravity side, we can find the energy of the solution by
E = E(δ, ψ1, ψ2), which will allow us to study the phase diagram of these solutions.

As we saw in (3.23), TKK = 1/δ defines the 3 dimensional gauge coupling, so fixing δ is
like fixing the coupling constant in the UV. Then, since we are working at zero temperature,
all the possible phase transitions are quantum critical phase transitions.
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4 Holographic renormalization and a phase diagram

4.1 Holographic renormalization

Here we will use holographic renormalization to compute the expectation value of the dual
energy momentum tensor. The countertems to deal with this situation were constructed
in [18, 20, 21],

S = S0 +
1
κ

∫
M3×S1

K
√
−hd4x+ 1

2κ

∫
M3×S1

√
−h

(
− 6
L

+ 1
2L

( 1
ln(ρ/ρ0)

− 2
)
Φ2

1

)
d4x ,

(4.1)

where S0 is the action (2.1) truncated to Φ2 = 0, gµν = hµν +NµNν , and Nµ is the outward
pointing normal to the boundary and Kµν = 1

2∇µNν + 1
2∇νNµ is the extrinsic curvature. The

boundary integrals are over the D3-brane geometry. Namely, a three dimensional Minkwoski
spacetime times a circle,

ds2 = γabdx
adxb = −dt2 + dy2 + dz2 + dϕ2 , (4.2)

which is the background spacetime for the quantum field theory. The scalar field has in
general the asymptotic expansion

Φ1 = JΦ
ln(ρ2/ρ2

0)
ρ2 + Φ0

ρ2 +O

(
ln(ρ2/ρ2

0)
ρ4

)
, (4.3)

with the on-shell variation
δS

δJΦ
= 1

2κL5Φ0 . (4.4)

Indeed, our soliton has no scalar sources and this relation provides the holographic
interpretation of Φ0 as a VEV, as already explained. The vacuum expectation value of the
energy momentum tensor of the dual field theory is

⟨Tab⟩ =
−2√
−γ

δS

δγab
(4.5)

= lim
ρ→∞

ρ2

L2
−2√
−h

δS

δhab
(4.6)

= lim
ρ→∞

ρ2

L2κ

(
hab K −Kab −

3
L
hab −

1
2LhabΦ2

1

)
, (4.7)

which yields

⟨Ttt⟩ = − µ

2L3κ
, ⟨Tzz⟩ = ⟨Tyy⟩ =

µ

2L3κ
, ⟨Tϕϕ⟩ = − 3µ

2L3κ
. (4.8)

4.2 Phase diagram from E = E(δ, ψ1, ψ2)

The free energy of the solitons in the canonical ensemble is just the energy. Hence we will be
interested to see how the energy changes when we vary the sources (ψ1, ψ2). A convenient
normalization of the energy is that of the AdS soliton [4],

E0 = −L
3π4

2κδ3 V2 , (4.9)
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ψ1

-1.0
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-0.6

-0.4

-0.2

0.0

F

Normalized Energy as function of the Magnetic Flux

Figure 2. The normalized energy as a function of the Wilson line ψ1 when ψ2 = 0.1. The phase
diagram is composed by the different D3-brane distributions. They turn out to be continuously
connected on the gauge theory side due to the introduction of the Wilson lines in 5 dimensions. The
different roots of the polynomial (3.26) have different colours.

where V2 is the volume of the y − z plane. So we plot the energy of the solution with
the running scalar EΦ = ⟨Ttt⟩V2δ divided by the absolute value of the energy of the AdS
soliton in five dimensions,

FΦ ≡ EΦ
|E0|

= ⟨Ttt⟩V2δ
2κδ3

L3π4V2
(4.10)

= −16(ψ
2
1x

2
0 − ψ2

2)(ψ2
1x0 − ψ2

2)
x0(x0 − 1)2 , (4.11)

We note that for the supersymmetric solution with q1 = −q2, we have ψ2
1x

2
0 −ψ2

2 = 0 = 0,
so FΦ = 0, as expected.

The free energy FΦ changes its color in figure 2 in a continuous way. At this point is
possible to see that the scalar VEV continuously goes to zero indicating a redistribution
of the D3-branes in the sense of [2]. This happens when ψ2 = ±ψ1. It is possible to see
that the energy and all its derivatives are continuous at this point. That means that there
is continuous phase transition at ψ2 = ±ψ1, generically followed by the phase transition
at (q1 = ±q2, so) |ψ2| = x0|ψ1| < |ψ1|.

From F (x0) = 0, meaning ηx2
0 = (x0 − 1)2(q2

1 − q2
2x0), it is clear that we have the

scalar VEV η = 0 only for q2
1 = q2

2x0, meaning for ψ2
1x0 = ψ2

2, or for x0 = 1, or for both,
in which case we have ψ1 = ±ψ2 and x0 = 1, where the horizon disappears (so there we
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transition between the “horizon” and “no horizon” phases, as we already explained). This is
the “quantum phase transition” at TKK = 0 or g2

3d,YM = 0 described before.
The solution on the lower branch (with FΦ < 0) increases ψi until at some ψi, one

reaches FΦ = 0, corresponding to the supersymmetric solution (q1 = −q2). There we have
a phase transition to the phase dominated by the D3 brane distributions of [2] (which has
zero energy), with anti-periodic boundary conditions for the fermions in ϕ. From the point of
view of the dual field theory, reduced on ϕ to 3 dimensions, this is another “quantum phase
transition”, at nonzero g2

3d,YM. One should note however that the distributions of [2] are
singular in the IR, so its inclusion in the phase diagram suppose that they actually become
regular when quantum corrections are included.

4.3 QFT energy

Here we will discuss in greater detail how to understand the phase diagram from the QFT
point of view. It is straightforward to compute the vacuum expectation value of the energy
of a single scalar field in the background (4.2). The result is

⟨EQFT⟩ = − π2

6δ3V2X , (4.12)

where X is a numerical factor that depends whether the scalar field is periodic or anti-periodic
in the S1. It comes from Riemann zeta-function regularization of the sum over the modes
in the circle and it yields

Xeven =
∞∑

n=1
(2n)3 = 8

120 , (4.13)

Xodd =
∞∑

n=1
(2n− 1)3 = − 7

120 . (4.14)

The field content of N = 4, SU(N) super Yang-Mills is 6 scalars and 4 Weyl fermions in
the adjoint representation plus one gauge vector. For the fermions the signs of the periodic
and antiperiodic energies get interchanged. At weak coupling, we get the total energy by
multiplying the scalar field energy by the number of degrees of freedom associated to each
field, with the corresponding numerical factor depending on whether the fields are periodic
or anti-periodic on the S1. So for the case where the scalars, the vectors and the fermions
are antiperiodic, we get

⟨ESYM⟩ = −π
2 V2
6δ3 Xodd(N2 − 1)(6 + 2− 8) = 0. (4.15)

Hence this energy is automatically zero on account of the matching of the bosonic and
fermionic degrees of freedom, and the fact that all fields have the same boundary condition
on the S1.

When the fermions are anti-periodic but the scalars and the vectors are periodic we get

⟨ESYM∗⟩ = −π
2 V2
6δ3 Xeven(N2 − 1)

(
6 + 2 + 878

)
= −π

2 V2
6δ3 (N2 − 1). (4.16)
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The AdS/CFT dictionary tell us that L3

κ = N2

4π2 . So the gravitational energy is

E0 = −π
2 V2
8δ3 N2 = 3

4⟨ESYM∗⟩ , (4.17)

which is a well-known result valid at large N . Thus, we learn that in our phase diagram is
possible to see the interplay of ⟨ESYM∗⟩ and ⟨ESYM⟩, and that morevoer, the value of ⟨ESYM⟩
at strong coupling and vanishing sources is also zero, see figure 2. This explains from the
field theory point of view the existence of two branches of gravity solutions.

5 Continuous distributions of D3-branes vs. rotating D3-branes

We start by reviewing some of the findings of [2] on distributions of D3-branes. We show that
when the gauge fields vanish in our soliton solutions, we recover the two different distributions
of D3-branes that break the isometries of the S5 to SO(4) × SO(2). The distribution of
D3-branes of [2] are solutions of the supergravity action

I = 1
2κ

∫ √
−g

(
R− 2

5∑
i=1

(∂αi)2 − V

)
d5x , (5.1)

with

V = − 1
2L2

[
Tr(M)2 − 2Tr(M2)

]
,

M = diag (e2β1 , e2β2 , e2β3 , e2β4 , e2β5 , e2β6),

β⃗ = 1√
2
Bα⃗, (5.2)

and

B =



1 1 1 0 3−1/2

1 −1 −1 0 3−1/2

−1 −1 1 0 3−1/2

−1 1 −1 0 3−1/2

0 0 0
√
2 − 2

31/2

0 0 0 −
√
2 − 2

31/2


. (5.3)

Here M is a representative of the coset SL(6,R)/SO(6), and the action of SO(6) on
M is by conjugation. Note that BTB = 415×5. Hence, the Lagrangian (5.1) is manifestly
SO(6) invariant.

The case n = 2 of table 1 of [2] is recovered when α⃗ = (0, 0, 0, 0,−1
2Φ) in terms of

a canonically normalized scalar field Φ, and then β⃗ = − Φ
2
√

6(1, 1, 1, 1,−2,−2). When the
gauge fields vanish, this theory exactly coincides with the theory 2.1 when Φ = Φ1. In the
conventions of [2], this flow has Φ < 0, and therefore this corresponds in our coordinates
to having x < 1 and η < 0.

The case n = 4 of table 1 of [2] corresponds to α⃗ = (
√

3
4 Φ, 0, 0, 0, 1

4Φ) with the canonically
normalized scalar field Φ, and then β⃗ = Φ

2
√

6(2, 2,−1,−1,−1,−1). In this case we match their
potential with Φ = Φ1. This flow has Φ > 0, which in our coordinates is x > 1 and η > 0.
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Normalized Scalar VEV as a function of the Magnetic Flux

Figure 3. The normalized scalar field vacum expectation value as a function of the Wilson line ψ1,
when ψ2 = 0.1. Here we see that the VEV is negative for some solutions and positive for others. The
negative VEV yields D3 brane distributions different than the positive VEV, as we will discuss below.
There is a crossover between the different regimes.

5.1 Uplift of the metric to 10 dimensions

For the purposes of top-down AdS/CFT (whose rules are derived from string theory), it is
not enough to consider a 5-dimensional solution; rather, one has to have a 10-dimensional
solution, moreover obtained from a D-brane configuration. This is possible in our case.

Indeed, using the uplift (2.3) we can write our solution, with non-vanishing gauge fields,
as follows.

Considering the change of variable x =
(
1 + ϵℓ2/r2)−1 and using the uplift (2.3), we

can write the 10-dimensional metric as

ds2
10 = ζ(r, θ)r2

L2

(
L2dr2

r4F (r)λ(r)6 + dx2
1,2 + F (r)L2dϕ2

)
(5.4)

+ L2

ζ(r, θ)

{
ζ(r, θ)2dθ2 + λ(r)6 sin2 θ

(
dϕ3 + L−1A3

)2

+cos2 θ

[
dψ2 + sin2 ψ

(
dϕ1 + L−1A1

)2
+ cos2 ψ

(
dϕ2 + L−1A2

)2
]}

, (5.5)

F (r) = L−2 + ℓ4

ηr4

(
q2

1 − q2
2λ(r)−6

)
, λ(r)6 = 1 + ϵ

ℓ2

r2 , ζ(r, θ)2 = 1 + ϵ
ℓ2

r2 cos2 θ ,

A1 = A2 = ϵq1ℓ
2 r

2 − r2
0

r2r2
0
Ldϕ , A3 = ϵq2ℓ

2 r2 − r2
0

(r2 + ϵℓ2)(r2
0 + ϵℓ2)

Ldϕ , (5.6)

where ϵ = ±1 depending whether the scalar is positive or negative (see figure 3), and r0 is
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the zero of F (r). For consistency, η and ϵ must have opposite signs, hence we considered
η = −ϵℓ2/L2. We use µ⃗ = (cos θ sinψ, cos θ cosψ, sin θ). The field strength 5-form F5 = G5 +
⋆G5 is defined in terms of G5 given by

G5 = 2r3ϵ

L4λ6

[
sin2 θ + λ12 cos2 θ − ζ2

(
1 + 2λ6

)]
dr ∧ dt ∧ dy ∧ dz ∧ dϕ (5.7)

− ϵλ′r3

λL2

[
2r2λ6F (r) + 3L2

(
1− λ6λ−6

0

) (
q2

2 − q2
1λ

6λ6
0

)]
sin (2θ) dθ ∧ dt ∧ dy ∧ dz ∧ dϕ

+ 3r3ϵλ5λ′
[
sin (2θ) dθ ∧

(
q1 sin2 ψdϕ1 + q1 cos2 ψdϕ2 + q2dϕ3

)
−q1 cos2 θ sin (2ψ) dψ ∧ (dϕ1 − dϕ2)

]
∧ dt ∧ dy ∧ dz .

The field strength 5-form can be written explicitly as the exterior derivative of a 4-form
as F5 = d(C4 + C̃4), where

C4 =−
[
r4

L4 ζ(r, θ)
2 + ℓ4

r2
0
ϵ cos2 θ(q2

2λ(r0)−6 − q1)
]
dt ∧ dy ∧ dz ∧ dϕ (5.8)

+ ℓ2ϵ(q1 cos2 θ(cos2 ψdϕ2 + sin2 ψdϕ1) + q2 cos2 θdϕ3) ∧ dt ∧ dy ∧ dz

C̃4 = L4r2λ(r)6 cos4 θ sin(2ψ)
2r2ζ(r, θ)2 dϕ1 ∧ dϕ2 ∧ dϕ3 ∧ dψ (5.9)

− L4q2r
2(λ(r)6 − λ(r0)6)

r2ζ(r, θ)2λ(r0)6 cos4 θ cosψ sinψdϕ ∧ dϕ1 ∧ dϕ2 ∧ dψ

− ℓ2L4q1rϵ cos(2ψ) sin2(2θ)
8r4ζ(r, θ)4

(
1 + ϵℓ2

r2
0
cos2 θ

)
dr ∧ dϕ ∧ ϕ3 ∧ (dϕ1 − dϕ2)

− L4r4q1ℓ
2ϵ sin(2θ)

4r6ζ(r, θ)4 dθ ∧ dϕ ∧ dϕ3∧[
−ζ(r, θ)4(dϕ1 + dϕ2) + r2λ(r)6(r−2 − r−2

0 ) cos(2ψ) cos2 θ(dϕ1 − dϕ2)
]

with G5 = dC4, ∗G5 = dC̃4.
The flux of the F5 on the S5 with coordinates [θ, ψ, ϕ1, ϕ2, ϕ3] and ranges θ, ψ ∈ [0, π/2],

ϕ1, ϕ2, ϕ3 ∈ [0, 2π] is given by ∫
S5
F5 =

∫
S5
⋆F5 = ϵ4π3L4 . (5.10)

Regarding the supersymmetry of the configuration, we show that the determinant of the
components of integrability conditions (2.24) are all zero for |q1| = |q2|, which ensures the
existence of a solution of the Killing spinor equation (2.23). Consequently, from the point
of view of IIB supergravity, the Killing spinor equation admits a solution even in the case
q1 = q2, in addition to the case q1 = −q2 that we found in D = 5.

As we already mentioned, when the supergravity U(1) gauge fields vanish, we recover the
singular distributions of [2]. These singularities are considered to be “good” in the analysis
of [22]. As remarked in [22] these Coulomb branch states do not seem to admit a finite
temperature analogue (without U(1) gauge fields). However, the singularities satisfy the
more general Gubser-criterion that the evaluation of the scalar field potential on the solution
should never yield +∞. Indeed, this is a property of the STU-model of maximal supergravity
which has a scalar field potential which is everywhere negative.

– 17 –



J
H
E
P
0
5
(
2
0
2
4
)
2
1
7

5.2 Mass spectrum and phase transitions

In the case Ai = 0 of [2], it was noted that for the dilaton, one can reduce the 10-dimensional
equation of motion onto the 5-dimensional one, if we have a warped product form,

ds2
10 = ∆−2/3(r, µi, ϕi)ds2

5(y, z, t, r, ϕ) + ds2
K(µi, ϕi, r) , (5.11)

so dsK that can depend on ds5, but ds5 independent on dsK , and if the dilaton is independent
on K, so Φ = Φ(t, y, z, r, ϕ). Here ∆ =

√
det gK/ det g(0)

K , where g(0)
K is the metric of the

undeformed by ds5 metric of K, i.e., in this case, the metric of the round S5 sphere, and
gK is the full deformed metric on K.

That is so, since we can easily verify that the 10-dimensional d’Alembertian opera-
tor on Φ is

□10DΦ = ∆2/3
√
−g

∂µ(gµν√−g∂νΦ) + dsK terms , (5.12)

where gµν is the 5-dimensional metric for ds5. Hence, this is equivalent to solving the
d’Alembertian (massless KG) equation in the 5-dimensional metric ds2

5.
In our case, with Ai ̸= 0, specifically gϕK ̸= 0, we have the same situation, if we

impose the additional constraint that Φ is independent on the circle (KK) coordinate ϕ, so
Φ = Φ(t, y, z, r) only, in which case we have the same 5-dimensional □ operator, but acting on
a field that only depends on 4 dimensions, so on the zero mode for the KK expansion on S1.

By comparing this form with our own uplift form (2.3), we see that

∆̃1/2 = ∆−2/3 = ζ(r, θ)
λ2(r) , (5.13)

which means that the 5-dimensional metric in our case can be put into the form

ds2
5 = λ2r2

L2

(
L2dr2

r4F (r)λ6 + dx⃗2
1,2 + F (r)L2dϕ2

)

= r2

L2

(
1 + ϵ

ℓ2

r2

)1/3 [
Ldr2

r4F (r)
(
1 + ϵ ℓ2

r2

) + dx⃗2
1,2 + F (r)L2dϕ2

]
, (5.14)

and by using redefining r/L = L/z, we have

ds2
5 = L2

z2

(
1 + ϵ

ℓ2z2

L4

)1/3 [
dz2

L4F (z)
(
1 + ϵ ℓ2z2

L4

) + dx⃗2
1,2 + F (z)L2dϕ2

]
, (5.15)

with
F (z) = 1− ϵ

ℓ2z4

L6

(
q2

1 − q2
2

1 + ϵ ℓ2z2

L4

)
. (5.16)

Then the spectrum of the scalar 0++ glueballs is given by the eigenstates of the
d’Alembertian operator in this 5-dimensional background. Since

□Φ = z5(
1 + ϵ ℓ2z2

L4

)1/3∂z


(
1 + ϵ ℓ2z2

L4

)
z3 F (z)∂z

Φ+ z2(
1 + ϵ ℓ2z2

L4

)1/3∂i∂iΦ , (5.17)
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under the redefinition of the variable, dz =
√
F (z)

(
1 + ϵ ℓ2z2

L4

)
du, and of the function, with

a eik⃗·x⃗ plane wave in the y, z, t directions, and with k⃗2 = −M2,

Φ = eik⃗·x⃗ z3/2

F (z)
(
1 + ϵ ℓ2z2

L4

)Ψ(z) , (5.18)

from □Φ = 0 we get the one-dimensional Schrödinger equation,

−d
2Ψ(u)
du2 + V (u) = M2Ψ(u)

V (z) = −
[
F (z)

(
1 + ϵ

ℓ2z2

L4

)]1/4

×z3/2 d

dz


F (z)

(
1 + ϵ ℓ2z2

L4

)
z3

d

dz

z3/2[
F (z)

(
1 + ϵ ℓ2z2

L4

)]1/4

 . (5.19)

We see that we can redefine F̃ (z) ≡ F (z)
(
1 + ϵ ℓ2z2

L4

)
, in which case we are back to

the case considered in [23].
We can now make the same analysis from before (in 5 dimensions, in terms of the x

coordinate) for the z0 solving F (z0) = 0, but now also consider together with the one solving
F̃ (z0) = 0, which is more relevant:

– if ϵ = +1, q2 → 0 gives an z0, but q1 = 0 gives no z0 (but q1 → 0, yet q1 ̸= 0, gives
an z0).

– if ϵ = −1, q2 = 0 gives no z0 (but q2 → 0, yet q2 ̸= 0, gives an z0), but q1 → 0 gives
an z0.

– if q1 = ±q2 (in the susy case), there always is an z0.

– if ϵ = −1, q2 = 0, there is no solution to F (z0) = 0, but there is a solution to F̃ (z) = 0,
namely z0 = L2/ℓ.

– if ϵ = +1 and q1 = q2 = 0, we get no z0.

In the UV, at z → 0, we have F̃ (z) ≃ 1, so we get z ≃ u and the same potential
for both ϵ = ±1,

V (u ≃ 0) ≃ 15
4u2 ⇒ Ψ(u) =

√
Mu [C1J2(Mu) + C2Y2(Mu)] . (5.20)

In the IR, we can have a z0 ̸= 0, or not, as we discussed, depending on ϵ, ℓ and q1, q2.
If we have a z0 ̸= 0, then for z → z0, with F̃ (z) ≃ F̃ ′(z0)(z − z0), u − umax ≃

2
√
(z − z0)/F̃ ′(z0), and writing umax = Kz0, we get

V (u ≃ Kz0) ≃ − F̃ ′(z0)
16|z − z0|

≃ − 1
4(u−Kz0)2 ⇒

Ψ ≃
√
Kz0 − u

[
C ′

1J0 (M(u−Kz0)) + C ′
2Y0 (M(u−Kz0))

]
. (5.21)
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The IR boundary condition puts C ′
2 = 0, so the J0 solution continued to the UV (at

u = 0) must give also C2 = 0, which will give a quantization condition on M(Kz0) =Mumax,
as M = Mn. But, of course, the quantization condition will depend on the parameters
(q1, q2, ℓ) of the solution, which will define umax, decoupling the scale of Mn, umax, from the
KK scale, TKK = 1/δ. In any case, the spectrum is discrete.

On the other hand, if there is no z0 (so z0 = 0) in the IR,

– if ϵ = +1, q1 = 0, then F̃ (z) ∼ (q2
2ℓ

2/L6)z4, so

V (z → ∞) ≃ −1
4z

2 q
2
2ℓ

2

L6 ≃ − 1
4(u− umax)2 , (5.22)

so, despite the fact that we don’t have a z0, we obtain the same form of the potential
in terms of u, since

∫
du ≃ 1/

√
(q2

2ℓ
2/L6)z2. So again a discrete spectrum.

– if ϵ = −1, q2 = 0, then there is no z0 for F (z), but there is one for F̃ (z), so the solution
is again the same as before, and we have a discrete spectrum.

– if ϵ = +1, q1 = q2 = 0, then there is no z0 for F (z) or F̃ (z), and then F̃ (z) ≃ ℓ2z/L4, so

V (z → ∞) ≃ + ℓ2

L4 = V (u) , (5.23)

so we have a continuous spectrum above a mass gap at M2 = ℓ2/L4.

In conclusion, this case of ϵ = +1, q1 = q2 = 0 is the only one for which we have a
qualitatively different spectrum.

We can then say that the introduction of the q1, q2 charges induces a phase transition from
the spectrum continuous above a mass gap, continuously connected to the discrete spectrum.
At q1 = q2 = 0, the two spectra seemed distinct, as they were obtained in the two separate
cases, ϵ = +1 and ϵ = −1, respectively.

Finally, when we have the pure AdS space, obtained formally by putting F (z) = 1, ℓ = 0,
we obtain that the potential in the UV is valid everywhere, u = z and V (z) = 15

4u2 . In this
case, there is no limit on u = z, it spans from u = 0 to u = +∞, which means that the
spectrum is continuous without a mass gap.

Since, as we saw in section 4, we had two phase transitions, interpreted as quantum
phase transitions from the point of view of the 3-dimensional dual field theory reduced on ϕ,
one from “no horizon” (given by the singular distributions of D3 branes) to “horizon” (at
g2

3d,YM = 0), and then to “AdS space” (at g2
3d,YM ̸= 0), these are: from continuous above

a mass gap to discrete, to continuous without a mass gap.

6 Discussion and conclusions

In this paper we have found AdS solitons depending on three parameters, namely the two
sources associated to the gauge fields, which were proportional to the charge parameters q1, q2,
and the value of the periodicity of the circle S1, δ. We have shown that it is possible to describe
the phase space in terms of the dimensionless sources (ψ1, ψ2), together with δ = 1/TKK. The
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solutions give a dual scalar VEV ⟨O⟩(1,1)0 in 3+1 dimensions, proportional to η = ±ℓ2/L2.
Among the solutions, a special role is played by the supersymmetric solutions, with q1 = ±q2.

We have found two phase transitions from the (E,ψ1, ψ2) diagram, as ψ1 is varied,
one at ψ1 = ±ψ2, x0 = 1, and another the one at ψ2 = ±ψ1x0(ψ1, ψ2) and E = 0, to the
previous solutions of [2].

Our set of solutions continuously connects all the possibilities described in [2]. The 10-
dimensional uplift of the solutions was found to be a deformation of the D3-brane distributions
of [2], and in the appendix below we hint towards its description as a system of D3-branes,
obtained from the Wick rotation of the rotating D3-branes in 3 independent planes, so one
expects that there is a good string theory interpretation of the results, though we have
not found it so far.

In terms of the 2+1-dimensional interpretation, the supersymmetric solutions give a
quantum critical phase transition, at g2

3d,YM = 0, between a phase with no VEV (and no
horizon in the dual), and spectrum that is continuous above a mass gap, and a phase with
VEV (and horizon in the dual), and discrete spectrum, and the transition to periodic AdS
space is to a continuous and no mass gap spectrum, at nonzero g2

3d,YM.
Remarkably enough, we have found that the phase diagram of these solutions should

correspond to the strongly coupled description of the existence of two possible vacua of
the large N N = 4 SYM when compactified on an S1 in four dimensions and antiperiodic
boundary conditions for the fermions on the S1. Unexpectedly, we found that at finite
values of the source the supersymmetry breaking vacuum gets its supersymmetry restored,
corresponding to the BPS states existing in supergravity.

Hence, this should correspond to the existence to a non-perturbative object in the field
theory, most likely the Q-ball [24], embedded into the supersymmetric theory, and extended
to strong coupling (where its stability properties and mass value with respect to the ones
fundamental fields are not currently understood). Indeed, we see that in the UV, at x = 1,
we have A1 = A2 = q1(1 − x−1

0 )Ldϕ, A3 = q2(1 − x0)Ldϕ.
In the case of the double Wick rotation of the solution, with F (x) multiplying −dt2

instead of dϕ2 in the metric, this would give A1 = A2 = q1(1− x−1
0 )Ldt, A3 = q2(1− x0)Ldt,

which is the standard case for µ1 = q1(1− x−1
0 )L, µ2 = q2(1− x0)L, chemical potentials, or

sources, for the corresponding U(1) charges
∫
d3x ρ, where ρ ∼ Tr[Z̄∂0Z] + Tr[ψ̄γ0ψ], with Z

complex combinations of XI ’s, and ψ complex fermions, both charged under the U(1)’s.
Therefore in our case, A1 = A2 = q1(1− x−1

0 )Ldϕ and A3 = q2(1− x0)Ldϕ, µ1 and µ2
are sources for the U(1) current components in the ϕ direction, ∼ Tr[Z̄∂ϕZ] + Tr[ψ̄γϕψ], so
they are understood as Jϕ = ρvϕ = ρdϕ

dt ≡ ρω (if we had ρv⃗, we would write Z = Z(x⃗− v⃗t),
with x⃗ = (y, z)). We see that, from the point of view of the reduced 2+1 dimensional theory
in (t, y, z), in which ϕ is an internal direction, ω might be understood as Q-ball [24] angular
frequency (for effective potential Veff(Z) = V + 1

2ω
2|Z|2), for writing Z(ϕ = ωt, x⃗) = eiωtZ(x⃗),

and Jϕ is then Q-ball charge density (except, of course, that we don’t have a time dependence
of the phase ϕ, that was just assumed). Then µ1, µ2 would be chemical potentials for the
Q-ball charges.

This might provide a generalization of the Coulomb Branch solution for N = 4 SYM, by
the parameters η (operator VEV) and q1, q2 (related to the µ1, µ2, the “chemical potentials
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for Q-ball charges”), that contains both solutions with arbitrary (or no) periodicity of ϕ,
better understood within N = 4 SYM, and solutions with periodic ϕ and cigar-type solution
with an x0 (“horizon”), understood either from the point of view of the reduction to 3
dimensions ((y, z, t)), or from the point of view of Euclidean version of 4 dimensions, at finite
KK temperature TKK. We expect to make this picture more concrete in a future work.
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A Solutions of the cubic equation (3.26)

The solutions of (3.26) have the form x0i = λ1 cos
(
Θ+ 2πni

3

)
− λ2

3 with ni = 0, 1, 2 for
i = 1, 2, 3, and

λ1 = 2
3ψ1

√
8ψ4

1λ2 − ψ2
1λ

2
2 − 8ψ2

2ψ
2
1λ2 + 2ψ4

2λ2 + 12ψ2
2ψ

2
1 − 2ψ2

2λ2 − 2ψ2
1λ2 − 3ψ2

2 − 6ψ4
2 ,

(A.1)

λ2 = 1
ψ2

1

(
−4ψ2

2ψ
2
1 + ψ4

2 + 4ψ4
1 − ψ2

2 − ψ2
1

)
, (A.2)

Θ = 3−1 arccos 4
27λ3

1ψ
2
1

(
3ψ2

2λ
2
2 + 3ψ2

1λ
2
2 + 9ψ2

2λ2 + 18ψ4
2λ2 − 12ψ4

1λ
2
2 − 27ψ4

2 + 12ψ2
2ψ

2
1λ

2
2

−3ψ4
2λ

2
2 − 36ψ2

2ψ
2
1λ2 + ψ2

1λ
3
2

)
. (A.3)

B Integrability conditions

In this appendix we compute the integrability condition for IIB in the metric-F5 sector. The
supersymmetry transformations of the spin 3/2 field is

δψµdx
µ = dϵ+Wϵ ≡ Dϵ , (B.1)

where for our field content

W = 1
4ωabΓab + 1

16 iσ2 /F 5Γae
a . (B.2)

We define integrability conditions 2−form as the commutator of the covariant derivative
defined in (B.1)

Ξ ≡ D ∧Dϵ . (B.3)

It is simple to show that

Ξ = dW +W ∧W . (B.4)

– 22 –



J
H
E
P
0
5
(
2
0
2
4
)
2
1
7

Let us compute it term by term. The exterior derivative of W is

dW = 1
4dωabΓab + 1

16 iσ2d/F 5Γae
a + 1

16 iσ2 /F 5Γade
a . (B.5)

Using the torsion-less condition dea +ωa
b ∧ eb = 0 and the definition of curvature 2−form

Ra
b = ωa

b + ωa
c ∧ ωc

b we obtain

dW = 1
4RabΓab − 1

4ωac ∧ ωc
bΓab + 1

16 iσ2d/F 5Γae
a − 1

16 iσ2 /F 5Γaω
a
c ∧ ec . (B.6)

Note that in general one can write W = WA ⊗ ΓA where WA is the tensor product of
the 1-form space and 2× 2 matrices, in general we suppress the tensor product symbol. The
repeated indices A are sumed over all terms which defines W and encodes the index structure
of the Γ matrices in each term. Using this, we have

W ∧W = 1
2WA ∧WB

[
ΓA,ΓB

]
. (B.7)

A general identity of the Γ matrices that we will use are

Γa1...apΓbc = Γa1...ap
bc − 2pΓ[a1...ap−1

[bδ
ap]
c] − p!

(p− 2)!Γ
[a1...ap−2δ

ap−1
[b δ

ap]
c] , (B.8)

ΓbcΓa1...ap = Γab
a1...ap − 2pδ[a1

[b Γa2...ap]
c] − p!

(p− 2)!δ
[a1
[b δa2

c] Γ
a3...ap] . (B.9)

In particular, we can derive from it[
Γab,Γc

]
= 4Γ[aδb]

c ,
[
Γab,Γcd

]
= 8δ[c

[aΓ
d]

b] , (B.10)

[Γa1a2a3a4a5 ,Γbc] = −20Γ[b
[a1a2a3a4δ

a5]
c] .

Replacing (B.2) into (B.7) we get

W ∧W = 1
2
1
4ωab ∧

1
4ωcd

[
Γab,Γcd

]
+ 1

82 iσ2ωab ∧ ec 1
5!Fd1...d5

[
Γab,Γd1...d5Γc

]
− 1
83
[
/F 5Γa, /F 5Γc

]
ea ∧ ec . (B.11)

Using the commutator relations, we obtain

W ∧W = 1
4ωac ∧ ωc

bΓab + 1
2
1
8 iσ2ω

a
b ∧ eb /F 5Γa − 1

2
1
8 iσ2ω

ab ∧ ec 1
4!Fd1...d4bΓd1...d4

aΓc

− 1
83
[
/F 5Γa, /F 5Γc

]
ea ∧ ec . (B.12)

Replacing (B.6) and (B.7) into (B.4), the 2−form integrability conditions become

Ξ = 1
4RabΓab + 1

16 iσ2
1
5!dFb1...b5Γb1...b5Γae

a − 1
2
1
8 iσ2ω

ab ∧ ec 1
4!Fd1...d4bΓd1...d4

aΓc

− 1
83
[
/F 5Γa, /F 5Γc

]
ea ∧ ec . (B.13)

Note that the second and third term form a Lorentz covariant derivative

Ξ = 1
4RabΓab + 1

16 iσ2
1
5!DFb1...b5Γb1...b5Γae

a − 1
83
[
/F 5Γa, /F 5Γc

]
ea ∧ ec . (B.14)
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The last term can be simplified by using
[
Γd1...d5 ,Γa

]
= 2Γd1...d5

a, then

[
/F 5Γa, /F 5Γc

]
ea ∧ ec = 4/F 5

1
4!Fab1...b4Γb1...b4Γce

a ∧ ec − 2/F 5 /F 5Γace
a ∧ ec . (B.15)

The last term of (B.15) vanishes due to the fact that F5 is self-dual,

(5!)2 /F 5 /F 5 = Fa1...a5Fb1...b5Γa1...a5Γb1...b5 , (B.16)
∼ F d1...d5ϵa1...a5d1...d5Fc1...c5ϵ

c1...c5b1...b5Γa1...a5Γb1...b5 ,

= F d1...d5Fc1...c5δ
c1...c5b1...b5
a1...a5d1...d5

Γa1...a5Γb1...b5 ,

= F d1...d5F a1...a5δa1...a5b1...b5
c1...c5d1...d5

Γa1...a5Γb1...b5 .

Now we can anti-symmetrize and construct a Γa1...a10 , and then use the fact that it
is proportional to ϵa1...a10Γ11,

(5!)2 /F 5 /F 5 = F d1...d5F a1...a5δa1...a5b1...b5
c1...c5d1...d5

Γa1...a5b1...b5 , (B.17)
∼ F d1...d5F a1...a5Γd1...d5a1...a5 ,

∼ F d1...d5F a1...a5ϵd1...d5a1...a5Γ11 .

Note that the last line vanishes since it is equal to minus itself. Replacing everything
into (B.14), we get the final form of the integrability conditions

Ξ = 1
4RabΓab + 1

16
1
5! iσ2DFb1...b5Γb1...b5Γae

a − 1
128

1
4!
/F 5Fab1...b4Γb1...b4Γce

a ∧ ec . (B.18)

C Rotating D3-branes interpretation?

We already saw that the 10-dimensional solution (5.6) is understood as a deformation of a
solution described by a continuous distribution of D3-branes.

But we know [25] that an extremal RNAdS solution (double Wick rotation of the RNAdS
soliton), with constant scalars Xi = X = constant and equal gauge fields Ai = A can be
obtained as a limit from the 10-dimensional solution with angular momenta li, i = 1, 2, 3
in 3 different (non-intersecting) planes,

ds2 = H−1/2
[
−
(
1− 2m

r4∆

)
dt2 + dx2

1 + dx2
2 + dx2

3

]
+H1/2

[
∆dr2

H1H2H3 − 2m/r4

+r2
3∑

i=1
Hi(dµ2

i + µ2
i dϕ

2
i )−

4m coshα
r4H∆ dt

3∑
i=1

ℓiµ
2
i dϕi +

2m
r4H∆

( 3∑
i=1

ℓiµ
2
i dϕi

)2 , (C.1)

where

∆ = H1H2H3

3∑
i=1

µ2
i

Hi
; H = 1 + 2m sinh2 α

r4∆ ; Hi = 1 + ℓ2i
r2 . (C.2)

So it is a reasonable question whether the current solution (5.6) cannot be obtained
by a similar limit from the same.
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At first, things seem plausible. With

µ1 = cos θ sinψ , µ2 = cos θ cosψ , µ1 = sin θ , (C.3)

and the rescaling (similar to, and inspired by the one in [25])

m = ε4m′ , sinhα = ε−2 sinhα′ , ℓ1,2 = ε2ℓ̃′ , ℓ3 = εℓ′ ,

r = εr′ , xµ = ε−1x′µ , (C.4)

followed by ε → 0 and dropping the primes, one obtains

H1 = H2 = 1 , H3 = 1 + ℓ2

r2 = λ6
∣∣∣
ϵ=+1

, ∆ = 1 + ℓ2

r2 cos θ = ζ2
∣∣∣
ϵ=+1

, (C.5)

and so the coefficient of dx⃗2
1,2 matches,

H−1/2dx⃗1,2 →
(
2m sinh2 α

r4ζ2

)−1/2

= ζr2

L2 , L4 ≡ 2m sinh2 α > 0 , (C.6)

and one finds also matching for the coefficients of dϕ2
1, dϕ

2
2, dϕ

2
3, which are H1/2r2Hiµ

2
i (note

that 2m
r4H∆ℓ

2
i ∼ ε6 is subleading in ε with respect to r2H2

i ∼ ε2, so is dropped), and of∑
iHidµ

2
i = ζ2dθ + cos2 θdψ2, which is r2H1/2 = L2/ζ.

The problem comes in the interpretation of the terms with Ai and dϕ, and of the dr2

term. Matching of the dr2 coefficient results in the equation

2m = ℓ2L2
[
q2

1

(
1 + ℓ2

r2

)
− q2

2

]
⇒ ℓ2

L2 (q
2
1 − q2

2) ≃
1

sinh2 α
for r ≫ ℓ , (C.7)

which could only be satisfied approximately, for r ≫ ℓ and q2 < q1, due to the 1/r2 term
(note that q1 = 0 does not work, since it implies m < 0).

Matching of the terms with Aidϕi, after the double Wick rotation, replacing dt from
the rotating D3-brane solution with the dϕ from the soliton solution, is only possible
in some approximate sense as well, but now also with r − r0 ∼ ε or ∼ ε2 fixed, since
in the soliton dϕiAi is proportional to q1

ℓ2

L
r2−r2

0
r2

0
or q2

ℓ2

L
r2−r2

0
r2

0+4ℓ2 , while the former has (at
least) an extra power of ε, and so is proportional to (ε2ℓ̃)4m coshα ≃ (ε2ℓ̃)2L4/ sinhα or
(εℓ)4m coshα ≃ (εℓ)2L4/ sinhα, respectively, so one would have to consider some unusual
simultaneous near-horizon limit, depending on the charge.

Moreover then, the coefficient of the dϕ2 term, composed of (ζr2/L2)F (r)L2 =
H−1/2F (r)L2 and the Hiµ

2
iA

2
i terms, would have to match H−1/2 (1− 2m/r4∆

)
=

H−1/2 (1− 2m/(r4ζ2)
)
, which depends on the previous near-horizon limit.

In conclusion, the deformation found in this paper is a nontrivial deformation of the
rotating D3-brane solution, that is not easily understandable within the same context, except
maybe in some generalized near-horizon sense.
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