
J
H
E
P
0
5
(
2
0
2
4
)
2
1
1

Published for SISSA by Springer

Received: February 12, 2024
Accepted: April 22, 2024
Published: May 16, 2024

Celestial gluon amplitudes from the outside in

Walker Melton a and Sruthi A. Narayanan b

aCenter for the Fundamental Laws of Nature, Harvard University,
17 Oxford St, Cambridge, MA, U.S.A

bPerimeter Institute for Theoretical Physics,
31 Caroline Street N, Waterloo, Canada

E-mail: wmelton@fas.harvard.edu, sruthi81294@gmail.com

Abstract: We show that, given a two-dimensional realization of the celestial OPE in self-
dual Yang-Mills, we can find a scalar source around which scattering amplitudes replicate
correlation functions computed from the 2D ‘gluon’ operators in a limit where a dynamic
massless scalar decouples. We derive conditions on the two-dimensional three-point correlation
function so that such a source exists and give two particular examples of this construction, one
in which gluons are constructed from vertex operators in the semiclassical limit of Liouville
theory and another in which the soft gluons arise from generalized free fields. Finally, we
identify a bulk dual to the level of the boundary Kac-Moody algebra and discuss moving
beyond the decoupling limit.

Keywords: Conformal and W Symmetry, Scattering Amplitudes, Space-Time Symmetries

ArXiv ePrint: 2312.12394

Open Access, © The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP05(2024)211

https://orcid.org/0000-0003-2723-7633
https://orcid.org/0000-0002-9672-1827
mailto:wmelton@fas.harvard.edu
mailto:sruthi81294@gmail.com
https://doi.org/10.48550/arXiv.2312.12394
https://doi.org/10.1007/JHEP05(2024)211


J
H
E
P
0
5
(
2
0
2
4
)
2
1
1

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Celestial amplitudes 3
2.2 Celestial OPEs and collinear singularities 4
2.3 Conformally soft theorems 4
2.4 Self-dual Yang-Mills 5
2.5 Sourced self-dual Yang-Mills amplitudes 6

3 Gluon-gluon OPE ansatz 6
3.1 Extracting sourced amplitudes from realizations of the gluon gluon OPE 7
3.2 General constraints on sourced amplitudes 8

4 Gluons from vertex operators 9
4.1 Vertex operator realizations of the gluon-gluon OPE 9
4.2 Celestial Liouville for SDYM 10

5 Gluons from generalized free fields 11
5.1 Generalized free field representations of the soft gluon algebra 11
5.2 Celestial generalized free fields 12

6 Beyond the scalar decoupling limit 13

7 Conclusions and future work 14

1 Introduction

Celestial holography posits a holographic duality between a theory of quantum gravity
and a co-dimension two ‘celestial’ conformal field theory that lives on the celestial sphere.
Correlation functions in this putative celestial CFT calculate the S-matrix of the bulk theory,
which, as it is defined from data living on null infinity, is a naturally holographic observable.
While few examples of these dual theories are known, one can calculate correlation functions
in the dual celestial CFT from bulk scattering amplitudes by putting the external particles in
a basis of wavefunctions that transform as conformal primaries under Lorentz transformations,
which act as global conformal transformations on the celestial sphere [1, 2].

To date, majority of the progress in celestial holography has been a result of working from
the inside out: that is, one identifies a property of bulk amplitudes that, when transformed to
a conformal basis, becomes some interesting property of the putative celestial conformal field
theory. Thus far, this has been a useful technique for studying various aspects of celestial
holography. For instance, by Mellin transforming collinear splitting functions in Yang-Mills
and gravity, one can uncover the singular terms in the OPEs between gluons and gravitons [3].
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Additionally, Mellin transforming universal soft theorems indicates that celestial CFTs that
are dual to gravity contain currents whose OPEs with other particles encode universal soft
theorems [4, 5]. Combining these results lead to the discovery of the universal soft w1+∞
and S-algebras in gravity and gauge theory, respectively [6, 7].

While this has been a useful tool for studying celestial CFTs dual to simple bulk theories,
one would like to have examples where the boundary theory has an independent definition.
While one might hope to find a bulk theory whose scattering amplitudes allow one to read off
the 2D CFT that computes them, celestial amplitudes, especially those of massless particles
where the holographic dictionary is most well understood, tend to have unusual properties. For
example, due to bulk translation invariance, low-point celestial amplitudes of massless particles
are distributional [8, 9]. Understanding how these distributional correlation functions could
arise from a two-dimensional conformal field theory, where correlation functions are generally
smooth, is an important issue [10]. Nevertheless, we will not address this here. Instead, we will
break translation invariance by adding an explicit source term for a scalar field. This allows
celestial amplitudes of massless particles to be non-singular on the celestial sphere [11–15].

Scattering amplitudes with non-trivial backgrounds have appeared recently in proposals
for several explicit celestial dualities. In [16, 17], Costello, Paquette and Sharma argued that
a particular four-dimensional WZW model coupled to an unusual scalar gravity theory in
a four-dimensional asymptotically flat spacetime was dual to the large N limit of a simple
2D chiral algebra. In [18], it was argued that amplitudes calculated from a simple boundary
theory consisting of a centerless Kac-Moody algebra and the semiclassical limit of Liouville
theory matched tree-level MHV amplitudes computed around a δ-function source for a
canonical scalar field. In [19], they suggest that this duality might persist beyond tree level.

Interestingly, introducing source terms centrally extends the soft algebra and allows soft
currents to create states of finite norm under the familiar CFT inner product. Additionally,
while the source does not deform the singular part of the gluon-gluon-gluon OPE, the
relationship between the three- and two-point functions implies that finite terms in the gluon
OPE depend on ratios of different terms in a Taylor expansion of the background [12]. This
suggests that surprisingly different boundary theories might be dual to surprisingly similar
bulk theories with different backgrounds.

In this work, we attempt to use the general features of celestial amplitudes from the
“inside out” perspective to find some toy examples of 2D theories that may have a bulk dual.
We focus on realizations of the soft algebra for self-dual Yang-Mills (SDYM) theory where
the gluon operator factors into a Kac-Moody current that is the same for all gluons and
encodes the color structure of the theory and a scalar primary operator that provides the
correct scaling dimension. We then show that, for some different realizations of this scalar
theory, we can identify a scalar background such that connected tree-level all + amplitudes
in SDYM coupled with a ϕF 2 interaction to a neutral scalar match those computed from
the toy two-dimensional theory in a limit where the coupling to the scalar vanishes and
the strength of the background diverges.

This paper proceeds as follows. After reviewing celestial holography and self-dual Yang-
Mills theory in section 2, section 3 defines an ansatz for two-dimensional realizations of the
gluon-gluon algebra in which the gluon splits into a universal Kac-Moody current and a scalar
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operator, possibly with a summed-over internal index. We explain how to obtain correlators
from this in a particular decoupling limit and derive a condition on the three-point function
of the scalar operator such that a scalar source exists and amplitudes around that source
match the three-point function computed from the candidate boundary theory. In sections 4
and 5, we give two examples of these boundary theories and a bulk source whose scattering
amplitudes match the boundary correlation functions. Finally, in section 6 we discuss moving
beyond the decoupling limit and identify a bulk coupling constant dual to the level of the
universal Kac-Moody currents in the 2D dual.

2 Preliminaries

In this section, we will review the origins of the celestial OPE as a chiral collinear limit as
well as the tree-level S-matrix of SDYM coupled to a scalar source.

2.1 Celestial amplitudes

Celestial amplitudes provide a way to interpret four-dimensional scattering amplitudes
as correlation functions in a two-dimensional celestial CFT. To see this, one must first
appropriately parametrize the spacetime. In Cartesian coordinates, flat Minkowski space
has metric

ds2 = −dx2
0 + dx2

1 + dx2
2 + dx2

3 (2.1)

in (3, 1) signature.1 A null vector qµ can be parametrized by

qµ(ω, z, z̄) = ηωq̂µ(z, z̄)
q̂µ(z, z̄) = (1 + zz̄, z + z̄,−i(z − z̄), 1− zz̄)

(2.2)

where ω is a frequency, η = +1 (−1) for outgoing (incoming) particles, and (z, z̄) labels a
coordinate on the celestial sphere CS. Because we are working in (3,1) signature, z and
z̄ are complex conjugates of one another. Under Lorentz transformations, z, z̄ transform
under Möbius transformations. Using the standard basis for Pauli matrices σµ, we can write
any momentum as qαα̇ = (q · σ)αα̇ = λαλ̃α̇ where these spinors then define the following
spinor helicity variables with brackets

⟨ij⟩ = −2ηiηj
√

ωiωjzij , [ij] = −2√ωiωj z̄ij (2.3)

in the usual way, such that ⟨ij⟩[ij] = −2q(ωi, zi, z̄i) · q(ωj , zj , z̄j).
Celestial amplitudes can be found by computing scattering amplitudes in a basis that

diagonalizes boosts rather than translations. This is referred to as the celestial basis or
the conformal primary basis. For massless external particles, these can be found by Mellin
transforming the momentum space scattering amplitude with respect to the frequency ω

A
(
1η1

∆1,a1
· · ·nηn

∆n,an

)
=
∫ ∞

0

n∏
j=1

dωjω
∆j−1
j Aa1...an(η1ω1q̂(z1, z̄1), . . . , ηnωnq̂(zn, z̄n)) (2.4)

1Most of the literature treats z, z̄ independently, either as real and independent variables or by separately
complexifying them. While we work in (3, 1) we can analytically continue to (2, 2) to make connections to
those results.
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where ∆n is the conformal weight of the external particles and an is any other label, such as
helicity, color, or species. Lorentz invariance of the momentum space scattering amplitude A

implies that the celestial amplitude A transforms as a correlation function of n conformal
primaries of weights ∆i and spins given by the bulk helicities of the particles. As such, when
it is convenient we will write these amplitudes as correlation functions

A
(
1η1

∆1,a1
, . . . nηn

∆n,an

)
=
〈
Oη1

∆1,a1
· · · Oηn

∆n,an

〉
. (2.5)

2.2 Celestial OPEs and collinear singularities

In traditional conformal field theory one usually says the theory is specified by the spectrum,
i.e the conformal dimensions of the operators, and their operator product expansion which
expands a product of two local operators as a sum over a basis of single operators. In a con-
ventional CFT, the existence of the OPE is often related to the state-operator correspondence,
but it can also be studied by examining coincident limits of CFT correlation functions.

For celestial amplitudes, taking z1 → z2 for two celestial insertions is equivalent to taking
⟨12⟩ → 0 in the bulk scattering amplitude.2 In this limit, gauge and gravitational amplitudes
exhibit a universal factorization behavior where3

An,++... = Split−++(p1, p2)A(n−1),+...(p1 + p2, p3, . . .). (2.6)

The singular term in the OPE arises from diagrams where the particles that are becoming
collinear are attached to the same three-point vertex. As z12 → 0, the internal propagator
goes on-shell and leads to the collinear divergence. Mellin transforming this leading splitting
function leads to the leading term in the celestial OPE. For gluons, this gives the OPE4

O+a
∆1

(z1, z̄1)O+b
∆2

(z2, z̄2)

= − ifab
c

z12

∞∑
m=0

Γ(∆1 + m − 1)Γ(∆2 − 1)
m!Γ(∆1 +∆2 + m − 2) z̄m

12∂̄m
2 O+c

∆1+∆2−1(z2, z̄2) +O(z0
12), (2.7)

where fab
c are the usual structure constants in Yang-Mills. A similar story exists in gravity

that we do not reproduce here [3].

2.3 Conformally soft theorems

In momentum space, gauge and gravitational amplitudes exhibit universal behavior in the
limit where one of the external particles become soft. In the dual celestial CFT, these soft
theorems govern divergences in the celestial amplitudes of gluons as one of the external weights
goes to specific integer values, ∆ = 1, 0, . . .. As such, one can define the soft gluon operators

Rk,a(z, z̄) = lim
ε→0

εO+a
k+ε(z, z̄), k = 1, 0,−1, . . . (2.8)

When inserted into correlation functions, these soft operators give finite correlation functions
as the vanishing ε cancels a divergence arising from the small ω region of the Mellin transform.

2Note that this is a chiral collinear limit that differs from the standard collinear limit where z12, z̄12 → 0.
3Similar collinear factorizations exist for general helicity scattering amplitudes in full Yang-Mills theory.
4In some cases where the soft algebra fails to satisfy the Jacobi identity, there can be another singular

term in the OPE [20]. We do not consider this case.
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Taking the double soft limit of the gluon-gluon OPE (2.7) reveals that the OPE of soft
gluons takes the form [3]

Rk,a(z1, z̄1)Rℓ,b(z2, z̄2) ∼ − ifab
c

z12

1−k∑
j=0

(2− k − ℓ − j)!
(1− k − j)!(1− ℓ)!j! z̄

j
12∂̄jRk+ℓ−1,c(z2, z̄2). (2.9)

Expanding in modes5

R3−2q,a(z, z̄) =
∑

n

q−1∑
m=1−q

sq,a
m,n

(q + m − 1)!(q − m − 1)!zn+2−q z̄m+1−q
(2.10)

the OPE is equivalent to the mode algebra[
sp,a

n,m, sq,b
n,m

]
= −ifab

cs
p+q−1,c
n+n′,m+m′ . (2.11)

A similar formula gives the soft algebra for gravity, the wedge subalgebra of the loop algebra
of w1+∞ [7]. Because these soft generators can be obtained by commutators of universal
soft theorems, which receive only limited corrections from non-minimal couplings, it is
expected that any reasonable celestial dual for Yang-Mills or gravity should contain this
algebra in some form.

2.4 Self-dual Yang-Mills

While it would be nice if we could consider the most general theory in the bulk, it is easier to
consider some specific cases that are more tractable and serve as sort of toy-models. Self-Dual
Yang-Mills (SDYM) theory is a relatively soluble 4D gauge theory where one helicity of the
gluon has been projected out, so that the field strength is self-dual. SDYM can be defined by
a simple Lagrange multiplier enforcing self-duality of the field strength:

S =
∫

d4xTrBF− (2.12)

where F− = F − ∗F is the anti-self-dual part of the field strength [21]. Because the self-
duality condition restricts the type of gluons that can propagate in internal lines in Feynman
diagrams, SDYM has an extremely simple S-matrix consisting of a tree level ++− three-point
amplitude and 4-point and higher all + one-loop amplitudes that are rational functions of
the external momenta [22].

SDYM can also be consistently coupled to neutral scalars

S =
∫

d4x

[
TrBF− + (−1)pϕ□pϕ − m2ϕ2 − 1

2kϕTrF 2
]

. (2.13)

Again, the tree-level connected S-matrix is incredibly simple. Because F = ∗F for the
self-dual theory, the Bianchi identity implies that ∇µF µν = 0 so that the equation of motion

5Note that this is just the standard CFT mode expansion of operators where we have performed a convenient
rescaling of the mode coefficients as in [3].
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for the gauge field does not depend on the scalar coupling. As such, the connected color-
ordered amplitudes are the all-gluon amplitudes, which vanish at tree level, and the all-gluon
one-scalar amplitude, for which the color ordered amplitude takes the simple form [23]

A
(
1+ · · ·n+(n + 1)0

)
= 2km4

⟨12⟩⟨23⟩ · · · ⟨n1⟩δ(4)(p1 + p2 + · · · pn + pn+1). (2.14)

Here, the amplitude does not depend on the power p appearing in (2.13) because there
are no internal scalar exchanges.

2.5 Sourced self-dual Yang-Mills amplitudes

Recent work [11, 12] has shed light on the importance of thinking about SDYM in the
presence of a source. It turns out that SDYM with a scalar source also has a simple S-matrix.
If we consider a source for the scalar, with action

S =
∫

d4x

[
TrBF− + (−1)pϕ□pϕ − 1

2kϕTrF 2 + (−1)nηJ(x)ϕ(x)
]

(2.15)

the tree-level connected all + color-ordered amplitude in momentum space takes the form

A(1+ · · ·n+) = 2kη(P 2)2

⟨12⟩ · · · ⟨n1⟩
J(P )
(P 2)n

(2.16)

where P = p1 + · · · pn. Because the field strength is restricted to be self-dual, the connected
gluon amplitude is exactly proportional to η, as no connected gluon diagrams exist that
can interact with the scalar background more than once and the tree-level all + amplitudes
vanish [12]. Additionally, in the limit where k → 0 with kη = µ fixed, the gluon S-matrix
decouples from the dynamical scalar, and we can consider the effective action

S =
∫

d4x

[
TrBF− − 1

2µϕ(x) TrF 2
]

(2.17)

where ϕ(x) is a fixed function satisfying □nϕ(x) = J(x). In this limit, the tree-level S-matrix
is derived by simply exponentiating the connected amplitudes given in (2.16) and subsequently
taking kη → µ. This limit projects out amplitudes involving the exchange of the dynamical
ϕ field, allowing us to replicate pure gluon amplitudes in a scalar background.

3 Gluon-gluon OPE ansatz

The singular gluon-gluon OPE is severely constrained by universal soft and collinear singular-
ities of gauge theory scattering amplitudes. As such, any 2D celestial dual should contain
operators that generate the gluon-gluon OPE in gauge theory, possibly with some modifica-
tions from the few effective operators that can deform the singular part of splitting function.

Taking inspiration from [18], we focus on realizations of the gluon-gluon OPEs where a
gluon is a product of a level-0 Kac-Moody current Ja and a scalar primary Φi

∆−1, of the form

O+a
∆ ≡ Γ(∆− 1)Ja

i Φi
∆−1, (3.1)
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where i is some internal index that we have summed over. If the currents form a level-0
Kac-Moody algebra of the form

Ja
i Jb

j =
−ifab

c g r
ij

z12
Jc

r (z2) + O(z12) (3.2)

and the scalars obey the OPE

Φi
∆1(z1, z̄1)Φj

∆2
(z2, z̄2) = hij

rΦr
∆1+∆2(z2, z̄2) + O(|z12|) (3.3)

where
g r

ij hij
s = δr

s (3.4)

these operators will have the OPE.6 Note that equation (3.4) fixes h in terms of g.

O+a
∆1

(z1, z̄1)O+b
∆2

(z2, z̄2) = −Γ(∆1 − 1)Γ(∆2 − 1)
Γ(∆1 +∆2 − 2)

ifab
c

z12
O+c

∆1+∆2−1(z2, z̄2) + · · · (3.5)

which replicates the gluon-gluon OPE in gauge theory [4]. By taking appropriate residues
of this operator product expansion, we can similarly obtain an ansatz for the soft gluon
algebra [3]:

Rk,a = lim
ε→0

εO+a
k+ε = (−1)1−k

(1− k)! Ja
i Φi

k−1

Rk,a(z1, z̄1)Rℓ,b(z2, z̄2) = − ifab
c

z12

(2− k − ℓ)!
(1− k)!(1− ℓ)!R

k+ℓ−1,c(z2, z̄2) + · · · .

(3.6)

It should also be noted that such operator constructions are also reminiscent of the
ambitwistor string7 discussed in [24]. However, we do not comment on that further here.

3.1 Extracting sourced amplitudes from realizations of the gluon gluon OPE

While realizing the gluon-gluon OPEs in the boundary theory is suggestive, a true duality
will require matching scattering amplitudes to boundary correlators. Since the realization of
the gluon-gluon OPE in (3.5) contains a centerless Kac-Moody current algebra, correlation
functions of these operators will vanish.

To resolve this, we will give the Kac-Moody current algebra a level k so that correlation
functions8

〈
O+a1

∆1
(z1, z̄1) · · · O+an

∆n
(zn, z̄n)

〉
=
〈
Ja1

i1
· · · Jan

in

〉〈
Φi1

∆1−1 · · ·Φ
in
∆n−1

〉
(3.7)

are nonvanishing. We will describe the physical meaning of this level in section 6. For
now, we simply use it to extract non-vanishing boundary correlators. We focus on the

6While this gives only the O(z̄0
12) term, the subleading terms are fixed by Lorentz invariance.

7We thank Atul Sharma for pointing this out to us.
8This bears resemblance to the way celestial correlators are expected to factorize under soft factorization.

In that case, the correlator of currents represents the soft part of the S-matrix while the correlator of, scalars
in this case, acts like that of the hard Wilson line dressings. It is also reminiscent of the color-factor term
relating color-ordered amplitudes to full amplitudes in gauge theories.

– 7 –



J
H
E
P
0
5
(
2
0
2
4
)
2
1
1

fully connected contributions from here on. The scalar two point function is constrained
by conformal invariance to be〈

Φi
∆1(z1, z̄1)Φj

∆2
(z2, z̄2)

〉
=

δ∆1,∆2Sij
∆1,∆2

|z12|2∆1
(3.8)

where Sij
∆1,∆2

is some constant in terms of the structure of the operators and their conformal
dimensions. Using our ansatz for the gluon operators,〈

O+a
∆1

(z1, z̄1)O+b
∆2

(z2, z̄2)
〉
= Γ(∆1 − 1)Γ(∆2 − 1)kδab

z2
12

〈
Φi

∆1−1(z1, z̄1)Φi
∆2−1(z2, z̄2)

〉
=

kδabΓ(∆1 − 1)Γ(∆2 − 1)δ∆1,∆2Sii
∆1−1,∆2−1

z2
12|z12|2(∆1−1) (3.9)

where i is summed over. If the space of internal indices is large, we should have Sii
∆1,∆2

=
NS∆1,∆2 . Comparing with the dependence of the sourced gluon amplitudes implies the
strength of the background η will equal N . Taking η = N → ∞ while fixing µ = kN

will decouple the gluons from the dynamical scalar field and lead to finite correlators with
vanishing level.

Taking the soft limit and matching with the two-point amplitude in sourced SDYM [12]〈
Rj,aRℓ,b

〉
= µδjℓδaba−1−j

2(−4)jz2
12|z12|2(j−1) (3.10)

implies that this describes two-point scattering around a scalar background given by

ϕ(p) =
∑

j

aj(p2)j where aj = 2
(−4)1+j(j + 2)!S−2−j,−2−j . (3.11)

Note that we have stripped off the current correlator ⟨JaJb⟩. Because Φi
∆ transforms as a

conformal primary of weight ∆, this expression does not depend on zij , z̄ij . Thereby, given
a realization of the scalar OPE, (3.11) gives a background around which gluon two point
functions match that computed with the boundary ansatz.

3.2 General constraints on sourced amplitudes

While we can always match the two-point function by choosing the background, since
we can vary the two-point function for each weight independently by changing the scalar
background, consistency with three-point gluon amplitudes provides a constraint on the
boundary realization of the scalar operator Φ∆. It was shown in [12] that soft three-
point functions of positive helicity gluons scattering around a fixed scalar background9

ϕ(p) =
∑

j aj(p2)j take the form10

Aϕ
(
1+

k1
2+

k2
3+

k3

)
= Ak1k2k3

z12z23z31|z12|k1+k2−k3−1|z23|k2+k3−k1−1|z31|k1+k3−k2−1

Ak1k2k3 = −
a−2−β/2

(−1)3β/22β+3

(
−β/2

k1−k2−k3+1
2 , −k1+k2−k3+1

2 , −k1−k2+k3+1
2

)
.

(3.12)

9We assume that the scalar background ϕ is damped in the UV and that near p = 0 it admits a power law
expansion in p2.

10Here
(

n
n1,n2,n3

)
= n!

n1!n2!n3! is a trinomial coefficient.
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Above, we saw that choosing ϕ(x) allowed us to realize different boundary duals for the
scalar component of a realization of the gluon-gluon OPE. However, modifying the scalar
background does not allow us to set all three-point amplitudes independently. Rather,
the ratio of three point amplitudes with different external weights but the same value of
β = k1 + k2 + k3 − 3 is fixed. For all soft amplitudes, this implies that

Ak1+1,k2−1,k3 = 1− k1 + k2 − k3
3 + k1 − k2 − k3

Ak1k2k3 . (3.13)

This constrains the three point function of the scalar fields Φk, which by conformal invariance
has the form 〈

Φi
k1Φ

j
k2
Φk

k3

〉
=

Sijk
k1k2k3

|z12|k1+k2−k3 |z23|k2+k3−k1 |z31|k3+k1−k2
. (3.14)

In terms of these three-point functions, the constraint becomes

gijkSijk
k1+1,k2−1,k3

= (1− k2)(k1 − k2 + k3)
k1(2 + k1 − k2 − k3)

gijkSijk
k1,k2,k3

, (3.15)

where gijk contains the dependence of the three-point KM correlator on the internal indices.
Whether the constraint in (3.15) is ultimately implied by the leading OPE of the scalar field
or if it is a novel constraint on the dual scalar theory is left to future work. Additionally, dual
theories that fail to satisfy this constraint are not necessarily sick. They merely cannot arise
from expanding around a background for a scalar field non-minimally coupled to self-dual
Yang-Mills through a ϕTrF 2 interaction.

We now describe two distinct realizations of the gluon-gluon OPE of the form given
in (3.1) with trivial internal index that can be realized by two different sources for a scalar field.

4 Gluons from vertex operators

We first consider a realization of the scalar OPE (3.3) arising from light operators in the
semi-classical limit of Liouville theory. While this discussion largely parallels the construction
of MHV amplitudes from Liouville theory [18], our scalar source is slightly different since we
are looking at all + amplitudes in self-dual Yang-Mills rather than MHV amplitudes.

4.1 Vertex operator realizations of the gluon-gluon OPE

Realizations of the gluon OPE can also be found using light operators in the large background
charge limit of Liouville CFT. The Liouville CFT is defined by the action [25]

S = 1
4π

∫
d2x

√
g
[
∂µϕ∂µϕ + QRϕ + λe2bϕ

]
(4.1)

where the background charge is Q = b + 1
b and λ is the parameter related to the cosmological

constant. The spectrum of Liouville theory is continuous, and is given by scalar vertex
operators labeled11

Vα = e2αϕ (4.2)
11Properly, this is a limit of the vertex operator as ϕ → −∞ and the potential vanishes.
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of weight ∆α = 2α(Q − α). The semi-classical limit of Liouville theory is the limit b → 0. In
this limit, the operators Vb∆/2 have weight ∆ and are the light operators in semi-classical
Liouville theory. Operators with momenta that scale as b−1 are the hard operators. In the
classical limit of Liouville theory, the correlation function of some number of light and heavy
operators takes a simple form, as insertions of light operators do not change the saddle of
the path integral, while insertions of heavy operators act as a source

〈
Vb∆1/2 · · ·Vb∆n/2Vη1/b · · ·Vηm/b

〉
≈ e−S[ϕc]/b2

n∏
k=1

e∆kϕc(zk,z̄k). (4.3)

Here ϕc = bϕ(x) solves the classical equation of motion with sources created by the hard
operators [26]

∂∂̄ϕc = 2λeϕc − 2π
m∑

j=1
ηjδ(2)(z − zi). (4.4)

The correlation functions (4.3) allow us to immediately derive the coincident limit of the
light operators. Inserted in a correlation function in the limit b → 0, two light operators
simply give the insertion

Vb∆1/2(z1, z̄1)Vb∆2/2(z2, z̄2) = e
∆1ϕc(z1,z̄1)+∆2ϕc(z2,z̄2)

2 = Vb(∆1+∆2)/2 + O(z12, z̄12). (4.5)

As per (3.1) we can then define

O+a
∆ (z, z̄) = Γ(∆− 1)Ja(z) lim

b→0
Vb(∆−1)/2(z, z̄). (4.6)

These operators then obey

O+a
∆1

(z1, z̄1)O+b
∆2

(z2, z̄2) = − ifab
c

z12
B(∆1 − 1,∆2 − 1)O+c

∆1+∆2−1 (4.7)

and realize the gluon-gluon OPE for SDYM which is also the positive helicity gluon OPE in [4].

4.2 Celestial Liouville for SDYM

Taking the gluon operator as defined in (4.6), we obtain the following correlator

〈
O+a1

∆1
· · · O+an

∆n

〉
= µTrT a1 · · ·T an

z12z23 · · · zn1
lim
b→0

〈
Vb(∆1−1)/2(z1, z̄1) · · ·Vb(∆n−1)/2(zn, z̄n)

〉
b
+ · · ·

(4.8)
where · · · includes other color orderings and the ⟨⟩b is a correlator in Liouville theory. Here, we
have taken the decoupling limit where the background freezes out. In general the correlation
functions have a rather complex structure, however for certain cases they can be written out
elegantly. When

∑
j(∆j − 1) = 2, the Liouville correlator has the form [18]

Sn = lim
b→0

〈
Vb(∆1−1)/2(z1, z̄1) · · ·Vb(∆n−1)/2(zn, z̄n)

〉
b
=
∫

d2z
n∏

j=1
|zj − z|−2(∆j−1). (4.9)
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Using the parametrization of null momenta given above and explicitly imposing the delta
function constraint, we can rewrite this integral as a projectivization over the lightcone as12

2πδ(β − 2)Sn = 2πδ(β − 2)
∫

d2z
n∏

j=1

(
−1
2 q̂(z, z̄) · q̂(zj , z̄j)

)1−∆j

= 4
∫

ωdωdzdz̄
n∏

j=1
(q̂(zj , z̄j) · [ωq̂(z, z̄)])1−∆j

= 2
∫

d4Xδ(X2)
n∏

j=1
(q̂(zj , z̄j) · X)1−∆j

= − 2∏n
j=1 Γ(∆j − 1)

∫
d4Xδ(X2)

n∏
j=1

dωjω
∆j−2
j e

iX·
∑n

j=1 ωj q̂(zj ,z̄j)
. (4.10)

Restoring the color part of the gluon operator gives〈
n∏

j=1
O+aj

∆j
(zj , z̄j)

〉
= −2µTrT a1 · T aj

z12 · · · zn1

∫
d4Xδ(X2)

n∏
j=1

dωjω
∆j−2
j e

iX·
∑n

j=1 ωj q̂(zj ,z̄j) + · · ·

= (−2)n+1µ

∫
dωjω

∆j−1
j

TrT a1 · · ·T an

⟨12⟩ · · · ⟨n1⟩

×
∫

d4Xδ(X2)eiX·
∑

j
ωj q̂(zj ,z̄j) + · · · (4.11)

where + · · · includes other color orderings. We can recognize this as the connected amplitude
describing tree-level gluon scattering around a background for a fourth order scalar with source

J(X) = −δ(X2). (4.12)

5 Gluons from generalized free fields

Another realization of the soft gluon-gluon OPE can be found by constructing the scalar
part of the gluon operator from generalized free fields of weight −1. We now show that this
realization can be matched, at the level of the two- and three-point functions, by scattering
around an exponential background.

5.1 Generalized free field representations of the soft gluon algebra

For simplicity we consider the OPE in (3.3) for g = h = 1. Recall that a generalized free field
is one such that the correlation functions are entirely determined from the two point function.
This makes it a good simple example so we consider a generalized free-field with OPE

µ(z1, z̄1)µ(z2, z̄2) ∼ γ|z12|2. (5.1)

Now, consider the scalar operator constructed from these fields as

Φk =: µ−k(z, z̄) : (5.2)
12Here we have used the integral

∫
dωωβ−1 = 2πδ(β). This is valid for β ∈ iR but can be continued off of

this region as described in [27].
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where :: denotes standard normal ordering and k is negative. Because all terms involving
contractions between µ’s are sub-leading in the z12z̄12 → 0 limit, they have the OPE

Φk(z1, z̄1)Φj(z2, z̄2) =: µ−k(z1, z̄1) :: µ−j(z2, z̄2) :
=: µ−k−j(z2, z̄2) : +O(z12, z̄12) = Φk+j + O(z12). (5.3)

Because µ has negative weight, this matches the ansatz (3.3) with trivial internal index. As
defined in (3.1), we can write a composite operator

Rk,a(z, z̄) := (−1)1−k

(1− k)! Ja(z)Φk−1(z, z̄) = (−1)1−k

(1− k)! Ja(z) : µ1−k(z, z̄) : (5.4)

that has OPE

Rk,a(z1, z̄1)Rℓ,b(z2, z̄2) = − ifab
c

z12

(2− k − ℓ)!
(1− k)!(1− ℓ)!R

k+ℓ−1,c(z2, z̄2) + · · · (5.5)

which can be recognized as the soft gluon-gluon OPE. [3]

5.2 Celestial generalized free fields

A similar discussion can be had in the case of a generalized free field where the level k

is understood to be attached to the Kac-Moody currents. In this case, we can construct
non-zero correlation functions. Defining the soft operators as in (5.4) we have that, in
the decoupling limit, 〈

Rj,aRℓ,b
〉
= µγ2−2jδjℓδab

(1− j)!z2
12|z12|2(j−1) (5.6)

where we have evaluated the two-point function as the maximal contraction of the µ fields.
Comparing to the two-point soft-soft amplitude above, the gluon-gluon two point function

matches scattering with background

ϕ(p) =
∞∑

j=−2
ajp2j , aj = 2γ2(2+j)(−4)−1−j

(j + 2)! (5.7)

Summing this series this gives ϕ(p) = −8e−γ2p2/4

(p2)2 . We can therefore conclude that these
amplitudes are generated by coupling self-dual Yang-Mills to a scalar potential with

δS = −µ

2

∫
d4xϕ(x) TrF 2 (5.8)

in the decoupling limit where □2ϕ(x) = 4e−x2/γ2 .
This generalizes to three-point functions. Computing the three point function of gen-

eralized free fields

⟨µn1µn2µn3⟩ = Cn1n2n3

|z12|n1+n2−n3 |z23|n2+n3−n1 |z31|n3+n1−n2
(5.9)

as a sum over all possible Wick contractions gives

Cn1n2n3 = γ−β/2n1!n2!n3!(n1+n2−n3
2

)
!× cyclic

(5.10)

which satisfies the constraint on the three-point function in (3.15). This implies that these
three-point amplitudes can arise as gluon scattering around a scalar source.
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6 Beyond the scalar decoupling limit

So far we have seen how different choices of scalar field Φ result in different gluon-gluon
OPEs. However, it has been of recent interest [12, 28] to try to understand deformations to
bulk theories that result in specific types of deformations to the boundary OPEs and thereby
the corresponding boundary algebras. In particular, one can attempt to understand classes
of bulk deformations that result in boundary OPEs that are a consequence of the 2D current
Ja satisfying a Kac-Moody algebra with a non-trivial level.

Turning on a level for the WZW current deforms the JaJb OPE to

JaJb ∼ kδab

z2
12

− i
fab

cJ
c

z12
. (6.1)

This adds a new term to the OPE of the 2D gluon operators

O∆1(z1, z̄1)O∆2(z2, z̄2) =
Γ(∆1 − 1)Γ(∆2 − 1)kδab

z2
12

Φ∆1+∆2−2

− ifab
c

z12

Γ(∆1 − 1)Γ(∆2 − 1)
Γ(∆1 +∆2 − 2) O∆1+∆2−1 + . . . (6.2)

We see that the OPE of two gluons will now include a scalar term proportional to the
level of the current algebra. In the context of a bulk theory, this means we have added an
interaction between gluons and a bulk scalar field that now contributes to the Feynman
diagram calculations of scattering amplitudes.

This deforms the soft OPE to

Rℓ,a(z1, z̄1)Rj,b(z2, z̄2)

∼ (−1)2−ℓ−j

(1− ℓ)!(1− j)!
kδab

z2
12

Φℓ+j−2 −
ifab

c

z12

(2− ℓ − j)!
(1− ℓ)!(1− j)!R

ℓ+j−1,c(z2, z̄2) + · · · (6.3)

Defining ϕk = (−1)−k

(−k)! Φk, the OPE becomes

Rk,a(z1, z̄1)Rj,b(z2, z̄2)

∼ (2− j − k)!
(1− k)!(1− j)!

kδab

z2
12

ϕℓ+j−2 −
ifab

c

z12

(2− ℓ − j)!
(1− ℓ)!(1− j)!R

ℓ+j−1,c(z2, z̄2) + · · · (6.4)

which is the soft algebra for SDYM coupled to a fourth order scalar with action

S =
∫

d4x

[
TrBF− + ϕ□2ϕ − 1

2kϕTrF 2
]

(6.5)

so that the level of the boundary WZW current algebra is dual to a ϕTrF 2 coupling in
the bulk.13

While we leave determining the precise scalar theory described by the ϕk operators to
future work, it is clear that it must have several interesting and surprising features. The

13On both sides of this duality, there is an additional O(z−1
12 ) term in the OPE coming from subleading

contributions to the gluon-gluon-scalar operator product expansion. These terms do not neatly factorize and
may be related to multiparticle operators in celestial CFT. We leave their characterization to future work.
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scalar-scalar-scalar operator product expansion, by the usual bulk-boundary dual for OPEs
of massless particles [6], implies that the scalar is interacting, and the theory contains the
interaction vertex

Sint(ϕ) ⊇
∫

d4xϕ∂µ∂νϕ∂µ∂νϕ. (6.6)

However, the theory likely contains other interaction terms and must have surprising cancel-
lations in scattering amplitudes: the operator product expansion between two scalars would
generically contain a normal ordered term as well as the leading splitting function. For this
theory, different diagrams must conspire to cancel the leading multi-particle term in the
scalar-scalar OPE. It is likely that the results from recent work on multi-OPEs in celestial
CFT [20] would be crucial to understanding this further.

7 Conclusions and future work

In this work, we have argued that, given a realization of the hard or soft gluon OPE of the
form in (3.1) obeying the constraint (3.15), we can find a background for SDYM coupled to a
scalar field where gluon scattering amplitudes match those computed by the two-dimensional
theory in a decoupling limit. We defined conditions on the three-point function of these scalar
operators such that a bulk scalar background exists and described two explicit examples
where this is the case.

Additionally, we observed that the level of the boundary Kac-Moody is a coupling
constant for a ϕTrF 2 interaction. When the level is non-zero, bare scalar operators appear in
the gluon-gluon operator product expansion as conformally soft modes of a bulk fourth-order
axion. This suggests that the scalar part of the gluon operator is the boundary dual to a
special bulk scalar field with a particular coupling to the field strength.

Interestingly, several examples closely related to those studied here have appeared in
prior work. The construction of celestial Liouville theory is a close parallel of this story for
MHV amplitudes in Yang-Mills theory and obeys the same factorization between a Kac-
Moody current and a scalar piece to correct for the weight [18]. Additionally, the proposed
dual for Burns space holography also has the form of a Kac-Moody current coupled to a
field that corrects for the weight, although the Burns space dual is chiral and has a large
internal gauge group [17].

Nevertheless, much work is still to be done. While we have identified the level of the
boundary Kac-Moody current algebra as a particular coupling constant in the bulk, the
boundary duals we have constructed thus far have no obvious dual to the strength of the
background. Interestingly, for SDYM, the strength of the scalar background counts the
number of disconnected pieces contributing to a gluon amplitude as each disconnected piece
can interact with the background only once. This suggests that the strength of the background
should be related to the rank of an internal gauge symmetry and that our decoupling limit
is the large N limit of the 2D theory, as it is in Burns space holography [17].

Additionally, turning on a level for the boundary Kac-Moody current algebra couples
the bulk theory to an interacting fourth-order scalar field, whose characterization we have
left to future work. Similar fourth-order scalar theories have appeared in studies of self-
dual Yang-Mills on twistor space, where it serves to cancel an anomaly preventing self-dual
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Yang-Mills from being local on twistor space at the quantum level [21], and in Burns space
holography where it appears as Mabuchi gravity [17]. Understanding the scalar theory in
this work therefore promises to help construct new complete examples of celestial dualities
where the boundary theory has an independent definition.

Finally, it is important to understand how general the construction of bulk duals to
boundary theories is. In this work, we have focused on cases where we tune a source for
a scalar field to create non-distributional amplitudes, but there is reason to believe the
construction may be more general. In [21], it was shown that conformal blocks of the soft
chiral algebra were in a one-to-one correspondence with form factors of the bulk theory,
which describe scattering around operators inserted in the bulk. The two-dimensional models
we consider replicate this chiral algebra in their singular terms, suggesting that it may be
possible to realize any two-dimensional model appropriately realizing the soft algebra of gauge
theory by deforming self-dual Yang-Mills with some operator insertion.

It would also be interesting to extend this duality to gravity. While the structures of the
S-algebra and the w1+∞-algebra are reminiscent of each other, there are several important
challenges to overcome. First, the structure constants of the w1+∞-algebra depend less
trivially on the weights of the generators, so separating the algebra into a simple ‘color factor’
and scalar part may be more difficult. Additionally, the universal coupling of gravity to
matter complicates the construction of the translation-breaking background.
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