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1 Introduction

It has recently been shown that supersymmetric solutions of supergravity with an R-symmetry
Killing vector are equipped with a set of equivariantly closed forms which can be constructed
from bilinears in the Killing spinor [1–3]. The localization fixed point formula [4, 5] then
allows one to compute various physical observables without needing to solve the supergravity
equations of motion. Furthermore, the formalism naturally gives rise to results that are
off-shell with, generically, a simple extremization required in order to get the final result.
Within the context of holography this latter feature is precisely dual to an extremization
problem in the corresponding supersymmetric conformal field theory.

Here we further investigate the new equivariant calculus in the context of magnetically
charged black holes of N = 2, D = 4 gauged supergravity and black strings (or rings) of D = 5
gauged supergravity. More precisely, by analysing the near horizon geometries we are able to
derive novel off-shell entropy functions, and furthermore provide a new perspective on the
attractor mechanism. In both cases we allow for arbitrary numbers of vector multiplets and
we also consider hypermultiplets. Interestingly, off-shell entropy functions for the associated
ungauged supergravity theories will also follow as simple corollaries.

We now elaborate a little, first discussing the case of black holes in N = 2, D = 4 gauged
supergravity. By analysing spinor bilinears, we construct an off-shell entropy function for
classes of supersymmetric AdS4 black holes which have an AdS2 ×M2 near horizon geometry
and carry magnetic charge on M2. We take M2 to be topologically a two-sphere or a spindle
with an azimuthal symmetry. The off-shell entropy function, explicitly given in (1.1) below,
depends on the magnetic charges, as well as the values of certain scalar fields and a metric
warp function at the two poles of the horizon M2. Extremizing over this data then gives the
entropy of the black hole solution, provided the solution actually exists.1 This extremization
problem is actually implied by extremizing the action itself, and hence our results can be
viewed as a kind of supersymmetric refinement of the approach of Sen [6].

Our results also provide a new way of thinking about some aspects of the attractor
mechanism [7–9], which can be viewed2 as a way of characterizing the near horizon geometry
as the end-point of a flow, as well as providing a generalization thereof. Consider, for example,
static, magnetically charged black holes with spherical horizons and with supersymmetry
preserved via a topological twist. A standard procedure is to assume that the sphere3 has a
constant curvature metric which allows one to construct an ansatz for the metric and matter
fields that only depends on a radial variable. Preservation of supersymmetry then leads

1To be more precise: our extremization procedure gives a result for the AdS2 × M2 solution, assuming it
exists. If, furthermore, this solution arises as the near horizon limit of an AdS4 black hole solution, it will
compute the entropy of the black hole.

2In ungauged supergravity the attractor mechanism also reveals that the near horizon geometry is indepen-
dent of scalar moduli at the asymptotically flat boundary. By contrast in gauged supergravity the values of
the scalars at the asymptotic AdS boundary are generically fixed by the potential. The attractor mechanism
has been extensively investigated in gauged supergravity; see [10] for a recent discussion. For the black holes
we focus on here, some early references include [11–13]. A review of the attractor mechanism in ungauged
D = 5 supergravity is given in [14].

3One can also consider constant curvature metrics on other Riemann surfaces, but as they do not have
suitable Killing vectors our new equivariant techniques do not provide further insight.
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to a set of BPS equations, which consist of a set of first order flow equations in the radial
variable. Assuming one approaches an AdS2 × S2 near horizon solution, the scalars and
warp factor are necessarily constant at the horizon and the flow equations lead to conditions
which express the warp factor and some of the constant scalars on the horizon in terms
of the magnetic charges. Moreover, one can, in effect, obtain the entropy of the putative
black holes by carrying out an extremization of an entropy function depending on the black
hole horizon data, which has been shown, in the case of the STU model, to be dual to
I-extremization in the dual field theory [15, 16].

Here, instead, we consider a more general class of magnetically charged AdS4 black holes.
For spherical horizons, we just assume that the near horizon geometry has an AdS2 × S2

factor with the S2 having a Killing vector. That is, we do not assume the S2 horizon has a
constant curvature metric nor do we assume that the S2 at the AdS4 boundary has such a
metric. Furthermore, while the near horizon geometry is static we do not need to assume the
black hole is static.4 The presence of the Killing vector at the horizon is sufficient data to
use our equivariant techniques to derive an off-shell entropy function, which is precisely the
same as that arising in the standard attractor mechanism. Our approach therefore increases
the scope of the attractor mechanism in that it covers all black hole solutions that approach
AdS2 × S2 in the near horizon, with the S2 having a Killing vector. In particular, this allows
for the possibility that the metric on the S2 at the AdS4 boundary is arbitrary, a possibility
that was also investigated from a different point of view in [17].

We also consider black holes with spindle horizons [18]. Recall that a spindle is topolog-
ically a two-sphere but with quantized conical deficit angles at the two poles. Such black
holes are known to arise when acceleration is present, with the conical deficits at the poles
associated with the acceleration [19]. Since a spindle does not admit a constant curvature
metric, the standard attractor mechanism cannot be deployed. However, assuming that the
spindle has a Killing vector, we can again utilize equivariant localization to obtain an off-shell
entropy function. Explicitly, for a spindle horizon, which locally looks like R2/Zn± at the
two poles, the off-shell entropy function is given by

SBH = π

2G4

1
2b0

[
iF(xI+)− σiF(xI−)

]
. (1.1)

Here F is the prepotential of the N = 2, D = 4 gauged supergravity, with iF real, and
σ = ±1 labels whether supersymmetry is preserved via a twist or an anti-twist [20]. The
localization is performed with respect to an R-symmetry Killing vector bilinear ξ, which
exists for any supersymmetric solution. Here we write

ξ = b0∂φ , (1.2)

with ∂φ generating rotations of the horizon, φ having canonical period 2π, and b0 being a
real parameter. The xI± are real scalar quantities evaluated at the two poles of the spindle,5

4This is particularly relevant in D = 5 supergravity, discussed below, which can admit non-static black
ring solutions, but with locally AdS3 × S2 horizons.

5The xI
± are also values of equivariant first Chern classes at the two poles.

– 3 –



J
H
E
P
0
5
(
2
0
2
4
)
1
5
2

where the index I labels the number of vector multiplets present, and satisfy the constraints

ξIx
I
+ = 2− 2 b0

n+
, ξIx

I
− = 2 + 2σ b0

n−
, pI = 1

2b0
(xI+ − xI−) . (1.3)

Here the constants ξI ∈ R determine the Fayet-Iliopoulos (FI) gauging of the theory, while
pI are the magnetic charges. The black hole entropy is then obtained by extremizing (1.1)
over the variables xI+, xI−, b0, subject to the constraints (1.3), where we hold the spindle data
n±, σ and magnetic charges pI fixed. Our results then provide a derivation of “gravitational
block” formulae of gauged supergravity that have been conjectured in the literature [21]
(see also [22–24]).

With regard to the results for S2 horizons discussed above, we will find it most convenient
to obtain them as a limiting case b0 → 0 of the results for spindle horizons, by setting
n± = 1 and σ = 1, and we obtain

SBH = π

2G4
pI

∂

∂xI
iF(xI) , (1.4)

with the xI and magnetic charges constrained via ξIx
I = 2 and ξIp

I = −2, in agreement
with [12] for purely electric gauging.

Of particular interest is the D = 4 STU model, an example of N = 2 gauged supergravity
coupled to three vector multiplets, since it can be obtained as a consistent truncation of
D = 11 supergravity on S7. For the STU model our results for the off-shell entropy functions
associated with AdS2 ×M2 horizons, where M2 is a two-sphere or spindle, and three real
scalar fields, precisely recover the known results in [15] and [23, 25, 26], respectively. We can
also take a D = 11 perspective by uplifting on S7 to obtain AdS2 ×M9 solutions of D = 11
supergravity, with M9 being an S7 bundle over M2 and having a GK geometry [27, 28].
We then show that our new entropy functions (1.1) and (1.4) are equivalent to the entropy
functions and gravitational block formulae that were derived within the context of GK
geometry, using a higher-dimensional supergravity perspective6 and very different techniques
for spherical horizons in [31, 32] and spindle horizons [33, 34], respectively.

We also extend our D = 4 analysis to study a particular model involving hypermultiplets.
Specifically, we consider a model that extends the STU model with a complex scalar field,
which also arises as a consistent truncation of D = 11 supergravity on S7 [35, 36]. The
model has two AdS4 vacua, one dual to the ABJM theory and the other dual to the mABJM
theory [37–41]. In this setting the new off-shell entropy function is actually the same as
above, but with additional constraints on the xI± and fluxes pI associated with the fact that
the charged fields in the hypermultiplet break some of the gauge symmetries. In particular,
we recover the known off-shell entropy function for AdS2 × S2 black hole horizons considered
in [35]. For spindle horizons the new off-shell entropy function gives on-shell results consistent
with those found for [36], which were obtained by a direct analysis of the BPS equations.
Here we will also provide examples with properly quantized magnetic flux.

6Gravitational block formulae have also been obtained in a higher-dimensional context in [29, 30] using
the equivariant volume of symplectic toric orbfolds. However, spinor bilinears and the associated canonical
procedure for going off-shell that are utilised here and in [1–3] were not considered in [29, 30].
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Having analysed gauged supergravity, we can obtain results for N = 2, D = 4 ungauged
supergravity by simply turning off the gauge parameters. We construct off-shell entropy
functions that immediately eliminate the possibility of having spindle horizons, leaving just
the possibility of AdS2 × S2 near horizon geometry. We show how the entropy function for
the standard attractor mechanism can then be recovered.

The above discussion focused on N = 2, D = 4 gauged supergravity, but an analogous
story unfolds for D = 5 gauged supergravities coupled to vector and hypermultiplets. In
this case, associated with magnetically charged black strings (or rings) in AdS5 with a
horizon7 that is (locally) AdS3 ×M2, we derive an off-shell central charge function using
the equivariant calculus, and this computes the central charge of the d = 2, N = (0, 2)
SCFT dual to the AdS3 ×M2 solution. In a similar manner to the D = 4 case, our work
generalizes the standard attractor mechanism equations for the case when M2 is an S2 and,
in addition, it is also applicable to spindle horizons. Explicitly, for the spindle horizon, we
find the off-shell central charge

c = − 3π
2G5

1
b0

[
F(xI+)−F(xI−)

]
, (1.5)

where F is the real prepotential of the D = 5 gauged supergravity. The xI± now satisfy the
constraints ξIxI+ = 2− b0

n+
P+ and ξIx

I
− = 2 + b0

n−
P−, where the constants ξI ∈ R determine

the FI gauging of the theory, and P± = 1 or P± = −1 determine the chirality of the Killing
spinor at the poles of the spindle with σ = P+/P− then labelling twist and anti-twist. The
magnetic charges are given by pI = − 1

b0
(xI+ − xI−). For S2 horizons we find

c = 3π
2G5

pI
∂

∂xI
F(xI) , (1.6)

with the xI and magnetic charges constrained via ξIxI = 2 and ξIp
I = 2P+, in agreement

with [44].
For the special case of the D = 5 STU model we make contact with known results for

S2 [44] and the spindle [18, 20]. Furthermore, after uplifting on S5 to type IIB we make
contact with the off-shell central charge computed in GK geometry for AdS3 ×M7 solutions
of type IIB with M7 an S5 bundle over M2, for spheres [45, 46] and spindles [34].

We also extend our D = 5 analysis to study a model involving hypermultiplets, finding
results consistent with [47] for S2 horizons. For spindle horizons we obtain an off-shell central
charge that after extremization gives rise to the on-shell central charge found in [48] obtained
just by manipulating the BPS equations.

Finally, we also obtain results for D = 5 ungauged supergravity by simply turning off
the gauge parameters. We construct off-shell entropy functions that immediately eliminate
the possibility of having spindle horizons, leaving just the possibility of AdS3 × S2 near
horizon geometry. We show how the entropy function for the standard attractor mechanism
can then be recovered.

The plan of the rest of paper is as follows. Since the analysis is slightly simpler, we first
discuss the five-dimensional examples before turning to those in four dimensions. In section 2

7Black rings of ungauged supergravity have a near horizon limit that is locally isometric to AdS3×S2 [42, 43].
Black rings in AdS5 are not known, but if they exist our results can be utilized.
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we discuss D = 5 gauged supergravity, coupled to an arbitrary number of Abelian vector
multiplets, including the D = 5 STU model as a special case. Section 3 analyses a model that
extends the D = 5 STU model with a hypermultiplet, and section 4 summarizes the results
obtained for ungauged supergravity. We then move to the parallel analysis in four dimensions,
discussing N = 2, D = 4 gauged supergravity coupled to Abelian vector multiplets in
section 5, including the D = 4 STU model as an example, and then the STU model with
a hypermultiplet in section 6. Section 7 discusses N = 2, D = 4 ungauged supergravity
and we conclude with some discussion in section 8. The details of the construction of the
equivariantly closed forms in terms of spinor bilinears are presented in the appendices A
and B, in D = 5 and D = 4, respectively.

2 D = 5, N = 2 gauged supergravity

We begin by considering N = 2 gauged supergravity in D = 5 dimensions, coupled to an
arbitrary number n of Abelian vector multiplets. This theory was originally constructed
in [49], but we will largely follow the conventions of [50–52].

The bosonic part of the action is given by

S5 =
1

16πG5

∫
M5

(
R5 − V − Gij∂µφi∂µφj −

1
2GIJF

I
µνF

Jµν

+ 1
24CIJKε

µνρσλF IµνF
J
ρσA

K
λ

)
vol5 . (2.1)

Here we use signature (−1, 1, . . . , 1), with spacetime indices µ, ν = 0, . . . , 4, R5 denotes the
Ricci scalar, vol5 is the Lorentzian volume form, and G5 is the Newton constant. Recall
that minimal D = 5, N = 2 gauged supergravity contains a graviphoton A, which in (2.1)
has been combined with the n additional vector multiplet gauge fields into AI with field
strengths F I = dAI , where I = 0, 1, . . . , n. The n real scalars φi, i = 1, . . . , n, have likewise
been repackaged into XI = XI(φi), where the latter satisfy the constraint

F(XI) ≡ 1
3!CIJKX

IXJXK = 1 , (2.2)

where F is the prepotential with CIJK a totally symmetric constant tensor, which also
specifies the Chern-Simons coupling in (2.1).

The metrics for the kinetic terms for the gauge fields and scalars are respectively

GIJ = −1
2∂I∂J logF

∣∣∣
F=1

, Gij = ∂iX
I∂jX

JGIJ
∣∣∣
F=1

, (2.3)

where we use the notation ∂I ≡ ∂XI , ∂i ≡ ∂φi . The scalar potential is

V ≡ ξIξJ

(
Gij∂iXI∂jX

J − 4
3X

IXJ
)
, (2.4)

where ξI are constant Fayet-Iliopoulos (FI) gauging parameters. This vector multiplet
geometry is known as very special geometry [53], and the following definition and relations
will prove useful for what follows:

XI ≡
2
3GIJX

J , ∂iXI = −2
3GIJ∂iX

J , (2.5)

– 6 –
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together with the expression

GIJ = Gij∂iXI∂jX
J + 2

3X
IXJ , (2.6)

for the inverse of GIJ . In particular note XIXI = 1 follows from the constraint (2.2).
A solution is supersymmetric if there is a non-trivial solution ϵ to the Killing spinor

and gaugino equations:

0 =
[
∇µ −

i
2ξIA

I
µ +

1
6WΓµ +

i
8XIF

I
νρ(Γ νρ

µ − 4δνµΓρ)
]
ϵ ,

0 =
[
− i
2Gij∂µφ

jΓµ + i
2∂iW + 3

8∂iXIF
I
µνΓµν

]
ϵ . (2.7)

Here Γµ generate Cliff(1, 4) in an orthonormal frame, ∇µ is the spin connection, and we
have defined the superpotential

W ≡ ξIX
I . (2.8)

Notice that we may then write the potential in (2.4) as

V = Gij∂iW∂jW − 4
3W

2 . (2.9)

If the D = 5 theory admits a supersymmetric AdS5 solution with radius R, then it is dual
to a d = 4, N = 1 SCFT with central charge given (in the large N limit) by the usual formula

a = πR3

8G5
. (2.10)

2.1 The AdS3 ansatz

We consider supersymmetric solutions of the warped product form

ds25 = e2λ
[
ds2(AdS3) + ds2(M2)

]
. (2.11)

Here the metric on AdS3 is taken to have unit radius, λ and the scalar fields are taken to be
functions on M2, with the gauge fields AI taken to be (pull-backs of) gauge fields on M2.

Inserting this ansatz into the D = 5 equations of motion gives rise to D = 2 equations of
motion. The latter can be obtained by varying a two-dimensional action S2 for the fields on
M2, which can in turn be obtained by substituting the ansatz into the D = 5 action (2.1)
and writing S5 = Vol(AdS3)

16πG5
S2. Specifically, we have

S2 =
∫
M2

[
e3λ

(
R− 6 + 12(∇λ)2 − Gij∂µφi∂µφj

)
− e5λV

− 1
2e

λGIJF
I
µνF

Jµν
]
vol , (2.12)

where R, ∇ and vol are respectively the Ricci scalar, Levi-Civita connection and volume
form on M2. The D = 2 Maxwell equation for AI reads

d
[
eλGIJ(∗F J)

]
= 0 =⇒ d

[
eλGIJF J12

]
= 0 , ∀I = 0, . . . , n . (2.13)

– 7 –
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Here we write F I = F I12 vol, where F I12 is a function on M2. The equation of motion for
the warp factor λ is

e3λ
[
R− 6 + 12(∇λ)2 − Gij∂µφi∂µφj

]
= 5

3e
5λV + 1

6e
λGIJF

I
µνF

Jµν

+ total derivative . (2.14)

The trace of the D = 2 Einstein equation reads

2
3e

5λV − 1
3e

λGIJF
I
µνF

Jµν = −4e3λ + total derivative . (2.15)

Imposing the equation of motion for the warp factor8 (2.14) then leads to the following
form of the partially off-shell (POS)9 two-dimensional action:

S2|POS = 2
3

∫
M2

(
e5λV vol− eλGIJF I12F J

)
. (2.16)

We next note that if we were to also impose the trace of the D = 2 Einstein equation (2.15)
we would get the on-shell action

S2|OS = −4
∫
M2

e3λvol . (2.17)

The central charge of the dual d = 2, N = (0, 2) SCFT is given by c = 3/2G3, where G3 is
the D = 3 Newton constant. By analogy with c-extremization in field theory [54] we then
introduce the “trial” central charge function

c = − 3
8G5

S2|POS = − 3a
πR3S2|POS . (2.18)

This has the property that for an on-shell AdS3 solution c is the central charge. In the last
equality we have used (2.10) to express the result for c in terms of the central charge a of
the D = 4 SCFT (when the D = 5 model admits an AdS5 vacuum).

Our goal is to compute the central charge of the d = 2 SCFT for any AdS3 solution
without having an explicit solution, but instead using localization. To do this we will
implement localization using the partially off-shell action S2|POS and then carry out a final
residual extremization in order to get the on-shell action and hence central charge c.

2.2 Equivariantly closed forms

With the ansatz (2.11), the Killing spinor ϵ that solves (2.7) may be decomposed as

ϵ = ϑ⊗ eλ/2ζ . (2.19)

Here ϑ is a Killing spinor on AdS3, ζ is a spinor on M2 and the warp factor is included
for convenience. The Killing spinor equation (A.3) can then be reduced, leading to a set of
differential and algebraic equations that ζ must satisfy, as given in appendix A.

8Equivalently, this is the same as imposing the trace of the D = 5 Einstein equations.
9The acronym also stands for partially on-shell, for the more optimistic reader.

– 8 –



J
H
E
P
0
5
(
2
0
2
4
)
1
5
2

It is next convenient to introduce the following real bilinears in ζ:

S = ζ†ζ , P = ζ†γ3ζ , K = ζ†γ(1)ζ , ξ♭ = −iζ†γ(1)γ3ζ . (2.20)

Here we denote γ(n) = 1
n!γµ1···µndxµ1 ∧ · · · ∧ dxµn , and γ3 = −iγ1γ2 is the chirality operator

on M2. These bilinears satisfy a set of algebraic relations and differential conditions that
follow from the reduced Killing spinor equations (A.3). Importantly, one deduces that the
vector field ξ dual to the one-form ξ♭ is a Killing vector on M2 and we also have

dξ♭ = −2
(
2 + PS−1eλW

)
P vol . (2.21)

In appendix A it is also shown that the multi-forms

ΦF I ≡ F I −XIeλP , (2.22)

as well as

Φvol ≡ e5λV vol− e4λWS , (2.23)

are both equivariantly closed under dξ = d − ξ . Using the two-dimensional Maxwell
equation (2.13), we can immediately construct another equivariantly closed form,

ΦS ≡ 2
3
(
Φvol − eλGIJF I12ΦF

J
)

= 2
3
(
e5λV vol− eλGIJF I12F J − e4λWS + e2λGIJF I12XJP

)
, (2.24)

and we notice the top-form is precisely that appearing in the partially off-shell two-dimensional
action (2.16).

It is also shown in appendix A that the scalar bilinear S is constant, and without loss
of generality we normalize S ≡ 1.

2.3 Localization

From the definitions (2.20) one can show that ∥ξ∥2 = ∥K∥2 = S2 − P 2. At a point p where
ξ|p = 0 it immediately follows that P |p = ±S|p = ±1, where this sign is the chirality of
the spinor ζ at the point p. Provided ξ is not identically zero,10 near the point p we may
model M2 as R2/Zdp , where we allow for potential orbifold singularities, and in these local
coordinates write ξ = ϵp∂ϕp , where ϕp is a polar coordinate on R2/Zdp with period 2π/dp.
Notice that the orientation here is determined by the global orientation on M2 induced by
the volume form. We refer to ϵp as the weight of ξ at the fixed point p.

10If ξ is identically zero then so is K, and S ≡ P ≡ 1. One quickly deduces from the equations in appendix A
that λ and XI are constant on M2, and localization plays no immediate role in this case. In particular this is
the case for the topological twist solutions in which M2 is a constant curvature Riemann surface. However,
when M2 = S2 we are still able to obtain a non-trivial result for the off-shell action using localization by
taking a limit of our fixed point formula, and also can recover the result that ξ is identically zero on S2 — see
section 2.4.
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With this notation to hand, we may apply the Berline-Vergne-Atiyah-Bott fixed point
formula to evaluate integrals of the equivariantly closed forms in (2.22) and (2.24) over M2.
We have the magnetic charges11

pI ≡
∫
M2

F I

2π =
∫
M2

ΦF I

2π = − 1
2π

∑
fixed p

1
dp

2π
ϵp

(XIeλP )
∣∣∣∣
p

. (2.25)

We may then similarly localize the action (2.16) using (2.24)

S2|POS =
∫
M2

ΦS = −2
3
∑

fixed p

1
dp

2π
ϵp

(
e4λWS − e2λGIJF I12XJP

)∣∣∣
p

= 2
∑

fixed p

1
dp

2π
ϵp

e3λP
∣∣∣
p
, (2.26)

where in the last equality we have used the algebraic equation (A.7), and then used that
P 2|p = S2|p = 1. The final constraint comes from the equation for dξ♭ in (2.21). Since at a
fixed point dξ♭ |p = 2ϵpvol, in terms of the weight ϵp of ξ at p, we deduce that

eλWP |p = −(2 + ϵpPp) , (2.27)

where recall that Pp = ±1, with the sign according to the spinor chirality at p.
In order to evaluate these expressions further, it is helpful to first introduce the new

scalar fields

xI ≡ −XIeλP =⇒ ΦF I = F I + xI . (2.28)

Using the constraint F(XI) = 1 in (2.2), at a fixed point p we may then compute

F(xI)|p = 1
3!CIJKx

IxJxK |p = −e3λP |p , (2.29)

where we have again used P 2|p = 1. We may then rewrite (2.26), (2.25), (2.27) as

S2|POS = −2
∑

fixed p

2π
dpϵp

F(xIp) , pI =
∑

fixed p

1
dpϵp

xIp , ξIx
I
p = 2 + ϵpPp , (2.30)

respectively, where xIp ≡ xI |p. This makes manifest that the action may be computed knowing
only the values of the scalar fields xIp at the fixed points, where these are constrained to
satisfy the equations in (2.30), involving the magnetic charges pI and the data dp, ϵp, Pp
at the fixed points.

If M2 is compact without boundary, then the only such space admitting a U(1) isometry
with fixed points is topologically a spindle M2 ∼= WCP1

[n+,n−].12 Here there are two fixed
11In general there is no reason to quantize the magnetic charges. For models that can be uplifted to

string/M-theory, such as the STU model discussed in section 2.5, the gauge fields are associated with U(1)
bundles and there is a quantization condition.

12One could in principle have M2 = T 2, but in this case any non-trivial Killing vector is fixed point free,
and our formulae immediately imply that the magnetic charges P I are zero, and the action is zero, ruling
out such solutions. Note that this argument is not in contradiction with the existence of the T 2 solutions
constructed in [55] — it only says that such solutions do not have a non-zero R-symmetry Killing vector along
the T 2. Unlike the case of S2 discussed in footnote 10 and section 2.4, we cannot deduce more about the T 2

case using our approach.
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points, which we label by p = ±, with d± = n± and we take n± ≥ 1. We may write the
Killing vector field globally as

ξ = b0∂φ , (2.31)

where φ is an azimuthal coordinate on the spindle with period 2π. Then without loss of
generality we write ϵ+ = −b0/n+, ϵ− = b0/n−, but leave the signs of P± arbitrary, where
recall |P±| = 1. The constraint equations in (2.30) now read

pI = − 1
b0
(xI+ − xI−) , ξIx

I
+ = 2− b0

n+
P+ , ξIx

I
− = 2 + b0

n−
P− , (2.32)

and combining these equations one deduces

ξIp
I = P+

n+
+ P−
n−

= n−P+ + n+P−
n−n+

. (2.33)

Since from (2.7) the Killing spinor ϵ is charged under precisely the combination ξIA
I/2,

equation (2.33) gives the magnetic flux of the R-symmetry gauge field through the spindle
M2. The form of the right hand side of (2.33) was proven very generally in [20]. Introducing
σ ≡ P+/P−, the cases σ = 1, σ = −1 correspond to the spinor chirality at the two poles being
either the same or opposite, respectively; in turn, these were called the twist and anti-twist
in [20], respectively.13 The off-shell action itself takes the compact form

S2|POS = 4π
b0

[
F(xI+)−F(xI−)

]
, (2.34)

and using (2.18) gives our final expression for the off-shell central charge.
To obtain the on-shell central charge, we need to extremize over the undetermined data

and we can proceed as follows. First, the xI− are determined by the xI+ and magnetic charges
pI via the first equation in (2.32):

xI− = xI+ + b0 p
I . (2.35)

The magnetic charges pI are constrained to satisfy the twist/anti-twist condition (2.33), while
the xI+ satisfy a single constraint in (2.32) (which is a constraint on the superpotential).
This leaves n degrees of freedom in the xI+, and b0 and one then varies the action in (2.34)
over these degrees of freedom to obtain the final on-shell result. We will carry out this
extremization explicitly for the STU model further below.

2.4 The b0 → 0 limit

Notice that substituting (2.35) into (2.34) allows us to compute the limit

lim
b0→0

S2|POS = −4πpI ∂

∂xI
F(xI) = −2πCIJKpIxJxK . (2.36)

13More precisely, from equation (3.21) of [20] we see that P+, P− are equivalent to the variables η1, η2

in [20], which are also ±1.
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Here in the limit xI− = xI+ = xI is constant on M2. This is of course consistent with our
comments in footnote 10. In addition, from (2.32) we have that the xI are subject to the
constraint ξIxI = 2. Our general procedure implies that for an on-shell solution one should
extremize the quadratic function of the xI in (2.36), subject to the constraint ξIxI = 2.
In particular setting n+ = n− = 1 this recovers the result in [44] for S2 solutions with a
topological twist, where the magnetic charges pI are constrained via (2.33) with σ = +1
to satisfy ξIp

I = 2P+.
It is remarkable that we have obtained these non-trivial results for AdS3 × S2 solutions

with a topological twist which have b0 = 0, not by taking b0 = 0 at the beginning but instead
assuming b0 ̸= 0 and then taking the limit b0 → 0.

2.5 STU model

The STU model is a consistent truncation of type IIB supergravity on S5, with the U(1)3 =
SO(2)3 ⊂ SO(6) isometry gauged in D = 5. In the conventions used in [20], this may be
obtained from the general D = 5, N = 2 gauged supergravity theory by setting n = 2,
ξI = (1, 1, 1) and where the only non-zero component of CIJK (up to permutations) is
C123 = 1. This model then has an AdS5 vacuum which has unit radius, i.e. R = 1 in (2.10),
which is dual to N = 4 SYM theory with a central charge given by a = N2/4. The model
is explicitly written down in section 3 (where one should set ρ = 0 there). As discussed in
section 2.6, the quantization condition on the magnetic fluxes that enables one to uplift the
solutions to D = 10 on S5 is such that if we write pI = pI/(n+n−) we have pI ∈ Z.

Our result for the off-shell central charge function (2.18) in this set-up reads

c = −3N2

b0

(
x1+x

2
+x

3
+ − x1−x

2
−x

3
−

)
, (2.37)

with

pI = − 1
b0
(xI+ − xI−) ,

3∑
I=1

xI+ = 2− b0
n+

P+ ,
3∑
I=1

xI− = 2 + b0
n−

P− , (2.38)

and the sum of the magnetic charges constrained to obey
∑3
I=1 p

I = n−P++n+P−
n−n+

, or equiv-
alently, p1 + p2 + p3 = n−P+ + n+P−.

It is straightforward to extremize over the independent variables b0, x1+, x2+, say, and we
find the following on-shell results. For c and b0 we now get

c = 6p1p2p3
n+n−s

N2 , b0 =
2n+n−(n−P+ − n−P+)

s
, (2.39)

where

s ≡ n2+ + n2− − (p21 + p22 + p23) . (2.40)

For the variables xI± evaluated at the poles we find

xI± = 2pI(n±P∓ − pI)
s

. (2.41)
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Recall that we took n± ≥ 1 and |P±| = 1, so from (2.28) we have P+x
I
+ < 0 and P−x

I
− < 0.

From (2.17) we also have c > 0. We find that for the twist case where σ = P+/P− = +1
there are no solutions with P+ = P− = 1, but for P+ = P− = −1 the above inequalities
reduce to precisely two of the pI being positive, which since p1 + p2 + p3 < 0 in this case
then implies that the third pI is negative. For the anti-twist case with σ = P+/P− = −1
we instead find that the inequalities reduce simply to pI > 0.

These results are in precise agreement with those found for the explicit supergravity
solutions given in [20]. Notice that we are then able to obtain expressions for various other
quantities, without having to solve any supergravity equations directly. For example, one
can compute the warp factors at the poles of the spindle:

e3λP |± = 8
∏3
I=1 pI(pI − n∓P±)

s3
. (2.42)

2.6 Uplifting to AdS3 × Y7 solutions

The STU solutions of the previous subsection may be uplifted on S5 to solutions of type
IIB supergravity, where the anti-twist class were first constructed and uplifted in [22, 56].
The metric on the S5 internal space takes the fibred form

ds2S5 =
3∑
I=1

(XI)−1
[
dµ2I + µ2I(dψI +AI)2

]
. (2.43)

Here (µI , ψI) form a system of polar coordinates on S5 ⊂ R2⊕R2⊕R2, where correspondingly∑3
I=1 µ

2
I = 1 and the angular coordinates ψI each have period 2π. The solutions of type IIB

then take the form AdS3 × Y7, where Y7 is the total space of a fibration

S5 ↪→ Y7 → M2 . (2.44)

Here M2 ∼= WCP1
[n+,n−] is a spindle, and from (2.43) one can see that S5 is fibred as an

associated bundle for the action of U(1)3 on S5 ⊂ R2⊕R2⊕R2, where each U(1) is fibred with
connection one-form given by the D = 5 supergravity gauge field AI , I = 1, 2, 3. The magnetic
charges pI = pI/(n+n−), with pI ∈ Z, are then precisely Chern numbers for this fibration,
with their quantization condition being equivalent to (2.44) being a well-defined orbifold
fibration [20]. The solutions have only the RR five-form flux turned on in type IIB, and may
be interpreted as the near-horizon limits of N D3-branes wrapped over the spindle M2.

On the other hand, supersymmetric AdS3 × Y7 solutions of type IIB supergravity with
only RR five-form flux were first studied in [57]. The results of [28] show that the existence
of a solution to the corresponding Killing spinor equation on Y7 is equivalent to imposing
certain geometric conditions on Y7. The resulting geometric structure was dubbed “GK
geometry” in [58]. In particular Y7 is equipped with an R-symmetry Killing vector field ξ

that is constructed as a bilinear in the Killing spinor. In [58] an a priori different approach
to defining an off-shell central charge function was introduced in this setting. There one first
introduces an action for the supergravity fields on Y7, where solutions to the equations of
motion extremize this action; one then imposes that the fields are such that a solution to
the Killing spinor equation exists, which as mentioned is equivalent to imposing a certain
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geometric structure (an “off-shell GK geometry”, in the terminology of [58]). The resulting
supersymmetric action (i.e. the action with supersymmetry imposed) was shown to be a
function of a trial R-symmetry vector ξ, where solutions to the equations of motion extremize
this function over the choice of ξ. Moreover, at the critical point this action is proportional
to the central charge of the AdS3 solution.

We refer the reader to [34, 58] for further details, here just quoting the result when the
internal space Y7 takes the fibred form (2.44). From section 5.1 of [34] we can write down
the supersymmetric action/central charge function in our conventions14

Z = −3N2

b0

(
R1

+R
2
+R

3
+ −R1

−R
2
−R

3
−

)
. (2.45)

Here geometrically the RI± parametrize the R-symmetry Killing vector on the copies of
S5/Zn± that lie over the poles of the spindle:

ξ|± =
3∑
I=1

RI±∂ψI
. (2.46)

These obey the constraints (see section 7.4 of [34])

RI+ −RI− = −b0
M I

N
= −b0pI ,

3∑
I=1

RI+ = 2 + b0
n+

,
3∑
I=1

RI− = 2− b0
σn−

. (2.47)

Here in the type IIB solutions the M I arise as quantized fluxes of the RR five-form through
certain five-cycles in Y7, but in this particular case these can also be straightforwardly
identified with the Chern numbers M I/N = pI = pI/(n+n−) of the fibration in (2.44). In [34]
it is also shown that N is divisible by n+n−, so that the M I ∈ Z are correctly Dirac quantized
fluxes. The constraints (2.47) precisely agree with (2.38) provided we set P+ = −1 and recall
σ = P+/P−, with σ = ±1 being the twist and anti-twist respectively, and identify

RI± = xI± . (2.48)

Moreover, the trial central charge function (2.45) in GK geometry precisely matches our trial
central charge function (2.37), defined in D = 5 STU gauged supergravity.

Another set of variables was also introduced in [34], so as to match to both a field theory
expression and corresponding conjectures for gravitational block formulae in [22, 23]. We write

xI± = ϕI ∓ b0
2 pI . (2.49)

By virtue of (2.32), (2.33), the ϕI variables then satisfy the constraint
3∑
I=1

ϕI = 2− b0
2
n−P+ − n+P−

n+n−
. (2.50)

14Specifically, bthere
0 = −b0, mthere

± = n±. Although the variables RI
± were already introduced in [34], they

are related to the variables b±I used more extensively in that paper via R1
± = b±1 − b±2 − b±3 , R2

± = b±2 , R3
± = b±3 .

This simply corresponds to a different choice of basis for the U(1)3 action on S5 in which the Killing spinor
has charge b1/2 = 1 under the first U(1) direction and is uncharged under the other two. We refer to [34] for
further details of these variables.
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The central charge expression (2.37) then reads

c = 3N2
[
p1ϕ2ϕ3 + p2ϕ3ϕ1 + p3ϕ1ϕ2 + b20

4 p1p2p3
]
, (2.51)

in precise agreement with (5.11) of [34].
The agreement of the off-shell functions (2.37), (2.45), with the identification of vari-

ables (2.48), seems to be something of a miracle, since the former is defined purely in D = 5
gauged supergravity, while the latter is defined in terms of the GK geometry of the internal
space Y7. However, the identification (2.48) itself is straightforward to explain geometrically.
The equivariantly closed forms ΦF I

/2π introduced in (2.22) are by construction representa-
tives of the equivariant extensions of the first Chern class of the complex line bundles LI

on which the AI are connection one-forms. Denoting these equivariant first Chern classes
cξ1(LI), at a fixed point p we then have the standard property of equivariant Chern classes

cξ1(LI)
∣∣∣
p
= ϵp(LI)

2π , (2.52)

where ϵp(LI) is the weight of the action of the vector field ξ on the fixed complex line over
the point p. On the other hand, from (2.28) we then have

ϵ±(LI) = xI± . (2.53)

The variables xI± are thus precisely weights of the lifted R-symmetry vector field on the three
fixed complex lines C⊕C⊕C = R6 over each pole of the spindle, which is also precisely what
the variables RI± are in GK geometry. That is, upon uplifting the STU model solution to a
IIB solution, the R-symmetry vector ξ acting on M2 is lifted to the R-symmetry vector acting
on Y7. This at least partially explains why the formula (2.37) for the off-shell central charge
matches the expression (2.45) taken from [34], in terms of these weights being identified.

Clearly this argument is not restricted to the STU model: if there is an uplift of a gauged
supergravity, then the values of the scalars xI at the fixed points in M2 should always be
identified with the weights of the R-symmetry vector in the solution of the uplifted theory.

3 D = 5 STU model with hypermultiplets

We now consider extending the results of the previous section to include hypermutiplets. We
will restrict our considerations to a specific model that extends the STU model, for which
AdS3 ×M2 solutions, with M2 a spindle, were analysed in [48].

We start by considering a truncation of maximal SO(6) gauged supergravity discussed
in [59], extending [60]. One first considers a Z2×Z2 ⊂ SO(6) invariant sector which gives rise
to an N = 2 gauged supergravity theory with two vector multiplets and 4 hypermultliplets.
Then one utilizes an additional Z4 ⊂ SO(6)× SL(2) symmetry, as in [60], to further truncate
the hypermultiplets. This gives a theory whose bosonic content consists of a metric, three
gauge fields AI , two real and neutral scalars φi that live in the N = 2 vector multiplets,
and four complex and charged scalar fields Zj that are maintained from the hypermultiplets
and parametrise the coset SU(1, 1)/U(1). For our purposes, as in [48], we further truncate
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to a single complex scalar Z, and also set the D = 5 Chern-Simons term to zero, which
is sufficient for the solutions that we study.

In effect we have the STU model coupled to one complex scalar field, Z = ρ eiθ, that lives
in a hypermultiplet and is charged under a certain linear combination of the gauge fields.
The bosonic Lagrangian in a mostly plus signature is given15 by

L = 1
16πG

√
−g
[
R− V − 1

2

2∑
i=1

(∂φi)2 − 1
4

3∑
I=1

(
XI
)−2

(F I)2

− 1
2(∂ρ)

2 − 1
2 sinh2 ρ(Dθ)2

]
. (3.1)

Here AI are three U(1) gauge fields, I = 1, 2, 3, with field strengths F I = dAI . The XI

satisfy the constraint X1X2X3 = 1 and are given by

X1 = e−
φ1
√

6
− φ2

√
2 , X2 = e−

φ1
√

6
+ φ2

√
2 , X3 = e

2φ1
√

6 . (3.2)

The potential is given by

V = 2
[ 2∑
i=1

(∂φiW )2 + (∂ρW )2
]
− 4

3W
2 , (3.3)

where the superpotential W is given by

W =
3∑
I=1

XI + sinh2 ρ2 (ζIXI) , (3.4)

with ζI = (1, 1,−1). In addition the complex scalar is charged with respect to the linear
combination of gauge fields given by ζIA

I , and we have

Dθ ≡ dθ − ζIA
I . (3.5)

For a bosonic solution to preserve supersymmetry, we require[
∇µ −

i
2Qµ +

1
6WΓµ +

i
24
∑
I

(XI)−1F Iνρ(Γµνρ − 4δνµΓρ)
]
ϵ = 0 ,

[
Γµ∂µφi − 2∂φiW + i

2

3∑
I=1

∂φi

(
XI
)−1

F (I)
µν Γµν

]
ϵ = 0 ,

[
Γµ∂µρ− 2∂ρW + 2i∂ρQµΓµ

]
ϵ = 0 , (3.6)

where

Qµ =
3∑
I=1

AIµ − sinh2 ρ2 Dµθ . (3.7)

15We have obtained this from [48] by taking α → 1
2
√

6 φ1, β → − 1
2
√

2 φ2, φ → 1
2 ρ, gµν → −gµν , A → c1

2 A,
g → 2c2, γµ → ic3γµ with ci = ±1 and c1c2 = −1, c2c3 = +1. We have also redefined W → − 1

2 W , P → V/4.
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The model admits an AdS5 vacuum solution with unit radius and vanishing scalar fields,
which is dual to N = 4 SYM theory. The D = 5 Newton constant is given by 1

G5
= 2N2

π

so that aN=4 = N2

4 . There is another AdS5 vacuum with

e
√

3√
2
φ1

= 2 , φ2 = 0 , eρ = 3 , (3.8)

and radius LLS = 3/25/3. After uplifting to type IIB supergravity [61] this solution is dual
to the d = 4, N = 1 Leigh-Strassler (LS) SCFT [62]; the latter arises as the IR limit of an
RG flow from N = 4 SYM theory deformed by a mass deformation and the corresponding
holographic solution was found in [63]. The central charge of the LS SCFT, in the large
N limit, is given by aLS = 27

32aN=4 = 27
128N

2.

3.1 The AdS3 ansatz

We again consider supersymmetric solutions of the form (2.11) with the warp factor λ, the
scalars and the gauge fields all defined on M2 and ds2(AdS3) having unit radius. We can
obtain a D = 2 action by substituting this ansatz into the D = 5 action, and this then
gives rise to the correct D = 2 equations of motion. Furthermore, after imposing the D = 2
equations of motion for λ, or equivalently the trace of the D = 5 Einstein equations, we
obtain the partially off-shell action (cf. (2.16))

S2|POS = 2
3

∫
M2

[
e5λV vol− 1

2

3∑
I=1

eλ(XI)−2F I12F
I

]
, (3.9)

where F I = F I12vol. We may then similarly define a trial central charge function

c = − 3
π
aN=4 S2|POS = − 32

9πaLS S2|POS , (3.10)

which on-shell is the central charge of the AdS3 solution.

3.2 Equivariantly closed forms and localization

The ansatz for the Killing spinor is exactly as discussed in section 2.2 and, correspondingly,
so are the spinor bilinears. We analyse these further in the appendix where we show that
the one-form dual to the Killing vector again satisfies

dξ♭ = −2(2 + PS−1eλW )P vol . (3.11)

We also use the analysis in appendix A to construct the following equivariantly closed forms.
For the gauge fields we again find that

ΦF I = F I −XIeλP , (3.12)

are equivariantly closed. A new feature in the presence of the hypermultiplet scalars is that
a specific linear combination of the ΦF I is equivariantly exact:

dξDθ = −ζIΦF
I
. (3.13)
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The polyform that we considered before without hypermultiplets, Φvol ≡ e5λV vol −
e4λWS, is no longer equivariantly closed when ρ ̸= 0. However, the following polyform
associated with the action (3.9),

ΦS = 2
3

[
Φvol − 1

2

3∑
I=1

eλ(XI)−2F I12ΦF
I

]
(3.14)

= 2
3

[
e5λV vol− 1

2

3∑
I=1

eλ(XI)−2F I12F
I − e4λWS + 1

2e
2λP

3∑
I=1

(XI)−1F I12

]
,

is equivariantly closed.
The localization then proceeds as in section 2.3 with a few small, but important, changes.

We consider M2 to be a spindle with Killing vector globally defined as ξ = b0∂φ, with
∆φ = 2π, as before. It is again convenient to define

xI = −eλXIP . (3.15)

For the fluxes, localization gives

pI ≡
∫
M2

F I

2π = − 1
b0
(xI+ − xI−) , (3.16)

and for the spindle we have the quantization condition

pI = pI
n−n+

, pI ∈ Z . (3.17)

This quantization condition, as in the STU model, is imposed so that when the solutions are
uplifted on S5 we get a well-defined AdS3 ×M7 solution of type IIB supergravity with M7 an
S5 fibred over the spindle M2. We emphasise that for solutions in which the charged scalar
in the hypermultiplet is non-zero, we break a U(1) ⊂ U(1)3 symmetry and, correspondingly,
we will lose a Killing vector on the S5 in the uplifted solution, but this does not alter the
fact that we still need to impose a quantization condition on the fluxes to ensure the we have
a good S5 fibration over M2, which is a topological constraint.

We can also integrate the new expression (3.13) over M2. Since the left hand side is
equivariantly exact, the integral vanishes and we immediately deduce that there is a new
constraint on the fluxes

3∑
I=1

ζIp
I = 0 , (3.18)

where ζI were defined in (3.4). In addition, we can consider the zero-form component of (3.13).
By regularity, if ρ|± ̸= 0, we must have Dθ|± = 0 in order that the complex scalar is regular
at the poles (in the orbifold sense), and hence we deduce the constraints

ζIx
I
+ = ζIx

I
− = 0 . (3.19)

Notice, in particular this implies at the poles ζIXI |± = 0 and hence from (3.4), we find that
the value of the superpotential W at the poles only depends on the scalars in the vector
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multiplets as in the STU model:

W |± =
3∑
I=1

XI |± . (3.20)

We can now use this to obtain expressions for the weights ϵp at the fixed points after recalling
that, by definition, dξ♭|p = 2ϵpvol as well as using (3.11) to find

3∑
I=1

xI+ = 2− b0
n+

P+ ,
3∑
I=1

xI− = 2 + b0
n−

P− , (3.21)

which, combined with (3.16), gives
3∑
I=1

pI = n−P+ + n+P−
n−n+

, (3.22)

all as in the STU model without the hypermultiplet.
The localization of the D = 2 action proceeds exactly as in the STU model and we

again find

S2|POS = 4π
b0

[
F(xI+)−F(xI−)

]
. (3.23)

The action depends on seven variables, b0, xI±. We can eliminate xI− using (3.16). Also, for
given spindle data n± and P±, there is only one independent flux due to (3.18) and (3.22),
which we can take to be pF ≡ p1 − p2. We also write pF ≡ pF /(n+n−). Similarly, there is
only one independent xI+ due to (3.19) and (3.21), which we can take to be x1+.

Thus, for given spindle data n±, choice of spinor chiralities at the poles P±, and
independent flux parameter pF , we need to vary the action over two variables, which we can
take to be x1+ and b0. Extremizing then leads to the central charge, as well as the value
of the warp factor and scalars in the vector multiplet at the poles. Notice, however, that
this procedure does not fix the value of the complex scalar ρ in the hypermultiplet at the
poles of the spindle. This exactly mirrors the results found in [48] which were obtained by
a direct analysis of the BPS equations.

In order to compare to the results of [48] we now take the anti-twist case P+ = 1, P− =
σ = −1, and n± ≥ 1, and extremize over x1+, b0. The extremal value of b0 is given by

b0 =
n+n−(n+ + n−)

[
3(n+ − n−)2 + 4p2F

]
(n+ − n−)2(n2+ + n+n− + n2−) + 4n+n−p2F

, (3.24)

and we can also explicitly write down x1+ and hence all of the xI±. The extremal value for the
action allows us to write down the on-shell central charge from (3.10)

c = 3(n− − n+)[(n+ − n−)2 − 4p2F ][3(n+ − n−)2 + 4p2F ]
32n+n−[(n+ − n−)2(n2+ + n+n− + n2−) + 4n+n−p2F ]

N2 . (3.25)

Notice from (3.15) that with P+ = 1, P− = σ = −1 we have xI− < 0, xI− > 0 and we also have
c > 0. From the explicit expressions we find that these conditions are satisfied if and only if

n− − n+ > 2|pF | , (3.26)
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and b0 > 0. The flux conditions require that n− − n+ is even and that p3, pF are both
even or both odd.

For the case of the twist, with P+/P− = σ = +1 but with potentially P+ = P− = 1 or
P+ = P− = −1, we can similarly extremize over b0, x1+ and obtain the extremal values for b0,
xI± and c. Imposing {xI+ < 0, xI− < 0, c > 0} or {xI+ > 0, xI− > 0, c > 0} leads to no solutions.

All of these results are in precise alignment with those16 found in [48], that were also
obtained without explicitly solving the BPS equations, but instead just analysing their
structure. The results here thus provide an elegant rederivation using the calculus of
equivariant localization.

4 D = 5, N = 2 ungauged supergravity

Starting from the general analysis in section 2, it is straightforward to obtain results for
ungauged D = 5, N = 2 supergravity coupled to arbitrary vector multiplets, by simply
turning off the FI gauging parameters ξI = 0. Although we shall only recover known results,
we do so in a novel way that is likely to generalize further.17

We begin by noting that setting ξI = 0 means that the superpotential W ≡ 0 in (2.8),
and correspondingly also the potential V ≡ 0 in (2.9). Making the same AdS3 × M2
ansatz (2.11), everything goes through as written and we may localize on M2 ∼= WCP1

[n+,n−].
The R-symmetry flux in (2.33) is however now zero, which gives the equation

n−P+ + n+P− = 0 . (4.1)

Since n± ≥ 1 and |P±| = 1 we necessarily have (without loss of generality) P+ = 1, P− = −1
and n+ = n− = n. But then M2 = S2/Zn and we may always lift to the simply-connected
covering space S2 with n = 1, which we henceforth do. In particular we immediately deduce
that supersymmetric spindle solutions do not exist in this ungauged supergravity theory,
which is a new result.

Next the constraints (2.32) immediately force b0 = 2, and thus the R-symmetry Killing
vector ξ = 2∂φ is fixed to rotate the M2 = S2 horizon with weight 2. The partially off-shell
action now reads

S2|POS = 2π
[
F(xI+)−F(xI−)

]
, (4.2)

where we have defined

xI+ = xI − pI , xI− = xI + pI , (4.3)

and S2|POS is to be extremized over the constant variables xI . Using the form of the
prepotential (2.2), the extremal equations read

CIJKx
JpK = 0 , (4.4)

16Note the typo in (3.56) of [48], viz. there should be no factor of nN nS on the right hand side.
17For the specific model with hypermultipets considered in section 3, we find that switching off the gauging in

this sector by taking ζI = 0 implies dξDθ = 0 from (3.13) and hence one no longer deduces the constraints (3.18)
and (3.19).
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for each I, where recall that CIJK is totally symmetric. Substituting (4.4) back into (4.2)
we may immediately compute the on-shell central charge

c = − 3π
2G5

1
b0

[
F(xI+)−F(xI−)

]
= π

4G5
CIJKpIpJpK . (4.5)

We may read the equation (4.4) as saying that xJ is in the null-space of the symmetric
matrix CIJKpK . If the latter is invertible then certainly the only solution is xI = 0. On
the other hand, notice that (2.28) gives the values of the physical scalars XI at the fixed
poles of the S2 as

XI |± = ∓(xI ∓ pI)e−λ|± . (4.6)

For solutions where the warp factor and scalars are independent of the S2 coordinates, then
we immediately see that this assumption forces the xI = 0 solution above. Proceeding with
this solution, the constraint (2.2) then fixes

e3λ|± = 1
3!CIJKpIpJpK , (4.7)

and we deduce

XI |± = pI

( 1
3!CIJKpIpJpK)1/3

, (4.8)

which is a well-known formula that may be obtained from the standard attractor mechanism
in D = 5 for supersymmetric black strings when we have a round metric on S2; see, for
example, [14].

This theory is the low-energy effective theory one obtains by compactifying M-theory
on a Calabi-Yau three-fold X3. Including the graviphoton, the number of Abelian vector
multiplets is h1,1, while the number of hypermultiplets (here turned off) is h2,1 + 1, where
hi,j = hi,j(X3) denote Hodge numbers. Introducing a basis of two-cycles ΩI , I = 1, . . . , h1,1,
generating the free part of H2(X3,Z), and a dual basis of four-cycles ΩI with intersection
numbers ΩI ∩ ΩJ = δIJ , then the scalar fields are

XI =
∫
ΩI

J , (4.9)

where J is the Kähler form on the Calabi-Yau three-fold X3. The CIJK are the intersection
numbers

CIJK = ΩI ∩ ΩJ ∩ ΩK . (4.10)

The supersymmetric extremal black string solutions we have discussed above arise by wrapping
an M5-brane over the four-cycle pIΩI , and we see that the central charge (4.5) simply counts
the triple intersection number of this wrapped M5-brane.

More generally in our approach nothing forces the warp factor and scalars to be constant
over the horizon, and depending on CIJK one may wonder if there are more general AdS3×S2

solutions than the homogeneous choice xI = 0 above; in particular, is it possible18 to have
18We thank James Lucietti for discussion on this.
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solutions with an inhomogeneous metric on the S2? We have assumed that there is at least
an axial symmetry on the S2, so in the case of minimal N = 2 ungauged supergravity it is
known [64] that the only possibility is AdS3 × S2 with a round S2; it would be interesting
to extend [64] to include vector multiplets. We can also consider the uniqueness results
of [65, 66]; since any AdS3 ×M2 can be interpreted as a near horizon geometry with horizon
S1 ×M2, by writing AdS3 in Gaussian null coordinates, the results of [65, 66] imply that
the metric on S2 should be the round metric, provided that the R-symmetry Killing vector
is null on a hypersurface on AdS3. This leaves the possibility of solutions with non-round
metrics on S2 if the R-symmetry Killing vector is strictly timelike, which is not something we
have considered in our analysis. It would be interesting if this argument could be extended to
conclude that any supersymmetric AdS3 × S2 solution must have a round metric on the S2.

5 D = 4, N = 2 gauged supergravity

In this section we discuss N = 2 gauged supergravity in four dimensions, coupled to Abelian
vector multiplets [67]. Note that we slightly modify the normalization of the gauge fields
and gauge coupling compared to [68, 69] (see [70] as well for a review).

The bosonic content of the graviton supermultiplet is the metric and a graviphoton A0,
while that of the n Abelian vector multiplets consists of gauge fields Ai and complex scalar
fields zi, where i = 1, . . . , n. It is convenient to introduce the index I = 0, 1, . . . , n to unify
the description of the gauge fields. The scalars parametrize a special Kähler manifold of
complex dimension n, with Kähler potential K and metric Gij = ∂i∂jK, that is the base of
a symplectic bundle with covariantly holomorphic sections

eK/2
(
XI

FI

)
. (5.1)

Here the scalars XI = XI(zi). These obey a symplectic constraint that allows us to express
the Kähler potential in terms of the sections

eK
(
XIFI −FIX

I
)
= i ⇒ K = − log

[
i
(
FIX

I −XIFI

)]
. (5.2)

We shall assume there exists a holomorphic prepotential F = F(XI), which is homogeneous
of degree two, such that FI = ∂F

∂XI .19 We define

NIJ = FIJ + iNIKX
KNJLX

L

NNMXNXM
, (5.3)

where FIJ = ∂I∂JF and NIJ = 2 ImFIJ .
The bosonic part of the action, which is determined by the prepotential, is given by

S4 =
1

16πG4

∫
M4

(
R4 +

1
4 ImNIJF

I
µνF

Jµν + 1
4i ReNIJF

I
µνF̃

Jµν

− 2Gij∂
µzi∂µz

j − V
)
vol4 , (5.4)

19In general the existence of the prepotential depends on the choice of symplectic sections, see [71].
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where F̃ Iµν ≡ − i
2ϵ
µνρσF Iρσ. Here we have assumed that there is no gauging of the special

Kähler isometries, and the potential is given by

V ≡ ξIξJeK
(
Gij∇iX

I∇jX
J − 3XIX

J
)
, (5.5)

where the Kähler covariant derivatives of XI are

∇iX
I ≡ (∂i + ∂iK)XI , (5.6)

and we have chosen to work with U(1) Fayet-Ilioupoulos gauging with ξI ∈ R. It is useful
to introduce the holomorphic superpotential

W ≡ ξIX
I , (5.7)

in terms of which the scalar potential is written as

V = eK
(
Gij̄∇iW∇j̄W − 3WW

)
. (5.8)

For use in later sections, it is also helpful to define the real superpotential

W = −
√
2eK/2 |W | , (5.9)

and the potential then reads

V = 2Gij̄∂iW∂j̄W − 3
2W

2 . (5.10)

A solution is supersymmetric if there exists a non-vanishing Dirac spinor ϵ satisfying
the following equations20

0 = ∇µϵ+
i
2AµΓ5ϵ−

i
4ξIA

I
µϵ+

1
2
√
2
ΓµeK/2 (ImW + iReW Γ5) ϵ

− i
4
√
2
ImNIJF

J
νρΓνρΓµeK/2

(
ImXI + iReXI Γ5

)
ϵ , (5.11)

0 = 1
2
√
2
ImNIJF

J
µνΓµνeK/2

[
i Im(G īj∇jX

I)− Re(G īj∇jX
I) Γ5

]
ϵ

+ Γµ
(
Re ∂µzi − i Im ∂µz

i Γ5
)
ϵ

+ i√
2
eK/2

[
i Im(G īj∇jW )− Re(G īj∇jW ) Γ5

]
ϵ , (5.12)

where Γµ generate Cliff(1, 3) and Γ5 ≡ iΓ0123, and the U(1) connection A is defined by

Aµ = − i
2
(
∂iK∂µzi − ∂īK∂µz

ī
)
. (5.13)

20The supersymmetry variations of the gravitino and the gauginos are commonly written in terms of two
Weyl spinors of definite chirality. For our purposes it is more convenient to combine them in a single Dirac
spinor, as done in [70] (and recall we have modified the normalization of the gauge fields and gauge coupling).
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5.1 The AdS2 ansatz

We consider supersymmetric AdS2 ×M2 solutions with a warped product metric

ds24 = e2λ
[
ds2(AdS2) + ds2(M2)

]
. (5.14)

The metric on AdS2 has unit radius, λ and the scalar fields are functions on M2, and the
gauge fields AI are (pull-backs of) gauge fields on M2. These solutions can arise as the near
horizon limit of magnetically charged static extremal supersymmetric black holes.

We can now proceed as in section 2.1. We first insert the ansatz in the D = 4 equations
of motion, obtaining D = 2 equations of motion, which can be obtained from the effective
action (which can also be obtained by substituting the ansatz directly in (5.4))

S2 =
∫
M2

[
e2λ

(
R− 2 + 6(∇λ)2 − 2Gij∂

µzi∂µz
j
)
− e4λV

+ 1
4 ImNIJF

I
µνF

Jµν
]
vol , (5.15)

where R is the Ricci scalar of M2, and ∇ and vol are the Levi-Civita connection and the volume
form. We are interested in the Maxwell equation for AI and the equation for λ, which read

d
(
ImNIJ ∗ F J

)
= 0 ⇒ d

(
ImNIJF

J
12

)
= 0 , ∀I , (5.16)

e2λ
(
R− 2 + 6(∇λ)2 − 2Gij∂

µzi∂µz
j
)
= 2e4λV + total derivative. (5.17)

Imposing the equation for the warp factor leads to the following partially off-shell two-
dimensional action

S2|POS =
∫
M2

(
e4λV vol + 1

2 ImNIJF
I
12F

J
)
. (5.18)

The trace of the Einstein equation derived from the action S2 is

e4λV + 1
4 ImNIJF

I
µνF

Jµν = −2e2λ , (5.19)

and imposing this gives us an expression for the on-shell action

S2|OS = −2
∫
M2

e2λ vol . (5.20)

If (5.14) is the near horizon limit of an extremal black hole, then S2|OS is related to its
Bekenstein-Hawking entropy

SBH = − 1
8G4

S2|OS . (5.21)

We will compute this quantity for arbitrary M2 without explicitly solving the equations of
motion, but instead defining an off-shell entropy function

SBH = − 1
8G4

S2|POS , (5.22)
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which we compute using the BVAB localization theorem. We can then extremize over the
remaining parameters in order to get S2|OS, and thus the entropy of the black hole.

What we just showed suggests a relation with Euclidean quantum gravity. Recall that
S2|POS can be obtained by imposing the trace of the Einstein equations of motion in S4 (5.4),
so one has the following

SBH = − 2π
Vol(AdS2)

S4|trace Eg4
= 2π

Vol(H2)
SE4 |trace Eg4

= −SE4 |trace Eg4
. (5.23)

Here, the first equality follows from the definition, the second one is just a Wick rotation,
and the third one uses the renormalized volume of Euclidean AdS2. Therefore, at least
at the formal level, we find a relation between the entropy function of the black hole and
the four-dimensional Euclidean on-shell action. Of course, this relation is suggestive of the
canonical relation between the entropy and the Euclidean on-shell action for magnetically
charged black holes: SBH = −I. However, there are various caveats. First, in order to
establish the latter we would have to include the Gibbons-Hawking-York term and the
holographic renormalization counterterms, which are not known for an arbitrary gauged
supergravity model. Moreover, notice that (5.23) is a relation between the entropy and the
action of the near horizon geometry AdS2 ×M2, whereas the thermodynamics would require
the on-shell action of the entire black hole spacetime. This concern is in fact addressed by
the equivariant localization itself. As we shall see, SBH is computed using the BVAB theorem,
and therefore receives contributions only from fixed point sets, with the result depending only
on the topology of spacetime. It is then conceivable that the extremal black hole geometry
arises from a limit of a family of geometries with topology disc×M2, in which case the action
of the entire family of solutions would be the same, independent of the limit parameter.
Whilst this is only a conjecture for the model currently studied, it can be proved for the case
of minimal N = 2 gauged supergravity, both with spindle [72] and with Riemann surface
horizon [73].21 At the same time, this also resolves the concern over the divergence of the
on-shell action due to the AdS2 infinite throat. We leave solving these issues and establishing
the suggestive relation (5.23) to future work.

5.2 Equivariantly closed forms and localization

Following the same procedure as in section 2.2, we impose a spinor ansatz consistent
with (5.14), namely

ϵ = ϑ⊗ eλ/2ζ , (5.24)

where ζ is a spinor on M2, and now ϑ is a Killing spinor on AdS2. This allows us to reduce
the spinor equations (5.11) and (5.12) to spinor equations on M2, as we show in appendix B.
We only have magnetic fields on M2, so in particular F I ∧ F J = 0; it is then consistent to

21In the latter case, namely universal black holes with Riemann surface horizon, the relation SBH = −I

has also been established by finding families of solutions both with supersymmetry [74] and which break
supersymmetry [75–77]. The existence of supersymmetric deformations of the black hole with closed interior
has been discussed within the STU model in [69].
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now set the symplectic sections XI to be purely imaginary22

zi ∈ R , XI ∈ iR . (5.25)

As shown in appendix B, we then define the same real bilinears as in (2.20), and again a
canonical analysis of the bilinear equations leads to the conclusion that ξ is a Killing vector,
and that the following polyforms are equivariantly closed

ΦF I ≡ F I + 2
√
2eλeK/2iXIP ,

Φvol ≡ e4λ V vol +
√
2e3λeK/2iWS , (5.26)

where the bilinear S is a constant that we henceforth set to 1. We can then immediately
define another equivariantly closed form ΦS given by

ΦS = Φvol + 1
2 ImNIJF

I
12ΦF

J
. (5.27)

Having constructed the equivariantly closed polyforms, and assuming that ξ acts on M2
with only isolated fixed points, then we may appeal to the Berline-Vergne-Atiyah-Bott theorem
to evaluate their integrals, as done in section 2.3. Indeed, we find the magnetic charges23

pI =
∫
M2

ΦF I

4π = 1
4π

∑
fixed p

1
dp

2π
ϵp

(
2
√
2eλeK/2iXIP

)
|p , (5.28)

and action

S2|POS =
∫
M2

ΦS

=
∑

fixed p

1
dp

4π
ϵp

1√
2

(
e3λeK/2iWS + eλ ImNIJF

I
12eK/2iXJP

)∣∣∣∣
p

= −
∑

fixed p

1
dp

4π
ϵp
P e2λ|p . (5.29)

Analogously to the evaluation of (2.26), we used the Maxwell equation (5.16) and the algebraic
relation (B.15) obtained from the spinor equations.

Finally, we introduce the scalars xI that are the degree-zero components of the equivariant
Chern classes (5.26), namely

xI ≡ −2
√
2eλeK/2iXIP . (5.30)

In terms of these, the equation (B.12) for dξ♭ reads

dξ♭ = 2
(
1− 1

2ξIx
I
)
P vol ⇒ ξIx

I
p = 2− 2Ppϵp , (5.31)

22Using a U(1) rotation, associated with the gauge field (5.13), it is possible to change the phase of the
symplectic section if we correspondingly rotate the Killing spinors, as discussed around (4.16) in [13] (see
also [77]). We also highlight that in section 5.3 we will in fact utilize such a rotation to discuss the STU model.
More details are in appendix B.

23In general there is no reason to quantize the magnetic charges. For models that can be uplifted to
string/M-theory, such as the STU model discussed in section 5.3, the suitably normalized gauge fields are
associated with U(1) bundles and there is a quantization condition.
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and the magnetic charges are

pI = −1
2
∑

fixed p

1
dpϵp

xIp . (5.32)

To conclude, we look again at the symplectic constraint (5.2) under the reality assump-
tions (5.25). This is only consistent if F(XI) is pure imaginary, and using homogeneity
of F leads to

eKiF(XI) = −1
4 . (5.33)

Using again homogeneity, we find that

iF(xI)|p = 2e2λ|p , (5.34)

and thus the reduced action (5.29) takes the form

S2|POS = −
∑

fixed p

2π
dpϵp

Pp iF(xIp) . (5.35)

Notice that (5.32) and (5.35) have the same form as their analogues (2.30). Therefore, for the
four-dimensional solutions of type (5.14), again we can compute the action and the magnetic
charges knowing only the values of the scalars xIp at the fixed points, together with the data
of the circle action, namely dp, ϵp and Pp.

Having established these results, we now consider M2 ∼= WP[n+,n−] to be a spindle. There
are two fixed points labelled by ± with the order of the orbifold group d± = n±, where we take
n± ≥ 1, and weights ϵ± = ∓b0/n±, where b0 is the weight of the azimuthal circle action. We
also set P− = σP+. After application of the BV theorem the form of the integrals for pI and
S2|λ EOM are the same as in section 2.3, so we can now follow the same steps as we did there.

We find that the magnetic charges (5.32) are given by

pI = 1
2b0

(xI+ − xI−) , (5.36)

and the constraint (5.31), which now reads

ξIx
I
+ = 2 + P+

2b0
n+

, ξIx
I
− = 2− σP+

2b0
n−

, (5.37)

leads us to an expression for the total magnetic flux of the R-symmetry through the spindle
of the form

ξIp
I = P+

n− + σn+
n−n+

. (5.38)

Similarly, the off-shell entropy function obtained from the reduced action takes the form

SBH = − 1
8G4

S2|POS = − π

2G4

1
2b0

P+
[
iF(xI+)− σiF(xI−)

]
. (5.39)

As in the discussion of (2.34), these constraints imply that we have a variational problem
with n degrees of freedom.
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We can also consider the limit that b0 → 0 in order to obtain non-trivial results for
the case M2 = S2. Specifically, we can substitute xI− using (5.36) and take the b0 → 0
limit in the σ = 1 case to get

lim
b0→0

SBH = −P+
π

2G4
pI

∂

∂xI
iF(xI) , (5.40)

where note that xI+ = xI− ≡ xI and they are subject to the constraint ξIxI = 2. In the
case n+ = n− = 1, the constraint (5.38) on the fluxes reads ξIpI = 2P+ and is associated
with the standard topological twist on S2. This expression for the off-shell entropy has
also been obtained by expressing the BPS equations of gauged supergravity as attractor
equations [11, 12].

5.3 STU model

The four-dimensional gauged STU model is an N = 2 supergravity theory containing n = 3
vector multiplets with ξI = 1 for all values of I, and prepotential

iF = 2
√
X0X1X2X3 . (5.41)

It is a consistent truncation of eleven-dimensional supergravity on S7, where the Cartan
subgroup U(1)4 ⊂ SO(8) is gauged [78].

In contrast to the choice made previously in (5.25), for the STU model we now choose

zi ∈ R , XI ∈ R , (5.42)

in order to facilitate some comparisons with the literature (e.g. [20]). Specifically, as in [79]
we choose

X0 = e
1
2 (φ

1+φ2+φ3) , X1 = e
1
2 (φ

1−φ2−φ3) ,

X2 = e
1
2 (−φ

1+φ2−φ3) , X3 = e
1
2 (−φ

1−φ2+φ3) .
(5.43)

Here we have used a standard parametrization of the XI in terms of three real scalars φi, as
opposed to the scalars zi used in the general case. As already mentioned in footnote 22, and
discussed further in appendix B, we can make this alternative choice provided that we carry
out a U(1) rotation. This rotation introduces some changes to the Killing spinor equation
on M2 that one needs to analyse, but otherwise the analysis of the previous subsection goes
through unchanged. With this new gauge choice, we have X0X1X2X3 = 1, so iF = 2 and
K = − log 8, so that eKiF(XI) = 1/4 (in contrast with (5.33)). The conventions we use
for the STU model are precisely the same as those used in the next section (upon setting
ρ = θ = 0). We also recall that the AdS4 vacuum solution of the STU model is dual to the
ABJM theory (with k = 1) and the four-dimensional Newton constant is normalised as

1
G4

= 2
√
2

3 N3/2 , (5.44)

where N is the rank of the gauge group of ABJM.
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Following the procedure in the previous sections, specifically (5.21) and (5.39), we find
that the off-shell entropy function for the STU model is given by

SBH = −P+
π
√
2

3 N3/2 1
b0

(√
x0+x

1
+x

2
+x

3
+ − σ

√
x0−x

1
−x

2
−x

3
−

)
, (5.45)

together with the constraints (5.37) and (5.38), which read

3∑
I=0

xI+ = 2 + P+
2b0
n+

,
3∑
I=0

xI− = 2− σP+
2b0
n−

,
3∑
I=0

pI = P+
n− + σn+
n−n+

. (5.46)

Extremizing this function leads to the entropy of the accelerating black holes, with various
different subfamilies (and/or near horizon limits) studied in [19, 25, 26, 33, 72] (see also [80]
for earlier work on accelerating black holes in STU gauged supergravity). The discussion of
the most general case is quite involved [25], although the near horizon solutions have been
analysed in detail in [26]. However, it is straightforward to obtain simple analytic formulae in
subfamilies of examples, and here for illustration we look at the simplest case of minimal N = 2
gauged supergravity. This is obtained setting φi = 0 for all i and AI ≡ A for all I. Upon
choosing P+ = −1 (we could also choose P+ = +1), the off-shell entropy function becomes

SBH = π
√
2

3 N3/2 1
4b0

(
1− σ − 2b0

n− + n+
n+n−

+ b20
n2− − σn2+
n2+n

2
−

)
, (5.47)

where we have solved the constraints (5.46), and the magnetic charge satisfies

p = −n− + σn+
4n−n+

. (5.48)

Extremizing SBH leads to

b0± = ±n+n−
√
1− σ√

n2− − σn2+

. (5.49)

Therefore, in the twist case we obtain the extremum at b0∗ = 0, a case associated with S2,
which we examine further below. In the anti-twist case we find a positive entropy for b0+:

SBH = π
√
2

3 N3/2

√
2(n2+ + n2−)− (n+ + n−)

2n+n−
. (5.50)

This reproduces the entropy of the explicit family of supersymmetric, accelerating, magneti-
cally charged black holes in [19]. Notice that these anti-twist solutions have n+ < b0 < n−,
so p < 0, with

x± = 1
2

(
1− n∓

√
2

n2− + n2+

)
, e2λ|± = x2± , (5.51)

and furthermore x+ < 0, x− > 0, as required (see (6.15)).
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We can also consider taking the b0 → 0 limit, and set n± = 1 = σ to recover the S2 case,
as done in (5.40). Taking this limit of (5.45), with P+ = −1, we obtain the entropy function

lim
b0→0

SBH = π
√
2

3 N3/2
√
x0x1x2x3

3∑
I=0

pI

xI
. (5.52)

The variables are now constrained to obey
∑3
I=0 x

I = 2 = −
∑3
I=0 p

I . This precisely matches
the result of [15]. In particular, when comparing with the topologically twisted index in
the dual field theory one identifies24

pI ↔ nI , xI ↔ ∆I . (5.53)

Here nI are the magnetic fluxes of the background R-symmetry gauge fields, and ∆I are
chemical potentials for the ABJM vector multiplets. The first identification is clear, being
the same flux. The second identification, instead, relies on the existence of the uplift on
S7, in which case the values of the xI at the fixed points should be identified with the
weights of the R-symmetry vector, and thus with the R-charges, as explained in section 2.6.
Thus, in writing (5.53) we are identifying the chemical potentials ∆I for the topologically
twisted index with R-charges in the gravity dual; this has of course been noticed before,
but the way we have arrived at it here seems to provide a new perspective, that might
be worth investigating further.

5.4 Uplifting to AdS2 × Y9 solutions

The spindle STU solutions just discussed can be uplifted on S7 to solutions of eleven-
dimensional supergravity [19, 25]. The discussion of the uplift and off-shell geometry are
quite similar to that in section 2.6, so we shall be brief.

The eleven-dimensional solution has the form AdS2 × Y9, where Y9 is the total space
of a S7 fibration over M2. More specifically, in analogy to (2.43), S7 is the sphere bundle
in R8 acted upon by U(1)4, where each U(1) acts on one of the transverse two-planes in
R8 and the fibration introduces a connection one-form AI that uplifts the D = 4 gauged
supergravity field. The magnetic charges (5.28) are then quantized as pI = pI/n+n−, with
pI ∈ Z, and they correspond to the Chern numbers of the Y9 fibration [34]. By construction,
the flux of the D = 11 four-form vanishes on Y9, so these solutions describe the near horizon
limit of N M2-branes wrapping M2.

The resulting geometries are again the class of GK geometries introduced in [27, 28]
and studied in [34, 58]. More specifically, the existence of a Killing spinor guarantees the
existence of an R-symmetry vector ξ, and it is possible to introduce a functional S of the
supergravity fields on Y9 with the following properties. Upon imposing the supersymmetry
conditions, which do not imply all the equations of motions for the fields, it is a function
of ξ, and further extremizing the functional over the choice of ξ is implied by imposing the
remaining equations of motion, and S agrees with the area of M2, and thus is related to the
Bekenstein-Hawking entropy of the black hole with near horizon geometry AdS2 ×M2.

24This mapping uses the notation of [35]. To match [15], one needs to rescale ∆I by π and change the sign
of nI .
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It is also possible to introduce a further change of variables, in order to match other
expressions in the literature. We can introduce ϕI defined by

xI± = ϕI ± b0 p
I , (5.54)

which by construction are constrained by
3∑
I=0

ϕI = 2− b0
n− − σn+
n−n+

. (5.55)

Upon substitution of these variables in (5.45), the resulting expression matches (5.41) in [34],
and thus the conjectures in [22, 23].

As discussed in section 2.6 for uplifts of five-dimensional solutions, there is a priori no
reason for the correspondence of the gauged supergravity functional SBH and the internal
space one S . Nonetheless, the geometric discussion surrounding (2.52) works in the same
way, mutatis mutandis, so again we can identify xIp, the values of the zero-degree components
of the equivariant first Chern classes at a fixed point, with the weights of the circle action.
Since in eleven dimensions the circle action on M2 uplifts to the R-symmetry action on Y9,
we can identify xIp with the R-symmetry charges.

6 D = 4 STU model with a hypermultiplet

The model we will consider was given in [36]. It is a subtruncation of the U(1)2 ⊂ SU(3) ⊂
SO(6) ⊂ SO(8) invariant consistent truncation of D = 4 maximal SO(8) gauged supergravity
of [35]. The latter is an N = 2 gauged supergravity theory with three vector multiplets and
one hypermultiplet and we consistently truncate one of the two complex scalar fields in the
hypermultiplet to zero, and further only considering solutions with F I ∧ F J = 0 we can take
the three complex scalars in the vector multiplets to be real [36]. The model extends the
U(1)4 STU model of section 5.3 with the addition of an extra complex scalar field ρ eiθ.

We use the results of [36], correcting the typos noticed in [81]. The bosonic part of the
Lagrangian, in a mostly plus signature, is given by25

L = 1
16πG4

√
−g
[
R− 1

2

3∑
i=1

(∂φi)2 − 1
4

3∑
I=0

(XI)−2F IµνF
Iµν − V

− 1
2(∂ρ)

2 − 1
2 sinh2 ρ(Dθ)2

]
, (6.1)

where XI(φi), I = 0, 1, 2, 3 are given in (5.43). In addition, we have

Dθ ≡ dθ +
3∑
I=0

ζIA
I , (6.2)

where ζI = 1
2(1,−1,−1,−1). The scalar potential V is given by

V = 2
(
∂W
∂ρ

)2
+ 2

3∑
i=1

(
∂W
∂φi

)2
− 3

2W
2 , (6.3)

25Starting from [81], we have taken λi → 1
2 φi, φ → 1

2 ρ, AI → − 1√
2 AI , and g → 1√

2 .
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where W is the real superpotential defined by

W = −1
2

3∑
I=0

XI + ζIX
I sinh2 ρ2 . (6.4)

A solution preserves some of the supersymmetry of the maximal gauged supergravity
theory if we can solve[

∇µ −
i
2Qµ −

1
4WΓµ +

i
16

3∑
I=0

(XI)−1F IνρΓνρΓµ

]
ϵ = 0 ,

[
Γµ∂µφi + 2∂φiW + i

2

3∑
I=0

∂φi(XI)−1F IµνΓµν
]
ϵ = 0 ,[

Γµ∂µρ+ 2∂ρW + 2i∂ρQµΓµ
]
ϵ = 0 , (6.5)

where ϵ is a complex D = 4 Dirac spinor and

Qµ ≡ 1
2

3∑
I=0

AIµ −
1
2 (cosh ρ− 1)Dµθ . (6.6)

Since this model extends the STU model, it admits the maximally supersymmetric
AdS4 vacuum solution discussed around (5.44), with vanishing matter fields and the AdS4
having radius squared equal to R2

ABJM = 1. This solution uplifts to the AdS4 × S7 solution
dual to ABJM theory. The model also admits a supersymmetric AdS4 solution [37] with
R2

mABJM ≡ 4
3
√
3 , e

1
2φ

i = 31/4 and tanh ρ
2 = 1√

3 and vanishing gauge fields. This solution
preserves SU(3) × U(1)R global symmetry and after uplifting to D = 11 on S7 is dual to
the d = 3, N = 2 mABJM SCFT that arises as the IR fixed point in the RG flow of
mass-deformed ABJM theory [38–41].

The action is normalized with the D = 4 Newton constant as given in (5.44). The free
energy of the ABJM theory on S3 is given by FS3 = πR2

ABJM
2G4

= π
√
2

3 N3/2. Similarly, the free
energy of the mABJM theory on S3 is given by FS3 = πR2

mABJM
2G4

= 4
√
2π

9
√
3 N

3/2.

6.1 The AdS2 ansatz

We look for AdS2×M2 solutions with metric again of the form (5.14), with the gauge fields AI

and the scalars λ, φi, ρ, θ all defined just on M2. We can obtain the equations of motion for all
of the fields by extremizing a D = 2 action obtained by reducing the D = 4 action, analogous
to the discussion in section 5.1. If we further impose the trace of the D = 4 Einstein equation
or, equivalently, the D = 2 equation of motion for λ, we obtain the partially off-shell action

S2|POS =
∫
M2

[
e4λV vol− 1

2

3∑
I=0

(XI)−2F I12 F
I
]
. (6.7)

As in section 5.1, we further notice that on-shell we have

S2|OS = −2
∫
M2

e2λ vol , (6.8)

which is proportional to the Bekenstein-Hawking entropy, which again takes the form (5.21).
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The D = 4 Dirac spinor can be written as (5.24) exactly as in the STU model. The
Killing spinors therefore take the same form and satisfy the same algebraic equations. Some
analysis of the differential conditions is given in appendix B.3. In particular, as in the
STU model we have

dξ♭ = 2
(
1 + eλWPS−1

)
P vol . (6.9)

We also need the relation
1
2(X

I)−1F I12 = −e2λWPS−1 − 2eλ . (6.10)

6.2 Equivariantly closed forms and localization

There are several equivariant polyforms, Φ, that can be constructed on M2, satisfying
dξΦ ≡ (d− ξ )Φ = 0. Associated with the four gauge fields, as in the STU model we have

ΦF I = F I −XIeλP . (6.11)

A new feature compared with the STU case is that a specific linear combination of the
ΦF I , corresponding to the specific U(1) that the complex scalar transforms under, is equiv-
ariantly exact:

dξDθ = ζIΦF
I
. (6.12)

Associated with the action we have that

ΦS = e4λV vol− 1
2

3∑
I=0

(X(I))−2F I12 F
I + e3λWS + 1

2e
λP

3∑
I=0

(X(I))−1F I12 , (6.13)

is equivariantly closed. Unlike the STU case, with ρ ̸= 0 this is no longer the sum of two
equivariantly closed forms, due to the presence of charged matter in the Maxwell equation.
From (6.8) and (5.44), we can define the off-shell entropy function analogously to (5.22) as

SBH = −N
3/2

6
√
2

∫
M2

ΦS . (6.14)

We now assume that the M2 has the topology of a spindle, with Killing vector ξ. The
localization procedure proceeds in a similar way to the D = 5 case with hypermultiplets
discussed in section 3. The orbifold singularities of M2 are given by two integers n± ≥ 1
and we write the Killing vector as ξ = b0∂φ, with ∆φ = 2π. We also write ϵ± = ∓b0/n±
and leave P+ and P+/P− ≡ σ arbitrary for now.

We set S = 1 and define

xI ≡ XIeλP . (6.15)

Using localization to obtain the fluxes, we get

pI ≡ pI

n+n−
≡ 1

4π

∫
M2

F I = 1
2b0

(xI+ − xI−) , pI ∈ Z . (6.16)
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Here we demand that the magnetic charges are suitably quantized, so that when the solutions
are uplifted on S7 we get a well-defined AdS2 ×M9 solution of D = 11 supergravity with M9
an S7 fibred over the spindle M2. For the STU model, the factor of 1/(4π) in the quantization
condition can be obtained26 using the uplifting formulae in [79]. It is also important to
emphasize that for solutions in which the charged scalar in the hypermultiplet is non-zero,
we break a U(1) ⊂ U(1)4 symmetry and correspondingly, we will lose a Killing vector on
the S7 in the uplifted solution, but this does not alter the fact that we still need to impose
a quantization condition on the fluxes to ensure the we have a good S7 fibration over M2,
which is a topological constraint.

Next, if we integrate (6.12) over M2 we deduce that the charges satisfy the constraint

3∑
I=0

ζIp
I = 0 . (6.17)

From (6.2) we see that the magnetic flux associated with the U(1) ⊂ U(1)4 for which the
complex scalar is charged, must vanish. Now if the complex scalar is non-vanishing at the
poles, ρ± ̸= 0, regularity implies that Dθ|± = 0 and then, considering the zero-form part
of (6.12), we deduce the following constraints on xI±:

3∑
I=0

ζIx
I
+ =

3∑
I=0

ζIx
I
− = 0 . (6.18)

At the poles we therefore have ζIXI |± = 0 and hence, from (6.4), we have

W|± = −1
2

3∑
I=0

XI |± . (6.19)

Next, recalling that the weights ϵ± of the action of the Killing vector at the poles are
given by dξ♭|± = 2ϵ±vol2, using (6.9) we deduce

3∑
I=0

xI+ = 2 + P+
2b0
n+

,
3∑
I=0

xI− = 2− σP+
2b0
n−

. (6.20)

Using the definition of the fluxes in (6.16), we then deduce the following constraint on
the R-symmetry flux

3∑
I=0

pI = P+
n− + σn+
n−n+

, ⇔
3∑
I=0

pI = P+ (n− + σn+) . (6.21)

The localization of the action proceeds as in the D = 4 STU model of section 5.3
and we find ∫

M2
ΦS = 4π

b0
P+

(√
x0+x

1
+x

2
+x

3
+ − σ

√
x0−x

1
−x

2
−x

3
−

)
, (6.22)

26We also observe that ϵ is a section of a Spinc bundle, as can be gleaned from its charge under the AI

in (6.5), and our quantization condition is in agreement with general analysis for supersymmetric spindles
in [20].
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and hence

SBH = −P+
π
√
2

3 N3/2 1
b0

(√
x0+x

1
+x

2
+x

3
+ − σ

√
x0−x

1
−x

2
−x

3
−

)
, (6.23)

exactly the same as (5.45). Thus, the expression of the off-shell entropy function does not
change upon including a hypermultiplet. Nonetheless, the extremization leads to a different
result, since the constraints are different. The xI± satisfy (6.16) and (6.20), which implies the
constraint on the R-symmetry flux (6.21), all as in the STU model. In addition we now need
to impose (6.18) which imply the vanishing of the broken U(1) flux in (6.17). The action
depends on 9 variables b0, xI±, for given n±, σ. We can eliminate xI− using (6.16). With
the constraints on the R-symmetry flux in (6.21) and the vanishing of the flux associated
with the broken U(1) in (6.17), we are left with two independent fluxes which we can take
to be, for example, p1, p2.

One can now carry out an explicit extremization looking for solutions satisfying all of
the relevant positivity conditions. An example was presented in [36] by studying the BPS
equations directly, but it does not satisfy the correct quantization conditions on the fluxes.27

For the anti-twist class, we have found various explicit solutions that satisfy the appro-
priate positivity constraints, including SBH > 0. We choose P+ = −1, as we did for the
STU model, and summarize some examples in table 1, where we give the values of (n+, n−)
and the magnetic fluxes (p1, p2) with (p0, p3) determined via

p0 = −1
2(n− − n+) , p3 = p0 − p1 − p2 . (6.24)

With P± = ∓1 from (6.15) we have x+ < 0 and x− > 0. From (6.20), with n± ≥ 1 we
deduce n− > b0 > n+ and in turn, from (6.16) that pI < 0. We highlight that there is
a symmetry that permutes p1, p2, p3 and this can be utilized to obtain other cases. For
example, for (n−, n+) = (9, 1) we can have pI = −(4, 1, 1, 2) and pI = −(4, 1, 2, 1) and
pI = −(4, 2, 1, 1). We expect that for all these cases supergravity solutions exist: for the
special cases with p1 = p2 = −1

6(n− − n+), we have explicit solutions of minimal N = 2
gauged supergravity and for remaining cases one could check by numerically solving the BPS
equations as in [36]. As an illustration, we can be more explicit for a particular example
by considering (n−, n+) = (15, 3) and pI = −(6, 3, 2, 1), finding

b0 = 4.23685 ,
x0− = 0.717543 , x1− = 0.331002 , x2− = 0.249196 , x3− = 0.137345 ,
x0+ = −0.412284 , x1+ = −0.233912 , x2+ = −0.127413 , x3+ = −0.0509594 ,

e2λ|− = 0.0901606 , e2λ|+ = 0.0250233 , SBH = 0.0402617N3/2 . (6.25)

Interestingly, the integers (n−, n+) in this example are not co-prime and moreover, we find
that there are no solutions, with properly quantized fluxes, if we consider the Z3 quotient
of the spindle and take (n−, n+) = (5, 1). The cases with (n−, n+) = (8, 2), (10, 2) and (9, 3)

27In our language, if we take (n−, n+) = (1, 8) and fluxes pI = (− 7
2 ,− 1

6 − 1√
3 ,− 13

6 − 1√
3 ,− 7

6 + 2√
3 ), we

precisely recover the numerical values for the entropy just below (3.51) in [36], as well as the values for the
scalar fields at the poles and k given in (3.47) of [36], with b0 = 1/k.
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(n−, n+) Value of −(p1, p2)
(7,1) (1,1)*
(9,1) (1,1)
(11,1) (1,1); (2,2)
(13,1) (1,1); (1,2); (2,2)*
(15,1) (1,1); (1,3); (1,4); (1;5); (2,2)
(8,2) (1,1)*
(10,2) (1,1)
(9,3) (1,1)*

Table 1. Some values for spindle data in the anti-twist class with quantized magnetic fluxes pI .
Cases with p1 = p2 = − 1

6 (n− − n+), marked with ∗, are associated with explicit solutions in minimal
N = 2 gauged supergravity. The values of p0, p3 are determined from (6.24), and there are additional
examples that can be obtained by permuting (p1, p2, p3).

in the table have the same feature. In previous works on spindles this possibility seems
to have been overlooked.

We have made a numerical search for any possible solutions in the twist class but have
not found any. It is therefore natural to conjecture that the twist class is obstructed.

We can also consider taking the b0 → 0 limit, and set n± = 1 = σ to recover the S2 case.
This leads to the same entropy function (5.52) as in the STU case, but with the additional
hypermultiplet constraints ζIxI = ζIp

I = 0, and precisely matches the result in [35].

7 D = 4, N = 2 ungauged supergravity

Similar to the discussion in section 4 regarding D = 5 supergravity, it is straightforward
to set the FI gaugings to zero and derive results for D = 4 ungauged supergravity coupled
to an arbitrary number of vector multiplets.

The key difference with the discussion of the D = 4 gauged supergravity theory in
section 5 is that the scalar potential V in (5.5) vanishes. However, we can still study the
AdS2×M2 spacetime (5.14) with M2 ∼= WCP[n+,n−], and most of the derivations in section 5.2
go through, with the equivariantly closed form Φvol (5.26) now being identically zero and
correspondingly with a simplified form ΦS in (5.27).

We now find the R-symmetry flux (5.38) vanishes, thus imposing the equation

n−P+ + n+P− = 0 . (7.1)

With n± ≥ 1, we have σ = P+P− = −1 and without loss of generality, this implies we can
take P+ = −1, P− = 1 and n+ = n− = n. Thus, we deduce the new result that ungauged
supergravity does not admit any AdS2 ×M2 solutions with M2 a spindle. Furthermore,
as in section 4, by going to the covering space we find that M2 can always be taken to
be S2 with n = 1. The constraints on xI (5.31) lead to b0 = 2, so that ξ rotates S2 with
weight 2. The off-shell entropy is

SBH = π

8G4

[
iF(xI+) + iF(xI−)

]
, (7.2)
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and we can introduce constants κI via

xI+ = 2
(
κI + pI

)
, xI− = 2

(
κI − pI

)
, (7.3)

so that the extremization of SBH has to be done over these κI , obtaining the equation

∂JF(xI+) = −∂JF(xI−) . (7.4)

This equation may be solved by taking κI = 0. Similarly to the discussion in section 4,
κI = 0 necessarily holds for solutions which are invariant under the SO(3) isometry group
acting on S2.28 With this solution, we then find

SBH = π

G4
iF(pI) . (7.5)

At the poles, for these AdS2 × S2 solutions we find from the definition of xI that

−
√
2eK/2iXI |± = ∓

(
κI ± pI

)
e−λ|± , (7.6)

and for the case of κI = 0, the constraint (5.34) gives

eK/2iXI |± = − pI

2
√
iF(±pI)

. (7.7)

We immediately see one of the conclusions of the attractor mechanism (see e.g. [7, 82]): the
value of the scalar fields at the horizon only depends on the charges, and not on the values
at infinity. Our simple formula for the black hole entropy (7.5) in the purely magnetically
charged case we have studied does not appear in [7, 82], but it is straightforward to see
that it agrees with those results. From equation (3.2) of [82] we have (restoring the Newton
constant in their formula)

SBH = π

G4
|Zhor|2 , (7.8)

where Z is the central charge function, which is evaluated at the horizon in (7.8). On the other
hand equation (2.13) of [82] gives the general formula (setting the electric charges to zero)

|Z|2 = eK|pIFI(XJ)|2 , (7.9)

where recall FI ≡ ∂XIF . From (7.7) we may write XI = γpI , where the proportionality
constant γ in fact drops out of both sides of (7.7), using eKiF(XI) = −1

4 together with
the fact that F is homogeneous degree 2. We then compute γpIFI(XJ) = 2F(XJ) using
homogeneity and Euler’s formula, where we are evaluating at the extremal point XJ = γpJ .
Combing these formulae then gives

SBH = π

G4
eK ·

∣∣∣∣2γF(XI)
∣∣∣∣2 = π

G4

iF(XI)
γ2

= π

G4
iF(pI) , (7.10)

which agrees with (7.5).
28Also as in section 4 we leave investigation of possible additional solutions for future work.
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8 Discussion

Building on [1–3] we have shown that equivariant localization provides a powerful tool to
study black holes within gauged and ungauged supergravity. Using the BVAB theorem we
have constructed off-shell entropy functions for magnetically charged black holes of N = 2,
D = 4 supergravity theories that have AdS2×M2 horizons. We have also obtained analogous
results for magnetically charged black strings and rings (when they exist) of N = 2, D = 5
supergravity theories that have AdS3 ×M2 horizons. This provides a new perspective and
also extends the attractor mechanism in both gauged and ungauged supergravity.

In order to use the localization technology we require M2 to have a Killing vector and
so we considered M2 to be a spindle, S2 or T 2. Naively, one might expect our approach to
be useful only when the Killing vector on M2 is an R-symmetry Killing vector constructed
as a spinor bilinear. This is certainly the case when M2 is a spindle and for this class we
obtained many new results including showing that there are no solutions within ungauged
supergravity. For the case of T 2 the two Killing vectors do not arise as Killing spinor bilinears
and our approach does not immediately lead to any new results. For the case of AdS2 × S2

or AdS3 × S2 solutions of gauged supergravity, it is also the case that the Killing vectors on
S2 are not arising from Killing spinor bilinears; nevertheless by considering off-shell solutions
where we consider this to be the case, we are able to construct off-shell entropy and central
charges by taking a suitable limit.

We considered supergravity models with arbitrary number of vector multiplets and
illustrated the formalism with some specific examples. We studied the STU model for both
D = 4 and D = 5 gauged supergravity and recovered results consistent with known explicit
supergravity solutions. The solutions of the STU models are of particular interest as they
can be uplifted on S7 and S5 to obtain exact solutions of D = 11 and type IIB, respectively.
The uplifted solutions are of the form AdS2 ×M9 and AdS3 ×M7, respectively, with M7,M9
admitting a GK geometry. We showed that our off-shell entropy functions and off-shell
central charge are precisely equivalent to the gravitational block formulae derived in [33, 34]
using a very different approach in GK geometry.

We also considered the STU model extended with a complex scalar arising from a
hypermultiplet in both D = 4 and D = 5. We showed that the off-shell entropy and central
charge functions that one needs to extremize are the same as in the STU model, but the
presence of the hypermultiplets imposes additional constraints on the variables, as well as
restricting the allowed magnetic fluxes. For the case when M2 is a spindle we illuminated
and clarified the results of [36, 48] which have been obtained by studying the BPS equations
directly. It would be interesting to study other models that can also be uplifted to string/M-
theory. For example, one should be able to make contact with the solutions discussed in [83]
and [84] with S2 and spindle horizons, respectively. More generally, it would certainly be of
interest to extend our analysis to supergravity theories with arbitrary hypermultiplets.

In this paper we have discussed black objects that are magnetically charged, but we
fully expect that the technology will generalize to include electric charge and non-trivial
rotation. We have also just discussed two-derivative supergravity, and it would be interesting
to extend our analysis to include higher derivative corrections and further investigate the
ideas presented in [85].
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A Reduction of D = 5 Killing spinors

In this appendix we reduce the D = 5 Killing spinor equations (2.7) and (3.6) via the
AdS3×M2 ansatz (2.11), and use these to deduce various algebraic and differential equations
for bilinears in the Killing spinor ζ on M2.

A.1 Killing spinor equations

The decomposition of the spinor ϵ and Cliff(1, 4) matrices is

ϵ = ϑ⊗ eλ/2ζ , Γi = βi ⊗ γ3 , Γa+2 = 1⊗ γa , (A.1)

where we denote frame indices on AdS3 by i = 0, 1, 2 and those on M2 by a = 1, 2. Here
βi generate Cliff(1, 2) and γa generate Cliff(2), with γ3 = −iγ1γ2. The Killing spinor ϑ
on AdS3 satisfies

∇iϑ = 1
2βiϑ . (A.2)

Inserting this ansatz into (2.7) leads to the reduced spinor equations

∇aζ =
[
1
2

(
1− e−λGIJXIF J12

)
γaγ3 + i

2Qa
]
ζ ,

0 =
[
/∂λ+ 1

3e
λW +

(
1− 1

3e
−λGIJX

IF J12

)
γ3
]
ζ ,

0 =
[
Gij/∂φj − eλ∂iW + e−λGIJ∂iXIF J12γ3

]
ζ . (A.3)

Using these one can derive the following useful relations, where A is any element of Cliff(2):

∇a(ζ†Aζ) = 1
2

(
1− e−λGIJXIF J12

)
ζ†[A, γaγ3]−ζ ,

0 = (∂aλ)ζ†[A, γa]±ζ + 1
3(1± 1)eλWζ†Aζ

+
(
1− 1

3e
−λGIJX

IF J12

)
ζ†[A, γ3]±ζ ,

0 = Gij(∂aφj)ζ†[A, γa]±ζ − (1± 1)eλ∂iWζ†Aζ
+ e−λGIJ∂iXIF J12 ζ

†[A, γ3]±ζ , (A.4)

where [·, ·]± denote anti-commutator and commutator, respectively.
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A.2 Bilinear equations

Given the bilinear definitions (2.20) we begin by noting the following identities:

ξ vol = −K , F I12K = −ξ F I . (A.5)

The relations in (A.4) then lead to the following differential equations

dS = 0 , dK = 0 , dξ♭ = −2
(
2 + eλWPS−1

)
P vol ,

d(eλP ) = −2
3GJKX

J(ξ FK) , d(e4λS) = 4
3e

5λW (ξ vol) ,

dXI = −e−λGijGJK∂iXI∂jX
J(ξ FK)P−1

= −eλGij∂iXI∂jW (ξ vol)S−1 , (A.6)

and algebraic equation

e−λGIJXIF J12 = 3 + eλWPS−1 . (A.7)

Using equation (A.6) we compute

d(XIeλP ) = (dXI)eλP +XId(eλP )

= −GJK
(
Gij∂iXI∂jX

J + 2
3X

IXJ
)
(ξ FK)

= −GJKGIJ(ξ FK) = −ξ F I , (A.8)

where we have used (2.6). This proves that the multi-form ΦF I = F I − XIeλP is equiv-
ariantly closed.

Next we similarly compute

d(e4λWS) = ξI(dXI)e4λS +Wd(e4λS)

= −e5λ
(
Gij∂iW∂jW − 4

3W
2
)
(ξ vol)

= −e5λV (ξ vol) , (A.9)

where we have used (2.9). This proves that the multi-form Φvol = e5λV vol − e4λWS is
equivariantly closed.

A.3 STU with hypermultiplet

We now turn to the STU model with hypermultiplets considered in section 3. Compared
to the general vector model presented in the previous subsection, this amounts to setting
ξI = (1, 1, 1) and considering an additional complex scalar field ρ eiθ. Every equation from
the previous section follows through directly, except for the last relation (A.9). There are
also some additional constraints for ρ. Note that with the STU prepotential F = X1X2X3,
the metrics defined in (2.3) are simply

GIJ = 1
2

(X
1)−2 0 0
0 (X2)−2 0
0 0 (X3)−2

 , Gij =
1
2δij . (A.10)
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Under the ansätze (2.11) and (A.1) the Killing spinor equations (3.6) reduce to

∇aζ =
[
1
2

(
1− 1

2e
−λ∑

I

(XI)−1F I12

)
γaγ3 + i

2Qa

]
ζ ,

0 =
[
/∂λ+ 1

3e
λW +

(
1− 1

6e
−λ∑

I

(XI)−1F I12

)
γ3

]
ζ ,

0 =
[
/∂φi − 2eλ∂iW − e−λ

∑
I

∂i(XI)−1F I12γ3

]
ζ

0 = [/∂ρ− 2eλ∂ρW + 4i(∂ρQa)γa]ζ , (A.11)

which are the same equations as (A.3), but where the last line is new. Again these give the
constraints (A.4) plus the following relation for ρ where A ∈ Cliff(2)

0 = (∂aρ)ζ†[A, γa]±ζ − 2(1± 1)eλ∂ρWζ†Aζ + 4i(∂ρQa)ζ†[A, γa]∓ζ . (A.12)

From these we deduce the same differential constraints as before, plus a new one on the last line:

dS = 0 , dK = 0 , dξ♭ = −2
(
2 + eλWPS−1

)
P vol ,

d(eλP ) = −1
3
∑
I

(XI)−1(ξ F I) , d(e4λS) = 4
3e

5λW (ξ vol) ,

dXI = −
∑
i,J

e−λ∂iXI∂i(XJ)−1(ξ F J)P−1 ,

dφi = −2eλ∂iW (ξ vol)S−1 ,

dρ = −2eλ∂ρW (ξ vol)S−1 − 4(∗∂ρQ)PS−1 , (A.13)

such that

dW = −2eλ
[∑

i

(∂iW )2 + (∂ρW )2
]
(ξ vol)S−1 − 4(∂ρW )(∗∂ρQ)PS−1, (A.14)

where

∂ρW = 1
2ζIX

I sinh ρ , ∂ρQ = −1
4Dθ sinh ρ . (A.15)

We also record the Maxwell equation

d
[
eλ(XI)−2F I12

]
= e3λζI sinh2 ρ (⋆Dθ) . (A.16)

As before ΦF I is equivariantly closed:

d(XIeλP ) = (dXI)eλP +XId(eλP )

= −
∑
i,J

[
∂iX

I∂i(XJ)−1 + 1
3X

I(XJ)−1
]
(ξ F J)

= −
∑
J

(∑
i

ςIiςJi +
1
3

)
XI(XJ)−1(ξ F J) = −ξ F I , (A.17)
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where we have summarized (3.2) as

XI = exp
(∑

i

ςIiφ
i

)
,

(∑
i

ςIiςJi +
1
3

)
= δIJ . (A.18)

On the other hand using (A.14) and the definition (3.3) of the scalar potential

d(e4λWS) = −e5λV (ξ vol)− 4e4λ(∂ρW )(∗∂ρQ)P , (A.19)

we find that Φvol = e5λV vol − e4λWS is not equivariantly closed. Instead using (A.15)
and (A.16) we obtain that

dξΦvol = 4e4λ(∂ρW )(∗∂ρQ)P

= −1
2
∑
I

d
[
eλ(XI)−2F I12

]
XIeλP . (A.20)

This proves that the multi-form having the action as the top form,

ΦS = 2
3

[
Φvol − 1

2
∑
I

(
eλ(XI)−2F I12

)
ΦF I

]
, (A.21)

is equivariantly closed.
Finally we show that ζIΦF

I is equivariantly exact. Indeed (A.12) gives

ξ (∂ρQ) = 1
2e
λ(∂ρW )P =⇒ ξ Dθ = −ζIXIeλP , (A.22)

where we used the explicit expressions (A.15), so that

dξDθ = −ζIF I + ζIX
IeλP = −ζIΦF

I
. (A.23)

B Reduction of D = 4 Killing spinors

In this appendix we reduce the D = 4 Killing spinor equations (5.11) and (5.12) via the
ansatz (5.14), (5.24). This is analogous to the procedure described in appendix A, and will
lead to differential and algebraic equations for the bilinears in ζ. Because of the similarities,
we shall be brief.

One relevant difference with the five-dimensional case is the presence of the Abelian
R-symmetry factor mentioned in footnote 22. Concretely, this transformation acts on the
fields by

ϵ→ e−iα
2 Γ5ϵ , eK/2XI → e−iαeK/2XI , Aµ → A+ ∂µα , (B.1)

and under this transformation the equations (5.11) and (5.12) transform covariantly, that
is, schematically

(δψµ, δλ)
(
e−iα

2 Γ5ϵ, e−iαeK/2XI ,A+ ∂µα
)
= e−iα

2 Γ5(δψµ, δλ)
(
ϵ, eK/2XI ,A

)
, (B.2)

where ψµ and λ are the gravitino and gaugino, respectively. We shall see in B.3 that this
transformation allows us to change the reality of the sections.
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B.1 Killing spinor equations

We decompose the spinor and Clifford algebra Cliff(1, 3) as

ϵ = ϑ⊗ eλ/2ζ , Γi = βi ⊗ γ3 , Γa+1 = 1⊗ γa , (B.3)

where βi, with i = 0, 1, generate Cliff(1, 1) with β3 ≡ −β01, and γa generate Cliff(2), with
γ3 ≡ −iγ12. We also assume that

∇iϑ = −1
2βiϑ . (B.4)

Inserting this ansatz in (5.11) gives

0 = ϑ⊗
[
∇aζ +

1
2γa

/∂λ ζ − i
4ξIA

I
a ζ +

1
2
√
2
eλeK/2 ImW γaζ

+ 1
2
√
2
e−λ ImNIJF

J
12eK/2 ImXI γ3γaζ

]
+ i

2β3ϑ⊗
(
Aaγ3ζ +

1√
2
eλeK/2ReW γaγ3ζ

− 1√
2
e−λ ImNIJF

J
12eK/2ReXI γaζ

)
, (B.5)

0 = 1
2βλϑ⊗

[
−ζ + γ3/∂ζ +

1√
2
eλeK/2 ImW γ3ζ +

1√
2
e−λ ImNIJF

J
12eK/2 ImXI ζ

]
+ i

2e
λβλβ3ϑ⊗ eK/2

[ 1√
2
ReW ζ + 1√

2
e−2λ ImNIJF

J
12ReXIγ3ζ

]
. (B.6)

The gaugino variation (5.12), instead, gives

0 = ϑ⊗
[
− 1√

2
e−2λ ImNIJF

J
12eK/2 Im(G īj∇jX

I)γ3ζ + e−λ/∂ Re zi ζ − 1√
2
Im(G īj∇jW ) ζ

]
+ iβ3ϑ⊗

[
− 1√

2
e−2λ ImNIJF

J
12eK/2Re(G īj∇jX

I)ζ − e−λ/∂ Im zi γ3ζ

− 1√
2
Re(G īj∇jW )γ3ζ

]
. (B.7)

Motivated by known examples (e.g. [13]), in order to solve the equations above we impose
the following conditions

zi ∈ R , XI ∈ iR , (B.8)

and so for instance we may write ImW = −iW . These conditions imply that the equations
simplify to

0 = ∇aζ −
i
4ξIA

I
a ζ +

(
−1
2 − 1√

2
ie−λeK/2 ImNIJF

J
12X

I
)
γ3γaζ ,

0 = /∂ζ − i√
2
eλeK/2W ζ +

(
−1− 1√

2
ie−λ ImNIJF

J
12eK/2XI

)
γ3ζ ,

0 = 1√
2
ie−2λ ImNIJF

J
12eK/2Gij∇jX

I γ3ζ + e−λ/∂zi ζ + i√
2
Gij∇jW ζ . (B.9)
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If A is any element of Cliff(2), then the following relations hold

∇a(ζ†Aζ) =
(
−1
2 − 1√

2
ie−λeK/2 ImNIJF

J
12X

I
)
ζ†[γ3γa,A]−ζ ,

0 = (∂aλ)ζ†[A, γa]±ζ −
1± 1√

2
ieλeK/2W ζ†Aζ

+
(
−1− 1√

2
ie−λ ImNIJF

J
12eK/2XI

)
ζ†[A, γ3]±ζ ,

0 = e−λ∂azi ζ†[A, γa]±ζ +
1± 1√

2
ieK/2Gij∇jW ζ†Aζ

+ 1√
2
ie−2λ ImNIJF

J
12eK/2Gij∇jX

Iζ†[A, γ3]±ζ . (B.10)

B.2 Bilinear equations

Using the definitions (2.20) for the bilinears constructed using ζ, we find the following
differential relations

dS = 0 , d(eλP ) = 1√
2
ImNIJeK/2 ImXI ξ F J , dK = 0 , (B.11)

dξ♭ = 2P
(
1 +

√
2iPS−1eλeK/2W

)
vol , (B.12)

d(eλS) = − i√
2
e2λeK/2W ξ vol , (B.13)

d(eK/2XI) = eK/2∇iX
I dzi = − 1√

2
iP−1e−λ ImNJLeKGij∇iX

I∇jX
L ξ F J

= 1√
2
S−1ieλeKGij∇iX

I∇jW ξ vol , (B.14)

and the algebraic condition

− 1√
2
e−λ ImNIJF

I
12eK/2iXJ = 1 + i√

2
PS−1eλeK/2W . (B.15)

This allows us to prove the following

d(eK/2iXIeλP ) = 1√
2
ImNJLeK

(
Gij∇iX

I∇jX
L +XIXL

)
ξ F J

= 1
2
√
2
ξ F I , (B.16)

where we used the identity

eK
(
Gij̄∇iX

I∇j̄X
J +X

I
XJ

)
= −1

2[(ImN )−1]IJ . (B.17)

This relation implies that ΦF I in (5.26) is equivariantly closed.
Similarly

d
(√

2e3λeK/2iWS
)
= −e4λeK

(
Gij∇iW∇jW − 3W 2

)
ξ vol

= e4λVξ vol , (B.18)

using the definition (5.8). This relation, together with Maxwell’s equations, implies that
Φvol in (5.26) is equivariantly closed.
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B.3 STU with hypermultiplet

In this appendix we present the bilinear equations and show that the polyform ΦS in (6.13)
is equivariantly closed. This model differs from the previous discussion of the theory with an
arbitrary number of vector multiplets because there is an additional supersymmetry equation
coming from the variation of the hyperino, and because of a difference choice of conventions
(as mentioned below (5.43), there is a U(1) phase rotation that is required to go between
the two), so we repeat some steps for the reader’s convenience.

First, we clarify the latter point for the STU model (that is, in absence of the hyper-
multiplet). As remarked earlier, the phase of the sections XI is immaterial, since the U(1)
transformation (B.1) can be used to trade it for a change of phase for the Killing spinor
according to (B.2). Concretely, if instead of choosing the ansatz (B.3), we choose the spinor
ϵ′ = e−iπ

4 Γ5ϵ, then we find the following equations instead of (B.5), (B.6) and (B.7)

0 = ϑ⊗
[
∇aζ +

1
2γa

/∂λ ζ − i
4ξIA

I
a ζ +

1
2
√
2
eλeK/2ReW γaζ

+ 1
2
√
2
e−λ ImNIJF

J
12eK/2ReXI γ3γaζ

]
+ i

2β3ϑ⊗
(
Aaγ3ζ −

1√
2
eλeK/2 ImW γaγ3ζ

+ 1√
2
e−λ ImNIJF

J
12eK/2 ImXI γaζ

)
, (B.19)

0 = 1
2βλϑ⊗

[
−ζ + γ3/∂ζ +

1√
2
eλeK/2ReW γ3ζ +

1√
2
e−λ ImNIJF

J
12eK/2ReXI ζ

]
+ i

2e
λβλβ3ϑ⊗ eK/2

[
− 1√

2
ImW ζ − 1√

2
e−2λ ImNIJF

J
12 ImXIγ3ζ

]
, (B.20)

0 = ϑ⊗
[
− 1√

2
e−2λ ImNIJF

J
12eK/2Re(G īj∇jX

I)γ3ζ + e−λ/∂ Re zi ζ − 1√
2
Re(G īj∇jW ) ζ

]
+ iβ3ϑ⊗

[ 1√
2
e−2λ ImNIJF

J
12eK/2 Im(G īj∇jX

I)ζ − e−λ/∂ Im zi γ3ζ

+ 1√
2
Im(G īj∇jW )γ3ζ

]
. (B.21)

These are simplified by the choice zi ∈ R and XI ∈ R (compare with (B.8)), assuming
which we find

0 = ∇aζ −
i
4ξIA

I
a ζ +

(
−1
2 + 1√

2
e−λeK/2 ImNIJF

J
12X

I
)
γ3γaζ ,

0 = /∂ζ + 1√
2
eλeK/2W ζ −

(
1− 1√

2
e−λ ImNIJF

J
12eK/2XI

)
γ3ζ ,

0 = − 1√
2
e−2λ ImNIJF

J
12eK/2G īj∇jX

Iγ3ζ + e−λ/∂ Re zi ζ − 1√
2
G īj∇jW ζ . (B.22)

Moving now to the concrete case of the STU model with a hypermultiplet, the supersym-
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metry equations are (6.5) and inserting the ansätze (B.3), (B.4) leads to the equations

0 = ∇aζ −
i
2Qaζ +

1
2

(
−1− 1

2e
−λ∑

I

(XI)−1F I12

)
γ3γαζ ,

0 = /∂λ ζ − 1
2Weλ ζ +

(
−1− 1

4e
−λ∑

I

(XI)−1F I12

)
γ3ζ ,

0 = −e−2λ∑
I

∂φi(XI)−1F I12 γ3ζ + e−λ/∂φi ζ + 2∂φiW ζ ,

0 = ∂ρW ζ + 1
2e

−λ (∂aρ+ 2i∂ρQa) γaζ . (B.23)

The first three are the same as (B.22), and the last one arises from the variation of the hyperino.
From these equations, using the same techniques that lead to (B.11)–(B.14) we find

the following relations

dS = 0 , d(eλP ) = −1
4
∑
I

(XI)−1ξ F I , dK = 0 ,

dξ♭ = 2P
(
1 + PS−1eλW

)
vol ,

d(eλS) = −e2λW2 ξ vol ,

dXI =
∑
i

∂φiXI dφi = 1
2e

−λP−1∑
i

ςIiX
I
∑
J

∂φi(XJ)−1 ξ F J

= S−1eλ
∑
i

ςIiX
I∂φiW ξ vol , (B.24)

and

Sdρ = 2eλ∂ρW ξ vol− P sinh ρ ∗Dθ ,
ξ Dθ = P eλζIXI , (B.25)

as well as the algebraic condition

e−λ
∑
I

(XI)−1F I12 = −4− PS−1eλW . (B.26)

In these expression we have summarized (5.43) as

XI = exp
(∑

i

1
2 ςIiφ

i

)
, (B.27)

and used the definitions of W and Qµ in (6.6) and (6.4), respectively. Compared to the
discussion in the previous appendix, we highlight that (B.25) are new equations arising
from (B.23).

Once again, we find that F I is the top form of an equivariantly closed polyform. Us-
ing (B.24), we have

d(XIeλP ) = −1
4X

I
∑
J

(
1 +

∑
i

ςIiςJi

)
(XJ)−1ξ F J

= −ξ F I , (B.28)

which implies that ΦF I in (6.11) is equivariantly closed.
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We find that

d(e3λWS) = 3e2λW d(eλS) + e3λ
(
∂ρW Sdρ+

∑
i

∂φiWS dφi
)

= e4λV ξ vol + 1
2P e

3λ sinh2 ρ
∑
I

ζIX
I ∗Dθ , (B.29)

having used the definition (6.3) of the scalar potential in terms of the real superpotential. In
order to relate this to the integrand of the action in (6.7), we also need Maxwell’s equations,
which now include a matter term

d
[
(XI)−2F I12

]
= −ζIe2λ sinh2 ρ ∗Dθ . (B.30)

Combining this with (B.28) and (B.29), we find

d
(
e3λWS + 1

2e
λP

∑
I

(XI)−1F I12

)
= ξ

(
e4λV vol− 1

2
∑
I

(XI)−2F I12 F
I

)
, (B.31)

thus proving that ΦS in (6.13) is equivariantly closed.
Finally, we can show that there is a combination of the ΦF I that is equivariantly exact.

This follows directly from (B.25) and the definition (6.2):

(d− ξ )Dθ = ζIΦF
I
. (B.32)
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