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1 Introduction

The discovery of gravitational waves (GWs) [1] opens new opportunities to test physics
beyond the standard model (BSM). This is particularly interesting for those models currently
evading constraints from colliders and, more generally, from laboratory experiments. Even
though GWs have so far been detected only from astrophysical sources, there are many
different processes in the early universe that could lead to the production of detectable
primordial stochastic GW backgrounds. In particular, a production from the vibration of
cosmic strings [2] and from strong first order phase transitions [3–5] provide quite realistic
and testable mechanisms within various extensions of the standard model (SM) [6–8].

These two GW production mechanisms are usually studied separately. In this paper
we show how within the majoron model [9], an extension of the SM explaining neutrino
masses and mixing, a GW spectrum is produced where both sources can give a non-negligible
contribution and fall within the sensitivity of planned experiments. In the majoron model
a type-I seesaw [10–15] Lagrangian results as the outcome of a global U(1)L spontaneous
symmetry breaking and Majorana masses are generated by the vacuum expectation value
(VEV) of a single complex scalar field. The massless Goldstone boson, identified as the
imaginary part of the complex scalar, is dubbed as majoron. The model can also nicely embed
leptogenesis for the explanation of the matter-antimatter asymmetry of the universe [16].

The idea that a strong first order electroweak phase transition associated to the lepton
number symmetry breaking can generate a stochastic GW background has been explored
in [17]. In this case a coupling of the complex scalar to the SM Higgs field was considered.
A phase transition within the dark sector of the majoron model, disconnected from the
electroweak phase transition, was considered in [18], where non-renormalisable operators
and explicit symmetry breaking terms have been included in order to enhance the signal.
Moreover, a low-scale phase transition, in the keV-MeV range was also considered in order to
reproduce the NANOGrav putative signal at very low frequencies (∼ 10−9Hz) [19].

A first order phase transition from U(1)L-symmetry breaking in the dark sector, with no
coupling of the complex scalar field to the SM Higgs field, was also considered in [20] without

– 1 –



J
H
E
P
0
5
(
2
0
2
4
)
0
6
8

resorting either to explicit symmetry breaking terms or to non-renormalizable operators.
Both the case of low and high scale phase transition were explored. It was found that at low
scales the NANOGrav result cannot be explained, unless one invokes some enhancement from
some unaccounted new effect. On the other hand, it was found that at high energy scales
the signal can be sufficiently large to fall within the sensitivity of future experiments such as
µAres [21], DECIGO [22], AEDGE [23], AION [24], LISA [25], Einstein Telescope (ET) [26],
BBO [27] and CE [28]. However, this result relied on the introduction of an external auxiliary
real scalar field undergoing its own phase transition occurring prior to the complex scalar field
phase transition. Once the auxiliary scalar gets a VEV, its mixing with the complex scalar
field generates a zero-temperature barrier described by a cubic term in the effective potential
of the latter, leading to a strong first order phase transition and detectable GW spectrum.

In this paper, we show how the role of the auxiliary field can be nicely played by a
second complex scalar in a multiple majoron model. We discuss neutrino mass models
with spontaneous breaking of multiple global lepton number symmetries, typically with
hierarchical scales. The three right-handed (RH) neutrino masses are then generated by
different complex scalars each undergoing its own independent phase transition occurring,
in general, at different energy scales and breaking lepton number along a specific direction
in flavour space. We have, then, what could be referred to as a (RH neutrino) flavoured
majoron model. Importantly, we show that a contribution from the vibration of cosmic strings
generated from the spontaneous breaking of the global lepton number symmetry has also to
be taken into account to derive the GW spectrum of these models. The overall spectrum
then is the sum of contributions from both production mechanisms: a contribution from
strong first order phase transitions and a contribution from the vibration of cosmic strings.
For sufficiently strong phase transitions, the resultant signal looks like one or more peaks
(from phase transition) over a slanted plateau (from cosmic string).

The paper is organised as follows. In section 2 we review the traditional single majoron
model where the right-right Majorana mass term, with three RH neutrinos, is generated by a
single complex scalar field breaking total lepton number symmetry. The differences in the
Majorana masses are then to be ascribed to different couplings. Even in this traditional setup
we point out that a GW production from the vibration of cosmic strings, not accounted for
in previous works, should be considered and can give a detectable signal. In section 3 we
extend the model with an additional complex scalar with its respective global lepton number
symmetry, whose spontaneous breaking gives mass to the two lighter RH neutrinos. In this
way only two distinguished phase transitions occur with hierarchical energy scales. We show
that the resulting GW spectrum is, in general, the sum of two contributions, one from the
lower scale phase transition and one from the vibration of cosmic strings created at the highest
scale symmetry breaking. The corresponding phase transition does not produce a sizeable
contribution to the GW spectrum, but it results into a VEV of the complex scalar field
that generates a term entering the effective potential describing the second phase transition
at a lower scale. This term strongly enhances the production of GWs during the second
phase transition. In this way the high scale complex scalar associated with the majoron field
provides the external auxiliary scalar that had to be assumed in [20], so that the model is
self-contained and does not rely on external assumptions. Finally, in section 4 we consider the
case when all three RH neutrino masses are associated with different complex scalars, each
charged under a different global lepton number symmetry. At high temperatures one has the
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restoration of a U(1)L1 × U(1)L2 × U(1)L3 symmetry. While the temperature decreases, a
sequential breaking of each U(1)LI

symmetry occurs at a different scale accompanied by a
different phase transition. In this case we show that the GW spectrum now can receive a
contribution from both the two lower scale phase transitions and still from the vibration of
cosmic strings at the highest scale symmetry breaking. We show that such a spectrum may
have twin peaks from phase transition signals over a slightly sloped plateau of the cosmic
string signal. We draw conclusions in section 5 and point out that the GW spectrum of
the model can provide us important information about the reheating temperature of the
universe, and that the model fits naturally within a unified framework of solving the puzzles
of baryon asymmetry and dark matter.

2 Primordial GW stochastic background in the single majoron model

In this section, we first review the main features of the single majoron model and then discuss
the generation of a stochastic background of primordial GWs.

2.1 The single majoron model

The traditional single majoron model is a simple extension of the SM [9], where the spontaneous
breaking of a global UL(1) symmetry generates a Majorana mass term for the RH neutrinos.
The SM field content is then augmented with N RH neutrino fields NI (I = 1, 2, . . . , N)
and a complex scalar singlet,

ϕ = 1√
2

φ eiθ , (2.1)

where the real component is CP -even and the imaginary component is CP -odd. The new
scalar ϕ has a tree level potential V0(ϕ). For definiteness, we consider the well motivated
case N = 3. The tree-level extension of the SM Lagrangian is then given by

−LNI+ϕ =
(

Lα hαI NI Φ̃ + λI

2 ϕ N c
I NI + h.c.

)
+ V0(ϕ) , (2.2)

where Φ̃ is the dual Higgs doublet. In the early universe, above a critical temperature Tc,
one has ⟨ϕ⟩ = 0 so that the RH neutrinos are massless. Moreover, since the lepton doublets
Lα and the RH neutrinos NI have L = 1, and ϕ has L = −2, lepton number is conserved.
Below Tc, the UL(1) symmetry is broken and the scalar ϕ acquires a vacuum expectation
value ⟨ϕ⟩ = v0 eiθ0/

√
2. In this way the RH neutrinos become massive with Majorana masses

MI = v0 λI/
√
2. This leads to lepton number violation and small Majorana masses for the

SM neutrinos via type-I seesaw mechanism. We assume that Tc ≫ Tew ∼ 100GeV, so that
the majoron phase transition occurs prior to the electroweak phase transition and, therefore,
the Majorana mass term is generated before the Dirac mass term.

Let us consider the simple tree level potential

V0(ϕ) = −µ2|ϕ|2 + λ|ϕ|4 , (2.3)

where λ is real and positive, in a way that the potential is bounded from below, and µ2

is real and positive to ensure the existence of degenerate nontrivial stable minima with
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⟨ϕ⟩ = v0 eiθ/
√
2 with 0 ≤ θ < 2π and where v0 ≡

√
µ2/λ. After spontaneous symmetry

breaking, we can rewrite ϕ as1

ϕ = eiθ0
√
2
(v0 + S + i J) , (2.4)

where S is a massive field with m2
S = 2λv20 and J is the majoron, a massless Goldstone field.

Moreover, RH neutrino masses MI = λI v0/
√
2 are generated by the VEV of ϕ and these

lead to a light neutrino mass matrix given by the (type-I) seesaw formula

(mν)αβ = −v2ew
2

hαIhβI

MI
, (2.5)

where vew = 246GeV is the standard Higgs VEV. Notice that the potential in eq. (2.3)
corresponds to a minimal choice where we are neglecting possible mixing terms between the
new complex scalar field ϕ and the standard Higgs boson. In this way, the phase transition
involves only the dark sector, consisting only of ϕ and the three RH neutrinos. Moreover, we
are not considering non-renormalisable terms, so that the model is UV-complete.

Since all minima are equivalent, one can always redefine θ in a way that the symmetry is
broken along the direction θ0 = 0, without loss of generality. The minimum of the potential
lies along the real axis and, for all purposes, one can consider the potential as a function
of φ, so that one has:

V0(φ) = −1
2 µ2 φ2 + λ

4 φ4 . (2.6)

Let us now discuss the generation of a primordial stochastic background of GWs. There
are two possible sources in the majoron model. The first is an associated strong first order
phase transition [20] that we discuss in the subsection 2.2. The second is the network of
cosmic strings generated by the breaking of the global U(1)L symmetry that we discuss in the
subsection 2.3. The latter has not been discussed before within a majoron model, though it is
analogous to the U(1)B−L spontaneous symmetry breaking discussed, for example, in [29–33].

2.2 Stochastic GW background from first order phase transition

The scalar field and the three RH neutrinos form what we refer to as the dark sector. The
dark sector interacts with the SM sector only via the Yukawa interactions. In the early
universe finite temperature effects need to be taken into account. They will drive a phase
transition, occurring in the dark sector, from the metastable vacuum at ϕ = 0, where lepton
number is conserved and RH neutrinos are massless, to the true stable vacuum at ϕ = v0/

√
2,

where lepton number is non-conserved and RH neutrino are massive (for a recent review
on early universe phase transitions and GWs see [34]). They are described in terms of a
finite-temperature effective potential V T

eff(ϕ). At temperatures above a critical temperature
Tc, finite temperature effects will induce symmetry restoration [35]. When temperature drops

1Notice that J is not the imaginary part of ϕ but rather related to the phase fluctuation around the vev ⟨ϕ⟩.
Analogously, S is not the real part of ϕ but rather related to the radial fluctuation. This is easy to see if one
rewrites the fluctuation δϕ about the vev ⟨ϕ⟩ starting from ϕ = [(⟨φ⟩ + δφ)/

√
2] ei (θ0+δθ). One can then easily

identify v0 = ⟨φ⟩, S = δφ and J = v0 δθ. This shows that eq. (2.4) is equivalent to ϕ = (eiθ0 /
√

2)(v0 + S)ei J
v0 .
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down the critical temperature, the phase transition occurs and, in the zero temperature limit,
the tree-level potential V0(ϕ) is recovered, in the broken symmetry phase.2

The finite-temperature effective potential can be calculated perturbatively at one-loop [36]
and is given by the sum of three terms,

V T
eff(ϕ) ≃ V0(ϕ) + V 0

1 (ϕ) + V T
1 (ϕ) , (2.7)

where the zero-temperature one-loop contribution V 0
1 (ϕ) is given by the Coleman-Weinberg

potential. This can be written, using cut-off regularization, as [36–39]

V 0
1 (ϕ) =

1
64π2

{
m4

ϕ(ϕ)
(
log

m2
ϕ(ϕ)

m2
ϕ(v0)

− 3
2

)
+ 2m2

ϕ(ϕ)m2
ϕ(v0) (2.8)

−2
∑

I=1,2,3

[
M4

I (ϕ)
(
log M2

I (ϕ)
M2

I (v0)
− 3

2

)
+ 2M2

I (ϕ)M2
I (v0)

] .

The pre-factor of two in the second line accounts for two degrees of freedom for each RH
neutrino species. The one-loop thermal potential is given by [37–39]

V T
1 (ϕ) = T 4

2π2

[
JB

(
m2

ϕ(ϕ)
T 2

)
− 2

∑
I

JF

(
M2

I (ϕ)
T 2

)]
, (2.9)

where the thermal functions are

JB,F (x2) =
∫ ∞

0
dy y2 log(1∓ e−

√
x2+y2) . (2.10)

The functions m2
ϕ(ϕ) and M2

I (ϕ) are the shifted masses given by

m2
ϕ(φ) ≡

d2V 0(φ)
dφ2 = −λv20 + 3λφ2 (2.11)

and
M2

I (φ) = λ2
I

φ2

2 , (2.12)

where we specialized their dependence as a function of φ since, even when thermal effects
are included, all the study of the dynamics can be done along the real axis of ϕ without
loss of generality.

This time the sum over the RH neutrino species, the only fermions coupling to ϕ, should
only include those that are fully thermalised prior to the phase transition, while we can neglect
the contribution from those that are not. RH neutrinos thermalise at a temperature [40, 41]

T eq
I ≃ 0.2 (h† h)II v̄2ew

meq
, (2.13)

2Notice that the reheating temperature of the universe TRH needs to be higher than Tc for both symmetry
restoration and symmetry breaking to occur. If it is lower, the universe history starts directly in the broken
phase and there is no phase transition. For this reason, finding evidence for a phase transition and establishing
the value of Tc would straightforwardly place a lower bound on TRH.
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where meq ≡ [16π5/2√g⋆
ρ/(3

√
5)] (v̄2ew/MP) ≃ 1.1meV

√
g⋆

ρ/gSMρ is the usual effective equilib-
rium neutrino mass and we simply defined v̄ew = vew/

√
2 ≃ 174GeV. Note that the quantity

M = v̄2ew/meq = (3
√
5)/(16π5/2

√
g⋆

ρ/gSMρ )MP ≃ 3 × 1016GeV
√

gSMρ /g⋆
ρ is independent of

the electroweak scale vew. The condition for the thermalisation of the RH neutrino species
NI prior to the phase transition can then be written as

(h† h)II ≳ 5 Tc

M
. (2.14)

The equilibration temperature Teq and the condition eq. (2.14) can also be conveniently
expressed in terms of the dimensionless RH neutrino decay parameters

KI = (h† h)II
M⋆

MI
, (2.15)

obtaining, respectively,

Teq ≃ 0.2MI KI and KI ≳ 5 Tc
MI

. (2.16)

Taking into account the measured values of the solar and atmospheric neutrino mass scales,
from the seesaw formula it can be shown that all three RH neutrino species can satisfy the
condition of thermalisation and this is what we assume for simplicity following [20].3 Of
course we also assume TRH ≫ Tc for the phase transition to occur (as noticed in footnote
1). Another important thermal effect to be taken into account is that the tree-level shifted
mass have to be replaced by resummed thermal masses [42]

m2
ϕ(φ) → m2

ϕ,T (φ) = m2
ϕ(φ) + Πϕ , (2.17)

where the Debye mass Πϕ is given by

Πϕ =
(
2 + dscalar

12 λ + N
M2

24v20

)
T 2 . (2.18)

In this expression one has dscalar = 2 for the case of a complex scalar we are considering. The
quantity M denotes either the mass of the heaviest RH neutrino in the case of hierarchical
RH neutrino mass spectrum (in which case N = 1), or a common mass in the case of
quasi-degenerate RH neutrinos (in which case N is the number of RH neutrinos). This allows
us to reduce the number of parameters while spanning the space between N = 1 (hierarchical
RH neutrinos) and N = 3 (quasi-degenerate RH neutrinos).

With this replacement and neglecting O((MI/T )6) terms in the high temperature expan-
sion of the thermal functions, one obtains the dressed effective potential [20, 43, 44]

V T
eff(φ) ≃

1
2 M̃2

T φ2 − A T φ3 + 1
4λT φ4 . (2.19)

3On the other hand, in the case of a strong hierarchical RH neutrino spectrum, like in the case of SO(10)-
inspired models, one can have an opposite situation where only the heaviest RH neutrino species is fully
thermalised prior to the phase transition. One could even have a scenario where no RH neutrino species
is thermalised.
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In this expression we introduced

M̃2
T ≡ 2D (T 2 − T 2

0 ) , (2.20)

where T0 is the destabilisation temperature defined by

2D T 2
0 = λ v20 +

N

8π2
M4

v20
− 3

8π2λ2 v20 . (2.21)

The dimensionless constant coefficients D and A are given by

D = λ

8 + N

24
M2

v20
and A = (3λ)3/2

12π
. (2.22)

Finally, the dimensionless temperature dependent coefficient λT is given by

λT = λ − N M4

8π2 v40
log aF T 2

e3/2 M2 + 9λ2

16π2 log aB T 2

e3/2 m2
S

. (2.23)

Notice that one has to impose M1 < mS in order for the massive scalar S to decay into RH
neutrinos in a way that its thermal abundance does not overclose the universe. However,
this condition is easily satisfied, since the scalar and RH neutrino masses are roughly of
the same order-of-magnitude as v0.

At very high temperatures the cubic term in the effective potential (2.19) is negligible and
one has symmetry restoration. However, while temperature drops down, there is a particular
time when a second minimum at a nonzero value of φ forms. When temperature further
decreases, a barrier separates the two coexisting minima. The critical temperature Tc is
defined as that special temperature when the two minima become degenerate. Until this
time, the probability that a bubble of the false vacuum nucleates vanishes but below the
critical temperature it is nonzero. The nucleation probability per unit time and per unit
volume can be expressed in terms of the Euclidean action SE as [45]:

Γ(φ, T ) = Γ0(T ) e−SE(φ,T ) . (2.24)

At finite temperatures one has SE(φ, T ) ≃ S3(φ, T )/T and Γ0(T ) ≃ T 4 [S3(T )/(2π T )]3/2 [46],
where the quantity S3 is the spatial Euclidean action given by

S3(φ, T ) =
∫

d3x

[
1
2 (∇φ)2 + V T

eff(φ)
]
= 4π

∫ ∞

0
dr r2

[
1
2

(
d2φ

dr2

)2
+ V T

eff(φ)
]

. (2.25)

The physical solution for φ minimizing S3(φ, T ) can be found solving the EoM

d2φ

dr2
+ 2

r

dφ

dr
=

dV T
eff(φ)
dr

, (2.26)

with boundary conditions (dφ/dr)r=0 = 0 and φ(r → ∞) = 0. Since for T ≥ Tc the nucleation
probability vanishes, one has limT→T−

c
SE → ∞, while on the other hand limT→T0 SE → 0,

so that at T0 all space will be in the true vacuum and the phase transition comes to its
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end.4 If the phase transition is quick enough, then one can describe the phase transition as
occurring within a narrow interval of temperatures about a particular value T⋆ such that
Tc > T⋆ > T0. The temperature T⋆ is referred to as the phase transition temperature and it
is usually identified with the percolation temperature, defined as the temperature at which
the fraction of space still in the false vacuum is 1/e. The fraction of space filled by the
false vacuum at time t is given by [47, 48]

P (t) = e−I(t) , (2.27)

where

I(t) = 4π

3

∫ t

tc

dt′ Γ(t′) a3(t′)
[∫ t

t′
dt′′

vw
a(t′′)

]3
, (2.28)

a(t) is the scale factor and vw is the bubble wall velocity. Therefore, P (t⋆) = 1/e corresponds to
I(t⋆) = 1, where t⋆ ≡ t(T⋆). It can be shown [49] that at T⋆ the Euclidean action has to satisfy

SE(T⋆)−
3
2 log SE(T⋆)

2π
= 4 log T⋆

H⋆
− 4 log[T⋆ S′

E(T⋆)] + log(8π v3w) , (2.29)

where H⋆ = H(t⋆). This equation allows to calculate T⋆ and SE(T⋆) having derived SE(T )
from the solution of the EoM.

The calculation of the GW spectrum produced during the phase transition is characterised
by two quantities. The first is β ≡ Γ̇/Γ, the rate of variation of the nucleation rate. Its
inverse, β−1, gives the time scale of the phase transition. In our case, we are interested in
the scenario of fast phase transition, for β−1 ≪ H−1, so that, with a first order expansion
of the Euclidean action about t⋆

β

H⋆
≃ T⋆

d(S3/T )
dT

∣∣∣∣
T⋆

. (2.30)

This provides a sufficiently good approximation for β/H⋆ ≳ 100 [49]. The second quantity
characterising the phase transition is the strength of the phase transition α defined as

α ≡ ε(T⋆)
ρ(T⋆)

, (2.31)

where ε(T⋆) is the latent heat released during the phase transition and ρ(T⋆) is the total
energy density of the plasma, including both SM and dark sector degrees of freedom. The
latent heat can be calculated using

ε(T⋆) = −∆V T⋆
eff (φ)− T⋆ ∆s(T⋆) = −∆V T⋆

eff (φ) + T⋆
∂∆V T⋆

eff (φ)
∂T

∣∣∣∣∣
T⋆

, (2.32)

where ∆V T⋆
eff (φ) = V T⋆

eff (ϕtrue
1 )− V T⋆

eff (ϕfalse
1 ), and in the first relation, from thermodynamics,

∆s is the entropy density variation and the free energy of the system has been identified
4This is true for not too strong phase transitions, as we will consider, otherwise the Euclidean action

might actually reach a minimum and then increase again reaching an asymptotic non-vanishing value at
zero temperature.

– 8 –



J
H
E
P
0
5
(
2
0
2
4
)
0
6
8

with the effective potential. Notice that in our case, V T⋆
eff (ϕfalse

1 ) = 0. Also notice that the
constraint β/H⋆ ≫ 1 for the validity of eq. (2.30) implies a constraint α ≪ 1, since the
two quantities are not completely independent of each other with β/H⋆ ∝ α−2 [50]. For
definiteness, we will then impose α ≤ 0.3, corresponding typically to β/H⋆ ≳ 100. The total
energy density of the plasma can be expressed, as usual, as

ρ(T ) = gρ(T ) π2

30 T 4 . (2.33)

The number of the total ultrarelativistic degrees of freedom gρ(T ) is in this case given by the
sum of two contributions, one from the SM and one from the dark sector, explicitly, one has
gρ(T ) = gSMρ (T ) + gdarkρ (T ), where gSMρ (T⋆) = 106.75 and gdarkρ (T⋆) = gϕ

ρ + 7
4 N with gϕ

ρ = 2.
Let us now calculate the GW spectrum defined as

h2ΩGW0(f) =
1

ρc0h−2
dρGW0
d ln f

, (2.34)

where ρc0 is the critical energy density and ρGW0 is the energy density of GW, produced
during the phase transition, both calculated at the present time. We assume that the
phase transition occurs in the detonation regime, i.e., with supersonic bubble wall velocities,
vw ≥ cs = 1/

√
3, that is typically verified in the regime α ≤ 0.3 we are considering. Moreover,

the dominant contribution to the GW spectrum typically comes from sound waves in the
plasma, with a sub-dominant contribution from magnetohydrodynamic (MHD) turbulence,
so that h2ΩGW0(f) = h2Ωsw0(f) + h2Ωtb0(f) ≃ h2Ωsw0(f) [25].

A numerical fit to the GW spectrum that is the result of semi-analytical methods and
at the same time takes into account the results of numerical simulations, quite reliable in
the regime α ≤ 0.3 we are considering, yields [25, 51, 52]

h2Ωsw0(f) = 3h2 rgw(t⋆, t0) Ω̃gw H⋆ R⋆

[
κ(α)α

1 + α

]2
S̃sw(f)Υ(α, β/H⋆) , (2.35)

where the redshift factor rgw(t⋆, t0), evolving Ωgw⋆ ≡ ρgw⋆/ρc⋆ into Ωgw0 ≡ ρgw0/ρc0, is
given by [53]

rgw(t⋆, t0) =
(

a⋆

a0

)4 (H⋆

H0

)2
=
(

gS0
gS⋆

) 4
3 gρ⋆

gγ
Ωγ0 ≃ 3.5× 10−5

(
106.75

gρ⋆

) 1
3
(
0.6875

h

)2
,

(2.36)
and in the numerical expression we used: gγ = 2, gS⋆ = gρ⋆, gS0 = 43/11 ≃ 3.91, Ωγ0 = 0.537×
10−4(0.6875/h)2. Replacing the expression for the mean bubble separation R⋆ = (8π)1/3vw/β,
valid in the detonation regime we are assuming, we obtain the numerical expression

h2Ωsw0(f)= 1.45×10−6
(
106.75

gρ⋆

) 1
3
(

Ω̃gw
10−2

) [
κ(α)α

1+α

]2 vw
β/H⋆

S̃sw(f)Υ(α,β/H⋆) . (2.37)

The normalised spectral shape function is given by S̃sw(f) ≃ 0.687Ssw(f) with

Ssw(f) =
(

f

fsw

)3 [ 7
4 + 3(f/fsw)2

]7/2
, (2.38)
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where fsw is the peak frequency given by

fsw = 8.9µHz 1
vw

β

H⋆

(
T⋆

100GeV

)( gρ⋆

106.75

)1/6
. (2.39)

Notice that we have normalized the number of degrees of freedom to the SM value since we
are discussing phase transitions at or above the electroweak scale. The efficiency factor κ(α)
measures how much of the vacuum energy is converted to bulk kinetic energy. We adopt
Jouguet detonation solutions since we assume that the plasma velocity behind the bubble
wall is equal to the speed of sound. Then, the efficiency factor is [54, 55]

κ(α) ≃ α

0.73 + 0.083
√

α + α
, (2.40)

and the bubble wall velocity is vw(α) = vJ(α), where

vJ(α) ≡
√
1/3 +

√
α2 + 2α/3

1 + α
. (2.41)

Jouguet solutions provide a simple prescription but a rigorous description would require
numerical solutions of the Boltzmann equations [55]. The prefactor Ω̃gw in eq. (2.35) is
calculated from numerical simulations and a recent analysis shows that in the regime we
are considering, for α ≤ 0.3 and vw = vJ ≳ cs, it takes values approximately in the range
Ω̃gw = 10−3–10−2 [52], with the exact value depending on additional parameters necessary
to simulate the GW production from sound waves, such as friction, that we do not describe
in our analysis. For this reason we show in all results bands of GW spectra corresponding
to this range of values for Ω̃gw rather than a single curve. This should also account for the
use of simple Jouguet solutions for vw rather than solutions of Boltzmann equations, also
depending on friction as additional parameter.

Finally, notice that in eq. (2.35) there is also a suppression factor Υ(α, β/H⋆) < 1 which
decreases with the strength of the phase transition and is given by [56, 57]:

Υ(α, β/H⋆) = 1− 1√
1 + 2H⋆τsw

, (2.42)

where the product of the lifetime of the sound waves τsw with the Hubble expansion parameter
at the time of the phase transition can, in turn, be expressed in terms of α and β/H⋆ as

H⋆τsw = (8π)
1
3

vw
β/H⋆

[
1 + α

κ(α)α

]1/2
. (2.43)

For the MHD turbulence contribution, the GW spectrum is given by [25]

h2 Ωtb0(f) = 3.28× 10−4
(
106.75

g⋆

)1/3(κtb(α) α

1 + α

)3/2 vw
β/H⋆

Stb(f), (2.44)

where κtb(α) = ϵκ(α), with ϵ ≈ 0.05 representing the fraction of bulk motion of the plasma
which is turbulent. The other quantities are given by

Stb =
(

f

ftb

)3 [
1 + f

ftb

]−11/3
(1 + 8πf/h⋆)−1 , (2.45)
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B.P. λ v0 [GeV] M [GeV] α β/H⋆ T⋆ [GeV] ⟨ϕ⟩trueT⋆
[GeV]

solid 2 1015 1015 0.00019 219.9 1.68× 1015 5.7× 1014

dashed 2 1014 1014 0.0017 1002.1 1.70× 1014 5.39× 1013

dotted 2 103 103 0.0015 65895.5 1713.5 502.6

Table 1. Benchmark points for gravitational wave signals from first order phase transition of ϕ.

h⋆ = 16.68 µHz
(

T⋆

100 GeV

) ( g⋆

106.75

)1/6
, (2.46)

ftb = 27.3 µHz 1
vw

(
β

H⋆

)(
T⋆

100 GeV

) ( g⋆

106.75

)1/6
. (2.47)

Let us now calculate the GW spectrum within the majoron model. If we consider
the minimal tree level potential in eq. (2.3), there is a simple solution of the EoM for the
Euclidean action given by [20, 38]

S3
T

= M̃3
T

A2 T 3 f(a) , (2.48)

where we defined the dimensionless parameter

a ≡
λT M̃2

T

2A2 T 2 , (2.49)

and where

f(a) ≃ 4.85
[
1 + a

4

(
1 + 2.4

1− a
+ 0.26

(1− a)2

)]
(2.50)

provides an accurate analytical fit. Using this expression for the Euclidean action, for a
given choice of the model parameters v0, λ and M , one can calculate the critical temperature
using eq. (2.29). From this one can calculate the parameters α and β/H⋆ and then finally
derive the GW spectrum from eq. (2.35).

In figure 1 we show, with blue bands, the GW spectra corresponding to the three
benchmark choices for the values of v0, λ and M in table 1. The thin dashed and dot-dashed
lines correspond to sound wave and MHD turbulence contributions to the GW spectra,
whereas the thick lines represent the combined spectra. The contribution from sound wave is
dominant at the peak amplitude, while the MHD turbulence modifies the high-frequency tail.
We also show the sensitivity regions of LIGO [58, 59] and some planned/proposed experiments,
µAres [21], LISA [25], BBO [27], DECIGO [22], AEDGE [23], AION [24], ET [26] and CE [28].

Considering that these three choices are those found in a scan that maximise the signal
in respective peak frequencies, it should be clear that the contribution from phase transitions
in the case of the minimal model is far below the experimental sensitivity. In this way we
confirm the conclusions found in [20]. In the next subsection we point out, however, that
at least for large values of v0, the contribution from cosmic strings could be detectable in
future experiments even in this minimal model.
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Figure 1. The blue bands denote the contribution to the predicted GW spectrum from first order
phase transition for v0 = 1015 GeV (solid line), 1014 GeV (dashed line) and 1TeV (dotted line). The
red lines denote the contribution from cosmic strings for v0 = 1015 GeV (solid line) and 1014 GeV
(dashed line), the signal for v0 = 1TeV is too suppressed to show here. The (green) shadowed regions
show the sensitivity curves of the indicated experiments.

Before concluding we should also mention that one could think to add an explicit
symmetry breaking cubic term in the tree level potential. However, as noticed in [20], its
coefficient is upper bounded by the observation that it unavoidably generates also a linear
term in the effective potential. This tends to remove the barrier between the two vacua so
that, if the coefficient is too large, there is no first order phase transition and, therefore, no
GW production. For this reason, we do not pursue this scenario.

2.3 GW from global cosmic strings

Spontaneously breaking the U(1)L symmetry at high energies by the complex scalar ϕ

generates a global cosmic string network, which dominantly radiates Goldstone bosons,
and sub-dominantly emits gravitational waves [60]. Compared to the Nambu-Goto string-
induced almost flat gravitational wave spectrum associated with a gauged symmetry breaking,
the global cosmic string-induced gravitational waves are typically suppressed, and their
amplitude mildly falls off with frequency for most of the spectrum of interest. This makes
their detection at interferometers more challenging, unless the symmetry breaking scale v0
is above 1014 GeV. In this section we briefly review the dynamics of global cosmic strings
using the velocity-dependent one scale (VOS) model [61–66] and the associated gravitational
wave spectrum following [67].5

5We assume that symmetry breaking and the consequent formation of the cosmic string network occur after
inflation. In the case that the symmetry breaking happens during inflation, the GW spectrum gets modified
by inflation, see for example [68] and references therein. We also assume that the cosmic strings are stable.
This is always the case if a matter parity remains unbroken after U(1)L symmetry breaking (for example, see
discussion in [30]).
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The global cosmic string network consists of horizon sized long strings that randomly
intersect and form sub-horizon sized loops at the intersections. The network shrinks and
loses energy with time, but eventually enters a scaling regime where the average inter-string
separation scale L, and the ratio of the energy density of the network to the total background
energy density remain constant. For Nambu-Goto strings, this energy is radiation from the
string loops predominantly in the form of gravitational waves. However, for global strings
the leading mode of energy radiation is from the emission of Goldstone particles, and only
a fraction of the energy is radiated as gravitational waves.

The energy density of the global string network can be expressed as

ρcs =
µ(t)
L2(t) = µ(t)

t2
ξ(t), (2.51)

where µ(t) is the energy per unit length of the long strings, and ξ(t) is a dimensionless
parameter which represents the number of long strings per horizon volume. While for Nambu-
Goto strings, µ is a constant, for global strings it has a logarithmic dependence on the ratio
of two scales, a macroscopic scale L(t) close to the Hubble scale, and a microscopic scale
δ(t) ∼ 1/(λv0) representing the width of the string core,

µ(t) = 2πv20 log
L(t)

δ
≡ 2πv20N(t). (2.52)

Here we have defined a dimensionless time parameter N(t) ≡ log[L(t)/δ(t)]. Eq. (2.52)
can then be written as

N(t) + 1
2 log ξ(t) = log v0t, (2.53)

assuming the quartic coupling λ ∼ 1.
The evolution of the inter-string separation scale L(t) and the average long string velocity

v̄ are given by a system of coupled differential equations,(
2− 1

N

)
dL

dt
= 2HL

(
1 + v̄2

)
+ Lv̄2

ℓf
+ c̄v̄ + s

v̄6

N
, (2.54)

dv̄

dt
= (1− v̄2)

(
q̄

L
− 2Hv̄

)
. (2.55)

The first term on the r.h.s. of eq. (2.54) represents dilution effect from Hubble expansion. The
second term gives a negligible thermal friction effect with a characteristic scale ℓf ∝ µ/T 3.
The third term stands for the loop chopping effect, where c̄ is the rate of loop chopping. The
fourth term represents the backreaction due to the Goldstone emission. The quantity q̄ is
a momentum parameter. In analogy with Nambu-Goto strings, the solution of eqs. (2.54)
and (2.55) can be expressed as

L2(t) = t2

8
nq̄(q̄ + c̄)(1 + ∆)
1− 2

n − 1
2N(t)

, (2.56)

v̄2(t) = 1−∆
2

nq̄

q̄ + c̄

(
1− 2

n
− 1

2N(t)

)
, (2.57)
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where ∆ ≡ κ̄/(N(q̄ + c̄)), κ̄ ≡ sv̄5/(1 − ∆)5/2, and n = 3, 4 corresponds to matter and
radiation domination, respectively. Fitting data extracted from the simulation results in
refs. [69–71], the VOS model parameters can be approximated as [67]

{c̄, q̄, κ̄} ≃ {0.497, 0.284, 5.827}. (2.58)

Since ξ(t) = t2/L2(t) from eq. (2.51), eq. (2.56) can be used to express ξ as a function of
N(t). Eq. (2.53) then expresses N(t) as a function of t. Similarly, v̄ can be expressed as
function of t from eq. (2.57).

Assuming that the loop size during formation of the string network is given by ℓi ∼ αti,
where α is a dimensionless O(1) parameter not to be confused with the strength of the phase
transition, and the fraction of energy density of the strings contributing to gravitational wave
Fα ∼ 0.1 (for α ∼ 0.1) [72, 73], the formation rate of string loops is given by

dρ0
dt

×Fα = −dρcs
dt

× Fα ×Fα = Eloop
µ

t3
FαFα, (2.59)

where Fα ∼ 1 is the loop size distribution function, and Eloop ≡ c̄ v̄ ξ3/2 is the loop emission
parameter.

After formation, the string loop rapidly oscillates and radiates energy in the form of
Goldstone particles and gravitational waves until disappearing completely with a rate [60]

dE

dt
= −ΓGµ2 − Γav20 , (2.60)

where we assume the benchmark values Γ ∼ 50 [72, 74–76] and Γa ∼ 65 [77, 78]. The size
of a loop initial length ℓi = α ti at a later time can be expressed as

ℓ(t) ≃ α ti − ΓGµ(t − ti)−
Γa

2π

t − ti

logN
, (2.61)

where the second and third terms represent the decrease in loop size for gravitational wave
emission and Goldstone emission, respectively.

It is useful to decompose the radiation into a set of normal modes f̃k = 2k/ℓ̃, where
k = 1, 2, 3, . . ., and ℓ̃ ≡ ℓ(t̃) is the instantaneous size of a loop when it radiates at t̃. Accordingly,
the radiation parameters can be decomposed as Γ =

∑
k Γ(k) and Γa =

∑
k Γ

(k)
a , where

Γ(k) = Γk−4/3∑∞
j=1 j−4/3 , and Γ(k)

a = Γak−4/3∑∞
j=1 j−4/3 , (2.62)

and the normalization factor is approximately
∑∞

j=1 j−4/3 ≃ 3.60.
Taking redshift into account, the observed frequency at today’s interferometers is

fk = a(t̃)
a(t0)

f̃k, (2.63)

where t0 is present time and the scale factor today is a(t0) ≡ 1. The relic gravitational wave
amplitude is summed over all normal modes

ΩGW(f) =
∑

k

Ω(k)
GW(f) =

∑ 1
ρc

dρGW
d log fk

. (2.64)
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From eqs. (2.59) and (2.61), the contribution from an individual k mode can be expressed as

Ω(k)
GW(f) = FaFa

αρc

2k

f

∫ t0

tf

dt̃
Eloop

(
t
(k)
i

)
t
(k)4
i

Γ(k)Gµ2

α + ΓGµ + Γa
2πN

[
a(t̃)
a(t0)

]5 a
(

t
(k)
i

)
a(t̃)

3

θ(ℓ̃)θ(t̃ − ti),

(2.65)

where tf is the formation time of the string network. Heaviside theta functions ensure
causality and energy conservation. t

(k)
i represents the time when a loop is formed, which

emits gravitational wave at the time t̃, and is given by

t
(k)
i =

ℓ̃(t̃, f, k) +
(
ΓGµ + Γa

2πN

)
t̃

α + ΓGµ + Γa
2πN

, (2.66)

where the loop size can be written as ℓ̃ = 2 k a(t̃)/f .
The frequency spectrum of the gravitational wave amplitude is calculated by numerically

evaluating eq. (2.65), and summing from k = 1 to a large value to ensure convergence.
Evidently, the spectrum can be divided into three regions. The first region corresponds to
very high frequencies starting from a cutoff value fv0 , where the signal falls off, and the
exact shape depends on the initial conditions and very early stages of the string network
evolution not fully captured by the VOS model. The cutoff value fv0 is related to the time
when the Goldstone radiation becomes significant. In the intermediate radiation dominated
region feq < f < fv0 , the spectrum gradually declines as log3 (ℓ̃−1/f). In the matter
dominated region f0 < f < feq, the spectrum behaves as f−1/3. The frequency feq is related
to the time of matter-radiation equality, while f0 to the emission at the present time. These
characteristic frequencies are given by

fv0 ∼ 2
αtn

a(tv0)
a(t0)

∼ 1010 Hz, (2.67)

f0 ∼
2

αt0
∼ 3.6× 10−16 Hz, (2.68)

feq ∼ 1.8× 10−7 Hz. (2.69)

Although the gravitational wave spectrum from global cosmic strings span over a very wide
frequency range, for our purposes we will be concerned mostly in the µ-Hz to kilo-Hz range,
where some of the planned interferometers are sensitive. This range falls under feq < f < fv0 .
The gravitational wave spectrum can be approximately expressed in this regime by [67]

ΩGW(f)h2 ≃ 8.8× 10−18
( v0
1015GeV

)4
log3

[(
2

αf

)2 v0
teq

1
z2eq

√
ξ
∆1/2

R (f)
]
∆R(f), (2.70)

where zeq ≃ 8000 [79], and ∆R(f) represents the effect of varying number of relativistic
degrees of freedom over time:

∆R(f) =
g∗(f)

g0∗

(
g0∗S

g∗S(f)

)4/3
. (2.71)

– 15 –



J
H
E
P
0
5
(
2
0
2
4
)
0
6
8

We note that we have focused on the GW spectrum from decaying cosmic string loops.
Another approach, the Abelian-Higgs model, that takes into account the contribution from
long string network is expected to be subdominant [29].

For our numerical calculations we have set α = 0.1 as the peak value of the loop sizes at
the time of their formation inspired by results from Nambu-Goto string simulations [72, 73].
The resulting GW spectrum is modified by up to an order of magnitude if we deviate from this
choice [67]. In the standard radiation-dominated cosmology, α ≲ 0.1 leads to smaller lifetime
of the loops, higher string tension, and larger available string energy density to produce GWs.
Furthermore, smaller α implies that loops emit GW at higher frequency, hence the amplitude
for a given frequency observed today is higher in the frequency range we are interested in. For
α ≫ 0.1, the loops are long-lived and resemble the scenario of Nambu-Goto strings, where
the GW amplitude rises with α as ΩGW ∝ α1/2. On the other hand, a recent simulation
of global cosmic string [69] suggests a log-normal distribution of α, in which case the GW
amplitude is also enhanced by a factor of few [67]. Our choice of α ∼ 0.1 can therefore be
treated as a conservative choice as far as the GW amplitude is concerned.

There are several constraints on the global cosmic string formation scale ∼ v0. The
dominant radiation mode from global strings is emission of Goldstone bosons. Assuming
they remain massless, the upper limit on the total relic radiation energy density from CMB
∆Neff ≲ 0.2 [79] implies v0 ≲ 3.5 × 1015 GeV [67]. If we assume standard cosmology, non-
observation of gravitational waves at Parkes Pulsar Timing Array (PPTA) [73, 80, 81] gives an
upper bound v0 < 2× 1015 GeV. Other constraints from inflation scale and CMB anisotropy
bound require v0 ≲ O(1015)GeV [82, 83]. Hence we consider the global lepton number
symmetry violation at scales ≲ 1015 GeV. Furthermore, we require TRH ≳ v0 to ensure
that the lepton number symmetry is restored in the early universe and symmetry breaking
can take place at the scale ∼ v0.

We show the global cosmic string induced GW signals for v0 = 1014 and 1015 GeV in
figure 1 with red curves. The former is within the sensitivity of upcoming interferometers
µAres, DECIGO and BBO, whereas the latter might be probed at LISA, AEDGE and Einstein
Telescope as well. The phase transition signals for v0 = 1014 and 1015 GeV remain buried
under their respective cosmic string signals.6 We therefore conclude that the single majoron
model can still be probed in GW interferometers through its cosmic string signal as long as
the global lepton number symmetry is spontaneously broken in between 1014 and 1015 GeV.

3 GW from Majorana mass genesis in a two-majoron model

As we discussed, the GW contribution to the stochastic background from a phase transition
in the single majoron model is by far below the sensitivity of planned experiments. The
reason for the suppressed signal amplitude can be traced back to the fact that for a single
scalar, the cubic term is strictly temperature dependent and vanishes at zero temperature.
It was noticed in [20] that the signal can be strongly enhanced if an auxiliary scalar field is
introduced. This would undergo its own phase transition getting its final VEV prior to the

6If the reheating temperature is below v0, the universe would start in a broken phase, and there would be
no signals from either cosmic strings or phase transition.
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phase transition of the original scalar. In this way a bi-quadratic mixing term could be added
to the tree level potential. This term generates a zero temperature barrier in the thermal
effective potential able to enhance the strength of the phase transition α and, consequently,
the GW spectrum.7 The nature of the auxiliary scalar field was not specified in [20]. Here we
propose a model with two majorons where the auxiliary scalar field is identified as a complex
scalar field charged under a new global lepton number symmetry.

For definiteness, we call the complex scalars ϕ1, ϕ3, and their respective global lepton
number symmetries U(1)L1 , U(1)L3 . The Lagrangian can be written as (I = 1, 2, 3)

−LNI+ϕ1+ϕ3 =
(

Lα hαI NI Φ̃ + y1
2 ϕ1 N c

1 N1 +
y2
2 ϕ1 N c

2 N2 +
y3
2 ϕ3 N c

3 N3 + h.c.
)

+ V0(ϕ1, ϕ3) . (3.1)

As before, we ignore any mixing between the SM Higgs doublet Φ̃ with the complex scalars
ϕ1, ϕ3. Here ϕ3 couples only to the RH neutrino N3, whereas ϕ1 couples to both N1 and
N2.8 This can be ensured by giving nonzero U(1)L1 charges to N1 and N2 and half of their
complementary charge to ϕ1, whereas N3 and ϕ3 have similar complementary charges under
U(1)L3 only. Furthermore, we have chosen a basis where ϕ1 and ϕ3 only couple to the
diagonal elements of the RH neutrino mass matrix.

Analogously to the single majoron model, we write the complex fields as ϕ1 = φ1e
iθ1/

√
2

and ϕ3 = φ3e
iθ3/

√
2 and assume that the vacuum expectation values are along the real axis,

⟨ϕ1⟩ = v1/
√
2 and ⟨ϕ3⟩ = v3/

√
2. After spontaneous breaking of both U(1) symmetries,

J1 = v1δθ1 and J3 = v3δθ3 are identified as two majorons. We further assume the hierarchy
v3 ≫ v1, so that the RH neutrino mass spectrum is hierarchical M3 ≫ M1 ≃ M2 ≃ M .

The U(1)L1 ×U(1)L3 symmetry allows the usual quadratic and quartic terms for both
ϕ1 and ϕ2. It also allows a quartic mixing between the two scalars, so that the tree level
potential can now be written as

V0(ϕ1, ϕ3) = −µ2
1|ϕ1|2 + λ1|ϕ1|4 − µ2

3|ϕ3|2 + λ3|ϕ3|4 + ζ|ϕ1|2|ϕ3|2. (3.2)

At sufficiently high temperatures, both symmetries are restored. At temperatures T ∼ v3,
spontaneous breaking of U(1)L3 generates the massless majoron field J3. From this first
phase transition we can expect a negligible contribution to the GW spectrum at observable
frequencies, as we have seen in the previous section. After the ϕ3 phase transition has
completed, and ϕ3 has settled down to its VEV v3, the ϕ1 phase transition starts. Interestingly,
as we are going to show, the nonzero mixing of ϕ1 with ϕ3 implies that the tree-level zero-
temperature effective potential of ϕ1 now gains a cubic term, which can make the phase
transition of ϕ1 strong enough to produce an observable GW spectrum.

7This effect has been intensively employed in electroweak baryogenesis, where the phase transition of the
Higgs boson is typically either not taking place at all or too weak, and can be enhanced in the presence of a
real auxiliary scalar, which introduces a temperature-independent cubic term to the thermal effective potential
of the Higgs field.

8In the next section we will further generalise introducing also a field ϕ2 coupling independently to N2.
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Let us then now focus on the phase transition of ϕ1 at a lower scale. Writing the potential
eq. (3.2) in terms of the real fields φ1, φ3, and the minimization conditions yield

µ2
1 = λ1 v21 +

ζ

2v23, (3.3)

µ2
3 = λ3 v23 +

ζ

2v21. (3.4)

Because of the mixing term in the potential, the scalar mass matrix has non-vanishing
off-diagonal terms. Since φ3 has already completed the phase transition, we can write
φ3 = v3 + δφ3. On the other hand, we have to use the unshifted field φ1, since we want
to describe its phase transition. Following [84], the mass matrix can be diagonalized by
rotating the basis vectors, so that φ1 and φ3 can be expressed in terms of the new mass
eigenstates φ̄1 and δφ̄3

φ1 = φ̄1 cos θ − δφ̄3 sin θ, (3.5)
φ3 = v3 + φ̄1 sin θ + δφ̄3 cos θ, (3.6)

where the rotation angle can be determined, assuming v3 ≫ v1, to be

θ ≃ − ζv1
2λ3v3

. (3.7)

In order to see the impact of the mixing term on the phase transition of φ1, we expand φ3
as given by eq. (3.6) in the potential in eq. (3.2). The reason for this is, since the phase
transition of φ3 has completed by the time φ1 undergoes a phase transition, we expand φ3
around its VEV v3. Notice that from eq. (3.6), one can see that the phase transition of φ1
will induce a small shift of the φ3 VEV given by φ̄1 sin θ. However, since θ ∝ v1/v3 is tiny,
this has no effect on the φ1 phase transition. Although the mass eigenstates above are for
the tree-level, zero-temperature, shifted fields, we will treat the aforementioned expansions
simply as change of basis. In this basis, expanding the quartic mixing term in eq. (3.2) in
terms of the mass eigenstates yields a cubic term for φ̄1,

ζ

4φ2
1φ

2
3

v3≫v1−−−−→ −ζ2

4
v1
λ3

φ̄3
1 + . . . (3.8)

The dots denote the presence of additional terms ∝ (v1/v3)2 that can be neglected. Further-
more, to leading order, since the mixing angle θ is very small, the mass eigenstate φ̄1 almost
coincides with φ1.9 As anticipated, the net effect is that a non-vanishing zero temperature
cubic term appears in the thermal effective potential of φ1 that can now be written as

Veff(φ1, T ) ≈ 1
2 M̃2

T φ2
1 − (A T + C)φ3

1 +
1
4λT φ4

1 , (3.9)

9There are other subleading terms that are suppressed by the small ratio v1/v3 and can be neglected. For
a full derivation of all terms one can start from eq. (3.2) and rewrite it in terms of φ1 and φ3 as

V0(φ1, φ3) = −1
2µ2

1φ2
1 + λ1

4 φ4
1 − 1

2µ2
3φ2

3 + λ3

4 φ4
3 + ζ

4φ2
1 φ2

3.

One can then rewrite φ1 and φ3 in terms of φ̄1 and δφ̄3 using eqs. (3.5) and (3.6). It is easy to see that,
neglecting O(θ),O(δφ̄3) subleading terms, one obtains the thermal effective potential eq. (3.9) describing the
dynamics of φ1.
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Figure 2. GW parameters α and β/H⋆ from scan over the model parameters λ1, v1, M and C. The
color bar represents log10 T⋆/GeV for each point.

where C = ζ2v1/(4λ3). Comparing eq. (3.9) to eq. (2.19), the expressions for M̃T , A and
λT are obtained from eqs. (2.20)–(2.23) with the replacement λ → λ1, v0 → v1. Since the
heaviest RH neutrino mass M3 ∼ v3 ≫ v1, we can assume that the N3’s have fully decayed
at the onset of the ϕ1 phase transition. On the other hand, we can assume that both lighter
RH neutrinos are fully thermalised and, therefore, take N = 2.10

The cubic term at zero temperature helps to strengthen the phase transition of ϕ1. To
illustrate this, we perform a random scan over the model parameters (λ1, v1, C),11 in the
range 10−6 ≤ λ1 ≤ 1, 1 ≤ v1/GeV ≤ 107, 10−4 ≤ M/v1 ≤ 10 and 10−8 ≤ C/v1 ≤ 1 and
calculate the GW parameters T⋆, α and β/H⋆, following section 2.2. In figure 2 we show
the results of the scan, where the color map represents log10 T⋆/GeV at each point. The
model allows α ≳ O(1) and β ≳ 107, however, as we discussed, we consider only points
for α ≤ 0.3 and β/H⋆ > 100.

To get a better understanding of how T⋆, α and β/H⋆ depend on the model parameters, we
look at a two-dimensional slice of the parameter space in terms of {λ1, v1} setting M = 0.15v1
and C = 0.002v1. The results are shown in figure 3. We find that T⋆ ∼ O(v1) and is nearly
independent of λ1. On the other hand α is essentially determined by λ1, and peaks near
λ1 ∼ O(10−4). Finally, β/H⋆ depends on both λ1 and v1.

10On the other hand, notice that in the Coleman-Weinberg potential in eq. (2.8) one still has three RH
neutrinos. This mismatch would produce a logarithmic term in the effective thermal potential, as pointed out
in [20]. However, as it has been shown there and we verified, neglecting this term is a very good approximation
in the calculation of the GW spectrum.

11Strictly speaking, the model parameters are the coefficients that appear in the potential eq. (3.2), namely,
µ1, λ1, µ2, λ2 and ζ. v1, v3 and C can be expressed in terms of these parameters. We choose λ1, v1, λ3, v3

and C as free parameters.
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Figure 3. Dependence of the GW parameters T⋆, α and β/H⋆ on the model parameters λ1 and v1,
setting M = 0.15 v1 and C = 0.002 v1.

B.P. λ1 v1 [GeV] M [GeV] C [GeV] α β/H⋆ T⋆ [GeV] ⟨φ1⟩trueT⋆
[GeV]

A 0.00057 1188.22 186.53 20.79 0.29 244.65 5863.12 1.38× 105

B 0.00061 2.32× 105 3.63× 104 3023.02 0.30 204.66 7.81× 105 1.79× 107

C 0.00036 9.88× 106 1.08× 106 2× 106 0.30 141.48 7.51× 108 1.92× 1010

Table 2. Benchmark points for gravitational wave signals from first order phase transition of φ1.

We now look at the gravitational wave spectrum for the three benchmark points listed in
table 2.12 The benchmark points have been chosen to maximize the GW amplitude from
first order phase transition in their respective peak frequencies. The resulting signals are
shown in figure 4, along with the GW spectrum from the global cosmic strings for v3 = 1015,
5 × 1014, 2 × 1014 and 1014 GeV. As expected, the dominant contribution is from sound
waves (thin dashed lines), whereas the MHD turbulence (thin dot-dashed lines) contributes
to the high-frequency tail of the spectra. The peak amplitude of these signals are consistent
with what one would expect from the range of α and β/H⋆ where our calculation of GW
spectrum is valid, as discussed in appendix A.

The peak amplitude of the benchmark points A and B are sensitive to DECIGO, BBO,
AEDGE, and ET, CE, respectively, while point C peaks at a higher frequency. In all cases,
the peak amplitude is larger than the global cosmic string induced spectrum for v3 ≲ 1015 GeV.
For any benchmark point and a given v3, the combined gravitational wave spectrum would
look like a peak towering above the slightly tilted plateau.13 While the wideband nature of

12The corresponding values of the parameters µ1, µ3 and ζ are as follows, assuming v3 = 1014 GeV
and λ3 = 0.001: A : µ1 = 6.5 × 1012 GeV, µ3 = 3.2 × 1012 GeV, ζ = 0.0084; B : µ1 = 6.0 × 1012 GeV,
µ3 = 1.0 × 1012 GeV, ζ = 0.0072; C : µ1 = 1.2 × 1013 GeV, µ3 = 1.0 × 1012 GeV, ζ = 0.0285.

13However, if v1 < TRH < v3, we would only have the phase transition signal. The signal is still enhanced
since ϕ3 gets a VEV prior to the phase transition of ϕ1, although no symmetry breaking appears near the
scale v3. For TRH < v1, even the phase transition signal would disappear as the universe is in a broken phase
at Tc ∼ v1.
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Figure 4. Gravitational wave spectrum from first order phase transition of v1 for three benchmark
points shown in table 2 and from global cosmic string formed by spontaneous breaking of the global
U(1)L3 symmetry by ϕ3 for four representative cases. The shaded region in the phase transition
signals represent uncertainties in the calculation of the gravitational wave amplitude. Sensitivities
and upper bounds from various upcoming and present interferometers are also shown. See main text
for more details.

the global cosmic string induced signal offers detection possibility at multiple interferometers,
the larger peak from first order phase transition provides better visibility. Combining the
two features, a unique gravitational wave signal emerges for models with two scalars, one
breaking a global U(1) symmetry at ultraviolet scales and the other undergoing a strong
first order phase transition at lower scales.14

4 GW from Majorana mass genesis in a three-majoron model

A straightforward generalization of the model is to include three complex scalars with
hierarchical VEVs, so that each scalar gives mass to one of the RH neutrinos,

−LNI+ϕI
⊃
(

LahaIHNI +
y1
2 ϕ1N c

1N1 +
y2
2 ϕ2N c

2N2 +
y3
2 ϕ3N c

3N3 + h.c.
)
+ V0(ϕ1, ϕ2, ϕ3).

(4.1)

The Lagrangian has a U(1)L1 ×U(1)L2 ×U(1)L3 symmetry, with each U(1) corresponding
to each scalar.15 We denote the VEVs as ⟨ϕI⟩ ≡ vI and without loss of generality assume

14GW spectra where both contributions from cosmic strings and phase transition combined together were
also found in [31, 32].

15Here we do not identify La with the flavor eigenstates (a = e, µ, τ). Then, realistic lepton mixing arises
when the Yukawa matrix haI is rotated to the flavor basis.
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λI vI [GeV] MI [GeV] CI [GeV] α β/H⋆ T⋆ [GeV] ⟨φI⟩trueT⋆
[GeV]

D 0.00027 1188.2 186.5 10.79 0.30 241.37 5196.52 1.50× 105

E 0.00029 2.32× 105 3.63× 104 1523.02 0.30 203.53 6.7× 105 1.88× 107

Table 3. Benchmark point for gravitational wave signal from first order phase transition of φ1,
denoted by D (I = 1) and φ2, denoted by E (I = 2). Taken together, the parameters given in this
table constitute one benchmark point for the three-majoron model.

v3 ≫ v2 ≫ v1. The tree-level scalar potential is given by

V0(ϕ1, ϕ2, ϕ3) =
∑

I=1,2,3

[
−µ2

Iϕ∗
IϕI + λI(ϕ∗

IϕI)2
]
+

1,2,3∑
I,J,I ̸=J

ζIJ

2 (ϕ∗
IϕI)(ϕ∗

JϕJ). (4.2)

After spontaneous breaking of the global U(1) symmetries, the three RH neutrinos get nonzero
Majorana mass from the VEV of ϕ1, ϕ2, ϕ3. Assuming these VEVs are along the radial axis,
one can identify the phase part of the complex scalars as massless majorons.

The mixing terms ζIJ in eq. (4.2) introduce a zero temperature cubic term to the effective
potential of a scalar with smaller VEV. As before, the phase transition of ϕ3 occurring at
around the scale v3 is not expected to generate any strong gravitational wave signal, since
there is no zero temperature cubic term in its effective potential. However, the spontaneous
breaking of U(1)L3 at this scale would generate global cosmic string induced gravitational
waves, which can be probed if v3 ≳ 1014 GeV. Suppose the phase transition of ϕ3 is completed
before the universe cools down to the scale v2, when ϕ2 undergoes a phase transition. The
quartic mixing of ϕ2 with ϕ3 now introduces a zero temperature cubic term to the thermal
effective potential of ϕ2, resulting in a strong first order phase transition and associated
gravitational wave from the sound waves. At this stage ϕ1 does not play any role in the
phase transition of ϕ2. Then, during the phase transition of ϕ1 at around the scale v1, the
other two scalars have already completed their phase transition and together they would
introduce an effective zero temperature cubic term from their mixing with ϕ1, resulting in a
strong phase transition and subsequent gravitational wave signal.

Because of the assumed hierarchy v3 ≫ v2 ≫ v1, the cubic terms for the phase transition
of ϕ2 and ϕ1 depend predominantly on the mixing parameters ζ23 and ζ12, respectively,
C2 ≃ v2ζ23/(4λ3) and C1 ≃ v1ζ12/(4λ2). The mass parameters µI can be expressed from
minimization of the zero-temperature tree-level potential as

µ2
I = λIv2I +

∑
J ̸=I

ζIJ

2 v2J . (4.3)

As before, we will treat the symmetry breaking scales vI and the cubic terms CI as model
parameters instead of µI and ζIJ , since the latter can be determined from the former in
conjugation with the rest of the parameters λI .

Typically the percolation temperature T⋆ is proportional to the VEV of the corresponding
scalar undergoing the phase transition. From eq. (2.39), this implies that the combined effect
of the phase transition of the three scalars may yield a double peaked gravitational wave

– 22 –



J
H
E
P
0
5
(
2
0
2
4
)
0
6
8

Figure 5. Gravitational wave spectrum from first order phase transition of ϕ1 and ϕ2, with
corresponding parameters shown in rows D and E , respectively, in table 3, and from cosmic string
formed by spontaneous breaking of the global U(1)L3 symmetry by ϕ3 at v3 = 2×1014 GeV. Individual
GW contributions are shown with dotted, dashed and dot-dashed lines, while the combined spectrum
is shown with a solid curve. Band in GW spectrum from phase transition represent the possible O(0.1)
suppression in the parameter Ω̃gw.

spectrum, with one peak at a lower frequency due to the phase transition of ϕ1, and another
peak at a higher frequency due to the phase transition of ϕ2. Together with a global cosmic
string induced gravitational wave spectrum from U(1)L3 breaking, the combined amplitude
of the gravitational wave signal may resemble twin peaks over a slightly slanted plateau,
if the phase transition signals are sufficiently strong.16 In table 3, we show a benchmark
point consisting of the phase transition of ϕ1, denoted by D and the phase transition of ϕ2,
denoted by E , that together with v3 = 2 × 1014 GeV generate the combined gravitational
wave signal shown in figure 5.17 Notice that in this case we have assumed that at each
phase transition N = 1, corresponding to a situation where only the RH neutrino species NI ,
coupling to its associated scalar field ϕI undergoing the phase transition, is fully thermalised,
while the other two either have fully decayed or have not yet thermalised. This assumption
is quite natural because of the strong hierarchy we are assuming for the vI ’s, implying
that a strong hierarchy of the RH neutrino mass spectrum and in turn of the equilibration
temperatures (see eq. (2.13).

16This is, of course, assuming TRH > v3, otherwise the signals that can be generated only above a given
TRH would not appear.

17The corresponding model parameters are ζ12 = 0.0032, ζ23 = 0.0051, µ1 = 4.47 × 1012 GeV, µ2 = 1.01 ×
1013 GeV, µ3 = 6.32 × 1012 GeV, taking λ3 = 0.001 and ζ13 = 0.001.
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5 Conclusion

We have investigated the gravitational wave signatures of the majoron model of neutrino
mass generation and have identified two sources of gravitational waves. In the simplest single
majoron model, a complex scalar couples to the RH neutrinos and generates their Majorana
mass after spontaneously breaking the global lepton number symmetry. The breaking of a
global symmetry creates global cosmic strings which can produce gravitational waves, with a
different spectrum as compared to that from local Nambu-Goto strings. In the observable
frequency window, the amplitude of this signal mildly declines as log3[1/f ], and still remains
sensitive to upcoming GW interferometers if the symmetry is broken at a scale in between
1014 − 1015 GeV. However, there is a possible additional source of GWs in this model, since
the complex scalar gets a nonzero vacuum expectation value and in the process might undergo
a first order phase transition. If such a phase transition is sufficiently strong, it could generate
a peaked GW signal which may tower over the global cosmic string signal.

For the simplest model with just one complex scalar coupling to all three RH neutrinos,
we confirm the result of ref. [20] that the phase transition signal is too feeble to be detected.
However, we point out that the global cosmic string signal even in this model can be detected
if the lepton number symmetry is broken at around 1014 − 1015 GeV.

We then considered an extended majoron model, introducing two complex scalars with
hierarchical vacuum expectation values, one giving mass to the heaviest RH neutrino and the
other to the remaining two lighter ones. Assuming the scalars are charged under separate
lepton number symmetries and have a quartic mixing between them, we explored the global
cosmic string induced GW spectrum which is generated when the heaviest RH neutrino
gets a mass. We showed that, while the phase transition of the associated scalar remains
weak, its mixing with the other scalar introduces a zero-temperature cubic term to the
potential of the latter, and greatly enhances the GW signal from its phase transition. We
have discussed examples where the combined GW spectrum of the model may have an
observable bump or peak due to the phase transition signal, visible in the slanted plateau
region from the cosmic string signal, where such a bump may appear anywhere over the
whole range of observable frequencies.

Finally, we have discussed an interesting possibility of a double peaked spectrum which
may occur over the global cosmic string plateau region, where such a spectrum may arise from
an extension of the majoron model to include three complex scalars. This rather plausible
model is easily implemented for a hierarchical RH neutrino mass spectrum, where each
RH Neutrino gets its mass from the spontaneous breaking of its respective lepton number
symmetry. Such a double peaked spectrum provides a characteristic signature of the three
majoron model of neutrino mass generation.

We have also noticed how the observation of such a GW spectrum would give us a precious
information on the cosmological history and in particular on the reheating temperature of the
universe. We have implicitly assumed that this was higher than all vacuum expectation values
and critical temperatures so that the GW spectra are produced through the entire range
of corresponding frequencies. However, if the reheating temperature is below the vacuum
expectation value of one of the complex scalar fields, then the phase transition would not take
place and the signal would be absent. At the same time it should be mentioned that the model
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Figure 6. Contours of the peak GW amplitude from sound waves as a function of α and β/H⋆.

we have presented can be clearly combined with (minimal) leptogenesis [16] since the decays
of the RH neutrinos would produce a B − L asymmetry that can then be partly converted
into a baryon asymmetry. Therefore, the observation of the GW spectra in this model would
also provide a strong test of leptogenesis. Moreover, as proposed in [85], a phase transition
of the complex scalar field can be also associated to the production of a dark RH neutrino
playing the role of dark matter [86]. Future GW experiments have then the potential to shed
light on neutrino mass genesis, cosmological history and origin of matter of the universe.
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A Dependence of peak GW amplitude on FOPT parameters

The peak of the GW amplitude from sound waves can be expressed as a function of FOPT
parameters α and β/H⋆, as seen from eq. (2.35). In figure 6 we show contours of log10Ω

peak
sw0 h2.

This plot shows that typically the peak amplitude of GW sourced by sound waves would be
weaker than 10−11, as we have seen in the benchmark points of figures 4 and 5.
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