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1 Introduction

Formulating the holographic principle in asymptotically flat spacetime is an intriguing but
difficult problem that has recently attracted much attention. Using bottom-up approaches
and properties of the bulk theory, one can deduce kinematical and dynamical constraints
on putative dual theories. Ultimately, the hope is that these constraints will be sufficiently
restrictive to identify explicit candidates for dual theories. In this endeavor, two main
directions of investigation have been explored. The first approach, coined as Carrollian
holography [1–19], suggests that gravity in four-dimensional (4D) asymptotically flat spacetime
is dual to a 3D Carrollian CFT (also called conformal Carrollian field theory, or just BMS
field theory) living at null infinity I . Carrollian CFTs are field theories exhibiting BMS
symmetries as spacetime symmetries, and can typically be obtained from standard relativistic
CFTs by taking the speed of light to zero, i.e. c → 0 [20]. In the second approach, called
celestial holography [21–27] (see also [28–31] for reviews), the putative dual theory is a 2D
CFT living on the celestial sphere, which is referred to as the celestial CFT (or CCFT for
short). Although these two roads seem a priori disconnected, it has been shown in [16–
18] that they are actually related, offering a beautiful and non-trivial interplay between
Carrollian physics and celestial amplitudes to tackle the problem of flat space holography.
Interestingly, twistor theory is intertwined with both these approaches: twistor spaces are
naturally constructed at null infinity [32, 33] in such a way that Carrollian data can be
re-expressed as twistor data [34, 35] providing top-down approaches to both Carrollian
holography [36–41] and celestial holography [42–45].

Carrollian and celestial holography have been successfully applied in different frameworks.
The celestial approach has been intimately tied to the S-matrix since its inception: it involves
rewriting scattering amplitudes in the boost eigenstate basis rather than in the usual energy
eigenstate basis, hence highlighting the conformal properties of the amplitudes. For massless
particles, this change of basis is implemented via a Mellin transform and the resulting
amplitudes are referred to as celestial amplitudes. They are then naturally interpreted as
correlation functions of a 2D CFT on the celestial sphere. The Lorentz symmetries and the
subleading soft graviton theorem of scattering amplitudes provide the global and local 2D
conformal symmetries of this theory [36, 46–48]. This dictionary has been successfully applied
to extract CCFT correlation functions from scattering amplitudes. At tree-level, the functional
form of the four point celestial amplitude involving massless particles of arbitrary helicity has
been identified in [27, 49, 50]. The MHV and NMHV celestial gluon amplitudes have been
derived in [51] and the resulting functions are generalized hypergeometric functions. It is
worth pointing out that even at tree-level, these functions are as complex as those obtained
in the evaluation of multi-loop Feynman integrals. Consequently, loop-level computations of
celestial amplitudes have largely been restricted to four points [52, 53], except for the rational
one-loop amplitudes that have special configurations of helicities [54].

The celestial dictionary provides new insights into structural statements about amplitudes
using the CFT framework. For example, the soft theorems for scattering amplitudes are
rewritten as conformally soft theorems for celestial amplitudes [25, 42, 50, 55, 56], which
then have a natural interpretation as Ward identities constraining the 2D CCFT correlators.
Moreover, the collinear limits of amplitudes yield the celestial OPEs [57, 58], from which
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symmetry algebras of soft operators can be deduced [59–67]. These celestial symmetry
algebras can be alternatively derived from the classical phase space of gravity and Yang-Mills
theory [68, 69], and they find a natural geometric interpretation in twistor space [40, 45, 70, 71]
where they are realized as local symmetries.

Analogously, one could attempt to reformulate the S-matrix in a Carrollian language.
In fact, as advocated in [16–18], using a Fourier transform, scattering amplitudes can be
written in position space and then naturally interpreted as correlation functions of Carrollian
operators at null infinity. For this reason, we will refer to these position space amplitudes at
I as Carrollian amplitudes. However, by contrast with the celestial case, few results exist in
that regard: the two-point Carrollian amplitude has been computed in [18, 72], while the
three-point amplitude has been derived in split signature in [73] using an embedding space
formalism, and in Lorentzian signature in [74] by pushing bulk correlators of massless fields
to infinity. These low-point amplitudes are completely determined by the symmetries and
do not impose any dynamical constraints on the putative dual theory. Four-point position
space amplitudes have been discussed in [75] using a modified Mellin transform.

In this paper, pursuing the analysis initiated in [16–18], we derive some fundamental
results concerning Carrollian amplitudes, which are subsequently interpreted in the language
of Carrollian CFT. More specifically, we focus on tree-level amplitudes in Yang-Mills
and Einstein gravity and compute their Carrollian counterparts, offering strong dynamical
constraints on the putative Carrollian CFT at null infinity. We provide an expression for
n-point MHV amplitudes of arbitrary multiplicities for generic kinematics. Surprisingly, we
find that these Carrollian amplitudes involve only simple rational functions and exponentials
of the kinematics in contrast to the transcendental behaviour of their celestial counterparts.
Moreover, we show that the collinear limit of amplitudes yields a notion of Carrollian OPE in
the putative dual theory at null infinity. We check that this definition of OPE is meaningful,
which requires much care due to the ultra-local nature of Carrollian CFTs. Smearing the
Carrollian OPEs on the generators of null infinity allows to obtain the action of the celestial
symmetry algebras (Lw1+∞ and S-algebra for gravity and Yang-Mills, respectively) in the
Carrollian CFT. At each step of the presentation, we relate our Carrollian results with
their celestial counterparts using the dictionary established in [16, 18], and comment on
the similarities and differences between the two approaches. Finally, we provide a novel
derivation of the Fourier correspondence between asymptotic data and momentum space
data that manifests the full Lorentz symmetries using homogeneous coordinates on I and
on-shell momentum space. In this framework, conformal invariance can be checked simply
by ensuring that weights balance. We go on to use this framework to relate twistor wave
functions with the asymptotic data at null infinity, offering a direct connection between
twistor space and Carrollian CFT in split signature.

The paper is organized as follows. In section 2, we present some elements of Carrollian
CFT that are necessary for the Carrollian interpretation of position space amplitudes. In
section 3, we explain how to compute Carrollian amplitudes from the usual scattering
amplitudes in momentum space. We also review the link with the celestial amplitudes, and
relate the integral transforms considered in [16, 18] with the modified Mellin transform
discussed in [17]. In sections 4, 5 and 6, we respectively derive the two-, three- and four-point
Carrollian amplitudes and connect with previous literature. In section 7, we extend the
previous results to n-point tree-level Carrollian amplitudes in the MHV sector. We comment
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on the simplicity of the Carrollian expressions compared to their celestial counterparts. In
section 8, we comment on the UV/IR behaviours of Carrollian amplitudes in a similar spirit
than the discussion presented in [49] for celestial amplitudes. In section 9, we express the
collinear limits of amplitudes in a Carrollian language and find that it leads to the definition
of Carrollian OPE. In section 10, using the Carrollian OPEs, we explain how celestial
symmetry algebras act on the Carrollian operators at I . Section 11 gives a new proof of the
relationship between momentum space and Carrollian wavefunctions and connects Carrollian
CFT with twistor space wave functions in split signature. Finally, in section 12, we discuss
some implication of our work for future endeavours.

2 Elements of Carrollian CFT

In Carrollian holography, the putative dual theory lives at null infinity1 I ≃ R×S , where S

is a two-dimensional surface, which will be the celestial Riemann sphere in Lorentzian signature
(S ≃ S2) or the celestial Lorentzian torus in split signature (S ≃ LT 2 = S1 × S1/Z2). We
denote xa = (u, z, z̄) the coordinates at I , where u is a null or retarded time coordinate, and
(z, z̄) are coordinates on S that are complex conjugates in Lorentzian signature, and real
in split signature. From a geometric perspective, the BMS symmetries are the symmetries
of I endowed with its null angle structure or strong conformal structure [76–79]. This has
more recently been recast in terms of a Carrollian structure at I [80, 81]. Both formulations
include degenerate metrics ds2 = qabdxadxb = 0du2+2dzdz̄ defined up to conformal rescalings
qab ∼ ω2qab by some function ω(z, z̄) > 0. The null angles are a specification of the ratio
du : ds whereas the Carrollian structure introduces the vector field na∂a = ∂u in the kernel
of the metric, qabn

b = 0 subject to the conformal rescaling law na ∼ ω−1na. This freedom
comes from the ambiguity to choose the finite part of the conformal factor in the conformal
compactification of the bulk spacetime [79].2 One often talks about conformal Carrollian
structure, or universal structure [82, 83]. Hence, the BMS symmetries, or equivalently, the
conformal Carrollian symmetries, are generated by vector fields ξ = ξa∂a at I preserving
the Carrollian structure, up to some scaling α(z, z̄),

Lξqab = 2αqab, Lξna = −αna. (2.1)

The solution ξ of (2.1) is given explicitly by

ξ = (T + uα)∂u + Y∂z + Ȳ∂z̄, α = 1
2(∂zY + ∂z̄Ȳ) (2.2)

where T (z, z̄) is the supertranslation parameter and (Y(z), Ȳ(z̄)) are the superrotation
parameters satisfying the conformal Killing equation in two dimensions, i.e. ∂zȲ = 0 = ∂z̄Y.
The vector fields (2.2) form an algebra called the (extended) BMS [84–87] or conformal
Carrollian algebra [80, 81] (we will now use these two terminologies interchangeably).

1As argued in [16, 18], the dual Carrollian CFT lives on both I + and I − in Lorentzian signature. For
simplicity, we will only consider the component I + in the presentation, but we refer to these references for
the detailed construction.

2In this paper, we work with the flat metric on S , which can be obtained in Lorentzian signature at the
expanse of sending a point to infinity (often the round metric is used but this leads to more complicated for-
mulae).
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The conformal symmetries in two dimensions form an infinite-dimensional algebra,
out of which one can define the global conformal subalgebra SL(2,C), which is finite di-
mensional. Similarly, the conformal Carrollian symmetries in three dimensions form an
infinite-dimensional algebra, out of which one can define the global conformal Carrollian
algebra by taking

T (z, z̄) = 1, z, z̄, zz̄, Y(z) = 1, z, z2, Ȳ(z̄) = 1, z̄, z̄2 (2.3)

for the parameters in (2.2). The conformal Carrollian algebra in three dimensions is isomorphic
to the Poincaré algebra in four dimensions, the latter being symmetry of the vacuum in the
bulk theory (we refer e.g. to appendix B of [18] for the explicit isomorphism).

In Carrollian holography, the putative dual theory is a Carrollian CFT, which is defined as
a field theory exhibiting conformal Carrollian symmetries as spacetime symmetries. As we will
see, while the symmetries (2.2) might look reminiscent of those of a 2D CFT, the additional
null time coordinate u has some profound implications. Examples of Carrollian CFTs have
been broadly discussed in the literature and are often obtained by taking the Carrollian limit
of CFTs, which corresponds to sending the speed of light to zero, i.e. c → 0. The simplest
example is probably the 2D conformal Carrollian scalar field [8, 88], or its conformally coupled
analogue in higher dimension [89–91]. Other examples of Carrollian field theories include e.g.
Carrollian electrodynamics and Yang-Mills [92–98], Carrollian gravity [94, 99–105], Carrollian
fermions [106–109], SUSY extensions [110, 111], and fractonic realizations [112–114]. There
exist two families of Carrollian CFTs, one called electric and the other magnetic, which
essentially depend on the choice of scalings of the fields with respect to the speed of light
in the limit. A systematic way to build Carrollian CFT actions without resorting to a limit
process is through the BMS geometric action construction presented in [115, 116]. This
construction has already been shown to be useful in the holographic description of gravity in
3D [117] and 4D non-radiative spacetimes [116, 118] in terms of a magnetic-type of boundary
Carrollian CFT. In this paper, we study the complementary sector, namely the one associated
with the radiation at null infinity which is relevant for massless scattering processes. This
sector will be instead described by an electric-type of Carrollian CFT.

In 2D CFT, one defines a notion of (quasi-)conformal primary field of conformal weights
(h, h̄) as a field O(h,h̄)(z, z̄) which transforms as

δY,ȲO(h,h̄) = [Y∂z + Ȳ∂z̄ + h∂zY + h̄∂z̄Ȳ]O(h,h̄) (2.4)

under (global) conformal transformations. This encodes the statement that the operator
O(h,h̄) takes values in (Ω1,0

S )h ⊗ (Ω0,1
S )h̄ so that it should be thought of as coming with a

factor of dzh ⊗ dz̄h̄, as a tensor on the Riemann surface S . Correlators in a 2D CFT obey
the global conformal Ward identities

n∑
i=0

[Y(zi)∂zi + Ȳ(z̄i)∂z̄i + hi∂ziY(zi) + h̄i∂z̄iȲ(z̄i)]⟨O(h1,h̄1)(z1, z̄1) . . .O(hn,h̄n)(zn, z̄n)⟩ = 0 ,

(2.5)
with (Y(zi), Ȳ(z̄i)) taken as in (2.3).

In 3D Carrollian CFT, the variable u takes values in (Ω1,0
S )−

1
2 ⊗ (Ω0,1

S )−
1
2 on S so that

one defines a notion of (quasi-)conformal Carrollian primary of weights (k, k̄) as a field

– 5 –



J
H
E
P
0
5
(
2
0
2
4
)
0
1
2

Φ(k,k̄)(u, z, z̄) which transforms as follows under (global) conformal Carrollian symmetries [15,
16, 18, 98, 119, 120]:

δ(T ,Y,Ȳ)Φ(k,k̄) =
[(

T + u

2 (∂zY + ∂z̄Ȳ)
)

∂u + Y∂z + Ȳ∂z̄ + k∂zY + k̄∂z̄Ȳ
]
Φ(k,k̄) . (2.6)

There are two types of descendants in a Carrollian CFT: the descendants with respect to
∂z and ∂z̄, which will very much look like descendants in a 2D CFT, and the descendants
with respect to ∂u. The latter have the nice property that, if Φ(k,k̄) is a conformal Carrollian
primary, then ∂m

u Φ(k,k̄) is also a conformal Carrollian primary of weights (k + m
2 , k̄ + m

2 ), for
any positive integer m. The correlators in a Carrollian CFT,

⟨Φ(k1,k̄1)(u1, z1, z̄1) . . .Φ(kn,k̄n)(un, zn, z̄n)⟩, (2.7)

obey the (global) conformal Carrollian Ward identities [18, 95]
n∑

i=0

[(
T (zi, z̄i) +

ui

2 (∂ziY(zi) + ∂z̄iȲ(z̄i))
)

∂ui + Y(zi)∂zi + Ȳ(z̄i)∂z̄i

+ ki∂ziY(zi) + k̄i∂z̄iȲ(z̄i)
]
⟨Φ(k1,k̄1)(u1, z1, z̄1) . . .Φ(kn,k̄n)(un, zn, z̄n)⟩ = 0

(2.8)

where the parameters (T (zi, z̄i),Y(zi), Ȳ(z̄i)) are taken as in (2.3). As we will explain in the
next section, the Poincaré invariance of bulk scattering amplitudes can be holographically
recast as the global conformal Carrollian invariance (2.8), provided one introduces the notion
of Carrollian amplitudes.

3 Carrollian and celestial amplitudes

In this paper, we focus on scattering of massless particles (scalars, gluons or gravitons3).
We start with amplitudes in momentum space and use Mellin and Fourier transforms to
obtain celestial and Carrollian amplitudes, respectively.

We parametrize particle’s momenta by

pµ = ωqµ = ϵω (1 + zz̄, z + z̄,−i (z − z̄) , 1− zz̄) (3.1)

where ϵ = ±1 tells us if the particle is outgoing (+1) or incoming (−1), ω > 0 is the energy
and (z, z̄) are stereographic coordinates on the celestial sphere parametrizing the direction of
the null momentum. We will refer to S-matrix elements in momentum space as scattering
amplitudes and denote them by

An

(
{ω1, z1, z̄1}ϵ1

J1
, . . . , {ωn, zn, z̄n}ϵn

Jn

)
(3.2)

where n denotes the total number of particles, and Ji the particle helicities. Celestial
amplitudes are obtained from momentum space scattering amplitudes (3.2) by performing
Mellin transforms [21–27],

Mn

(
{∆1, z1, z̄1}ϵ1

J1
, . . . , {∆n, zn, z̄n}ϵn

Jn

)
=

n∏
i=1

(∫ +∞

0
dωi ω∆i−1

i

)
An

(
{ω1, z1, z̄1}ϵ1

J1
, . . . , {ωn, zn, z̄n}ϵn

Jn

) (3.3)

3For half-integral spin, some of the conventions below require some minor adjustments.
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where ∆i denotes the eigenvalue with respect to the Lorentz boost generator along the
direction fixed by the null momentum pµ

i . These amplitudes being expressed in a boost
eigenstates basis, they exhibit nice transformation properties under conformal transformations
on the celestial sphere. In particular, they satisfy the 2D CFT Ward identities (2.5) for
hi = ∆i+Ji

2 and h̄i = ∆i−Ji
2 , which allows us to interpret (3.3) as a 2D CFT correlation

function of operators (2.4) inserted on the celestial sphere

Mn

(
{∆1, z1, z̄1}ϵ1

J1
, . . . , {∆n, zn, z̄n}ϵn

Jn

)
≡ ⟨Oϵ1

∆1,J1
(z1, z̄1) . . .Oϵn

∆n,Jn
(zn, z̄n)⟩ . (3.4)

This identification constitutes the key ingredient of the celestial holography dictionary.
Analogously, as discussed in [18, 121, 122], see also the proof in section 11.2, momentum

space scattering amplitudes (3.2) are transformed to position space amplitudes at I by
Fourier transforms

Cn

(
{u1, z1, z̄1}ϵ1

J1
, . . . , {un, zn, z̄n}ϵn

Jn

)
=

n∏
i=1

(∫ +∞

0

dωi

2π
eiϵiωiui

)
An

(
{ω1, z1, z̄1}ϵ1

J1
, . . . , {ωn, zn, z̄n}ϵn

Jn

)
.

(3.5)

For standard momentum space wave-functions, i.e., as defined by (11.9), then by (11.11)
and (11.12), the corresponding wave functions at I will be a potential for the leading
radiation field at I [79, 123]: it follows from Lemma 11.1 that to obtain the radiation field
from the Carrollian wave function we must apply ∂

|ϵJ |
u . Thus for gravity this transform gives

the asymptotic shear σ̄ = Czz which is related to the leading radiation field by Ψ0
4 = ¨̄σ0

and for Maxwell it gives the asymptotic potential az whose ∂u derivative gives the Maxwell
radiation field. We will refer to position space amplitudes at I (3.5) as Carrollian amplitudes,
as by construction, they satisfy4

n∑
i=0

[(
T (zi, z̄i)+

u

2 (∂ziY(zi)+∂z̄iȲ(z̄i))
)

∂ui+Y(zi)∂zi+Ȳ(z̄i)∂z̄i

+1+ϵiJi

2 ∂ziY(zi)+
1−ϵiJi

2 ∂z̄iȲ(z̄i)
]
Cn

(
{u1,z1, z̄1}ϵ1

J1
, . . . ,{un,zn, z̄n}ϵn

Jn

)
=0 ,

(3.6)

which corresponds to the global conformal Carrollian Ward identities at null infinity (2.8)
after setting

ki =
1 + ϵiJi

2 , k̄i =
1− ϵiJi

2 . (3.7)

These symmetry properties follow directly from the manifestly conformally invariant formula-
tion of the Fourier transform (3.5) discussed in section 11.2.

Thus, by analogy with the celestial case, Carrollian amplitudes (3.5) will be interpreted
as Carrollian CFT correlators of operators (2.6) inserted at null infinity [16, 18]

Cn

(
{u1, z1, z̄1}ϵ1

J1
, . . . , {un, zn, z̄n}ϵn

Jn

)
≡ ⟨Φϵ1

(k1,k̄1)
(u1, z1, z̄1) . . .Φϵn

(kn,k̄n)
(un, zn, z̄n)⟩ (3.8)

4As discussed in section 2, the global conformal Carrollian algebra is isomorphic to the Poincaré algebra
and the statement (3.6) is just a holographic reformulation of the Poincaré invariance of the bulk amplitudes.
We refer to [18] for a detailed derivation of (3.6) for amplitudes in position space at I .
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where the Carrollian weights (ki, k̄i) are fixed in terms of the particle helicites through (3.7).
In the relation (3.8), the Carrollian CFT operators are identified with the boundary values
of the bulk operators obtained by using the stationary phase approximation in the limit
r → ∞ [18]. Moreover, as shown in [98], the transformations (2.6) with weights (3.7) precisely
match with the unitary representations of the global conformal Carrollian algebra induced
at null infinity. Hence, inspired by the AdS/CFT terminology, the identification (3.8) can
be seen as the extrapolate dictionary for Carrollian holography.

As explained below (2.6), ∂u-descendants of conformal Carrollian primaries are also
primaries. Therefore, the following expression

Cm1...mn
n

(
{u1,z1, z̄1}ϵ1

J1
, . . . ,{un,zn, z̄n}ϵn

Jn

)
= ∂m1

u1 . . .∂mn
un

Cn

(
{u1,z1, z̄1}ϵ1

J1
, . . . ,{un,zn, z̄n}ϵn

Jn

)
=

n∏
i=1

(∫ +∞

0

dωi

2π
(iϵωi)mieiϵiωiui

)
An

(
{ω1,z1, z̄1}ϵ1

J1
, . . . ,{ωn,zn, z̄n}ϵn

Jn

)
= ⟨∂m1

u1 Φϵ1
(k1,k̄1)

(u1,z1, z̄1) . . .∂mn
un

Φϵn

(kn,k̄n)
(un,zn, z̄n)⟩

(3.9)

also satisfies the global conformal Carrollian Ward identities (2.8), but with shifted wights
ki = 1+mi+ϵiJi

2 and k̄i = 1+mi−ϵiJi
2 . We will show in section 9 that the Carrollian OPEs

presented in equations (9.9), (9.13), (9.14) and (9.15) require the inclusion of all the ∂u-
descendants in the theory. Besides the particular case Cn ≡ C0...0

n defined in (3.5), it will also
be interesting for holographic purposes to consider the case C̃n ≡ C1...1

n given explicitly by

C̃n

(
{u1, z1, z̄1}ϵ1

J1
, . . . , {un, zn, z̄n}ϵn

Jn

)
:= ∂u1 . . . ∂unCn

(
{u1, z1, z̄1}ϵ1

J1
, . . . , {un, zn, z̄n}ϵn

Jn

)
=

n∏
i=1

(∫ +∞

0

dωi

2π
iϵiωi eiϵiωiui

)
An

(
{ω1, z1, z̄1}ϵ1

J1
, . . . , {ωn, zn, z̄n}ϵn

Jn

) (3.10)

which, in practice, exhibits nicer properties than (3.5): it is free from divergences and
logarithms [18], see e.g. section 4. Another reason why the correlator of first descendants
∂uΦϵ

(k,k̄) (3.10) is better behaved than (3.5) can be seen in the case of both Maxwell theory
and gravity. For Maxwell Φϵ

(k,k̄) is identified with the asymptotic potential which is subject to
residual gauge freedom, memory and so on. Upon taking ∂u we obtain the radiation field which
is gauge invariant and not subject to memory. Analogously, for gravity, Φϵ

(k,k̄) is identified with
the asymptotic shear Czz, which transforms inhomogeneously under supertranslations (i.e.
as a quasi-conformal Carrollian primary in the terminology of (2.6)), while the Bondi news
Nzz = ∂uCzz transforms homogeneously under supertranslations and is free from displacement
memory. Furthermore, both the Maxwell radiation field and the Bondi news, are sufficient
to classically reconstruct the bulk radiative field through the Kirchhoff-d’Adhémar formula
given in (11.10) following [79, 124] (see also [18] for a review of this formula in the current
notation); in section 11.2 we derive its connection with the Fourier transform above in a
Lorentz invariant framework.

Notice that, in (3.9), we can analytically continue mi = δi − 1 to the complex plane
(δi ∈ C), to obtain the integral transform

n∏
i=1

(∫ +∞

0

dωi

2π
(iϵωi)δi−1eiϵiωiui

)
An

(
{ω1, z1, z̄1}ϵ1

J1
, . . . , {ωn, zn, z̄n}ϵn

Jn

)
, (3.11)
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which precisely corresponds to the modified Mellin transform originally introduced in [125, 126]
to regulate the Mellin transform of graviton amplitudes. It was later used in [17] to relate
scattering amplitudes with Carrollian correlators. However, the value of δi was unspecified
much like ∆i in the original Mellin transform (3.3). This clarifies the role of this integral
transform in the present framework of Carrollian amplitudes. In particular, from the above
considerations, the expression (3.11) transforms as a correlator of n conformal Carrollian
primary fields with weights ki = δi+ϵiJi

2 and k̄i = δi−ϵiJi
2 , in agreement with the above

references.
Finally, one can obtain Carrollian amplitudes (3.5) and (3.10) directly from the celestial

amplitudes (3.3), which is one of the key ingredients in the Carrollian/celestial correspondence
discussed in [16, 18]. This is done by combining an inverse Mellin transform with a Fourier
transform in (3.3), which yields explicitly [16, 18, 127]:

Mn

(
{∆1, z1, z̄1}ϵ1

J1
, . . . , {∆n, zn, z̄n}ϵn

Jn

)
=

n∏
i=1

(
(−iϵi)∆iΓ[∆i]

∫ +∞

−∞

dui

(ui − iϵiε)∆i

)
Cn

(
{u1, z1, z̄1}ϵ1

J1
, . . . , {un, zn, z̄n}ϵn

Jn

) (3.12)

or

Mn

(
{∆1,z1, z̄1}ϵ1

J1
, . . . ,{∆n,zn, z̄n}ϵn

Jn

)
=

n∏
i=1

(
(−iϵi)∆iΓ[∆i−1]

∫ +∞

−∞

dui

(ui−iϵiε)∆i−1

)
C̃n

(
{u1,z1, z̄1}ϵ1

J1
, . . . ,{un,zn, z̄n}ϵn

Jn

) (3.13)

where we take the regulator ε → 0+. Using the dictionaries (3.4) and (3.8), the above
integral transforms simply trade the time dependence of the Carrollian operators at I for
the conformal dimension of the celestial CFT correlators. In particular, the Carrollian extrap-
olate dictionary discussed below (3.8) is in perfect agreement with the celestial extrapolate
dictionary introduced in [128]. Notice that this recasting of the information from the 3D
Carrollian CFT to the 2D celestial CFT is not anodyne: it has dramatic consequences on
the 2D CFT structure, such as the appearance of distributional branches for the low-point
correlation functions. In the next sections, we will illustrate these features and systematically
check our results through the above integral formulae to close the triangle in figure 1.

4 Two-point amplitudes

As a warm-up, we review the computation of the two-point Carrollian amplitude discussed
in [18, 72]. We also comment on the advantage of working with Carrollian amplitudes of the
form (3.10) instead of (3.5). We will then derive the corresponding celestial amplitude by
implementing the transform (3.12). The 2-point tree-level scattering amplitude reads as

A2({ω1, z1, z̄1}−J1
, {ω2, z2, z̄2}+J2

) = κ2
J1,J2 π

δ(ω1 − ω2)
ω1

δ(2)(z1 − z2) δJ1,J2 , (4.1)

where we took the first and the second particle as incoming and outgoing, respectively. In
this expression, κJ1,J2 is the normalization that will depend on the particles involved.
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Position space, I

Cn({ui, zi, z̄i}ϵi
Ji
)

Mellin space
Mn({∆i, zi, z̄i}ϵi

Ji
)

Momentum space
An({ωi, zi, z̄i}ϵi

Ji
)

(3.12)

Fourier transform
(3.5)

Mellin transform
(3.3)

Figure 1. Interplay between the three bases of scattering in flat spacetime.

4.1 Carrollian amplitude

Applying the successive integral transforms as in (3.5), we find

C2({u1, z1, z̄1}−J1
, {u2, z2, z̄2}+J2

)

= 1
4π2

∫ +∞

0
dω1

∫ +∞

0
dω2 e−iω1u1eiω2u2A2({ω1, z1, z̄1}−J1

, {ω2, z2, z̄2}+J2
)

=
κ2

J1,J2

4π

∫ +∞

0

dω

ω
e−iω(u1−u2) δ(2)(z1 − z2) δJ1,J2 . (4.2)

As discussed in [18, 72], the integral in the last line

I0(u1 − u2) =
∫ +∞

0

dω

ω
e−iω(u1−u2) (4.3)

is divergent but can nevertheless be regulated as

Iβ(x) = lim
ε→0+

∫ +∞

0
dω ωβ−1 e−iωx−ωε = lim

ε→0+

Γ[β](−i)β

(x − iε)β
. (4.4)

In the limit β → 0+, we obtain

Iβ(x) =
1
β
−
[
γ + ln |x|+ iπ

2 sign(x)
]
+O(β), (4.5)

where γ is the Euler-Mascheroni constant. So (4.2) yields the regularized 2-point Carrollian
amplitude

C2({u1,z1, z̄1}−J1
,{u2,z2, z̄2}+J2

)= lim
β→0

κ2
J1,J2

4π

[ 1
β
−
(

γ+ln |u12|+
iπ

2 sign(u12)
)]

δ(2)(z12)δJ1,J2

(4.6)
where uij = ui − uj and zij = zi − zj . The u-independent regulated divergence ∼ β−1 and
the logarithmic behaviour might be seen as undesirable features for a 2-point correlation
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function. However, they are essential to satisfy the Carrollian Ward identities, see section 5.4
of [18]. A similar situation occurs for 2D CFT. For instance, consider a free scalar field
in 2D: the correlation function of the scalar field with itself is logarithmic, and one would
need to add a regulator to satisfy the conformal Ward identities. Usually, to circumvent
these subtleties, one considers correlation functions of descendants of the scalar field, which
exhibit standard 2D CFT correlation functions. Similarly, in a 3D Carrollian CFT, one can
consider correlation functions of ∂u-Carrollian descendants as in (3.9). Focusing on the first
descendants (3.10), we get the very simple expression

C̃2({u1, z1, z̄1}−J1
, {u2, z2, z̄2}+J2

) = lim
ε→0+

κ2
J1,J2

4π

1
(u12 − iε)2 δ(2)(z12) δJ1,J2 (4.7)

which matches with the usual electric branch of solutions of the Carrollian Ward identities.
This already suggests that the putative dual theory governing the Carrollian amplitudes
is an electric-type of Carrollian CFT.

4.2 Celestial from Carrollian

Let us now check the consistency of the triangle in figure 1. The 2-point celestial amplitude
has been computed in [27] and is obtained by applying (3.3) on (4.1) [18]:

M2({∆1, z1, z̄1}−J1
, {∆2, z2, z̄2}+J2

)

=
∫ +∞

0
dω1 ω∆1−1

1

∫ +∞

0
dω2 ω∆2−1

2 A2({ω1, z1, z̄1}−J1
, {ω2, z2, z̄2}+J2

)

= κ2
J1,J2 π

∫ +∞

0
dω ω∆1+∆2−3 δ(2)(z1 − z2) δα1,α2 = 2π2 κ2

J1,J2 δ(ν1 + ν2) δ(2)(z1 − z2) δJ1,J2 ,

(4.8)

where we assumed that the conformal dimension is on the principal series, ∆i = 1 + iνi

(νi ∈ R), and used ∫ +∞

0
dω ωiν−1 = 2π δ(ν) . (4.9)

Starting from (4.2) (or alternatively from (4.7)), we can apply the integral transforms (3.12)
(respectively (3.13)). The first integral over u1 gives

4π i∆1+1Γ[∆1] lim
ε→0+

∫ +∞

−∞

du1
(u1 + iε)∆1

I0(u1 − u2)

= 4πi lim
ε→0+

∫ +∞

−∞
du1

∫ +∞

0
ω∆1−1 eiωu1−ωε

∫ +∞

0

dω′

ω′ e−iω′(u1−u2)

= 8π2i lim
ε→0+

∫ +∞

0
dω ω∆1−2 eiωu2−ωε = 8π2i lim

ε→0+

i∆1−1Γ[∆1 − 1]
(u2 + iε)∆1−1 .

(4.10)

Now, the second integral yields

4π (−i)∆1+1Γ[∆1] lim
ε→0+

∫ +∞

−∞

du1
(u1 − iε)∆1

(
8π2i

i∆1−1Γ[∆1 − 1]
(u2 + iε)∆1−1

)

= 32π3 lim
ε→0+

∫ +∞

−∞
du2

i∆1−1Γ[∆1 − 1]
(u2 + iε)∆1−1

(−i)∆2Γ[∆2]
(u2 − iε)∆2

= 128π5δ(ν1 + ν2),
(4.11)
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where in the last equality, we assumed ∆i = 1 + iνi and identified the integral representation
of the delta function. Putting all together, we find the 2-point celestial amplitude

M2({∆1, z1, z̄1}−J1
, {∆2, z2, z̄2}+J2

) = 2π2 κ2
J1,J2 δ(ν1 + ν2) δ(2)(z12) δJ1,J2 , (4.12)

which reproduces (4.8) and closes the triangle.

5 Three-point amplitudes

Three point amplitudes involving massless particles vanish in a (3, 1) signature spacetime.
Thus, in this section, we work in Klein space which is a split signature spacetime with metric
η = diag (−,+,−,+) and whose conformal boundary is I = R × S where now S is the
Lorentzian torus LT 2 = S1×S1/Z2 [129]. Null momenta in Klein space can be parameterized
in a manner similar to (3.1) as5

pµ
i = ϵiq

µ
i = ϵiωi (1 + ziz̄i, zi + z̄i, zi − z̄i, 1− ziz̄i) . (5.1)

Here (zi, z̄i) are coordinates on a Poincaré patch of LT 2, ωi is the energy and ϵi = ±1 labels
the Poincaré patches which are now connected. For more details on how they relate to global
coordinates on LT 2, we refer the reader to [45, 129]. Null momenta admit a decomposition
into real spinor helicity variables

pαα̇ ≡ σµ
αα̇pµ = κακ̃α̇. (5.2)

These are defined up to a little group scaling κ → tκ, κ̃ → 1
t κ̃ (t ∈ R/{0}) and for the

parametrization in (5.1), we can set

κi =
√
2ωiϵi

(
1
zi

)
, κ̃i =

√
2ωi

(
1
z̄i

)
. (5.3)

Using the standard notation A3({ω1, z1, z̄1}ϵ1
J1

, {ω2, z2, z̄2}ϵ2
J2

, {ω3, z3, z̄3}ϵ3
J3
) ≡ A3(1J1 , 2J2 , 3J3),

the tree-level three-point scattering amplitudes are completely fixed by their helicities to be

A3(1J1 , 2J2 , 3J3) =

κJ1,J2,J3 [12]J1+J2−J3 [23]J2+J3−J1 [31]J3+J1−J2 , if J1 + J2 + J3 > 0 ,

κJ1,J2,J3⟨12⟩J3−J1−J2⟨23⟩J1−J2−J3⟨31⟩J2−J1−J3 , if J1 + J2 + J3 < 0
(5.4)

where we used the spinor-helicity notations [ij] = κ̃iα̇κ̃α̇
j and ⟨ij⟩ = κα

i κjα. We have left the
momentum conserving δ function implicit in the above formulae. We disregard amplitudes
with J1 + J2 + J3 = 0 as they do not lead to consistent four-particle interactions6 [130].
We will refer to the amplitudes on the first line of (5.4) as MHV and the second as MHV.
Finally, for some combinations of integer spins, it will be necessary to introduce an extra
colour index for these amplitudes to be compatible with spin-statistics. The case that will
be relevant to this paper is Yang-Mills theory with gauge group SU(N), corresponding to
J1 = J2 = −J3 = 1, where each particle transforms in the adjoint and the amplitude must be
multiplied by the structure constant fabc. In the rest of this paper, we will tacitly suppress
this, restoring it only when it is crucial.

5This parameterization is reached by Wick rotating the third component of (3.1).
6The only exception is the ϕ3 interaction.
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5.1 Carrollian amplitude

We will first focus on the MHV amplitudes. The corresponding Carrollian amplitude is
obtained by applying the definition (3.5) on (the first line of) (5.4):

CMHV
3 ({u1, z1, z̄1}ϵ1

J1
, {u2, z2, z̄2}ϵ2

J2
, {u3, z3, z̄3}ϵ3

J3
)

= κJ1,J2,J3
1

(2π)3
z̄J1+J2−J3
12 z̄J2+J3−J1

23 z̄J1+J3−J2
13

×
∫

dω1 dω2 dω3 eiϵ1ω1u1+iϵ2ω2u2+iϵ3ω3u3ωJ1
1 ωJ2

2 ωJ3
3 δ(4) (p1 + p2 + p3) .

(5.5)

We can rewrite the delta function by solving p1 + p2 + p3 = 0 for ω2, ω3, z1, z2:

δ(4) (p1 + p2 + p3) =
1

4 |z̄12z̄13|ω2
1

δ (z12) δ (z23) δ

(
ω2 +

z̄13
z̄23

ϵ1ϵ2ω1

)
δ

(
ω3 −

z̄12
z̄23

ϵ1ϵ3ω1

)
.

(5.6)
Re-injecting this into (5.5) yields the three-point Carrollian amplitude

CMHV
3 =κJ1,J2,J3

δ (z12)δ (z23)
4(2π)3 |z̄12z̄13|

|z̄12|J1+J2 |z̄23|−J1 |z̄31|J3+J1 Θ
(
− z̄13

z̄23
ϵ1ϵ2

)
Θ
(

z̄12

z̄23
ϵ1ϵ3

)
(sign z̄12)J1+J2−J3

×(sign z̄23)J2+J3−J1 (sign z̄13)J1+J3−J2

∫ +∞

0
dω1 e

iϵ1

(
u1−

z̄13

z̄23
u2+

z̄12

z̄23
u3

)
ω1

ωJ1+J2+J3−2
1

=κJ1,J2,J3

δ (z12)δ (z23)
4(2π)3 Θ

(
− z̄13

z̄23
ϵ1ϵ2

)
Θ
(

z̄12

z̄23
ϵ1ϵ3

)
X (z̄ij ,Ji)S (z̄ij ,Ji)

× (iϵ1 sign(z̄23))J1+J2+J3−1 Γ(J1+J2+J3−1)
(z̄23u1−z̄13u2+z̄12u3+iϵ1 sign(z̄23)ε)J1+J2+J3−1 (5.7)

where7

X (z̄ij , Ji) = |z̄12|J1+J2−1 |z̄23|J2+J3−1 |z̄31|J3+J1−1 ,

S (z̄ij , Ji) = (sign z̄12)J1+J2−J3 (sign z̄23)J2+J3−J1 (sign z̄13)J1+J3−J2 .
(5.8)

Equation (5.7) should be regarded as a formal expression for the amplitude since the Γ
function is divergent when J1+J2+J3 = 1. In these cases, it should be regulated in a manner
similar to (4.3). We can obtain the three-point Carrollian amplitude of descendants (3.10)
by shifting Ji → Ji + 1 and multiplying by the appropriate factors:

C̃MHV
3 =κJ1,J2,J3

iϵ1ϵ2ϵ3 δ (z12)δ (z23) z̄12z̄13

4(2π)3 z̄223
Θ
(
− z̄13

z̄23
ϵ1ϵ2

)
Θ
(

z̄12
z̄23

ϵ1ϵ3

)

×X (z̄ij ,Ji)S (z̄ij ,Ji)
(iϵ1 sign(z̄23))J1+J2+J3+2Γ(J1+J2+J3+2)

(z̄23u1−z̄13u2+z̄12u3+iϵ1 sign(z̄23)ε)J1+J2+J3+2 . (5.9)

This expression is always finite since J1+J2+J3+2 > 0, ∀J1+J2+J3 > 0. For completeness,
we also display the three-point MHV Carrollian amplitudes of descendants which are simply

7The quantity S (z̄ij , Ji) defined in (5.8) is invariant under Lorentz transformations for integer Ji. For half
integers, it picks up a phase.
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obtained from the corresponding MHV ones by the replacements zij ↔ z̄ij and Ji → −Ji:

C̃MHV
3 =κJ1,J2,J3

iϵ1ϵ2ϵ3 δ (z̄12)δ (z̄23)z12z23

4(2π)3
z2

23
Θ
(
−z13

z23
ϵ1ϵ2

)
Θ
(

z12

z23
ϵ1ϵ3

)

×X (zij ,−Ji)S (zij ,−Ji)
(iϵ1 sign(z23))J1+J2+J3+2Γ(J1+J2+J3+2)

(z23u1−z13u2+z12u3+iϵ1 sign(z23)ε)J1+J2+J3+2 . (5.10)

Notice that the functional dependence of the holographic three-point Carrollian amplitudes
found here is compatible with the result derived in [73] using embedding space formalism.
Moreover, the expression obtained for the 3 graviton MHV Carrollian amplitude from (5.7)
is in agreement with the one computed in [75] via the modified Mellin transform.8

5.2 Celestial from Carrollian

Finally, as a cross-check of our diagram 1, we can perform the integral transform (3.12)
on (5.7) or (3.13) on (5.9) to obtain the three-point celestial amplitude M3. Defining

ũ1 = u1z̄23, ũ2 = u2z̄13, ũ3 = u3z̄12 (5.11)

in (5.7) and implementing the integral transform, we obtain

M3 = κJ1,J2,J3

δ (z12) δ (z23)
4 (2π)3 Θ

(
− z̄13

z̄23
ϵ1ϵ2

)
Θ
(

z̄12

z̄23
ϵ1ϵ3

)
X (z̄ij , Ji)S (z̄ij , Ji) (5.12)

N (∆i, ϵi)
|z̄12z̄23z̄13|

∫ ∞

−∞
dũ1 dũ2 dũ3

(
ũ1

z̄23
+ iϵ1ε

)−∆1 ( ũ2

z̄31
+ iϵ2ε

)−∆2 ( ũ3

z̄12
+ iϵ3ε

)−∆3

× (i ϵ1 sign (z̄23))J1+J2+J3−1 Γ (J1 + J2 + J3 − 1)
(ũ1 − ũ2 + ũ3 + iϵ1 sign(z̄23)ε)J1+J2+J3−1 . (5.13)

Here N (∆i, ϵi) =
∏3

k=1 (−iϵk)∆k Γ (∆k) contains all the factors arising from the integral
transform (3.12). The contours for ũ1, ũ2, ũ3 can be deformed such that they pick up the
discontinuities across the branch cuts along the negative ũi axes, leading to

M3 =
2iκJ1,J2,J3 δ (z12)δ (z23)

(2π)3 Θ
(
− z̄13

z̄23
ϵ1ϵ2

)
Θ
(

z̄12

z̄23
ϵ1ϵ3

)
X̃ (z̄ij ,Ji,∆i)S (z̄ij ,Ji)N (∆i, ϵi) (5.14)

sinπ∆1 sinπ∆2 sinπ∆3

∫ +∞

0
dũ1 dũ2 dũ3ũ−∆1

1 ũ−∆2
2 ũ−∆3

3
(iϵ1 sign(z̄23))J1+J2+J3−1 Γ(J1+J2+J3−1)
(ũ1−ũ2+ũ3+iϵ1 sign(z̄23)ε)J1+J2+J3−1 .

We have defined X̃ (z̄ij ,∆i, Ji) ≡ |z̄12|∆1+J1+J2−2 |z̄23|∆2+J2+J3−2 |z̄31|∆3+J3+J1−2. The three
integrals can now be performed successively to get

M3=− i

4 κJ1,J2,J3δ (z12)δ (z23)Θ
(
− z̄13

z̄23
ϵ1ϵ2

)
Θ
(

z̄12
z̄23

ϵ1ϵ3

)
X̃ (z̄ij ,Ji,∆i)S (z̄ij ,Ji) (5.15)

(−iϵ1)∆1(−iϵ2)∆2(−iϵ3)∆3 (iϵ1signz̄23)ν lim
ε→0

Γ(ν)ε−ν ,

where ν = ∆1 + ∆2 + ∆3 + J1 + J2 + J3 − 4. Using the limit formula

lim
ε→0

Γ (ν) ε−ν = 2π δ(ν), (5.16)

8In order to compare the two, we must set ∆i = 1 in that reference.
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we get an expression for the 3 point celestial amplitude

M3=
(−i)J1+J2+J3 π

2 κJ1,J2,J3δ (z12)δ (z23)Θ
(
− z̄13

z̄23
ϵ1ϵ2

)
Θ
(

z̄12
z̄23

ϵ1ϵ3

)
X̃ (z̄ij ,Ji,∆i)S (z̄ij ,Ji)

×(ϵ1)∆1(ϵ2)∆2(ϵ3)∆3δ (∆1+∆2+∆3+J1+J2+J3−4) . (5.17)

Particularizing the above formula to J1 = 1, J2 = 1, J3 = −1, this reproduces the 3 gluon
celestial amplitude of [27] upto an overall phase. Furthermore, denoting h̄k = ∆k−Jk

2 , we
can replace

z̄∆3+J1+J2−2
12 z̄∆2+J1+J3−2

31 z̄∆1+J2+J3−2
23 → 1

z̄h̄1+h̄2−h̄3
12 z̄h̄2+h̄3−h̄1

23 z̄h̄3+h̄1−h̄2
12

, (5.18)

on the support of the delta distribution of conformal dimensions. The right-hand side above
is the standard form for the conformal three point function.

6 Four-point amplitudes

In this section, we compute four-point Carrollian amplitudes in Yang-Mills and gravity.
These results can be recovered from (3.11) and (3.17) of [75] by setting λi to appropriate
values. As in a 2D CFT, the two- and three-point correlation functions in a Carrollian CFT
are completely fixed by symmetries while the four-point functions are not. They contain
dynamical information and constitute constraints on the putative dual Carrollian CFT. At
tree-level the only non-zero 4-point amplitudes are the MHV amplitudes, which are given by9

A4
(
1+1,2−1,3−1,4+1

)
=κ2

1,1,−1
⟨23⟩4

⟨12⟩⟨23⟩⟨34⟩⟨41⟩ =κ2
1,1,−1

ω2ω3
ω1ω4

z323
z12z34z41

, (6.1)

A4
(
1+2,2−2,3−2,4+2

)
=κ2

2,2,−2 (⟨23⟩[14])
4 1

stu
=κ2

2,2,−2
ω2ω3ω4

ω1

z423z̄
4
14

z12z̄12z13z̄13z14z̄14
(6.2)

where s = (p1 + p2)2, t = (p1 + p3)2 and u = (p1 + p4)2 are the Mandelstam variables.
Again, we have left the momentum conserving δ function implicit in the above formulas.
We will continue using (5.1) to parameterize the momentum, implicitly working in Klein
space. However, the results are also valid in Minkowski spacetime upon interpreting z̄i to
be the complex conjugate of zi.

6.1 Carrollian amplitude

In order to evaluate the Fourier transforms of (6.1) and (6.2), we first write the delta
distribution as

δ(4) (p1+p2+p3+p4)=
1

4ω4 |z24z̄13|2
δ

(
ω1+z

∣∣∣∣z24z12

∣∣∣∣2 ϵ1ϵ4ω4

)

×δ

(
ω2−

1−z

z

∣∣∣∣z34z23

∣∣∣∣2 ϵ2ϵ4ω4

)
δ

(
ω3+

1
1−z

∣∣∣∣z14z13

∣∣∣∣2 ϵ3ϵ4ω4

)
δ (z−z̄)

(6.3)
9For Yang-Mills theory, we are working with colour ordered amplitudes and as in the 3 particle case, we

are suppressing the colour indices on all the particles. For more details, we refer the reader to the review [131]
and the reference therein.
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where z = z12z34
z13z24

is the cross ratio and |zij |2 = zij z̄ij . Note that this is just a shorthand in
Klein space where zij and z̄ij are real and independent. As in the previous sections, we will be
interested in evaluating both the Carrollian amplitude C4 and the correlator of u-descendants
C̃4. Plugging (6.3) into (3.5) and (3.10) for n = 4, we get respectively

C4 =
1

(2π)4
δ (z − z̄)Θ

(
−z

∣∣∣∣z24z12

∣∣∣∣2 ϵ1ϵ4

)
Θ
(
1− z

z

∣∣∣∣z34z23

∣∣∣∣2 ϵ2ϵ4

)
Θ
(
− 1
1− z

∣∣∣∣z14z13

∣∣∣∣2 ϵ3ϵ4

)

×
∫ +∞

0
dω4e

iϵ4ω4

(
−u1z

∣∣∣ z24
z12

∣∣∣2+u2
1−z

z

∣∣∣ z34
z23

∣∣∣2− u3
1−z

∣∣∣ z14
z13

∣∣∣2+u4

)
1
ω4

A∗
4, (6.4)

C̃4 =
ϵ1ϵ2ϵ3ϵ4

(2π)4
δ (z − z̄)Θ

(
−z

∣∣∣∣z24z12

∣∣∣∣2 ϵ1ϵ4

)
Θ
(
1− z

z

∣∣∣∣z34z23

∣∣∣∣2 ϵ2ϵ4

)
Θ
(
− 1
1− z

∣∣∣∣z14z13

∣∣∣∣2 ϵ3ϵ4

)

×
∣∣∣∣z24z34z14z12z23z13

∣∣∣∣2 ∫ +∞

0
dω4e

iϵ4ω4

(
−u1z

∣∣∣ z24
z12

∣∣∣2+u2
1−z

z

∣∣∣ z34
z23

∣∣∣2− u3
1−z

∣∣∣ z14
z13

∣∣∣2+u4

)
ω3
4A∗

4, (6.5)

where A∗
4 represents the 4-point amplitude evaluated on the support of (6.3). For Yang-Mills,

C4 is IR divergent but C̃4 is not, while for gravity, both are IR finite.

4 gluon amplitude. We can now evaluate the four-point Carrollian amplitude for gluons
by inserting (6.1) into (6.4) to get

C4
(
1+1, 2−1, 3−1, 4+1

)
=

κ2
1,1,−1 ϵ1ϵ2ϵ3ϵ4

(2π)4
(1− z)z̄214
zz214z̄

2
13z̄

2
24

δ (z − z̄)Θ
(
−z

∣∣∣∣z24z12

∣∣∣∣2 ϵ1ϵ4

)

Θ
(
1− z

z

∣∣∣∣z34z23

∣∣∣∣2 ϵ2ϵ4

)
Θ
(
− 1
1− z

∣∣∣∣z14z13

∣∣∣∣2 ϵ3ϵ4

)

× I0

(
u4 − u1z

∣∣∣∣z24z12

∣∣∣∣2 + u2
1− z

z

∣∣∣∣z34z23

∣∣∣∣2 − u3
1

1− z

∣∣∣∣z14z13

∣∣∣∣2
)

,

(6.6)

where I0 is the same integral as the one discussed in (4.3) for the two-point function. In
particular, it can be regularized and written as in (4.5). An identical computation for C̃4 gives

C̃4
(
1+1, 2−1, 3−1, 4+1

)
=

κ2
1,1,−1

(2π)4
z234z̄

4
14z̄

2
34

z3(1− z)z313z24z̄513z̄324
δ (z − z̄)Θ

(
−z

∣∣∣∣z24z12

∣∣∣∣2 ϵ1ϵ4

)

Θ
(
1− z

z

∣∣∣∣z34z23

∣∣∣∣2 ϵ2ϵ4

)
Θ
(
− 1
1− z

∣∣∣∣z14z13

∣∣∣∣2 ϵ3ϵ4

)

× 3!(
u4 − u1z

∣∣∣ z24
z12

∣∣∣2 + u2
1−z

z

∣∣∣ z34
z23

∣∣∣2 − u3
1

1−z

∣∣∣ z14
z13

∣∣∣2)4 ,

(6.7)

which is IR finite as expected.
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4 graviton amplitude. Similarly, the Carrollian amplitude corresponding to the four-point
graviton amplitude is obtained by inserting (6.2) into (6.4), which yields

C4
(
1+2, 2−2, 3−2, 4+2

)
= κ2

2,2,−2
ϵ1ϵ2ϵ3ϵ4

(2π)4
1

|z12|2
z314

z̄414 |1− z|2
δ (z − z̄)

Θ
(
−z

∣∣∣∣z24z12

∣∣∣∣2 ϵ1ϵ4

)
Θ
(
1− z

z

∣∣∣∣z34z23

∣∣∣∣2 ϵ2ϵ4

)
Θ
(
− 1
1− z

∣∣∣∣z14z13

∣∣∣∣2 ϵ3ϵ4

)

× 1(
u4 − u1z

∣∣∣ z24
z12

∣∣∣2 + u2
1−z

z

∣∣∣ z34
z23

∣∣∣2 − u3
1

1−z

∣∣∣ z14
z13

∣∣∣2)2 ,

(6.8)

or into (6.5), leading to

C̃4
(
1+2, 2−2, 3−2, 4+2

)
= κ2

2,2,−2
1

(2π)4
1

|z12|2
∣∣∣∣z24z34z14z12z23z13

∣∣∣∣2 z314
z̄414 |1− z|2

δ (z − z̄)

Θ
(
−z

∣∣∣∣z24z12

∣∣∣∣2 ϵ1ϵ4

)
Θ
(
1− z

z

∣∣∣∣z34z23

∣∣∣∣2 ϵ2ϵ4

)
Θ
(
− 1
1− z

∣∣∣∣z14z13

∣∣∣∣2 ϵ3ϵ4

)

× 5!(
u4 − u1z

∣∣∣ z24
z12

∣∣∣2 + u2
1−z

z

∣∣∣ z34
z23

∣∣∣2 − u3
1

1−z

∣∣∣ z14
z13

∣∣∣2)6 .

(6.9)

In contrast to the gluon case, both of these are IR finite.

6.2 Celestial from Carrollian

We will conclude this section by showing that the Carrollian amplitude (6.7) reproduces the
corresponding celestial amplitude upon application of (3.13). We are using C̃4 rather than
C4 to avoid dealing with the IR-divergence. Starting from

M4 =
4∏

i=1

(∫ +∞

−∞
dui (−iϵi)∆iΓ(∆i − 1)u1−∆i

i

)
C̃4, (6.10)

we change integration variables to

ũ1 = u1z

∣∣∣∣z24z12

∣∣∣∣2 , ũ2 = u2
1− z

z

∣∣∣∣z34z23

∣∣∣∣2 , ũ3 = u3
1

1− z

∣∣∣∣z14z23

∣∣∣∣2 , ũ4 = u4 (6.11)

resulting in the simpler form

M4 =
κ2
1,1,−1

(2π)4
z234z̄

4
14z̄

2
34

z3(1− z)z313z24z̄513z̄324

(
z

∣∣∣∣z24z12

∣∣∣∣2
)∆1−2(1− z

z

∣∣∣∣z34z23

∣∣∣∣2
)∆2−2( 1

1− z

∣∣∣∣z14z13

∣∣∣∣2
)∆3−2

δ (z − z̄)Θ
(
−z

∣∣∣∣z24z12

∣∣∣∣2 ϵ1ϵ4

)
Θ
(
1− z

z

∣∣∣∣z34z23

∣∣∣∣2 ϵ2ϵ4

)
Θ
(
− 1
1− z

∣∣∣∣z14z13

∣∣∣∣2 ϵ3ϵ4

)
M4,

(6.12)
where

M4 =
4∏

i=1

(∫ +∞

−∞
dũi Γ(∆i − 1) (−iϵi)∆i ũ1−∆i

i

) 3!
(ũ4 − ũ1 + ũ2 − ũ3 + iϵ4ε)4

. (6.13)
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We now focus on the evaluation of M4. The contours of all these integrals can be deformed
to pick up the discontinuity across the branch cuts along the negative ui axes resulting in

M4 = 24
4∏

k=1
(−iϵk)∆ksinπ∆k

∫ +∞

0
dũk ũ1−∆k

k

3!
(−ũ4 + ũ1 − ũ2 + ũ3 + iϵ4ε)4

. (6.14)

All these integrals can be performed in a straightforward manner upon retaining the iϵ4ε

till the end. The result is

M4 =
∏4

i=1(−iϵi)∆i(−1)∆1+∆3(2π)4

6 lim
ε→0

Γ (β) ε−β =
∏4

i=1(−iϵi)∆i(−1)∆1+∆3(2π)4

6 2πδ (β)
(6.15)

where β = ∆1 +∆2 +∆3 +∆4 − 4. Finally, re-injecting this expression into (6.12) (with
hi = ∆i+Ji

2 , h̄i = ∆i−Ji
2 ) leads to

M4=
4∏

i=1
(−iϵi)∆iz−

1
3 (1−z)

5
3
∏
i<j

z
h
3 −hi−hj

ij z̄
h̄
3 −h̄i−h̄j

ij (−1)∆2+∆4+12πδ (∆1+∆2+∆3+∆4−4)

δ (z−z̄)Θ
(
−z

∣∣∣∣z24z12

∣∣∣∣2 ϵ1ϵ4

)
Θ
(
1−z

z

∣∣∣∣z34z23

∣∣∣∣2 ϵ2ϵ4

)
Θ
(
− 1
1−z

∣∣∣∣z14z13

∣∣∣∣2 ϵ3ϵ4

)
.

(6.16)
This matches the result of [27] adapted to the helicity configuration considered here up to a
phase. An identical procedure can be used to reproduce the 4 graviton celestial amplitude
starting from (6.8) or (6.9).

7 MHV n-point amplitudes

7.1 Carrollian amplitude

In this section, we evaluate MHV Carrollian amplitude for arbitrary multiplicities. We will
first demonstrate that the computation of the Carrollian amplitude in both Yang-Mills and
Einstein gravity reduces to the evaluation of the same integral. Following [51], we can rewrite
the momentum conserving delta function as

δ(4)
(

n∑
i=1

pi

)
= 1

|U1234|

4∏
I=1

δ (ωI − ω∗
I ) , with ω∗

I = − 1
U1234

n∑
i=5

ωiUIi (7.1)

where

U1234 = det (qµ
1 , . . . , qµ

4 ) , UIi = U1234|I→i, I = 1, 2, 3, 4; i = 5, . . . , n (7.2)

and qµ
i are defined in (3.1) and (5.1) for (3,1) and (2,2) signatures, respectively. Note that

UIi are independent of all the ωi and it was shown in [132] that they evaluate to

Uijkl = 8ϵiϵjϵkϵl |zikzjl|2 Imzijzkl

zikzjl
. (7.3)

The equation above is also valid in Klein space if we interpret Im zijzkl

zikzjl
= zijzkl

zikzjl
− z̄ij z̄kl

z̄ik z̄jl
with

zi, z̄i being real and independent.
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Yang-Mills. The colour ordered MHV gluon amplitude (with n + 1 identified with 1) is

An

(
1−, 2−, 3+, . . . , n+

)
= κn−2

1,1,−1
⟨12⟩4∏n

j=1⟨jj + 1⟩ = κn−2
1,1,−1

ω1ω2∏n
j=3 ωj

z312∏n
j=2 zjj+1

(7.4)

where we kept the momentum conserving δ function implicit. We are now ready to compute
the position space amplitude using (7.1). The Fourier transform of (7.4) is divergent as in
the 4 point case and we will instead compute the correlator of u-descendants. Applying the
integral transform (3.10) on (7.4) and performing the integrals over ω1, . . . , ω4, we end up with

C̃n

(
1−,2−,3+, . . . ,n+

)
=

κn−2
1,1,−1

(2π)n |U1234|
z312∏n

j=2 zjj+1

∫ n∏
j=5

dωjωjeiϵjωjuj

[ 4∏
I=1

eiϵIω∗
I uIΘ(ω∗

I )ω∗
I

]
ω∗
1ω∗

2
ω∗
3ω∗

4
∏n

j=5ωj
(7.5)

=
κn−2
1,1,−1

(2π)n |U1234|
z312∏n

j=2 zjj+1

∂4

∂u2
1∂u2

2

∫ n∏
j=5

dωje
i

ωj
U1234

(
ϵjujU1234−

∑4
J=1 ϵJ uJUJj

) 4∏
I=1

Θ(ω∗
I )

≡
κn−2
1,1,−1

(2π)n |U1234|
z312∏n

j=2 zjj+1

∂4

∂u2
1∂u2

2
In.

In the last line, we have introduced the integral

In =
∫ n∏

j=5
dωjeiωjLj

4∏
I=1

Θ(ω∗
I ) , (7.6)

with Lj =
(
ϵjuj −

∑4
J=1 ϵJuJ

UJj

U1234

)
. This integral will also show up in the computation

of gravitational MHV amplitudes.

Gravity. The MHV amplitude is

An

(
1−−, 2−−, 3++, . . . , n++

)
= κn−2

2,2,−2

∣∣∣Φdef
abc

∣∣∣ ⟨12⟩8

⟨ab⟩⟨bc⟩⟨ca⟩⟨de⟩⟨ef⟩⟨fd⟩
, (7.7)

where we kept the momentum conserving δ function implicit. Here
∣∣∣Φdef

abc

∣∣∣ is the determinant
of the matrix Φ with rows a, b, c and columns d, e, f removed. The amplitude is independent
of the choice of a, . . . , f . Φ has matrix elements

Φij = [ij]
⟨ij⟩

= z̄ij

zij
(i ̸= j), Φii = −

∑
j ̸=i

[ij]⟨jr⟩⟨js⟩
⟨ij⟩⟨ir⟩⟨is⟩

= −
∑
j ̸=i

z̄ijzjrzjs

zijzirzis

ωj

ωi
. (7.8)

Here r, s are arbitrary reference spinors. Φii is independent of the choice of r, s. Note that
this is also the leading soft factor (see S(0) in (8.3) in section 8 below). The integral we
want to compute is given by

C̃n = 1
(2π)n

∫ n∏
j=1

dωj iϵjωjeiϵjωjujAn. (7.9)

In order to proceed, we first observe that ω1 . . . ωnAn has no negative powers of ωi. To
see this, note that negative powers of ωi occur only on the diagonal of Φ. Eliminating
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rows and columns a, . . . , f eliminates negative powers of ωa, . . . , ωf from the determinant.
Multiplying the determinant by the remaining ωi eliminates all negative powers. This suggests
to define

∣∣∣Φ̃def
abc

∣∣∣
ωi

=
∏n

k=1,k ̸=a,...f ωk

∣∣∣Φdef
abc

∣∣∣. This has no negative powers of ωi by the above
reasoning and we can now write

C̃n =
κn−2
2,2,−2
(2π)n

in z812
zabzbczcazdezef zfd

n∏
k=1

ϵk

∣∣∣Φ̃def
abc

∣∣∣
ωi→−iϵi

∂
∂ui

∂4

∂u4
1

∂4

∂u4
2

∫ n∏
j=1

dωj eiϵjωjuj δ(4)
(∑

k

pk

)
.

(7.10)

Plugging in the solution for ω1, . . . , ω4 from (7.1), we get

C̃n =
κn−2
2,2,−2

|U1234| (2π)n

in z812
zabzbczcazdezef zfd

n∏
k=1

ϵk

∣∣∣Φ̃def
abc

∣∣∣ (−iϵi
∂

∂ui

)
∂4

∂u4
2

∂4

∂u4
2
In, (7.11)

with In defined in (7.6).

Evaluating In. In order to proceed, we must solve the inequalities arising from the Θ
functions — an incredibly difficult task whose complexity increases rapidly with n. These
inequalities can be solved only for specific configurations of zi, z̄i and ϵi, thus implying that
the corresponding correlators are not supported everywhere on the celestial sphere [132].
Each valid configuration specifies domains of integration for the ωi. As an example, consider
the case n = 6 where the constraints are

U5234
U1234

U6234
U1234

U1254
U1234

U1634
U1234

U1254
U1234

U1264
U1234

U1235
U1234

U1236
U1234


(

ω5
ω6

)
≤ 0. (7.12)

We will not list all valid kinematic regions but merely present two examples.

Example 1: one solution to the inequalities (7.12) is the non-trivial region in kinematic
space carved out by

U1534U1236−U1634U1236≤ 0, U1534U1264−U1634U1254≤ 0, U1234U5234≥ 0, U1234U1235≥ 0,

U1234U6234≥ 0, U1234U1534≤ 0, U1234U1235≤ 0, U1234U1264≤ 0.

In this region, the domain of integration is

ω5 ≥ 0, −U1534
U1634

ω5 ≤ ω6 ≤ −U1254
U1264

ω5. (7.13)

Example 2: another solution to (7.12) is the simpler region

UIi

U1234
< 0, I = 1, 2, 3, 4; i = 5, 6. (7.14)

In this case, the domains of integration are simply ω5 ≥ 0, ω6 ≥ 0. Without loss of generality,
we can take the generic situation to be

Bn ≤ ωn ≤ B′
n,

n∑
a=k+1

Bka ωa ≤ ωk ≤
n∑

a=k+1
B′

ka ωa. (7.15)
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We have assumed that the inequalities have been solved in such a way that the bounds on the
integration domain of ωk depend only on ωk+1, . . . ωn. It is convenient to define the vectors

Bk = (0, . . . , Bkk+1, . . . , Bkn) , B′
k =

(
0, . . . , B′

kk+1, . . . , B′
kn

)
, ω = (ω5, . . . , ωn) .

(7.16)

Note that Bk ·ω reduces to the combination appearing in (7.15). With this, the integral (7.6)
can be written as

In =
∫ ∞

0

n∏
a=5

dωa eiLa ωaΘ(ωn − Bn)Θ
(
B′

n − ωn
) n−1∏

k=5
Θ(ωk − Bk · ω)Θ

(
B′

k · ω − ωk

)
.

(7.17)

We relegate the details of the computation of this integral to appendix A merely presenting
the final result,

In =
( 1
2πi

)2(n−4) ∫ n∏
k=5

dτkdτ ′
k

(τk + iϵ)(τ ′
k + iϵ)

1
Xk (τ)− iϵ

exp
[
−iBnτn + iB′

nτ ′
n

]
(7.18)

where Xk (τ) = τk − τ ′
k −

∑k−1
a=5 τaBak +

∑k−1
a=5 τ ′

aB′
ak − Lk. These integrals can be evaluated

in a straightforward manner by computing the appropriate residues. Writing down a general
formula is cumbersome and we present results for 5 and 6 point amplitudes:

I5 =
e−iB5L5 − e−iB′

5L5

L5
, (7.19)

I6 =
1

L5 (B56L5 + L6)
[
eiB′

6(B56L5+L6) − eiB6(B56L5+L6)
]

+ 1
L5 (B′

56L5 + L6)
[
eiB6(B′

56L5+L6) − eiB′
6(B′

56L5+L6)
]

.

These expressions demonstrate that the Carrollian amplitude takes on a very simple functional
form in generic kinematic regions of the type shown in example 1. We can provide a compact
form for In in the region corresponding to example 2, where all the ωi are integrated between
0 and ∞. As we explain in appendix A, this is done simply by computing the residues
at τk = τ ′

k = 0 yielding

In = (−1)n−4
n∏

j=5

1
Lj

. (7.20)

As we already pointed out at the beginning of this section, these functions are much simpler
than their celestial counterparts, which for gluons have been evaluated in [51].

By contrast with the low-point Carrollian amplitudes discussed in the previous sections,
the higher-point MHV amplitudes do not involve delta functions. This comes from the fact
that the amplitude has four momentum conserving delta functions and n Fourier integrals
over the variables ω1, . . . , ωn. For n ≤ 4, the number of delta functions exceeds the number
of integrals. Consequently, the Carrollian amplitude only has leftover delta functions. This
ceases to be true for n > 4, where the integrals over any 4 of the ωi, say ω1, . . . , ω4 can
be fully localized by the delta functions.
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7.2 From Carrollian to celestial

The gluon MHV celestial amplitudes have only been evaluated in the region (7.14). In
this section we will work in this restricted kinematic regime where the MHV Carrollian
amplitude of u-descendants is

C̃n

(
1−, 2−, 3+, . . . , n+

)
= (−1)n−4 κn−2

1,1,−1
(2π)n |U1234|

z312∏n
j=2 zjj+1

∂4

∂u2
1 ∂u2

2

n∏
j=5

1
Lj

. (7.21)

Applying (3.13) on this expression, we can immediately perform the integrals over u5, . . . , un

by methods analogous to those used in sections 5.2 and 6.2, and by noting that these variables
only occur in L5, . . . , Ln, respectively. This gives

Mn

(
1−, 2−, 3+, . . . , n+

)
=

(−1)n−4κn−2
1,1,−1

(2π)n |U1234|
z312∏n

j=2 zjj+1
N × In−4 (7.22)

where

N =16(2πi)n−4Γ(∆1+1)Γ(∆2+1)Γ(∆3−1)Γ(∆4−1)
4∏

k=1
(−iϵk)∆k sinπ∆k

n∏
j=5

i∆j+1Γ(∆j−1) ,

(7.23)

and

In−4=
∫

du1 du2 du3 du4u−∆1−1
1 u−∆2−1

2 u1−∆3
3 u1−∆4

4

n∏
j=5

( 4∑
J=1

ϵJuJ
UjJ

U1234

)1−∆j

. (7.24)

This can be identified as an Aomoto-Gelfand hypergeometric function [133]. It is an integral
over 4 variables which naively appears to be different from the n − 4 fold integral obtained
in [51]. However, this corresponds to the dual representation of the same hypergeometric
function. For more details, see the appendix of [51] and also [133]. This completes the
cross-check of the MHV Carrollian amplitudes.

8 UV and IR behaviours of Carrollian amplitudes

In this section, we will analyze how Carrollian amplitudes encode the deep UV and IR
behaviours of scattering amplitudes and show that they are reflected in the singularity
structure of the Carrollian amplitudes in u. This should be compared with the celestial
amplitudes whose singularity structure in the space of conformal dimensions encodes the
UV and IR behaviours of scattering amplitudes [49].

Consider first the behaviour of Carrollian amplitudes as u → 0, where u is represents a
placeholder for some translation invariant combination of the ui involved in the amplitude.
Examples of these are those appearing in the denominators of (5.10) and (6.7). In this limit,
we expect that the Fourier transform is dominated by the UV behaviour of the corresponding
momentum space amplitudes. If the amplitude falls off as An

ω→∞−−−→ ω−k for large ω, we have

1
2π

∫ ∞

Λ
dω eiuω−εω ω−k u→0−−−→

Λ∼ 1
u

α uk−1 (8.1)
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for some numerical constant α implying that the Carrollian amplitude vanishes as uk−1 as
u → 0. We can also consider amplitudes which are exponentially suppressed in the UV
with string amplitudes being the prototypical example. Thus the behaviour An

ω→∞−−−→ e−αω2

yields a Fourier transform

1
2π

∫ ∞

Λ
dω eiuω−αω2 u→0−−−→

Λ∼ 1
u

u

2α
e−

α
u2 (8.2)

which also vanishes exponentially.
In the large u limit, we expect the Fourier transform to be dominated by limit of

amplitudes as ω → 0. In momentum space, this limit is controlled by the soft theorems which
relate (n + 1)-point scattering amplitudes with one of the particles being soft, and n-point
scattering amplitudes without the soft particle. At tree-level, they take the form

An+1
ω1→0−−−→

( 1
ω1

S(0) + ω0
1S(1) +O(ω1)

)
An. (8.3)

The above equation has been written for the case of particle 1 becoming soft. For Yang-Mills
and QED, the leading and subleading soft theorems are universal [134–136], while in gravity,
the leading, subleading and sub-subleading soft graviton theorems are universal [46, 134].
More generally, recursion relations show that scattering amplitudes in momentum space
admit a decomposition of the form

An+1 (1, . . . , n) = Ac
n+1 (1, . . . , n) +Anc

n+1 (1, . . . , n) +A∞
n+1 (1, . . . , n) , (8.4)

with Ac
n+1 corresponding to the part of the amplitude containing two particle factorization

channels, Anc
n+1 to non-collinear or multi-particle channels and A∞

n+1 to terms at ∞. More
explicitly,

Ac
n+1 (1, . . . , n) ∼ A3 (1, 2,−P ) 1

(p1 + p2)2
An−1 (P, . . . n) , (8.5)

Anc
n+1 (1, . . . , n) ∼ Ak (1, . . . , k − 1,−P ) 1

(p1 + . . . pk−1)2
An−1 (P, k, . . . , n) .

We will not elaborate on A∞
n+1 here and refer the reader to [46] for more details. Furthermore,

the collinear part of the amplitude Ac
n+1 is completely controlled by the soft theorems and

exhibits universal soft factorization to all order. For MHV amplitudes, Anc
n+1 = A∞

n+1 = 0
and this factorization extends to the complete amplitude. Thus, we can write

Ac
n+1 =

 1∑
k=−∞

ω−k
1 S(−k)

Ac
n, (8.6)

where the S(k) do not depend on ω1, . . . , ωn but do depend on all the zi, z̄i. For the rest of this
paper, we will focus on MHV amplitudes and drop the superscript c with the understanding
that all the statements made here can be extended to the collinear parts of any amplitude
beyond MHV. In order to avoid dealing with divergent integrals, we consider correlator of
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u-descendants C̃ instead of the Carrollian amplitude C. We have

C̃n (u1,z1, z̄1, . . . ,un,zn, z̄n)
u1→∞−−−−→

∫
ω≈0

dω1

2π

(
eiϵ1ω1u1

1∑
k=−∞

ω1−k
1 S(−k)

)
C̃n−1 (u2,z2, z̄2, . . . ,un,zn, z̄n)

= 1
2π

1∑
k=−∞

(−iϵ1)k−2(1−k)!uk−2
1 S(−k)C̃n−1 (u2,z2, z̄2, . . . ,un,zn, z̄n) .

(8.7)

Hence we see that the Carrollian amplitude vanishes as 1
u2−k as u → ∞. Note that the

exponent is positive as have k = 1, 0,−1,−2, . . . . A corollary of this is that the soft factor
S(−k) can be extracted via the residue integral

S(−k) (z1, z̄1) C̃n−1 = −(−iϵ)2−k

(1− k)!

∮
u1=∞

du1u
−k+1
1 C̃n+1 (8.8)

where the residue is taken around the pole at infinity. Finally, as discussed in [137], the
soft behaviors of the position space amplitude (8.7) can be directly related to the memory
effects in gravity and gauge theories [138–140].

9 Collinear limits and Carrollian OPEs

In this section, we analyze the collinear limit of amplitudes in position space. The analogous
property is well studied in momentum space [131, 141] and forms the basis for the derivation
of celestial OPEs [57, 142]. Using the Carrollian holography dictionary, we show that this
limit naturally yields a notion of OPE in the putative dual Carrollian CFT.

9.1 Derivation of Carrollian OPEs

We will restrict ourselves to the collinear limit of two outgoing particles, i.e. ϵ1 = ϵ2 = +1.
The other cases can be handled similarly. At tree-level, scattering amplitudes have collinear
poles and the corresponding residues factorize. This can be written as10

An

(
1J1 , 2J2 , 3J3 , . . . , nJn

) 1||2−−→
∑

J

A3
(
1J1 , 2J2 ,−P−J

) 1
⟨12⟩[21]An−1

(
P J , 3J3 , . . . , nJn

)
.

(9.1)

Here J corresponds to the helicity of the exchanged particle. In general every massless particle
that can be exchanged leads to a collinear pole. Since P is a massless momentum, we can write

P = ω (1 + zz̄, z + z̄, z − z̄, 1− zz̄) . (9.2)

A convenient change of variables is ω1 = tω, ω2 = (1− t)ω. We can now solve p1+p2−P = 0
for z, z̄ in terms of z1, z2, z̄1, z̄2, t, giving

z = z1, z̄ = tz̄1 + (1− t)z̄2. (9.3)
10The notion of collinear factorization is well defined in both Minkowski and Klein spacetime. In Minkowski

spacetime, where the three point amplitudes involving massless particles vanish, this is defined by considering
amplitudes with one leg slightly off shell. We will work in split signature for convenience.
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In this limit, the position space amplitude behaves as

Cn
1||2−−→ 1

4π2

∫ +∞

0
dω

∫ 1

0
dt ω ei(tu1+(1−t)u2)ω

∑
J

A3
(
1J1 , 2J2 ,−P−J

) 1
⟨12⟩[21]

×
n∏

i=3

(∫ +∞

0

dωi

2π

)
An−1

(
P J , 3J3 , . . . , nJn

)
eiϵ3u3ω3+...+iϵnunωn .

(9.4)

For the holomorphic collinear limit, z12 → 0, the only non-zero three particle amplitudes
are the anti-holomorphic ones. Thus, we must have J1 + J2 − J > 0 and plugging in the
appropriate three point amplitude from (5.4), we get

Cn
1||2−−→ − κJ1,J2,−J

4π2
z̄p
12

z12

∫
dω ωp

[∫
dt eitω(u1−u2)tJ2−J−1(1− t)J1−J−1

]
×

n∏
i=3

(∫ +∞

0

dωi

2π

)
eiu2ω+...+iϵnunωnAn−1

(
{ω, z2, z̄2 + tz̄12} , 3J3 , . . . , nJn

) (9.5)

where p = J1 + J2 − J − 1 ≥ 0. In writing the above equations, we have left implicit a sum
over all allowed values of p. These are deduced by solving the inequalities

p ≥ 0, |J1 + J2 − p − 1| ≤ 2 and |J1| ≤ 2, |J2| ≤ 2. (9.6)

The first of these is just taking into account the fact that only anti-holomorphic three point
amplitudes contribute to the holomorphic collinear limit, while the remaining ones remind
us to neglect massless higher spins. The right-hand side of (9.5) depends non trivially on
z̄1, z̄2, u1 and u2. This reflects the fact that we have considered the holomorphic collinear
limit and left the remaining variables at generic values. In this case, following the Carrollian
holography dictionary (3.8), we can write

ΦJ1 (u1, z1, z̄1) ΦJ2 (u2, z2, z̄2) (9.7)

∼ −κJ1,J2,−J

4π2
z̄p
12

z12

∫
dω ωp

[∫
dt eitω(u1−u2)tJ2−J−1(1− t)J1−J−1

]
× eiu2ω ΦJ (ω, z2, z̄2 + tz̄12) .

Here we have denoted the boundary operator corresponding to a helicity J particle in the
bulk by Φ(k,k̄)(u, z, z̄) ≡ ΦJ (u, z, z̄) with the understanding that they have Carrollian weights
(k, k̄) = (1+J

2 , 1−J
2 ) as in (3.7). This expression constitutes a Carrollian OPE block, which

is the analogue of a conformal OPE block in CFT [143]. From here, we can obtain three
seemingly different but equivalent formulas for the OPE. Each of them has the benefit of
making certain features of the OPE manifest and we will present all three of them.

Formula 1. This is the most compact expression and includes all the u− and z̄− descendants
in one integral formula. To obtain this, we perform the ω integral by making the identification

1
2π

∫
dω ωpei(u2+tu12)ω ΦJ (ω, z2, z̄2 + tz̄12) = ∂p

uΦJ (u, z2, z̄2 + tz̄12)|u=u2+tu12 (9.8)

with u12 ≡ u1 − u2 and land on

ΦJ1 (u1, z1, z̄1) ΦJ2 (u2, z2, z̄2) (9.9)

∼ −κJ1,J2,−J

2π

z̄p
12

z12

∫ 1

0
dt tJ2−J−1(1− t)J1−J−1

(
∂

∂u

)p

ΦJ (u, z2, z̄2 + tz̄12)|u=u2+tu12 .
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The integral compactly encodes the contributions from all descendants and represents a u, z̄

Carrollian OPE block. This also closely resembles the celestial OPE block [59]. The explicit
relation between Carrollian and celestial OPE blocks will be established in section 9.3.

Formula 2. This formula makes the u OPE block explicit. To derive this, we first
Taylor expand

ΦJ (ω, z2, z̄2 + tz̄12) =
∞∑

m=0

tmz̄m
12

m!

(
∂

∂z̄2

)m

ΦJ (ω, z2, z̄2) (9.10)

in (9.7), and then perform the integral over t:∫
dt eit(u1−u2)ωtJ2−J+m−1(1− t)J1−J−1 = B(J2 − J + m, J1 − J)

1F1 (J2 − J + m, J1 + J2 − 2J + m, i (u1 − u2)ω) .

(9.11)
Here B(x, y) is the Euler Beta function and 1F1(a, b, z) is the confluent hypergeometric
function which admits the power series expansion

B(J2 − J + m, J1 − J)1F1 (J2 − J + m, J1 + J2 − 2J + m, i (u1 − u2)ω) u1→u2−−−−→
∞∑

n=0

(iu12)n ωn

n! B(J1 − J, J2 − J + m + n).
(9.12)

Noting that the hypergeometric function only has positive integer valued powers of ω, we
deduce the formal expression for the OPE

ΦJ1 (u1,z1, z̄1)ΦJ2 (u2,z2, z̄2)∼−κJ1,J2,−J

2πz12

∞∑
m=0

z̄p+m
12
m! B(J2−J+m,J1−J)∂mF [ΦJ (u2,z2, z̄2)]

∂z̄m
2

(9.13)

where

F [ΦJ (u2,z2, z̄2)] = 1F1

(
J2−J+m,J1+J2−2J+m,(u1−u2)

∂

∂u2

)(
∂

∂u2

)p

ΦJ (u2,z2, z̄2) .

This function represents the u Carrollian OPE block. The formula also includes an explicit
infinite sum over z̄ descendants.

Formula 3. Finally, we can make the presence of both the u- and z̄-descendants explicit
simply by further expanding the hypergeometric function in (9.13) using (9.12) to arrive at:

ΦJ1 (u1, z1, z̄1) ΦJ2 (u2, z2, z̄2) (9.14)

∼ −κJ1,J2,−J

2πz12

∞∑
m,n=0

B(J2 − J + m + n, J1 − J) z̄p+m
12 un

12
m!n!

(
∂

∂z̄2

)m ( ∂

∂u2

)p+n

ΦJ (u2, z2, z̄2) .

The following formula for the OPE of Carrollian descendants is readily obtained by making
the replacements J1 → J1 + 1, J2 → J2 + 1, J → J + 1 in the OPE coefficient and the
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exponent of the u2 derivative:

∂u1ΦJ1(u1,z1, z̄1)∂u2ΦJ2(u2,z2, z̄2)∼−κJ1,J2,−J

2πz12

∞∑
m,n=0

B(J2−J+m+n+1,J1−J+1) z̄p+m
12 un

12
m!n!(

∂

∂z̄2

)m( ∂

∂u2

)p+n+1
∂u2ΦJ(u2,z2, z̄2).

(9.15)

Collinear limit of MHV gluon amplitude. As a check of our formulae, we will compute
the collinear limit of the 7 point gluon MHV amplitude (7.5) in the special kinematic
configuration corresponding to (7.20) and thereby directly verify the OPE (9.15).11 The OPE
of two positive helicity gluons in Yang-Mills has p = 0, which yields

∂u1Φ+1(u1, z1, z̄1)∂u2Φ+1(u2, z2, z̄2) ∼ −κ1,1,−1
2πz12

∞∑
m,n=0

1
m + n + 1

z̄m
12u

n
12

m!n!(
∂

∂z̄2

)m ( ∂

∂u2

)n+1
∂u2Φ+1 (z2, z̄2, u2) .

(9.16)

We will verify this directly from the 7 point MHV gluon amplitude (in the special kinematic
configuration (7.14) for which we had an explicit expression for generic n):

C̃7
(
1−, 2−, 3+, . . . , 7+

)
= −

κ5
1,1,−1

(2π)7 |U1234|
z312∏7

j=2 zjj+1

∂4

∂u2
1 ∂u2

2

[ 1
L5L6L7

]
(9.17)

where Lj =
(
ϵjuj −

∑4
J=1 ϵJuJ

UJj

U1234

)
. For convenience, consider the true collinear limit

z6 → z7, z̄6 → z̄7 of (9.17) in which case the OPE (9.16) implies

C̃7
z̄67→0−−−−→
z67→0

−κ1,1,−1
2πz67

1
(n + 1)!

(
∂

∂u2

)n+1
C̃6. (9.18)

To verify this, we start by noting that L6 is the only relevant quantity that has a non-trivial
behaviour in this limit. Setting ϵ6 = ϵ7 = 1, we find

L6 = u6 −
4∑

J=1
uJϵJ

UJ6
U1234

z̄67→0−−−−→
z67→0

u6 −
4∑

J=1
uJϵJ

UJ7
U1234

= L7 + u67. (9.19)

The fact that UJ6
z̄67→0−−−−→
z67→0

UJ7 follows from the definition (7.3). The final step in verifying (9.18)
is to note that we can write

1
L6L7

z̄67→0−−−−→
z67→0

∞∑
n=0

(−1)n

L2
7

(
u67
L7

)n

= −
∞∑

n=0

1
(n + 1)!

∂n+1

∂n+1
u7

1
L7

. (9.20)

This completes the check of (9.18).

11The Beta function appearing in the OPE coefficient in (9.14) is divergent for gluons and we consider
instead the OPE of the Carrollian descendants (9.15).
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9.2 Consistency of Carrollian OPEs with symmetries

Defining OPEs in a Carrollian CFT is a delicate issue due to the ultra-local nature of the
theory. We show here that the Carrollian OPEs derived above are compatible with the global
conformal Carrollian symmetries generated by (2.2) with parameters in (2.3), and hence are
in agreement with ultra-locality. For convenience, we will check the invariance on the formula
1 given in (9.9) under infinitesimal transformations generated by T ,Y and Ȳ separately.

Invariance under T . The action on the left-hand side (l.h.s.) of (9.9) is

δT (l.h.s.)
= T (z1, z̄1)∂u1ΦJ1 (u1, z1, z̄1) ΦJ2 (u2, z2, z̄2) + ΦJ1 (u1, z1, z̄1) T (z2, z̄2)∂u2ΦJ2 (u2, z2, z̄2)

∼ −κJ1,J2,−J

2π

z̄p
12

z12

∫ 1

0
dt tJ2−J−1(1− t)J1−J−1[T (z2, z̄1)t + T (z2, z̄2)(1− t)]

× ∂p+1
u ΦJ (u, z2, z̄2 + tz̄12)|u=u2+tu12

(9.21)

where we used successively (2.6), (9.9) and the identification of z1 with z2 at leading order.
Now acting directly on the right-hand side (r.h.s.) of (9.9) leads to

δT (r.h.s.)

=−κJ1,J2,−J

2π

z̄p
12

z12

∫ 1

0
dttJ2−J−1(1−t)J1−J−1∂p

uδT ΦJ (u,z2, z̄2+tz̄12)|u=u2+tu12

=−κJ1,J2,−J

2π

z̄p
12

z12

∫ 1

0
dttJ2−J−1(1−t)J1−J−1T (z2, z̄2+tz̄12)∂p+1

u ΦJ (u,z2, z̄2+tz̄12)|u=u2+tu12 .

(9.22)

For each T (z, z̄) = 1, z, z̄, zz̄, one can check explicitly that (9.21) coincides with (9.22), which
shows the invariance of the Carrollian OPEs under translation.

Invariance under Y. This check is very similar to the previous one and here we merely
present the result, drawing attention only to the subtler points. We have

δY(l.h.s.) = −κJ1,J2,−J

2π

z̄p
12

z12

∫ 1

0
dt tJ2−J−1(1− t)J1−J−1D

[
∂P

u ΦJ (u, z2, z̄)
]

, (9.23)

to leading order in z2, with

D = u

2∂z2Y(z2)∂u + (k1 + k2)∂z2Y(z2) +
1

z12
(Y(z2)− Y(z1)) + Y(z2)∂z2 ,

= u

2∂z2Y(z2)∂u + (k1 + k2 − 1)∂z2Y(z2) + Y(z2)∂z2 . (9.24)

In arriving at this result, we have made use of the following relations:

∂u1Φ = t∂uΦ, ∂u2Φ = (1− t)∂uΦ, where u = tu1 + (1− t)u2. (9.25)

It is straightforward to check that this is identical to the action of δY on the r.h.s. since the
weight of ∂p

uΦJ is k = p
2 + 1+J1+J2−p−1

2 = k1 + k2 − 1.
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Invariance under Ȳ. This check is more involved since there is no implied limit on the
z̄i. We will also need to apply integration by parts identities in order to see the invariance.
With this in mind, we compute

δȲ(l.h.s.)− δȲ(r.h.s.) = −κJ1,J2,−J

2π

z̄p
12

z12

∫ 1

0
dt tJ2−J−1(1− t)J1−J−1D̄

[
∂P

u ΦJ (u, z2, z̄)
]

,

(9.26)

where

D̄=
[
t
u1

2
(
∂z̄1Ȳ(z̄1)−∂z̄Ȳ(z̄)

)
+(1−t)u2

2
(
∂z̄2Ȳ(z̄2)−∂z̄Ȳ(z̄)

)]
∂u+

[
tȲ (z̄1)+(1−t)Ȳ (z̄2)−Ȳ (z̄)

]
∂z̄

+ 1
z̄12

[
z̄12k̄1

(
∂z̄1Ȳ(z̄1)−∂z̄Ȳ(z̄)

)
+k̄2

(
∂z̄2Ȳ(z̄2)−∂z̄Ȳ(z̄)

)
+p
(
Ȳ(z̄1)−Ȳ(z̄2)−z̄12∂z̄Ȳ

)]
.

(9.27)

This manifestly vanishes for Ȳ = 1, z̄ while for Ȳ = z̄2, we must verify that it integrates
to zero. To this end, we note the following relations:

∂uΦJ (u, z2, z̄) = 1
u12

∂tΦJ (u, z2, z̄) , ∂z̄ΦJ (u, z2, z̄) = 1
z̄12

∂tΦJ (u, z2, z̄) . (9.28)

Using these, integrating by parts and simplifying the resulting expression yields

δȲ(l.h.s.)− δȲ(r.h.s.) (9.29)

= κJ1,J2,−J

2π

z̄p+1
12
z12

∫ 1

0
dt tJ2−J−1(1− t)J1−J−1 (t(J1 − J)− (1− t)(J2 − J)) = 0.

Note that this result depends crucially on the precise value of the exponents. This suggests
that the OPE coefficient can be fixed by symmetries in a manner analogous to [58].

9.3 From Carrollian to celestial

Finally, as a consistency check, we compare Carrollian and celestial OPEs. It is easier to
start from (9.9) and apply (3.12) to get

O∆1,J1 (z1, z̄1)O∆2,J2 (z2, z̄2)∼−κJ1,J2,−J

2π

z̄p
12

z12
(−i)∆1+∆2Γ(∆1)Γ(∆2)

∫ ∞

−∞
du1 du2 u−∆1

1 u−∆2
2

×
∫ 1

0
dttJ2−J−1(1−t)J1−J−1

(
∂

∂u2

)p

ΦJ (u2+tu12,z2, z̄2+tz̄12) .

(9.30)

As before, we deform the ui, pick up the discontinuity across the branch cut on the negative
ui axes and reduce them to integrals over the positive real line. We further define ũ1 =
tu1, ũ2 = (1 − t)u2 and are led to

O∆1,J1 (z1, z̄1)O∆2,J2 (z2, z̄2)∼
2π(−i)∆1+∆2κJ1,J2,−J

Γ(1−∆1)Γ(1−∆2)
z̄p

12
z12

∫ 1

0
dtt2h̄1+p−1(1−t)2h̄2−1

(−1)p×
∫ ∞

0
dũ1 dũ2 ũ−∆1

1 ũ−∆2
2

(
∂

∂ũ2

)p

ΦJ (ũ1+ũ2,z2, z̄2+tz̄12)

(9.31)
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where (h, h̄) =
(
∆+J
2 , ∆−J

2

)
are the conformal weights. Integrating the u2 derivative by

parts and then making a final change of variables ũ1 = xu, ũ2 = (1 − x)u allows us to
factorize the integrals. The integral over x is then readily performed and the expression
simplifies considerably to

O∆1,J1 (z1, z̄1)O∆2,J2 (z2, z̄2)∼−κJ1,J2,−J(−1)p sinπ(∆2+p)
sinπ∆2

z̄p
12

z12

∫ 1

0
dtt2h̄1+p−1(1−t)2h̄2+p−1

2π(−i)∆1+∆2+1

Γ(2−∆1−∆2−p)

∫ ∞

0
duu1−∆1−∆2−pΦJ (ũ1+ũ2,z2, z̄2+tz̄12) .

(9.32)

Identifying the expression on the final line with the Celestial operator (after a contour
deformation) and noting that sinπ(∆2+p)

sinπ∆2
= (−1)p, we arrive at the celestial OPE block [57, 142]

O∆1,J1 (z1, z̄1)O∆2,J2 (z2, z̄2) ∼ −κJ1,J2,−J
z̄p
12

z12

∫ 1

0
dt t2h̄1+p−1(1− t)2h̄2+p−1O∆1+∆2+p−1,J .

(9.33)

10 Soft symmetries of Carrollian amplitudes

As emphasized in the introduction, one of the merits of celestial amplitudes is that they allow
to render the soft symmetries manifest thanks to the OPE structure [59–67]. Understanding
the action of these soft or celestial symmetries from the Carrollian point of view at null
infinity is a legitimate and well-posed question, which we address in this section. In order
to determine how the soft symmetries act on Carrollian correlators, we adopt the following
definition for the (outgoing) soft operators:

Hk
J ≡ lim

∆→k
(∆− k)Γ(∆− 1)(−i)∆

∫ ∞

−∞
du u1−∆∂uΦJ (u, z, z̄) , k = 1, 0,−1,−2, . . .

(10.1)

We will use this definition to first compute the OPE of one celestial and one Carrollian
operator and then take the relevant limit. Starting from the integral representation of the
Carrollian OPEs (9.7), deriving with respect to u1 and u2, and applying (3.13) on the first
operator, we get:

O∆1,J1 (z1, z̄1)∂u2ΦJ2 (u2,z2, z̄2) (10.2)

∼−κJ1,J2,−J

2π

z̄p
12

z12

∫ ∞

0
dω ωp+∆1

∫ 1

0
dteiω(1−t)u2tJ2−J+∆1−2(1−t)J1−JOJ (ω,z2, z̄2+tz̄12)

=−κJ1,J2,−J

2π z12

∞∑
0

z̄p+m
12
m! B(∆1+J2−J−1+m,J1−J+1)

∫ ∞

0
dω ωp+∆1

×1F1 (∆1+J2−J−1+m,∆1+p−J+1+m,−iu2ω) ∂m
z̄2OJ (ω,z2, z̄2)eiu2ω.

This master formula allows us to compute the action of soft currents on various Carrollian
operators. While it might be possible to work out a general formula for arbitrary J1, J2 and
J , in this paper, we will restrict ourselves to three cases of interest — the action of soft
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graviton currents on Carrollian gluon and graviton operators and the action of soft gluon
currents on Carrollian gluon operators. The Lw1+∞ and S algebra currents are related to
the soft graviton and soft gluon currents via light-ray transforms [60, 142]. We analyze
each of these cases below.

Action of Lw1+∞ currents on gravitons. Let us now consider the first case of interest
— Lw1+∞ currents acting on Carrollian graviton operators. To this end, we first derive the
action of soft graviton currents. Setting J1 = J2 = J = 2 in (10.2) yields

O∆1,2 (z1, z̄1)∂u2Φ2 (u2,z2, z̄2)∼−κ2,2,−2

2π

z̄12

z12

∞∑
0

z̄m
12

m! B(∆1−1+m,1)∫ ∞

0
dω ω∆1+1

1F1 (∆1+m−1,∆1+m,−iu2ω) ∂m
z̄2
O2 (ω,z2, z̄2)eiu2ω.

(10.3)
Taking the limit (10.1) on the first operator gives the following action of the soft graviton
operator on the Carrollian graviton operator:

Hk
2 (z1, z̄1)∂u2Φ2 (u2,z2, z̄2)∼−κ2,2,−2

z12

1−k∑
m=0

z̄m+1
12
m!

(−iu2)1−k−m

(1−k−m)! (−i∂u2)
2−m ∂m

z̄2Φ2 (u2,z2, z̄2) .

(10.4)
Note that this action is local only for k ≥ −1, corresponding to the universal soft theorems.
In arriving at the above formula, we have made use of the limit

lim
∆1→k

(∆1−k)1F1 (∆1+m−1,∆1+m,−iu2ω)B(∆1−1+m,1)=


(−iu2ω)1−k−m

(1−k−m)! m≤ 1−k

0 m > 1−k.

(10.5)
We can define the Lw1+∞ currents corresponding to soft currents by slightly modifying
the definition in [142]12 to

wq (z, z̄) = lim
ε→0

(−1)2qΓ(2q)
2πi ε

∫ ∞

−∞

dw̄

(z̄ − w̄)2q
O4−2q+ε,2 (z, w̄) , (10.6)

where q = 4−k
2 . Note that O4−2q+ε,2 (z, w̄) ε→0−−−→ 1

ε Hk
2 . Expanding the current in modes as13

wq (z, z̄) =
1−q∑

m=q−1

1
z̄m+1−q

wq
m, q = 3

2 , 2,
5
2 , . . . (10.7)

it has been shown that these modes satisfy the w1+∞ algebra [60],

[wp
m, wq

n] = (m(q − 1)− n(p − 1))wp+q−2
m+n . (10.8)

Implementing this in (10.4) gives the Lw1+∞ action on Carrollian graviton operators:

wq (z1, z̄1)∂u2Φ2 (u2,z2, z̄2)

∼−κ2,2,−2
z12

2q−3∑
m=0

(−1)m(m+1)z̄m+2−2q
12 (−iu2)2q−3−m(−i∂u2)2−m∂m

z̄2Φ2 (u2,z2, z̄2) .
(10.9)

12Alternatively, we could apply the unmodified definition to (10.3).
13The truncated mode expansion can be motivated from various perspectives for currents that enter the

collinear part of the amplitudes, see [59, 128, 144, 145].
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Finally, as a consistency check, we will obtain the action of the Lw1+∞ currents on celestial
graviton operators. This is done by applying (3.13) to the second operator in (10.9) to get

wq (z1, z̄1)O∆2,2 (z2, z̄2) ∼ −κ2,2,−2
z12

2q−3∑
m=0

(−1)m(−i)∆2+2q−1−2mΓ(∆2 − 1)(m + 1)z̄m+2−2q
12

×
∫ ∞

−∞
du2 (u2)2q−2−m−∆2(∂u2)2−m∂m

z̄2Φ2 (u2, z2, z̄2) .

(10.10)

Integrating by parts and identifying the celestial graviton operator, we find

wq (z1, z̄1)O∆2,2 (z2, z̄2) ∼ −κ2,2,−2
z12

2q−3∑
m=0

(m + 1)Γ(∆2 − 1)
Γ (2 + ∆2 + m − 2q) z̄m+2−2q

12 O∆2+4−2q,2 (z2, z̄2) ,

(10.11)

which is in agreement with the result of [142]. Hence, by consistency, our result (10.9)
is also in agreement with the phase space derivation in [68] and the field theory point of
view adopted in [146].

Action of Lw1+∞ currents on gluons. A similar procedure can be used to obtain the
action of Lw1+∞ currents on Carrollian gluon operators. Setting J1 = 2, J2 = 1, J = 1
in (10.2) and suppressing colour indices and the structure constants, we get

O∆1,2 (z1, z̄1)∂u2Φ1 (u2,z2, z̄2)∼−κ2,1,−1
2π

z̄12
z12

∞∑
0

z̄m
12

m!B(∆1−1+m,2)
∫ ∞

0
dω ω1+∆1

1F1 (∆1−1+m,∆1+1+m,−iu2ω) ∂m
z̄2O1 (ω,z2, z̄2)eiu2ω.

(10.12)

In order to proceed here, we need the formula

lim
∆1→k

(∆1 − k) 1F1 (∆1 + m,∆1 + 1 + m,−iu2ω)B(∆1 − 1 + m, 2)

=

− (−iu2ω)−k−m

(−k−m)! + (−iu2ω)1−k−m

(1−k−m)! m ≤ 1− k

0 m > 1− k

(10.13)

which implies the OPE

Hk
2 (z1, z̄1)∂u2Φ1 (u2,z2, z̄2) (10.14)

∼−κ2,1,−1

z12

1−k∑
m=0

z̄m+1
12
m!

[
−(−iu2)−k−m

(−k−m)! (−i∂u2)1−m+(−iu2)1−k−m

(1−k−m)! (−i∂u2)2−m

]
∂m

z̄2
Φ1 (u2,z2, z̄2) .

The action of Lw1+∞ on the Carrollian gluon operator, derived by following the same
procedure as in (10.6) and (10.9) is

wq (z1, z̄1)∂u2Φ1 (u2,z2, z̄2)

∼−κ2,1,−1
z12

2q−3∑
m=0

(−1)m(m+1)z̄m+2−2q
12

[
(2q+m−5)(−iu2)2q−4−m(−i∂u2)1−m

+(−iu2)2q−3−m(−i∂u2)2−m
]
∂m

z̄2Φ1 (u2,z2, z̄2) . (10.15)
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Action of S algebra currents on gluons. The action of the S algebra can be obtained
by following the same procedure as above. Setting J1 = J2 = J = 1 in (10.2) and taking
the limit in (10.1), we get

Hk
1 (z1, z̄1) ∂u2Φ1 (u2, z2, z̄2) ∼ −κ1,1,−1

z12

1−k∑
m=0

z̄m
12

m!
(−iu2)1−k−m

(1− k − m)! (−i∂u2)1−m∂m
z̄2Φ1 (u2, z2, z̄2) .

(10.16)

The actions of the soft operators with k = 1, 0 are local while the rest are non-local. This is
similar to the gravitational case. In arriving at this result, we have made use of the formula

lim
∆1→k

(∆1 − k)
(∆1 − 1 + m)1F1 (∆1 − 1 + m,∆1 + m,−iu2ω) =

(−iu2ω)1−k−m

(1− k − m)! . (10.17)

The S algebra currents are defined as

Sq,a (z, z̄) = lim
ε→0

(−1)2qΓ(2q)
2πiε

∫ ∞

∞

dw̄

(z̄ − w̄)2q
Oa

3−2q+ε,1, q = 1,
3
2 , 2, . . . (10.18)

where q = 3−k
2 and O3−2q+ε,1 (z, w̄) ε→0−−−→ 1

ε Hk
1 . Note that in the above equation, we have

reintroduced the colour index on the gluon operator. These currents admit a mode expansion
similar to the wq in (10.7) and are known to satisfy the algebra [60],[

Sq,a
n , Sp,b

m

]
= −ifab

c Sp+q−1,c
m+n , (10.19)

where fabc are the structure constants of the gauge group. Implementing the redefini-
tion (10.18) in (10.16), we get the action of the S algebra on Carrollian current

Sq,a (z1, z̄1) ∂u2Φb
1 (u2, z2, z̄2) (10.20)

∼ −fabc κ1,1,−1
z12

2q−2∑
m=0

(−1)m(m + 1) z̄m+1−2q
12

m! (−iu2)2q−2−m(−i∂u2)1−m∂m
z̄2Φ

c
1 (u2, z2, z̄2) .

In arriving at the above result, it was necessary to reintroduce colour indices and the structure
constants into (10.16). We can derive the action of S algebra currents on celestial gluon
operators by a computation identical to (10.10) and (10.11), upon which we find a result
in agreement with [142].

11 Momentum, Carrollian and twistorial transforms

In this section we give a proof of the Fourier transform between on-shell momentum space
wave functions and asymptotic data for massless fields. Although arguments for this transform
have been given elsewhere, [18, 121, 122], the version presented here makes the conformal
invariance of the transform manifest by introducing homogeneous coordinates that explicitly
encode the action of conformal transformations of S and hence Lorentz invariance. It will
also expedite the connections with twistor space and the twistor encoding of the data.

The twistor encoding of zero rest mass fields can happen in a variety of ways owing to
the cohomological nature of the twistor representatives arising from the Penrose transform.

– 33 –



J
H
E
P
0
5
(
2
0
2
4
)
0
1
2

Two choices are relevant to our discussions here depending on the choice of signature. In
Lorentz signature, as described in [34, 35, 147], asymptotic data at I directly give rise to
certain preferred Dolbeault twistor cohomology classes adapted to null infinity. This does
not make a significant difference to the discussion above and we postpone discussion of these
to section 12. In Klein space or split signature there is a version more analogous to Cech
cohomology but where the cohomological freedom is fixed and the Penrose transform coincides
with the so-called X-ray transform discussed below. There is further a nontrivial transform
from asymptotic data to twistor data discussed in [45] and proved below. This will allow us
to establish a direct connection between twistor space and Carrollian CFT.

11.1 Homogeneous coordinates on I and on-shell momentum space

This homogeneous framework for I was originally introduced by Sparling [34, 147] and our
conventions in this section are adapted from these references and will slightly differ from
those of the previous sections. This choice allows us to connect more easily with the twistor
literature later. The homogeneous coordinates will allow us to work with manifest Lorentz
and conformal invariance and write more compact formulae that keep track of weights under
transformations. The following formulae are all valid in both Lorentz and in split signature
although we will pivot to split signature in the twistor subsection.

To connect with the notation in (5.3) we introduce the momentum spinors

kαα̇ = κακ̃α̇ , where κα =
√

ωzα , κ̃α̇ =
√

ωz̃α̇ , (11.1)

where
zα = (1, z) , z̃α̇ = (1, z̃) . (11.2)

For helicity14 n/2 an on-shell momentum space wave function ϕ̂(κα, κ̃α̇) is required to have
weight n

ϕ̂(ακα, α−1κ̃α̇) = αnϕ̂ . (11.3)

Note that here ω ∈ R not R+ but with this rescaling freedom, it only needs to appear in
integral powers in the transform formulae so no signs or factors of i need to be introduced.

Similarly, at I , the Bondi coordinates (uB, z, z̄) introduced in section 2 can be wrapped
up into homogeneous spinorial quantities

(u, λα, λα̇) =
(
λ0λ̃0̇uB, λ0zα , λ̃0̇z̄α̇

)
, (11.4)

where a function f(u, λ, λ̃) is now said to have weights (p, q) if

f(αα̃u, αλα, α̃λ̃α̇) = αpα̃qf(u, λα, λ̃α̇) . (11.5)

Homogeneity weights (p, q) correspond to Carrollian weights (−2k,−2k̄). This follows because
the 1-forms

Dλ := ⟨λdλ⟩, Dλ̃ := [λ̃dλ̃] (11.6)
14Here we will take the sign of the helicity as if the momentum were future pointing so that positive helicity

corresponds to self-duality.
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have respective homogeneity weights (2, 0) and (0, 2) so that f(Dλ)−
p
2 (Dλ̃)−

q
2 defines a

section of (Ω(1,0)
S )−

p
2 ⊗ (Ω(0,1)

S )−
q
2 with homogeneity weights zero: thus it descends to a

tensor (or a conformal Carrollian primary field) on I . Thus, homogeneity weights (p, q)
are equivalent to Carrollian weights (k, k̄) =

(
−p

2 ,− q
2
)

according to the definition (2.6) and
encode the conformal invariance properties via standard Lie derivatives of tensors. We see
that in the homogeneous framework, a fixing of the rescaling freedom is equivalent to the
choice of a spin-frame on the sphere, and that the construction is essentially local depending
only on the local conformal structure. It also allows the global SL(2,C) symmetry to be
manifested when one is working globally on the Riemann sphere CP1 in terms of its global
homogeneous coordinates.

Thus our basic Carrollian fields Φϵ
J have homogeneity weights (−1− ϵJ,−1 + ϵJ). At I ,

according to the Newman-Penrose spin-coefficient formalism of [79, 148], (p, q) are encoded
into spin weights s = (p − q)/2 and boost weights w = (p + q)/2. One finds that the
radiation field ϕ̃0

n for a massless field with n = 2ϵJ ≥ 0 has weights (p, q) = (−1,−1 − n)
whereas ϕ0

n with n = −2ϵJ ≥ 0 has (p, q) = (−1 − n,−1). Thus, on the basis of weights,
for integral spin, we can identify

ϕ̃0
n = ∂

n
2

u Φϵ
J , n = 2ϵJ , ϕ0

n = ∂
n
2

u Φϵ
J , n = −2ϵJ . (11.7)

In particular for spin two we have ϕ0
n = Ψ0

n = ∂uN = ∂2
uσ̄ where N is the Bondi news, and σ̄

the asymptotic shear. Thus Φ2 can indeed be identified with the shear.
As an application of the homogeneous formalism, we express the Carrollian OPE (9.9)

conformally invariantly as

ΦJ1

(
u1, λ1, λ̃1

)
ΦJ2

(
u2, λ2, λ̃2

)
(11.8)

∼ −κJ1,J2,−J

2π

[λ̃1λ̃2]p

⟨λ1λ2⟩

∫ t2=0

t1=0
Dt tJ2−J−1

1 tJ1−J−1
2

(
∂

∂u

)p

ΦJ

(
t1u1 + t2u2, λ2, t1λ̃1 + t2λ̃2

)
.

Here Dt := t2dt1 − t1dt2 where ti have weights (0,−1) in (ui, λi, λ̃i) respectively and J =
J1 + J2 − p − 1. As we are taking the limit ⟨λ1λ2⟩ → 0, we can identify the holomorphic
weights in the OPE using the ratio λ1 : λ2 in the limit. In this framework, the fact that the
weights in this formula balance proves its conformal invariance.

11.2 From momentum space to asymptotic data and back

Massless fields of spin n/2 are given respectively by momentum space wave functions ϕ̂(κ, κ̃)
of weight −n for negative helicity and of weight n for positive helicity, or characteristic data
at I , ϕ0

n(u, λ, λ̃) of weight (−n − 1,−1) for negative helicity and of weight (−1,−n − 1) for
positive helicity. Thus for negative ϵJ = −n/2 the space-time fields are given by the formulae

Ψα1...αn(x) =
∫
R4

κα1 . . . καn ϕ̂(κ, κ̃)eik·xδ(k2) d4k , (11.9)

= 1
2π

∫
S

λα1 . . . λαn∂uϕ0
n(xαα̇λαλ̃α̇, λ, λ̃)Dλ Dλ̃ . (11.10)

Here Dλ := ⟨λdλ⟩ and Dλ̃ := [λ̃dλ̃]. In both cases it is quickly checked that the integrands
are invariant under their respective rescalings. The rescaling invariance for (11.10) means
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that the λα and λ̃α̇ integrals reduce, in Lorentz signature where λ̃ is the complex conjugate
of λ, to the double integral over the sphere. In split signature the (λ, λ̃) integrals are over
projective lines RP1 with topology S1 or simply R if a scaling is chosen so that λ0 = 1.

These formulae are essentially ambidextrous, and the positive helicity versions are given
by the conjugate formulae. The first of these in (11.9) is the standard Fourier transform, and
the second in (11.10) is an adaptation of the d’Adhémar integral formula of, for example, [79],
and taken out to I in either signature.

The main tool used in this paper is what might be known as the third-Fourier transform:

Lemma 11.1. For spin n/2, we have the formulae

ϕ0
n(u, λ, λ̃) = i

∫
ϕ̂(λ, sλ̃)e−isuds = i

∫
s

n
2 ϕ̂(s

1
2 λ, s

1
2 λ̃)e−isuds , ϵJ ≤ 0 , (11.11)

ϕ̃0
n(u, λ, λ̃) = i

∫
ϕ̂(sλ, λ̃)e−isuds = i

∫
s

n
2 ϕ̂(s

1
2 λ, s

1
2 λ̃)e−isuds , , ϵJ ≥ 0 , (11.12)

with the second equality following from the homogeneity.

In particular, for gravity we see that with ϕ0
4 = Ψ0

4 = ¨̄σ we can write

σ̄(u, λ, λ̄) = −i

∫
ϕ̂(s

1
2 λ, s

1
2 λ̃)e−isuds , (11.13)

agreeing with the identification following (3.5). A well-known corollary is that if ϕ̂ is positive
or negative frequency, then ϕ0

n extends to the upper-half u-plane.

Proof. To see this for the negative helicity case, we rewrite (11.10) as an integral over I

using the Fourier representation of the delta function

2πδ(u − xαα̇λαλ̃α̇) =
∫

eis(u−x·λλ̃)ds . (11.14)

Putting this together with Fourier inversion of (11.9)

κα1 . . . καn ϕ̂(κ, κ̃) δ(k2) = 1
(2π)4

∫
R4

e−ik·xΨα1...αnd4x , (11.15)

we obtain

κα1 . . .καn ϕ̂δ(k2)= 1
(2π)5

∫
d4xds

∫
I
ei(k·x+s(u−x·λλ̃))λα1 . . .λαnΨ̇0

n duDλDλ̃ (11.16)

= 1
2π

∫
ds

∫
I

δ(4)(kαα̇−sλαλ̃α̇)ϵisuλα1 . . .λαnΨ̇0
n duDλDλ̃, (11.17)

with the x-integrations directly yielding the delta functions. These imply the δ(k2) delta
function which can be factored out, and the (s, λ, λ̃) integrals can then be evaluated against
the delta function. To do this it is useful to revert to the gauge fixing of (11.1) and (11.5)
with λ0 = 1 = λ̃0̇, so that s-integral against the delta function identifies s = ω to give

ωn/2ϕ̂(κ, κ̃) = 1
2π

∫
R

duB
eiωuB

ω
ϕ̇0

n(uB, z, z̃) = −i

2π

∫
duB eiωuB ϕ0

n(uB, z, z̃) (11.18)
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where in the second equality we integrated by parts. Multiplying through by λ−n
0 , introducing

s = ω/λ0λ̃0̇ and using homogeneity we obtain

ϕ̂(λ, sλ̃) = −i

2π

∫
du eisuϕ0

n(u, λ, λ̃) . (11.19)

Inverting the transform we therefore obtain (11.11)

ϕ0
n

(
u, λα, λ̃α̇

)
= i

∫
ds e−isuϕ̂(λα, sλ̃α̇) . (11.20)

The details are much the same for obtaining the positive helicity version (11.12).

11.3 Transforms to twistor space and back

In order to have well-defined twistor functions, we work in Klein space with split signature
as the Penrose transform there reduces to the X-ray transform expressing massless fields
on space-time in terms of smooth functions on real twistor space RP3 with homogeneous
coordinates (λα, µα̇) ∼ α(λα, µα̇). In split signature all coordinates will be taken to be real.

We introduce homogeneous coordinates (λα, µα̇) on twistor space RP3 with twistor
function f(λα, µα̇) said to be of homogeneity n if

f(αλα, αµα̇) = αnf(λα, µα̇) . (11.21)

The twistor integral formulae are starting with twistor functions f(λα, µα̇) of weight n − 2,
for spin n/2. These are chiral transforms given differently for positive and negative helicity
massless fields

Ψα̇1...α̇n(x) =
∫

S1

∂nf

∂µα̇1 . . . ∂µα̇n

∣∣∣∣
µα̇=xαα̇λα

Dλ , ϵJ > 0 (11.22)

Ψα1...αn(x) =
∫

S1
λα1 . . . λαnf(λ, xαα̇λα)Dλ , ϵJ ≤ 0. (11.23)

It is quickly checked that the integrands are invariant under their respective rescalings so that,
in split signature, the λα integrals in (11.22)–(11.23) reduce to integrals over the projective
line RP1 with topology S1 or simply R if a scaling is chosen so that λ0 = 1.

These integrals are higher spin versions of the so-called X-ray transform, because they
integrate f over lines in RP3, providing solutions to higher spin versions of the ultrahyperbolic
scalar wave equation, [149].15 These are manifestly conformally invariant as written.

Concatenating (11.15) with the twistor integral formulae leads to Witten’s [150] half-
Fourier transform between momentum space and twistor space

f(λ, µ) =
∫

ϕ̂(λ, λ̃)ei[µ λ̃]d2λ̃ , ϕ̂(λ, λ̃) = 1
(2π)2

∫
f(λ, µ)e−i[µ λ̃]d2µ , (11.24)

see appendix B of [151] for full details of the derivation. To obtain the map between
asymptotic data and twistor space, we can concatenate this last formula with the half Fourier

15Usually, the Penrose transform reformulates massless fields as cohomology classes on regions in twistor space
subject to constraints and gauge freedom. The X-ray transform has the advantage of being a correspondence
with functions on RP3.
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transform to obtain for negative helicity

ϕ0
n

(
u, λα, λ̃α̇

)
= i

4π2

∫
dsd2µ e−is(u−[µλ̃])f(λα, µα̇) , (11.25)

= i

2π

∫
d2µ δ(u − [µλ̃])f(λα, µα̇) . (11.26)

However, for positive helicity we obtain

ϕ̃0
n

(
u, λα, λ̃α̇

)
= i

4π2

∫
sndsd2µ e−is(u−[µλ̃])f(λα, µα̇) , (11.27)

= i

2π
(i∂u)n

∫
d2µ δ(u − [µλ̃])f(λα, µα̇) . (11.28)

For positive helicity gravitons, n = 4 and we write ϕ̃0
4 = Ψ̄0

4 = σ̈. It is easy to see that, after
integrating twice with respect to u we obtain for the asymptotic shear with f of weight 2

σ(u, λ, λ̃) = i

2π
∂2

u

∫
d2µ δ(u − [µλ̃])f(λα, µα̇) . (11.29)

Integrating out the delta function, this formula reduces to (A.10) in [45] thereby giving
a proof of that formula.

For Maxwell/Yang Mills we have n = 2 and ϕ0
2 = ∂ua where a is the Dλ̃ component

of the gauge potential in a gauge in which the du component is zero. In this case we can
similarly write for f now of weight zero

a(u, λ, λ̃) = i

2π
∂u

∫
d2µ δ(u − [µλ̃])f(λα, µα̇) . (11.30)

The above integral transforms provide a direct relation between operators f on twistor
space and what we holographically identify with Carrollian operators in the putative dual
theory at I . This can be exploited to study properties of Carrollian amplitudes using twistor
theory, without resorting to momentum space. We defer this analysis for future works.

12 Discussion

Scattering amplitudes are usually expressed in terms of on-shell momentum space wave
functions. There has nevertheless been a long tradition of studying classical scattering from
null infinity, already implicit in the work of Bondi, Sachs et al. [84–86] made explicit16 in the
work of Newman and Penrose [76–78, 123, 148] and later by Ashtekar and others [121, 154].
Quantum scattering has also been studied from null infinity in [122, 155] and more recently,
although perhaps more implicitly in the conformal collider discussion of [156]. Only relatively
recently has there been much interaction with the modern study of scattering amplitudes.
For example, the ambitwistor strings of [157, 158] were reformulated in terms of strings at I

in [36, 37, 40, 42] with amplitudes constructed from vertex operators built from radiation
fields at null infinity. Nevertheless, in these articles, the focus was on momentum eigenstates
or Mellin states even if expressed at I , in order to identify soft theorems.

16The scattering theory of Lax and Philips [152] was similarly re-interpreted as scattering from I by
Friedlander [153].

– 38 –



J
H
E
P
0
5
(
2
0
2
4
)
0
1
2

In this article we have instead systematically reformulated massless amplitudes in terms
of their radiation data at I via a Fourier relationship between energy and the Bondi retarded
time. As examples we have been able to fully transform two-point, generic Lorentz-invariant
three-point amplitudes, and gauge and gravity MHV amplitudes with many points. This has
enabled us to establish a bottom-up approach to a dictionary for Carrollian holography by
proposing that such Carrollian amplitudes arise as correlators of some system of operators
defining a Carrollian CFT at I . The OPEs of these operators have been obtained from the
transform of the three-point functions. Although the Fourier transform between momentum
space and radiative data in its most explicit form and hence the Carrollian OPE do not
make Lorentz invariance manifest, in section 11.2 we saw that they can be formulated with
manifest conformal invariance.

The interest of position space amplitudes at I for flat space holography [16–18] is based
on the observation that the position space amplitudes for a massless scattering in flat space
can be encoded in Carrollian correlation functions at null infinity. The n-point Carrollian
amplitudes and OPEs derived in this work offer strong constraints on the potential dual
theory at null infinity. This opens the road to a bootstrap program for Carrollian CFT.

The Carrollian holography dictionary discussed in this work can be seen as an extrapolate-
type of dictionary: the Carrollian correlators at the boundary can be obtained as boundary
values of the bulk correlators (see the discussion below (3.8)). This is very much in the spirit
of AdS/CFT, and in that case, the bulk path integral can be interpreted as the generating
functional for boundary correlators [159]. The first steps towards such an identification in flat
space have been taken in [160–162], where the authors use the bulk path integral to explicitly
realize the S-matrix (in specific cases) as boundary correlators. It would be interesting to
compare these with partition functions of Carrollian theories.

Furthermore, we believe that Carrollian amplitudes are the natural objects obtained from
the flat limit of AdS amplitudes with suitable boundary conditions. Indeed, from the classical
Einstein equations, we know that the flat limit in the bulk (Λ → 0) implies a Carrollian
limit (c → 0) at the boundary [15, 163–174]. We expect that a similar procedure applies for
scattering amplitudes (see e.g. [175–179] for recent works in that direction).

In the last part of this work, we initiated a connection between Carrollian holography and
twistor theory by expressing the asymptotic data at null infinity, corresponding to Carrollian
operators, and operators defined on twistor space. The latter is the natural framework to
provide a geometric interpretation for the celestial symmetries [40, 45, 70, 71]. We plan
to exploit this interplay in future works.

Finally, although here we have focused on bottom-up methods for Carrollian holography,
but there are by now a number of top-down approaches in the literature. In particular,
worldsheet theories with target I have been constructed in [36, 37, 39, 42]. These are all
essentially ambitwistor string theories except for [39] which is a classical sigma model. They
encode the radiative sector into worldsheet vertex operators whose correlation functions
yield amplitudes at tree level and beyond. Such vertex operators also implement both BMS
and higher celestial symmetries. Other top-down methods, also have a twistorial focus.
The twisted holography work of Costello, Sharma and Paquette [43, 44] should also have a
Carrollian realization. The twistor actions of [180–184] already have an interesting realization
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in this Carrollian framework, because a natural gauge fixing for the twistor cohomology classes
on which the twistor actions are based arises from asymptotic data at I following [34, 147];
this has already been exploited in the radiative approach to amplitudes in [38, 41]. On
the other hand, split signature approaches to the transform to twistor space [150, 151] give
different insights into the structures studied here, in particular because actions of the enhanced
symmetry algebras, Lw1+∞ and the S-algebra, are locally realized on twistor space in this
signature as seen in [45]; the Lorentz signature approach of [40] required a Čech-Dolbeault
correspondence to be implemented before a local geometric realization could be obtained,
and so a cleaner picture should be available in this framework.
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A Computation of In

We will perform the integral over one such generic region which without loss of generality
we will take to be

Bn ≤ ωn ≤ B′
n,

n∑
a=k+1

Bka ωa ≤ ωk ≤
n∑

a=k+1
B′

ka ωa. (A.1)

We have assumed that the inequalities have been solved in such a way that the bounds on the
integration domain of ωk depend only on ωk+1, . . . , ωn. It is convenient to define the vectors

Bk = (0, . . . , Bkk+1, . . . , Bkn) , B′
k =

(
0, . . . , B′

kk+1, . . . , B′
kn

)
, ω = (ω5, . . . , ωn) .

(A.2)

Note that Bk · ω reduces to the combination appearing in (A.1). With this, the integral (7.6)
can be written as

In =
∫ ∞

0

n∏
a=5

dωa eiLa ωaΘ(ωn−Bn)Θ
(
B′

n−ωn
)n−1∏

k=5
Θ(ωk−Bk ·ω)Θ

(
B′

k ·ω−ωk

)
(A.3)

We can now replace all the Θ functions by their integral representations

Θ(x) = 1
2πi

∫ ∞

−∞

dτ

τ + iε
e−ixτ (A.4)
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with the understanding that ε is an infinitesimal parameter. We introduce a variable τi for
every lower bound and τ ′

i for every upper bound and get

In =
( 1
2πi

)2(n−4) ∫ ∞

0

n∏
a=5

dωa eiLa ωa

∫ n−1∏
k=5

dτkdτ ′
k

(τk+iε)(τ ′
k+iε)exp [iτk (ωk−Bk ·ω)−iτ ′

k (ωk−B′
k ·ω)]

×
∫

dτndτ ′
n

(τn+iε)(τ ′
n+iε)exp [−iBnτn+iB′

nτ ′
n]

=
( 1
2πi

)2(n−4) ∫ ∞

0

n∏
a=5

dωa

∫ n∏
k=5

dτkdτ ′
k

(τk+iε)(τ ′
k+iε)exp [−iωkXk (τ)]exp [−iBnτn+iB′

nτ ′
n]

(A.5)

where Xk (τ) = τk − τ ′
k −

∑k−1
a=5 τaBak +

∑k−1
a=5 τ ′

aB′
ak − Lk. We can now perform all the

ωk integrals to get

In =
( 1
2πi

)2(n−4) ∫ n∏
k=5

dτkdτ ′
k

(τk + iε)(τ ′
k + iε)

1
Xk (τ)− iε

exp
[
−iBnτn + iB′

nτ ′
n

]
(A.6)

Finally, for certain kinematic regions, we can have Bk = 0 and B′
k = ∞. All the Θ functions

reduce to 1 in this limit. In the integral representation, we see that the x → ∞ limit is
dominated by the τ = 0. Thus, if we use (A.6) to compute In when all Bk = 0 and B′

k = ∞,
we must compute the residue around τk = τ ′

k = 0.
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