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1 Introduction

The study of chaos in quantum many-body systems has received a significant amount of
attention in recent years in various fields ranging from condensed matter physics to quantum
gravity. During this time, deep connections have been uncovered between thermalization in
closed quantum systems [1–3], the emergence of ergodicity and the universality of spectral
statistics in random-matrix theory (RMT) [4]. To this end, several probes of chaotic
behavior in quantum many-body systems have been introduced such as out-of-time-order
correlators (OTOCs) [5–7], spectral form factors (SFF) [8, 9] as well as different notions of
operator entanglement and growth [10–13]. Within the latter class, there has been recent
interest in studying a particular notion which quantifies the growth of operators and which
has the potential of bridging the gap between quantum dynamics and the study of the black
hole interior in anti-De Sitter (AdS) gravity. This notion is known as Krylov complexity, or
simply as K-complexity.
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K-complexity KO(t) measures the growth in time, or spread, of an operator O
in Krylov space, a local Hilbert space HO defined as the span of nested commutators
Span{[H, . . . , [H,O]]},1 where H is the Hamiltonian of the system. In [16], authors conjec-
tured that exponential growth of the K-complexity KO(t) ∝ eλK t could be interpreted as a
signature of chaotic behavior in local quantum many-body systems with finite-dimensional
Hilbert spaces, such as non-integrable spin chains or the Sachdev-Ye-Kitaev (SYK) model [17–
19]. The authors furthermore showed that for systems at infinite temperature 1/β →∞,
λK is an upper bound for the growth rate of a large class of operator growth measures,
including OTOCs. In particular, they conjectured a sharp bound on Lyapunov exponents

λL ≤ λK , (1.1)

which could represent a tighter bound than the universal Maldacena-Shenker-Stanford
(MSS) chaos bound [20]

λL ≤ 2π/β , (1.2)

since they conjectured that the relation (1.1) could be valid at finite temperature 0 <

1/β <∞, where λK ≤ 2π/β. As a consequence, this observation led to a wealth of studies
of K-complexity in different settings, ranging from quantum many-body systems [21–39],
gauge theories [40], holographic models [41], conformal field theories (CFT) [42, 43], Lie
groups [44, 45] and open quantum systems [46–48].

At the same time, the notion of quantum complexity [49] has taken a center stage in
the study of the black hole interior through the AdS/CFT correspondence [50]. Borrowed
from quantum computing, quantum complexity can be broadly thought of as a measure of
how difficult it is to achieve a certain task with finite resources, e.g. producing a particular
quantum state or a given operator using a finite set of operations or gates. Intuitions
related to the relevance of quantum complexity in decoding the information contained
in Hawking radiation [51, 52] were sharpened in a series of works [53–56] giving rise to
holographic complexity proposals, which have been the subject of recent efforts to understand
the interior of AdS black holes. See [57] for a review. Nevertheless, despite significant
progress, an outstanding complication that remains is the absence of a proper definition of
quantum complexity beyond Gaussian states in free quantum field theories (QFTs) [58–61],
weakly-interacting theories [62] and CFTs [63–67].

In most but certainly not all cases, the notion of quantum complexity is taken to
be that of circuit complexity, which was generalized from spin chains to quantum many-
body systems by implementing a geometrization approach developed in [68–70]. This
notion, usually referred to as Nielsen complexity, can be thought of as a family of circuit
complexity measures that have a number of ambiguities (e.g. choice of reference and target
states –or equivalently desired operator–, cost function, universal gate set, and penalty
factors) which lack a precise understanding from the gravitational perspective despite a

1In [14] authors performed experimental measurements of the growth rate of other probes of chaotic
behavior such as OTOCs and the Loschmidt Echo [15]. It was argued that the evolution of an operator
through the commutation with the Hamiltonian gives rise to scrambling, pointing at a link between these
measures and K-complexity.
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qualitative agreement with holographic proposals.2 In contrast, K-complexity depends
only on the choice of the operator O (or quantum state) in a given quantum system
with Hamiltonian H. In [29], authors also showed that it also exhibits universal features
analogous to SFF [4].3 Furthermore, in [21, 24, 41, 44] K-complexity was found to have
a qualitative agreement with holographic expectations, particularly in the context of the
so-called “complexity=volume” (CV) proposal [54]. Nevertheless, despite these qualitative
similarities with holographic proposals, it is not clear whether K-complexity can be regarded
as the field-theoretic counterpart to a holographic complexity notion, or conversely, what
could be the holographic counterpart of K-complexity.

Given the broad interest in K-complexity and lack of results beyond quantum many-
body systems, CFTs, and systems with a high degree of symmetry, it is important to pave
the way toward an understanding of this quantity in more general QFTs. An outstanding
question is whether K-complexity can probe chaotic features of QFTs in a similar fashion
to quantum many-body systems. A conundrum arose in [42], where it was shown that
K-complexity generically grows exponentially in both chaotic (holographic) and non-chaotic
(rational) CFTs and therefore this feature should not be naïvely regarded as an indication of
chaos in QFTs with unbounded power spectrum. Dymarsky and his collaborators [73] have
given an interpretation of this issue by considering a discretized lattice model as follows: in
order to capture signatures of quantum chaos, one needs to introduce a UV cutoff, such as a
lattice spacing, which may produce a bound on the power spectrum, and study the growth
of K-complexity for times after the UV cutoff scale. Inspired by their argument, in this work
we focus on a similar but different way to introduce the UV cutoff. Instead of considering
discretized lattice models, we consider a cutoff for the momentum integrals in QFTs at
finite temperature 1/β in different spacetime dimensions d. Our approach consisting of the
introduction of a momentum cutoff can be considered complementary to the analysis of
discretized lattice models.

This paper is structured as follows: in section 2 we review the basics of the so-called
Lanczos algorithm [74], a procedure which allows us to compute important quantities in
the study of operator growth, namely the so-called Lanczos coefficients bn and “probability
amplitudes” ϕn(t). We also show how these quantities are used to compute the Krylov
complexity KO(t). Then, in section 2.1 we discuss in detail the connection between the
exponential growth of K-complexity and features of quantum chaos and the MSS chaos
bound (1.2), while in section 2.2 we discuss the effects that we expect to observe in
K-complexity from considering a bounded power spectrum (i.e. the existence of IR and
UV cutoffs).

Afterwards, in section 3 we apply the Lanczos algorithm to the free massive scalar theory
in d-dimensions. Throughout this section we consider the heavy scalar limit, βm� 1, where

2One should remark, nonetheless, that recent developments [71, 72] posit the existence of a family of
notions of holographic complexity that generalize the previously conjectured ones. It is an active subject
of research to understand whether the features of this family of holographic complexity measures have a
field-theoretic counterpart, e.g. within the family of circuit complexity measures of the Nielsen-type.

3Readers are also referred to [36] for a comparison of the SFF, OTOCs and K-complexity in the context
of the SYK model and some of its deformations.
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analytic formulas for most quantities can be found. In section 3.1 we carefully analyze the
Wightman power spectrum fW (ω) and the associated thermal Wightman 2-point function
ΠW (t), also known as the auto-correlation function. In section 3.2 we focus on the case
where there is no upper bound in the power spectrum (i.e. no UV cutoff). We compute the
moments µ2n from the power spectrum fW (ω) which allows us to compute the Lanczos
coefficients and probability amplitudes ϕn(t). With these, we obtain an expression for the
K-complexity K(t) which we analyze in different odd dimensions d. We study its early and
late-time behavior and we obtain an expectation for its growth rate as a function of βm.

In section 3.3 we introduce a hard UV cutoff Λ in momentum space and study the effects
that it has on both the Lanczos coefficients and the K-complexity, following an analogous
procedure to the preceding section. We complement this analysis in section 3.4, where
we discuss the case where we modify the large-frequency behavior of the power spectrum
fW (ω) by introducing a smooth cutoff. Then, in section 4 we study the behavior of the
Lanczos coefficients for an interacting scalar theory in d = 4 spacetime dimensions. We
first study the case where we have a marginally irrelevant deformation in section 4.1. This
analysis is contrasted with the case where we consider a relevant deformation, which we
study in section 4.2. Finally, in section 5 we discuss our results and offer some concluding
remarks and possible future directions.

Note added. On the same day that this work was announced on arXiv, ref. [75] regarding
the talk [73] also appeared. There is a conceptual overlap between our works, particularly
on the effects that the mass and UV cutoff have on K-complexity; although the way in
which we introduce the UV cutoff is different. Nevertheless, our conclusions are consistent
with each other.

2 The Lanczos algorithm

In this section we provide an outline of the recursion method, which is the basis for the
Lanczos algorithm. The reader can refer to [16, 76] for further details. The basic idea is to
study the Heisenberg evolution of an operator O in a given quantum system governed by a
Hamiltonian H. The time evolution of O is determined by the Heisenberg equation

∂tO(t) = i [H,O(t)] , (2.1)

whose formal solution for a time-independent Hamiltonian H can be written as

O(t) = ei tH O(0) e−i tH . (2.2)

One may consider an expansion of O(t) as a power series in the following way

O(t) =
∞∑
n=0

(i t)n
n! Õn , (2.3)

where the Õn are nested commutators of O(0) with H. This expression intuitively shows
how a “simple” initial operator O(0) may become increasingly “complex” at each time step
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as it evolves through its commutation with H. However, it is rare that one can exactly
solve the operator dynamic for generic physical systems in this way. Instead, a method that
is better suited for this study lies in the definition of a super-operator called the Liouvillian

L := [H, · ] , (2.4)

which acts linearly on the space of operators and commutes them with the Hamiltonian.
This allows us to write the formal solution to the Heisenberg evolution of O(t) simply as
O(t) = eiLt O(0) and to re-interpret the operators Õn in (2.3) as Õn = Ln O(0). This
bears resemblance to the time-evolution of states in the Schrödinger picture and suggests
re-interpreting (2.3) as the operator O’s “wavefunction” expanded in some local basis of
states Õn belonging to a local Hilbert space HO, known as Krylov space. Formally, HO
is the Gelfand-Naimark-Segal (GNS) Hilbert space HGNS constructed from the quantum
system’s operator algebra A. As mentioned in section 1, HO is spanned by the {|Õn)},
which we interpret as a local basis of states in this abstract Hilbert space.

In order to complete the analogy with the Schrödinger picture we require a notion of
inner product in HO. Since we are interested in considering finite temperature 1/β effects,
we will work with the Wightman inner product induced by the thermal expectation value

(A|B) := 〈eβH/2A†e−βH/2B〉β ≡
1
Zβ

Tr(e−βH/2A†e−βH/2B) , (2.5)

where Zβ :=Tr
(
e−βH

)
is the thermal partition function. This choice will allow us to connect

our results with the study of Lyapunov exponents and the MSS chaos bound (1.2). Having
introduced the inner product, we apply the recursion method [76] to study the dynamics of
the operator O. Starting from {|Õn)} we construct an orthonormal basis {|On)} of HO by
using the Gram-Schmidt orthogonalization procedure. This orthonormal basis is known
as the Krylov basis, and in a sense is an optimal choice of basis in Krylov space. In the
context of quantum state complexity, the Krylov basis has been shown to minimize the
spread complexity [29, 33, 77].

Starting with the first two operators in {|Õn)}, which are orthogonal to each other
with respect to the Wightman inner product (2.5), we construct the first two elements of
the Krylov basis

|O0) := |Õ0) ≡ |O(0)) , |O1) := b−1
1 L|Õ0) , (2.6)

where b1 := (Õ0L|LÕ0)1/2. One then constructs the next states n > 1 by an iterative
algorithm

|On) := b−1
n |An) , bn := (An|An)1/2 , (2.7)

where
|An) := L|On−1)− bn−1|On−2) . (2.8)

In this way, the elements of the Krylov basis are orthogonal to each other and properly
normalized (Om|On) = δmn. The {bn} are called Lanczos coefficients and encode the
information about the growth of the operator O(0).
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In the Krylov basis, the time-evolution of |O(0)) (2.3) takes the form

|O(t)) =
∞∑
n=0

inϕn(t)|On) , (2.9)

where the ϕn(t) := i−n(On|O(t)) are “probability amplitudes” whose square is conserved
in time

∞∑
n=0
|ϕn(t)|2 = 1 . (2.10)

These amplitudes are determined by iteratively solving a discretized “Schrödinger equation”

dϕn(t)
dt = bnϕn−1(t)− bn+1ϕn+1(t) , (2.11)

with initial condition ϕn(0) = δn,0 and where ϕ−1(t) ≡ 0 ≡ b0 by convention. This equation
is interpreted as the hopping of a quantum-mechanical particle on a 1-dimensional chain.
In the Krylov basis, the Krylov complexity of the operator O is defined as

KO(t) := (O(t)|n|O(t)) =
∞∑
n=0

n|ϕn(t)|2 . (2.12)

In the language of [16], the Krylov complexity belongs to a class of “quelconque-complexities”
defined for local operators H and O on lattice systems, and its growth rate bounds the
growth rate other notions of operator growth, such as OTOCs and operator size.

A central object in the Lanczos algorithm is the thermal Wightman 2-point function,
also known as the auto-correlation function

C(t) := ϕ0(t) ≡ (O(t)|O(0)) ≡
≡ 〈ei (t−i β/2)HO†(0)e−i (t−i β/2)HO(0)〉β =
= 〈O†(t− iβ/2)O(0)〉β := ΠW (t) .

(2.13)

ΠW (t) can also be thought of as a two-sided correlation function in the thermofield double
state |TFD〉.4 From (2.11) it is clear that the K-complexity (2.12) is obtained from the
derivatives of the auto-correlation function. As a consequence, the physical information
contained in the auto-correlation function, and therefore in the K-complexity, is equivalently
encoded in the moments {µ2n} which are the Taylor expansion coefficients of ΠW (t)
around t = 0

ΠW (t) :=
∞∑
n=0

µ2n
(it)2n

(2n)! , µ2n := (O(0)|L2n|O(0)) = 1
i2n

d2nΠW (t)
dt2n

∣∣∣
t=0

. (2.14)

These can also be derived from the Wightman power spectrum fW (ω)

µ2n = 1
2π

∫ ∞
−∞

dω ω2nfW (ω) , (2.15)

4This identification is possible due to the choice of inner product (2.5).
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which is related to the thermal Wightman 2-point function via a Fourier transformation

fW (ω) =
∫ ∞
−∞

dt eiωtΠW (t) . (2.16)

In this sense, the information about the growth of O is equivalently encoded in the auto-
correlation function, the Lanczos coefficients, the moments, and the power spectrum.
In particular there is a non-linear relation between the moments µ2n and the Lanczos
coefficients bn [76]

b2n1 · · · b2n = det (µi+j)0≤i,j≤n , (2.17)

where µi+j is a Hankel matrix constructed from the moments. This expression can alterna-
tively be represented via a recursion relation

bn =
√
M

(n)
2n , (2.18a)

M
(j)
2l = M

(j−1)
2l
b2j−1

−
M

(j−2)
2l−2
b2j−2

with l = j, . . . , n , (2.18b)

M
(0)
2l = µ2l , b−1 ≡ b0 := 1 , M

(−1)
2l = 0 . (2.18c)

The usefulness of the Lanczos algorithm lies in the fact that it is applicable to dynamical
systems with either finite- or infinite-sized Hilbert spaces. In the former case, the dimension
of the Krylov space is also finite and constrained by the dimension of the Hilbert space of
the original quantum system [27]. In this case, one performs a finite number of iterations
to find the Krylov basis and probability amplitudes. If the Hilbert space is infinite, the
Krylov basis is in principle infinite, unless one terminates the algorithm at an arbitrary
value of n. Similarly, the Lanczos algorithm is applicable to any quantum system with
unitary time evolution.

2.1 Krylov complexity and quantum chaos

In [78], it was proposed that an exponential decay of the power spectrum

fW (ω) ∼ e−ω/ω0 , (2.19)

for ω → ∞ could be interpreted as a signature of chaos in classical spin systems, where
the decay rate 1/ω0 > 0 is associated with the pole of ΠW (t) along the imaginary axis. A
necessary condition for this behavior is the analyticity of ΠW (t) around t = 0.

In [16], authors conjectured that the Lanczos coefficients of a generic chaotic quantum
many-body system with local interactions should grow as fast as possible, namely

bn ∼ αn+ γ =
(
πω0

2

)
n+ γ , n→∞ , (2.20)

where γ includes sub-leading terms in n. This is referred to as the universal operator growth
hypothesis. The linear growth of Lanczos coefficients (2.20) implies an exponential decay
of the power spectrum (2.19) and can therefore be seen as a more general condition for

– 7 –
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chaotic behavior. The authors of [16] furthermore found a family of bn for which the Krylov
complexity KO(t) could be exactly obtained. The solutions they found are given by

C(t) = 1
(cosh(αt))η , bn = α

√
n(n− 1 + η), KO(t) = η sinh2(αt), (2.21)

where bn has a linear growth behavior for n→∞, and KO(t) grows exponentially at late
times. From this exact example, the authors argued the following assertion: whenever the
Lanczos coefficients have a smooth linear behavior (2.20), the Krylov complexity is expected
to grow exponentially

KO(t) ∝ eλK t , (2.22)

where λK = 2α = πω0.5
As we will discuss in detail in section 2.2, in QFTs at finite temperature 1/β, the

thermal 2-point function ΠW (t) has poles at it = ±β/2 and as a consequence, the power
spectrum has a leading exponential decay according to (2.19) with ω0 = 2/β. Assuming that
the Lanczos coefficients behave smoothly, the Krylov complexity behaves exponentially with
λK = πω0 = 2π/β and the conjectured bound on Lyapunov exponents (1.1) reduces to the
MSS bound (1.2). Since this analysis does not rely on any details of the integrability/chaotic
behavior of the QFT, the exponential growth of the Krylov complexity (2.22) cannot be
interpreted as a feature of chaotic behavior in QFTs at finite temperature [42].

In [22], the authors proposed a quantum chaos bound for quantum many-body systems
at finite temperature. Assuming the Lanczos coefficients have smooth linear behavior for
large n (2.20) they showed that the following bound should hold

α ≤ π

β + β∗(β) , (2.23)

where α is the growth rate of the Lanczos coefficients (2.20) and where β∗(β) depends on
the pole of ΠW (t). Furthermore, assuming the bound λL ≤ 2α is valid at finite temperature
β−1, the authors conjectured the following bound on the Lyapunov exponent

λL ≤
2π

β + β∗(β) . (2.24)

In usual QFTs, 1/β∗(β) will be of the order of the UV cutoff Λ → ∞, in which case the
bound (2.24) reduces to the original MSS bound. However, in lattice theories β∗(β) can be
non-zero.

A proof of (2.24) was obtained in [79], where the authors studied the behavior of
OTOCs for many-body systems, such as the SYK model, in the large-N regime. They
showed that in this case, the OTOC can be written as an integral of a product of two 3-point
functions; consistent with a summation of ladder diagrams. From certain analytic properties
of the said functions, which depend on positive semi-definiteness for the fastest-growing
scrambling modes, they proved the following bound

1
ω∗
≤ π

λL
− β

2 , (2.25)

5This has been verified to hold for many cases, such as those with artificially generated sequences of
Lanczos coefficients bn = αn+ γ with various kinds of terms γ ∼ O(1). See [16] for more details.
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where ω∗ = 2ω0/(2 − βω0) and where 1/ω0 is the decay rate of the power spectrum, as
in (2.19). In usual QFTs,6 where ω0 = 2/β and 1/ω∗ → 0, this expression similarly reduces
to the MSS bound. Substituting the expression for ω∗(ω0) in (2.25) we obtain

λL ≤ πω0 , (2.26)

and thus, this expression can be interpreted as an inequality between the Lyapunov exponent
λL and the decay rate 1/ω0 of the Wightman power spectrum (2.19). Furthermore, if the
Lanczos coefficients behave smoothly as a function of n, then ω0, α and λK can be shown
to be related from the assertion (2.22) via

λK = 2α = πω0 , (2.27)

as discussed in [42]. As a consequence, in such systems at finite temperature, the Lyapunov
exponent λL and growth rate of the Krylov complexity λK satisfy

λL ≤ λK = πω0 . (2.28)

It is then plausible to conjecture that the following inequality should hold for any quantum
system at finite temperature 1/β [16, 22, 75]

λL ≤ λK ≤
2π
β
. (2.29)

However, if the Lanczos coefficients are not smooth functions of n, then the bound (2.25)
does not lead to a direct inequality between λL and λK . Nevertheless, the fact that λL is
generally expected to be bounded by the decay rate of the power spectrum (2.25) at finite
temperature could also be argued from the properties of 2- and 4-point correlation functions
as follows: to derive the MSS bound (1.2), the analytic property of thermal 4-point functions
(OTOCs) is used (see e.g. [20]). Since 4-point functions can be constructed from integrals of
2-point functions with interaction vertices, the bound (2.25) of λL by the analytic property
of ΠW (t) is somehow expected. The derivation of (2.25) is therefore similar to the derivation
of the MSS bound from the Eigenstate Thermalization Hypothesis (ETH) [80] in that they
use the Ansatz of OTOCs with a fastest-growing scrambling mode for λL and the analytic
property of ΠW (t).

2.2 Krylov complexity and spectral statistics

The structure of the thermal two-point function ΠW (t), and consequently of the power
spectrum fW (ω), in an energy eigenbasis {|E〉} provides details about how the Lanczos
coefficients and the Krylov complexity capture information from different sectors in the
energy spectrum, as well as UV or IR cutoffs. To see this, it is useful to think of fW (ω) as
a transition amplitude between states with different energies. As we will also discuss below,
from the physical point of view, the fact that in QFTs the power spectrum (2.19) has a

6By usual QFTs here we mean that the thermal 2-point function ΠW (t) has a pole at it = β/2 as
explained in the paragraph after (2.22), which leads ω0 = 2/β and 1/ω∗ → 0.
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leading exponential decay for large ω is a consequence of the singular behavior of O(t)O(0)
at t = 0 in local QFTs [81, 82]. For a single particle state in the canonical (Gibbs) ensemble,
we can write fW (ω) in the case where the energy spectrum is discrete in the following way

fW (ω) = 2π
Zβ

∑
i,j

e−
β
2 (Ei+Ej)|Oij |2δ(Ei − Ej + ω) , (2.30)

since in an energy eigenbasis {|Ei〉} and for the normalized thermal state

ρβ = e−βH

Zβ
= 1
Zβ

∑
i

e−βEi |Ei〉〈Ei| , (2.31)

the (Wightman) thermal two-point function (2.13) is given by

ΠW (t) = 1
Zβ

∑
i,j

e−
β
2 (Ei+Ej) ei t(Ei−Ej)|Oij |2 , (2.32)

where (O(t))ij = 〈Ei|O(t)|Ej〉 = ei(Ei−Ej)tOij , with Oij ≡ (O(0))ij = O(Ei, Ej) are the
matrix elements in the energy eigenbasis and |Oij |2 := O†ijOji. In this case the partition
function is simply given by Zβ =Tr(e−βH) = ∑

i e
−βEi . Note that the power spectrum (2.30)

is in reality a distribution consisting of a series of delta distributions, each centered at
ω = Ej − Ei := ∆Eji ≡ −∆Eij . The explicit form of fW (ω) depends on the dynamics
arising from H and the operator O(0) encoded in the square of the matrix elements |Oij |2.
Indeed, rigorously obtaining analytic constraints on (2.30) is challenging without making
assumptions about the structure of the matrix elements. Nevertheless, it is possible to
obtain general upper bounds on the moments µ2n (2.15). Assuming that 0 ≤ ωI ≤ ω ≤ ωF
we can write

1
2π

∫ ωF

ωI

dω ω2nfW (ω) =

= 1
Zβ

∑
i,j

∫ ωF

ωI

dω ω2n e−
β
2 (Ei+Ej)|Oij |2δ(Ei − Ej + ω) =

= 1
Zβ

Ej≤Ei+ωF∑
Ej≥Ei+ωI

(∆Eji)2n e−
β
2 ∆Eji e−βEi |Oij |2

∣∣∣
Ei+ωI≤Ej≤Ei+ωF

≤

≤ ω2n
F e−

β
2 ωI

Zβ

Ej≤Ei+ωF∑
Ej≥Ei+ωI

e−βEi |Oij |2
∣∣∣
Ei+ωI≤Ej≤Ei+ωF

≤

≤ ω2n
F e−

β
2 ωI

Zβ

∑
i,j

e−βEi |Oij |2 = ω2n
F e−

β
2 ωITr

(
O†(0)ρβO(0)

)
,

(2.33)

where we used ωI ≤ ∆Eji ≤ ωF and β > 0. Similarly, for 0 ≥ −ωI ≥ ω ≥ −ωF we have

1
2π

∫ −ωI
−ωF

dω ω2nfW (ω) ≤ ω2n
F e−

β
2 ωITr

(
O(0)ρβO†(0)

)
, (2.34)
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since in this case ωI ≤ −∆Eji ≤ ωF . Thus, the moments µ2n are bounded according to

µ2n(ωI , ωF ) = 1
2π

∫
ωI≤|ω|≤ωF

dω ω2nfW (ω) ≤

≤ ω2n
F e−

β
2 ωI

(
Tr
(
O(0)ρβO†(0)

)
+ Tr

(
O†(0)ρβO(0)

)) (2.35)

In particular, if the initial operator O(0) is Hermitian then µ0(ωI) ≤ 2e−βωI/2×
Tr (O(0)ρβO(0)). In usual QFTs, this thermal correlation function would diverge due
to the singular behavior of O(t)O(0) at t = 0. However, in quantum many-body systems
with finite-dimensional Hilbert spaces, one could expect this to yield a finite value.7

Here, ωI and ωF can be thought of as cutoffs of the energy transfer associated with O.
In a free scalar theory, ωI and ωF are the minimum and maximum energies of a particle,
respectively. In a lattice system, ωF would be associated with the existence of a minimum
length scale: the lattice spacing a. For instance, ωF of a free massless scalar on a periodic
lattice may be given by the maximum value of the dispersion relation ω = 2

a sin[pa/2],
where p is discrete momentum. If the energy spectrum is bounded, the power spectrum is
also bounded as ωF ≤ EUV − EIR ∼ O(S/a), where S is the number of degrees of freedom
of the system, e.g. the number of lattice sites. The order of ωF is O(1/a) in a free lattice
theory and O(S/a) in a chaotic lattice system [21]. In the continuum limit a→ 0, both 1/a
and S/a diverge, and we cannot practically distinguish them. This is an explanation of why
the linear growth behavior of bn (2.20) and the exponential growth behavior of KO(t) (2.22)
cannot be interpreted as features of chaotic behavior in QFTs. Nevertheless, eq. (2.35)
shows that we generically expect the moments to be sensitive to the energy transfer cutoffs
and as a consequence, also the Lanczos coefficients and the Krylov complexity. For instance,
suppose that fW (ω) decays exponentially at large |ω|. Then, for small n, the integration in
the region where |ω| is large does not contribute much to µ2n (2.35). As n increases, the
contribution from |ω| ∼ ωF also comes into µ2n due to the factor of ω2n. This means that
the effect of IR cutoff ωI to the Lanczos coefficients bn is visible even when n is small, while
the effect of UV cutoff ωF is not visible unless n is sufficiently large.

Heuristically, if the power spectrum is unbounded ωF →∞, the particle with power
spectrum fW (ω) (2.30) can access states with arbitrarily high energies. If ΠW (t) is analytic,
its integral representation ΠW (t) = 1

2π
∫∞
−∞ dω e−iωtfW (ω) should yield a finite value. This

implies that for large ω, fW (ω) should decay faster than the growth rate of e−iωt along
t = iτ . This condition connects the decay rate 1/ω0 and the pole of ΠW (t) along the
imaginary axis as explained around (2.19). An argument based on ETH [80] can also be
used to provide a bound on the matrix elements |Oij |2.

This analysis can be made more precise if we consider a continuous energy spectrum.
This would be the case, for example, if the energy depends on a continuous variable as is
the case in QFTs, which are the main focus of this work, or if we are interested in studying
random-matrix models in the context of Jackiw-Teitelboim (JT) gravity [83–86], black hole

7Even though the dimension of the Hilbert space and matrix representation of O is infinite, the 2-point
function can be finite when only a finite number of matrix components of O are non-zero due to the r-local
property of O and H.
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microstates in AdS/CFT [87–89] or Schwarzian quantum mechanics [90]. For a continuous
energy spectrum with a given Hamiltonian H , the discrete sum ∑

i is replaced by an integral∫
dE ρH(E), where ρH(E) is the density of states for H at a given energy E (see e.g. [85]).

The continuous version of (2.32), which is not normalized by the partition function, is
given by

ΠW
H (t) =

∫
dE

∫
dE′ρH(E)ρH(E′)e−

β
2 (E+E′) ei t(E−E

′)|O(E,E′)|2 , (2.36)

where O(E,E′) ≡ 〈E|O(0)|E′〉 and |O(E,E′)|2 := O†(E,E′)O(E′, E).8 The integration
is performed over the absolute value of the energy. Here we are implicitly considering
the case where we have a system described by an ensemble of two identical Hamiltonians
H1 = H2 = H.

Let P (H) be the probability density for a single Hamiltonian H, and suppose that
P (H) factorizes into a measure for the density of states and a measure for the matrix
elements like in RMT [85]. Then the pair correlation function can be defined by

ρ(E,E′) :=
∫

dH P (H) ρH(E)ρH(E′) , (2.37)

and we can write the un-normalized ensemble averaged thermal two-point function as

ΠW (t) =
∫

dH P (H) ΠW
H (t) =

=
∫

dE
∫

dE′ ρ(E,E′)e−
β
2 (E+E′) ei t(E−E

′)|O(E,E′)|2 .
(2.38)

Here, |O(E,E′)|2 is the average of the squared matrix element. For a continuous energy
spectrum, the partition function is given by

ZH(β) := Tr
(
e−βH

)
=
∫

dE ρH(E)e−βE〈E|E〉 . (2.39)

The normalization of 〈E|E′〉 can be determined from∫
dE ρH(E) |E〉〈E|E′〉 = |E′〉 . (2.40)

This condition leads to

〈E|E′〉 = δ(E − E′)
ρH(E) . (2.41)

With this normalization, we can verify that∫
dE

∫
dE′ρH(E)ρH(E′)e−

β
2 (E+E′) ei t(E−E

′)〈E|E′〉〈E′|E〉 (2.42)

=
∫

dE ρH(E)e−βE〈E|E〉 = ZH(β) , (2.43)

8Strictly speaking, eq. (2.36) is valid if the matrix elements depend only the absolute value of energy.
For a free scalar theory, we should consider the sum over particle number.
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where ZH(β) is defined by (2.39). We define the ensemble-averaged partition function in
the following way

Z(β) :=
∫

dH P (H)[ZH(β)]2 =

=
∫

dE
∫

dE′ ρ(E,E′) e−β(E+E′)〈E|E〉〈E′|E′〉 ,
(2.44)

where we used the fact that the ensemble of theories consists of two copies of the same theory
arising from the Hamiltonian H. We note that 〈E|E〉〈E′|E′〉 in (2.44) is the averaged one,
and its normalization is different from (2.41).9 In (2.37) and (2.44) the integration over H
can be thought of as an integration over the couplings appearing in the Hamiltonian. The
Fourier transform of (2.38) yields the un-normalized ensemble-averaged power spectrum

fW (ω) =2π
∫ EUV

EIR
dE

∫ EUV

EIR
dE′ ρ(E,E′) e−

β
2 (E+E′)|O(E,E′)|2 δ(E − E′ + ω) . (2.45)

where we introduced integration limits EIR and EUV, corresponding to the IR and UV
bounds in the energy spectrum respectively. While EUV is typically unbounded, EIR can
be thought of as related to the ground state energy E0. Evaluating the integral over E′
in (2.45) yields

fW (ω) = 2π e−
βω
2

∫ EUV−ω

EIR
dE ρ(E,ω) e−βE |O(E,ω)|2

∣∣
EIR≤E+ω≤EUV

, (2.46)

where ρ(E,ω) ≡ ρ(E,E + ω) and O(E,ω) ≡ O(E,E + ω) := 〈E|O(0)|E + ω〉 and where
we assumed 0 ≤ ωI ≤ ω ≤ ωF . For −ωF ≤ ω ≤ −ωI ≤ 0, (2.46) is given by

fW (ω) = 2π e−
βω
2

∫ EUV

EIR−ω
dE ρ(E,ω) e−βE |O(E,ω)|2

∣∣
EIR≤E+ω≤EUV

. (2.47)

By using a change of variables E′ = E + ω, we obtain

fW (ω) = 2π e
βω
2

∫ EUV+ω

EIR
dE′ ρ(E′,−ω) e−βE′ |O(E′,−ω)|2

∣∣
EIR≤E−ω≤EUV

, (2.48)

where we use ρ(E,E′) = ρ(E′, E) and |O(E,E′)|2 = |O(E′, E)|2. This expression can also
be obtained from (2.45) by integrating over E instead. Though it is tempting to state
that the Boltzmann prefactors in eqs. (2.46) and (2.48) are sufficient to guarantee the
exponential decay of the power spectrum at |ω| → ∞, the situation is more subtle due to
the presence of the density pair correlation function ρ(E,E′) (2.37).

In this case, the ensemble-averaged moments can be written as:

µ2n(ωI , ωF , EIR, EUV) = 1
2π

∫
ωI≤|ω|≤ωF

dω ω2n fW (ω) =∫
ωI≤|ω|≤ωF

dω
∫ EUV

EIR
dE

∫ EUV

EIR
dE′ ρ(E,E′) e−

β
2 (E+E′)|O(E,E′)|2 δ(E − E′ + ω)ω2n .

(2.49)
9In RMT, the normalization can be determined from (2.18) of [85] by choosing O as the identity operator.
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If the expressions for the density pair correlation function and the matrix elements are known,
such an integral could be evaluated using the saddle-point approximation. This, however, is
beyond the scope of the present discussion. The relevant point is the following: as argued
in the above paragraphs, it is important to distinguish the bounds in the power spectrum
{ωI , ωF } (energy transfer cutoffs) from the bounds in the energy spectrum {EIR, EUV}.
While the latter did not appear explicitly in the discrete case, they are implicitly present in
the double sum in (2.33). Indeed, assuming that the ω and E integrals can be exchanged
and assuming that 0 < ωI < ωF ,

µ2n(ωI , ωF , EIR, EUV) =∫ EUV

EIR
dE

∫ EUV

EIR
dE′ ρ(E,E′) e−

β
2 (E+E′)|O(E,E′)|2 (−E + E′)2n×

×
(
Θ
(
E − E′ + ωF ,−E + E′ − ωI

)
+ Θ

(
−E + E′ + ωF , E − E′ − ωI

))
,

(2.50)

where Θ is the Heaviside step function.10 As we will see in later sections, the behavior of
the Lanczos coefficients as well as the Krylov complexity will be influenced by the presence
of such cutoffs due to the relation (2.17).

We emphasize again that the moments µ2n are sensitive to cutoffs of the power spectrum
as (2.35) and (2.49). Thus, the Lanczos coefficients bn and the Krylov complexity KO(t)
are also expected to be sensitive to them. In this work, we focus on a momentum cutoff in
the continuous power spectrum of QFTs on a non-compact space without the average of
H as explained below. We also note that there is another approach that introduces a UV
cutoff by means of a microcanonical version of the Krylov complexity [91]. In that case,
fixing E for the microcanonical ensemble yields a bounded power spectrum.

At the same time and as mentioned in section 1, although Krylov complexity has
been studied for CFTs and other systems with a high-degree of symmetry, it has not yet
been studied for more general QFTs. To go beyond symmetry-dependent scenarios, in the
following sections we study how the Lanczos coefficients and the Krylov complexity behave
when we break the conformal symmetry by considering a massive scalar field. The mass
can be thought of as an IR cutoff ωI ∼ m, and it is expected to affect the K-complexity at
early times. We will also consider the effect of introducing a UV cutoff Λ in two ways: one
by bounding the power spectrum from above with a hard UV cutoff ωF ∼ Λ and another
by smoothly modifying the behavior of fW (ω) for |ω| → ∞ with an exponential correction.
As explained in section 1, the introduction of such cutoffs is motivated by an argument
made by Dymarsky and his collaborators based on a discretized lattice model [73, 75]. For
finite ωF , we introduce a momentum cutoff in free QFTs, which is one of the commonly
used UV regularization methods in QFTs. Afterward, we will study the behavior of the
Lanczos coefficients for interacting QFTs using perturbation theory. In this case, we
will start with a 4-dimensional massless scalar field theory and deform it with a relevant
or a marginally irrelevant operator (g φ3 or g φ4 respectively). Since these two types of
deformation affect UV physics in different ways, we expect them to leave a different imprint
on the Lanczos coefficients.

10The Heaviside step function is defined as Θ(x) = 1 for x > 0 and Θ(x) = 0 for x < 0. Θ(x, y) ≡ Θ(x)Θ(y)
is a generalization of the Heaviside step function for two variables.
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3 Free massive scalar in d-dimensions

Consider a real-valued massive scalar field φ in d spacetime dimensions with Euclidean
Lagrangian of the form

Lfree
E = 1

2(∂φ)2 + 1
2m

2φ2 , (3.1)

where m is the bare mass. We will apply the Lanczos algorithm at finite temperature β−1

to the field operator φ in order to find the Lanczos coefficients bn and K-complexity KO.
We follow the notation and conventions of [92].

3.1 The Wightman power spectrum fW (ω)

Our goal in this section is to express the Wightman power spectrum fW (ω) in terms of
the spectral function ρ(ω,k) for free massive scalar theories with Lagrangian (3.1) at finite
temperature. For thermal correlators in momentum space, such as advanced and retarded
correlators, it is useful to express these correlators as a function of ρ(ω,k) (see e.g. [93]).

For a real scalar field φ(t,x) in R1,d−1, consider the following two-point functions with
two different time orderings

Π>(t,x) := 〈φ(t,x)φ(0,0)〉β , (3.2)
Π<(t,x) := 〈φ(0,0)φ(t,x)〉β , (3.3)

where 〈·〉β is the thermal expectation value (2.5). Consider their Fourier transforms as well
as the spectral function ρ(ω,k) given by

Π>(ω,k) :=
∫

dt
∫

dd−1x eiωt−ik·x Π>(t,x) , (3.4)

Π<(ω,k) :=
∫

dt
∫

dd−1x eiωt−ik·x Π<(t,x) , (3.5)

ρ(ω,k) := 1
2[Π>(ω,k)−Π<(ω,k)] . (3.6)

Due to the Kubo-Martin-Schwinger (KMS) conditions, in thermal equilibrium, the above
two-point functions satisfy [92]

Π<(t,x) = Π>(t− iβ,x) , Π<(ω,k) = e−βωΠ>(ω,k) , (3.7)

ρ(ω,k) = 1
2(1− e−βω)Π>(ω,k) . (3.8)

In order to construct the K-complexity of the field operator φ, we need to compute the
auto-correlation function C(t) := ΠW (t,0) (2.13) defined by

ΠW (t,x) := 〈φ(t− iβ/2,x)φ(0,0)〉β ,

ΠW (ω,k) :=
∫

dt
∫

dd−1x eiωt−ik·x ΠW (t,x) ,
(3.9)

where we chose the normalization C(0) = 1. By using ΠW (ω,k) = e−βω/2Π>(ω,k) and (3.8),
we obtain

ΠW (ω,k) = 1
sinh[βω/2]ρ(ω,k). (3.10)
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The Wightman power spectrum fW (ω) for C(t) = ΠW (t,0) is given by

fW (ω) :=
∫

dt C(t)eiωt =
∫

dtΠW (t,0)eiωt =
∫ dd−1k

(2π)d−1 ΠW (ω,k). (3.11)

Using (3.10), we thus obtain a formula for the Wightman power spectrum fW (ω) in terms
of the spectral function ρ(ω,k)

fW (ω) = 1
sinh[βω/2]

∫ dd−1k
(2π)d−1 ρ(ω,k). (3.12)

The spectral function ρ(ω,k) of d-dimensional free massive scalar theories is given by [92]

ρ(ω,k) = N

εk
[δ(ω − εk)− δ(ω + εk)], (3.13)

where εk :=
√
|k|2 +m2, and where N is a normalization factor. One can compute the

integral
∫
dd−1k ρ(ω,k) as follows

∫
dd−1k ρ(ω,k) = NΩd−2

∫ ∞
0

dk k
d−2

εk
[δ(ω − εk)− δ(ω + εk)]

= NΩd−2

∫ ∞
m

dεk kd−3[δ(ω − εk)− δ(ω + εk)]

=


NΩd−2(ω2 −m2)(d−3)/2 ω ≥ m
0 |ω| < m

−NΩd−2(ω2 −m2)(d−3)/2 ω ≤ −m

, (3.14)

where Ωd−2 is the surface area of the (d − 2)-dimensional unit sphere. By using (3.12)
and (3.14), we obtain fW (ω) of d-dimensional free massive scalar theories at finite
temperature11

fW (ω) =

N(m,β, d) (ω2 −m2)(d−3)/2/| sinh(βω2 )| |ω| ≥ m

0 |ω| < m
, (3.15)

where the normalization factor N(m,β, d), which includes a contribution from Ωd−2, is
determined by the condition ∫ dω

2π f
W (ω) = 1 . (3.16)

As a consistency check, let us compare (3.15) and the CFT results in [42]. The asymptotic
behavior of fW (ω) for |ω| � m, 1/β is given by

fW (ω) ∼ 2N(m,β, d)|ω|d−3e−
β|ω|

2 , (3.17)

11This expression has subtleties at d = 2, 3. In this work we consider d ≥ 4.
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which agrees with (34) in [42] for scaling dimensional ∆ = d/2− 1. In the massless limit
m→ 0 with d = 4, the Wightman power spectrum fW (ω) is given by

fW (ω) = β2ω

π sinh(βω2 )
, (3.18)

which agrees with the CFT result with ∆ = 1 [42]

fW (ω) =
∫ ∞
−∞

dt 1
cosh(πt/β)2 e

iωt = β2ω

π sinh(βω2 )
. (3.19)

Having obtained the power spectrum, we can compute the moments µ2n following (2.15).
While it is possible to obtain numerical results for arbitrary values of βm and for different
spacetime dimension d, we will focus on specific examples in the following sections which
will allow for analytic treatment. In particular, we will focus on the large βm regime and
odd d dimensions, since in this case the power spectrum and the auto-correlation function
have a simpler expression.

As mentioned in the previous section, we are interested in understanding how the
Lanczos coefficients and Krylov complexity behave as a function of IR and UV cutoffs.
The bare mass m of the scalar field (3.1) can be seen as an IR cutoff associated with the
divergence of the zero mode k = 0 in the massless limit. At the same time, we can introduce
UV cutoffs in momentum space by modifying (3.14). One way to do this is to include a
hard UV cutoff Λ as an integration limit in the momentum integrals, like

∫∞
m dεk →

∫ Λ
m dεk.

This will be the focus of section 3.3. Another approach is to introduce a smooth UV cutoff
by modifying the power spectrum by hand. This in turn will be the focus of section 3.4.
However, we will first analyze the case where there is no UV cutoff in section 3.2. For
numerical computations, one can choose a value of one length scale, and we set β = 1 in
our numerical computations.

3.2 Krylov complexity with unbounded power spectrum

In the case where βm � 1 and for d > 4, the normalized power spectrum (3.15) takes
the form

fW (ω) ≈ N(m,β, d) e−β|ω|/2
(
ω2 −m2

)(d−3)/2
Θ(|ω| −m) , (3.20)

where
N(m,β, d) = π3/2β(d−2)/2

2d−2m(d−2)/2K d−2
2

(
mβ
2

)
Γ
(
d−1

2

) . (3.21)

Here Kn(z) is the modified Bessel function of the second kind and Γ(z) is the usual
gamma function.

For concreteness, let us focus on d = 5 for the moment. An analogous analysis can be
performed for any d > 4. The moments µ2n can be computed directly from (3.20) via (2.15)
and are given by

µ2n = 2−2e
mβ
2

2 +mβ

( 2
β

)2n [
−m2β2 Γ̃

(
2n+ 1, mβ2

)
+ 4Γ̃

(
2n+ 3, mβ2

)]
, (3.22)

where Γ̃(n, z) is the incomplete Gamma function.
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n

bn

Figure 1. Lanczos coefficients bn for mβ = 80 in d = 5. The squares represent the results obtained
numerically from (3.22), while the circles represent the approximate results eq. (3.23), which are
valid for mβ � n. In both cases, the top family of bn corresponds to odd n, while the lower one
corresponds to even n.

Using the non-linear recursion relation (2.18), we can obtain the Lanczos coefficients
bn from the moments (3.22). These coefficients exhibit staggering, which means that they
can be separated into two, approximately smooth, families of bn; one for even n and one
for odd n. Figure 1 shows the Lanczos coefficients obtained from (3.22) with arbitrarily
large numerical precision as well as the approximate coefficients obtained in appendix A
for mβ � n.

Assuming that n
βm is small, we show in appendix A that the Lanczos coefficients can

be written as follows

β2b2n = m2β2


1 + 41+n

mβ + 8 (n+1)2

m2β2 + 12 (n+1)3

m3β3 + · · · , for n odd ,

4n(n+2)
m2β2 + 8n(n+1)(n+2)

m3β3 + · · · , for n even ,
(3.23)

which shows that the staggering increases with mβ while the bn remain smooth for odd
and even n.12 Eq. (3.23) furthermore shows that the separation between the even and odd
coefficients ∆bn := |bodd

n − beven
n | is of the order of the mass O(m). Similar behavior of the

Lanczos coefficients is also observed for different d > 4.
Let us perform a linear fitting of bn for odd and even n as follows

bn ∼ αodd n+ γodd (odd n) , (3.24a)

bn ∼ αeven n+ γeven (even n) , (3.24b)

where αodd, αeven, γodd, and γeven are constants that do not depend on n. We do the linear
fitting for n ∈ [151, 200] and analyze the mass-dependence of the constants. Figure 2 shows
the mass-dependence of the constants for d = 5 and β = 1. From figure 2a, one can see
that αodd ∼ αeven ∼ π/β at βm = 0 and they decrease slightly as βm increases, which
is consistent with the bound (2.23). Moreover, figure 2b shows that the separation of bn
between odd and even n is ∆bn ∼ m even though n is large.

12This formula is valid up to n = 35, so higher powers of n are not neglected. The results are grouped in
terms of powers of 1/(βm).
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Figure 2. Mass-dependence of the constants in the linear fitting (3.24) for d = 5 and β = 1. We
also plot a straight line γodd − γeven = m in the right figure to compare the mass-dependence.

The phenomenon of staggering was also observed previously in [42] where authors
studied the Krylov complexity of generalized free fields with conformal dimension ∆ in d
spacetime dimensions. For d > 4, the Lanczos coefficients of said operators exhibited a
similar splitting into two families of coefficients. However, the growth of the staggering in
this case was attributed to the large scaling dimension ∆� 1. It should also be remarked
that the staggering of Lanczos coefficients in quantum many-body models was also discussed
in [76, 94]. Here, it was shown that for power spectra of the form

f(ω) = N(ω0, δ, λ)
∣∣∣∣ ωω0

∣∣∣∣λ e−
∣∣∣ ωω0

∣∣∣ 2δ
, (3.25)

the Lanczos coefficients would generically exhibit staggering for δ = 1 as the parameter λ is
changed since in this case the moments are of the form

µ2n = ω2n
0

Γ
(
δ
2(1 + λ+ 2n)

)
Γ
(
δ
2(1 + λ)

) . (3.26)

Comparing (3.25) with (3.20) we see that the origin of the staggering is due both to the
existence of the pole ω0 ∝ 1/β as well as the dimension of the spacetime λ ∝ d − 3.
This analysis is likewise applicable to the asymptotic case (3.17), which is relevant in
higher-dimensional CFTs.

In order to compute the Krylov complexity (2.12) from the power spectrum (3.20)
we first need to compute the auto-correlation function (2.13). This can be done in a
straightforward way for mβ � 1 and for odd d > 4 by considering the Fourier transform of
eq. (3.20). In this case, the general form of C(t) is the following.

C(d)(t) ≡ ϕ(d)
0 (t) = c

(d)
1 (t)

(
c

(d)
2 (t) sin(mt) + c

(d)
3 (t) cos(mt)

)
, (3.27)

and where the exact form of the functions {c(d)
i (t)} for d = 5, 7, 9 can be found in appendix B.

It is also possible to find an expression of C(t) in even d, however as mentioned previously,
its general expression is more involved.
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The closed-form expression (3.27) allows us to compute the probability amplitudes
ϕ

(d)
n (t) by solving (2.11), where the corresponding Lanczos coefficients bn are computed

numerically from the recursion relation (2.18). Figure 3 shows the Krylov complexity of
free scalar theories with d = 5, 7, 9 and for β = 1. For the log plots, the vertical axis is
set to 1 +KO(t) for convenience. Following the discussion in this section, we compute the
Krylov complexity with non-zero βm in the large mass regime. On the other hand, in order
to compute the Krylov complexity with βm = 0, which was first examined in [42], we use
the following auto-correlation function

ϕ0(t) = ζ(d− 2, 1/2 + it/β) + ζ(d− 2, 1/2− it/β)
2ζ(d− 2, 1/2) , (3.28)

where ζ(s, a) is the Hurwitz zeta function. For completeness, we also plot the Krylov
complexity KO(t) = (d − 2) sinh2(πt/β) (C.3) of conformal 2-point functions in CFTs
on a hyperbolic space computed from Euclidean CFTs on S1 ×Hd−1 and compare their
exponential growth behavior. A detailed analysis of the construction of K-complexity in this
geometry is given in appendix C. Since we are not able to find a closed-form expression of
ϕn, we can only numerically compute an approximate expression for the Krylov complexity
using ∑nmax

n=0 n|ϕn(t)|2 for some finite nmax. For instance, we chose nmax = 200 for d = 9.
We are confident that this is a very good approximation of the Krylov complexity for
the range πt/β ∈ [0, 2] since we confirmed that the sum of the squares of the probability
amplitudes (2.10) in this case is almost equal to 1 as ∑nmax

n=0 |ϕn(t)|2 ∼ 1 for πt/β ∈ [0, 2].
From figure 3 we can distinguish several properties of the K-complexity of a free massive

scalar field φ in odd-dimensions. These are as follows:

• For non-zero βm, the K-complexity generically oscillates. These oscillations can be
traced back to the trigonometric functions appearing in the auto-correlation func-
tion (3.27). These oscillations are furthermore inherited to the subsequent probability
amplitudes ϕn(t) through the discretized Schrödinger equation (2.11). The larger mβ,
the shorter the period of oscillation π/m (see e.g. (3.27)).

• As t increases, the amplitude of oscillation becomes smaller. This property can be
explained by the following reason: at early times, only the ϕn(t) with small n, such as
ϕ1(t), contribute to KO(t). In the late-time region, ϕn(t) with various n contributes
to KO(t), and the oscillations cancel out.

• In the log plots, the slope of KO(t) for βm = 0 at late times with respect to t is very
similar to the slope of KO(t) = (d− 2) sinh2(πt/β). This means that the exponential
growth rate of KO(t) at late times for βm = 0 is λK ∼ 2π/β, which is consistent with
the results obtained by [42].

• For non-zero βm, the slope of KO(t) in the range 1.5 ≤ πt/β ≤ 2.0, which we will
denote by λ̃K , seems to be different from 2π/β.13 This may be attributed to the fact

13Here we use λ̃K to refer to the slope obtained for the finite range in t, in order to distinguish it from
the asymptotic slope λK defined at t→∞.
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Figure 3. Krylov complexity of free scalar theories with β = 1. The vertical axis is in a logarithmic
scale. Linear growth in the log plot implies an exponential growth of the Krylov complexity.

that bn cannot be regarded as a sufficiently smooth function of n due to the large
staggering from non-zero βm (see eq. (3.23)). We note that our numerical results for
non-zero βm do not prove that the exponential growth rate at t→∞ is not 2π/β.
There remains a possibility that λK , which is determined at t→∞, is 2π/β.

In figure 4, we plot the mass-dependence of λ̃K with respect to mβ for β = 1. To
determine λ̃K , we do a linear fitting in the range 1.5 ≤ πt/β ≤ 2.0. Figure 4 shows that
λ̃K with non-zero βm differs from 2π/β and decreases as mβ increases, which is consistent
with the conjectured bound λK ≤ 2π/β. Note that the slope with βm = 0 is larger than
2π/β because the linear fitting is done in a finite t region. In fact, the slope of Log[KO(t)]
with KO(t) = (d− 2) sinh2(πt/β) is given by 2π

β coth(πt/β) which yields 2π/β in the limit
t→∞ but which is larger than 2π/β when t is finite and positive.

A numerical fit of slope of Log[KO(t)] ≈ λ̃K t as a function of the mass m for β = 1, as
displayed in figure 4, is given by

βλ̃
(d)
K = k

(d)
1 + k

(d)
2

k
(d)
3 + βm

+ k
(d)
4(

k
(d)
3 + βm

)2 , (3.29)

where {k(d)
i } are dimensionless constants that depend on d. The specific values of {k(d)

i }
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Figure 4. Mass-dependence of λ̃K for β = 1. The linear fitting to determine λ̃K is done in the
range 1.5 ≤ πt/β ≤ 2.0. We also plot the fitting curves of λ̃(d)

K (3.29).

for figure 4 are given by

k
(5)
1 = 3.36, k

(5)
2 = 0.0000110, k

(5)
3 = 8.85, k

(5)
4 = 27.9, (3.30)

k
(7)
1 = 3.26, k

(7)
2 = −268, k

(7)
3 = 9.36, k

(7)
4 = 58.0, (3.31)

k
(9)
1 = 3.16, k

(9)
2 = −607, k

(9)
3 = 18.5, k

(9)
4 = 93.0. (3.32)

Suppose that the large n behavior of the Lanczos coefficients is given by eq. (3.24). As
discussed in the paragraph below (3.23), the staggering of the Lanczos coefficients is
proportional to the mass

∆bn := |bodd
n − beven

n | ≡ |γodd − γeven| ∝ m, (3.33)

where we used the fact that |αodd − αeven| ≈ |α− α| = 0. Thus, we can write the slope of
Log[KO(t)] as

βλ̃
(d)
K = β(αodd + αeven) + k

(d)
2

(
1

k
(d)
3 + β|γodd − γeven|

− 1
k

(d)
3

)
+

+ k
(d)
4

 1(
k

(d)
3 + β|γodd − γeven|

)2 −
1

(k(d)
3 )2

 ,

(3.34)

where we assumed that we recover the CFT behavior limm→0 λ̃K = αodd + αeven = 2α in
the massless limit. This empirical formula for the growth rate of the K-complexity shows
how this quantity is sensitive to the smoothness (or lack thereof) of the Lanczos coefficients.
At the same time, this formula shows that the growth rate of the K-complexity is sensitive
to an IR cutoff through the subleading behavior of the Lanczos coefficients. Our numerical
computation with the non-zero mass implies one of the following two possibilities. (1) λK
at t→∞ is different from λK = 2π/β due to the non-zero mass. (2) λK at t→∞ is not
changed from λK = 2π/β, but a time scale when the approximation λ̃K ∼ 2π/β is valid
becomes later due to the non-zero mass. To understand in what way the K-complexity
would be sensitive to a UV cutoff, in the next section we will introduce a hard cutoff Λ in
the momentum integrals.
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Figure 5. Krylov entropy of free scalar theories with β = 1 and d = 5.

It is also helpful to compute Krylov entropy SK(t), defined by [21]

SK(t) := −
∞∑
n=0
|ϕn(t)|2 log |ϕn(t)|2, (3.35)

for confirming the decrease of slopes because of non-zero mass. In figure 5, we plot the
Krylov entropy of free scalar theories with β = 1 and d = 5. For comparison, we also plot
the Krylov entropy for (C.2) with 2∆ = d− 2 whose |ϕn(t)|2 is given by [16]

|ϕn(t)|2 = (d− 2)n
n! tanh2n

(
π

β
t

)
sech2d−4

(
π

β
t

)
, (3.36)

where (d− 2)n := (d− 2)(d− 1) · · · (d+ n− 3) is the Pochhammer symbol. For non-zero
βm, one can observe oscillations in SK(t) although the period is not simple because of
the product of |ϕn(t)|2 and log |ϕn(t)|2. Excluding the oscillations, SK(t) seems to grow
linearly with respect to time, which is the expected behavior with the linear growth of
bn [21]. However, because of the staggering, their slopes for non-zero βm are smaller than
2π/β, which is similar to the decrease of λ̃K . If bn can be approximated by a continuous
function of n that increases asymptotically linearly, the Krylov entropy and the Krylov
complexity satisfy SK(t) ∼ η̃ logKO(t) at late times with η̃ ∼ 1 [30]. The staggering effect
breaks the continuous property of bn, and η̃ for non-zero βm seems to shift from 1.

3.3 Krylov complexity for bounded power spectrum with hard UV cutoff

Following (3.14), we introduce a UV cutoff in the εk integral for d = 5 as follows

fW (ω) = N(m,β,Λ)
sinh[β ω/2]

∫ Λ

m
dεk k2 [δ(ω − εk)− δ(ω + εk)] , (3.37)

where Λ is a UV cutoff. In the limit Λ > βm� 1, the power spectrum is given by

fW (ω) = N(m,β,Λ) (ω2 −m2) e−
β|ω|

2 Θ (|ω| −m, Λ− |ω|) , (3.38)

where the normalization constant in this case is given by

N(m,β,Λ) = e
1
2β(Λ+m)π β3(

2e
βm
2 (β2m2 − βΛ(βΛ + 4)− 8) + 8e

βΛ
2 (βm+ 2)

) , (3.39)
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Figure 6. Comparison of Lanczos coefficients bn in d = 5 for a massive scalar field mβ � 1 for
finite UV cutoff (circles) and infinite UV cutoff (squares). Here we set Λ = 80, m = 20 and β = 1.

which in the limit Λ→∞ reduces to (3.21) for d = 5. The moments µ2n can be obtained
from (2.15) and are given as follows

µ2n = 22(n−1)e
1
2β(m+Λ)

β2ne
βΛ
2 (mβ + 2) + e

mβ
2 (m2β2 − βΛ(βΛ + 4)− 8)

(
4Γ̃
(

3 + 2n, mβ2

)
−

− 4Γ̃
(

3 + 2n, βΛ
2

)
+m2β2

(
Γ̃
(

1 + 2n, βΛ
2

)
− Γ̃

(
1 + 2n, mβ2

)))
.

(3.40)

Similarly to the normalization (3.39), the moments (3.40) reduce to (3.22) in the limit
Λ→∞. The corresponding Lanczos coefficients, computed numerically from the recursion
relation (2.18) for finite Λ and for β = 1, are shown in figure 6. From figure 6 it can be seen
that for finite UV cutoff Λ both families of Lanczos coefficients saturate for a finite value
nsat. Some general observations of the behavior of the Lanczos coefficients are the following:

• The saturation value of the Lanczos coefficients is given by bsat
± = Λ±m

2 , where bsat
+

corresponds to odd n and bsat
− for even n. In the massless case, both families saturate

to the same value bsat = Λ/2.

• The value of n at which the Lanczos coefficients saturate, nsat, scales linearly with Λ,
but it also depends on m in a subleading way. In particular, nsat decreases as m is
taken closer to Λ. At the same time, nsat ∼ O(1) for m ∼ Λ .

An explanation of why the Lanczos coefficients saturate can be obtained by analyzing
the power spectrum. With the UV cutoff Λ, the power spectrum fW (ω) (3.38) is non-zero
only if Λ ≥ |ω| ≥ m. The saturation of bn for fW (ω) with such bounded support can
be explained by an exact example in [76]. Suppose that bn for odd n has constant value
bn = bodd and that bn for even n has constant value bn = beven. Assuming bodd ≥ beven > 0,
the closed form of fW (ω) is given by [76]

fW (ω) = 1
b2even

√
2(b2odd + b2even)− ω2 − (b2odd − b2even)2/ω2×

Θ(bodd + beven − |ω|, |ω| − (bodd − beven)) ,
(3.41)

which implies a relation between the saturation of bn and the bounded support of fW (ω).
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Another explanation of this phenomenon can be obtained from the perspective of Dyck
paths.14 First, suppose that all bn have the same value bn = bsat. By using a formula for
µ2n in terms of Dyck paths (see eq. (A7) of [16]), we obtain

µ2n = (bsat)2nCn , (3.42)
µ2n+2
µ2n

= (bsat)2Cn+1
Cn

, (3.43)

where Cn := (2n)!
(n+1)!n! is the Catalan number. Next, suppose that bn saturates to the

maximum value bsat when n ≥ n0 for some n0 > 0. In this case, if n is large enough
then (3.43) may be approximated by

lim
n→∞

µ2n+2
µ2n

∼ (bsat)2 lim
n→∞

Cn+1
Cn

= 4(bsat)2 . (3.44)

With a UV cutoff Λ, the moments µ2n (2.15) are given by

µ2n = 1
2π

∫ Λ

−Λ
dω ω2nfW (ω) . (3.45)

Due to the contribution from ω2n, if n is sufficiently large then the peak of the integrand
ω2nfW (ω) may exist at |ω| = Λ. Thus, in the integral, the contribution from |ω| = Λ may
be dominant, and we can estimate

lim
n→∞

µ2n+2
µ2n

∼ ω2n+2

ω2n

∣∣∣
|ω|=Λ

= Λ2 . (3.46)

Combining (3.44) and (3.46), we conclude that

bsat ∼ Λ/2 , (3.47)

which provides a naive explanation of why bn saturates to Λ/2 in the massless case. Finally,
suppose that bn saturates to bsat

odd for odd n and to bsat
even for even n. From the viewpoint of

Dyck paths, 4(bsat)2 in (3.44) may be modified to

4(bsat)2 → (bsat
odd)2 + (bsat

even)2 + bsat
oddb

sat
even + bsat

evenb
sat
odd = (bsat

odd + bsat
even)2 , (3.48)

and (3.47) may be modified to

bsat
odd + bsat

even
2 ∼ Λ

2 , (3.49)

which is consistent with our observation in the massive case. However, in this estimation
we cannot determine the value of (bsat

odd − bsat
even)/2.

Whenever the Lanczos coefficient bn saturates, the Krylov complexity KO(t) is expected
to increase linearly rather than exponentially [16, 21]. With the large mass approximation

14A similar analysis was done in [21], but here we also derive the coefficient 1/2 of bsat = Λ/2 and the
saturation value with the staggering.
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Figure 7. Linear growth of KO(t) (β = 1) with d = 5, βm = 10, βΛ = 15.

2 sinh(βm2 ) ∼ exp(βm2 ), the auto-correlation function ϕ0(t) in the presence of a UV cutoff Λ
for d = 5 can be computed from (3.38) and is given by

ϕd=5
0 (t) = β3

(β2 + 4t2)3
(
e
βm
2 (−βΛ(βΛ + 4) + β2m2 − 8) + 4e

βΛ
2 (βm+ 2)

)
×
(
2te

βm
2 sin(Λt)(β2

(
βΛ(βΛ + 8)− β2m2 + 24

)
+ 16t4

(
Λ2 −m2

)
+ 8t2

(
βΛ(βΛ + 4)− β2m2 − 4

)
)

+ e
βm
2 cos(Λt)(β3

(
−βΛ(βΛ + 4) + β2m2 − 8

)
+ 16t4

(
Λ(4− βΛ) + βm2

)
+ 8βt2

(
β2(m− Λ)(Λ +m) + 12

)
)

− 16te
βΛ
2
(
β2(βm+ 3) + 4t2(βm− 1)

)
sin(mt)

+ 4e
βΛ
2
(
2β3 +m

(
β4 − 16t4

)
− 24βt2

)
cos(mt)

)
, (3.50)

which reduces to (3.27) with d = 5 in the limit Λ → ∞. Starting from (3.50), one can
iteratively solve (2.11) in order to find the subsequent probability amplitudes ϕd=5

n . Figure 7,
which is not a log plot, shows the time evolution of KO(t) (β = 1) with d = 5, βm = 10 and
βΛ = 15. Compared to the exponential growth of KO(t) = 3 sinh2(πt/β), we can see the
liner growth of KO(t) with finite βΛ. We plot KO(t) (β = 1, d = 5, βm = 20) for different
values of UV cutoff Λ in figure 8. At early times, each plot is identical since bn at small n
is the same as seen in figure 6. At late times, growth behaviors of KO(t) with finite Λ are
different from exponential growth for infinite Λ due to the saturation of bn.

We can also calculate the Krylov entropy (3.35) for ϕd=5
n . When bn saturates, the

expected behavior of SK(t) is logarithmic growth [21]. Figure 9 shows the time evolution of
SK(t) (β = 1) with d = 5, βm = 10 and βΛ = 15. In this figure, the Krylov entropy with
finite βΛ seems to grow logarithmically with oscillations due to non-zero βm.

It is interesting to compare the behavior of the Lanczos coefficients (figure 6) and the
Krylov complexity (figure 7) with the situation in free and chaotic quantum many-body
systems with a finite number of degrees of freedom S. In [16, 21, 24, 35] it was shown that
in fast-scrambling systems with finite S, the K-complexity KO grows exponentially until
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Figure 8. Growth behaviors of Krylov complexity KO(t) (β = 1, d = 5, βm = 20) with different
UV cutoff Λ.
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Figure 9. Krylov entropy SK(t) (β = 1, d = 5, βm = 10) with infinite and finite βΛ.

the scrambling time ts ∼ log(S), at which point KO reaches a value of order O(S). It then
switches to a linear growth until a time of order exp(O(S)) when it settles around a plateau.
In the case of the Lanczos coefficients, these have a linear growth until n becomes of the
order O(S), at which point they saturate in n according to bn ∼ ∆E S, where ∆E is called
the spectral bandwidth, which is of the order of O(1/a) for a lattice spacing of size a.

In the language of section 2.1, this means that for n ∼ O(S/aα), bn saturate to a
value of the order of ωF ∼ O(S/a). When the number of degrees of freedom S is infinite,
the K-complexity does not appear to transition from an exponential growth to a linear
growth at finite t because the scrambling time ts is not well-defined in this case, like
ts →∞. Nevertheless, introducing a cutoff for finite ωF in the continuum theory, such as
the N -scaling limit in [91], leads to a plateau similar to that in finite-sized chaotic quantum
many-body systems, although the plateau in the N -scaling limit is infinite. However, the
situation is more closely related to the behavior of free lattice theories with finite lattice
spacing a, for which the Lanczos coefficients also saturate to a value bn ∼ ωF ∼ O(1/a),
leading to a linear growth of the K-complexity. Introducing a hard UV cutoff in the
continuous momentum integrals (3.14) does not alter the fact that the continuum theory
on a non-compact space has an infinite number of degrees of freedom S → ∞. As a
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consequence, we are tempted to associate the continuous free scalar theory (3.1) with finite
momentum hard-cutoff Λ instead with the large N limit of a free lattice theory with finite
lattice spacing a ∼ 1/Λ, where N is the number of lattice sites. In fact, the saturation
behavior of the Lanczos coefficients in our computations with the momentum hard-cutoff is
very similar to the saturation behavior in a discretized free lattice model [73, 75]. Thus,
the saturation of the Lanczos coefficients displayed in figure 6 and the linear growth of the
K-complexity in figure 7 can be understood as a reflection of the underlying coarse-grained
free lattice theory with finite lattice spacing describing the same IR physics.

Let us comment on a correction caused by finite N . Consider free bosons on a 1d
periodic lattice on S1 of length aN . In the large-N limit N →∞, the Lanczos coefficients
of this lattice model may be similar to the ones of a free scalar QFT on non-compact space
R1 with a finite UV cutoff because aN diverges.15 When aN is of the same order as other
scales such as β, the correction due to the compactness of S1 comes into play. In particular,
our plots in figure 6 are qualitatively similar to plots for N/β = 1 in figure 6 of [75] but
differ significantly from plots with N/β = 0.5.16

3.4 Lanczos coefficients with a smooth UV cutoff

Another way of introducing a UV cutoff consists in modifying the power spectrum by hand.
Given that the exponential decay of the power spectrum fW (ω) ∼ e−βω/2 for ω → ∞ is
expected for a large class of QFTs at finite temperature 1/β, the only way to significantly
modify the growth behavior of the Lanczos coefficients and therefore of the K-complexity is
to modify the features of such an exponential decay. As mentioned previously, Dymarsky
and his collaborators have pointed out that the behavior of K-complexity after the UV
cutoff scale can be used as a probe of quantum chaos [73, 75]. If we introduce a hard
cutoff, the Lanczos coefficients saturate, and we cannot obtain the growth behavior bn ∼ nδ
for integrable lattice models, where 0 < δ < 1. In this section, we briefly analyze how to
reproduce such behavior. We focus on the massless case m→ 0 in d = 4. The motivation
for focusing on this particular case is that we do not expect there to be any staggering of
the Lanczos coefficients that may arise from the mass or the spacetime dimension. Our
starting point is thus the Wightman power spectrum (3.18). We introduce a smooth cutoff
by hand as follows

fW (ω) = N(β,Λ, δ) ω

sinh(βω2 )
exp(−|ω/Λ|1/δ) , (3.51)

where N(β,Λ, δ) is a normalization factor determined by (3.16). The original Wightman
power spectrum (3.18) corresponds to δ → ∞, and the hard cutoff limit corresponds
to δ → 0.

Figure 10 shows the Lanczos coefficients bn computed from (3.51) with β = 1 and
βΛ = 40. One can see that the asymptotic behavior of the Lanczos coefficients bn changes
as we vary the value of δ. Figure 10 thus gives an explicit numerical check of the connection
between the growth rate of bn and the exponential decay of fW (ω) [16, 76].

15We thank Anatoly Dymarsky for his comment on the large-N limit.
16For our plots in figure 6, β = 1 is fixed and the value of Λ is changed. In figure 6 of [75], the lattice
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Figure 10. Lanczos coefficients bn computed from (3.51) with β = 1 and βΛ = 40. We plot bn for
various values of δ, which is a parameter of the smooth cutoff.

Figure 11. Diagram relevant to the computation of the one-loop self-energy ΠE in the theory with
quartic interactions.

While we are unaware of any physical situation where one should expect this exponential
correction to the power spectrum, it is worth pointing out that eq. (3.51) provides an
expectation on how to deform QFTs to encode information about the UV structure of
lattice models, e.g. via their lattice spacing a ∼ 1/Λ.

4 Interacting massive scalar in 4-dimensions

In this section, we consider a real-valued scalar field φ with Euclidean Lagrangian of the form

LE = 1
2(∂φ)2 + 1

2m
2φ2 + g

`!φ
` . (4.1)

We would like to understand how the interaction term g
`!φ

` affects the Lanczos coefficients
associated to the auto-correlation C(t) = 〈φ(t − iβ/2,0)φ(0,0)〉β. For simplicity, we set
d = 4 and consider the cases in which the interaction term is a relevant (` = 3) and a
marginally irrelevant (` = 4) deformation of the free theory.

4.1 Marginally irrelevant deformation (` = 4)

In this case, the Euclidean one-loop self-energy comes from the diagram of figure 11,
which gives

ΠE = g T

2
∑
p0

∫ d3p
(2π)3

1
p2

0 + p2 +m2 , (4.2)

where the Matsubara frequencies p0 = 2πT n are summed over all integers n.

spacing a = 2 is fixed and the values of other parameters are changed.
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The sum in (4.2) can be evaluated using the contour integral method,17 and the
self-energy can be written as

ΠE = Π(0)
E + Π(T )

E , (4.3)

where Π(0)
E is the vacuum zero temperature contribution, while Π(T )

E is a finite temperature
part. The vacuum contribution is actually divergent, but it can be regularized by a mass
counter-term δm. After regularization, one obtains Π(0)

E = 0. The temperature-dependent
contribution can be written as

Π(T )
E = g

2

∫ d3p
(2π)3

1√
p2 +m2

1
eβ
√

p2+m2 − 1

= g

4π2β2

∫ ∞
0

du u2√
u2 + (βm)2

1
e
√
u2+(βm)2 − 1

, (4.4)

where u = β|p|, with β = 1/T . At one-loop, the self-energy only depends on the dimension-
less parameter βm. For βm = 0, the integral in (4.4) gives π2/6, and the self-energy becomes

Π(T )
E = g

24β2 . (4.5)

More generally, when βm 6= 0, the integral (4.4) can be computed numerically and its value
decreases very quickly as we increase the value of βm. See figure 12.

By summing all one-particle irreducible diagrams, the resulting propagator can be
obtained from the free one as follows

1
−ω2 + k2 +m2 →

1
−ω2 + k2 +m2 + Π(ω,k) , (4.6)

which shows that Π(T )
E can be interpreted as a (squared) thermal mass m2

th. Therefore, the
effects of interactions in the ` = 4 case can be taken into account by shifting the scalar
field mass as m2 → m2 +m2

th, where m2
th = Π(T ). From the point of view of the Lanczos

coefficients and K-complexity, this case is almost indistinguishable from the free theory case,
except in the case where m = 0, in which the thermal mass (4.5) produces a staggering
effect that is absent when there are no interactions in d = 4. In particular, by replacing
m by an effective mass

√
m2 +m2

th in eq. (3.29) one can see that λ̃K decreases under the
presence of interactions.

4.2 Relevant deformation (` = 3)

In this case, the Euclidean one-loop self-energy can be computed by considering the diagram
shown in figure 13, which gives

ΠE(p0,p) = g2T

2
∑
q0

∫ d3q
(2π)3

1
q2

0 + q2 +m2
1

(p0 + q0)2 + (p + q)2 +m2 , (4.7)

where here once again the Matsubara frequencies q0 = 2πT n are summed over all integers n.
17See for instance [92, 95].
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(T
)

E
/
g

Figure 12. Thermal mass (in units of g/(4π2β2)) as a function of βm. In the massless case, the
integral in (4.4) gives π2/6 ≈ 1.645. The thermal mass decreases exponentially as we increase the
value of βm.

Figure 13. Diagram relevant to the computation of the one-loop self-energy ΠE in the theory with
cubic interactions.

For simplicity, let us consider the m = 0 case. Following [96], we start by writing the
propagators appearing in (4.7) in configuration space∫ d3q

(2π)3
eiq·r

−q2
0 + q2 = e−|p0|r

4πr , (4.8)

where r = |r|. We then rewrite (4.7) as follows

ΠE(p0,p) = g2T

2
∑
q0

∫
d3r e

ip·r

r2 e−|p0|re−|p0+q0|r . (4.9)

Performing the sum in q0, we find

ΠE(p0,p) = g2T

2(4π)2

∫
d3r e

ip·r

r2 e−|p0|r
(

coth(2πT r) + |p0|
2πT

)
. (4.10)

The zero-temperature vacuum contribution

Π(0)
E = g2

2(4π)2

∫
d3r e

ip·r

r2 e−|p0|r
( 1

2πr + |p0|
2π

)
, (4.11)

diverges, but it can be regularized with a mass counter-term. After regularization, one
obtains Π(0) = 0. The finite-temperature contribution reads

Π(T )
E (p0,p) = ΠE −Π(0)

E = g2T

2(4π)2

∫
d3r e

ip·r

r2 e−|p0|r
(

coth(2πT r)− 1
2πTr

)
,

= g2T

16π

∫ ∞
0

dr r2
∫ π

0
dθ sin θ e

i|p|r cos θ

r2 e−|p0|r
(

coth(2πT r)− 1
2πTr

)
,

= g2T

8π

∫ ∞
0

dr sin(|p|r)
|p|r e−|p0|r

(
coth(2πT r)− 1

2πTr

)
. (4.12)
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(a) (b)
n n

δbnbn

Figure 14. (a) Lanczos coefficients computed from the one-loop corrected spectral power. (b)
Staggering, measure as δbn = bn(g) − bn(0), as a function of n for several values of the coupling
constant g. In both panels, we set β = 1 and Λ = 200.

The above expression can be evaluated numerically once one specifies (p0,p). The corre-
sponding Lorentzian correlators can be computed by analytic continuation.

The first quantum correction to the spectral function is given by [97]

ρ1(ω,p) = sgn(ω) ImΠ(T )(ω,p)
(−ω2 + p2 + ReΠ(T )(ω,p))2 + (ImΠ(T )(ω,p))2 , (4.13)

where Π(T )(ω,p) = Π(T )
E (p0 → −iω,p).

The one-loop corrected spectral power is then computed as

fW (ω) = N(β, g)
sinh[βω/2]

(
Ω2

16π2ω +
∫ d3k

(2π)3 ρ1(ω,k)
)
, (4.14)

where the first term in the parentheses represents the free theory contribution while the
second term represents the one-loop correction, which depends on g2.

From (4.14) we numerically compute the Lanczos coefficients bn for several values of
the coupling constant g. The results are shown in figure 14(a). Since our calculation is
perturbative in g, the curves of bn as a function of n are not very different from the one we
obtain for the free theory in d = 4. But the effects of the interactions can be seen in the
curves of bn(g)− bn(0) as a function of n, which shows a staggering effect that decreases as
n increases. See figure 14(b). A staggering effect that decreases as n increases is known
to be associated with systems in which the power spectrum has bounded support and no
mass gap [76]. Considering a free massless field with d 6= 4, we checked that this feature is
present even when we remove the condition of bounded support — i.e. when we take ωF to
infinity. This feature is also shown in figure 3 of [42].

To understand how the interactions affect the slope of the curves of bn as a function of
n, we fit a line of the form bn = α(g)n+ γ(g) to the data, separating odd and even Lanczos
coefficients.18 Figure 15 shows the slope α(g) for odd and even Lanczos coefficients as a
function of g2. Note that the slope of the odd coefficients increases under the presence of
interactions, while the slope of the even coefficients decreases.

18We separate the data {n, bn} into two sets, {nodd, bnodd} and {neven, bneven}, and fit a line to each one.
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g2

α(g)/α(0)

Figure 15. Log-plot of the normalized slope α(g)/α(0) as a function of the squared coupling g2 for
Lanczos coefficients bn with odd and even values of n.

5 Discussion and conclusions

In this paper, we discussed the behavior of the Lanczos coefficients bn and the Krylov
complexity KO(t) for free and interacting scalar QFTs at finite temperature for several
spacetime dimensions. For free scalar QFTs, we studied the effects of introducing IR and
UV cutoffs in the power spectrum induced by a mass term in the Lagrangian (3.1) and a
cutoff Λ in the momentum integral of the power spectrum (3.37). The bare mass m causes
a staggering of the Lanczos coefficients bn, separating them into two smooth families, one
for odd n and one for even n. This effect is seen for all values of n and was confirmed by
an analytic approximation for βm� 1 (see eq. (3.23)) and by numerical computations of
bn (see figure 1). The staggering due to the non-zero mass exists even when n is large and
thus the late-time behavior of Krylov complexity might be affected by the staggering effect.
After studying the behavior of the Lanczos coefficients in several models (cf. appendix D),
we observe that staggering is absent if the following two conditions are satisfied: (I) the
power spectrum is finite and positive at ω = 0, i.e., 0 < fW (0) <∞; and (II) the derivative
of the power spectrum fW (ω) is a continuous function of ω for −Λ < ω < Λ, where Λ is
a UV cutoff. In terms of the auto-correlation C(t), the first condition implies that the
integral fW (0) =

∫
C(t)dt is finite and positive, which means that the auto-correlation is

positive most of the time. It is not clear to us what the second condition implies for C(t),
or the physical meaning of conditions I and II. We hope to come back to the physical
interpretation of these mathematical statements in the future.

The exponential growth rate λ̃K of KO(t) computed for a finite range of t decreases as
a function of the mass, which is consistent with the conjectured bound (2.29). Introducing a
hard UV cutoff for the momentum integral of a particle causes the saturation of the Lanczos
coefficients and a transition from the exponential growth of KO(t) to a linear growth (see
figure 7). We also considered a deformation of the power spectrum by a smooth cutoff (see
eq. (3.51)), which may provide a way to deform the UV structure of QFTs that arise as the
continuum limits of lattice models.

This work on Lanczos coefficients and Krylov complexity in QFTs with momentum
cutoffs was influenced by an important remark by Dymarsky and his collaborators related
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to the role that a UV cutoff would play in diagnosing quantum chaos in a discretized lattice
model [73, 75]. From the perspective of the power spectrum, in section 2.2 and section 3.3,
we corroborated the observation that studying signatures of quantum chaos for spectral
statistics at late times in QFTs on non-compact spaces with unbounded spectrum is an
ill-posed question. The reason is that it is not possible to distinguish free from chaotic
lattice models once the continuum limit is taken and their power spectrum is scrutinized.
It is worth pointing out that similar statements regarding the study of quantum chaos in
continuum theories from the perspective of their operator algebra have been made in [98].
Here it was argued that continuum theories cannot be expected to capture all aspects of
spectral statistics, the cornerstone of quantum chaos. Instead, one needs to coarse-grain
the continuum theory down to a classical theory with finite-dimensional state space and
operator algebra of the same dimension.

In section 4, we considered a real scalar field with cubic or quartic interaction terms
propagating in 4-dimensional flat spacetime, and numerically studied the effects of interac-
tions on the Lanczos coefficients. The cubic (quartic) interaction term can be thought of as a
relevant (marginally irrelevant) deformation of the free theory. In both cases, the interaction
term breaks the smooth behavior of the Lanczos coefficients, producing staggering for all
values of n. We observed that the presence of a mass gap in the power spectrum19 controls
whether staggering is constant or not, which is consistent with the results of [76]. The effect
of quartic interactions can be accounted for by a simple shift in the mass (m2 → m2 +m2

th),
which produces a gap in the spectral power even when m = 0. The corresponding staggering
effect does not depend on n. By contrast, in the case of cubic interactions, there is no
mass gap, and the staggering decreases as we increase n. This suggests that the staggering
produced by the cubic interaction term may not be present for sufficiently large values of n.
Therefore, we do not expect this deformation to affect λK .

This study can be extended in several interesting directions, namely:

• We only calculated the exponential growth rate λ̃K for a finite range in t. It is
important to semi-analytically determine the asymptotic rate λK at t → ∞. This
could be accomplished by finding a compact closed-form expression of the probability
amplitudes and computing the limit of the series (2.12), provided it exists;

• In the φ4 theory, we observed that λ̃K decreases as we increase the coupling g. Since
the staggering is constant in this case, there is a possibility that λK also decreases in
the presence of interactions. It would be interesting to check if this feature is also
present in a matrix theory with quartic interactions [93] because in this case the
Lyapunov exponent λL is well-defined, and one could study if the conjectured chaos
bound (2.29) is still satisfied;

• Also in the context of interacting QFTs, it would be interesting to investigate whether
continuous tensor network techniques in the spirit of [99] can be used to study Krylov
complexity in generic interacting scalar field theories;.20

19We say that the spectral power has a mass gap if fW (ω) = 0 for |ω| < m.
20We thank Adolfo del Campo for pointing out this interesting potential future direction.
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• Deformations of local QFTs due to interactions are represented by renormalization
group flows. One may be able to classify the effects of the interactions on the Lanczos
coefficient and Krylov complexity in terms of the renormalization group flows. In
particular, we observed that the staggering produced by a relevant deformation
decreases with n, while the staggering produced by marginally irrelevant deformation
does not depend on n. Since the large-n regime can be associated with UV physics,
it is perhaps somewhat expected that the effects of the relevant deformation on the
Lanczos coefficients decreases as we increase n. It would be interesting to further
investigate these features, and check if they are also present in other models;

• In studies of K-complexity with the universal operator growth hypothesis, one typically
considers a local scalar field operator having zero overlap with any conserved current.
Studying K-complexity using conserved current operators instead of scalar operators
might be an interesting direction of research since these operators have different
scrambling properties which presumably affect the behavior of the Lanczos coefficients
and K-complexity. It is perhaps more interesting to study this in the context of lattice
models, where the K-complexity is known to provide a good diagnosis of quantum
chaotic behavior;
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A Analytic expressions for the Lanczos coefficients

In this appendix, we derive analytic results for the Lanczos coefficients for a 5-dimensional
free QFT in the large mass regime. We start from the formula for the moments in the large
mass limit (3.22), which we reproduce here for convenience

µ2n = 2−2e
mβ
2

2 +mβ

( 2
β

)2n [
−m2β2 Γ̃

(
2n+ 1, mβ2

)
+ 4Γ̃

(
2n+ 3, mβ2

)]
. (A.1)

Expanding (3.22) in a power series in 1/(mβ), we obtain

µ2n = m2n
[
1 + 8n

βm
− 16n
β2m2 + + 48n2

β2m2 + 64n
β3m3 −

288n2

β3m3 + 256n3

β3m3 +O
(

n4

β4m4

)]
.

(A.2)
Using the non-linear recursion relation (2.18), we can obtain the Lanczos coefficients bn
from the moments (A.2) as a function of βm. Analyzing the first Lanczos coefficients allows
us to determine how they behave as a function of n. We derive the following analytic
expression for the Lanczos coefficients

bn = m


1 + 2(n+1)

mβ + 2(n+1)2

(mβ)2 − 2(n+1)3

(mβ)3 +O
(
n
mβ

)4
, for n odd ,

√
4n(n+2)
mβ +

√
4n(n+1)2(n+2)

(mβ)2 − (1+2n(n+2))
√
n(n+2)

(mβ)3 +O
(
n
mβ

)4
, for n even .

(A.3)
We checked that (A.3) correctly reproduces the results for the Lanczos coefficients obtained
numerically from (3.22) up to n ≈ 35. See figure 1. By squaring (A.3) and multiplying it
by β2, we obtain

β2b2n = m2β2


1 + 41+n

mβ + 8 (n+1)2

m2β2 + 12 (n+1)3

m3β3 + · · · , for n odd ,

4n(n+2)
m2β2 + 8n(n+1)(n+2)

m3β3 + · · · , for n even .
(A.4)

B Auto-correlation function in odd-dimensional free QFTs

In this appendix we discuss the details of the thermal Wightman 2-point function C(d)(t) for
the field operator φ in free odd-dimensional QFTs in the large mass regime mβ � 1 (3.27).
The functions {c(d)

i (t)} for d = 5, 7, 9 are given by

c
(5)
1 (t) = β3

(βm+ 2) (β2 + 4t2)3 , (B.1a)

c
(5)
2 (t) = −4t

(
β2(βm+ 3) + 4t2(βm− 1)

)
, (B.1b)

c
(5)
3 (t) = 2β3 +m

(
β4 − 16t4

)
− 24βt2 , (B.1c)
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c
(7)
1 (t) = β5

(β2m2 + 6βm+ 12) (β2 + 4t2)5 , (B.2a)

c
(7)
2 (t) = 2t

(
− 3β4

(
β2m2 + 8βm+ 20

)
+ 64m2t6

− 16t4
(
β2m2 − 24βm+ 12

)
− 20β2t2

(
β2m2 − 24

) )
, (B.2b)

c
(7)
3 (t) = βm2

(
β2 − 12t2

) (
β2 + 4t2

)2

+ 6m
(
β6 + 64t6 − 80β2t4 − 20β4t2

)
+ 12

(
β5 + 80βt4 − 40β3t2

)
, (B.2c)

c
(9)
1 (t) = β7

(β3m3 + 12β2m2 + 60βm+ 120) (β2 + 4t2)7 , (B.3a)

c
(9)
2 (t) = 8t

(
8β4t2

(
−β3m3 + 105βm+ 525

)
+ 256m2t8(βm− 3)

+ 672β2t4
(
β2m2 + 5βm− 15

)
− β6

(
β3m3 + 15β2m2 + 90βm+ 210

)
+ 128t6

(
β3m3 + 12β2m2 − 45βm+ 15

) )
, (B.3b)

c
(9)
3 (t) = m3

(
β4 + 16t4 − 24β2t2

) (
β2 + 4t2

)3

+ 12βm2
(
β4 + 80t4 − 40β2t2

) (
β2 + 4t2

)2

− 60m
(
−β8 + 256t8 − 896β2t6 + 56β6t2

)
− 120

(
−β7 + 448βt6 − 560β3t4 + 84β5t2

)
. (B.3c)

C Krylov complexity in CFTs on a hyperbolic space

By using a conformal map from Rd to S1 ×Hd−1, we can study the Krylov complexity in
CFTs whose spatial geometry is a hyperbolic space Hd−1. Due to the conformal map, the
curvature scale of Hd−1 depends on the period β of Euclidean time. The scalar conformal
two-point function on S1 ×Hd−1 is given by [100]

N
(−2 cos(2π

β (τ1 − τ2)) + 2 cosh d(1, 2))∆ , (C.1)

where ∆ is a scaling dimension, τi is the Euclidean time, d(1, 2) is the spatial distance in
Hd−1, and N is a normalization factor. Substituting τ1− τ2 = it+ β

2 and d(1, 2) = 0 to the
Euclidean two-point function (C.1), we obtain the thermal Wightman two-point function

C(t) = N
(4 cosh(πt/β))2∆ , (C.2)
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which agrees with (2.21) for α = π/β and η = 2∆ up to the normalization factor. Therefore,
the Krylov complexity in CFTs on the hyperbolic space with ∆ = d/2− 1 calculated from
Euclidean CFTs on S1 ×Hd−1 is

KO(t) = (d− 2) sinh2(πt/β). (C.3)

D Conditions for staggering

In this appendix, we study the properties of the power spectrum f(ω) that lead to staggering.
We also comment on the implications of these conditions for the auto-correlation C(t).

Based on the study of the Lanczos coefficients for several models, we (tentatively)
propose the following criteria which could help predict whether a given power spectrum
could give rise to staggering. The conditions on the power spectrum f(ω) for the absence
of staggering appear to be:

(I) f(ω) is finite at ω = 0, i.e., 0 < f(ω) <∞ ,

(II) f ′(ω) is a continuous function of ω for − Λ < ω < Λ.

where Λ is a UV cutoff. In all the examples we studied, the presence of staggering can be
attributed to the violation of conditions (I) and/or (II).

Example 1. Let us first consider a case where there is no staggering, namely:

f(ω) =
√

2π
σErf

(
Λ√
2σ

)
e−

ω2
2σ2 if |ω| ≤ Λ

0 if |ω| > Λ

where Λ is UV cutoff that makes the Lanczos coefficients to saturate to a constant value.
It is convenient to introduce such a cutoff because it is visually easier to see staggering
when the Lanczos coefficients are not growing. The plots for the above power spectrum and
the corresponding auto-correlation are shown in figure 16, while the related results for the
Lanczos coefficients are shown in figure 17.

Example 2. We now consider two examples where there is staggering. Let us consider
the case where the power spectrum is given by

f(ω) = πaea(Λ+m)

eaΛ(ahm+ 1)− eam


h e−am if |ω| ≤ m
e−a|ω| if m < |ω| < Λ
0 if |ω| ≥ Λ

Figure 18 shows the plots of the above spectral function as well as its corresponding auto-
correlation for h = 1 and h = 0. Figure 19 shows the corresponding Lanczos coefficients.

Both cases lead to staggering, however, in the case where h = 1, staggering is smaller
and decreases as we increase n, as opposed to the h = 0 case, where staggering remains
constant as we increase n. The h = 0 case does not satisfy condition (I), while the h = 1
case satisfies (I), but it does not satisfy condition (II), since the derivative of f(w) is not
continuous at ω = m.
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Figure 16. (a) Power spectrum of the Example 1 for σ = 5 and Λ = 10. In (b), we show the
corresponding auto-correlation.
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Figure 17. Lanczos coefficients of the Example 1 for σ = 5 and Λ = 10. Here we connected the
dots to make the absence of staggering more evident.
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Figure 18. (a) Power spectrum of the Example 2 with m = 2, a = 1/2, and Λ = 10. The blue
curves correspond to the case where h = 1, where f(ω) is continuous and there is no mass gap. The
red curves correspond to the case where h = 0, where f(ω) is discontinuous at ω = m and vanishes
for ω < m. In (b), we show the corresponding auto-correlations.
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Figure 19. Lanczos coefficients of the Example 2 for h = 0 (red curve) and h = 1 (blue curve).
Here we connected the dots to make the staggering more evident.
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Figure 20. (a) Power spectrum of the Example 3 for ω0 = 1, δ = 2, and λ = 2. In (b), we show
the corresponding auto-correlation.

Example 3. We now consider the textbook example of eq. (3.25), namely:

f(ω) = N(ω0, δ, λ)
∣∣∣∣ ωω0

∣∣∣∣λ e−
∣∣∣ ωω0

∣∣∣ 2δ
.

Figure 20 shows the plot of the above power spectrum and the corresponding auto-correlation,
for ω0 = 1, δ = 2, and λ = 2. Figure 21 shows the corresponding results for the Lanczos
coefficients. The presence of staggering for λ = 2 is probably because condition (I) is not
satisfied in this case, namely, f(0) = 0.

Example 4. We finally consider the following spectral function

f(ω) =

N(ω0,Λ)e
−
∣∣∣ ωω0

∣∣∣ if |ω| ≤ Λ
0 if |ω| > Λ

which is based on the textbook example given in eq. (3.25) with λ = 0, and δ = 2, but with
the introduction of a UV cutoff Λ (whose purpose is to make the presence of staggering
visible). Figure 22 shows the plot of the above power spectrum and the corresponding
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Figure 21. Lanczos coefficients of the Example 3 for ω0 = 1, δ = 2, λ = 2. Here we connected the
dots to make the staggering more evident.
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Figure 22. (a) Power spectrum of the Example 4 for ω0 = 1,and λ = 30. In (b), we show the
corresponding auto-correlation.
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Figure 23. Lanczos coefficients of the Example 4 for ω0 = 1, Λ = 30. Here we connected the dots
to make the staggering more evident.

auto-correlation, for Λ = 30 and ω0 = 1. Figure 23 shows the corresponding results for
the Lanczos coefficients. The presence of staggering is probably due to the violation of
condition II, namely, the derivative of f(ω) is not continuous at ω = 0.
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Implications for the auto-correlation function. In terms of the auto-correlation
C(t), condition (I) implies that the integral f(ω = 0) =

∫∞
−∞C(t)dt is finite, which means

that C(t) is positive most of the time. This feature of C(t) can be observed in the examples
above where f(0) is finite. At the moment we lack a concrete physical interpretation of this
property. Additionally, it is not clear to us what condition (II) implies for C(t).

However, we note that in the case of the (free) massive scalar field, the mass gap produces
oscillations in the auto-correlation function, given by eq. (3.27), such that

∫∞
−∞C(t)dt = 0,

violating condition (I) similarly to Example 2 with h = 0. Furthermore, in this case
condition (II) is violated due also to the mass gap and the dimensionality of the spacetime
in d 6= 4. Thus, in this case there seems to be two different origins to the staggering for
the massive scalar field. We also remark that for the massless scalar field, staggering was
observed for d > 4. This is consistent with our analysis, given that in this case the power
spectra have similar features to Example 3.21
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