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1 Introduction

Consider a two-dimensional conformal field theory with a discrete spectrum of states with
energies Ei = hi + h̄i − c

12 and momenta ji = hi − h̄i ∈ Z. The T T̄ deformation of a 2d
conformal field theory is defined via the flow equation

SQFT(λ) = SCFT −
∫
d2z OT T̄ (λ),

∂λOT T̄ (λ) = T T̄ −Θ2
(1.1)

with Θ the trace of the stress tensor and where λ labels the T T̄ coupling. This deformation
has received considerable attention in recent years as a prime example of an exactly soluble
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irrelevant deformation that preserves the integrability properties of the undeformed CFT [1,
2]. As shown by Smirnov and Zamolodchikov [1], the energies Ei(λ) of the individual energy
eigenstates of the T T̄ deformed theory depend in a universal way on the energies Ei and
momenta ji ∈ Z of the corresponding states in the undeformed theory via

Ei(λ) = 1
λ

(
−1 +

√
1 + 2Eiλ+ j2

i λ
2
)
. (1.2)

The energies Ei(λ) are all real provided the coupling is restricted to the range λ ≤ 6
c .

In this paper we will compute and study the T T̄ deformed partition function of N -
fold symmetric product CFTs. T T̄ -deformations of symmetric product CFTs come in two
types: single- or double-trace (and with various applications) [3–22]. We will focus on the
single-trace deformation.

Our first object of study is the grand canonical partition function of a T T̄ deformed
symmetric product CFT given by the weighted sum

Z+(ρ, τ) = 1 +
∞∑
N=1

pNZN (ρ2, τ), p ≡ e2πiρ, λ ≡ τ2
ρ2

(1.3)

with ZN (ρ2, τ) the deformed partition function of the N -fold symmetric product CFT

SNCFT = CFTN/SN . (1.4)

Here τ denotes the modular parameter of the torus and ρ = ρ1 +iρ2 is a complex parameter
that encodes the T T̄ coupling λ and defines a fugacity parameter p that keeps track of the
order N of the symmetric product. As we will make more explicit in what follows, Z+(ρ, τ)
is related to the partition function of a second quantized string theory with a worldsheet
theory equal to the product of the seed CFT with partition sum Z1(0, τ) times a sigma
model with a two-torus with modular parameter τ as target space and complexified volume
modulus ρ, where ρ1 defines the B-field flux through the target torus. This reformulation
of the T T̄ deformed symmetric product CFT will play a key role in what follows.

Our formula for Z+(ρ, τ), given in equation (3.3), takes the form of a non-chiral gen-
eralization of the DMVV formula [23] with the energies Ei replaced by the corresponding
deformed energies Ei(λ).1 Motivated by its interpretation as a second quantized string par-
tition function, we will show that Z+(ρ, τ) admits a natural non-perturbative completion,
that we denote by Z(ρ, τ). The free energy F (ρ, τ) = logZ(ρ, τ) of this extended theory
is defined by integrating the CFT partition function against an integration kernel given by
the full Γ2,2 Narain partition sum (2.16) of the two-torus. We will present evidence that
this procedure is well defined for arbitrary seed CFTs with central charge c ≤ 6,2 and that
the resulting partition function, given in equation (5.1), can be interpreted as the grand
canonical partition function of an extended T T̄ -deformed symmetric product CFT.

1The expression for Z+ was derived in a similar way from modular invariance considerations in [22],
where the large-N behavior of the single-trace T T̄ -deformed partition function was studied.

2At c = 6, the convergence of our expressions will turn out to be more delicate than at c < 6. We will
not discuss these subtleties in this paper.
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Moreover, by virtue of the T -duality symmetry and spectral characteristics of the
Narain partition function, we find that the deformed free energy F (ρ, τ) exhibits a number
of remarkable properties listed in the concluding section 5. Foremost, it is manifestly
invariant under a strong weak duality symmetry that inverts the T T̄ coupling λ to 1/λ.
This Z2 symmetry is part of a large O(2, 2,Z) duality group that includes a novel PSL(2,Z)
S-duality invariance that acts on the modular parameter ρ. The emergence of this duality
symmetry eliminates the problem that the deformed energies become complex at large
coupling and indicates that our generalized T T̄ -deformation may admit a UV complete
description.

This paper is organized as follows. After collecting some preliminary details in sec-
tion 2, we study the free energy of the grand canonical symmetric product CFT and show
that it can be written an integral representation as the one-loop string path-integral in
section 3. In section 4 we introduce and study the partition function of the S-duality in-
variant extension of the T T̄ -deformed theory and exhibit its special spectral properties.
We summarize our main results in the concluding section 5. Some technical aspects are
deferred to the appendices.

2 Preliminaries

We first introduce some preliminaries that will play a key role in our main story: the
partition sum of a T T̄ deformed CFT, the DMVV formula for the partition function of a
symmetric product CFT, and the Narain partition function with a T2 target space. The
reader familiar with these topics can skip this section.

2.1 T T̄ deformed CFT partition function

The torus partition function of the T T̄ deformed CFT with undeformed energy and mo-
mentum spectrum (Ei, ji) takes the form

∑
i

exp (2πi (τ1ji + iτ2Ei(λ))) (2.1)

where λ is the T T̄ deformation coupling, Ei(λ) is given in (1.2), and τ = τ1 + iτ2 defines
the complex structure modulus of the torus. We define the expression in (2.1) as Z1(ρ2, τ)
where ρ2 ≡ τ2

λ . This partition function exhibits invariance under the SL(2,Z) modular
transformations [24]

Z1

(
ρ2,

aτ + b

cτ + d

)
= Z1(ρ2, τ), ρ2 ≡

τ2
λ

(2.2)

indicating that it can be obtained by an intrinsically modular invariant path integral com-
putation. The T T̄ deformation is the unique universal deformation of individual energy
eigenvalues that preserves modular invariance [25].

– 3 –



J
H
E
P
0
5
(
2
0
2
3
)
1
4
0

Alternatively, we can define the T T̄ deformed partition function as the following inte-
gral transform of the undeformed CFT partition function

Z1(ρ2, τ) = ρ2

∫
H2

d2σ

σ2
2
e−

πρ2
τ2σ2
|τ−σ|2 ZCFT(σ)

= 1
2

∫
F

d2σ

σ2
2
K1(σ; ρ2, τ)ZCFT(σ)

(2.3)

where F = {|σ1| < 1
2 , |σ| > 1} is the usual fundamental domain and K1 the modular

invariant Poincaré series3

K1(σ; ρ2, τ) = 2ρ2
∑

γ∈PSL(2,Z)
exp

(
− πρ2
τ2(γσ)2

|τ−γσ|2
)
. (2.4)

This kernel can be identified with the partition function of the seed CFT coupled to a
complex scalar field X(z, z̄) that maps a dynamical worldsheet with complex structure
modulus σ into a target space torus with metric

Gabdx
adxb = ρ2

τ2
|dx1 + τdx2|2 (2.5)

and with a target space B-field Bab = Bεab turned on and tuned such that
√
G+ iB = 0.4

The expression (2.4) is for unit wrapping (as we review below) and does not include any
oscillator contributions, because they cancel with Fadeev-Popov determinants one gets
after gauge fixing [6, 11].

The resulting T T̄ deformed partition function (2.1) is real and finite provided that the
coupling is restricted to the range λ ≤ 6/c [20].

To derive (2.4), we first note that mappings X : T2 → T2 from a worldsheet torus
to a target space torus are labeled by two pairs of winding numbers w1 = (m1, n1) and
w0 = (m0, n0). The classical solution to the equations of motion ∂∂̄Xcl

a = 0 with winding
numbers w = (w1, w0) takes the form

Xcl
a (z, z̄) = 1

2iσ2

(
(na −maσ̄) z − (na −maσ) z̄

)
. (2.6)

Plugging this classical solution (2.6) into the torus sigma model action

S = 1
2π

∫
d2z(Gab +Bab)∂Xa∂Xb. (2.7)

with metric (2.5) and Bab = iρ2εab gives

Scl(ρ2, τ, σ, w) = πρ2
σ2τ2
|n1 + n0τ −m1σ −m0τσ|2 (2.8)

The kernel K1(σ; ρ2, τ) is the classical partition function given by the sum

K1(σ; ρ2, τ) = 2ρ2
∑
w

e−Scl(ρ2,τ,σ,w) (2.9)

3Here γσ is shorthand for γσ = aσ+b
cσ+d with ( a bc d ) ∈ PSL(2,Z) and (γσ)2 is a shorthand for Im(γσ).

4Note that this requires imaginary B-field.
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where w is restricted to the class of maps with wrapping number one: gcd(n0,m0) =
gcd(n1,m1) = 1, and n0m1 −m0n1 = 1. The factor of 1/2 in the second equality of (2.3)
can be interpreted as the identification between w and −w. We will make this identification
in what follows.

2.2 Partition function of a symmetric product CFT

Define the grand canonical partition function of a symmetric product CFT by

Z+(ρ, τ) = 1 +
∞∑
N=1

pNZN (τ), p ≡ e2πiρ (2.10)

where ZN (τ) denotes the partition function of the N -fold symmetric product of some given
seed CFT with partition function Z1(τ) := ZCFT(τ). The parameter p = e2πiρ denotes a
complex fugacity that governs the relative weight of symmetric product CFTs with different
order N . The total partition function Z+(ρ, τ) depends on the modular shape parameter
τ of the torus and the fugacity parameter ρ.

The result that we will obtain for the T T̄ deformed partition function of a symmetric
product CFT will be a generalization of the familiar DMVV formula [23] for the weighted
sum (2.10) of chiral elliptic genus partition functions

ZDMVV(p, τ) =
∏
d>0

∏
m≥0

1
(1− pdqm)c(md) (2.11)

Here c(n) counts the degeneracy of states with conformal weight n in the seed CFT.
The key idea behind the DMVV formula is that the Hilbert space of the N th symmetric
product CFT splits up into a sum over twisted sectors, labeled by conjugacy classes of the
permutation group SN . Each twisted sector, in turn, factorizes into a tensor product of
long string sectors, labeled by cyclic permutation of order d.

The free energy FDMVV = logZDMVV associated with the chiral symmetric product
elliptic genus can be expressed as a sum over positive N of Hecke operators T̂N acting on
the chiral seed partition function5

FDMVV(ρ, τ) =
∞∑
N=1

T̂Nχ1(ρ, τ) (2.12)

Here χ1(ρ, τ) = e2πiρ∑
n c(n)e2πinτ denotes the chiral elliptic genus partition function of

the seed CFT and the action of the Hecke operator T̂N on a weight-0 modular form φ(ρ, τ)
is defined as

T̂Nφ(ρ, τ) = 1
N

∑
ad=N, d>0
bmod d

φ

(
Nρ,

aτ + b

d

)
. (2.13)

5We apologize to the reader for using the same notation N for the order of the Hecke operator as for
the order of the symmetric product. The two notions are related but not identical. The N in T̂N labels
a wrapping number. The path-integral for ZN (τ) contains multiple wrapping sectors. The total wrapping
number of all sectors, as well as the maximal possible wrapping number, is equal to N .
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T̂Nφ has the geometric interpretation as a modular invariant sum T̂Nφ = 1
N

∑
f f
∗φ over

the pullbacks of holomorphic linear maps f : T2 → T2 of degree N from the torus to
itself. This geometric representation points to an interpretation of FDMVV as the one-loop
partition function of a second quantized string theory with the two torus as target space.

Via a straightforward generalization of the original derivation of [23], one can show
that the grand canonical partition function Z+(ρ, τ) of the non-chiral symmetric product
CFT defined in (2.10) is given by the following formula:

Z+(ρ, τ) =
∏
d>0
m∈Z

∏
i|ji=md

1
1− pde

2πi
d

(τ1ji + iτ2Ei)
. (2.14)

The power of p keeps track of the total wrapping number of the string worldsheet. Similarly
as the DMVV free energy, the non-chiral free energy F (ρ, τ) = logZ(ρ, τ) can be written
as a sum of Hecke operators acting on the non-chiral seed CFT partition function

F (ρ, τ) =
∞∑
N=1

T̂NZ1(ρ, τ) (2.15)

with Z1(ρ, τ) = e2πiρZ1(τ) and with T̂N defined via (2.13). This representation of the free
energy will be our starting point for our computation of the T T̄ deformed grand canonical
symmetric product partition function.

2.3 The Γ2,2 Narain partition sum

A central player in our story is the Narain partition sum of the gaussian sigma model with
a T2 target space with metric (2.5) and general B-field modulus b = ρ1.

Kc=2(ρ, τ, σ) = ρ2
∑

~n,~w∈Z2

e
iπ

2σ2τ2

(
ρ|n2+ n1τ− σ(w1+ w2τ)|2− ρ̄|n2+ n1τ̄− σ(w1+ w2τ̄)|2

)
(2.16)

This Γ2,2 Narain partition sum, when viewed as a function of the three complex moduli σ,
ρ, and τ , satisfies a number of remarkable properties.

The total Γ2,2 Narain sum (2.16) is invariant under the extended T -duality group

O(2, 2;Z) ' PSL(2,Z)× PSL(2,Z) o Z2
2 (2.17)

given by the product of the modular group acting on the target space modulus τ and the
stringy T-duality group acting on complex Kähler modulus ρ via

ρ → ρ̃ = aρ+ b

cρ+ d
,

(
a b

c d

)
∈ PSL(2,Z), (2.18)

times a Z2 mirror symmetry that interchanges τ and ρ and a Z2 symmetry that simul-
taneous flips the sign of the real part of τ and ρ. Remarkably, it also exhibits a triality
symmetry under permutations of the three moduli σ, τ and ρ [26].
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The Narain partition sum Kc=2 can be written as an infinite sum over terms with fixed
torus wrapping number N

Kc=2 = K+ +K0 +K−, K± =
∑
N>0

T̂NK±1 (2.19)

where K0 and K±N = T̂NK±1 represent the Narain sum restricted to wrapping number 0 or
±N , respectively. The zero and ±1 wrapping number terms admit the following Poincaré
series representation [27]

K0(ρ, τ, σ) = ρ2 + 2ρ2

∞∑
n=1

∑
γ,γ̃∈Γ∞\PSL(2,Z)

e
− πn2ρ2

(γτ)2(γ̃σ)2 , (2.20)

K±1(ρ, τ, σ) = 2ρ2
∑

γ∈PSL(2,Z)
e

iπ
2

(
ρ

τ2(γσ)2
|τ ∓ γσ|2 − ρ̄

τ2(γσ)2
|τ ∓ γσ̄|2

)
. (2.21)

Note that if we set ρ̄ = 0 and ρ = 2iρ2, the wrapping number 1 term K+1 coincides with
the integration kernel (2.4) used to define the T T̄ deformed partition function. The zero
wrapping term K0 coincides with the trace of the heat kernel defined on the torus target
space.

3 Partition function of T T̄ deformed symmetric product CFT

We now turn to study the grand canonical partition function Z+(ρ, τ) of the T T̄ -deformed
symmetric product CFT. First, we compute Z+(ρ, τ) via a combinatoric argument and by
applying the Smirnov-Zamolodchikov formula (1.2) for the deformed energy spectrum to
the twisted sectors of the orbifold CFT. We then introduce an unoriented generalization
of the symmetric product CFT and give another derivation of the free energy using its
representation (2.15) as a sum over a string worldsheets with non-zero wrapping numbers.
Finally, we will rewrite the free energy in terms of a single integral kernel applied to the
seed CFT partition function. In the next section we will use the link between this integral
kernel and the Γ2,2 Narain sum K to define an S-duality invariant extension of the grand
canonical partition function.

3.1 T T̄ deformed symmetric product CFT

The grand canonical partition function (1.3) can be defined as a trace over the Hilbert
space of an infinite direct sum of N -fold symmetric product CFTs

H+ =
⊕
N>0
HN HN ≡ H(SNCFT) (3.1)

Let N̂ denote the operator that counts the order of the symmetric product, Ĵ the momen-
tum operator, and Ĥ(λ) the deformed Hamiltonian. Equation (1.3) can then be written
as a trace

Z+(ρ, τ) = 1 +
∑
N>0

pNZN (ρ2, τ) = trH+

(
e2πiN̂ρe2πi(τ1Ĵ+iτ2Ĥ(λ))), ρ2 = τ2

λ
(3.2)

– 7 –
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This partition function depends on the modular parameter τ of the torus and a complex
coupling ρ = ρ1 + iρ2 that encodes the T T̄ coupling λ and fugacity parameter that keeps
track of N . Below we will derive the following result

Z+(ρ, τ) =
∏
d>0
m∈Z

∏
i|ji=md

1
1− pde 2πi

d
(τ1ji+iτ2Ei(λ/d2))

(3.3)

with p = e2πiρ and E(λ) the deformed energy given in (1.2).
Formula (3.3) takes the expected form, as it arises simply by deforming the energy

levels of the corresponding CFT partition function (2.14). The only aspect that needs
some explanation is the adaptive rescaling λ→ λ/d2 of the T T̄ coupling in the long string
sectors with integer length d. We claim that this rescaling among different winding sectors
is necessary to ensure that the dimensionful T T̄ coupling is the same across all long string
sectors. To see this, recall that we have chosen units so that the space dimension of the
deformed CFT is a circle with unit radius R = 1. All quantities, including λ, are made
dimensionless by multiplying by the appropriate power of the circle radius R. Let λ̄ denote
the dimensionful T T̄ coupling. Since the T T̄ operator has mass dimension 4, λ̄ has mass
dimension −2, or length dimension 2. In the unit winding sector, this means that the two
coupling are related via λ = λ̄/R2.

Let us briefly recall how the long string phenomenon comes about [23]. The SN
symmetry is a gauge symmetry of the symmetric orbifold. We can thus define twisted
sectors labeled by conjugacy classes of the orbifold group SN

H(SNCFT) =
⊕
{Nd}
H{Nd}. (3.4)

where we used that the conjugacy classes [g] of SN are characterized by partitions {Nd}
of N with ∑d dNd = N . Here Nd denotes the multiplicity of the cyclic permutation (d) of
d elements in the decomposition of [g] = (1)N1(2)N2 . . . (s)Ns . In each twisted sector, one
needs to impose invariance under the centralizer subgroup Cg = ∏s

d=1 SNd × ZNdd , where
each SNd permutes the Nd cycles (d), while each Zd acts within one particular cycle (d).
Correspondingly, we can decompose each twisted sector as

H{Nd} =
⊗
d>0

SNdH(d) SNH =
(
H⊗ . . .⊗H︸ ︷︷ ︸

N times

)SN
. (3.5)

The spaces H(d) in this decomposition denote the Zd invariant subsector of the space of
states with winding number d. In this twisted sector, the momentum per winding can be
fractional of the form j

(n)
i /d with j

(n)
i ∈ Z. The Zd-invariant subspace consists of those

states for which these fractional momenta combined add up to an integer.
From the above description, we see that the long strings wind around d times and

thus have spatial length dR. Their energy and momentum levels are thus reduced by a
factor d. Moreover, the rescaling of the spatial length means that, relative to the total
length Rd of the long string, the dimensionless T T̄ coupling in the long string sector is
λd = λ̄/(Rd)2 = λ/d2. Combined these observations lead to the announced result (3.3) for

– 8 –
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the deformed grand canonical partition function. As we will see in section 3.3, it can also
be derived by integrating the partition function of the seed CFT against the deformation
kernel K+ defined in equation (2.19)

logZ+(ρ, τ) = 1
2

∫
F

d2σ

σ2
2
K+(ρ, τ, σ)ZCFT(σ). (3.6)

Note that the long string sectors with one definite sign of wrapping number contributes.
Hence we can think of Z+(ρ, τ) as the partition function of an oriented second quantized
string theory with the same world-volume theory as the T T̄ -deformed seed CFT. This in-
terpretation of Z+(ρ, τ) reflects the combinatoric equivalence between the second quantized
Hilbert space and the direct sum over all symmetric products of the single particle Hilbert
space.

3.2 Unoriented T T̄ deformed symmetric product CFT

We now make the logical next step of including the contribution of all wrapping sectors,
including sectors with negative and zero wrapping numbers. The negative wrapping sectors
are naturally interpreted as the mirror image of the positive wrapping sectors.

Specifically, we wish to study the partition function of the extended T T̄ -deformed
symmetric product CFT defined via the trace

Z(ρ, τ) = trH
(
e2πiN̂ρe2πi(τ1Ĵ+iτ2Ĥ(λ))) (3.7)

where H denotes the total Hilbert space given by the tensor product of three sectors

H = H+ ⊗H0 ⊗H− (3.8)

Here H± are the positive and negative wrapping sectors. They are given by the infinite
direct sum H± = ⊕

N>0H±N with HN and H−N the N -fold symmetric product Hilbert
space of the seed CFT and of the orientation reversed seed CFT, respectively. Orientation
reversal is defined by flipping the sign of all momenta ji. So the sectors HN and H−N look
identical in the case that the spectrum of the seed CFT is parity-symmetric. They still
contribute separately and differently to the partition function, because of the presence of
the chemical potential. The zero-wrapping sector H0 has a less obvious CFT interpretation.
We will study this sector in more detail in section 4.

The tensor product Hilbert space (3.8) includes long string wrapping sectors of both
signs. It thus represents an unoriented second quantized string theory. The partition
function (3.7) of this unoriented theory factorizes into a product of three factors

Z(ρ, τ) = Z+(ρ, τ)Z0(ρ, τ)Z−(ρ, τ) (3.9)

each given by the trace over the corresponding Hilbert space subfactor.
Multiplying the result (3.7) with its orientation reversed copy and plugging in the

explicit form (1.2) of the deformed energy gives that

Z+(ρ, τ)Z−(ρ, τ) =
∏
d 6=0
m∈Z

∏
i|ji=md

1
1− pd1qm1 e−2πτ2

√
(d/λ)2+m2+ 2Ei/λ

(3.10)

– 9 –
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with p1 = e2πiρ1 and q1 = e2πiτ1 . The above product includes long strings with all wrapping
numbers d except zero. It is therefore natural to consider the extended symmetric product
partition function (3.9) that includes the factor with d set to zero

Z0(ρ, τ) = e−ρ2V0(λ) ∏
i∈S

∏
m∈Z

1

1− qm1 e
−2πτ2

√
m2+ 2Ei/λ

, (3.11)

where S denotes the set of all spin zero states in the seed CFT. Here we included a possible
vacuum energy contribution V0(λ). This zero wrapping number partition function may look
a bit mysterious from the CFT perspective but has a clear string theoretic interpretation:
it represents the partition function of an infinite tower of free spinless particles moving on
the torus with metric (2.5), with each particle corresponding to a ji = 0 state in the seed
CFT. We will study this zero-wrapping sector in more detail in section 4, where we will
derive an explicit formula for the vacuum energy V0(λ) based on duality symmetry.

3.3 T T̄ deformed grand canonical free energy

A second instructive derivation of the partition functions (3.3) and (3.10) makes use of the
fact that the corresponding free energy F±(ρ, τ) = logZ±(ρ, τ) can be written as a sum
over positive integers N of Hecke operators T̂N acting on the seed T T̄ -deformed seed CFT
partition function

F±(ρ, τ) =
∞∑
N=1

T̂NZ±1(ρ, τ) (3.12)

Z±1(ρ, τ) = p∓
∑
i

e±2πijiτ1 − 2πτ2Ei(λ) (3.13)

with p± = e2πi(±ρ1+iρ2). Here the action of the Hecke operators T̂N is defined via

T̂NZ±1(ρ, τ) = 1
N

∑
ad=N, d>0
bmod d

Z±1

(
Nρ,

aτ + b

d

)
. (3.14)

The formula (3.12) is the direct generalization of the formula (2.15) for the free energy
F (ρ1, σ) of the non-chiral symmetric product CFT. To evaluate this expression, we first
plug in the explicit form (3.13) of the deformed seed partition sum and then perform the
summation over b. This gives the periodic delta function

1
N

∑
bmod d

e
2πi
d
ji(aτ1 + b) = 1

a
e

2πi
d
ajiτ1

∑
m∈Z

δji,md, a = N

d
(3.15)

restricting the value of the momentum ji to be an integer multiple of d. This indicates
that d plays the physical role of the winding number of the mapping from the worldsheet
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torus into the target space torus. The sum over N can now be evaluated as follows:

F±(ρ, τ) =
∑
N>0

∑
ad=N
d>0

∑
m∈Z

∑
i | ji=md

1
a
pN∓e

2πi
d
a(±jiτ1 + iτ2Ei(λ/d2)), (3.16)

=
∑
a,d>0
m∈Z

∑
i | ji=md

1
a
pad∓ e

2πi
d
a(±jiτ1 + iτ2Ei(λ/d2)), (3.17)

=
∑
d>0
m∈Z

∑
i | ji=md

− log
(
1− pd∓e±2πimτ1 − 2πτ2 1

d
Ei(λ/d2)). (3.18)

The rescaling of the T T̄ coupling to λ/d2 follows from the relation λ = τ2/ρ2 and the fact
that the Hecke operator (3.14) acts by replacing (ρ2, τ2) by (Nρ2, aτ2/d) with N = ad.
Taking the exponent of (3.18) leads to the final result (3.3) and (3.10) for the partition
function at non-zero wrapping.

The free energy F±(ρ, τ) of the deformed symmetric product CFT can be expressed as
the integral over the fundamental domain of the undeformed partition function ZCFT(σ)
of the seed CFT times a diffusion kernel K±

F±(ρ, τ) = 1
2

∫
F

d2σ

σ2
2
K±(ρ, τ, σ)ZCFT(σ) (3.19)

given by the sum over all positive integers N of Hecke operators (2.13)

K±(ρ, τ, σ) =
∑
N>0

T̂NK±1(ρ, τ, σ) (3.20)

acting on the modular invariant diffusion kernels in the N=1 wrapping sector. The positive
and negative wrapping number contributions KN and K−N are related via K−N (ρ, τ, σ) =
KN (−ρ̄,−τ̄ , σ), i.e. an orientation reversing involution that interchanges the left-moving
and right-moving sector of the CFT. Equations (3.19)–(3.20) combine and generalize the
formulas (2.3) and (2.12) for the deformed partition function and the symmetric product
free energy, respectively. The formula (3.19) yields a finite real result as long as c ≤ 6 and
λ ≤ 6/c.

4 S-duality invariant T T̄ deformed CFT partition function

Equation (3.10) has the structure of the partition function of a free second quantized
(non-critical) string theory with worldsheet theory given by the product of the seed CFT
times a free boson sigma model (2.7) with a T2 target space with metric (2.5) and B-field
modulus b = ρ1. This correspondence motivates a natural definition of the T T̄ deformed
symmetric product CFT that takes this relationship with second quantized (non-critical)
string theory seriously. We will argue that this string theory description defines a non-
perturbative completion of the T T̄ deformed CFT, in the sense that it will allow us to
define the deformed partition function for all (non-negative) values of the T T̄ coupling.
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The diffusion kernels K±(ρ, τ, σ) defined in (3.20) have a natural extension obtained
by including the zero wrapping number contribution

K(ρ, τ, σ) = K+(ρ, τ, σ) +K0(ρ, τ, σ) +K−(ρ, τ, σ). (4.1)

Comparing with (2.19) suggests that we should equate this extended kernel K with the
Γ2,2 Narain partition sum Kc=2 introduced in equation (2.16) in section 2.3. Indeed, the
full sum (2.16) includes the instanton contributions of string worldsheets with arbitrary
wrapping numbers. We thus are led to consider the integral transform of the seed CFT
partition function

F (ρ, τ) = 1
2

∫
F

d2σ

σ2
2
K(ρ, τ, σ)ZCFT(σ) (4.2)

where K(ρ, τ, σ) is given by the full Γ2.2 Narain sum (2.19) . As we will argue in the
following, this integral transform yields a unique and finite answer provided that the seed
CFT has central charge c ≤ 6. By construction, the free energy F (ρ, τ) defined by (4.2)
exhibits O(2, 2;Z) duality symmetry. This duality group includes a Z2 mirror map that
interchanges τ and ρ. Since the T T̄ coupling is given by λ = τ2/ρ2, the mirror map acts
via λ↔ 1/λ and thus interchanges strong and weak coupling. We will see that this mirror
symmetry is sufficient to remedy the seemingly pathological occurrence of complex energy
levels in the strong coupling regime of the T T̄ deformed theory.

4.1 Free energy at zero wrapping number

The free energy at zero wrapping number is formally defined via the integral expression

F0(ρ, τ) = 1
2

∫
F

d2σ

σ2
2
K0(ρ, τ, σ)ZCFT(σ) (4.3)

K0(ρ, τ, σ) = ρ2 + 2ρ2

∞∑
n=1

∑
γ,γ̃∈Γ∞\PSL(2,Z)

e
− πn2ρ2

(γτ)2(γ̃σ)2 (4.4)

The first term ρ2 in the diffusion kernel K0 is the zero winding contribution. Its presence
makes the integral divergent for any compact CFT seed with positive central charge c > 0.
However, as we will argue below, this part of the integral can be regularized to give a
unique finite answer via analytic continuation.

The integral against the second term of K0 can be evaluated via a standard unfolding
trick. The Poincaré sum over γ̃ ∈ PSL(2,Z) can be replaced by an unfolded σ integral over
H2/Γ∞, i.e. the infinite strip between −1

2 < σ1 <
1
2 . This allows us to perform the integral

over σ1. The remaining integral reads as follows

F0(ρ, τ) = µ0ρ2 + ρ2
2
∑
i∈S

∑
(m,n) 6=(0,0)

∫ ∞
0

dy

y2 e
−πρ2

|n+mτ |2
yτ2

−2πyEi . (4.5)

where we replaced the Poincaré series by a summation over pairs of integers m,n, and
{Ei, i ∈ S} denotes the spectrum of zero spin states. The constant µ0 denotes the divergent
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integral of the seed CFT partition function over the fundamental domain

µ0 := 1
2

∫
F

d2σ

σ2
2
ZCFT(σ). (4.6)

To exhibit the physical meaning of (4.5), we will rewrite it in three different ways.
First we use the relationship between the integration kernel K0 and the heat kernel on
the two-torus to formally equate F0 to a sum over all spin zero states of the logarithm of
functional determinants. Second, we explicitly perform the y-integral in equation (4.5) to
write F0 as a convergent sum over Bessel functions. Third, by first performing a Poisson
resummation over n before integrating over y, we express F0 as the free energy of an infinite
set of particles with mass squared Ei.

1. Equation (4.5) can be recognized as a sum of logarithms of functional determinants

F0(ρ, τ) = Aρ2 −
1
2
∑
i∈S

log det(−∆ + 2Ei) (4.7)

where ∆ denotes the laplacian operator defined on the two-torus with metric (2.5).
As reviewed in appendix A, the log of the functional determinant on the torus has
the following familiar expression in terms of the trace of the heat kernel

− log det
(
−∆ +M2) = (2π)2ρ2

∫ ∞
0

dt

t
K0(t, x, x) e−M2t. (4.8)

The heat kernel on the torus (2.5) has the following explicit form

K0(t, x, x) = 1
4πt

1 +
∑

(n,m) 6=(0,0)
e
−πρ2

|n+mτ |2
tτ2

 (4.9)

Comparing equations (4.8) and (4.9) with the integral expression (4.5) confirms that
F0(ρ, τ) can be rewritten as in (4.7), provided the finite vacuum energy µ0 and the
divergent constant A are related via

A = µ0 +
∑
i∈S

∫ ∞
−∞

dk π
√
k2 + 2Ei (4.10)

The second term is designed to cancel the divergent contribution to the integral (4.8)
from the 1

4πt term. The formula (4.7) makes explicit that the zero wrapping sector
describes an infinite set of spinless particles, labeled by the spin zero CFT states,
with mass squared equal to {2Ei, i ∈ S}.

2. Another source of potential divergence is that some of the energy levels Ei are nega-
tive. The particles associated with these states are tachyonic and the corresponding
integral over y in (4.5) diverges at the cusp. We can regulate this divergence in the
standard way by first assuming that Ei is a complex number with Re(Ei) > 0, per-
form the integral over y and then analytically continue to the physical value of Ei.
This yields the following expression

F0(ρ, τ) = µ0ρ2 +
∑
i∈S

∑
(m,n) 6=(0,0)

√
2ρ2τ2Ei
|mτ + n|2

K1

√8π2ρ2|mτ + n|2Ei
τ2

 (4.11)
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The sum over scalars in (4.11) converges when c ≤ 6 and λ ≤ 6/c. To see this, we
note that the Cardy formula for the scalar density of states grows as e

√
4π2cE/3 [28],

whereas the Bessel function falls off as e−
√

8π2|mτ+n|2E/λ. If we choose τ to lie in the
standard fundamental domain then |mτ +n|2 ≥ 1. Hence the Bessel function falls off
fast enough to overcome the Cardy growth precisely in the same regime where the
T T̄ deformed CFT is well defined. The fact that the two bounds are identical is not
a coincidence: they related via a modular S transformation.

3. The identity (4.7) tells us that Z0(ρ, τ) can be written in the form of a quantum
mechanical partition function

Z0(ρ, τ) = eF0(ρ,τ) = trH0

(
e2πi(τ1Ĵ+iτ2Ĥ(λ))

)
(4.12)

where H0 denotes the second quantized Hilbert space of an infinite set of spinless
particles of mass squared m2

i = 2Ei defined on the cylinder with radius
√
ρ2/τ2.

Equivalently, we can choose units so that the cylinder radius is 1 and the scalar par-
ticles have mass squared 2Ei/λ with λ = τ2/ρ2. The explicit form of the Hilbert space
can be derived by deconstructing the path-integral representation of the functional
determinant.

An alternative derivation is presented in appendix B, where it is shown that (4.7)
can be re-expressed as

F0(ρ, τ) = −ρ2V0(λ)−
∑
i∈S

∑
n∈Z

log
(
1− e2πiτ1n−2πτ2Ei(n,λ)) (4.13)

with

V0(λ) = −A+
∑
i∈S

∑
n∈Z

πλ Ei(n, λ), Ei(n, λ) =
√
n2+ 2Ei/λ (4.14)

the energy level of the n-th momentum mode of i-th complex scalar field, and A

the divergent integral given in (4.10). Equation (4.13) exponentiates to the form
anticipated by (3.11)

Z0(ρ, τ) = e−ρ2V0(λ) ∏
i∈S

∏
n∈Z

1
1− e2πiτ1n−2πτ2Ei(n,λ) . (4.15)

This matches the partition function of a Fock space labeled by occupation numbers
Nni and with the following energy eigenspectrum

Ĥ(λ)|{Nni}〉 =
∑
i

NniEi(ni, λ)|{Nni}〉 (4.16)

plus a constant overall vacuum energy shift equal to Evac = V0(λ)/λ.
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4.2 Vacuum energy contribution

Let Zc0(σ) be the seed CFT partition function with positive central charge 0 < c0 ≤ 6. We
wish to compute the vacuum energy contribution µ0 given by the integral of Zc0(σ) over
fundamental domain. This integral is divergent due to the exponential growth Zc0(σ) ∼
e
πc0
12 σ2 at the cusp. We will regulate this integral via an analytic continuation procedure

introduced in [29] in the context of Narain CFTs. Here we generalize the same procedure
to arbitrary CFTs with central charge in the specified range.

The key idea is to first multiply the seed partition function Zc0(σ) by some auxiliary
modular invariant partition function Φ(σ)d with negative central charge d = c − c0, as
defined via its growth at the cusp. It is natural to choose Φ(σ) to be equal to the inverse
of a rational c = 1 CFT partition function. The modified seed partition function

Zc(σ) = Φ(σ)c−c0Zc0(σ) (4.17)

has effective central charge c = c0 + d < 0. This removes the exponential growth at the
cusp and ensures that the effective energies in the mode expansion all satisfy Ei ≥ 0. We
then perform the integral of Zc(σ) over the fundamental domain

µc = 1
2

∫
F

d2σ

σ2
2
Zc(σ), (4.18)

and obtain a finite result. We will assume that µc is an analytic function of the effective
central charge c of the modified partition function. We can then use analytic continuation
to define the value µc0 of the integral at the physical value of the central charge. Equating
µ0 = µc0 , we thus obtain a regularized version of the original integral. The details of this
procedure are outlined in appendix D.

In appendix D we generalize the ideas developed in [29] to derive the following conver-
gent expression for any CFT with central charge c ≤ 6

µ0 =
∑
i∈S

2√q
q − 1

√
2Ei

∞∑
m=1

1
m

(
K1
(
2πm

√
2Ei/q

)
−K1

(
2πm

√
2qEi

))
. (4.19)

Here q is some arbitrary real number between c/6 and 6/c. Remarkably, if the set of
energies {Ei} specify the spectrum of spinless states of a modular invariant CFT, then
the numerical value on right-hand side is independent of the value of q. We checked this
statement to high numerical accuracy. It is natural to use this freedom and take the limit
as q approaches 1. A good argument for taking this limit is that at large energy, the leading
term in the sum over Bessel function decays as e−2

√
2π
√
Ei
√

min(q,q−1). Hence we maximize
the decay by taking q → 1. Comparing this decay with the Cardy growth e2π

√
cEi/3 of

the scalar energy spectrum [28], we find that (4.19) converges if c ≤ 6 min(q, q−1). Setting
q = 1 gives the largest range, c ≤ 6.

An alternative formula for µ0 that gives a bit more insight into the physical meaning
of the vacuum energy contribution is

µ0 = 1
q − 1

(
ν0(q)− qν0(1/q)

)
(4.20)

– 15 –



J
H
E
P
0
5
(
2
0
2
3
)
1
4
0

with

ν0(q) = 2
∑
i∈S

∞∫
√

2Ei/q

dp 2πq

√
p2 − 2Ei/q
e2πp − 1 (4.21)

We (numerically) verified that this expression is well-defined and finite, and equivalent
to formula (4.19), over the parameter regime c ≤ 6 min(q, q−1). We will now present an
independent derivation of the result (4.20)–(4.21) based on duality symmetry.

In equation (4.14) we found that the total vacuum energy contribution V0(λ) introduced
in (3.11) is given by

V0(λ) = −µ0 +
∑
i∈S

∑
n∈Z

πλ
√
n2 + 2Ei/λ−

∫ ∞
−∞
dk π

√
k2+ 2Ei

 (4.22)

The second term on the right can be interpreted as the Casimir energy contribution of all
the spin zero states. The divergent sum over n and integral over k regulate each other
provided we correlate the cut-offs via k2

max = n2
maxλ and then remove the cut-off.

Direct inspection of expression (3.9)–(3.11) for the total grand canonical partition func-
tion shows that it satisfies a Z2 strong-weak coupling duality symmetry that interchanges
the discrete momenta and long string winding quantum numbers m and d and the dimen-
sionless T T̄ coupling λ with 1/λ, provided that the vacuum energy contribution satisfies
the following identity

V0(λ) = λV0(1/λ). (4.23)

We will now determine the constant µ0 by imposing this identity. First we use the Abel-
Plana formula6 to re-express V0(λ) as

V0(λ) = −µ0 − ν0(λ) (4.24)

with ν0(λ) defined in (4.21). Requiring the strong-weak duality symmetry

0 = V0(λ)− λV0(1/λ) = −(1− λ)µ0 −
(
ν0(λ)− λν0(1/λ)

)
(4.25)

reproduces the expression (4.20) with q set equal to λ. The total vacuum energy contribu-
tion can thus be written in a manifestly Z2 duality-symmetric form as follows

V0(λ) = λ

1− λ
(
ν0(λ)− ν0(1/λ)

)
(4.26)

We will discuss the convergence properties of this expression in the concluding section.
6The Abel-Plana formula states that for any function f(t) that is holomorphic for Re(t) ≥ 0

∞∑
n=0

f(n)−
∫ ∞

0
dk f(k) = 1

2f(0) + i
∫ ∞

0
dt
f(it)− f(−it)
e2πt − 1

Setting f(t) = πλ
√
t2 + 2E/λ yields the identity∑

n∈Z

πλ
√
n2 + 2E/λ−

∫ ∞
−∞

dk π
√
k2+ 2E = −2

∫ ∞
√

2E/λ
dp 2πλ

√
p2− 2E/λ
e2πp − 1
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4.3 Spectral properties of the T T̄ -deformed free energy

Besides O(2, 2,Z) T-duality symmetry and the triality between ρ, τ and σ, the Γ2,2 Narain
sum K(ρ, τ, σ) satisfies a number of other remarkable properties. In particular, it satisfies
the following relations

∆σK(ρ, τ, σ) = ∆ρK(ρ, τ, σ) = ∆τK(ρ, τ, σ), (4.27)

where each laplacian acts on the corresponding argument. These relations can be verified
directly from the explicit form of the Narain sum. This property was used in [27] to derive
an explicit formula, given in equation (C.9), for the spectral decomposition of K(ρ, τ, σ)
in terms of eigenfunctions of the three laplacians on the fundamental domain F . Here we
will use the result of [27] to give an alternative definition of the T T̄ -deformed free energy
F (ρ, τ) based on the spectral composition of the seed CFT partition function Zc0(σ). The
spectral function Es and νn are also eigenfunctions of the Hecke operators. The integration
kernel K thus also satisfies the relation

T σj K(ρ, τ, σ) = T ρj K(ρ, τ, σ) = T τj K(ρ, τ, σ) ∀j (4.28)

where each Hecke operator acts on the corresponding modular parameter via (C.4).
To obtain the spectral decomposition of Zc0(σ), we need to find a way to regularize its

divergent overlap integrals with the eigenfunctions of ∆σ on the fundamental domain, the
Eisenstein series Es(σ) and cusp forms νn(τ).7 We will do this via the procedure outlined
above: we will first compute these overlaps for the regulated seed partition function Zc(τ)
with negative central charge c < 0 introduced in equation (4.17). Since Zc(τ) is regular
near the cusp, its overlaps with the spectral functions give a finite result∫

F

d2σ

σ2
2
Zc(σ)Es(σ) = βc(1− s) = Λ(1− s)

Λ(s) βc(s), (4.29)∫
F

d2σ

σ2
2
Zc(σ)νn(σ) = αc,n(νn, νn), (4.30)

with Λ(s) defined in (D.3).8 By construction, both overlaps are finite for c < 0. Hence we
deduce that in this regime Zc(σ) admits the Roelcke-Selberg spectral decomposition

Zc(σ) = εc + 1
4πi

∫
Res= 1

2

ds βc(s)Es(σ) +
∞∑
n=1

αc,nνn(σ). (4.31)

Here εc is related to the vacuum energy µc by via εc = 2µc/vol(F) = 6µc/π. At face value,
this expansion and the coefficients εc, αc,n and βc(s) are only well defined and finite in the
regime c < 0. However, it seems reasonable to assume that these coefficients are analytic
functions of c and can be uniquely analytically continued to the physical value c = c0, even
though Zc0(τ) itself is not square-integrable.

7Appendix C list some properties of the Eisenstein series and cusp forms. For more details see [30].
8Here we assumed that Zc(σ) is an even function of σ1, so it only has overlap with the even cusp forms.

We suppress the + superscript in our notation.
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Combining the integral definition of the T T̄ -deformed free energy at general c

Fc(ρ, τ) = 1
2

∫
F

d2σ

σ2
2
K(σ, ρ, τ)Zc(σ), (4.32)

with the spectral decomposition formula (C.9) of the Γ2,2 Narain partition function
K(ρ, τ, σ), we derive that the T T̄ -deformed free energy associated with the seed parti-
tion function (4.31) has the following spectral decomposition that pairs eigenfunctions of
∆τ with those of ∆ρ

Fc(ρ, τ) = π

6 εc (δ + Ê1(ρ) + Ê1(τ))

+ 1
4πi

∫
C
ds βc(s) Λ(s)Es(ρ)Es(τ) + 4

∑
n

αc,n νn(ρ)νn(τ).
(4.33)

with δ = 3
π (γE + log 4π + 24ζ ′(−1)− 2). The Z2 symmetry between τ and ρ and modular

PSL(2,Z) invariance our now both manifest.
We thus obtain a strikingly simple prescription for associating a T T̄ deformed free

energy to a seed CFT partition function: starting from the spectral decomposition of
Zc(σ), we simply need to replace every mode function of σ by a product of two identical
mode functions of ρ and τ . From the spectral decomposition (4.33) we immediately see
that Fc(ρ, τ) satisfies the property

∆ρFc(ρ, τ) = ∆τFc(ρ, τ). (4.34)

This equation directly follows from the integral definition (4.32) and the property (4.27)
of the kernel K. The analytical continuation of the central charge c to the physical value
c0 will not violate this property. By virtue of the property (4.28) of the Narain kernel K,
the T T̄ -deformed free energy furthermore satisfies

T ρj Fc(ρ, τ) = T τj Fc(ρ, τ) ∀j. (4.35)

5 Conclusion and summary of results

We have introduced an S-duality invariant extension of the T T̄ -deformed symmetric prod-
uct CFT partition function. We presented evidence that this deformation is well defined
for arbitrary seed CFTs with central charge c ≤ 6. The free energy of the extended theory
is defined by replacing the original wrapping number 1 integration kernel (2.4) that defines
the standard T T̄ -deformed partition function with the full Γ2,2 Narain partition sum (2.16)
that includes all wrapping numbers. The partition function obtained via this procedure
can be interpreted as a single-trace T T̄ -deformed partition function of symmetric product
CFT, extended with an extra subsector associated with the zero spin spectrum {Ei, i ∈ S}
of the CFT.

For a given seed CFT with energy and momentum spectrum {(Ei, ji)}, the explicit
formula for the deformed partition function reads as follows

Z(ρ, τ) = e−ρ2V0(λ) ∏
d,m∈Z

∏
i|ji=md

1

1− pd1qm1 e
−2πτ2

√
(d/λ)2+m2+ 2Ei/λ

(5.1)
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with p1 = e2πiρ1 , q1 = e2πiτ1 , and λ = τ2/ρ2. The vacuum energy contribution is given by

V0(λ) = −µ0 − ν0(λ) = λ

1− λ
(
ν0(λ)− ν0(1/λ)

)
(5.2)

ν0(λ) = 2
∑
i∈S

∞∫
√

2Ei/λ

dp 2πλ

√
p2 − 2Ei/λ
e2πp − 1 (5.3)

where µ0 is a theory dependent constant given in equation (4.20). The d > 0 and d < 0
subfactors in (5.1) take the expected form of a deformed symmetric product CFT partition
function, while the remaining d = 0 subfactor represents the partition function of the zero
wrapping sector. The combined formula (5.1) takes the form of the trace over the Hilbert
space of the deformed symmetric product CFT

Z(ρ, τ) = trH
(
e2πiN̂ρe2πi(τ1Ĵ+iτ2Ĥ(λ))) (5.4)

where N̂ counts the order of the symmetric product and Ĵ and Ĥ(λ) denote the momentum
operator and the deformed Hamiltonian. The form of the Hilbert space and the deformed
energy spectrum can be read off from equation (5.1). As described in the previous sections,
this spectrum looks like that of a second quantized string theory with worldsheet theory
given by the product of the seed CFT and a gaussian sigma model with the two-torus with
metric (2.5) as its target space.

This non-zero wrapping factor with d 6= 0 in (5.1) is well defined over the regime c ≤ 6
and λ < 1 in which all deformed energies are real. The zero wrapping factor with d = 0 is
also finite over the same parameter range

Z0(ρ, σ) ≡ e−ρ2V0(λ) ∏
i∈S

∏
n∈Z

1
1− e2πiτ1n−2πτ2

√
n2+2Ei/λ

= efinite (5.5)

A more robust proof that the total partition function is well-defined is obtained by consid-
ering the free energy F (ρ, τ) = logZ(ρ, τ). It splits up as

F (ρ, τ) = F0(ρ, τ) + F+(ρ, τ) + F−(ρ, τ) (5.6)

where the respective terms represent the contribution of zero, positive, and negative wrap-
ping number d. The free energies F± are finite and real in our regime c ≤ 6, λ < 1. The
first term F0(ρ, τ) = logZ0(ρ, τ) requires more careful consideration. We have shown that
it can be written as an infinite sum of Bessel functions as follows

F0(ρ, τ) = µ0ρ2 +
∑
i∈S

∑
(m,n) 6=(0,0)

√
2ρ2τ2Ei
|mτ + n|2

K1

√8π2ρ2|mτ + n|2Ei
τ2

 (5.7)

µ0 =
∑
i∈S

2
√

2Ei
∞∑
m=1

[ 1
m
K1
(
2πm

√
2Ei

)
+ 2π

√
2EiK0(2πm

√
2Ei

)]
(5.8)

We have numerically evaluated this expression for various seed CFTs and found that it
is finite and satisfies a number of remarkable properties listed below. In appendix E, we
explain more details of the numerical tests.
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By virtue of the T -duality symmetry and spectral characteristics of the Narain partition
function, we find that the deformed free energy F (ρ, τ) and partition function Z(ρ, τ)
exhibits all the following symmetries:

• Modular symmetry: F (ρ, τ) = F
(
ρ, aτ+b

cτ+d
)
,

• Mirror symmetry: F (ρ, τ) = F (τ, ρ),

• S-duality symmetry: F (ρ, τ) = F
(aρ+b
cρ+d , τ

)
,

• Spectral symmetry: ∆ρ F (ρ, τ) = ∆τ F (ρ, τ),

• Hecke symmetry: T ρj F (ρ, τ) = T τj F (ρ, τ),

• U-duality symmetry: O(2, 2;Z) ' PSL(2,Z)× PSL(2,Z) o Z2
2

From a mathematical point of view, it remains remarkable statement that one can
associate to any CFT partition function with c ≤ 6 a new deformed free energy and
partition function with all the above properties.

From a physical point of view, the extended O(2, 2;Z) U-duality symmetry follows
from the combination of (i) modular invariance under PSL(2,Z) transformations acting on
the torus modulus τ with (ii) the Z2 mirror symmetry that interchanges complex coupling
ρ with τ . The Z2 mirror symmetry acts on the Hilbert space H of the symmetric product
CFT by interchanging the momentum quantum number m with the long string winding
number d. The mirror symmetry is a manifest property of the final expression (5.1)–(5.3)
for Z(ρ, τ) thanks in particular to the identity V0(λ) = λV0(1/λ).

We end with some comments about the potential physical significance of our results.

Non-perturbative completion. To obtain the duality invariant partition function, we
had to include the second factor in (5.1) given by the partition function of the spinless
particles of mass squared 2Ei/λ, in units of the torus radius. To what extent does adding
this sector amount to a non-perturbative completion of the conventional T T̄ -deformation?
First we note that in the λ to zero limit, all the spin zero particles become infinitely massive
and therefore decouple. More concretely, the free energy F0(ρ, τ) of the extra sector has
a series expansion in inverse powers of λ. Therefore the manifestation of the extra sector
cannot be seen in perturbation theory in λ.

The contribution from the negative-wrapping sectors also has a non-perturbative na-
ture.9 The deformed-energy of negative-wrapping sectors scales for small λ as |d|/λ, so
this sector does not contribute to the perturbative expansion in λ. It would be interest-
ing to see if one can derive the non-perturbative completion of this series by treating the
perturbative part of the T T̄ -deformed partition function as an asymptotic series in λ and
applying resurgence.

9We thank Shota Komatsu for pointing this out to us.
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Eliminating complex energies. It is natural to view the duality symmetry as a gauge
symmetry, i.e. as a true physical identification between systems related via a duality trans-
formation. The duality gauge symmetry has the benefit that it eliminates one of the seem-
ingly pathological features of the T T̄ deformed theory, namely the appearance of complex
energies for strong T T̄ -couplings λ > 6/c. The argument is simple: the mirror symmetry
that interchanges ρ and τ is a strong-weak duality that maps λ = τ2/ρ2 to 1/λ = ρ2/τ2.
Hence it is always possible to go to a duality frame in which λ ≤ 1. This is sufficient to
avoid the appearance of complex energies, as long as c ≤ 6.

This implication of the strong-weak duality property is an indication that our extension
of the T T̄ -deformed CFT for c ≤ 6 may define a UV complete theory. The second quantized
theory given by the sum over all wrapping sectors appears to be better behaved than
the first quantized theory given by an individual wrapping sector. This looks somewhat
coincidental. However, it is somewhat reminiscent of the resolution of the Klein paradox
via the second quantized interpretation of the Dirac equation. Indeed, the appearance of
complex energies in T T̄ -deformed CFT may be telling us that the deformed theory should
not be formulated as the worldsheet of a single string but rather as the collective worldsheet
description of a second quantized string theory. Our results thus provide support to the
proposed interpretation of T T̄ -deformed CFT in terms of the holographic dual of little
string theory [8, 9, 21, 31].

Spectral definition of the T T̄ deformation. In section 4.3, we found that the T T̄ -
deformation can be formulated as a direct map from the spectral decomposition (4.31) of the
seed CFT partition function ZCFT(τ) to the spectral decomposition (4.33) of the deformed
free energy of the symmetric product CFT. In essence, the deformation amounts to the
replacement of the eigenfunctions of the laplacian on the fundamental σ domain by the
product of the same eigenfunctions on the fundamental domains of ρ and τ . This spectral
characterization of the T T̄ -deformed free energy hints at a deeper geometric significance
of our results.

The spectral decomposition of the T T̄ -deformation allows us to also formally average
the (complexified) T T̄ coupling over the fundamental domain H/SL(2,Z). Although this
average diverges for the same reason the moduli space average of the c = 2 Narain partition
function diverges (see [32, 33]), we can formally define an average by reading off the constant
piece in the spectral decomposition.

More explicitly,

〈F (ρ, τ)〉ρ =
1
2
∫
F
d2ρ
ρ2

2

∫
F
d2σ
σ2

2
K(ρ, τ, σ)Z(σ)
π
3

. (5.9)

The integral
∫
F
d2ρ
ρ2

2
K(ρ, τ, σ) diverges, but we define it via its spectral decomposition
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in (C.9) to be Ê1(σ) + Ê1(τ) + 3
π (−2 + γE + 24ζ ′(−1) + log(4π)). We then get

〈F (ρ, τ)〉ρ = 3
2π

∫
F

d2σ

σ2
2

[
Ê1(σ) + Ê1(τ) + 3

π

(
−2 + γE + 24ζ ′(−1) + log(4π)

)]
Z(σ)

= 3
π
µ0

[
Ê1(τ) + 3

π

(
−2 + γE + 24ζ ′(−1) + log(4π)

)]
+ 3

2π

∫
F

d2σ

σ2
2
Ê1(σ)Z(σ)

= −18
π2µ0

[
log
(√

y|η(τ)|2
)]

+ 9
π2µ0(γE − log(4π)) + 3

2π

∫
F

d2σ

σ2
2
Ê1(σ)Z(σ).

(5.10)

Thus we have

e〈F (ρ,τ)〉ρ ∝ y−
9µ0
π2 |η(τ)|−

18µ0
π2 . (5.11)

Wheeler-DeWitt equation. It can be shown that the spectral symmetry equation
(∆ρ − ∆τ )F (ρ, τ) = 0 for the free energy takes the same form as the Wheeler-DeWitt
equation satisfied by the mini-superspace wavefunction in AdS3 gravity, extended by in-
cluding an anti-symmetric B-field, defined on a three manifold given by a spatial two torus
T2 times time. This correspondence is compatible with the proposed holographic interpre-
tation of the T T̄ deformed theory with λ < 0 as the boundary dual of AdS gravity with a
finite radial cut-off. Note, however, that taking λ < 0 reintroduces the property that the
deformed energies become complex and takes us outside of the regime of validity of our
analysis.

More general deformations. Finally, we point out that our S-duality invariant exten-
sion of the T T̄ deformation may be regarded as a specific instantiation of a more general
procedure that generates a family of modular invariants from a seed modular-invariant
partition function.10

Consider the following integral of the partition function over the fundamental domain
of PSL(2,Z)

Z[ϕ](τ) =
∫
F

d2σ

σ2
2
K[ϕ](τ, σ)ZCFT(σ) (5.12)

where the kernel K[ϕ] is given by a sum over PSL(2,Z) images

K[ϕ](τ, σ) =
∑

γ∈PSL(2,Z)
K0[ϕ](τ, γσ). (5.13)

Here the seed K0[ϕ] is a function only of the geodesic distance between the points τ and σ
on the upper half-plane

K0[ϕ](τ, σ) = ϕ

(
|τ − σ̄|2

τ2σ2

)
. (5.14)

The off-shell gravitational path integral of AdS3 Einstein gravity on the Euclidean worm-
hole with the topology of a torus times interval [35, 36] is an example of such a deformation

10This can be thought of as a generalization of the f(H) deformations considered in [34].
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kernel, with ϕ(x) = 1/x. Since the seed kernel K0[ϕ] is invariant under modular trans-
formations that act simultaneously on τ and σ, the deformed partition function defined
by (5.12) is a modular-invariant function of τ , provided that the integral is convergent or
appropriately regularized.
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A Functional determinant via the heat kernel method

In the main text we make use of the heat kernel on the two torus and its relation to the
functional determinant. Suppose we want to compute the free energy

F (τ,M) = −1
2 log

(
det

(
−∆ +M2

))
, (A.1)

of a free single-valued real scalar field φ with action

S[φ] = 1
2

∫
T2
d2x
√
g φ
(
−∆ +M2

)
φ. (A.2)

defined on the two torus with metric (2.5). Assuming that M2 > 0, the partition function
is given in terms of the determinant of the kinetic operator −∆ + M2. This determinant
can be calculated as follows.

The heat kernel K(t, x, y) is defined as the unique solution to the heat equation(
∂

∂t
+ ∆x

)
K0(t, x, y) = 0 (A.3)

with the initial condition K0(0, x, y) = δ(2)(x − y). The one-loop determinant on T2 can
be written in terms of the heat kernel as

− log det
(
−∆ +M2) =

∫ ∞
0

dt

t
e−M

2t
∫
d2x
√
g K0(t, x, x)

= (2π)2ρ2

∫ ∞
0

dt

t
K0(t, x, x) e−M2t.

(A.4)

On R2 ' C, the heat kernel takes the familiar form KR2
0 (t, x, y) = 1

4πt exp
(
− |x−y|

2

4t
)
.

We can compactify R2 to T2 by enforcing periodic boundary conditions via the method of
images: we identify T2 = C/(Z+Z τ) and sum over all Z⊕Z τ images. Using two integers
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(c, d) to label the images, the heat kernel on the torus with metric (2.5) can be written in
terms of a sum

K0(t, x, x) =
∑
c,d∈Z

1
4πt exp

(
−4π2ρ2|d+ cτ |2

4tτ2

)
. (A.5)

Note that to any pair (c, d) except (0, 0) we can associate an element γ in the group
Γ∞\PSL(2,Z). Setting gcd(c, d) = r and c > 0, we can always find an element γ =

( a b

c/rd/r

)
with det γ = 1. The group Γ∞\PSL(2,Z) transforms the complex structure of the torus
τ → γσ. Identifying |d+ cτ |2/τ2 in (A.5) with r2/(γτ)2 we can write the heat kernel on
the torus as a Poincaré series

K0(t, x, x) = 1
4πt + 2

∞∑
r=1

∑
γ∈Γ∞\PSL(2,Z)

1
4πt exp

(
−4π2ρ2r

2

4t(γτ)2

)
. (A.6)

The factor of 2 in front of the sum accounts for the d < 0 terms in the (c, d) summation.

B Functional determinant as a thermal partition function

In this appendix we show how the free energy F (τ,M) = −1
2 log det

(
−∆ +M2) of a massive

scalar field on the two torus can be recast in the form of a quantum mechanical partition
function of the form of a trace over a Hilbert space. We will follow a modified version of
the calculation described in [37] for the case of a massless scalar field.

The set of eigenvalues of −∆ +M2 on a two torus with metric (2.5) are given by

λn,m = |m+ nτ |2

τ2ρ2
+M2 (B.1)

with n,m ∈ Z. We can obtain the functional determinant det
(
−∆ +M2) = ∏

n,m λn,m
through analytic continuation via the meromorphic function G(s) defined as follows

F (τ,M) = 1
2G
′(0), G(s) =

∑
m,n∈Z

1( |m+nτ |2
τ2ρ2

+M2)s (B.2)

Since, due to the sum over all integers m, G(s) is periodic function of nτ1 with unit period,
we can Fourier expand and compute

∑
m

1
( |m+nτ2|2

ρ2τ2
+M2)s

=
∑
`

e2πi`nτ1
∫ 1

0
dy e−2πi`y∑

m

1
( |m+y+inτ2|2

ρ2τ2
+M2)s

=
∑
`

∫ ∞
−∞
dy e2πi`(nτ1−y) 1

( |y+inτ2|2
ρ2τ2

+M2)s

= 1
Γ(s)

∑
`

∫ ∞
−∞
dy

∫ ∞
0
dt ts−1e2πi`(nτ1−y)−t( y

2+n2τ2
2

ρ2τ2
+M2)

= (πρ2τ2)1/2

Γ(s)
∑
`

∫ ∞
0
dt ts−3/2e2πi`nτ1−t(n

2τ2
ρ2

+M2)−π2ρ2τ2`2/t

(B.3)
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The integral for ` = 0 gives (n2 τ2
ρ2

+M2) 1
2−sΓ(s− 1

2). The remaining terms can be evalu-
ated via ∫ ∞

0

dt

t3/2
e−At−B/t =

√
π

B
e−2
√
AB (B.4)

We thus find that as s approaches 0

G(s) = −1− 2πs
∑
n

τ2
√
n2 + ρ2M2

τ2
+ s

∑
`

′∑
n

1
|`|
e

2πi`nτ1−2π|`|τ2
√
n2+ ρ2M2

τ2 (B.5)

This gives as our final result for the free energy (B.2)

F (τ,M) = −
∑
n

πτ2
√
n2+ ρ2M2

τ2
−
∑
n

log

1− e2πinτ1−2πτ2
√
n2+ ρ2M2

τ2

 (B.6)

The associated partition function Z(τ,M) = eF (τ,M) takes the form of a trace over the
Hilbert space of a free scalar field.

Performing a Poisson resummation on the sum over n in the last line in (B.3) and
taking the derivative at s = 0 gives

F (τ,M) = −ρ2

∫ ∞
−∞
dk π

√
k2 +M2 + πρ2

∑
(n,`) 6=(0,0)

∫
dt

t2
e
−tM2−π

2ρ2
tτ2
|n+`τ |2 (B.7)

Via the identification M2 = 2Ei, the discrete sum over n and ` can be recognized as a term
in the Bessel function expression (4.11) for the free energy F0(ρ, σ).

C Spectral decomposition of the Γ2,2 Narain sum

The Eisenstein series Es is the real-analytic modular form defined by the meromorphic
continuation of the following sum

Es(τ) =
∑

γ∈Γ∞\PSL(2,Z)
Im(γτ)s. (C.1)

It is the simultaneous eigenfunction of both the Laplacian ∆σ on the upper-half-plane and
of the Hecke operators Tj with the eigenvalues

∆τEs(τ) = s(1− s)Es(τ), (C.2)

TjEs(τ) = σ2s−1(j)
js−

1
2

Es(τ), (C.3)

where σn(j) = ∑
d|j d

n. Here Tj is defined as

Tjf(τ) = 1√
j

∑
ad=j, d>0
bmod d

f

(
aτ + b

d

)
. (C.4)

The Eisenstein series constitute the continuous eigenspectrum of ∆τ and Tj .
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The cusp form ν±n (τ) are the eigenfunctions of ∆τ associated with the discrete part of
the eigenspectrum. They are also eigenfunctions of the Hecke operators Tj

∆τν
ε
n(τ) =

(1
4 + (Rεn)2

)
νεn(τ) (C.5)

T τj ν
ε
n(τ) = an,εj νεn(τ), (C.6)

where an,εj and Rεn are associated with the Fourier decomposition of the cusp form via

ν+
n (τ) =

∞∑
j=1

an,+j cos (2πjx)√yKiR+
n

(2πjy)

ν−n (τ) =
∞∑
j=1

an,−j sin (2πjx)√yKiR−n (2πjy), (C.7)

where τ = x + iy and Ka(x) is the Bessel-K function. The superscript ε = ± labels the
parity of the cusp forms

ν+(τ) = ν+(−τ̄), ν−(τ) = −ν−(−τ̄), (C.8)

which can be readily seen from the Fourier decompositions (C.7).
Following the analysis in [27], we can perform a spectral decomposition of the c = 2

Narain primary partition function as follows

K(ρ, τ, σ) = α+ Ê1(ρ) + Ê1(τ) + Ê1(σ) + 1
4πi

∫
C
ds

2Λ(s)2

Λ(1−s)Es(ρ)Es(τ)Es(σ)

+ 8
∑
ε=±

∞∑
n=1

δε
νεn(ρ)νεn(τ)νεn(σ)

(νεn, νεn) . (C.9)

The contour C is given by Re s = 1
2 . The remaining functions are defined as Λ(s) ≡

π−sΓ(s)ζ(2s), Ê1 represents the non-singular part of E1, and α is a moduli-independent
constant:

Ê1 ≡ lim
s→1

(
Es−

3
π(s− 1)

)
, α ≡ 3

π
(γE + 3 log(4π) + 48ζ ′(−1)− 4). (C.10)

The ε = ± superscript labels two parities of the cusp forms and we have δ+ = 1, δ− =
−i. In the spectral decomposition expression, the triality symmetry among three moduli
parameters ρ, τ, σ is manifest.

By virtue of its spectral decomposition (C.9), we deduce the K satisfies the identities

∆σK(ρ, τ, σ) = ∆ρK(ρ, τ, σ) = ∆τK(ρ, τ, σ), (C.11)
T σj K(ρ, τ, σ) = T ρj K(ρ, τ, σ) = T τj K(ρ, τ, σ). (C.12)

where each Hecke operator acts on the corresponding modular parameter. The rela-
tions (C.11) can also be verified directly from the explicit form and the triality symmetry
of the Narain sum. The function Ê1 defined in equation (C.10) is not an eigenfunction of
the Laplacian and Hecke operators. Rather, it has an inhomogeneous term

∆σÊ1(σ) = − 3
π

T σj Ê1(σ) = σ1(j)√
j
Ê1(σ) + #, (C.13)
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where # is a σ-independent constant. Combining (C.13) with the fact that T σj 1 = σ1(j)√
j

we obtain (C.12).

D Regularized integral of ZCFT(σ)

In this appendix, we look at the integral of a partition function ZCFT(σ) over the funda-
mental domain F . Motivated by Narain’s family of free boson CFTs, we first look at the
following modified partition function:

ẐCFT(σ, d) ≡ yd/2|η(σ)|2dZCFT(σ). (D.1)

For Narain CFT, when d = c (the central charge), we have ẐCFT(σ, c) as the U(1)c primary-
counting partition function. In order to compute the integral of ẐCFT(σ, c) over F , we
consider the crossing equation for scalar operators for a Narain CFT at central charge c,
found in (3.22) of [29]:

∑
i∈S

e−2πEiy =
Λ
(
c−1

2

)
Λ
(
c
2
) y1−c + εcy

− c2 +
∞∑
k=1

Re
(
δk,cy

− c2 +1− zk2
)

+ y1−c
√
π

∑
i∈S
i 6=vac

∞∑
n=1

b(n)nc−2U

(
−1

2 ,
c

2 ,
2πn2Ei

y

)
e
− 2πn2Ei

y , (D.2)

where S is the set of scaling dimensions for all scalar U(1)c primary operators of our CFT,
and the second line of (D.2) does not include the vacuum operator. Note also that because
we multiplied by |η(σ)|2c in (D.1), the Ei’s in (D.2) do not include the Casimir shift of
− c

12 . The other terms are defined as:

b(n) :=
∑
k|n

kµ(k) Λ(s) := π−sΓ(s)ζ(2s), (D.3)

U is the confluent hypergeometric function of the second kind, µ is the Möbius function, the
constants zk are the nontrivial zeros of the Riemann zeta function (with positive imaginary
part), and δk,c are theory-dependent constants. Finally and most importantly εc is the
(theory-dependent) constant piece in the spectral decomposition:

εc = lim
d→c

∫
F

dxdy

y2
ẐCFT(σ, d)

π/3 , (D.4)

with ẐCFT(σ, d) defined as in (D.1). We find that εc is essentially the integral we want
to compute and it comes back to our original partition function integral when d = 0 as
opposed to d = c. In particular comparing with (4.6)

ε0 = 6µ0
π
. (D.5)

Our main strategy in this section will be to apply a cleverly chosen linear functional to
isolate the term εc as a convergent sum in terms of the scalar operator scaling dimensions
of the theory (i.e. the set S).
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Let us relabel y ≡ t−2 and rewrite (D.2) as

−
∑
i∈S

t2−ce−
2πEi
t2 +

Λ
(
c−1

2

)
Λ
(
c
2
) tc + εct

2 +
∞∑
k=1

Re (δk,ctzk)

+ t2−c√
π

∑
i∈S
i 6=vac

∞∑
n=1

b(n)nc−2U

(
−1

2 ,
c

2 , 2πn
2Eit

2
)
e−2πn2Eit2 = 0. (D.6)

Now let us apply a linear functional to this. Define

Φq(t) ≡
∞∑
n=1

ϕq(nt) =
∞∑
n=1

e−πqn
2t2 . (D.7)

The functional we apply is defined as follows.11

Fq[h(t)] ≡
∫ ∞

0

dt

t
h(t)Φq(t). (D.8)

The reason we choose this functional is that it is designed to kill the sign-indefinite δk,c
terms in the crossing equation. In particular, the first three terms are simple, using (3.32)
of [29]:

F [ts] = 1
2q
− s2 Λ

(
s

2

)
. (D.9)

By design, this causes the terms proportional to tzk to vanish. Finally, following the
discussion in footnote 11 (and the end of Sec 3.3 of [29]), we know the r.h.s. after applying
this functional must be c0 + c1q

−1/2 for some (theory-dependent) constants c0, c1.
After multiplying by √q, we get the following expression after applying the functional

Fk to (D.6):

1
2Λ

(
c−1

2

) (
q

1−c
2 − q

c−1
2
)
−
∑
i∈S
i 6=vac

∞∑
m=1

2
2−c

4 q
c
4m

c−2
2 E

2−c
4

i K c−2
2

(
2πm

√
2qEi

)

+
∑
i∈S
i 6=vac

∞∑
m=1

2
2−c

4 q−
c
4m

c−2
2 E

2−c
4

i K c−2
2

(
2πm

√
2Ei/q

)
= − πεc

12√q + c0q
1/2 + c1, (D.10)

where the function K c−2
2

is a Bessel-K function. The l.h.s. is manifestly anti-invariant
under q ↔ q−1 which forces c1 = 0 and c0 = πεc

12 . Also we note that the first term in (D.10)
equals the limit of the other two terms as Ei → 0 (up to a divergent piece which becomes
q-independent), so we can absorb it in S. We therefore get∑

i∈S

∞∑
m=1

2
2−c

4 m
c−2

2 E
2−c

4
i

(
q−

c
4K c−2

2

(
2πm

√
2Ei/q

)
− q

c
4K c−2

2

(
2πm

√
2qEi

))
= πεc

12
(
q1/2 − q−1/2

)
. (D.11)

11Strictly speaking we need to take a linear combination of the functionals defined here such that both
ϕ(t) and its Fourier transform vanish at t = 0 in order for the functional to make sense. However, this
implies that a single Gaussian for ϕ(t) as in (D.7) can only allow terms proportional to a constant and
q−1/2. See Sec 3.3 of [29] for more detail.
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The above derivation works in the Narain context, with d = c. We can actually
generalize the derivation to generic CFTs, provided the similar crossing equation holds for
scalar operators in the CFT spectrum.

Let us take c = 0 (i.e. d = 0) in (D.11). The equation now looks like:
√

2
q1/2 − q−1/2

∑
i∈S

√
Ei

∞∑
m=1

1
m

(
K1

(
2πm

√
2Ei/q

)
−K1

(
2πm

√
2Eiq

))
= πε0

12 . (D.12)

We find the integral of partition function over F only depends on the scalar spectrum of
theory, which mimics the other term in the zero-wrapping sector that only includes the
spinless particle excitations. Since we still need to integrate over the scalar spectrum, we
need to discuss the convergent criteria of the above expression. The sum over m converges
rapidly, due to the exponential decay of the Bessel functions K1 at largem. At large energy,
however, the convergence is not as obvious due to the growth of the density of states of
the scalar operators. At large Ei, the Bessel functions decay as

∞∑
m=1

1
m

(
K1

(
2πm

√
2Ei/q

)
−K1

(
2πm

√
2Eiq

))
∼ e−2

√
2π
√
Ei
√

min(q,q−1) (D.13)

On the other hand, the Cardy growth of scalars at large energy behaves as [28]

ρscalars(Ei) ∼ e
2π
√

cEi
3 (D.14)

Thus (D.12) converges if

c ≤ 6 min(q, q−1). (D.15)

In the discussion, q was introduced as an auxiliary parameter. So, physical quantities
should be independent of q. Indeed, we numerically checked the identity (D.12) for various
CFTs and various values of q’s that obey (D.15), and the resulting integral is always
numerically q-independent to arbitrarily high precision. This allows us to take the limit
when q approaches 1 to remove the q-dependence. This gives:

ε0 = 12
√

2
π

∑
i∈S

√
Ei

∞∑
m=1

[ 1
m
K1(2πm

√
2Ei) + 2π

√
2EiK0(2πm

√
2Ei)

]
. (D.16)

This expression converges for c ≤ 6.

E More details on numerics

In this appendix we describe in more detail the numerical checks we have performed on
the expression for Z(ρ, τ) given in equations (5.1), (5.7) and (5.8).

The most practically troublesome terms in Z(ρ, τ) are the (finite number of) terms
in S with Ei < 0 (meaning with scaling dimension less than c

12). If Ei < 0, the sums
in (5.7) and (5.8) conditionally converge. Moreover the convergence is very slow. Indeed
for Ei < 0, if we put some large cutoff N in the sum over m,n in (5.7) and the sum over
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m in (5.8), and plot the truncated sums as a function of N , we see a wildly oscillating
function whose envelope slowly decreases with N . In practice we find that the best way to
estimate the final convergent sum is to compute the truncated sums for a large number of
cutoffs, and then average the answers.

For example, let us consider explicitly the c = 1 self-dual free boson (i.e. the SU(2)1
WZW model). The only state with E < 0 is the vacuum, which has E = − 1

12 . The two
slow-converging sums we have to do are:

A(ρ) ≡ i
√

2
3ρ2

∞∑
m=1

[ 1
m
K1

(
iπ
√

2
3m

)
+ iπ

√
2
3K0

(
iπ
√

2
3m

)]

B(ρ, τ) ≡ i
√
ρ2τ2

6
∑

(m,n) 6=(0,0)

1
|mτ + n|

K1

iπ
√

2ρ2|mτ + n|2
3τ2

 . (E.1)

Both sums in (E.1) are conditionally, but not absolutely, convergent. We find that prac-
tically speaking, averaging over different cutoffs gives more numerically accurate answers
for (E.1) than choosing one large cutoff. The remaining terms in (5.8) converge rapidly
and are easy to compute to very high precision.

As a check we have numerically verified the following nontrivial properties for a variety
of CFTs with c ≤ 6:

1. FT T̄ (ρ, τ) is modular invariant in both ρ and τ

2. If ρ, τ ∈ iR+, then FT T̄ (ρ, τ) ∈ R + iπn
2 with n ∈ Z

3. FT T̄ (ρ, τ) = FT T̄ (τ, ρ).
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