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1 Introduction

Over the last decades collider physics has pushed the threshold of precision in experimental
data for particle physics to unprecedented values. Naturally, these results have stimulated
the study of scattering amplitudes, leading to substantial developments in the field over the
last years. In particular, lots of efforts have been put in trying to explain the surprising
simplicity that those observables often show, with the Parke-Taylor formula [1] being the
first of many examples. Computations with hundreds of Feynman diagrams often lead to
results that can be written within a line, suggesting an underlying simplicity that should
be understood. A case in point is the discovery of positive geometries [2–8], that provide a
geometrical interpretation for scattering amplitudes in numerous quantum field theories.

In this new geometric picture, the S-matrix of the four-dimensional N = 4 super
Yang-Mills (sYM) theory is viewed, in the planar limit, as the volume of a mathematical
object whose boundaries encode the physical singularities of the amplitudes. More precisely,
it has been shown that the canonical form of a certain positive geometry, the so called
Amplituhedron, gives the tree-level amplitudes and all-loop integrands for an arbitrary
n-particle scattering process in the planar N = 4 sYM theory [2]. Interestingly, in this new
framework concepts such as locality and unitarity are no longer fundamental principles
to be assumed, but rather they are derived properties. This geometric formulation of
scattering amplitudes has also been applied in other contexts, such as the bi-adjoint φ3

theory [9], cosmology [10] or, as it will be of interest for us, the three-dimensional N = 6
Chern-Simons-matter theory known as ABJM [11–13]. For recent reviews about the study
of amplitudes in terms of positive geometries see [14, 15].

Recently, the authors of [16] proposed a novel way to express the N = 4 sYM am-
plituhedron as a sum over negative geometries. The latter, characterized by a change of
sign in the defining inequalities, naturally give rise to the logarithm of the amplitude: its
integrand at each loop order is simply given by summing over a certain subset of negative
geometries, represented by connected graphs in the pictorial representation of [16].

As is well known, infrared divergences exponentiate in planar Yang-Mills theories. In
particular, in conformal field theories the logarithm of an amplitude has only double poles
1/ε2 in the dimensional regulator D = 4− 2ε (with the coefficient being the cusp anomalous
dimension), while the L-loop amplitude has poles of order 1/ε2L. In the N = 4 sYM
theory there is a naturally related quantity that is completely free of divergences. It arises
when one considers the integration of the L-loop negative geometry over L− 1 of the loop
variables, i.e. leaving one of the loop variables unintegrated [16–25]. Remarkably, this object
is infrared (IR) finite, and all the divergences concentrate on the L-th loop integral. This
can be seen as a consequence of organizing the results as a sum of negative geometries [16].
Moreover, one can show that the result of integrating L− 1 of the loop variables can be
expressed in terms of a function of 3n− 11 conformal cross-ratios. This is the same number
of kinematic variables as for QCD n-point amplitudes. This similarity, together with a
conjectured duality with pure Yang-Mills all-plus helicity-amplitudes [24], motivates further
studies of these finite observables. We will focus on the four-particle case, for which one
gets a function F(z) of a single cross-ratio.
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An exciting outcome of the study of F(z) comes when taking into account the duality
between scattering amplitudes and Wilson loops in N = 4 sYM [26–29]. Interestingly,
this duality allows to recover the L-loop contribution to the cusp anomalous dimension
Γcusp from the (L− 1)-loop term in the perturbative expansion of F(z) [16, 21, 23]. This
prescription has been used to compute the full four-loop contribution to Γcusp both in N = 4
sYM and in QCD, including the first non-planar corrections [23].

Besides of the fact that it is IR-finite, many other interesting properties and results have
been found for F(z). As shown by [16], in N = 4 sYM one can perform a non-perturbative
sum over a particular subset of negative geometries (more precisely, ladder- and tree-type
diagrams), opening the door for a full all-loop computation of F(z). Such results would allow
a comparison with the non-perturbative derivation of Γcusp coming from integrability [30, 31].
Also surprisingly, the leading singularities of these integrated negative geometries enjoy
a (hidden) conformal symmetry [24, 25]. Furthermore, identities relating F(z) to all-plus
amplitudes in pure Yang-Mills theory have been found [24, 25]. Finally, one can also note
that the perturbative expansion of F(z) respects a uniform transcendentality principle [23].

Taking into account the previous considerations, it seems natural to pose the question
of how the above results generalize to other theories, ultimately aiming for a generalization
to QCD. In this regard, the three-dimensional ABJM theory [32] emerges as a reasonable
candidate, given its well-known similarities with N = 4 sYM. Much progress has been
made in understanding the properties of scattering amplitudes in this three-dimensional
case. The four-particle scattering amplitude is known up to three-loops [33–37], and there is
a BDS-like conjecture for the all-loop result [37, 38]. Moreover, even non-planar corrections
have been computed [39, 40]. For n = 6 and n = 8 particles the current frontier is two-
loops [41, 42], and there are one-loop results for scattering processes with arbitrary number
of particles [43]. Furthermore, the Wilson loops/scattering amplitudes duality is believed
to hold for the four-particle case, but has been shown to fail when the number of particles
increases [34, 36, 44, 45]. There is also evidence of dual-superconformal [34, 46–48] and
Yangian symmetry [33, 49].

The geometric formulation of amplitudes in terms of positive geometries was first
extended at tree level to the ABJM theory in [11, 12]. Recently, the authors of [13] proposed
an all-loop projected amplituhedron for ABJM by imposing a symplectic condition on the
amplituhedron of N = 4 sYM. This conjecture has been checked up to L = 5 loops
for the four-particle case. Along the lines of [16], the projected amplituhedron allows
for a decomposition in terms of negative geometries. More importantly, comparing to
the four-dimensional case, in three dimensions a smaller number of negative geometries
contribute to the integrand of the logarithm of the amplitude. More precisely, only those
geometries associated to bipartite graphs contribute, allowing for a significant simplification
in the perturbative expansion of the integrand. We should note that the study of integrated
negative geometries in ABJM is interesting towards an all-loop computation of the ABJM
cusp anomalous dimension [40, 50–52]. Non-perturbative results would clear the way for the
all-loop computation of the interpolating function h(λ) of ABJM [53–61], whose knowledge
is crucial to exploit the results coming from integrability. An all-loop expression for h(λ)
was proposed in [60, 61].
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In this paper we focus on the ABJM theory, and we explicitly perform the (L− 1)-loop
integrations of the four-particle negative geometries for the L ≤ 3 cases, showing that the
integrated results are given by finite and uniform-transcendental polylogarithmic functions.
In an analogous way to the five-particle case of N = 4 sYM [25], we find it convenient
to organize the integrated results in parity-even and -odd terms, which are described by
two functions F(z) and G(z), respectively. As we will see, it is straightforward to show
that only the former contributes to the cusp anomalous dimension Γcusp after the last loop
integration. Furthermore, we use our results to compute the first non-trivial contribution
to Γcusp, finding perfect agreement with the literature [51]. Finally, we discover that the
leading singularities of the integrated results also possess a hidden conformal symmetry, in
a similar manner to what was found in the four-dimensional case [24, 25].

The paper is organized as follows. In section 2 we review the role that negative
geometries play in the construction of integrands in N = 4 sYM and in ABJM, and we
finish with a discussion of how dual conformal invariance constrains the expressions that
come from integrating these geometries. Then, in section 3 we perform, up to two loops,
the explicit integration of the negative geometries of ABJM. In section 4 we discuss how
one can compute the cusp anomalous dimension of ABJM as a consequence of applying a
functional on the integrated negative geometries. In section 5 we turn to the analysis of
the transcendental weight properties of our results. Section 6 is devoted to the symmetry
analysis of the leading singularities that characterize the integrated results. We give our
conclusions in section 7. Finally, there are three appendices that complement the results
discussed in the main body of the paper.

2 Integrands from negative geometries

In this paper we will analyze, within the context of the ABJM theory, the behaviour
of L-loop integrands for the logarithm of the amplitude after performing L − 1 of the
corresponding loop integrations. Therefore, it is instructive to review how one can express
the aforementioned integrands in terms of canonical forms of negative geometries.

Let us consider a D-dimensional gauge theory, with focus on a four-particle scattering
process of particles with momenta pi, 1 ≤ i ≤ 4. To describe the external kinematics, we will
either use dual-space coordinates (i.e. pi = xi+1 − xi with 1 ≤ i ≤ 4) or momentum-twistor
notation [62]. We define

M := A
Atree

, (2.1)

where A is the color-ordered maximally helicity-violating (MHV) scattering amplitude and
Atree is its corresponding tree-level value. We will refer toM as the scattering amplitude,
for simplicity. We define the L-loop integrand IL forM as1

M
∣∣∣∣
L loops

:=

4+L∏
j=5

∫
dDxj
iπD/2

 IL , (2.2)

1The Amplituhedron is defined for integer dimensions, i.e. D = 4 and D = 3 in the N = 4 SYM and
ABJM cases, respectively. When considering the amplitude, an infrared regulator needs to be specified, for
example dimensional regularization. Since we consider finite quantities, considering the integer-dimensional
Amplituhedron integrands is sufficient for our purposes.
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where x5, x6, . . . , x4+L describe the loop variables. Similarly, we take the L-loop integrand
LL for the logarithm of the scattering amplitude to be defined as

logM
∣∣∣∣
L loops

:=

4+L∏
j=5

∫
dDxj
iπD/2

LL . (2.3)

We now turn to the computation of the integrands IL and LL. In order to introduce the
main ideas, let us focus first on the N = 4 sYM theory. There are many ways of obtaining
four-point integrands at high loop orders, including generalized unitarity [63], on-shell
recursion relations [64], soft-collinear consistency conditions [65, 66], and a connection to
correlation functions [67], for example. A conceptual breakthrough was achieved in [2],
where it was proposed that in the N = 4 sYM theory the integrands IL are proportional to
the canonical form of a positive geometry known as the Amplituhedron. To be more precise,
let us take ZIa , a = 1, . . . , 4 to be the four-dimensional momentum-twistors that describe
the external kinematic data of the scattering process, and let us consider the region in
momentum-twistor space described by the constraint

〈1234〉 > 0 , (2.4)

with 〈1234〉 = εIJKLZ
I
1Z

J
2 Z

K
3 Z

L
4 . Moreover, we shall take L lines l5 := AB, l6 := CD,

l7 := EF , . . . , in momentum-twistor space such that for each one of them we impose

〈li12〉 > 0, 〈li23〉 > 0, 〈li34〉 > 0, 〈li14〉 > 0 , (2.5)
〈li13〉 < 0, 〈li24〉 < 0 . (2.6)

Finally, let us demand that each pair of different lines satisfies the mutual positivity
constraint

〈lilj〉 > 0 . (2.7)

Then, the four-particle L-loop MHV Amplituhedron is defined as the set of points in
momentum-twistor space that are subjected to the constraints given in (2.4)–(2.7). One
can associate to the Amplituhedron a unique canonical differential form Ω with logarithmic
singularities on the boundaries of the space. Let us introduce the notation

Ω =
∞∑
L=1

λL ΩL , (2.8)

where λ is the ’t Hooft coupling (we are working on the planar limit). Then, the L-loop
integrand IL for the scattering amplitude is simply given as

IL = nL ΩL , (2.9)

where nL is a normalization factor which we discuss in the appendix B.
In the following it will prove useful to take into account the pictorial representation

introduced in [16] to describe positive geometries. We will use a node to indicate a one-
loop amplituhedron associated to a certain loop variable, i.e. a geometry satisfying the
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constraints (2.4)–(2.6), and a dashed light-blue line to describe a mutual positivity condition
between a pair of loop variables. As an example, the four-loop amplituhedron will be drawn as

(2.10)

As pointed out in [16], it turns out to be very convenient to consider also mutual negativity
conditions between loop variables. That is, constraints given by

〈lilj〉 < 0 , (2.11)

for which we will use thick red lines, e.g.

(2.12)

In order to understand the advantages of using negative geometries for the computation
of integrands, let us introduce the notation

Ω̃ := log Ω , (2.13)

with

Ω̃ =
∞∑
L=1

λL Ω̃L . (2.14)

Then, as described in [16], one can expand Ω̃ in terms of connected negative geometries.
More precisely,

(2.15)

where E(G) is the number of edges of a graph G and L is the corresponding number of
vertices. Therefore,

(2.16)

The integrand LL is obtained from Ω̃L as

LL = ñL Ω̃L . (2.17)

We refer again to the appendix B for the discussion on the computation of the relative
normalizations ñL.

– 5 –



J
H
E
P
0
5
(
2
0
2
3
)
1
1
2

2.1 Projected amplituhedron for the ABJM theory

Following the ideas of [13], we will now discuss how the previous concepts generalize to the
three-dimensional ABJM theory. The four-particle amplituhedron of the ABJM theory can
be obtained from projecting the amplituhedron of the N = 4 sYM theory to three dimensions
by means of a symplectic constraint. More specifically, the corresponding positive geometry
is defined by considering, in addition to the conditions given in (2.4)–(2.7), the constraints

ΣIJZ
I
i Z

J
i+1 = 0 , (2.18)

for the external kinematic data and

ΣIJA
IBJ = 0 , (2.19)

for the loop variables, with Σ being a symplectic matrix given as

Σ =
(

0 ε2×2
ε2×2 0

)
, (2.20)

where ε2×2 is a totally anti-symmetric tensor.
One major simplification occurs in ABJM when considering the expansion of Ω̃L into

negative geometries, namely that only bipartite (connected) graphs are required [13]. The
latter are defined as those graphs where, after assigning an orientation to each edge, each
node is either a sink or a source. Examples of bipartite graphs are

where green nodes represent sources and white nodes correspond to sinks. Taking into
account the above simplification, the expansion (2.16) now becomes

(2.21)

Using (2.21), the canonical forms Ω̃L were computed in [13] up to L = 5. In particular, for
the first three loop orders one gets

(2.22)
with

si := 〈li12〉〈li34〉 , ti := 〈li23〉〈li14〉 , Dij := −〈lilj〉 , (2.23)

c := 〈1234〉 , εi :=
√
〈li13〉〈li24〉〈1234〉 , (2.24)
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and where we are again using the notation l5 := AB, l6 := CD, l7 := EF , . . . , for the
loop lines, with the permutations being over all nonequivalent configurations of these
variables. Let us note that for simplicity of notation we are omitting the d3li factors in the
differential forms.

Finally, as shown in appendix B, the relative normalizations ñL defined in (2.17) are
given by

ñ1 = i

2
√
π
, ñ2 = ñ2

1
2! , ñ3 = ñ3

1
3! . (2.25)

Let us note that in order to get (2.25) we are assuming the standard convention

λ := N

k
(2.26)

for the ’t Hooft coupling of ABJM, with N being the number of colors and k the Chern-
Simons level. In the following we are going to use the differential forms (2.22) along with
the normalizations (2.25) as the starting point for performing the loop integrations.

2.2 Constraints from dual conformal invariance

Before discussing the explicit integration of the negative geometries, let us analyze the
constraints that dual conformal invariance imposes on the integrated expressions. This
symmetry can be understood as a consequence of the duality between scattering amplitudes
and Wilson loops. The latter is conjectured to hold in N = 4 sYM and to partially extend to
the ABJM case [26–29, 34, 36, 44, 45]. Indeed, the dual conformal invariance of scattering
amplitudes is simply the conformal invariance of the Wilson loops in the dual picture. We
will return to the Wilson loops/scattering amplitudes duality in section 4.

We will begin again by reviewing the N = 4 sYM case. In four dimensions, the dual
conformal invariance of the logarithm of the amplitude implies that there exists a function
FL−1 such that [17] 4+L∏

j=6

∫
d4xj
iπ2

LL = x2
13x

2
24

x2
15x

2
25x

2
35x

2
45

FL−1(z)
π2 , (2.27)

where the cross-ratio z, defined as

z = x2
25x

2
45x

2
13

x2
15x

2
35x

2
24
, (2.28)

is the only dual conformally invariant cross-ratio that can be built using the external
kinematic data and the unintegrated loop variable x5. The function FL−1(z) has been
computed in the literature up to L = 4 [20, 21, 23]. Moreover, the above analysis has
also been extended to higher-point scattering processes, in which the integrated results
depend on functions of more than one cross-ratio. In particular, the five-particle case was
studied up to L = 3 [25], while for an arbitrary number of particles the current threshold is
L = 2 [24].

Let us consider now the above ideas within the context of the ABJM theory. Interestingly,
in the three-dimensional case the expression (2.27) is incomplete. To see this, it is convenient
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to use five-dimensional notation to describe the coordinates of the dual space (see for
example [34, 41] and appendix A). One can then see that the most general expression that
one can construct in order to generalize (2.27) to the three-dimensional case is4+L∏

j=6

∫
d3Xj

iπ3/2

LL =
(

X2
13X

2
24

X2
15X

2
25X

2
35X

2
45

) 3
4 FL−1(z)√

π
+ ε(1, 2, 3, 4, 5)
X2

15X
2
25X

2
35X

2
45

GL−1(z)√
π

, (2.29)

where capital letters refer to five-dimensional coordinates and

ε(1, 2, 3, 4, 5) := εµνρσηX
µ
1X

ν
2X

ρ
3X

σ
4X

η
5 . (2.30)

Therefore, when going to three dimensions we have to include in (2.27) an additional
parity-odd term given by a function GL−1(z). This is analogous to what was found in N = 4
sYM for the five-particle case [25]. We will discuss the computation of F(z) and G(z) in
the next section.

3 Perturbative analysis

We will turn now to the explicit L − 1 loop integrations (up to L = 3) of the negative
geometries obtained from the projected amplituhedron for ABJM [13], seeking for the
perturbative expansion of the F and G functions defined in (2.29).

3.1 Tree level

Let us begin by computing the tree-level values of F(z) and G(z). From (2.22) we have

Ω̃1 = 〈1234〉3/2√〈l513〉〈l524〉
〈l512〉〈l523〉〈l534〉〈l514〉 . (3.1)

Using the Schouten identity

〈l513〉〈l524〉 = 〈l512〉〈l534〉+ 〈l523〉〈l514〉 , (3.2)

we can rewrite (3.1) in terms of five-dimensional dual coordinates (for a nice discussion on
that see for example [68]) as follows,

Ω̃1 =

√
X2

13X
2
24 (X2

24X
2
15X

2
35 +X2

13X
2
25X

2
45)

X2
15X

2
25X

2
35X

2
45

. (3.3)

In order to compute F0(z) and G0(z) it is important to note that the integration is over the
three-dimensional Minkowski-space. However, (3.3) was derived within the Amplituhedron
region defined in (2.4)–(2.7), and therefore we need to extend its definition. Indeed, one
can see that naively integrating (3.3) over the whole kinematic space gives a non-zero
result, in contradiction with what is expected for the one-loop four-particle amplitude of
ABJM [48, 69]. This issue can be resolved by taking into account the identity2

ε(1, 2, 3, 4, 5) = 1
4

√
−X2

13X
2
24 (X2

24X
2
15X

2
35 +X2

13X
2
25X

2
45) , (3.4)

2Any possible overall sign ambiguity that could arise when using (3.4) should be absorbed in the sign of
the overall normalization of the amplitude.
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which can be probed to be valid for real values of the dual-coordinates.3 Then, taking into
account the normalization presented in (2.25) and using (3.4) to rewrite (3.3) in terms of
the five-dimensional Levi-Civita tensor we arrive at

L1 = − 2√
π

ε(1, 2, 3, 4, 5)
X2

15X
2
25X

2
35X

2
45
. (3.5)

Therefore, comparing to the definition in (2.29), we conclude

F0(z) = 0 , and G0(z) = −2 . (3.6)

3.2 One loop

As discussed in the previous sections, the integrand L2 that is obtained from the canonical
form Ω̃2 given in (2.22) reads

L2 = c2

4πD56

( 1
s5t6

+ 1
t5s6

)
=

= X2
13X

2
24

4πX2
56

( 1
X2

15X
2
26X

2
35X

2
46

+ 1
X2

16X
2
25X

2
36X

2
45

)
.

(3.7)

To obtain F1(z) and G1(z) we should now perform one of the loop integrations, which we
choose to be the one over X6 (i.e. we take X5 to be the frozen loop variable). This integral
turns out to be a triangle integral with three massive legs. Consequently, using the results
of appendix C, we arrive at∫

d3X6
iπ3/2 L2 = X2

13X
2
24

4π

∫
d3X6
iπ3/2

1
X2

56

( 1
X2

15X
2
26X

2
35X

2
46

+ 1
X2

16X
2
25X

2
36X

2
45

)

= −
√
π

4

(
X2

13X
2
24

X2
15X

2
25X

2
35X

2
45

)3/4(
z1/4 + 1

z1/4

)
.

(3.8)

Therefore, from (2.29) we deduce

F1(z) = −π4

(
z1/4 + 1

z1/4

)
, and G1(z) = 0 . (3.9)

3.3 Two loops

The integrand L3, which can be obtained from (2.22) and (2.25), is

L3 = − i

12π3/2
c2ε6

s5t6s7D56D67
+ (s↔ t) + 2 perms. (3.10)

In order to compute F2 and G2 we will perform two of the loop integrations. We will choose
to integrate over X6 and X7, and again we will keep X5 frozen. Let us begin by considering
the first term of the r.h.s. in (3.10), which is explicitly given by

L(1)
3 = 1

3π3/2
X2

13 ε(1, 2, 3, 4, 6)
X2

15X
2
35X

2
26X

2
46X

2
17X

2
37X

2
56X

2
67
. (3.11)

3Let us note that both sides of eq. (3.4) are complex-valued in the Amplituhedron region. Consequently,
to get the one-loop amplitude one should perform an analytic continuation to the region in which all
dual-coordinates are real-valued.
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First, the integral over X7 is again a triangle integral; therefore, we get

∫
d3X7
iπ3/2 L

(1)
3 = 1

3
X13 ε(1, 2, 3, 4, 6)

X2
15X

2
35X

2
26X

2
46X

2
56X16X36

. (3.12)

We will turn now to the integration over X6. To compute this integral we will make use of
the results derived in appendix C. In particular, we have

∫
d3X6
iπ3/2

ε(1, 2, 3, 4, 6)
X2

26X
2
46X

2
56X16X36

= ε(1, 2, 3, 4, 5)(
X2

15X
2
25X

2
35X

2
45X

2
24
)1/2

H(z)√
πz

, (3.13)

where the weight-two function H(z) takes the form

H(z) =
√

z

1 + z

(
π2 + 2 log

(√
z +
√

1 + z
)

log(4z)

+ Li2
[
−2
(
z +

√
z(1 + z)

)]
− Li2

[
−2
(
z −

√
z(1 + z)

)])
.

(3.14)

Consequently, ∫
d3X6
iπ3/2

∫
d3X7
iπ3/2 L

(1)
3 = 1

3
√
π

ε(1, 2, 3, 4, 5)
X2

15X
2
25X

2
35X

2
45
H(z) . (3.15)

For the X6 ↔ X7 permutation, i.e. for

L(2)
3 := 1

3π3/2
X2

13 ε(1, 2, 3, 4, 7)
X2

15X
2
35X

2
27X

2
47X

2
16X

2
36X

2
57X

2
67
, (3.16)

we similarly get

∫
d3X6
iπ3/2

∫
d3X7
iπ3/2 L

(2)
3 = 1

3
√
π

ε(1, 2, 3, 4, 5)
X2

15X
2
25X

2
35X

2
45
H(z) . (3.17)

Finally, let us consider the X5 ↔ X6 permutation. That is, let us take

L(3)
3 := 1

3π3/2
X2

13 ε(1, 2, 3, 4, 5)
X2

16X
2
36X

2
25X

2
45X

2
17X

2
37X

2
56X

2
67
. (3.18)

We can see that the integrals of L(3)
3 over X6 and X7 are simply two triangle integrals, and

therefore ∫
d3X6
iπ3/2

∫
d3X7
iπ3/2 L

(3)
3 = π3/2

3
ε(1, 2, 3, 4, 5)
X2

15X
2
26X

2
35X

2
45
. (3.19)

Adding the corresponding (s↔ t) terms, we finally get

F2(z) = 0 ,

G2(z) = 2
3

[
H(z) +H

(1
z

)
+ π2

]
. (3.20)
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4 Cusp anomalous dimension

We will discuss now how to obtain the cusp anomalous dimension Γcusp of ABJM from F(z)
and G(z). Let us being then by recalling that Γcusp is defined as [70]

Γcusp = µ
d logZcusp

dµ
, (4.1)

where µ is the renormalization scale of the theory and Zcusp is the renormalization factor
introduced to renormalize the vacuum expectation value of Wilson loops with light-like cusps.

In N = 4 sYM, an all-loop prediction for Γcusp was obtained following integrability
ideas [30]. This result was expressed as a function of an interpolating function h(λ), which
governs the dispersion relation of magnons in the integrability picture [53–61]. At weak
coupling, it was shown that

Γcusp(h) = 4h2 − 4
3π

2h4 + 44
45π

4h6 + . . . . (4.2)

Crucially, in N = 4 sYM the interpolating function was proven to simply be

h(λ) =
√
λ

4π , (4.3)

at all loops [71].
In terms of the N = 4 sYM result, the cusp anomalous dimension of ABJM was

proposed to be [50]

ΓABJM
cusp = 1

4ΓN=4
cusp

∣∣∣∣
hN=4→hABJM

. (4.4)

However, the interpolating function h(λ) of ABJM has proven to be much less trivial than
its N = 4 sYM counterpart. An all-loop proposal was made in [60, 61], giving

λ = sinh(2πh)
2π 3F2

(1
2 ,

1
2 ,

1
2; 1, 3

2;− sinh2(2πh)
)
. (4.5)

Therefore, in the weak-coupling limit we get

Γcusp(λ) = λ2 − π2λ4 + 49π4

30 λ6 + . . . . (4.6)

The above proposal is consistent with the leading-order perturbative result computed in [51].
Wilson loops seem to be intimately related to scattering amplitudes within the context

of the AdS/CFT correspondence. First observed in N = 4 sYM and then partially extended
to ABJM, there is a duality that relates scattering amplitudes and polygonal light-like
Wilson loops [26–29, 34, 36, 44, 45]. To be more specific, let us focus again on a four-
particle MHV scattering process characterized by four points xi in the dual coordinate
space. Moreover, let us consider a tetragonal light-like Wilson loop W4 whose vertices locate
at the xi points. Then, the duality identifies

logM∼ log〈W4〉 , (4.7)
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at the level of the integrands.4 We should note that, while in N = 4 sYM the duality
is believed to hold for arbitrary number of particles, in ABJM the duality has only been
observed for the four-particle case and has been proven to fail for higher numbers of
particles [34, 36, 44, 45].

In order to exploit the Wilson loops/scattering amplitudes duality to relate Γcusp to
negative geometries we should recall that the renormalization theory of light-like Wilson
loops [70] implies

log〈W4〉 = −2
∞∑
L=1

λL Γ(L)
cusp

(Lε)2 +O(1/ε) , (4.8)

where Γ(L)
cusp is the L-loop coefficient of the cusp anomalous dimension. Therefore, we get∫

dDX5
iπD/2

( X2
13X

2
24

X2
15X

2
25X

2
35X

2
45

) 3
4 F(z)√

π
+ ε(1,2,3,4,5)
X2

15X
2
25X

2
35X

2
45

G(z)√
π

=−2
∞∑
L=1

λLΓ(L)
cusp
ε2

+O(1/ε) ,

(4.9)
with D = 3−2ε and where, as in the N = 4 sYM case [21], we have included for dimensional
reasons an L2 factor in the L-loop contribution. Then, after defining

IF [FL−1] :=

− 1
2
√
π

∫
dDX5
iπD/2

(
X2

13X
2
24

X2
15X

2
25X

2
35X

2
45

) 3
4

FL−1(z)


1/ε2 term

, (4.10)

IG [GL−1] :=
[
− 1

2
√
π

∫
dDX5
iπD/2

ε(1, 2, 3, 4, 5)
X2

15X
2
25X

2
35X

2
45
GL−1(z)

]
1/ε2 term

, (4.11)

we have
Γ(L)

cusp = IF [FL−1] + IG [GL−1] . (4.12)

As shown in appendix C, using Feynman parametrization we get

IF [zp] = − 2
√
π Γ
(

3
4 + p

)
Γ
(

3
4 − p

) , (4.13)

IG [zp] = 0 . (4.14)

Therefore, we see that (4.12) together with (4.13) and (4.14) gives us a prescription to
compute Γcusp from the knowledge of F(z). In particular, the results of section 3 allow us
to recover the leading-order contribution to the cusp anomalous dimension of ABJM, i.e.

Γcusp(λ) = λ2 +O(λ4) , (4.15)

in accordance with eq. (4.6).

5 Transcendental weight properties of the results

In this section we discuss the transcendental weight properties of our results, and more
generally of loop corrections in the three-dimensional ABJM theory.

4To be precise one should specify a prescription to compute the integrands. At the amplitude’s side of the
duality the integrand is fixed by using dual-space coordinates and requiring the correct pole structure, while
at the Wilson loop’s side one should use the method of the lagrangian insertions to build the integrand [72].
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5.1 Preliminaries

The appearance of series expansions in the coupling constant λ or in the dimensional
regularization parameter ε is ubiquitous in the context of quantum field theories. In this
framework, the analysis of the transcendental degree properties of the different terms in a
given expansion has proven to be a powerful tool for the study of scattering amplitudes
and Feynman integrals. As an example, the method of canonical differential equations [73]
relies on insight about which loop integrands integrate to uniform transcendental weight
functions. In this section we will turn to the study of the transcendental degree properties
of the results we have presented so far.

Let us begin by recalling that the transcendental weight (also called degree of tran-
scendentality) T of a function f is defined as the number of iterated integrals that are
needed to compute f [73], e.g. T (Lin) = n. Moreover, one can extend the definition of
T to transcendental numbers, i.e. numbers that can not be obtained as the solution of
a polynomial equation with rational coefficients. For example, T (π) = 1 and T (ζn) = n.
A series expansion is said to have uniform degree of transcendentality (often abbreviated
as UT) when all its terms have the same degree T . Moreover, when discussing Laurent
expansions in the dimensional regularization parameter ε, it is natural to assign weight −1
to ε (see [74] for a review).

5.2 Transcendental weight properties of three-dimensional scattering
amplitudes and Feynman integrals in the literature

Scattering amplitudes in N = 4 sYM are conjectured to have uniform transcendental
weight [30, 75–78] (and, as a consequence, the same holds for the cusp anomalous dimension
Γcusp). Furthermore, it has been observed that the leading transcendental weight terms
of Γcusp agree between N = 4 sYM and QCD [79, 80]. The specific weight at a given
loop order L depends on the choice of the effective coupling constant. In N = 4 sYM, a
natural normalization choice for the effective coupling is g2 := g2

YM/(16π2). With that
normalization choice, the L-loop coefficients of scattering amplitudes are observed to have
weight 2L. See [74] for more details.

Similar uniform weight properties of scattering amplitudes and Γcusp have been observed
in ABJM [34, 41–43, 50, 81]. Since the specific weight at each loop order depends on the
choice of effective coupling (and whether its weight is counted or not), let us recall that the
standard choice used in the literature is

λ = N

k
. (5.1)

With the choice (5.1) of the effective coupling, we find that the results presented in the
literature for scattering amplitudes and Wilson loops are consistent with L-loop coefficients
having weight L. This is also the case for the conjectured all-loop formula for the cusp
anomalous dimension (see eq. (4.6)) when multiplied by 1/ε2 (recalling that it appears in
scattering amplitudes in this combination).
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Let us note that we could alternatively use the following effective coupling,

λ̃ = λ√
π
. (5.2)

This would lead to a transcendental weight of 3L/2 at L loops. This may be a natural
choice, as in this case one could say that the weight is D0L/2 at L loops, with D = D0− 2ε,
which then applies both to N = 4 sYM and ABJM.

Ultimately, the transcendental weight properties of amplitudes can be traced back to
properties of Feynman loop integrals. Here we wish to remind readers of what is known,
and to establish what our conventions for loop integrals are. When computing Feynman
integrals, the following measure is commonly used,

dDk

iπD/2 , (5.3)

for each loop integration. This convention has the effect that when switching to Feynman
parametrization there are no explicit factors of π. Of course, when computing QFT
observables the choice of measure cannot be seen in an isolated way, but is related to the
choice of effective coupling, such as eq. (5.1) or eq. (5.2).

It has been observed that with the convention (5.3) the maximal weight of L-loop
Feynman integrals is D0L/2 if D0 is even (again we are taking D = D0 − 2ε). This is in
agreement with [82]. For example, the well-known four-point amplitude in N = 4 SYM is
given by g2 times the following box integral (for D = 4− 2ε),∫

dDk

iπD/2
st

(k − p1)2k2(k + p2)2(k + p2 + p3)2 , (5.4)

which has uniform weight 2, in agreement the statements made above.
Much less is known about integrals in odd space-time dimensions D0. It is interesting

to inspect the integrals computed in this paper, see section 3 and appendix C. Using the
integration measure (5.3) and the alternative convention (5.2) for the coupling constant5 we
find that the one-loop integral (3.8) (see also the triangle integral in (C.1) and the epsilon
integral in (C.3)) and the two-loop integral (3.15) have weight D0L/2. This appears to lie
within the bound proposed by [82].

5.3 Transcendental weight properties of F and G

Let us now turn to our tree-level, one-loop and two-loop results for the functions F and G,
given in eqs. (3.6), (3.9) and (3.20), respectively. Putting them together, we have

F(z) =
∞∑
L=1
FL−1(z)λL , (5.5)

G(z) =
∞∑
L=1
GL−1(z)λL , (5.6)

5With the alternative convention λ̃ = λ√
π
one gets that the normalizations ñL become

n1 = i , n2 = ñ2 = ñ2
1

2! , n3 = ñ3 = ñ3
1

3! .

This change in the normalization has to be taken into account when revisiting the integrals (3.8) and (3.15).
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with

F(z)
λ

= −π4

(
z1/4 + 1

z1/4

)
λ+O

(
λ3
)
, (5.7)

G(z)
λ

= −2 + 2
3

[
H(z) +H

(1
z

)
+ π2

]
λ2 +O

(
λ3
)
. (5.8)

We see that the coefficients of the λL powers have weight L, in agreement with the discussion
of the previous subsection. Equivalently, when using the effective coupling λ̃ from eq. (5.2)
one would find weight 3L/2 at L loops.

Finally, let us comment on the function space we found. This is best analyzed by the
symbol [83], which is an important concept related to a transcendental function. Let us
consider a transcendental function f of weight n whose total derivative can be writen as

df =
∑
i

gi d logωi , (5.9)

where the gi are functions of weight n− 1 and the ωi are rational functions called letters.
The set of all letters of a transcendental function is known as its alphabet. Then, the symbol
of f is defined recursively as

S(f) =
∑
i

S(gi)⊗ ωi . (5.10)

The knowledge of the symbol of a transcendental function, combined with other information,
is often enough to bootstrap the result of the corresponding iterated integral. As an example,
this program has been used to compute several scattering amplitudes in N = 4 sYM [76, 84–
89]. With this into consideration, obtaining the alphabet of the results presented in section 3
could open the door for a bootstrap computation of higher-loop terms.

It is therefore interesting to determine the alphabet of letters of our two-loop functions,
given in eq. (3.14). It can be readily read off using the definitions (5.9) and (5.10). In terms
of the variables z one finds that the letters have a square root dependence. The latter can
be removed by changing variables as follows,

z = 4q2

(1− q2)2 , (5.11)

with 0 < q < 1. Using this variable, we find the symbol

S
(√

z

1 + z
H(z)

)
= q2

(1− q2)2 ⊗
1 + q

1− q . (5.12)

In other words, the letters that compose the alphabet at two loops are

~ω = {q, 1− q, 1 + q} . (5.13)

6 Conformal invariance of leading singularities

In this section we study the symmetry properties of the leading singularities that characterize
the integrated negative geometries of ABJM, as previously explored in [24, 25] for the
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N = 4 sYM case. We begin our analysis by a short review of the four-dimensional results,
and then we turn to the discussion of the conformal invariance of the three-dimensional
leading singularities. To that end, we discuss separately the parity-even and -odd terms
that appear in (2.29) after the integration of the negative geometries.

6.1 Review of four-dimensional results

Let us start by reviewing the hidden conformal symmetry that was observed in N = 4 sYM
at tree level. In this case one has

L1 = − x2
13x

2
24

x2
15x

2
25x

2
35x

2
45
. (6.1)

More generally, in the generic L-loop case one can write4+L∏
j=6

∫
d4xj
iπ2

LL =
k∑
i=1

RL−1,i TL−1,i , (6.2)

where k is some integer, TL−1,i are transcendental functions, and RL−1,i are rational
functions known as leading singularities. As an example, when applying the definition (6.2)
to (6.1) we get

R0 = x2
13x

2
24

x2
15x

2
25x

2
35x

2
45
, and T0 = −1 . (6.3)

At this point it is useful to take advantage of the conformal covariance of the l.h.s.
of (6.2), which allows us to go to the frame at which x5 → ∞. The convenience of this
frame relies on the fact that now we can write all functions using four-particle kinematic
notation. To be more precise, let us define the leading singularities rL,i in the x5 → ∞
frame as

rL,i := lim
x5→∞

(x2
5)4RL,i . (6.4)

Then, at tree level we get
r0 = x2

13x
2
24 = s t , (6.5)

where s := (p1 + p2)2 = x2
13 and t := (p1 + p4)2 = x2

24 are the well-known Mandelstam
variables. Moreover, in terms of four-dimensional spinor-helicity variables we have

r0 = 〈12〉〈14〉[12][14] , (6.6)

where 〈ij〉 = εab λ
a
i λ

b
j and [ij] = εȧḃ λ̃

ȧ
i λ̃

ḃ
j , and with the spinor-helicity variables λa and λ̃ȧ

being defined as
paȧ = pµ(σµ)aȧ = λaλ̃ȧ . (6.7)

Now, in order to discuss the conformal invariance of the leading singularities defined
above let us recall that in four-particle kinematics the generator of special conformal
transformations is written as

Kaȧ =
4∑
i=1

∂2

∂λa∂λ̃ȧ
. (6.8)
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Therefore, we can see that the leading singularity (6.6) is not invariant under special
conformal transformations. Instead, as observed in [24], in order to get a conformally
invariant quantity one should multiply the leading singularity by the Parke-Taylor factor
PT, defined as

PT = 1
〈12〉〈23〉〈34〉〈41〉 . (6.9)

That is, when normalizing the leading singularity r0 as

r̂0 := PT r0 = [12][41]
〈23〉〈34〉 , (6.10)

one gets a conformally invariant function. Finally, we should note that, as shown in [24],
these results generalize to higher-point tree-level leading singularities.

6.2 Leading singularities of parity-even terms

In order to generalize the above results to the ABJM case, let us first review how the
conformal generators look when written in terms of three-dimensional kinematic variables.
First, let us introduce three-dimensional spinor-helicity variables as

pab = λaλb , (6.11)

with
pab = (σµ)abpµ =

(
p0 − p1 p2

p2 p0 + p1

)
. (6.12)

Moreover, let us define the Mandelstam variables sij as

sij := (pi + pj)2 = 〈ij〉2 . (6.13)

Then, one can write the conformal generators of the one-particle representation of the
osp(6|4) superalgebra of ABJM [33] as

P ab = λaλb , Lab = λa∂b −
1
2δ

a
bλ

c∂c ,

Kab = ∂a∂b , D = 1
2λ

a∂a + 1
2 ,

were Lab are the generators of rotations, D is the dilatation operator, and Kab is the
generator of special conformal transformations. As for multi-particle representations, one
can construct the generators by adding up the corresponding single-particle operators. In
particular, for the four-particle case the three-dimensional generalization of (6.8) reads

Kab =
4∑
i=1

∂ia∂
i
b . (6.14)

We can turn now to the symmetry analysis of the three-dimensional leading singularities.
We should recall that in (2.29) we found that in ABJM the result of performing L − 1
loop integrations over the L-loop integrand LL can be separated into parity-even and -odd
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terms. In order to discuss the conformal properties of the integrated geometries, we will
find instructive to study those terms separately.

Let us begin by considering the parity-even terms Pe. In section 3 we found that these
terms were given by

Pe
λ

= −
√
π

4

(
X2

13X
2
24

X2
15X

2
25X

2
35X

2
45

)3/4(
z1/4 + 1

z1/4

)
λ+O(λ3) . (6.15)

Therefore, at one-loop order the leading singularities are

Re,1 =
(

X2
13X

2
24

X2
15X

2
25X

2
35X

2
45

)3/4

z1/4 , and Re,2 =
(

X2
13X

2
24

X2
15X

2
25X

2
35X

2
45

)3/4 1
z1/4 .

As in the N = 4 sYM case, we will take the x5 →∞ limit and we will define

re,i := lim
x5→∞

(x2
5)3Re,i , (6.16)

such that
re,1 = s

√
t , and re,2 = t

√
s .

When going to spinor-helicity notation we have to be careful with the sign that comes from
taking the square root in (6.13). However, given that a constant overall sign in the leading
singularities is not important when discussing their symmetry properties, from now on
we will ignore it, simply assuming a plus sign. We remind the reader that the sign could
be different depending on the kinematic region, and therefore our conclusions regarding
conformal invariance will only be valid locally. Then, we can write

re,1 = 〈12〉2〈14〉 , and re,2 = 〈12〉〈14〉2 . (6.17)

As a first test, let us consider what happens when we multiply (6.17) by the Parke-Taylor
factor given in (6.9). We get

PT re,1 = 〈12〉
〈23〉〈34〉〈14〉 , and PT re,2 = 〈14〉

〈12〉〈23〉〈34〉 , (6.18)

which are not invariant under the action of the special conformal generators given in (6.14).
In order to understand why (6.18) fails to be conformally invariant we should recall in
N = 4 sYM the Parke-Taylor factor appears within the tree-level amplitudes as

AN=4 sYM
4 = PT δ(4)(P ) δ(8)(Q) . (6.19)

Comparing with tree-level amplitudes in ABJM, which are given by [33]

AABJM
4 = −δ

(3)(P ) δ(6)(Q)
〈12〉〈14〉 , (6.20)

we find natural to define a three-dimensional Parke-Taylor factor as

PT(3) := 1
〈12〉〈14〉 , (6.21)
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and to normalize the three-dimensional leading singularities as

r̂ = PT(3) r . (6.22)

Indeed, with this normalization we get

r̂e,1 =
√
s = 〈12〉 , and r̂e,2 =

√
t = 〈14〉 , (6.23)

which are invariant under the generators (6.14) of special conformal transformations. There-
fore, we conclude that the one-loop leading singularities of the parity-even terms of (2.29)
become conformally invariant when normalized by the three-dimensional Parke-Taylor
factor (6.21) and when evaluated in the x5 →∞ frame.

6.3 Leading singularities of parity-odd terms

Let us turn now to the study of the parity-odd terms Po of (2.29). In order to analyze the
conformal invariance of their leading singularities, we must identify first how to take the
x5 →∞ limit in expressions that include contractions ε(1, 2, 3, 4, 5) with the five-dimensional
Levi-Civita tensor. To that end, it is instructive to recall the identity

ε(1, 2, 3, 4, 5)2 = −x
2
13x

2
24

16 (x2
24x

2
15x

2
35 + x2

13x
2
25x

2
45) , (6.24)

which can be found in the discussion of appendix A. As in the previous section, we will
ignore the sign ambiguity that comes from taking square roots. Our equalities should be
understood up to a possible overall sign, and our conclusions about symmetry invariance
will only be valid locally. Then, we get6

lim
x5→∞

(
x2

5

)−1
ε(1, 2, 3, 4, 5) = 1

4

√
−st(s+ t) . (6.25)

Having discussed how to correctly take the x5 →∞ limit, we can now safely turn to
the analysis of the symmetry properties of the parity-odd terms Po. From (5.8) we have

Po
λ

= ε(1, 2, 3, 4, 5)√
πX2

15X
2
25X

2
35X

2
45

[
−2 + 2

3

(
H(z) +H

(1
z

)
+ π2

)
λ2
]

+O(λ3) . (6.26)

Then, up to the loop order we have studied we get that the leading singularities are

Ro,1 = 4 ε(1, 2, 3, 4, 5)
X2

15X
2
25X

2
35X

2
45
,

Ro,2 = Ro,1

√
− z

1 + z
,

Ro,3 = Ro,1

√
− 1

1 + z
.

6It is interesting to note that (6.25) can also be obtain from the contraction

ε(1, 2, 3, 4, I) = 1
2
√
−st(s+ t) ,

where I = (1, 0,~0) corresponds to a point in infinity [41]. That is, we can alternatively write

lim
x5→∞

(
x2

5
)−1

ε(1, 2, 3, 4, 5) = 1
2 ε(1, 2, 3, 4, I) .
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Therefore, in the x5 →∞ we get

ro,1 =
√
−st(s+ t) ,

ro,2 = s
√
t ,

ro,3 = t
√
s ,

(6.27)

and, after normalizing with the three-dimensional Parke-Taylor factor, we have

r̂o,1 =
√
−s− t = 〈13〉 ,

r̂o,2 =
√
s = 〈12〉 ,

r̂o,3 =
√
t = 〈14〉 ,

(6.28)

We see that the expressions in (6.28) are conformally invariant, in a similar way to what
was observed for the parity-even terms.

7 Conclusions

In this paper we have studied, for the three-dimensional N = 6 Chern-Simons-matter
(ABJM) theory, the result of performing L− 1 loop integrations over the L-loop integrand
of the logarithm of the four-particle scattering amplitude. We have used the negative
geometries that come from the projected amplituhedron for the ABJM theory [13] as the
starting point for constructing the integrands. We have found that the dual conformal
symmetry of the amplitudes allows for the presence of both parity-even and -odd terms in
the integrated results, in a similar way to what was described for the five-particle case in
the N = 4 super Yang-Mills (sYM) theory [25]. We have performed the explicit integrations
up to L = 3, and we have found that the results are given by infrared-finite quantities with
uniform degree of transcendentality, as it was also observed for the analogous quantities
in N = 4 sYM. Moreover, we have constructed functionals that allow one to compute the
ABJM cusp anomalous dimension Γcusp using the integrated negative geometries as the
input, and by doing so we have recovered the known first non-trivial order of Γcusp [50, 51].
Finally, we have discussed the symmetry properties of the leading singularities associated to
the integrated results. We have found that the leading singularities have a hidden conformal
symmetry (in the frame in which the unintegrated loop variable goes to infinity, and after
normalization with a three-dimensional generalization of the Parke-Taylor factor), extending
the four-dimensional analysis of [24, 25].

There are a number of exciting open questions. In the N = 4 super Yang-Mills theory, a
useful dual perspective is provided by the duality between scattering amplitudes and Wilson
loops. This allows one to think of loop integrands as derivatives of Wilson loop correlators
w.r.t. the coupling. More precisely, the derivatives produce Lagrangian insertions, and it is
natural to consider

〈W4 L(x5)〉
〈W4〉

, (7.1)

where W4 is the dual polygonal Wilson loop, L is the Lagrangian of the theory, and x5 is the
unintegrated loop variable. It would be desirable to extend this to the ABJM case. However,
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an immediate difficulty is that the Lagrangian in ABJM (and in Chern-Simons theories
in general) is not gauge invariant, as the variation of the action includes a non-trivial
topological term.

Another interesting direction that arises from our results is the question about their
generalization to scattering processes with higher numbers of particles. To that end, one
could expect to apply the idea of the projected amplituhedron proposed in [13] to compute
the corresponding negative geometries for higher multiplicities, to then study the properties
of the integrated results as we have performed at four points. Furthermore, in view of the
Grassmanian formulas proposed for the ABJM theory [49, 90, 91], it would be interesting
to analyze the symmetry properties of the leading singularities in terms of a Grassmanian
formulation, as it was done in [24] for the N = 4 sYM case.

Considering the relation between integrated negative geometries in N = 4 sYM and
all-plus amplitudes in the pure Yang Mills theory [24, 25], one intriguing question to address
is a possible generalization of this result to the ABJM case. In this regard, one should take
into account that an analogous relation between ABJM and the pure Chern-Simons theory
does not seem possible, as the latter is a topological theory and therefore has a vanishing
S-matrix. However, it would be interesting to investigate a possible relation between ABJM
and less supersymmetric Chern-Simons-matter theories.

Furthermore, it would be interesting to carry on the integrations to higher loop orders.
For L ≥ 4 it seems to be far less trivial how to perform the integrations by first principles.
However, many useful methods have been developed over the last years to overcome the
difficulties that arise when computing Feynman integrals. In particular, the method of
differential equations [73] appears as a promising tool to solve the L = 4 case, which in turn
would allow to reproduce the next-to-leading non-trivial order of the ABJM cusp anomalous
dimension.

Finally, an interesting problem to investigate is whether one can sum infinite series
of negative-geometry diagrams. This question was addressed in D = 4 in [16], where the
all-loop sum of ladder and tree diagrams was performed. The crucial observation used
in [16] is that in D = 4 the Laplace operator � = ∂µ∂µ acts on the propagator as

�
1
x2 = −4iπ2 δ(4)(x) . (7.2)

This allows one to recursively relate diagrams that differ only on one loop integration, and
ends up giving second-order differential equations for Fladder(z) and Ftree(z). It is useful to
note that eq. (7.2) naturally arises in Fourier space, as in this context the four-dimensional
propagator is simply 1/k2. Unfortunately, in D = 3 there is a mismatch of dimensions in
momentum space, which prevents us from using the Laplace equation trick. Nevertheless,
we find it likely that the finite integrals have other special properties that may lead to
simplifications. It would be interesting to work further in this direction. An all-loop sum
of negative-geometry diagrams could be a first step towards obtaining non-perturbative
results for the cusp anomalous dimension Γcusp. Moreover, it could set the stage for a non-
perturbative computation of the interpolating function h(λ), for which all-loop proposals
exist [60, 61].
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A Five-dimensional notation

When working with three-dimensional dual-coordinates it turns out useful to consider the
embedding of the three-dimensional Minkowski space into the five-dimensional projective
light-cone. One of the main advantages of this parametrization lies in the fact it allows to
write three-dimensional dual-conformal invariants simply as five-dimensional expressions
that respect Lorentz and scale invariance.

To be more precise, let us consider a five-dimensional Minkowski space with
(−,−,+,+,+) signature and with coordinates (X1, X2, X3, X4, X5). Then the light-cone
is defined by the constraint

− (X1)2 − (X2)2 + (X3)2 + (X4)2 + (X5)2 = 0 . (A.1)

Let us note that the constraint (A.1) is invariant under a rescaling of the coordinates, and
therefore defines a projective space with 3 degrees of freedom, as expected. It is useful to
switch to light-cone coordinates (X+, X−, X2, X4, X5), with X+ and X− given by

X+ = X1 +X3
√

2
, and X− = X1 −X3

√
2

, (A.2)

so that (A.1) becomes

− 2X+X− − (X2)2 + (X4)2 + (X5)2 = 0 . (A.3)

The embedding of the three-dimensional Minkowski space7 with coordinates (x0, x1, x2)
into the five-dimensional space can be defined as

(X+, X−, X2, X4, X5) =
(
xµxµ

2 , 1, x0, x1, x2
)
. (A.4)

7We are using the (−,+,+) signature for the three-dimensional Minkowski space.
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It is straightforward then to check that (A.4) satisfies (A.3). Moreover, under this
parametrization we have

(Xi −Xj)2 = −2Xi.Xj = (xi − xj)2 , (A.5)

where xi and xj are points in the three-dimensional space and Xi and Xj are their
corresponding images under the mapping (A.4).

In order to simplify notation, we will write the contraction of the dual coordinates with
the five-dimensional Levi-Civita tensor as

ε(1, 2, 3, 4, 5) := εµνρσηX
µ
1X

ν
2X

ρ
3X

σ
4X

η
5 . (A.6)

Let us recall some properties of (A.6). In the first place, one can rewrite (A.6) in terms of
three-dimensional dual-coordinates as [34]

ε(1, 2, 3, 4, 5) = 1
2
(
x2

51εµνρx
µ
21x

ν
31x

ρ
41 + x2

31εµνρx
µ
51x

ν
21x

ρ
41

)
. (A.7)

Also, the product of two contractions is given by

ε(1, 2, 3, 4, 5) ε(1, 2, 3, 4, 6) = −X
4
13X

4
24

32

(
X2

15X
2
36 +X2

16X
2
35

X2
13

+ X2
25X

2
46 +X2

26X
2
45

X2
24

−X2
56

)
.

(A.8)
In particular, we have

ε(1, 2, 3, 4, 5)2 = −X
2
13X

2
24

16 (X2
24X

2
15X

2
35 +X2

13X
2
25X

2
45) . (A.9)

Finally, following [41] we can define a measure on the five-dimensional light-cone as

d3X :=
∫

d5X

Vol[GL(1)] δ(X
2) , (A.10)

where the factor δ(X2) is included to satisfy the constraint given in (A.1), while the
denominator Vol[GL(1)] eliminates the redundancy coming from the projective invariance
of the light-cone. Therefore, we get ∫

d3X ≡
∫
d3x . (A.11)

B Normalization of negative geometries

As shown in (2.9) and (2.17), there are relative normalizations nL and ñL between the
integrands IL and LL and the canonical forms ΩL and Ω̃L. We will discuss their computation
in this section.

As a first step, we should note that the definitions (2.2) and (2.3) imply

I1 = L1 , (B.1)

I2 = L2 + 1
2L

2
1 , (B.2)

I3 = L3 + L2 L1 + 1
6L

3
1 . (B.3)
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On the other hand, from (2.16) we get

Ω1 = Ω̃1 , (B.4)
Ω2 = Ω̃2 + Ω̃2

1 , (B.5)
Ω3 = Ω̃3 + 3 Ω̃2Ω̃1 + Ω̃3

1 . (B.6)

Therefore, using the definitions (2.9) and (2.17) and the expansions (B.1)–(B.6) we have

L1 = n1 Ω̃1 , (B.7)

L2 = n2Ω̃2 +
(
n2 −

n2
1

2

)
Ω̃2

1 , (B.8)

L3 = n3Ω̃3 + Ω̃1 Ω̃2(3n3 − n2n1) + Ω̃3
1

(
n3 − n2n1 + n3

1
3

)
. (B.9)

To fix the values of the nL coefficients we will follow the ideas of [65]. These authors used
the fact that the integrands LL in planar N = 4 sYM should behave as O(1/δ) in the limit

〈l512〉 ∼ δ , and 〈l523〉 ∼ δ , (B.10)

while all other brackets remain non-vanishing. This property makes sure that infrared
divergences exponentiate (after integration). A similar analysis can be done in the ABJM
case. Therefore, noticing that (2.22) implies

Ω̃L ∼ O(1/δ) for 1 ≤ L ≤ 3 , (B.11)

in the limit (B.10), and demanding the same behaviour for the l.h.s. of (B.7)–(B.9), we get

n1 = ñ1 , n2 = ñ2 = ñ2
1

2! , n3 = ñ3 = ñ3
1

3! . (B.12)

Finally, comparing the explicit formulas for I1 and I2 given in [34, 45] to the expressions
for Ω1 and Ω2 obtained from the results of [13] we get

ñ1 = i

2
√
π
. (B.13)

C Useful integrals

We present here several useful integrals for computing the perturbative results of section 3,
as well as the integrals that give us the functionals IF and IG in section 4.

C.1 Triangle integral

Let us begin with a triangle integral in three dimensions and with three massive legs. This
integral first appears in the one-loop analysis in (3.8), and it is explicitly given by

T :=
∫
d3X6
iπ3/2

1
X2

26X
2
46X

2
56
. (C.1)
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Using the standard Feynman parametrization one gets

T = π3/2√
X2

25X
2
45X

2
24

. (C.2)

It is interesting to note that the functional form of the result (C.2) can also be obtained
from noticing that the integral (C.1) has dual conformal invariance.

C.2 Five-leg integral with an epsilon numerator

Let us consider now the integral

E :=
∫
d3X6
iπ3/2

ε(1, 2, 3, 4, 6)
X2

26X
2
46X

2
56X16X36

, (C.3)

which shows up at the two-loop computation in (3.13). Introducing Feynman parameters,
we have

E = εµνρσηX
µ
1X

ν
2X

ρ
3X

σ
4

πVol[GL(1)]

( 5∏
i=1

∫ ∞
0

dαi

)
(α1α3)−1/2 ∂ηY

[∫
d3X6
iπ3/2

1
(−2Y.X6)3

]
, (C.4)

where we have defined

Y :=
5∑
i=1

αiXi , (C.5)

and we have used (A.5). Then, performing the space-time integral we have

E = 3
4
√
πVol[GL(1)]

( 5∏
i=1

∫ ∞
0

dαi

)
(α1α3)−1/2 ε(1, 2, 3, 4, Y )

(−Y 2)
5
2

. (C.6)

At this point is useful to define

βi := αiX
2
i5 for i = 1, . . . , 4 , (C.7)

and to mod out the GL(1) invariance by setting

4∑
i=1

βi = 1 . (C.8)

Then, performing the integral over α5 we get

E = ε(1,2,3,4,5)
√
π
(
X2

15X
2
35
)1/2

X2
25X

2
45

( 4∏
i=1

∫ ∞
0

dβi

)
δ

( 4∑
i=1

βi−1
)

(β1β3)−1/2(
β1β3

X2
13

X2
15X

2
35

+β2β4
X2

24
X2

25X
2
45

) 1
2
.

(C.9)
The number of remaining integrals can be further simplified by defining

β1 := γ1γ2 , β2 := γ1(1− γ2) ,
β3 := (1− γ1)γ3 , β4 := (1− γ1)(1− γ3) .

(C.10)
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Let us note that the constraint (C.8) is trivially satisfied by the γ’s. In terms of these
variables we get

E = ε(1, 2, 3, 4, 5)(
X2

15X
2
25X

2
35X

2
45X

2
24
)1/2

H(z)√
π z

, (C.11)

with
H(z) :=

√
z

∫ 1

0
dγ2

∫ 1

0
dγ3

(γ2γ3)−1/2

[γ2γ3z + (1− γ2)(1− γ3)]
1
2
. (C.12)

Let us focus on the integral (C.12), which as we shall see can be solved by iterating Feynman
parametrizations. Making the change of variables

γ2 →
1

1 + γ2
, γ3 →

γ3
1 + γ3

, (C.13)

and introducing Feynman parameters one gets

H(z) =
√
z

π

( 3∏
i=1

∫ ∞
0

dηi

)
1

√
η3 (η1 + η2)(η1 + 1)(η2 + η3 + z) . (C.14)

Moreover, taking
η3 → η2

3 , (C.15)

and making a further Feynman parametrization we have

H(z) =
∫ ∞

0
dν1

∫ ∞
0

dν2

√
z

(ν1 + ν2)(ν1 + 1)
√
ν2 + z

. (C.16)

Finally, defining
θ :=

√
ν2 + z , (C.17)

and integrating over θ we arrive at

H(z) =
√

z

1 + z

(
π2 + 2 log

(√
z +
√

1 + z
)

log(4z)

+ Li2
[
−2
(
z +

√
z(1 + z)

)]
− Li2

[
−2
(
z −

√
z(1 + z)

)])
.

(C.18)

C.3 IF functional

Let us consider the integral that appears in the definition (4.10) of the IF functional, i.e.

IF [zp] ∼ − 1
2
√
π

∫
dDX5
iπD/2

(
X2

13X
2
24

X2
15X

2
25X

2
35X

2
45

) 3
4

zp , (C.19)

with p ∈ Z, D = 3− 2ε, and where to simplify notation we have chosen to use the symbol
∼ to indicate that we are only retaining the leading 1/ε2 divergence. Using Feynman
parametrization we get

IF [zp]∼− X
3/2+2p
13 X

3/2−2p
24

√
πΓ
(

3
4 +p

)2
Γ
(

3
4−p

)2
1

Vol[GL(1)]

( 4∏
i=1

∫ ∞
0

dαi

)

×
∫
dDX5
iπD/2

(α1α3)−
1
4 +p(α2α4)−

1
4−p

(−2X5.W )3 ,
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with

W :=
4∑
i=1

αiXi . (C.20)

Working as with the E integral discussed in the previous section we arrive at

IF [zp] ∼ −
Γ
(

3
2 + ε

)
Γ(−ε)2

2
√
π Γ
(

3
4 + p

)2
Γ
(

3
4 − p

)2
Γ(−2ε)

×
∫ 1

0
dγ2

∫ 1

0
dγ3

(γ2γ3)−
1
4 +p[(1− γ2)(1− γ3)]−

1
4−p

[γ2γ3 + (1− γ2)(1− γ3)]3/2+ε .

At this point is useful to use the Mellin-Barnes formula, which allows us to write

IF [zp] ∼ − 1

2
√
π Γ
(

3
4 + p

)2
Γ
(

3
4 − p

)2
Γ(−2ε)

×
∫ ζ+i∞

ζ−i∞

dz

2πi Γ
(
z + 3

2 + ε

)
Γ(−z)Γ2

(3
4 + p+ z

)
Γ2
(
−3

4 − p− z − ε
)
,

(C.21)

with
− 3

4 − p < ζ < −3
4 − p− ε . (C.22)

To compute the leading divergence of (C.21) we have chosen to follow the method described
in [93], which was later automatized in a Mathematica package by [94]. Then, we finally get

IF [zp] = − 2
√
π Γ
(

3
4 + p

)
Γ
(

3
4 − p

) . (C.23)

C.4 IG functional

Finally, let us focus now on the integral that defines the IG functional in (4.11). That is,
we will consider

IG [zp] ∼ − 1
2
√
π

∫
dDX5
iπD/2

ε(1, 2, 3, 4, 5)
X2

15X
2
25X

2
35X

2
45
zp , (C.24)

where again we are using the symbol ∼ to indicate that we are only keeping the 1/ε2

contribution. Introducing Feynman parameters we get

IG [zp] ∼ − X2p
13X

−2p
24 εµνρσηX

µ
1X

ν
2X

ρ
3X

σ
4

2
√
π Γ2(1 + p) Γ2(1− p)Vol[GL(1)]

×
( 4∏
i=1

∫ ∞
0

dαi

)(
α1α3
α2α4

)p
∂ηW

[∫
dDX5
iπD/2

1
(−2X5.W )3

]
,

where W was defined in (C.20). The integral

εµνρσηX
µ
1X

ν
2X

ρ
3X

σ
4 ∂

η
W

[∫
dDX5
iπD/2

1
(−2X5.W )3

]
, (C.25)

was solved in [34, 41] using a regularization scheme that allows one to dimensionally regularize
the integral without losing the projective invariance that comes from the constraint (A.1),
getting as a result that (C.25) is O(ε). Therefore,

IG [zp] = 0 . (C.26)
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