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1 Introduction

The black hole information problem was first characterized by Stephen Hawking as a
“breakdown of predictability in gravitational collapse” [1, 2]. The essence of the problem
is that the information describing the matter that travels beyond the black hole horizon is
lost forever; the black hole evaporates, radiating a spectrum of particles that only depends
on the macroscopic thermodynamic parameters, such as mass, charge, and angular momen-
tum, with no dependence on the microscopic details of the quantum state of the collapsing
matter. Strictly speaking, this is not a breakdown in predictability in the forward time
direction because knowing the state of the universe prior to gravitational collapse determin-
istically fixes, in semi-classical gravity, the quantum state of the universe after evaporation.
However, in the backwards time direction one is unable to predict the early-time quantum
state of the collapsing matter even with complete knowledge of the final state due to the
entropy-generating, many-to-one map of the forward time evolution. The quantum states
of the radiation emitted from distinct black holes are entirely indistinguishable.

The original computations of the quantum state of the radiation were done on fixed
spacetime geometries with only minor adjustments included to account for the gravitational
backreaction of the radiation [1, 3]. Remarkably, recent developments [4–7] have shown
that the inclusion of certain wormhole configurations in the gravitational path integral,
macroscopically different than the original background geometry, lead to the conclusion
that the Hawking radiation “purifies itself” after the so-called “Page time” defined as the
time at which the coarse-grained entropy of the radiation equals the coarse-grained entropy
of the black hole [8] which is given by the area of the horizon in Planck units [1, 9]

SBH = A

4 . (1.1)
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This demonstrates that the late-time state is not thermal, restoring hope that predictability
may survive in the backwards time direction. It is of course crucial to understand not only
if predictability is restored but when and how the information of the early-time quantum
state escapes out of the black hole and into the radiation.

A precise and operationally meaningful way to quantify this escape of information is
to consider two microscopically distinct, but macroscopically indistinct evaporating black
holes e.g. two black holes formed from collapse of quantum matter in orthogonal quantum
states with identical total conserved quantities.1 If an observer has access to the radiation
of one of the black holes, they may make a quantum measurement. If information has
escaped from the black hole, then a judiciously chosen measurement will allow the observer
to determine which of the two quantum states formed the black hole. The larger the amount
of information that has escaped, the easier it is for the observer to distinguish the black
holes using measurements on the radiation. To quantify this, we will study the quantum
fidelity, a useful measure of distinguishability. For two distinct evaporating black holes,
Hawking’s prediction corresponds to the fidelity equaling one at all times, meaning perfect
indistinguishability. Our goal is to determine if, when, and how the fidelity can be found to
be less than one, re-establishing predictability in quantum gravity (in simple toy models).

The aforementioned progress on the entropy of Hawking radiation suggests that quan-
tum information escapes the black hole only after the Page time. This is the time at which
a region behind the horizon called the “island” forms, denoting the region whose quantum
state is “reconstructible” on the radiation. This is consistent with the standard belief that
there is no information in early Hawking radiation. The goal of this paper is to show that
this belief receives important corrections and there is indeed genuine information regarding
the black hole microstructure emanating within the radiation even before the Page time
when no island is present.

This work builds upon previous hints regarding nontrivial information in early Hawking
radiation.2 The computation of fidelity that we seek was first computed in [12] for the
PSSY model [7] involving two-dimensional Jackiw-Teitelboim gravity decorated with end-
of-world branes that are entangled with an auxiliary “radiation” system. By summing over
particular replica wormhole configurations in the Euclidean path integral, it was found that
before the Page time, the fidelity was F = 1 − 1

2e
−(SBH−Srad) + . . . , which is very close

to, though less than one, proving that in principle different black hole microstates may
be distinguished prior to the Page time. Had replica wormholes not been included in the
calculation, the fidelity would have been exactly one at all times, consistent with Hawking’s
analysis. The deviations from F = 1 in this model were more systematically studied in
the context in the JLMS formula [13] in [14]. While this model is certainly illuminating,
it has certain drawbacks such as not describing genuine time evolution of the evaporation
process as well as lacking matter fields.

1These two states may be thought of as living in the same microcanonical energy band as we generally
do not expect exact degeneracies in the spectrum.

2A complementary analysis of information in the Hawking radiation prior to the Page time was analyzed
in [10, 11] where it was argued that there is significant quantum entanglement in the radiation starting at
a much earlier time scale referred to as tb.
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Figure 1. Left: the Euclidean path integral that prepares our state of interest. There are two
copies of a boundary conformal field theory. The red, semi-infinite subregions account for the
radiation while the black boundary together with cutoff region accounts for the black hole. An
operator shown in green is inserted on the boundary. Right: the Lorentzian continuation of this
state with the boundary degrees of freedom holographically represented as a 2D eternal black hole.
The excitation intersects the bifurcation point and remains behind the horizon. After the Page
time, an island (blue) forms that includes the bulk excitation.

We are motivated to investigate more complicated evaporation models like those in [6,
15, 16]. These are built from a two dimensional conformal field theory whose boundary is
coupled to a “quantum dot” or conformal boundary that is holographically dual to a two-
dimensional gravitational system. Such a system can support non-trivial time evolution
and a spectrum of matter fields. When prepared in the thermofield double state, the time
evolution of this system may be interpreted as a two-dimensional black hole radiating into
a bath3 that is “bulk” conformal field theory. This conformal field theory thus comprises
the “radiation” (see figure 1).

The time evolution of the entanglement entropy (Page curve) for this model was con-
sidered from both the bulk and boundary perspectives in [15–17] where it was found that
at the Page time, an island forms that encompasses the black hole interior. We analyze
the quantum fidelity between two distinct black holes in this model, modeled by placing
particles of different flavors behind the black hole horizon, and find that there is significant
information in the Hawking radiation prior to the formation of the island, with the fidelity
between two evaporating black holes being

F = 1− (Cppr − Cqqr)2 Γ
(

1
2 + ∆r

)
4
√
πΓ (1 + ∆r)

e−2∆r(SBH−Srad), (1.2)

where ∆r is the conformal dimension of the lightest primary field in the CFT spectrum and
Cppr/Cqqr are the OPE coefficients between the operator placed behind the horizon and
the lightest primary. As expected, this is not an identical answer to the PSSY model due
to the increased complexity in the theory, though it shares the key qualitative feature that

3The term “bath” is a bit of a misnomer as it suggests Markovian dynamics which are not unitary by
construction. We stick with tradition in calling this non-Markovian system a bath.
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it is a finite amount less than one, albeit non-perturbatively suppressed in the black hole
entropy, implying the escape of information prior to the Page time. We believe that this
is a general feature of evaporating black holes. After the Page time, we find the fidelity
to be nearly zero, implying that the black holes are easily distinguishable, a notion we
make precise in the following section. We discuss the similarities and differences in the
mechanisms leading to information leakage in the BCFT model and the PSSY model.

The model. We consider a two-dimensional conformal field theory with a conformal
boundary. If this CFT is “holographic,” the three-dimensional dual has the conformal
boundary extend into the bulk geometry as a “Cardy brane.” We treat the two-dimensional
theory of this brane as the black hole system while the remaining geometry may be consid-
ered the radiation. To provide nontrivial evaporation dynamics, we prepare the boundary
conformal field theory in the thermofield double state

|TFD〉 = 1√
Z(β)

∑
i

e−βEi/2 |Ei〉1 ⊗ |Ei〉2 (1.3)

and evolve with H = H1 ⊗ 12 + 11 ⊗H2

|TFD(t)〉 = 1√
Z(β)

∑
i

e−(β+4it)Ei/2 |Ei〉1 ⊗ |Ei〉2 . (1.4)

Under this time evolution, there will be a nontrivial Page curve. In order to add flavor
to the black hole, we include a boundary excitation. More specifically, we act with an
operator on the boundary that has been evolved by β/4 in imaginary time∣∣∣TFD(t)(1)

〉
∝
∑
i

e−(β+4it)Ei/2O1(0,−β/4) |Ei〉1 ⊗ |Ei〉2 , (1.5)∣∣∣TFD(t)(2)
〉
∝
∑
i

e−(β+4it)Ei/2O2(0,−β/4) |Ei〉1 ⊗ |Ei〉2 . (1.6)

With this choice of imaginary time evolution, the gravitational picture includes a particle
behind the horizon at all times.

Overview. In section 2, we provide background on the distinguishability measures that
we compute, particularly the quantum fidelity. This makes precise how one should interpret
our results in terms of an observers ability to know the details of the black hole formation
from measurements only on the radiation. In section 3, we compute the entropy in the
island model using conformal field theory techniques. In section 4, we compute the fidelity
in the island model, presenting the mechanisms leading to our main result and comparing
these to the PSSY model. While of a different general motivation, in section 5, we dis-
cuss how similar computations can be done to characterize eigenstate thermalization for
extended subsystems in two-dimensional conformal field theory. Certain technical details
are left to the appendices.
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2 What do distinguishability measures measure?

In the midst of technical calculations, it is easy to lose sight of the concrete meanings of
the quantities we are computing. We emphasize in this section the precise meaning of the
quantum fidelity, which fortunately quantifies a very natural and concrete task that an
experimentalist may perform.

The Uhlmann fidelity (which we will simply call the fidelity) measures the distinguisha-
bility between two quantum states, ρ and σ and is defined as

F (ρ, σ) = Tr
√√

ρσ
√
ρ. (2.1)

This quantity obeys several nice properties such as Jozsa’s axioms [18] and is bounded as

0 ≤ F (ρ, σ) ≤ 1, (2.2)

where the upper (lower) bound is saturated if and only if ρ = σ (ρσ = 0).
A fundamental task in quantum information theory is that of quantum hypothesis test-

ing. Quantum hypothesis testing is the scenario where Alice is given a quantum state with
the promise that it is either ρ or σ. It is her task to make a quantum measurement to de-
termine which state she was given. There is an error probability of her determining she has
state ρ when she really has state σ. Similarly, there is an error probability of Alice determin-
ing she has state σ when she really has state ρ. The sum of these two error probability, Perr,
for the optimized measurement4 is bounded from both above and below by the fidelity as

1−
√

1− F (ρ, σ)2 ≤ Perr ≤ F (ρ, σ). (2.3)

Moreover, if Alice is given n copies of the state, she can make a more complicated mea-
surement acting on all copies such that

P (n)
err ≤ F (ρ, σ)n. (2.4)

Clearly, if the fidelity is less than one, if given a sufficient number of copies of the state,
Alice may identify the state with high probability. This will be the case in the black hole
setting where the sufficient number of copies will be exponentially large in the entropy of
the black hole prior to the Page time. After the Page time, we find that only a single copy
of the state is needed.

The square roots present in the fidelity make it challenging (though still possible) to
compute. Simpler quantities to analyze only involve the second moments of the density
matrices. For illustration, we will consider the super-fidelity [20]

FS(ρ, σ) := Tr ρσ +
√

(1− Tr ρ2)(1− Trσ2) (2.5)

and the geometric mean (GM) fidelity [21]

FGM (ρ, σ) := Tr ρσ√
Tr ρ2 Trσ2 . (2.6)

4Such an optimized measurement can be explicitly constructed [19].

– 5 –



J
H
E
P
0
5
(
2
0
2
3
)
0
7
8

The super-fidelity is useful in that it upper bounds the fidelity. Therefore before the Page
time, when we see that the super-fidelity is less than one, the fidelity must also be less
than one. The GM fidelity is a useful proxy for the fidelity as it generally follows the same
qualitative behavior even though it is neither an upper nor lower bound. This will be useful
near the Page time where we do not have analytic control over the fidelity. It is also useful
after the Page time because we find it to be non-zero which necessarily means that ρ 6= σ

so the fidelity itself must also be non-zero.

3 Von Neumann entropy

We warm up by considering the entropy of the radiation, deriving a Page curve. This cal-
culation will also set our definition of the coarse-grained black hole and radiation entropies.
The radiation system consists of the bulk conformal field theory from position d to ∞ on
both sides of the thermofield double (the red region in figure 1), where d is playing the
role of a cutoff between the black hole and radiation subsystems. The coordinates, z, on
the half cylinder have Re[z] ∈ [0,∞) and Im[z] ∈ [0, 2π). We first conformally map the
half cylinder to the disk using w(z) = e

2π
β
z. The endpoints of the radiation subsystem are

mapped to w1 = w̄1 = −e−
2π
β
d and w2 = w̄2 = e

− 2π
β
d on the disk. The moments of the

density matrix may be computed using a two-point correlation function of twist operators

Tr (ρnA) =
(2π
β

)4hn
〈σn(w1, w̄1)σ̄n(w2, w̄2)〉disk. (3.1)

We may evolve in imaginary time and subsequently analytically continue the correlation
function to real time, such that

w1 = −e−
2π
β

(d+t)
, w2 = e−

2π
β

(d−t)
, w̄1 = −e−

2π
β

(−d+t)
, w̄2 = e−

2π
β

(−d−t)
. (3.2)

For simplicity, we take the high-temperature limit (β → 0). In this limit, the answer is
independent of the specific details of the CFT. Later on, this limit will allow us to compute
subleading corrections to the fidelity reliably. The correlation function on the disk can be
naively “unfolded” to a correlation function without a boundary, an approximation that
has been leveraged in the past to simplify replica calculations in boundary conformal field
theory [22, 23]. Due to the unfolding, the correlation function is defined on a chiral CFT.
The unfolding is not precise because we neglect a potential interface operator corresponding
to the boundary. This simplification replaces bulk-bulk-boundary OPE coefficients with
the corresponding bulk-bulk-bulk OPE coefficients, though importantly does not change
the qualitative behavior that we intend to isolate. One may prefer to call the brane in the
bulk a Z2 brane or Hartman-Maldacena brane [24] instead of a Cardy brane.

The high-temperature limit then corresponds to an OPE limit of the chiral twist fields
such that at early times (t < d), when w1 ∼ w2 and w̄1 ∼ w̄2

Tr (ρnA) =
(2π
β

)4hn
(w1 − w2)−2hn(w̄1 − w̄2)−2hn , (3.3)
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and at late times (t > d), when w1 ∼ w̄1 and w2 ∼ w̄2

Tr (ρnA) =
(2π
β

)4hn
(w1 − w̄1)−2hn(w2 − w̄2)−2hn . (3.4)

Both expressions may be analytically continued in n to find the von Neumann entropy

SvN (A) = lim
n→1

1
1− n log Tr (ρnA) =


2πc
3β t+ c

3 log β
2πε , t < d

2πc
3β d+ c

3 log β
2πε , d < t

, (3.5)

where ε is a UV cutoff. There are subleading (in β) terms that also contribute including
the boundary entropy, though we neglect these due to β being our expansion parameter.
In comparing to the Page curve, we can now identify 2πc

3β t as corresponding to the coarse-
grained entropy of the radiation, Srad, and 2πc

3β d as the coarse-grained entropy of the black
hole, SBH . A large boundary entropy may be added to the boundary but this will not
significantly change the following formulas.

4 Fidelity in the island model

4.1 Super and GM fidelities

PSSY model. To gain intuition, we first evaluate the super-fidelity and GM fidelity
between two radiation states in the PSSY model. The analog of (1.6) is

|Ψ1〉 := 1√
k

k∑
i

|ψi,1〉B |i〉R , ρ
(1)
R := TrB |Ψ1〉 〈Ψ1| , (4.1)

|Ψ2〉 := 1√
k

k∑
i

|ψi,2〉B |i〉R , ρ
(2)
R := TrB |Ψ2〉 〈Ψ2| , (4.2)

where, as described in [7], |ψi,a〉 may be interpreted as a black hole state with the EOW
brane in state i and a small excitation with flavor a propagating behind the horizon.

The purity of the radiation is the same for both states

Tr
(
ρ

(1)
R

)2
= Tr

(
ρ

(2)
R

)2
= 1
k2

∑
i,j

| 〈ψi,a|ψj,a〉B|2, a = 1, 2. (4.3)

Crucially, the inner product appearing in the sum is not proportional to a Kronecker delta.
Instead, the inner product defines the following boundary conditions in the gravitational
path integral

(4.4)

where the black lines represent the asymptotic boundaries and the dotted blue lines enforce
that an EOW brane with a particular flavor intersects the boundary. These boundary
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conditions can be filled in in two topologically distinct ways,5 corresponding to a factorized
bulk path integral and a wormhole solution

(4.5)

Completing the sums over i and j and including the normalization of the state, Z−2
1 , we

find
Tr
(
ρ

(1)
R

)2
= Tr

(
ρ

(1)
R

)2
= 1
k

+ Z2
Z2

1
. (4.6)

We interpret the first term as e−Srad and the second term as e−S
(2)
B where S(n)

B is the
coarse-grained Rényi entropy of the black hole.

The overlap is given by

Tr
(
ρ

(1)
R ρ

(2)
R

)
= 1
k2

∑
i,j

〈ψi,1|ψj,1〉B 〈ψi,2|ψj,2〉B, (4.7)

which sets the boundary conditions as

(4.8)

Now, only the disconnected solution contributes to the path integral because the brane
indices are incompatible, not allowing a wormhole. Summing over i and j, we find

Tr
(
ρ

(1)
R ρ

(2)
R

)
= e−Srad . (4.9)

The super-fidelity and GM fidelity are subsequently

FS(ρ(1)
R ρ

(2)
R ) = 1− e−S

(2)
B , FGM (ρ(1)

R ρ
(2)
R ) = 1

1 + e−(S(2)
B −Srad)

. (4.10)

The super-fidelity implies that the fidelity is less than one before the Page time by an
amount at least exponentially small in the black hole entropy. This implies that an observer

5We ignore higher genus solutions because these are exponentially suppressed in the large ground state
entropy S0.
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may distinguish the two black holes given an exponentially large number copies of the state
of the radiation. The GM fidelity displays a Page curve that transitions between close to
one and close to zero at the Page time (see figure 2). Using heavier machinery involving
higher moments, one finds that the GM fidelity faithfully mimics the behavior seen in the
fidelity [12].

The BCFT model. We now demonstrate the analogs of these calculations in the BCFT
model by considering the operators in (1.6) to have conformal dimensions 1 � ∆ �
c and the CFT to be “holographic.” Later, we will provide more general calculations.
In this regime of dimensions, the operators behave as generalized free fields and their
correlations functions may be computed using Wick contractions. Moreover, their bulk
duals are quantum fields that are massive enough to follow classical trajectories but light
enough as to not backreact on the geometry.

The Wick contractions between different replicas are somewhat analogous to the replica
wormhole contributions from (4.5). Because φp and φq are orthogonal fields (their two-
point function is trivial), their contractions do not contribute to the path integral. This
mimics the phenomenon where replica wormholes in (4.8) connecting different flavored
EOW branes do not contribute to the gravitational path integral.

Using the replica path integral approach, the purities and overlaps of the two states
can be seen to be given by the following correlation functions

Tr
(
ρ

(a)
R ρ

(b)
R

)
= 〈X†ab(i)Xab(−i)〉Σ2,2 , Xab = Oa ⊗Ob, (4.11)

where Σ2,2 is the manifold with two replica sheets glued along two intervals with endpoints
(after analytic continuation to Lorentzian time) at

z1 = −e−
2π
β

(d+t)
, z2 = e−

2π
β

(d−t)
, z3 = e−

2π
β

(−d−t)
, z4 = −e−

2π
β

(−d+t)
. (4.12)

The operator Xab is bi-local, being a tensor product of primary operators located at the
same point but on separate sheets. This should not be confused with an operator in the
orbifolded theory. This manifold has the topology of a torus. For the purity (a = b), there
are two Wick contractions, one contracting operators on the same sheet and the other
contracting operators on opposite sheets. While the difference in magnitude of these terms
is large, it is important to include both in order to find the leading corrections to the fidelity.
For the overlap (a 6= b), there is only a single Wick contraction, just as in the PSSY model.

Famously, the torus partition function undergoes a first-order phase transition when the
two cycles have equal length, corresponding in gravity to the Hawking-Page transition [25].
In our model this signals the Page transition and there is a change in the functional form
of the Wick contractions. The precise form of the GM and super fidelities are somewhat
complicated and can be found in appendix A. Here, we emphasize the fact that they mimic
the results from the PSSY model in that they imply that the fidelity is less than one by an
amount exponentially suppressed by the black hole entropy before the Page time and are
non-zero but very small after the Page time. We plot the GM fidelity in figure 2, comparing
the curve to the simple answer from the PSSY model. The fidelities are seen to have very
similar behavior.

– 9 –
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Figure 2. The GM fidelity in the PSSY (left) and BCFT (right) models.

4.2 Uhlmann fidelity in the BCFT model

To compute the full Uhlmann fidelity, we need to compute higher moments of the density
matrices by using a replica trick [26–28],

F (ρ, σ) = lim
m,n→ 1

2

Tr (ρmσρm)n . (4.13)

To leading order, the fidelity was computed between two states excited above the vacuum
with heavy operators [28]. Using the same techniques, we may compute the leading order
Page curve for the fidelity. This will simply lead to a step function with the fidelity equalling
one before the Page time and zero after the Page time. The subleading corrections to this
calculation are difficult to control in generality, so we instead use a separate method in the
following section.

The moments may be evaluated using a 2k-point function on, Σk,2, the k-sheeted
replica manifold glued along two intervals

Tr
((
ρ

(1)
R

)m
ρ

(2)
R

(
ρ

(1)
R

)m)n
=

〈X†k(i)Xk(−i)〉Σk,2
〈φ†p(i)φp(−i)〉2mnC 〈φ†q(i)φq(−i)〉nC

,

Xk =
(
φ⊗mp ⊗ φq ⊗ φ⊗mp

)⊗n
.

(4.14)

where k := (2m + 1)n. Using the Riemann-Hurwitz formula, one can see that the replica
manifold is a (k − 1)-genus surface and thus extremely difficult to evaluate in generality.
We only consider the leading Wick contraction. Prior to the Page time, this contraction
connects operators on the same replica sheet which is identical to the normalization factor,
so the fidelity is trivially one. After the Page time, the Wick contraction of the closest
pairs of operators connects operators on cyclically permuted sheets. Because these involve
contracting φp with φq, we find that the fidelity is zero. To find a non-zero contribution, one
needs sum contractions involving distant operators. The denominator will then dominate
significantly over this contribution giving a very small fidelity. We already understood
from the previous subsection that the fidelity is not exactly zero because otherwise the GM
fidelity would be exactly zero. We now characterize this leading contribution.

The high-temperature limit. We proceed to a more general calculation that may be
done in the high-temperature (β → 0) limit. The following calculations are more general
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in that they are do not place requirements on the dimensions of the boundary primary
operators and the CFT is unconstrained. For example, the CFT can be a free boson.

It is convenient to describe the replica partition function using twist operators on the
complex plane rather than a correlation function of primary fields on the (k − 1)-genus
surface

Zn,m = 〈Xk(i)σk(z1)σk(z2)Xk(−i)〉disk,C⊗k/Zk ,

Xk :=
(
φ⊗mp ⊗ φq ⊗ φ⊗mp

)⊗n
,

(4.15)

This expression is purely formal because the operator Xk is not included in the spectrum
of the orbifold theory C⊗k/Zk because Xk is not symmetric under cyclic permutations.
Nevertheless, this notation is useful as explained in [29]. This is because we can take the
OPEs of operators on each sheet in (4.14). Grouping like-terms among the sheets, we find
operators that are indeed symmetric under cyclic permutation, and under orbifolding reside
in the untwisted sector. The effective OPE coefficients with an operator T in the untwisted
sector are dependent on how we take the OPE. We will write these explicitly shortly.

Again, we avoid the technical complications of the conformal boundary without dis-
carding any of the essential physics by using the doubling trick and neglecting the contri-
bution from the potential interface operator

Zn,m = 〈Xk(i)σk(z1)σk(z2)σk(z3)σk(z4)Xk(−i)〉C⊗k/Zk , (4.16)

where the insertion points are

z1 = −e−
2π
β

(d+t)
, z2 = e−

2π
β

(d−t)
, z3 = e−

2π
β

(−d−t)
, z4 = −e−

2π
β

(−d+t)
. (4.17)

Before the Page time. Let us evaluate the correlation function before Page time. For
convenience, we apply the following conformal map,

w = z + i

z − i
. (4.18)

The correlation function is transformed to

Zn,m = (conformal factor)〈Xk(0)σk(w1)σk(w2)σk(w3)σk(w4)Xk(∞)〉C⊗k/Zk . (4.19)

We leave the conformal factor implicit because the factors corresponding to the local op-
erators cancel via the denominator of (4.14) and the factors corresponding to the twist
fields are trivial in k → 1 limit because the dimensions of the twist fields go to zero. In the
high-temperature limit, the insertion points can be approximated at early times (t < d) as

w1 = −1− 2ie−
2π
β

(d+t)
, w2 = −1 + 2ie−

2π
β

(d−t)
,

w3 = 1 + 2ie−
2π
β

(d+t)
, w4 = 1− 2ie−

2π
β

(d−t)
.

(4.20)

We expand the correlation function in this limit, taking the OPEs of pairs of operators on
each sheet

Zn,m =
(
2e−

2π
β

(d−t)
)−4hk

(
1 + 2

∑
T∈S

ĈXkXkT Ĉσkσ̄kT (−1)
lT
2
(
2e−

2π
β

(d−t)
)∆T

+ · · ·
)
,

(4.21)
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where S is the set of the lightest non-vacuum fields. We denote the scaling dimension by ∆
and the spin by l. Any field in the untwisted sector of the orbifold CFT can be described as

T := 1
k

(T0 ⊗ · · ·Tk−1 + (cyclic permutations)) . (4.22)

For these untwisted states, we define the OPE coefficients by

Ĉσkσ̄kT := 〈σk(0)T (1)σk(∞)〉C⊗k/Zk , (4.23)

and

ĈXkXkT :=
n−1∏
k=0

(
m−1∏
i=0

CppTi+(2m+1)kCppTi+m+(2m+1)k

)
CqqTm+(2m+1)k + (cyclic permutations).

(4.24)
The lightest non-vacuum contributions have the following form,

Ψi = 1
k

(
ψr ⊗ I⊗i ⊗ ψr ⊗ I⊗k−i−1 + (cyclic permutations)

)
, i ≤ k

2 . (4.25)

For these states, the OPE coefficients may be evaluated as

∑
T∈S

ĈXkXkT Ĉσkσ̄kT (−1)
lT
2 =

k/2∑
i=1

(2m+1)-i

(
n(2m− 1)C2

ppr + 2nCpprCqqr
)
Cσkσ̄kΨir(−1)lr

+
k/2∑
i=1

(2m+1)|i

(
2nmC2

ppr + nC2
qqr

)
Cσkσ̄kΨir(−1)lr

=
k/2∑
i=1

(
n(2m− 1)C2

ppr + 2nCpprCqqr
)
Cσkσ̄kΨir(−1)lr

+
k/2∑
i=1

(2m+1)|i

n (Cppr − Cqqr)2Cσkσ̄kΨir(−1)lr (4.26)

We first take the m→ 1/2 limit

2nCpprCqqr
2n−1∑
i=1

1(
4n sin πi

2n

)2∆r
+ n

2 (Cppr − Cqqr)2
n−1∑
i=1

1(
4n sin πi

n

)2∆r
(4.27)

where we use the relation [30],6

(−1)lr
k/2∑
i=1

Cσkσ̄kΨir = 1
2

k−1∑
i=1

1(
2k sin πi

k

)2∆r
:= 1

2f(k,∆r). (4.28)

6In [30], there is an additional factor n, which comes from the cyclic permutation. We do not need this
factor here because we already included all terms of the cyclic permutation in the summand of (4.26).
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We then take the n→ 1/2 limit

1
22∆r+2 (Cppr − Cqqr)2 f

(1
2 ,∆r

)
. (4.29)

We conjecture using numerical calculations7 that the analytic continuation n→ 1
2 is given

by8

f

(1
2 , h

)
= −

Γ
(

1
2 + h

)
2
√
πΓ (1 + h) < 0. (4.30)

This is consistent with all explicitly summable examples, such as h = 0, 1. Crucially, this
function is everywhere negative. For consistency, this had to be the case because the fidelity
is bounded above by one. Finally, we obtain

F (ρpA, ρ
q
A) = 1− (Cppr − Cqqr)2 Γ

(
1
2 + ∆r

)
4
√
πΓ (1 + ∆r)

e−2∆r(SBH−Srad). (4.31)

For descendants of the vacuum, the OPE coefficients for the two primary fields are identical

Cppr = Cqqr, (4.32)

where we use the assumption hp = hq. Therefore, the first nontrivial contribution is given
by the first non-vacuum primary state.

After the Page time. After Page time (t > d), the insertion points can be approximated
as

w1 = −1− 2ie−
2π
β

(d+t)
, w2 = 1 + 2ie−

2π
β

(t−d)
,

w3 = 1 + 2ie−
2π
β

(d+t)
, w4 = −1− 2ie−

2π
β

(t−d)
.

(4.33)

In this case, the high-temperature limit corresponds to operators on neighboring replica
sheets to become close, so we wind up with a different OPE limit. The correlation function
is correspondingly modified to

〈Xk(i)σk(z1)σk(z2)σk(z3)σk(z4)X ′k(−i)〉C⊗k/Zk , X ′k :=
(
φ⊗(m+1)
p ⊗ φq ⊗ φ⊗(m−1)

p

)⊗n
.

(4.34)
We can expand the correlation function in the high-temperature limit as(

2e−
2π
β

(t−d)
)−4hk

(
1 + 2

∑
T∈S

ĈXkXkT Ĉσkσ̄kT (−1)
lT
2
(
2e−

2π
β

(t−d)
)∆T

+ · · ·
)
, (4.35)

where S is a set of the first non-vacuum states. The OPE coefficient is given by

ĈXkX′kT :=
n−1∏
k=0

(
m−1∏
i=0

CppTi+(2m+1)kCppTi+m+(2m+1)k

)
CpqTm+(2m+1)kCpqTm+1+(2m+1)k

+ (cyclic pernutations).
(4.36)

7In practice, this means evaluating f(n, h) for fixed integer h and general n, identifying (using Mathe-
matica) an analytic function of n that reproduces the sequence at fixed h, analytically continuing to n = 1/2,
then identifying an analytic function that reproduces the sequence in h.

8We would like to thank Nathan Benjamin for informing us of this conjectured expression.
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The first non-vacuum contribution is again given by (4.25). Consequently, we obtain

∑
T∈S

ĈXkX′kT Ĉσkσ̄kT (−1)
lT
2 =

k/2∑
i=1

(2m+1)-(i+l)
l=−1,0,1

(
n(2m−3)C2

ppr+4nCpprCpqr
)
Cσkσ̄kΨir(−1)lr

+
k/2∑
i=1

(2m+1)|i

(
n(2m−1)C2

ppr+2nC2
pqr

)
Cσkσ̄kΨir(−1)lr

+2
k/2∑
i=1

(2m+1)|(i+1)

(
n(2m−2)C2

ppr+2nCpprCpqr+nC2
pqr

)
Cσkσ̄kΨir(−1)lr

=
k/2∑
i=1

(
n(2m−3)C2

ppr+4nCpprCpqr
)
Cσkσ̄kΨir(−1)lr

+
k/2∑
i=1

(2m+1)|i

2n(Cppr−Cpqr)2Cσkσ̄kΨir(−1)lr

+
k/2∑
i=1

(2m+1)|(i+1)

2n(Cppr−Cpqr)2Cσkσ̄kΨir(−1)lr (4.37)

In the m→ 1/2 limit, this equals

(
−2nC2

ppr + 4nCpprCpqr
) 2n−1∑
i=1

1(
4n sin πi

2n

)2∆r
+ n (Cppr − Cpqr)2

2n−1∑
i=1

1(
4n sin πi

2n

)2∆r

(4.38)
which disappears when taking n → 1/2, so the fidelity vanishes. We find this to be a
somewhat miraculous cancellation, given the complexity of the replica calculation. Of
course, we know that the fidelity cannot be exactly zero due to our calculation of the GM
fidelity. However, this calculation shows that the non-zero contributions must be more
subleading than O

(
e−2∆r(Srad−SBH)

)
.

We have found that before the Page time, the fidelity is close to one (4.31). Using (2.4),
we see that ones needs an O(e#(SBH−Srad)) number of copies of the state of the radiation
prior to the Page time in order to distinguish microstates. This is qualitatively the same
conclusion as in [12] in the simpler PSSY model. Moreover, the lighter the operators in
the spectrum of the given CFT, the more easily the states can be distinguished. The light
bulk fields appear to mediate the transfer of information from inside the black hole into
the radiation system. This is a new feature which has no analog in [12].

After the Page time, the fidelity is close to zero

F (ρpA, ρ
q
A) = o

(
e−2∆r(Srad−SBH)

)
. (4.39)

Therefore, a single judiciously chosen measurement of the radiation distinguishes the two
different states of the black hole. While we have demonstrated that these measurements
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Figure 3. The configuration considered for fidelity between primary states. The circumference of
the system is 2π and we consider the reduced state on A = [0, 2πx].

are effective, we have not shown that they are feasible in practice. Indeed one may expect
that they are exponentially complex. While a disjoint concept from the unitarity of black
hole evaporation, it would be interesting to understand if and when simpler measurements
of the radiation may distinguish black holes.

5 Fidelity between primary states

We conclude with a further application of the techniques we developed for computing the fi-
delity in general CFTs by evaluating the fidelity between distinct primary states in CFT. In
the case where the two primary operators, φp and φq, have similar and large dimensions, this
probes eigenstate thermalization. If a given system exhibits eigenstate thermalization, the
matrix elements of (few-body) observables, O, in the energy eigenstate basis behave as [31]

〈p| O |q〉 = fO(E)δpq + e−
S(E)

2 gO(Ep, Eq)Rpq, (5.1)

where S(E) is the microcanonical entropy at E = Ep+Eq
2 and the functions fO(E) and

gO(Ep, Eq) are smooth and O(1). The matrix Rpq is a pseudo-random variable with zero
mean and unit variance. We recall that if the fidelity between two state in a subregion is
close to one, the trace distance must be small [32] and then so are properly normalized
matrix elements [33, 34]. This “subsystem eigenstate thermalization” thus implies (5.1).

We consider a primary state on a circle of circumference 2π reduced to a subsystem A

of size 2πx (see figure 3)

ρ
(p)
A := trĀ |p〉 〈p| , ρ

(q)
A = trĀ |q〉 〈q| . (5.2)

In the short interval (x � 1) limit, the calculation is essentially the same as that in
section 4.2 such that

F (ρ(p)
A , ρ

(q)
A ) = 1− (Cppr − Cqqr)2 Γ

(
1
2 + ∆r

)
8
√
πΓ (1 + ∆r)

(sin πx)2∆r , (5.3)

where, as before, the subscript r represents the lightest primary field in the OPE of φp×φp
and φq × φq. This answer holds for any CFT. We compare now with the one example in
the literature that has been explicitly computed, the c = 1 free boson [26]. The fidelity
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between the vacuum state and the vertex state corresponding to the operator V = eiαφ,
where φ is the boson field, is given by [26]

F (ρ(0)
A , ρ

(V )
A ) = cos

(
πx

2

)α2
2
. (5.4)

In the short interval limit, this is approximated by

F (ρ(0)
A , ρ

(V )
A ) ' 1−

(
παx

4

)2
. (5.5)

The first non-vacuum state is given by the U(1) current i∂φ(z) of conformal weight (1, 0),
so using the fact that CV V i∂φ(z) = −α, we find complete consistency with our general
answer (5.3).

Of course, there is no exponential suppression in this fidelity, which may be understood
both because the free boson theory is integrable and that here we have only considered
low-lying states. In contrast, for high-energy states and irrational (such as holographic)
CFTs, the OPE coefficients may be expected to lead to exponential suppression [35–37].
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A Torus four-point function

To evaluate a correlation function (4.11) on the replica manifold Σ2,2, it is useful to find a
conformal transformation from a torus T2 to Σ2,2. We focus on a particular map from T2

with generators of the lattice, (2ω1, 2ω3) to Σ2,2 with two branch cuts A = [0, x] ∪ [1,∞].
This conformal map can be expressed in terms of the Weierstrass elliptic function ℘ as (see
e.g. [38])

z = f(t) ≡ ℘(t)− e3
e1 − e3

, (A.1)

where z, t describe the coordinate of Σ2,2 and T2. Here the constants ei (called the lattice
roots) are given by

ei = ℘(ωi) (i = 1, 2, 3), (A.2)
where ω1 + ω2 + ω3 = 0. The lattice roots can be expressed in terms of the Jacobi theta
function θi or the elliptic integral of the first kind K as

e1 = π2

12ω2
1

(
θ2(τ)4 + 2θ4(τ)4

)
= K(x)2

3ω2
1

(2− x),

e2 = π2

12ω2
1

(
θ2(τ)4 − θ4(τ)4

)
= K(x)2

3ω2
1

(2x− 1),

e3 = − π2

12ω2
1

(
2θ2(τ)4 + θ4(τ)4

)
= −K(x)2

3ω2
1

(1 + x),

(A.3)
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where the moduli parameter is defined by τ ≡ ω3
ω1
. Here we take the following convention,

K(x) =
∫ π

2

0

dθ√
1− x sin2 θ

= 2F1

(1
2 ,

1
2 , 1;x

)
. (A.4)

For this convention, the relation between the cross ratio and the moduli parameter is

x = e2 − e3
e1 − e3

=
(
θ2(τ)
θ3(τ)

)4
, τ = i

K(1− x)
K(x) . (A.5)

One can see using (A.2) that the edges of the intervals in Σ2,2 come from the generators,

(ω1, ω2, ω3, 0)T2 7→ (1, x, 0,∞)Σ2,2 . (A.6)

The Weierstrass elliptic function is related to the Jacobi elliptic function as

℘(t+ ω3)− e3 =
(
K(x)
ω1

sn
(
K(x)t/ω1,

√
x
))2

x. (A.7)

Using this relation, we can give the conformal map g(z, x) from Σ2,2 to T2 as

t = ω3 + ω1
K(x)sn−1

(√
z

x
,
√
x

)
= ω3 + ω1

K(x)

∫ √ z
x

0

dη√
(1− η2)(1− xη2)

(≡ ω3 + g(z, x)).

(A.8)
Now we can evaluate the geometric-mean fidelity as a correlation function on a torus.

We assume that the CFT is holographic and the operators φp, φq are light enough to not
backreact on the gravity i.e. 1� hp, hq � c. More precisely, we assume that the conformal
dimension of φp, φq behaves like εc with ε� 1 in the large c limit. Then, we can evaluate
the correlation function by using Wick’s theorem. As a result, we obtain that before Page
time (corresponding the Hawking-Page transition of the torus partition function)

I(ρpA,ρ
q
A)' |sin(π (g(y,x)−g(y∗,x)))|2hp+2hq (A.9)

×
(
|sin(π (g(y,x)−g(y∗,x)))|2hp+2hq + |sin(π (g(y,x)+g(y∗,x)))|2hp+2hq

)−1
,

and after Page time

I(ρpA, ρ
q
A) '

∣∣∣∣sin( π

2τ (g(y, x)− g(y∗, x))
)∣∣∣∣2hp+2hq

(A.10)

×
(∣∣∣∣sin( π

2τ (g(y, x)− g(y∗, x))
)∣∣∣∣2hp+2hq

+
∣∣∣∣sin( π

2τ (g(y, x) + g(y∗, x))
)∣∣∣∣2hp+2hq

)−1

,

where we have set 2ω1 = 1.
The super-fidelity is related to the GM fidelity as

FS(ρpA, ρ
q
A) = 1− 1− I(ρpA, ρ

q
A)

Tr ρ2
A

, (A.11)

under the condition that Tr ρ2
A := Tr(ρqA)2 = Tr(ρpA)2.
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