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1 Introduction

Effective field theories (EFTs) mark the modern viewpoint on quantum field theories, with
especially important examples being chiral perturbation theory (ChPT) [1–4] and the
standard model effective field theory (SMEFT) [5–7]. The recipe of writing down the EFT
is simply to use the symmetries of the problem to write down all possible operators and
then order them e.g. by mass dimension. Unlike a renormalizable quantum field theory,
the EFT is valid only up to some intrinsic scale, be it ΛQCD or ΛPlanck, etc. An EFT is
thus parametrized by a number of low-energy constants (LECs) — how many depends on
the order of the operators being taken into account. The rationale being that the higher
the order of the operator, the smaller the contribution to a physical observable in physical
computations, which is a simple consequence of all momentum scales in the processes
corresponding to the operator, being much smaller than the intrinsic (cut off) scale of
the EFT.
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Although the precision of a computation is expected to become more precise by going
to higher orders, the number of free parameters (operator coefficients) becomes quickly
very large, and is expected to grow exponentially. A simple question to ask is how many
operators exist, compatible with the symmetries of the system, at a given order. This
counting should take into account that one is allowed to integrate by parts (IBP) and
perform field redefinitions, since physics is independent of what variables (fields) one
chooses to use for the computations. The field redefinitions in an EFT can be shown to
be equivalent to using the lowest-order equation of motion (EOM) to reduce operators in
the Lagrangian [8–10] — a procedure not allowed in theories that are not EFTs. Taking
the IBP and lowest-order EOM into account, yields the number of independent operators
in a minimal basis, which is useful for phenomenology. The basis, of course, is not unique
and the choice of which operators to keep and which to eliminate, makes the process of
finding the minimal basis at higher orders a formidable task. In case of ChPT, due to large
efforts in the phenomenology community minimal bases for the chiral Lagrangian have been
found up to order O((∂/ΛQCD)8) (or simply p8) [3, 4, 9, 11, 12] in the normal and to order
p6 in the anomalous sector [13, 14]. Due to the complexity of the problem in the case of
direct computations, the fact that there is no unique basis of operators and there are many
relations making different choices of basis equivalent has been a source of confusion in the
literature. Therefore, having a systematic method that with certainty allows one to find the
dimension of the basis, i.e. the number of operators, at a given order in the EFT, provides
a crucial check on direct computations.

The Hilbert series method is exactly one such method, that makes it possible to
construct all possible operators with a given symmetry and integration using appropriate
Haar measures then picks out the invariants — e.g. Lorentz and gauge invariants. In
the context of quantum field theory, this method was first used in supersymmetric gauge
theories [15–17]. Shortly after, the method has been used to count flavor invariant [18, 19]
and then generalized to EFTs as a powerful toolbox for phenomenologists [20–25]. The
Hilbert series is a systematic method that not only gives the dimension of the minimal basis
of operators (the number of operators), but also the form of the independent operators by
means of a graded Hilbert series, albeit without the explicit tensor contractions. The way to
contract the indices amongst a type of operators is not unique, but the different possibilities
are related by IBP identities. An introduction to the method can be found in [26].

In phenomenology, the discrete symmetries known as parity, charge conjugation and
time reversal symmetry, are useful for several reasons. The CPT theorem states that
any Lorentz invariant, local and unitary theory is CPT invariant [27], which means that
breaking of CP is equivalent to breaking of time-reversal symmetry. Since CP (meaning
charge-even and parity-even or charge-odd and parity-odd) is very rarely broken in nature,
and because it is envisioned as the source of the breaking of the symmetry between particles
versus anti-particles in the early universe [28], the operators giving rise to CP-violation
are important to identify. In the standard model (SM), the only sources of CP-violation
are the θ angle in QCD, as well as two angles in the CKM and PMNS matrices, where
the latter two matrices are mass matrices for the quarks and neutrinos, respectively. In
the Hilbert series method, the parity-even versus parity-odd operators can be found by
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folding the representations of the Lorentz group [24, 29]. The technique is analogous for the
charge-even versus charge-odd operators, where folding of the representation of the internal
symmetry group is performed instead. Having identified the operators according to these
four possibilities, one can readily find CP-even and CP-odd combinations [29].

In this paper, we consider the O(N) nonlinear sigma model, which has nonlinearly
realized symmetry and spontaneous symmetry breaking of the symmetry group from O(N)
to O(N − 1). The Hilbert series method is so far only developed for linearly realized
symmetries; however, the nonlinear symmetry can be converted to a linear symmetry using
a trick of Callan-Coleman-Wess-Zumino (CCWZ) by using the variables in the coset of the
symmetry breaking — in this case in the coset O(N)/O(N − 1), which transform only with
respect to the unbroken group O(N − 1), but does so linearly [24]. We apply the Hilbert
series method, using the CCWZ trick to the O(N) nonlinear sigma model, for the first time,
and construct the numbers and forms of the operators up to dimension 16 in mass dimension,
for up to D = 12 spacetime dimensions and up to N = 12, and further classify the operators
into four types, according to the parity and “charge” (or rather parity of the O(N) group).
We furthermore construct all the operators explicitly using direct methods in field theory
and verify agreement between the results. Due to the complexity of the computations
using direct methods, we have constructed the operators explicitly only up to dimension
12 for the simplest type of operators and only up to dimension 10 for the remaining types.
Although the Hilbert series method is in some sense more systematic than the explicit
method and it is also more efficient, computationally, the explicit construction method
has some advantages, like for instance that the simplest type of operators — parity-even
and charge-even operators — saturate in numbers when both the spacetime dimension
and N are increased. For the other types of operators, it is also clear that only certain
combinations of D, N and the dimension nd of the operator can give a nonvanishing result.
These results agree with the Hilbert series method, but the extraction of such statements in
the latter method is yet somewhat obscure. Another advantage of the direct construction
method is that one has a fully explicit operator basis.

Alternative methods to obtain Lagrangians come from so-called amplitude methods or
different constructions using group theory, see e.g. [30–35], however the work in this area
has been restricted to the SU(N) case, not the O(N) model we consider here.

The paper is organized as follows. In section 2 we introduce the Hilbert series method
and discuss the modifications of the method specific to the O(N) nonlinear sigma model.
In section 3, we compute the operators explicitly using direct methods in field theory and
discuss the explicit relations and constraints utilized there. Finally, we conclude the paper
with a discussion in section 4. The appendices contain details about the group characters
and representations in appendix A and B, respectively. The Hilbert series results on the
total number of operators are delegated to appendix C and the actual Hilbert series to
appendix D. The Hilbert series contains also information about the number of terms with a
given minimal number of fields occurring in the term. The Hilbert series results are included
in the supplementary material file Lagrangianshilbertseries.txt in a machine readable
format. Similarly the results from the explicit constructions are given in the supplementary
material files Lagrangianfulltypei.txt for i = 1, . . . , 4.
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2 Hilbert series

The Hilbert series for a theory with Lorentz and an internal unbroken symmetry H, is
constructed as follows [24]

H(u, p) = H0(u, p) + ∆H(u, p), (2.1)

H0(u, p) =
∫

dµH(y)
∫

dµSO(D)(x)Z(u, p, x, y)
P+(p, x) , (2.2)

where H0 is the Hilbert series for all possible H and SO(D) invariant operators, with the
lowest-order equations of motion (EOM) taken into account. ∆H on the other hand is the
finite series due to the existence of co-closed but not co-exact forms, that is conjectured
only to contribute to operators of dimension 2 and D. The addition of the latter takes into
account the integrations-by-parts constraints. u is a (mass) dimension-1 field, to be defined
below, p is the momentum (or derivative operator) and finally x (y) are the coordinates
parametrizing the maximal torus of SO(D) (H).

Z is the generating function of all possible operators in the theory at hand and the two
integrations over the Haar measure of H and the Lorentz group, respectively, select out the
group invariants; that is, the Lorentz and H invariant operators.

The division by P+(p, x) — the momentum generating function — in the integrand
simply mods out by the overall momentum; that is, it ensures that momentum conservation
(an IBP) is taken into account.

We now need to write down the generating function for the theory at hand. Since
the symmetries are not linearly realized in a sigma model, the necessary but neat trick is
to rewrite the theory as a linearly realized symmetry on a Maurer-Cartan form, due to
Callan-Coleman-Wess-Zumino (CCWZ) [36, 37].

We consider the sigma model type of theory with a spontaneous symmetry breaking from
G→ H ⊂ G with Xi ∈ g/h being the broken generators parametrizing Nambu-Goldstone
bosons and T a ∈ h being the unbroken generators. The nonlinear field is

ξ = exp
(

iφiXi

fφ

)
, (2.3)

which transforms as

ξ → ξ′ = gξh−1(g, ξ), g ∈ G, h ∈ H. (2.4)

Notice that although g is a global transformation, h is local in that it depends on ξ, thereby
realizing the nonlinear symmetry. The left-invariant Maurer-Cartan form is written as

w = wµ dxµ = ξ−1∂µξ dxµ = uiµX
i dxµ + vaµT

a dxµ = uµ dxµ + vµ dxµ ∈ Λ1, (2.5)

where uµ ∈ g/h lives in the coset space and vµ ∈ h belongs to the stabilizer or unbroken
algebra. w transforms only according to the unbroken group, H:

w → w′ = h(w + d)h−1 = huh−1 + h(v + d)h−1, h ∈ H, (2.6)
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where the grouping in the last equality means that u transforms homogeneously whereas v
transforms inhomogeneously. This can be seen from the fact that u ∈ g/h, whereas both
v ∈ h and hdh−1 ∈ h.

The building blocks of the Lagrangian and their transformation rules are

ξ → gξh−1, (2.7)
u→ huh−1, (2.8)

D := d + v → hDh−1, (2.9)
F := D ∧D → hFh−1, g ∈ G, h ∈ H, (2.10)

which are 0-, 1-, 1- and 2-forms, respectively; clearly, only ξ transforms under g. Now,
(covariant) derivatives of ξ can be traded for u, and ξ:

Dξ = dξ − ξv = ξu, Dξ−1 = dξ−1 + vξ−1 = −uξ−1, (2.11)

where we have used the definition w = ξ−1 dξ = u+ v and that d(ξ−1ξ) = 0 implying that
dξ−1ξ = −ξ−1 dξ. Since the Lagrangian is G-invariant and only ξ transforms under G, the
only way to obtain G-invariants is by multiplying the ξ terms with ξ−1, but since ξ−1ξ = 1
then ξ simply drops out of the Lagrangian. The remaining building blocks are now u, D
and F which only transform under H. Imposing H-invariance is then equivalent to the
original G-invariance.

We can further eliminate F by the following argument. Since w is a Maurer-Cartan
1-form, it has vanishing curvature (field strength):

0 = dw + w ∧ w
= d(u+ v) + (u+ v) ∧ (u+ v)
= Du+ u ∧ u+ F, (2.12)

and clearly F can be traded for Du and u ∧ u. Decomposition onto the algebra makes the
statement even stronger. F = D ∧D ∈ h is in the unbroken algebra whereas Du ∈ g/h lives
in the coset space (as [T a, X i] ∈ g/h). In fact, generically speaking u ∧ u ∈ g and so has
components in both the coset space and the unbroken algebra u ∧ u = u ∧ u|h + u ∧ u|g/h.
However, for symmetric spaces u ∧ u|g/h = 0. In particular,1

G/H = SO(N)/SO(N − 1) = SN−1,

G/H = SO(N)/(S[O(N − 1)×O(1)]) = RPN−1, (2.13)

are symmetric spaces for which u ∧ u|g/h = 0. In any case, the conclusion is that both F
and Du can be traded for a polynomial in u; but in our case of a symmetric coset space,
Du = 0. This means that the building blocks can now be reduced to u and any symmetric

1For SO(3)/SO(2) = S2 ' CP 1 is a complex projective space, which is Kähler and advantageous for
calculations, see e.g. [38]; this is not the case for higher N in the SO(N) model.
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traceless single particle module

Ru =


uµ1

D{µ1uµ2}
D{µ1Dµ2uµ3}

...

 . (2.14)

In particular, the equation of motion Dµuµ = 0 is also taken into account automatically by
the traceless condition.

The generating function for the single particle module Ru of the operator space
⊕∞n=0symn(Ru) is given by

Z(u, p, x, y) =
∞∑
n=0

unχsymn(Ru)(p, x, y) = PE[uχu(p, x, y)], (2.15)

where u is now a weight label, PE is the plethystic exponential and the character χu being
the infinite sum of p-weighted SO(D) characters times H characters at dimension k:

χu(p, x, y) =
∞∑
k=0

χu,k(p, x, y)

=
∞∑
k=0

pk+1χ(k+1,0,··· ,0)(x)χH,u(y)

=
[ ∞∑
k=0

pkχ(k,0,··· ,0)(x)− 1
]
χH,u(y)

=
[ ∞∑
k=0

pk
(
χsymk(�)(x)− p2χsymk(�)(x)

)
− 1

]
χH,u(y)

=
[
(1− p2)P+(p, x)− 1

]
χH,u(y), (2.16)

where

P+(p, x) =
∑
k=0

pkχsymk(�)(x) =


∏r
i=1

1
(1−pxi)(1−p/xi) , d = 2r,

1
1−p

∏r
i=1

1
(1−pxi)(1−p/xi) , d = 2r + 1,

(2.17)

is the momentum generating function in D dimensions. The reason for the −p2 term is
due to conformal representation theory and that the symmetric traceless tensor product
of the fundamental representation furnishes a short representation of the conformal group
SO(D, 2) for a scalar field (the χ(k,0,··· ,0)(x) term). This is exactly the EOM (for a scalar
field) being removed in all possible combinations from all possible operators. The −1 term,
on the other hand, removes the scalar component from the single particle module (2.14),
since the lowest component field is a vector field.2 χH,u(y) is the group character for the

2The single particle module for a scalar field is related to that of a vector field by removing the first
component (the scalar component); this is the −1. The truncated single particle module, however, does not
correspond to a field that transforms under the conformal group.
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internal unbroken symmetry group H. Since we are considering G = SO(N) in the vector
representation and spontaneous symmetry breaking implies H = SO(N − 1), also in the
vector representation, the group characters are given by

χH,u(y) =


∑r
i=1

(
xi + x−1

i

)
, N − 1 = 2r,

1 +∑r
i=1

(
xi + x−1

i

)
, N − 1 = 2r + 1.

(2.18)

The PE is simply

Z(u, p, x, y) = PE[uχu(p, x, y)] = exp
( ∞∑
r=1

1
r
urχu(pr, xr, yr)

)
. (2.19)

The Haar measure for SO(D) is a product over all roots of the algebra. However, since the
integrals are over Weyl-invariant quantities, we can use the Haar measure restricted to the
product over positive roots

dµSO(2r) =
r∏

k=1

dxk
2πixk

∏
1≤i<j≤r

(1− xixj)
(

1− xi
xj

)
, (2.20)

dµSO(2r+1) =
r∏

k=1

dxk
2πixk

(1− xk)
∏

1≤i<j≤r
(1− xixj)

(
1− xi

xj

)
. (2.21)

2.1 Parity and intrinsic parity

We will now consider imposing spacetime parity and internal parity symmetries, follow-
ing [24, 29]. By spacetime parity symmetry, we intend an overall sign flip, x → −x
for odd D dimensions and a sign flip of the last component of the coordinate vector,
(x1, · · · , xD−1, xD)→ (x1, · · · , xD−1,−xD) for even D dimensions. We note that this space-
time parity symmetry is different from the conventional (spatial) parity symmetry in 3+1
dimensions, where (x1, x2, x3)→ (−x1,−x2,−x3). It is, however, related to the Euclidean
spacetime parity symmetry considered here, by a π rotation in the (x1, x2)-plane.

The internal parity is essentially the same, albeit for the H = SO(N − 1) group.
Similarly, for N even the overall sign of the field u is simply flipped, whereas for N odd
(corresponding to N − 1 even), only the last component of the N − 1 vector is flipped.

Starting with the spacetime parity, we first notice that SO(D) does not contain the
parity symmetry, it is however easily included by changing the Lorentz symmetry for even D
from SO(D) to O(2r) = SO(2r) n Z2 = (O+(2r),O−(2r)), with SO(2r) = O+(2r), D = 2r
and n is the semi-direct product, whereas for odd D, the semi-direct product should be
replaced by the direct product: O(2r + 1) = SO(2r + 1)× Z2 = (O+(2r + 1),O−(2r + 1)),
with SO(2r + 1) = O+(2r + 1), D = 2r + 1 and × is the direct product. The parity-even
case is calculated as

HP -even = 1
2
(
HP+ + HP−)

, (2.22)

whereas the parity odd case is the compliment

HP -odd = 1
2
(
HP+ −HP−)

. (2.23)
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The first Hilbert series, HP+ in the above expressions is the one calculated in the previous
section and is the total Hilbert series. The parity symmetry can be viewed as splitting the
total series into parity-even and parity-odd operators.

The P− corresponds to switching the Lorentz group SO(D) for O−(D), which for the
Haar measure implies

dµO−(D) =

dµSp(2r−2), D = 2r,
dµSO(2r+1), D = 2r + 1,

(2.24)

which is a result that can be obtained by folding [24]. The Haar measure for Sp(D − 2)
for Weyl-invariant quantities (taking into account only the product over positive roots), is
given by

dµSp(2r−2) =
r−1∏
k=1

dxk
2πixk

r−1∏
k=1

(1− x2
k)

∏
1≤i≤j≤r−1

(1− xixj)
(

1− xi
xj

)
. (2.25)

The momentum generating function for O−(D) reads

P−(p, x) =


1

1−p2P
2r−2
+ (p, x̃), D = 2r, x̃ = (x1, x2, · · · , xr−1)

P+(−p, x), D = 2r + 1,

=


1

1−p2
∏r−1
i=1

1
(1−pxi)(1−p/xi) , D = 2r,

1
1+p

∏r
i=1

1
(1+pxi)(1+p/xi) , D = 2r + 1,

(2.26)

and finally the vector property of the field u yields an overall sign flip for the group character
in even dimensions

χP
−

u (p, x, y) =

−
[
(1− p2)P−(p, x)− 1

]
χH,u(y), D = 2r,[

(1− p2)P−(p, x)− 1
]
χH,u(y), D = 2r + 1.

(2.27)

An extra subtlety happens in even dimensions for even powers of the characters in the
plethystic exponential (PE); this can be dealt with as follows

ZP
−(u, p, x, y) = exp

( ∞∑
r=1

1
2ru

2rχu(p2r, x̄2r, y2r)

+
∞∑
r=1

1
2r − 1u

2r−1χP
−

u (p2r−1, x̃2r−1, y2r−1)
)
, (2.28)

for D = 2r, where

x = (x1, x2, · · · , xr), x̃ = (x1, x2, · · · , xr−1), x̄ = (x1, x2, · · · , xr−1, 1). (2.29)

The above results hold for generic D with r > 1. When r = 1, the rank is so small that
the last component of the highest weight is nonvanishing for a vector representation, which
leads to the exception in even dimensions, i.e. D = 2, when folding

χP
+

u = χu(p, 1, y), χP
−

u = 0, dµ = 1. (2.30)
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We can now contemplate including also intrinsic parity and we will use the symbol C±
for representing the positive and negative chambers of the orthogonal group. C− corresponds
now to switching H = SO(N − 1) for O−(N − 1), for which the Haar measures are

dµO−(N−1) =

dµSp(2r−2), N − 1 = 2r,
dµSO(2r+1), N − 1 = 2r + 1.

(2.31)

For even N , N − 1 is odd and the C− partition function is simply given by

ZC
−(u, p, x, y) = Z(−u, p, x, y), (2.32)

whereas for odd N , N − 1 is even and the folding of the SO(N − 1) algebra is again done.
In that case, analogously to the case of the Lorentz group, the characters become

χC
−

SO(2r),u(y) = χSp(2r−2),u(ỹ) =
r−1∑
i=1

(
yi + y−1

i

)
, (2.33)

and the partition function again breaks up into odd and even powers in the PE as

ZC
−(u, p, x, y) = exp

( ∞∑
r=1

1
2ru

2rχu(p2r, x2r, ȳ2r)

+
∞∑
r=1

1
2r − 1u

2r−1χC
−

u (p2r−1, x2r−1, ỹ2r−1)
)
, (2.34)

where

y = (y1, y2, · · · , yr), ỹ = (y1, y2, · · · , yr−1), ȳ = (y1, y2, · · · , yr−1, 1). (2.35)

Now the Hilbert series for even-internal parity operators is given by

HC-even = 1
2
(
HC+ + HC−)

, (2.36)

whereas the odd-internal parity case is the compliment

HC-odd = 1
2
(
HC+ −HC−)

. (2.37)

The combination of P+C+, P−C+, P+C−, P−C− is thus straightforward and in particular,
the Hilbert series of the 4 types are given as

type 1 : HP -even,C-even = 1
4
(
HP+C+ + HP+C− + HP−C+ + HP−C−)

, (2.38)

type 2 : HP -odd,C-even = 1
4
(
HP+C+ + HP+C− −HP−C+ −HP−C−)

, (2.39)

type 3 : HP -even,C-odd = 1
4
(
HP+C+ −HP+C− + HP−C+ −HP−C−)

, (2.40)

type 4 : HP -odd,C-odd = 1
4
(
HP+C+ −HP+C− −HP−C+ + HP−C−)

. (2.41)

A nontrivial check for the representation theory to be correct, is that all coefficients of all
four types of Hilbert series must be positive integers. Notice that although the coefficients
of HP+C− , HP−C+ and HP−C− also must be integer, they are not necessarily positive.
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2.2 The exceptional Hilbert series

We still have to address the operators that are not taken correctly into account by H0 and
are represented in eq. (2.1) by ∆H. Let us briefly review the argument [24]. The number of
operators that we would like to count is

#(ops) = #(Λ0)−#(Λ0
co-exact), (2.42)

where the co-exact 0-forms are all the 1-forms that are not co-closed:

#(Λ0
co-exact) = #(Λ1)−#(Λ1

co-closed, but not co-exact)−#(Λ1
co-exact), (2.43)

where Λk are k-forms and #(X) means the number of the object X. Iterating the forms up
to co-exact (d− 1)-forms, we have

#(ops) =
d∑

k=0
(−1)k#(Λk) +

d∑
k=1

(−1)k+1#(Λkco-closed, but not co-exact), (2.44)

where the first sum is H0 in (2.1) and the last is ∆H.
∆H consists of operators that are co-closed, but not co-exact forms, which is differential

geometric language for operators
δω = 0, (2.45)

where ω ∈ Λr cannot be written as δλ, for any λ, and δ is the coderivative δ = (−1)D(r+1)+1∗
d∗, defined in terms of the exterior derivative and the Hodge star operation. Clearly δ2 = 0,
since d2 = 0 by antisymmetry of differential forms and δ2 = ∗ d∗∗ d∗ = (−1)r(D−r)∗d2∗ = 0,
where we have used that ∗2 = (−1)r(D−r) in D-dimensional Euclidean space for an r-form.
In components, an r-form, ω ∈ Λr,

ω = 1
r!ωµ1µ2···µr dxµ1 ∧ dxµ2 ∧ · · · ∧ dxµr , (2.46)

acted on by the coderivative

δω = (−1)r(r−1)−1 1
(r − 1)!∂νωνµ1···µr−1 dxµ1 ∧ · · · ∧ dxµr−1 , (2.47)

is simply the divergence of the tensor.
We will now present a conjecture, which is an adaptation of that of ref. [24] to the

O(N) model. In addition to the arguments presented there, we point out that the Poincaré
lemma tells us that all co-closed forms are also co-exact; the exceptions are those cases
where the co-exact forms can only be written using field redefinitions. We do not have a
rigorous proof of there being no further exceptions.

Conjecture 1 The only co-closed, but not co-exact forms that will contribute to the Hilbert
series in the SO(N) nonlinear sigma model are given by

∗ (∧N−1u), ∗1, (2.48)

with contribution to the exceptional Hilbert series ∆H of eq. (2.1):

∆H = (−1)D−NpD−N+1uN−1 + (−1)D+1pD. (2.49)
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The only possible operators that correspond to the above differential forms, that are
SO(N − 1)-invariant (H-invariant) are given by

εa1a2···aN−1εµ1µ2···µN−1µN ···µDua1
µ1u

a2
µ2 · · ·u

aN−1
µN−1 dxµN ∧ · · · ∧ dxµD , N ≤ D + 1, (2.50)

which we can see is co-closed by the fact that the EOM constraint δu = 0 vanishes. This
form is not co-exact, since there are no form whose divergence yields the antisymmetric
product of only us.

First let us note that all co-closed forms are also co-exact by the Poincaré lemma on
RD and by using duality. That is

∗ d ∗ u = 0, ⇒ d ∗ u = 0, (2.51)

and therefore ∗u is closed. By the Poincaré lemma on Euclidean space, we can always write

∗u = d(∗λ). (2.52)

Taking the Hodge dual of the above, we have that u = δλ up to a sign. Although this
is always true by de Rham cohomology theory, the obstruction in our case of counting
operators, is that we only allow for δu = 0 as a field redefinition (recall that taking into
account the lowest-order EOM corresponds to taking into account field redefinitions). For
instance, the (gauge variant) 1-form u can geometrically be written as the divergence of
a 2-form u = δλ, but that would require a change of variables and we have defined the
Hilbert series counting scheme as counting only us and ds. The exception is thus that all
r-forms that do not contain derivative operators, cannot be co-exact. These are

∗ 1, ∗u, ∗(u ∧ u), · · · , ∗(u ∧ · · · ∧ u), (2.53)

with a maximum of D or N − 1 us. However, only the terms with 0 and N − 1 us are
H-invariant. Finally, the volume form is not co-exact, since there exist no (D + 1)-forms.

2.3 Results

We now implement the Hilbert series in a Mathematica notebook as well as in FORM
and obtain results in agreement with each other as well as in agreement with the explicit
construction method, discussed in the next section. The total number of operators in a
minimal basis of operators of dimension nd for the G = SO(N) nonlinear sigma model in D
Euclidean dimensions, are presented for3 type 1 in tables 1 and 10, for type 2 in tables 3
and 11–12, for type 3 in tables 5 and 13–14 and for type 4 in tables 7–8 and 15–17. We
have calculated the Hilbert series results for nd up to 16 with D and N up to 12.

An advantage of the Hilbert series method, as can be seen from the tables, is that the
results can be obtained for larger operator dimension nd and larger N and D, with respect
to running time and memory consumption of a PC, as compared to the explicit construction
method. The implementation of the Hilbert series method is also straightforward, especially

3The types are defined in eqs. (2.38)–(2.41).
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if only the total number of operators is required; whereas splitting the series into type 1
through 4 requires a more complicated implementation, as described in section 2.1.

An advantage of the explicit construction method over the Hilbert series method, is
that it is more clear which combinations of nd, D and N must vanish for types 2 through 4
and it is clear that the number of operators of type 1 saturates in number for sufficiently
large D and sufficiently large N . From the Hilbert series method, this effect is observed
from the results, but is less clear from the formulae.

The version of the Hilbert series method utilized here is based on differential forms
and the exceptional Hilbert series consists by definition of only co-closed, but not co-exact
forms. In ref. [29], it was conjectured that the only contributions to ∆H were given by
the forms of the type discussed in section 2.2. Although we have not given a proof of this
conjecture, we confirm it for all the operators that are computed by both the Hilbert series
method and the explicit construction method, which are type 1 operators with nd up to 12
and types 2 through 4 operators with nd up to 10.

3 Explicit construction

This is the method traditionally used in the EFT community.
In this section we use a vector rather than the generator notation used in the previous

section. For transformations g ∈ (S)O(N), we introduce a real vector field of size N ,
Φ (column vector). Spontaneous symmetry breaking is implemented by the requirement
ΦTΦ = 1. Transformation under the full symmetry G is Φ→ gΦ.

Assuming that we choose Φ such that its vacuum expectation value is: ΦT = (1, 0, . . . , 0)
a general parametrization of Φ in terms of an N − 1 column vector φ is

Φ =

√1−
(
f

(
φTφ

F 2

))2 φTφ

F 2 , f

(
φTφ

F 2

)
φT

F

 . (3.1)

Φ transforms as expected under (S)O(N). The function f(x) is real and analytic and
satisfies f(0) = 1. This parametrization has (S)O(N − 1) as an explicit symmetry via
φ→ hφ with h ∈ (S)O(N−1). Varying the choice of f(x) has been used in several papers as
a check on explicit calculations, see e.g. [39–41]. The field φ and the constant F are chosen
to have dimension D/2, so φ is conventionally normalized and Φ is dimensionless. This
construction is fully equivalent to the general method of [36, 37] used in the previous section.

We denote the group index here by letters a, b, c, . . . running from 1 to N and spacetime
or Lorentz indices by µ, ν, ρ, . . . running from 0 to D − 1. No other types of indices appear.
For group indices we will use an index free notation as much as possible. Lorentz indices
we will always indicate explicitly.

Invariants can be produced by contracting indices or by contracting them with a group
or Lorentz Levi-Civita tensor. Given that the product of two Levi-Civita tensors with
indices of the same type can be rewritten in terms of Kronecker deltas, we need only to
consider at most one of each in constructing invariants. So there exists four types of terms:

1. Containing pairs of Lorentz-indices via ∂µ∂µ and pairs of O(N) indices via Φ(1)
a Φ(2)

a ;
even under parity and intrinsic parity. These are type 1 of eq. (2.38).
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2. In addition to the content of the first type, also one εµ1...µD∂µ1 . . . ∂µD ; odd under
parity, even under intrinsic parity. These are type 2 of eq. (2.39).

3. In addition to the content of the first type, also one εa1...aN Φ(1)
a1 . . .Φ

(N)
aN ; even under

parity, odd under intrinsic parity. These are type 3 of eq. (2.40).

4. In addition to the content of the first type, one of εµ1...µD∂µ1 . . . ∂µD and one of
εa1...aN Φ(1)

a1 . . .Φ
(N)
aN ; odd under parity and intrinsic parity. These are type 4 of

eq. (2.41).

The partial derivatives can act on any object. Φ(i) indicates an object transforming under
(S)O(N) as Φ. The four types are distinguished by parity and intrinsic parity as indicated.

In the remainder we know that Lorentz indices are always contracted between one
lower and one upper index so we ignore the distinction in the notation. We also introduce
the notation4

∂µ1 . . . ∂µnΦa ≡ Φa;µ1...µn , (3.2)
Φa;µ1...µnΦa;ν1...νm ≡ ΦT

µ1...µn
Φν1...νm = fµ1...µn;ν1...νm , (3.3)

εa1...aN Φ
a1;µ(1)

1 ...
. . .Φ

aN ;µ(N)
N ...

≡ g
µ

(1)
1 ...;...;µ(N)

N ...
. (3.4)

This allows us to write Lagrangians without explicit group indices.
The lowest order, two derivatives, Lagrangian is given by

L2 = F 2

2 ∂µΦT∂µΦ = F 2

2 fµ;µ. (3.5)

For the case D = 2, N = 3 there exists one more term with two derivatives, i.e. the pullback
of the area form on S2 by Φ:

Ltopo = ctopoεµνg ;µ;ν = ctopoεµνε
abcΦaΦb;µΦc;ν . (3.6)

It is a topological term, somewhat similar to Chern-Simons, but different because Φ is
not a spacetime vector, but an SO(N) vector. This term is often integrated (with proper
normalization by the volume of the 2-sphere) to count the number of lumps or vortices in
S2 or CP 1 models [42].

Terms in the Lagrangian are related by many things:

1. Partial derivatives commute.

2. The fields Φ also commute.

3. ΦTΦ = 1 has many consequences obtained from derivatives acting on ΦTΦ = 1.

4. A total derivative does not contribute, i.e. terms related via partial integration are
the same.

4f is not be confused with function f in the general parametrization of eq. (3.1).
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5. Field redefinitions respecting the symmetry can be used to remove terms, alternatively
the lowest order equation of motion can be used to find which terms can be removed
that way.

6. Schouten identities I: in D dimensions there is no fully antisymmetric combination of
D + 1 different Lorentz indices.

7. Schouten identities II: for O(N) there is no fully antisymmetric combination of N + 1
different flavor indices.

8. For a given value of N there are additional consequences of ΦTΦ = 1. These are
derived in section 3.1.

In explicitly constructing Lagrangians it is not easy to know if one has included all possible
symmetry constraints, the comparison with the Hilbert series is very useful for knowing the
Lagrangian is really minimal.

Field redefinitions: assume a small variation Ψ. It should have the same transformations
under all symmetries as Φ. It can be considered general for deriving the lowest order
equations of motion or can be restricted to containing derivatives and factors of Φ such
that it vanishes for φ = 0 and has at least one derivative. In that case it be considered as a
field redefinition only affecting higher-order Lagrangians.

The transformations

Φ→ Φ + Ψ√
1 + 2ΦTΨ + ΨTΨ

≈ Φ + Ψ− ΦΦTΨ + · · · (3.7)

are thus the most general field redefinitions consistent with the constraints.
The lowest-order equation of motion (EOM) can be derived from (3.5) using (3.7) or

using the Euler-Lagrange equations:

∂2Φ + Φ∂µΦT∂µΦ = 0. (3.8)

The EOM of (3.8) is an N -component equation but applying ∂2 to ΦTΦ = 1 leads to
the relation

ΦT
(
∂2Φ + Φ∂µΦT∂µΦ

)
= 0, (3.9)

so that there only N − 1 independent equations.
The variation of the LO Lagrangian under (3.7) is

δL2 = ∂µΦT∂µΨ− ∂µΦT∂µΦ∂ΦTΨ + . . . = −
(
∂2Φ− ∂µΦT∂µΦ Φ

)T
Ψ + · · · , (3.10)

where we used ΦT∂µΦ = 0, which is a consequence of ΦTΦ = 1, and partial integration. By
choosing Ψ appropriately one can recursively remove higher-order terms that contain the
equation of motion. The other terms are of order Ψ2 and higher order than the term shown.
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3.1 Extra relations

Let us look at the N ×N matrix, with rows labeled by an index k referring to which of
a set of N Lorentz indices µi a derivative is taken with, and the column by which of the
components of Φ is used:

det


∂µ1Φ1 . . . ∂µ1ΦN

...
...

∂µN Φ1 . . . ∂µN ΦN

 = εi1...iN εb1...bN∂µi1
Φb1 . . . ∂µiN

ΦbN
= 0. (3.11)

That the determinant vanishes can be proven from the relation ΦTΦ = 1 which gives
Φ1 =

√
1−∑i=2,N Φ2

i . With that the determinant in (3.11) becomes (pulling out an
overall factor)

−1√
1−∑i=2,N Φ2

i

det


∑
i=2,N Φi∂ν1Φi ∂ν1Φ2 . . . ∂ν1ΦN

...
...

...∑
i=2,N Φi∂νN Φi ∂νN Φ2 . . . ∂νN ΦN

 . (3.12)

The first column is a linear combination of the remaining columns so the determinant
vanishes. Note that the determinant vanishes independent of the dimension, it does not
require D = N . The Levi-Civita tensor refers to the numbering of the indices in the set {µi}.

In fact, at higher orders of derivatives there are more consequences of the identity
in (3.11). One can multiply it with anything that contains the same set of Lorentz indices
{µi} and possibly extra derivatives, as well as many more fields. In particular the square of
the determinant affects type 1 terms.

3.2 Some comments on the implementation

The implementation generates all possible terms using FORM [43], Python and a C++
implementation of Gaussian reduction using gmp [44].

The programs are written separately for each type but follow the same pattern.
First we generate all possible terms of a given type distributing derivatives in all possible

ways over the factors of Φ present. For each type and number of derivatives there is a
maximum number of Φ that need to be taken into account. At this stage we also use
ΦTΦ = 1 and ΦT∂µΦ = f ;µ = 0. This leaves us with a large number of terms, of which
many are still equivalent. As an example, take

ΦTΦµνρΦT
µΦνρ, ΦTΦµνρΦT

ν Φµρ and ΦTΦµνρΦT
ρ Φµν (3.13)

these are all the same term but letting a program automatically identify this does not
always work (i.e. FORM’s command renumber 1 together with nested symmetric functions
failed to see that these were equal.) This redundancy is removed by explicitly generating
all permutations of Lorentz indices from terms to check which others are generated and
removing them. By adding all permutations of Lorentz indices there will also be zeros
occurring. These are also kept track of at this stage.
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The second stage corresponds to generating all possible remaining relations. We
generate all terms containing two or more derivatives acting on ΦTΦ = 1, all possible total
derivatives (thus taking care of partial derivation), all terms containing the lowest order
equation of motion (thus taking care of possible field redefinitions5), all terms containing
the determinant (3.11) and all possible antisymmetric combinations of D+1 Lorentz-indices
and N + 1 flavor indices.

The third stage is then to take all these relations and remove redundant ones. This
is done by Gaussian elimination with a sparse matrix implementation in C++ and gmp.
The cases run are limited by the memory and running time (we have only run the cases
taking less than a day on a PC). Choosing which terms to eliminate is not unique. We
have preferentially eliminated terms with fewer factors of Φ and occurrences of ∂2.

3.3 Type 1 terms

These terms are even under parity and intrinsic parity. A number of general considerations
can be made before generating all possible terms and relations.

• Terms with only one ΦT
µ1...Φν1... can always have, by partial integration, all derivatives

moved to the same Φ and thus can be removed using field redefinitions.

• Since the Lorentz indices are contracted in pairs, nd must be even and we have nd/2
Lorentz indices.

• Since each pair ΦT
µ1...Φν1... must contain at least two derivatives, there are at most

nd/2 pairs of the form fµ1...;ν2... and we have thus at most nd/2 flavor indices.

• The determinant condition only applies if there are at least N different flavor indices
requiring nd/2 ≥ N . There must also be at least N different values for the derivatives
requiring nd/2 ≥ N and D ≥ N .

• As soon as each contracted Lorentz index pair can have a different spacetime direction,
no constraints from dimensionality of spacetime apply. This occurs for D ≥ nd/2 or
equivalently the Schouten constraints in Lorentz indices apply if nd/2 ≥ D + 1.

• The flavor Schouten constraints require nd/2 ≥ N + 1.

The results for the number of terms are shown in table 1. The requirements for the
last three constraints to appear are clearly visible in the pattern in the table.

We can also look at the Lagrangian terms that show up. At the four derivative level we
started with 10 terms after stage 1 and ended up in general with the two possible terms.6
For N = 2 the two terms are related and one can drop either of them.

To give an indication of the difficulty we give here the starting number of terms and
the final number. At the six derivative level we start with 48 terms after stage 1 and end
up with 5 terms in the general case. At the eight derivative level we start with 279 terms

5The exception is the D = 2, N = 3 case where the equation of motion not including the topological
term has been used.

6Known since a long time, see e.g. [3].
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nd D N #terms
2 ≥2 ≥2 1
4 ≥2 2 1

≥3 2
6 2 2 1

≥3 3
≥3 2 2

3 4
≥4 5

8 2 2 3
3 8
≥4 9

3 2 4
3 12
≥4 15

≥4 2 4
3 13
4 16
≥5 17

nd D N #terms
10 2 2 3

3 14
≥4 16

3 2 7
3 34
4 48
≥5 49

4 2 7
3 38
4 55
≥5 58

≥5 2 8
3 39
4 57
5 60
≥6 61

nd D N #terms
12 2 2 7

3 34
4 45
≥5 46

3 2 17
3 114
4 185
≥5 193

4 2 20
3 147
4 253
5 275
≥6 276

5 2 21
3 153
4 264
5 289
≥6 292

≥6 2 21
3 154
4 265
5 291
6 294
≥7 295

Table 1. Results for type 1 terms up to nd = 12 obtained both with the Hilbert series method and
with the explicit construction method. For an empty element, take the value above it in the same
column. nd must be even.

after stage 1 and end up with 17 terms in the general case. At the ten derivative level we
start with 1774 terms after stage 1 and end up with 61 terms in the general case. At the
twelve derivative level we start with 12872 terms after stage 1 and end up with 295 terms
in the general case.

The operators and for which cases they appear up to nd = 8 are shown in table 2 and
up to nd = 12 in the supplementary material file Lagrangiansfulltype1.txt.

3.4 Type 2 terms

These are terms where the group invariants are all of the type ΦT
ν1...Φ

µ1..., there is one factor
of εµ1...µD with associated derivatives and there are possibly extra pairs of derivatives with
contracted Lorentz indices.

A number of constraints can be immediately derived:

• Terms with only one ΦT
µ1...Φν1... can always have by partial integration all derivatives

moved to the same Φ and thus vanish since partial derivatives commute.
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nd operator present
2 fµ;µ all
4 fµ;µfν;ν all

fµ;νfµ;ν N ≥ 3
6 fµ;νρfν;µρ D ≥ 3 and N ≥ 3

fµ;νfµρ;νρ D ≥ 3 or N ≥ 3
fµ;µfν;νfρ;ρ D ≥ 3 and N ≥ 4
fµ;µfν;ρfν;ρ N ≥ 3
fµ;νfν;ρfρ;µ all

8 fµν;µρfσν;σρ D ≥ 3 and N ≥ 3
fµν;ρσfµν;ρσ N ≥ 3
fµν;ρσfµρ;νσ all
fµ;µfν;ρσfσ;νρ D ≥ 4 and N ≥ 4
fµ;νfρ;µρfσ;νσ D ≥ 3 and N ≥ 4
fµ;νfρ;µσfρ;νσ (D ≥ 3 and N ≥ 4) or (D ≥ 4 and N ≥ 3)
fµ;νfρ;µσfσ;νρ N ≥ 3
fµ;νfρ;ρfµσ;νσ D ≥ 3 and N ≥ 3
fµ;νfµ;νfρσ;ρσ D ≥ 3 and N ≥ 3
fµ;νfµ;ρfνσ;ρσ (D ≥ 2 and N ≥ 4) or D ≥ 3
fµ;νfρ;σfµν;ρσ N ≥ 3
fµ;νfρ;σfµρ;νσ all
fµ;µfν;νfρ;ρfσ;σ D ≥ 4 and N ≥ 5
fµ;µfν;νfρ;σfρ;σ D ≥ 3 and N ≥ 4
fµ;µfν;ρfρ;σfσ;ν N ≥ 3
fµ;νfµ;νfρ;σfρ;σ N ≥ 3
fµ;νfν;ρfρ;σfσ;µ all

Table 2. The operators of type 1 that form a minimal Lagrangian and when they appear. “and”
means both conditions need to be satisfied; “or” that one of them is sufficient. Brackets have their
usual logical meaning.

• For the Levi-Civita tensor to be fully used requires nd ≥ D to have at least D different
Lorentz indices.

• Lorentz invariance requires that nd −D is even since the derivatives not connected
to the Levi-Civita tensor must be contracted in pairs. There are D + (nd − D)/2
different Lorentz indices.

• The derivatives corresponding to εµ1...µD must all act on different Φ since partial
derivatives commute. There are thus at least D Φ around. There must be extra
derivatives around since ΦT

µ1Φµ2 is symmetric in µ1 ↔ µ2 and ΦTΦµ1 = 0. This
requires nd ≥ D + 2 for D ≤ 4, nd ≥ D + 4 for 5 ≤ D ≤ 8, nd ≥ D + 6 for
9 ≤ D ≤ 12,. . .
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nd D N #terms
2 all all 0
3 all all 0
4 all all 0
5 3 2 0

≥3 1
≥5 all 0

6 all all 0
7 3 2 0

≥3 3
≥5 all 0

8 2 2 1
≥3 2

4 2 0
3 1
≥4 2

≥6 all 0
9 3 2 2

3 11
≥4 15

≥5 all 0

nd D N #terms
10 2 2 1

≥ 3 5
4 2 0

3 7
4 14
≥5 15

≥6 all 0
11 3 2 3

3 42
4 63

≥ 5 64
5 ≤ 3 0

4 7
≥ 5 8

7 ≤ 4 0
≥ 5 1

≥ 9 all 0

nd D N #terms
12 2 2 3

3 17
≥ 4 22

4 2 1
3 48
4 115

≥ 5 125
6 ≤ 3 0

4 5
≥ 5 10

≥ 8 all 0

Table 3. Results for type 2 terms, obtained with both the explicit construction method and the
Hilbert series method up to nd = 10 and only with the Hilbert series method for nd = 11, 12. For
an empty column, take the value above it. Many of the zeros are explained by the arguments in the
text. Note that nd −D must be even.

• Since each pair ΦT
µ1...Φν1... must contain at least two derivatives, there are at most

nd/2 pairs of the form fµ1...;ν2... and we have thus at most nd/2 flavor indices. The
actual maximum number is lower because of the argument in the previous item.

• The Schouten identity in Lorentz indices needs at least D+ 1 different Lorentz indices
or applies if nd − 2 ≥ D.

• The Schouten identity in flavor indices requires N + 1 different flavor indices and thus
applies for nd/2 ≥ N + 1.

The results for the total number of terms are given in table 3. Note that the patterns when
constraints apply and the zeros following from the above arguments are clearly visible.

A choice of operators that form a minimal basis is given in table 4 for nd ≤ 8 and up
to nd = 10 in the supplementary material file Lagrangiansfulltype2.txt.

3.5 Type 3 terms

These are the terms containing one εa1...aN . There are a number of immediate observations:

• Terms with at most two Φa;µ1... can always have by partial integration all derivatives
moved to the same Φ and thus can be removed using field redefinitions.
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nd D operator present
5 3 εµρσfµ;νfρ;νσ N ≥ 3
7 3 εµντfµ;νρfρσ;στ N ≥ 3

εµστfµ;νfν;ρfσ;ρτ N ≥ 3
εµρτfµ;νfρ;σfν;στ N ≥ 3

8 2 εµσfµ;νfρ;νσfτ ;ρτ N ≥ 2
εµτfµ;νfρ;σfνρ;στ N ≥ 3

4 εµρταfµ;νfρ;νσfτ ;τα N ≥ 4
εµρταfµ;νfρ;σfντ ;σα N ≥ 3

Table 4. The operators of type 2 that form the minimal Lagrangians and when they appear.

• Since the Lorentz indices are contracted in pairs, nd must be even and we have nd/2
Lorentz indices.

• The N Φa;µ1... contracted with εa1...aN must all have different combinations of deriva-
tives operating on it. It can have no derivatives, one from each contracted indices
and then the remaining ones can be pairs from the remaining derivatives. This
requires 1 + (nd/2) + [nd/4] ≥ N . The same argument but using different values of
the spacetime index requires 1 +D+D(D+ 1)/2 ≥ N , but for large values of nd also
three and more derivatives become allowed so the constraint on D is not universally
valid.

• Extra pairs of ΦT
µ1...Φν1... can be present if the number of derivatives is sufficiently much

larger than N . The parts contracted with εa1...aN require at least N − 1 derivatives
so there are at most [(nd − N + 1)/2] extra ΦTΦ pairs. There are thus at most
N + [(nd −N + 1)/2] flavor indices and at least N .

• The determinant condition requires at least N flavor indices and D ≥ N and nd/2 ≥ N
to be present.

• The Schouten identity in Lorentz indices requires nd/2 ≥ D + 1 to be present.

• The Schouten identity in flavor requires at least N + 1 different flavor indices and
thus implies [(nd −N + 1)/2] ≥ 1.

Results for the number of terms are given in table 5 and the minimal Lagrangians in
table 6 up to nd = 8. The terms up to nd = 10 are given in the supplementary material file
Lagrangiansfulltype3.txt.

3.6 Type 4 terms

These are the terms containing one εµ1...µD with associated derivatives and one εa1...aN with
associated factors of Φai;µ1.... They are odd under parity and intrinsic parity.

There are a number of immediate observations:

• nd−D must be even since the Lorentz indices not connected to εµ1...µD are contracted
in pairs. The number of different Lorentz indices is D + (nd −D)/2 = (nd +D)/2
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J
H
E
P
0
5
(
2
0
2
3
)
0
6
1

nd D N #terms
2 all all 0
4 all all 0
6 2 2 0

3 0
4 1
5 1
≥6 0

≥3 2 0
3 0
4 1
5 1
≥6 0

8 2 2 0
3 1
4 2
5 1
≥6 0

3 2 0
3 2
4 4
5 2
≥6 0

≥4 2 1
3 2
4 4
5 2
≥6 0

nd D N #terms
10 2 2 0

3 4
4 9
5 5
≥6 0

3 2 2
3 14
4 24
5 14
6 3
≥7 0

≥4 2 3
3 16
4 27
5 17
6 4
≥7 0

12 2 2 3
3 15
4 21
5 10
6 1

≥ 7 0
3 2 8

3 69
4 121
5 79
6 22
7 3
8 1

≥ 9 0

nd D N #terms
12 4 2 12

3 91
4 160
5 116
6 40
7 7
8 2
9 1

≥ 10 0
5 2 12

3 94
4 165
5 120
6 41
7 7
8 2
9 1

≥ 10 0
≥ 6 2 13

3 94
4 165
5 120
6 41
7 7
8 2
9 1

≥ 10 0

Table 5. Results for type 3 terms, obtained with both the explicit construction method and the
Hilbert series method up to nd = 10 and only with the Hilbert series method for nd = 12. For an
empty column take the value above it. nd must be even.
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nd N operators present
6 4 g ;µ;ν;µρfν;ρ D ≥ 2

5 g ;µ;ν;µρ;νρ D ≥ 2
8 2 g ;µν;fρ;σfµρ;νσ D ≥ 4

3 g ;µ;νρfν;σfµ;ρσ D ≥ 3
g ;µ;νρfν;σfρ;µσ D ≥ 2

4 g ;µ;ν;µρfνσ;ρσ D ≥ 3
g ;µ;νρ;νσfρ;µσ D ≥ 2
g ;µ;ν;µρfρ;σfν;σ D ≥ 2
g ;µ;ν;ρfµ;σfν;ρσ D ≥ 3

5 g ;µ;ν;µρ;ρσfν;σ D ≥ 2
g ;µ;ν;ρ;µσfν;ρσ D ≥ 3

Table 6. The operators of type 3 that form a minimal Lagrangian and when they appear.

• nd ≥ D since εµ1...µD must all have different derivatives.

• The εa1...aN flavor indices must all be connected to different Φa;µ.... Using the same
argument as for type 3 terms this leads to 1 + (nd +D)/2 + [(nd +D)/4] ≥ N , again
not valid for large nd when also three derivatives can act on the same Φ. It also
requires nd ≥ N − 1.

• At least N − 1 derivatives are needed for the Φa connected to εa1...aN , so there are
at most [(nd − N + 1)/2] extra pairs of ΦT

µ...Φν... present and hence the maximum
number of flavor indices is N + [(nd −N + 1)/2].

• The determinant constraint is present for D ≥ N .

• The Schouten identity for Lorentz indices requires D + 1 different Lorentz indices, so
it is present for nd ≥ D + 2.

• The Schouten identity for flavor indices requires N + 1 different flavor indices, so it is
present for [(nd −N + 1)/2] ≥ 1.

The results for the number of terms are shown in tables 7 and 8.
The operators of type 4 are different for each case of D and N . They are listed in

table 9 up to nd = 8. The operators up to nd = 10 are given in the supplementary material
file Lagrangiansfulltype4.txt.

For nd = D ones sees that there is only a term existing for N = D + 1. This can be
proven as follows: for nd = D all derivatives must be coupled to εµ1...µD . So each Φa can
have at most one derivative acting on it because of the antisymmetry. In addition ΦT

µi
Φmuj

also vanishes, implying that all Φa;µi must be connected to εa1...aN . This leaves only two
possible terms εµ1...µDgµ1;...;µD for N = D and εµ1...µDg;µ1;...;µD for N = D + 1. The first
case is a total derivative and as such does not contribute leaving only the second term.
That this occurs is in fact a check on both the explicit construction of the Lagrangians and
on the programs.
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E
P
0
5
(
2
0
2
3
)
0
6
1

nd D N #terms
2 2 2 0

3 1
≥4 0

≥3 ≥2 0
3 3 ≤3 0

4 1
≥5 0

≥4 ≥2 0
4 2 2 0

3 1
≥4 0

4 ≤4 0
5 1
≥6 0

≥ 5 ≥2 0
5 3 ≤3 0

4 1
≥5 0

5 ≤5 0
6 1
≥7 0

≥7 ≥2 0
6 2 2 0

3 2
4 1
≥5 0

4 ≤4 0
5 1
≥6 0

6 ≤6 0
7 1
≥8 0

≥8 ≥2 0

nd D N #terms
7 3 ≤ 3 0

4 4
5 2
≥6 0

5 ≤5 0
6 1
≥7 0

7 ≤7 0
8 1
≥9 0

≥9 ≥2 0
8 2 2 0

3 5
4 2
≥5 0

4 ≤4 0
5 4
6 2
≥7 0

6 ≤6 0
7 1
≥9 0

8 ≤8 0
9 1

≥10 0
≥10 ≥2 0

nd D N #terms
9 3 2 0

3 4
4 15
5 8
≥6 0

5 2 0
3 1
4 0
5 0
6 4
7 2
≥8 0

7 ≤7 0
8 1
≥9 0

9 ≤9 0
10 1
≥11 0

≥11 ≥2 0

Table 7. Results for the number of terms of type 4, obtained with both the explicit construction
method and the Hilbert series method. For an empty column take the value above it. nd −D must
be even.
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nd D N #terms
10 2 2 0

3 11
4 9
5 1
≥6 0

4 2 1
3 3
4 11
5 20
6 9
≥7 0

6 ≤3 0
4 1
5 0
6 0
7 4
8 2
≥9 0

8 ≥8 0
9 1

≤10 0
10 ≤10 0

11 1
≥11 0

≥ 12 all 0

nd D N #terms
11 3 2 0

3 25
4 65
5 39
6 5

≥ 7 0
5 2 0

3 5
4 7
5 13
6 22
7 10

≥ 8 0
7 ≤ 4 0

5 1
6 0
7 0
8 4
9 2

≥ 10 0
9 ≤ 9 0

10 1
≥ 11 0

11 ≤ 11 0
12 1

≥ 13 0
≥ 13 all 0

nd D N #terms
12 2 2 3

3 27
4 21
5 4
6 1
7 1

≥ 8 0
4 2 2

3 37
4 99
5 126
6 66
7 10

≥ 8 0
6 2 0

3 1
4 8
5 8
6 13
7 22
8 10

≥ 9 0
8 ≤ 5 0

6 1
7 0
8 0
9 4

10 2
≥ 11 0

10 ≤ 10 0
11 1
12 0

12 ≤ 12 0
13 1

≥ 14 0
≥ 14 all 0

Table 8. Results for the number of terms of type 4, obtained with both the explicit construction
method and the Hilbert series method for nd = 10 and only with the Hilbert series method for
nd = 11, 12. For an empty column take the value above it. nd −D must be even.
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nd D N operators
2 2 3 εµνg ;µ;ν
3 3 4 εµνρg ;µ;ν;ρ
4 2 3 εµνg ;µ;νfρ;ρ

4 5 εµνρσg ;µ;ν;ρ;σ
5 3 4 εµνρg ;µ;ν;ρfσ;σ

5 6 εµνρστg ;µ;ν;ρ;σ;τ
6 2 3 εµνg ;µ;νfρ;ρfσ;σ

εµνg ;µ;νfρ;σfρ;σ
4 εµνg ;µ;ν;ρσfρ;σ

4 5 εµνρσg ;µ;ν;ρ;σfτ ;τ
6 7 εµνρσταg ;µ;ν;ρ;σ;τ ;α

7 3 4 εµστg ;µ;νρ;νσfρ;τ
εµρτg ;µ;νρ;στfν;σ
εµνρg ;µ;ν;ρfσ;σfτ ;τ
εµνρg ;µ;ν;ρfσ;τfσ;τ

5 εµστg ;µ;νρ;νσ;ρτ
εµνρg ;µ;ν;ρ;στfσ;τ

5 6 εµνρστg ;µ;ν;ρ;σ;τfα;α
7 8 εµνρσταβg ;µ;ν;ρ;σ;τ ;α;β

nd D N operators
8 2 3 ενσg ;µν;ρσfµτ ;ρτ

εµρg ;µ;νρfσ;τfν;στ
ενσg ;µν;ρσfµ;τfρ;τ
εµνg ;µ;νfρ;ρfσ;τfσ;τ
εµνg ;µ;νfρ;σfσ;τfτ ;ρ

4 εµρg ;µ;νρ;στfν;στ
εµνg ;µ;ν;στfρ;τfσ;τ

4 5 εµνταg ;µ;ν;ρσ;ρτfσ;α
εµνσαg ;µ;ν;ρσ;ταfρ;τ
εµνρσg ;µ;ν;ρ;σfτ ;τfα;α
εµνρσg ;µ;ν;ρ;σfτ ;αfτ ;α

6 εµνταg ;µ;ν;ρσ;ρτ ;σα
εµνρσg ;µ;ν;ρ;σ;ταfτ ;α

6 7 εµνρσταg ;µ;ν;ρ;σ;τ ;αfβ;β
8 9 εµνρσταβγg ;µ;ν;ρ;σ;τ ;α;β;γ

Table 9. The operators of type 4 for the minimal Lagrangians. Note that only cases where there is
at least one term in the Lagrangian are given.

Note that there is another clear pattern visible also for nd = D+ 2. Only for N = D+ 1
there exists a term and it is of the form εµ1...µDg ;µ1;...;µDfν;ν . For this we only have a partial
proof. The requirement of nd ≥ N − 1 implies that no terms exists for N ≥ D + 3. For
N = D + 2 only one term is not obviously zero or removable by field redefinitions, it is
εµ1...µDg ;µ1;...;µD−1;µDν;ν . This term is related to terms removable by a field redefinition by
partial integration on the ν in µDν. The maximum number of derivatives that can act on
Φ not connected to εa1...aN is of the form ΦT

µ1Φνµ2ΦT
µ3Φνµ4 allowing N = D− 4 with a term

of the form gµ5;...;µD ΦT
µ1Φνµ2ΦT

µ3Φνµ4 which is a total derivative. This proves that there are
no terms for N ≤ D − 4. We have no proof for the remaining 5 cases of N .

Note that the results of the Hilbert series also live up to these patterns.

4 Conclusions

In this paper, we have found the operators in a minimal basis for the O(N) nonlinear sigma
model using both the Hilbert series and explicit construction methods, for the operators
with mass dimension up to 16 in spacetime dimensions up to D = 12 and N up to 12. We
find total agreement between the results of the two different methods, both in numbers of
operators and forms of the operators.

We provide further evidence for the conjecture of ref. [24], that the exceptional Hilbert
series is described completely by the co-closed but not co-exact forms — of which there are
only two in the O(N) nonlinear sigma model, for given D, N and mass dimension nd.
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In addition in the explicit construction case we proved a number of general patterns
occurring in the type of operators.

It would be interesting to make similar considerations, as have been made in this paper,
in the CPN−1 nonlinear sigma model or in nonlinear sigma models on flag manifolds.
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A Characters

The dimension k character of the Lorentz group [24]

∞∑
k=0

pkχ(k,0,··· ,0) =
∞∑
k=0

pk
(
χsymk(�)(x)− p2χsymk(�)(x)

)
, (A.1)

is thus equal to the group character of the symmetric product of k derivatives (� refers to
the fundamental representation) with the contraction of two derivatives modded out. This
is how the lowest-order equation of motion is taken into account. More formally, this is due
to the conformal dimension of a scalar field saturating the unitarity bound and hence it
furnishes a short representation of the Lorentz group.

In order to arrive at the character for the vector representation, we notice that formally,
∂µφ transforms as a Lorentz vector and it is sufficient to remove the scalar component of
the single particle module. This is done by summing from k = 1 instead of k = 0:

∞∑
k=1

pkχ(k,0,··· ,0) =
∞∑
k=1

pk
(
χsymk(�)(x)− p2χsymk(�)(x)

)
= −1 +

∞∑
k=0

pk
(
χsymk(�)(x)− p2χsymk(�)(x)

)
= −1 + (1− p2)P+(p, x), (A.2)

which is the result of eq. (2.16). The momentum generating function P+(p, x) is defined as the
group character of the symmetric product of the fundamental representation. Considering
first even dimensional space, D = 2r, the diagonalization of an element h ∈ SO(2r) gives
the parametrization of the maximal torus

h = diag(x1, x
−1
1 , · · · , xr, x−1

r ), (A.3)
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and the symmetric product of k elements yields

χ
(2r)
symk(�)(x) =

∑
n1+n̄1+···+nr+n̄r=k

(x1)n1(x1)−n̄1 · · · (xr)nr (xr)−n̄r , ni, n̄i ∈ Z≥0 ∀i.

(A.4)
Performing the sum over k yields

P
(2r)
+ (p, x) =

∞∑
k=0

pkχ
(2r)
symk(�)(x) =

r∏
i=1

1
(1− pxi)(1− p/xi)

. (A.5)

For D = 2r + 1 the diagonalized element h ∈ SO(2r + 1) has the dimension one larger than
the even case, but the same number of Cartan generators (i.e. r), which means the maximal
torus can be parametrized as

h = diag(1, x1, x
−1
1 , · · · , xr, x−1

r ), (A.6)

and the symmetric product of k elements yields now

χ
(2r+1)
symk(�)(x) =

∑
n0+n1+n̄1+···+nr+n̄r=k

(1)n0(x1)n1(x1)−n̄1 · · ·(xr)nr (xr)−n̄r , ni, n̄i ∈Z≥0 ∀i.

(A.7)
Performing the sum over k yields

P
(2r+1)
+ (p, x) =

∞∑
k=0

pkχ
(2r+1)
symk(�)(x) = 1

1− p

r∏
i=1

1
(1− pxi)(1− p/xi)

. (A.8)

Finally, we have arrived at the result in eq. (2.17).
The group characters for SO(N − 1) are simpler, since they do not involve the infinite

possibilities provided by the single particle module, but are simply the group theoretic
characters. For N − 1 = 2r, we have that a diagonalized group element is given by eq. (A.3)
and hence the trace is given by

χH,u(y) =
r∑
i=1

(yi + y−1
i ), (A.9)

where we have replaced xi → yi due to the group being the internal symmetry group.
Likewise for the odd case, N − 1 = 2r + 1, we have the element of eq. (A.6) and hence
the trace

χH,u(y) = 1 +
r∑
i=1

(yi + y−1
i ). (A.10)

We thus arrive at the result of eq. (2.18).
Let us consider the case of negative (spacetime) parity in D = 2r dimensions. In this

case, we have to flip the last component of the vector representation. Therefore the maximal
torus is parametrized by

h = diag(x1, x
−1
1 , · · · , xr−1, x

−1
r−1, 1,−1). (A.11)
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Clearly the first (r − 1) elements give rise to P+(p, x) for D = 2(r − 1), whereas the latter
two elements give (1− p)−1 and (1 + p)−1:

P 2r
− (p,x) =

∞∑
k=0

pkχ
(2r),−
symk(�)(x)

=
∞∑

k=0
pk

∑
n1+n̄1+···+nr−1+n̄r−1+nr+n̄r=k

(x1)n1(x1)−n̄1 · · ·(xr−1)nr−1(xr−1)−n̄r−1(1)nr (−1)−n̄r

= 1
1−p

1
1+pP

2r−2
+ (p, x̃)

= 1
1−p2P

2r−2
+ (p, x̃), x̃= (x1,x2, · · · ,xr−1). (A.12)

This gives the result of eq. (2.26). Finally, the character function for the field u with parity
in D = 2r dimensions is obtained by taking into account an overall sign flip due to u being
in the vector representation:

χP
−

u (p, x, y) = −
[
(1− p2)P 2r

− (p, x)− 1
]
χH,u(y). (A.13)

We thus arrive at the result in eq. (2.27).

B Representations

In eq. (2.5), the field w transforms under the adjoint representation of H, but the field
u belongs to the coset space g/h. The adjoint representation splits under the symmetry
breaking G = O(N)→ H = O(N − 1) as

AdjN = AdjN−1 ⊕�N−1, (B.1)

or in the notation of dimensions
N(N − 1)

2 = (N − 1)(N − 2)
2 ⊕ (N − 1). (B.2)

It is thus clear that u transforms according to the vector representation of O(N − 1). An
explicit matrix realization of the symmetry transformation can be written out as(

0 φ

−φT 0

)
→
(
h 0
0 1

)(
0 φ

−φT 0

)(
hT 0
0 1

)

=
(

0 hφ

−φThT 0

)
. (B.3)

Since φ transforms according to a real representation, the two copies are identical. For
complex representations, the field u would transform under the �⊕� representation [36].

C Results for nd > 12

In this appendix, we show the results for the number of operators of type 1 for nd = 14, 16
in table 10, of type 2 for nd = 13, 14, 15, 16 in tables 11 and 12 of type 3 for nd = 14, 16 in
tables 13 and 14 of type 4 for nd = 13, 14, 15, 16 in tables 15, 16 and 17, all obtained by the
Hilbert series method.
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nd D N #terms
14 2 2 7

3 66
4 94

≥ 5 96
3 2 34

3 396
4 753
5 810

≥ 6 812
4 2 46

3 602
4 1260
5 1431

≥ 6 1441
5 2 50

3 647
4 1377
5 1589
6 1613

≥ 7 1614
6 2 50

3 652
4 1387
5 1604
6 1631

≥ 7 1634
≥ 7 2 51

3 653
4 1389
5 1606
6 1634
7 1637

≥ 8 1638

nd D N #terms
16 2 2 18

3 160
4 258

≥ 5 268
3 2 85

3 1454
4 3285
5 3690

≥ 6 3706
4 2 134

3 2744
4 7140
5 8640
6 8760

≥ 7 8762
5 2 149

3 3098
4 8325
5 10358
6 10611

≥ 7 10621

nd D N #terms
16 6 2 152

3 3150
4 8474
5 10590
6 10884
7 10908

≥ 8 10909
7 2 153

3 3156
4 8486
5 10607
6 10906
7 10933

≥ 8 10936
≥ 8 2 153

3 3157
4 8487
5 10609
6 10908
7 10936
8 10939

≥ 9 10940

Table 10. Results for type 1 terms with nd = 14, 16 obtained with the Hilbert series method. For
an empty element, take the value above it in the same column. nd must be even.
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nd D N #terms
13 2 ≥ 2 0

3 2 12
3 167
4 299

≥ 5 314
4 ≥ 2 0
5 2 0

3 21
4 109
5 139

≥ 6 140
6 ≥ 2 0
7 2 0

3 1
4 2
5 9

≥ 6 10
≥ 8 ≥ 2 0

nd D N #terms
14 2 2 3

3 41
≥ 4 58

3 ≥ 2 0
4 2 7

3 301
4 806
5 931

≥ 6 935
5 ≥ 2 0
6 2 0

3 9
4 80
5 144

≥ 6 151
7 ≥ 2 0
8 ≤ 4 0

5 1
≥ 6 3

≥ 9 ≥ 2 0

Table 11. Results for type 2 terms, obtained with the Hilbert series method for nd = 13, 14. For
an empty column, take the value above it. Many of the zeros are explained by the arguments in the
text. Note that nd −D must be even.
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nd D N #terms
15 2 ≥ 2 0

3 2 33
3 661
4 1400
5 1532

≥ 6 1534
4 ≥ 2 0
5 2 3

3 255
4 1146
5 1566

≥ 6 1599
6 ≥ 2 0
7 2 0

3 6
4 39
5 118
6 141

≥ 7 142
≥ 8 ≥ 2 0

nd D N #terms
16 2 2 11

3 117
4 191

≥ 5 194
3 ≥ 2 0
4 2 40

3 1784
4 5564
5 6870
6 6954

≥ 7 6955
5 ≥ 2 0
6 2 1

3 155
4 1081
5 1955
6 2109

≥ 7 2112
7 ≥ 2 0
8 2 0

3 1
4 9
5 46
6 79

≥ 7 82
≥ 9 ≥ 2 0

Table 12. Results for type 2 terms with nd = 15, 16, obtained with the Hilbert series method. For
an empty column, take the value above it. Many of the zeros are explained by the arguments in the
text. Note that nd −D must be even.
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nd D N #terms
14 2 2 3

3 39
4 70
5 38
6 4

≥ 7 0
3 2 20

3 305
4 603
5 439
6 157
7 33
8 5

≥ 9 0
4 2 32

3 478
4 1021
5 851
6 369
7 99
8 24
9 5

≥ 10 0

nd D N #terms
14 5 2 35

3 511
4 1098
5 931
6 415
7 116
8 29
9 6

≥ 10 0
≥ 6 2 36

3 514
4 1102
5 935
6 417
7 116
8 29
9 6

≥ 10 0

Table 13. Results for type 3 terms with nd = 14, obtained with the Hilbert series method. For an
empty column take the value above it. nd must be even.
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nd D N #terms
16 2 2 10

3 110
4 178
5 98
6 19
7 1

≥ 8 0
3 2 61

3 1261
4 2904
5 2410
6 1026
7 262
8 45
9 4

≥ 10 0
4 2 109

3 2434
4 6379
5 6201
6 3254
7 1082
8 261
9 48
10 4

≥ 11 0

nd D N #terms
16 5 2 121

3 2745
4 7413
5 7469
6 4103
7 1460
8 390
9 82

10 10
≥ 11 0

6 2 125
3 2786
4 7511
5 7595
6 4196
7 1497
8 401
9 86

10 11
≥ 11 0

nd D N #terms
16 7 2 125

3 2789
4 7516
5 7599
6 4197
7 1497
8 401
9 86
10 11

≥ 11 0
≥ 8 2 126

3 2789
4 7516
5 7599
6 4197
7 1497
8 401
9 86
10 11

≥ 11 0

Table 14. Results for type 3 terms for nd = 16, obtained with the Hilbert series method. For an
empty column take the value above it. nd must be even.
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nd D N #terms
13 3 2 5

3 130
4 297
5 204
6 53
7 7
8 2
9 1

≥ 10 0
5 2 1

3 38
4 105
5 154
6 160
7 76
8 10

≥ 9 0
7 ≤ 3 0

4 2
5 9
6 8
7 13
8 22
9 10

≥ 10 0
9 ≤ 6 0

7 1
8 0
9 0

10 4
11 2
12 0

11 ≤ 11 0
12 1

nd D N #terms
14 2 2 3

3 59
4 70
5 23
6 4
7 1

≥ 8 0
4 2 11

3 268
4 779
5 872
6 465
7 116
8 15
9 3

10 1
≥ 11 0

6 2 0
3 14
4 94
5 148
6 173
7 166
8 77
9 10

≥ 10 0

nd D N #terms
14 8 ≤ 4 0

5 2
6 9
7 8
8 13
9 22
10 10

≥ 11 0
10 ≤ 7 0

8 1
9 0
10 0
11 4
12 2

≥ 12 all 0

Table 15. Results for the number of terms of type 4 for nd = 13, 14, obtained with the Hilbert
series method. For an empty column take the value above it. nd −D must be even.
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nd D N #terms
15 3 2 21

3 579
4 1396
5 1095
6 389
7 82
8 17
9 2

≥ 10 0
5 2 5

3 310
4 1137
5 1616
6 1351
7 631
8 142
9 16
10 3
11 1
12 0

nd D N #terms
15 7 ≤ 3 0

4 42
5 123
6 157
7 175
8 168
9 78

10 10
≥ 11 0

9 ≤ 5 0
6 2
7 9
8 8
9 13

10 22
11 10
12 0

11 ≤ 8 0
9 1

10 0
11 0
12 4

Table 16. Results for the number of terms of type 4 for nd = 15, obtained with the Hilbert series
method. For an empty column take the value above it. nd −D must be even.
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nd D N #terms
16 2 2 10

3 142
4 178
5 73
6 19
7 5

≥ 8 0
4 2 44

3 1688
4 5426
5 6227
6 3648
7 1174
8 226
9 36
10 5

≥ 11 0
6 2 0

3 175
4 1126
5 1987
6 2102
7 1537
8 676
9 148
10 16
11 3
12 1

nd D N #terms
16 8 ≤ 3 0

4 4
5 52
6 128
7 158
8 175
9 168

10 78
11 10
12 0

10 ≤ 6 0
7 2
8 9
9 8

10 13
11 22
12 10

12 ≤ 9 0
10 1

≥ 11 0

Table 17. Results for the number of terms of type 4 for nd = 16, obtained with the Hilbert series
method. For an empty column take the value above it. nd −D must be even.
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D Explicit Hilbert series

The operators of types 1–4 obtained by the Hilbert series, are given by:

Hp=4,(1)
D=2,N=2 = u4, (D.1)

Hp=4,(1)
D=2,N=3 = 2u4, (D.2)

Hp=6,(1)
D=2,N=2 = u6, (D.3)

Hp=6,(1)
D=2,N=3 = D2u4 + 2u6, (D.4)

Hp=6,(1)
D=3,N=2 = D2u4 + u6, (D.5)

Hp=6,(1)
D=3,N=3 = 2D2u4 + 2u6, (D.6)

Hp=6,(1)
D=3,N=4 = 2D2u4 + 3u6, (D.7)

Hp=8,(1)
D=2,N=2 = D4u4 +D2u6 + u8, (D.8)

Hp=8,(1)
D=2,N=3 = 2D4u4 + 3D2u6 + 3u8, (D.9)

Hp=8,(1)
D=2,N=4 = 2D4u4 + 4D2u6 + 3u8, (D.10)

Hp=8,(1)
D=3,N=2 = D4u4 + 2D2u6 + u8, (D.11)

Hp=8,(1)
D=3,N=3 = 3D4u4 + 6D2u6 + 3u8, (D.12)

Hp=8,(1)
D=3,N=4 = 3D4u4 + 8D2u6 + 4u8, (D.13)

Hp=8,(1)
D=4,N=2 = D4u4 + 2D2u6 + u8, (D.14)

Hp=8,(1)
D=4,N=3 = 3D4u4 + 7D2u6 + 3u8, (D.15)

Hp=8,(1)
D=4,N=4 = 3D4u4 + 9D2u6 + 4u8, (D.16)

Hp=8,(1)
D=4,N=5 = 3D4u4 + 9D2u6 + 5u8, (D.17)

Hp=10,(1)
D=2,N=2 = D4u6 +D2u8 + u10, (D.18)

Hp=10,(1)
D=2,N=3 = D6u4 + 5D4u6 + 5D2u8 + 3u10, (D.19)

Hp=10,(1)
D=2,N=4 = D6u4 + 6D4u6 + 6D2u8 + 3u10, (D.20)

Hp=10,(1)
D=3,N=2 = D6u4 + 3D4u6 + 2D2u8 + u10, (D.21)

Hp=10,(1)
D=3,N=3 = 3D6u4 + 15D4u6 + 13D2u8 + 3u10, (D.22)

Hp=10,(1)
D=3,N=4 = 3D6u4 + 21D4u6 + 19D2u8 + 5u10, (D.23)

Hp=10,(1)
D=3,N=5 = 3D6u4 + 21D4u6 + 20D2u8 + 5u10, (D.24)

Hp=10,(1)
D=4,N=2 = D6u4 + 3D4u6 + 2D2u8 + u10, (D.25)

Hp=10,(1)
D=4,N=3 = 3D6u4 + 17D4u6 + 15D2u8 + 3u10, (D.26)

Hp=10,(1)
D=4,N=4 = 3D6u4 + 24D4u6 + 23D2u8 + 5u10, (D.27)

Hp=10,(1)
D=4,N=5 = 3D6u4 + 24D4u6 + 25D2u8 + 6u10, (D.28)

Hp=10,(1)
D=5,N=2 = D6u4 + 4D4u6 + 2D2u8 + u10, (D.29)

Hp=10,(1)
D=5,N=3 = 3D6u4 + 18D4u6 + 15D2u8 + 3u10, (D.30)

Hp=10,(1)
D=5,N=4 = 3D6u4 + 25D4u6 + 24D2u8 + 5u10, (D.31)

Hp=10,(1)
D=5,N=5 = 3D6u4 + 25D4u6 + 26D2u8 + 6u10, (D.32)

Hp=10,(1)
D=5,N=6 = 3D6u4 + 25D4u6 + 26D2u8 + 7u10, (D.33)
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Hp=12,(1)
D=2,N=2 = D8u4 + 2D6u6 + 2D4u8 +D2u10 + u12, (D.34)

Hp=12,(1)
D=2,N=3 = 2D8u4 + 8D6u6 + 13D4u8 + 7D2u10 + 4u12, (D.35)

Hp=12,(1)
D=2,N=4 = 2D8u4 + 11D6u6 + 18D4u8 + 10D2u10 + 4u12, (D.36)

Hp=12,(1)
D=2,N=5 = 2D8u4 + 11D6u6 + 19D4u8 + 10D2u10 + 4u12, (D.37)

Hp=12,(1)
D=3,N=2 = 2D8u4 + 6D6u6 + 6D4u8 + 2D2u10 + u12, (D.38)

Hp=12,(1)
D=3,N=3 = 4D8u4 + 33D6u6 + 54D4u8 + 19D2u10 + 4u12, (D.39)

Hp=12,(1)
D=3,N=4 = 4D8u4 + 48D6u6 + 91D4u8 + 35D2u10 + 7u12, (D.40)

Hp=12,(1)
D=3,N=5 = 4D8u4 + 48D6u6 + 97D4u8 + 37D2u10 + 7u12, (D.41)

Hp=12,(1)
D=4,N=2 = 2D8u4 + 8D6u6 + 7D4u8 + 2D2u10 + u12, (D.42)

Hp=12,(1)
D=4,N=3 = 4D8u4 + 43D6u6 + 74D4u8 + 22D2u10 + 4u12, (D.43)

Hp=12,(1)
D=4,N=4 = 4D8u4 + 62D6u6 + 133D4u8 + 47D2u10 + 7u12, (D.44)

Hp=12,(1)
D=4,N=5 = 4D8u4 + 62D6u6 + 146D4u8 + 54D2u10 + 9u12, (D.45)

Hp=12,(1)
D=4,N=6 = 4D8u4 + 62D6u6 + 146D4u8 + 55D2u10 + 9u12, (D.46)

Hp=12,(1)
D=5,N=2 = 2D8u4 + 8D6u6 + 8D4u8 + 2D2u10 + u12, (D.47)

Hp=12,(1)
D=5,N=3 = 4D8u4 + 44D6u6 + 79D4u8 + 22D2u10 + 4u12, (D.48)

Hp=12,(1)
D=5,N=4 = 4D8u4 + 63D6u6 + 141D4u8 + 49D2u10 + 7u12, (D.49)

Hp=12,(1)
D=5,N=5 = 4D8u4 + 63D6u6 + 155D4u8 + 58D2u10 + 9u12, (D.50)

Hp=12,(1)
D=5,N=6 = 4D8u4 + 63D6u6 + 155D4u8 + 60D2u10 + 10u12, (D.51)

Hp=12,(1)
D=6,N=2 = 2D8u4 + 8D6u6 + 8D4u8 + 2D2u10 + u12, (D.52)

Hp=12,(1)
D=6,N=3 = 4D8u4 + 44D6u6 + 80D4u8 + 22D2u10 + 4u12, (D.53)

Hp=12,(1)
D=6,N=4 = 4D8u4 + 63D6u6 + 142D4u8 + 49D2u10 + 7u12, (D.54)

Hp=12,(1)
D=6,N=5 = 4D8u4 + 63D6u6 + 156D4u8 + 59D2u10 + 9u12, (D.55)

Hp=12,(1)
D=6,N=6 = 4D8u4 + 63D6u6 + 156D4u8 + 61D2u10 + 10u12, (D.56)

Hp=12,(1)
D=6,N=7 = 4D8u4 + 63D6u6 + 156D4u8 + 61D2u10 + 11u12, (D.57)

Hp=14,(1)
D=2,N=2 = D8u6 + 2D6u8 + 2D4u10 +D2u12 + u14, (D.58)

Hp=14,(1)
D=2,N=3 = D10u4 + 9D8u6 + 23D6u8 + 20D4u10 + 9D2u12 + 4u14, (D.59)

Hp=14,(1)
D=2,N=4 = D10u4 + 13D8u6 + 34D6u8 + 30D4u10 + 12D2u12 + 4u14, (D.60)

Hp=14,(1)
D=2,N=5 = D10u4 + 13D8u6 + 35D6u8 + 31D4u10 + 12D2u12 + 4u14, (D.61)

Hp=14,(1)
D=3,N=2 = D10u4 + 10D8u6 + 13D6u8 + 7D4u10 + 2D2u12 + u14, (D.62)

Hp=14,(1)
D=3,N=3 = 4D10u4 + 65D8u6 + 181D6u8 + 115D4u10 + 27D2u12 + 4u14, (D.63)

Hp=14,(1)
D=3,N=4 = 4D10u4 + 94D8u6 + 341D6u8 + 250D4u10 + 56D2u12 + 8u14, (D.64)

Hp=14,(1)
D=3,N=5 = 4D10u4 + 94D8u6 + 367D6u8 + 276D4u10 + 61D2u12 + 8u14, (D.65)

Hp=14,(1)
D=3,N=6 = 4D10u4 + 94D8u6 + 367D6u8 + 278D4u10 + 61D2u12 + 8u14, (D.66)

Hp=14,(1)
D=4,N=2 = D10u4 + 14D8u6 + 20D6u8 + 8D4u10 + 2D2u12 + u14, (D.67)

Hp=14,(1)
D=4,N=3 = 4D10u4 + 90D8u6 + 301D6u8 + 172D4u10 + 31D2u12 + 4u14, (D.68)
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Hp=14,(1)
D=4,N=4 = 4D10u4 + 129D8u6 + 600D6u8 + 440D4u10 + 79D2u12 + 8u14, (D.69)

Hp=14,(1)
D=4,N=5 = 4D10u4 + 129D8u6 + 662D6u8 + 525D4u10 + 100D2u12 + 11u14, (D.70)

Hp=14,(1)
D=4,N=6 = 4D10u4 + 129D8u6 + 662D6u8 + 533D4u10 + 102D2u12 + 11u14, (D.71)

Hp=14,(1)
D=5,N=2 = D10u4 + 15D8u6 + 22D6u8 + 9D4u10 + 2D2u12 + u14, (D.72)

Hp=14,(1)
D=5,N=3 = 4D10u4 + 93D8u6 + 329D6u8 + 186D4u10 + 31D2u12 + 4u14, (D.73)

Hp=14,(1)
D=5,N=4 = 4D10u4 + 133D8u6 + 656D6u8 + 493D4u10 + 83D2u12 + 8u14, (D.74)

Hp=14,(1)
D=5,N=5 = 4D10u4 + 133D8u6 + 724D6u8 + 604D4u10 + 113D2u12 + 11u14, (D.75)

Hp=14,(1)
D=5,N=6 = 4D10u4 + 133D8u6 + 724D6u8 + 619D4u10 + 120D2u12 + 13u14, (D.76)

Hp=14,(1)
D=5,N=7 = 4D10u4 + 133D8u6 + 724D6u8 + 619D4u10 + 121D2u12 + 13u14, (D.77)

Hp=14,(1)
D=6,N=2 = D10u4 + 15D8u6 + 22D6u8 + 9D4u10 + 2D2u12 + u14, (D.78)

Hp=14,(1)
D=6,N=3 = 4D10u4 + 93D8u6 + 332D6u8 + 188D4u10 + 31D2u12 + 4u14, (D.79)

Hp=14,(1)
D=6,N=4 = 4D10u4 + 133D8u6 + 660D6u8 + 499D4u10 + 83D2u12 + 8u14, (D.80)

Hp=14,(1)
D=6,N=5 = 4D10u4 + 133D8u6 + 728D6u8 + 613D4u10 + 115D2u12 + 11u14, (D.81)

Hp=14,(1)
D=6,N=6 = 4D10u4 + 133D8u6 + 728D6u8 + 629D4u10 + 124D2u12 + 13u14, (D.82)

Hp=14,(1)
D=6,N=7 = 4D10u4 + 133D8u6 + 728D6u8 + 629D4u10 + 126D2u12 + 14u14, (D.83)

Hp=14,(1)
D=7,N=2 = D10u4 + 15D8u6 + 23D6u8 + 9D4u10 + 2D2u12 + u14, (D.84)

Hp=14,(1)
D=7,N=3 = 4D10u4 + 93D8u6 + 333D6u8 + 188D4u10 + 31D2u12 + 4u14, (D.85)

Hp=14,(1)
D=7,N=4 = 4D10u4 + 133D8u6 + 661D6u8 + 500D4u10 + 83D2u12 + 8u14, (D.86)

Hp=14,(1)
D=7,N=5 = 4D10u4 + 133D8u6 + 729D6u8 + 614D4u10 + 115D2u12 + 11u14, (D.87)

Hp=14,(1)
D=7,N=6 = 4D10u4 + 133D8u6 + 729D6u8 + 630D4u10 + 125D2u12 + 13u14, (D.88)

Hp=14,(1)
D=7,N=7 = 4D10u4 + 133D8u6 + 729D6u8 + 630D4u10 + 127D2u12 + 14u14, (D.89)

Hp=14,(1)
D=7,N=8 = 4D10u4 + 133D8u6 + 729D6u8 + 630D4u10 + 127D2u12 + 15u14, (D.90)

Hp=16,(1)
D=2,N=2 = D12u4 + 3D10u6 + 5D8u8 + 4D6u10 + 3D4u12 +D2u14 + u16, (D.91)

Hp=16,(1)
D=2,N=3 = 2D12u4 + 15D10u6 + 46D8u8 + 49D6u10 + 32D4u12 + 11D2u14 + 5u16, (D.92)

Hp=16,(1)
D=2,N=4 = 2D12u4 + 21D10u6 + 74D8u8 + 88D6u10 + 52D4u12 + 16D2u14 + 5u16, (D.93)

Hp=16,(1)
D=2,N=5 = 2D12u4 + 21D10u6 + 78D8u8 + 92D6u10 + 54D4u12 + 16D2u14 + 5u16, (D.94)

Hp=16,(1)
D=3,N=2 = 2D12u4 + 17D10u6 + 33D8u8 + 22D6u10 + 8D4u12 + 2D2u14 + u16, (D.95)

Hp=16,(1)
D=3,N=3 = 5D12u4 + 118D10u6 + 545D8u8 + 543D6u10 + 205D4u12 + 33D2u14 + 5u16, (D.96)

Hp=16,(1)
D=3,N=4 = 5D12u4 + 173D10u6 + 1097D8u8 + 1382D6u10 + 536D4u12 + 82D2u14 + 10u16, (D.97)

Hp=16,(1)
D=3,N=5 = 5D12u4 + 173D10u6 + 1195D8u8 + 1596D6u10 + 621D4u12 + 90D2u14 + 10u16, (D.98)

Hp=16,(1)
D=3,N=6 = 5D12u4 + 173D10u6 + 1195D8u8 + 1608D6u10 + 625D4u12 + 90D2u14 + 10u16, (D.99)

Hp=16,(1)
D=4,N=2 = 2D12u4 + 26D10u6 + 59D8u8 + 35D6u10 + 9D4u12 + 2D2u14 + u16, (D.100)

Hp=16,(1)
D=4,N=3 = 5D12u4 + 181D10u6 + 1096D8u8 + 1097D6u10 + 322D4u12 + 38D2u14 + 5u16, (D.101)

Hp=16,(1)
D=4,N=4 = 5D12u4 + 263D10u6 + 2349D8u8 + 3285D6u10 + 1106D4u12 + 122D2u14 + 10u16, (D.102)

Hp=16,(1)
D=4,N=5 = 5D12u4 + 263D10u6 + 2612D8u8 + 4094D6u10 + 1484D4u12 + 167D2u14 + 15u16, (D.103)
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Hp=16,(1)
D=4,N=6 = 5D12u4 + 263D10u6 + 2612D8u8 + 4165D6u10 + 1527D4u12 + 173D2u14 + 15u16, (D.104)

Hp=16,(1)
D=4,N=7 = 5D12u4 + 263D10u6 + 2612D8u8 + 4165D6u10 + 1529D4u12 + 173D2u14 + 15u16, (D.105)

Hp=16,(1)
D=5,N=2 = 2D12u4 + 28D10u6 + 67D8u8 + 39D6u10 + 10D4u12 + 2D2u14 + u16, (D.106)

Hp=16,(1)
D=5,N=3 = 5D12u4 + 188D10u6 + 1241D8u8 + 1273D6u10 + 348D4u12 + 38D2u14 + 5u16, (D.107)

Hp=16,(1)
D=5,N=4 = 5D12u4 + 272D10u6 + 2659D8u8 + 3964D6u10 + 1287D4u12 + 128D2u14 + 10u16, (D.108)

Hp=16,(1)
D=5,N=5 = 5D12u4 + 272D10u6 + 2958D8u8 + 5060D6u10 + 1854D4u12 + 194D2u14 + 15u16, (D.109)

Hp=16,(1)
D=5,N=6 = 5D12u4 + 272D10u6 + 2958D8u8 + 5180D6u10 + 1962D4u12 + 216D2u14 + 18u16, (D.110)

Hp=16,(1)
D=5,N=7 = 5D12u4 + 272D10u6 + 2958D8u8 + 5180D6u10 + 1970D4u12 + 218D2u14 + 18u16, (D.111)

Hp=16,(1)
D=6,N=2 = 2D12u4 + 28D10u6 + 69D8u8 + 40D6u10 + 10D4u12 + 2D2u14 + u16, (D.112)

Hp=16,(1)
D=6,N=3 = 5D12u4 + 188D10u6 + 1258D8u8 + 1304D6u10 + 352D4u12 + 38D2u14 + 5u16, (D.113)

Hp=16,(1)
D=6,N=4 = 5D12u4 + 272D10u6 + 2685D8u8 + 4062D6u10 + 1312D4u12 + 128D2u14 + 10u16, (D.114)

Hp=16,(1)
D=6,N=5 = 5D12u4 + 272D10u6 + 2985D8u8 + 5194D6u10 + 1921D4u12 + 198D2u14 + 15u16, (D.115)

Hp=16,(1)
D=6,N=6 = 5D12u4 + 272D10u6 + 2985D8u8 + 5320D6u10 + 2055D4u12 + 229D2u14 + 18u16, (D.116)

Hp=16,(1)
D=6,N=7 = 5D12u4 + 272D10u6 + 2985D8u8 + 5320D6u10 + 2070D4u12 + 236D2u14 + 20u16, (D.117)

Hp=16,(1)
D=6,N=8 = 5D12u4 + 272D10u6 + 2985D8u8 + 5320D6u10 + 2070D4u12 + 237D2u14 + 20u16, (D.118)

Hp=16,(1)
D=7,N=2 = 2D12u4 + 28D10u6 + 69D8u8 + 41D6u10 + 10D4u12 + 2D2u14 + u16, (D.119)

Hp=16,(1)
D=7,N=3 = 5D12u4 + 188D10u6 + 1259D8u8 + 1309D6u10 + 352D4u12 + 38D2u14 + 5u16, (D.120)

Hp=16,(1)
D=7,N=4 = 5D12u4 + 272D10u6 + 2686D8u8 + 4071D6u10 + 1314D4u12 + 128D2u14 + 10u16, (D.121)

Hp=16,(1)
D=7,N=5 = 5D12u4 + 272D10u6 + 2986D8u8 + 5204D6u10 + 1927D4u12 + 198D2u14 + 15u16, (D.122)

Hp=16,(1)
D=7,N=6 = 5D12u4 + 272D10u6 + 2986D8u8 + 5330D6u10 + 2064D4u12 + 231D2u14 + 18u16, (D.123)

Hp=16,(1)
D=7,N=7 = 5D12u4 + 272D10u6 + 2986D8u8 + 5330D6u10 + 2080D4u12 + 240D2u14 + 20u16, (D.124)

Hp=16,(1)
D=7,N=8 = 5D12u4 + 272D10u6 + 2986D8u8 + 5330D6u10 + 2080D4u12 + 242D2u14 + 21u16, (D.125)

Hp=16,(1)
D=8,N=2 = 2D12u4 + 28D10u6 + 69D8u8 + 41D6u10 + 10D4u12 + 2D2u14 + u16, (D.126)

Hp=16,(1)
D=8,N=3 = 5D12u4 + 188D10u6 + 1259D8u8 + 1310D6u10 + 352D4u12 + 38D2u14 + 5u16, (D.127)

Hp=16,(1)
D=8,N=4 = 5D12u4 + 272D10u6 + 2686D8u8 + 4072D6u10 + 1314D4u12 + 128D2u14 + 10u16, (D.128)

Hp=16,(1)
D=8,N=5 = 5D12u4 + 272D10u6 + 2986D8u8 + 5205D6u10 + 1928D4u12 + 198D2u14 + 15u16, (D.129)

Hp=16,(1)
D=8,N=6 = 5D12u4 + 272D10u6 + 2986D8u8 + 5331D6u10 + 2065D4u12 + 231D2u14 + 18u16, (D.130)

Hp=16,(1)
D=8,N=7 = 5D12u4 + 272D10u6 + 2986D8u8 + 5331D6u10 + 2081D4u12 + 241D2u14 + 20u16, (D.131)

Hp=16,(1)
D=8,N=8 = 5D12u4 + 272D10u6 + 2986D8u8 + 5331D6u10 + 2081D4u12 + 243D2u14 + 21u16, (D.132)

Hp=16,(1)
D=8,N=9 = 5D12u4 + 272D10u6 + 2986D8u8 + 5331D6u10 + 2081D4u12 + 243D2u14 + 22u16, (D.133)

Hp=5,(2)
D=3,N=3 = Du4, (D.134)

Hp=7,(2)
D=3,N=3 = D3u4 + 2Du6, (D.135)

Hp=8,(2)
D=2,N=2 = D2u6, (D.136)

Hp=8,(2)
D=2,N=3 = 2D2u6, (D.137)

Hp=8,(2)
D=4,N=3 = D2u6, (D.138)
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Hp=8,(2)
D=4,N=4 = 2D2u6, (D.139)

Hp=9,(2)
D=3,N=2 = D5u4 +D3u6, (D.140)

Hp=9,(2)
D=3,N=3 = 2D5u4 + 6D3u6 + 3Du8, (D.141)

Hp=9,(2)
D=3,N=4 = 2D5u4 + 9D3u6 + 4Du8, (D.142)

Hp=10,(2)
D=2,N=2 = D2u8, (D.143)

Hp=10,(2)
D=2,N=3 = 2D4u6 + 3D2u8, (D.144)

Hp=10,(2)
D=4,N=3 = 4D4u6 + 3D2u8, (D.145)

Hp=10,(2)
D=4,N=4 = 7D4u6 + 7D2u8, (D.146)

Hp=10,(2)
D=4,N=5 = 7D4u6 + 8D2u8, (D.147)

Hp=11,(2)
D=3,N=2 = 2D5u6 +D3u8, (D.148)

Hp=11,(2)
D=3,N=3 = 2D7u4 + 17D5u6 + 19D3u8 + 4Du10, (D.149)

Hp=11,(2)
D=3,N=4 = 2D7u4 + 24D5u6 + 31D3u8 + 6Du10, (D.150)

Hp=11,(2)
D=3,N=5 = 2D7u4 + 24D5u6 + 32D3u8 + 6Du10, (D.151)

Hp=11,(2)
D=5,N=4 = D5u6 + 6D3u8, (D.152)

Hp=11,(2)
D=5,N=5 = D5u6 + 7D3u8, (D.153)

Hp=11,(2)
D=7,N=5 = D3u8, (D.154)

Hp=12,(2)
D=2,N=2 = D6u6 +D4u8 +D2u10, (D.155)

Hp=12,(2)
D=2,N=3 = 5D6u6 + 7D4u8 + 5D2u10, (D.156)

Hp=12,(2)
D=2,N=4 = 6D6u6 + 10D4u8 + 6D2u10, (D.157)

Hp=12,(2)
D=4,N=2 = D6u6, (D.158)

Hp=12,(2)
D=4,N=3 = 15D6u6 + 29D4u8 + 4D2u10, (D.159)

Hp=12,(2)
D=4,N=4 = 26D6u6 + 71D4u8 + 18D2u10, (D.160)

Hp=12,(2)
D=4,N=5 = 26D6u6 + 78D4u8 + 21D2u10, (D.161)

Hp=12,(2)
D=6,N=4 = 5D4u8, (D.162)

Hp=12,(2)
D=6,N=5 = 8D4u8 + 2D2u10, (D.163)

Hp=13,(2)
D=3,N=2 = D9u4 + 5D7u6 + 5D5u8 +D3u10, (D.164)

Hp=13,(2)
D=3,N=3 = 3D9u4 + 38D7u6 + 84D5u8 + 37D3u10 + 5D1u12, (D.165)

Hp=13,(2)
D=3,N=4 = 3D9u4 + 56D7u6 + 155D5u8 + 76D3u10 + 9D1u12, (D.166)

Hp=13,(2)
D=3,N=5 = 3D9u4 + 56D7u6 + 165D5u8 + 81D3u10 + 9D1u12, (D.167)

Hp=13,(2)
D=5,N=3 = 3D7u6 + 17D5u8 +D3u10, (D.168)

Hp=13,(2)
D=5,N=4 = 5D7u6 + 74D5u8 + 30D3u10, (D.169)

Hp=13,(2)
D=5,N=5 = 5D7u6 + 88D5u8 + 46D3u10, (D.170)

Hp=13,(2)
D=5,N=6 = 5D7u6 + 88D5u8 + 47D3u10, (D.171)

Hp=13,(2)
D=7,N=3 = D5u8, (D.172)

Hp=13,(2)
D=7,N=4 = 2D5u8, (D.173)
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Hp=13,(2)
D=7,N=5 = 5D5u8 + 4D3u10, (D.174)

Hp=13,(2)
D=7,N=6 = 5D5u8 + 5D3u10, (D.175)

Hp=14,(2)
D=2,N=2 = D6u8 +D4u10 +D2u12, (D.176)

Hp=14,(2)
D=2,N=3 = 5D8u6 + 16D6u8 + 14D4u10 + 6D2u12, (D.177)

Hp=14,(2)
D=2,N=4 = 7D8u6 + 24D6u8 + 20D4u10 + 7D2u12, (D.178)

Hp=14,(2)
D=4,N=2 = 3D8u6 + 4D6u8, (D.179)

Hp=14,(2)
D=4,N=3 = 40D8u6 + 172D6u8 + 83D4u10 + 6D2u12, (D.180)

Hp=14,(2)
D=4,N=4 = 65D8u6 + 416D6u8 + 292D4u10 + 33D2u12, (D.181)

Hp=14,(2)
D=4,N=5 = 65D8u6 + 466D6u8 + 357D4u10 + 43D2u12, (D.182)

Hp=14,(2)
D=4,N=6 = 65D8u6 + 466D6u8 + 361D4u10 + 43D2u12, (D.183)

Hp=14,(2)
D=6,N=3 = 8D6u8 +D4u10, (D.184)

Hp=14,(2)
D=6,N=4 = 44D6u8 + 36D4u10, (D.185)

Hp=14,(2)
D=6,N=5 = 60D6u8 + 80D4u10 + 4D2u12, (D.186)

Hp=14,(2)
D=6,N=6 = 60D6u8 + 86D4u10 + 5D2u12, (D.187)

Hp=14,(2)
D=8,N=5 = D4u10, (D.188)

Hp=14,(2)
D=8,N=6 = 3D4u10, (D.189)

Hp=15,(2)
D=3,N=2 = D11u4 + 9D9u6 + 14D7u8 + 8D5u10 +D3u12, (D.190)

Hp=15,(2)
D=3,N=3 = 3D11u4 + 77D9u6 + 287D7u8 + 227D5u10 + 61D3u12 + 6D1u14, (D.191)

Hp=15,(2)
D=3,N=4 = 3D11u4 + 113D9u6 + 574D7u8 + 550D5u10 + 148D3u12 + 12D1u14, (D.192)

Hp=15,(2)
D=3,N=5 = 3D11u4 + 113D9u6 + 621D7u8 + 620D5u10 + 163D3u12 + 12D1u14, (D.193)

Hp=15,(2)
D=3,N=6 = 3D11u4 + 113D9u6 + 621D7u8 + 622D5u10 + 163D3u12 + 12D1u14, (D.194)

Hp=15,(2)
D=5,N=2 = D9u6 + 2D7u8, (D.195)

Hp=15,(2)
D=5,N=3 = 9D9u6 + 149D7u8 + 96D5u10 +D3u12, (D.196)

Hp=15,(2)
D=5,N=4 = 16D9u6 + 478D7u8 + 573D5u10 + 79D3u12, (D.197)

Hp=15,(2)
D=5,N=5 = 16D9u6 + 562D7u8 + 839D5u10 + 149D3u12, (D.198)

Hp=15,(2)
D=5,N=6 = 16D9u6 + 562D7u8 + 863D5u10 + 158D3u12, (D.199)

Hp=15,(2)
D=7,N=3 = 4D7u8 + 2D5u10, (D.200)

Hp=15,(2)
D=7,N=4 = 13D7u8 + 26D5u10, (D.201)

Hp=15,(2)
D=7,N=5 = 23D7u8 + 81D5u10 + 14D3u12, (D.202)

Hp=15,(2)
D=7,N=6 = 23D7u8 + 96D5u10 + 22D3u12, (D.203)

Hp=15,(2)
D=7,N=7 = 23D7u8 + 96D5u10 + 23D3u12, (D.204)

Hp=16,(2)
D=2,N=2 = 2D10u6 + 3D8u8 + 3D6u10 + 2D4u12 +D2u14, (D.205)

Hp=16,(2)
D=2,N=3 = 11D10u6 + 34D8u8 + 41D6u10 + 23D4u12 + 8D2u14, (D.206)

Hp=16,(2)
D=2,N=4 = 14D10u6 + 57D8u8 + 72D6u10 + 38D4u12 + 10D2u14, (D.207)

Hp=16,(2)
D=2,N=5 = 14D10u6 + 58D8u8 + 74D6u10 + 38D4u12 + 10D2u14, (D.208)
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Hp=16,(2)
D=4,N=2 = 9D10u6 + 23D8u8 + 8D6u10, (D.209)

Hp=16,(2)
D=4,N=3 = 97D10u6 + 763D8u8 + 750D6u10 + 167D4u12 + 7D2u14, (D.210)

Hp=16,(2)
D=4,N=4 = 152D10u6 + 1862D8u8 + 2684D6u10 + 811D4u12 + 55D2u14, (D.211)

Hp=16,(2)
D=4,N=5 = 152D10u6 + 2096D8u8 + 3423D6u10 + 1121D4u12 + 78D2u14, (D.212)

Hp=16,(2)
D=4,N=6 = 152D10u6 + 2096D8u8 + 3479D6u10 + 1148D4u12 + 79D2u14, (D.213)

Hp=16,(2)
D=4,N=7 = 152D10u6 + 2096D8u8 + 3479D6u10 + 1149D4u12 + 79D2u14, (D.214)

Hp=16,(2)
D=6,N=2 = D8u8, (D.215)

Hp=16,(2)
D=6,N=3 = 76D8u8 + 78D6u10 +D4u12, (D.216)

Hp=16,(2)
D=6,N=4 = 281D8u8 + 670D6u10 + 130D4u12, (D.217)

Hp=16,(2)
D=6,N=5 = 361D8u8 + 1198D6u10 + 386D4u12 + 10D2u14, (D.218)

Hp=16,(2)
D=6,N=6 = 361D8u8 + 1274D6u10 + 460D4u12 + 14D2u14, (D.219)

Hp=16,(2)
D=6,N=7 = 361D8u8 + 1274D6u10 + 463D4u12 + 14D2u14, (D.220)

Hp=16,(2)
D=8,N=3 = D6u10, (D.221)

Hp=16,(2)
D=8,N=4 = 9D6u10, (D.222)

Hp=16,(2)
D=8,N=5 = 36D6u10 + 10D4u12, (D.223)

Hp=16,(2)
D=8,N=6 = 51D6u10 + 28D4u12, (D.224)

Hp=16,(2)
D=8,N=7 = 51D6u10 + 31D4u12, (D.225)

Hp=6,(3)
D=2,N=4 = Du5, (D.226)

Hp=6,(3)
D=2,N=5 = D2u4, (D.227)

Hp=8,(3)
D=2,N=3 = D2u6, (D.228)

Hp=8,(3)
D=2,N=4 = D3u5 +Du7, (D.229)

Hp=8,(3)
D=2,N=5 = D2u6, (D.230)

Hp=8,(3)
D=3,N=3 = 2D2u6, (D.231)

Hp=8,(3)
D=3,N=4 = 2D3u5 + 2Du7, (D.232)

Hp=8,(3)
D=3,N=5 = 2D2u6, (D.233)

Hp=8,(3)
D=4,N=2 = D3u5, (D.234)

Hp=8,(3)
D=4,N=3 = 2D2u6, (D.235)

Hp=8,(3)
D=4,N=4 = 2D3u5 + 2Du7, (D.236)

Hp=8,(3)
D=4,N=5 = 2D2u6, (D.237)

Hp=10,(3)
D=2,N=3 = D4u6 + 3D2u8, (D.238)

Hp=10,(3)
D=2,N=4 = 2D5u5 + 5D3u7 + 2Du9, (D.239)

Hp=10,(3)
D=2,N=5 = D6u4 + 2D4u6 + 2D2u8, (D.240)

Hp=10,(3)
D=3,N=2 = D5u5 +D3u7, (D.241)

Hp=10,(3)
D=3,N=3 = 7D4u6 + 7D2u8, (D.242)

Hp=10,(3)
D=3,N=4 = 5D5u5 + 15D3u7 + 4Du9, (D.243)
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Hp=10,(3)
D=3,N=5 = D6u4 + 7D4u6 + 6D2u8, (D.244)

Hp=10,(3)
D=3,N=6 = D5u5 + 2D3u7, (D.245)

Hp=10,(3)
D=4,N=2 = D5u5 + 2D3u7, (D.246)

Hp=10,(3)
D=4,N=3 = 8D4u6 + 8D2u8, (D.247)

Hp=10,(3)
D=4,N=4 = 5D5u5 + 18D3u7 + 4Du9, (D.248)

Hp=10,(3)
D=4,N=5 = D6u4 + 8D4u6 + 8D2u8, (D.249)

Hp=10,(3)
D=4,N=6 = D5u5 + 3D3u7, (D.250)

Hp=12,(3)
D=2,N=2 = D7u5 +D5u7 +D3u9, (D.251)

Hp=12,(3)
D=2,N=3 = 4D6u6 + 7D4u8 + 4D2u10, (D.252)

Hp=12,(3)
D=2,N=4 = 2D7u5 + 9D5u7 + 8D3u9 + 2Du11, (D.253)

Hp=12,(3)
D=2,N=5 = 3D6u6 + 5D4u8 + 2D2u10, (D.254)

Hp=12,(3)
D=2,N=6 = D5u7, (D.255)

Hp=12,(3)
D=3,N=2 = 2D7u5 + 4D5u7 + 2D3u9, (D.256)

Hp=12,(3)
D=3,N=3 = 20D6u6 + 38D4u8 + 11D2u10, (D.257)

Hp=12,(3)
D=3,N=4 = 8D7u5 + 60D5u7 + 47D3u9 + 6Du11, (D.258)

Hp=12,(3)
D=3,N=5 = D8u4 + 20D6u6 + 46D4u8 + 12D2u10, (D.259)

Hp=12,(3)
D=3,N=6 = D7u5 + 13D5u7 + 8D3u9, (D.260)

Hp=12,(3)
D=3,N=7 = 3D4u8, (D.261)

Hp=12,(3)
D=3,N=8 = D5u7, (D.262)

Hp=12,(3)
D=4,N=2 = 3D7u5 + 6D5u7 + 3D3u9, (D.263)

Hp=12,(3)
D=4,N=3 = 26D6u6 + 53D4u8 + 12D2u10, (D.264)

Hp=12,(3)
D=4,N=4 = 8D7u5 + 81D5u7 + 65D3u9 + 6Du11, (D.265)

Hp=12,(3)
D=4,N=5 = D8u4 + 24D6u6 + 72D4u8 + 19D2u10, (D.266)

Hp=12,(3)
D=4,N=6 = D7u5 + 21D5u7 + 18D3u9, (D.267)

Hp=12,(3)
D=4,N=7 = 7D4u8, (D.268)

Hp=12,(3)
D=4,N=8 = D5u7 +D3u9, (D.269)

Hp=12,(3)
D=4,N=9 = D4u8, (D.270)

Hp=12,(3)
D=5,N=2 = 3D7u5 + 6D5u7 + 3D3u9, (D.271)

Hp=12,(3)
D=5,N=3 = 26D6u6 + 56D4u8 + 12D2u10, (D.272)

Hp=12,(3)
D=5,N=4 = 8D7u5 + 83D5u7 + 68D3u9 + 6Du11, (D.273)

Hp=12,(3)
D=5,N=5 = D8u4 + 24D6u6 + 75D4u8 + 20D2u10, (D.274)

Hp=12,(3)
D=5,N=6 = D7u5 + 21D5u7 + 19D3u9, (D.275)

Hp=12,(3)
D=5,N=7 = 7D4u8, (D.276)

Hp=12,(3)
D=5,N=8 = D5u7 +D3u9, (D.277)

Hp=12,(3)
D=5,N=9 = D4u8, (D.278)
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Hp=12,(3)
D=6,N=2 = 3D7u5 + 7D5u7 + 3D3u9, (D.279)

Hp=12,(3)
D=6,N=3 = 26D6u6 + 56D4u8 + 12D2u10, (D.280)

Hp=12,(3)
D=6,N=4 = 8D7u5 + 83D5u7 + 68D3u9 + 6Du11, (D.281)

Hp=12,(3)
D=6,N=5 = D8u4 + 24D6u6 + 75D4u8 + 20D2u10, (D.282)

Hp=12,(3)
D=6,N=6 = D7u5 + 21D5u7 + 19D3u9, (D.283)

Hp=12,(3)
D=6,N=7 = 7D4u8, (D.284)

Hp=12,(3)
D=6,N=8 = D5u7 +D3u9, (D.285)

Hp=12,(3)
D=6,N=9 = D4u8, (D.286)

Hp=14,(3)
D=2,N=2 = D7u7 +D5u9 +D3u11, (D.287)

Hp=14,(3)
D=2,N=3 = 4D8u6 + 16D6u8 + 13D4u10 + 6D2u12, (D.288)

Hp=14,(3)
D=2,N=4 = 3D9u5 + 20D7u7 + 29D5u9 + 15D3u11 + 3D1u13, (D.289)

Hp=14,(3)
D=2,N=5 = D10u4 + 6D8u6 + 17D6u8 + 11D4u10 + 3D2u12, (D.290)

Hp=14,(3)
D=2,N=6 = 2D7u7 + 2D5u9, (D.291)

Hp=14,(3)
D=3,N=2 = 2D9u5 + 9D7u7 + 7D5u9 + 2D3u11, (D.292)

Hp=14,(3)
D=3,N=3 = 45D8u6 + 151D6u8 + 92D4u10 + 17D2u12, (D.293)

Hp=14,(3)
D=3,N=4 = 13D9u5 + 186D7u7 + 293D5u9 + 102D3u11 + 9D1u13, (D.294)

Hp=14,(3)
D=3,N=5 = D10u4 + 45D8u6 + 221D6u8 + 151D4u10 + 21D2u12, (D.295)

Hp=14,(3)
D=3,N=6 = D9u5 + 50D7u7 + 87D5u9 + 19D3u11, (D.296)

Hp=14,(3)
D=3,N=7 = 2D8u6 + 21D6u8 + 10D4u10, (D.297)

Hp=14,(3)
D=3,N=8 = 2D7u7 + 3D5u9, (D.298)

Hp=14,(3)
D=4,N=2 = 3D9u5 + 15D7u7 + 11D5u9 + 3D3u11, (D.299)

Hp=14,(3)
D=4,N=3 = 63D8u6 + 256D6u8 + 140D4u10 + 19D2u12, (D.300)

Hp=14,(3)
D=4,N=4 = 14D9u5 + 296D7u7 + 538D5u9 + 164D3u11 + 9D1u13, (D.301)

Hp=14,(3)
D=4,N=5 = D10u4 + 62D8u6 + 424D6u8 + 324D4u10 + 40D2u12, (D.302)

Hp=14,(3)
D=4,N=6 = 2D9u5 + 88D7u7 + 221D5u9 + 58D3u11, (D.303)

Hp=14,(3)
D=4,N=7 = 2D8u6 + 54D6u8 + 42D4u10 +D2u12, (D.304)

Hp=14,(3)
D=4,N=8 = 4D7u7 + 17D5u9 + 3D3u11, (D.305)

Hp=14,(3)
D=4,N=9 = 3D6u8 + 2D4u10, (D.306)

Hp=14,(3)
D=5,N=2 = 3D9u5 + 17D7u7 + 12D5u9 + 3D3u11, (D.307)

Hp=14,(3)
D=5,N=3 = 64D8u6 + 278D6u8 + 150D4u10 + 19D2u12, (D.308)

Hp=14,(3)
D=5,N=4 = 14D9u5 + 308D7u7 + 592D5u9 + 175D3u11 + 9D1u13, (D.309)

Hp=14,(3)
D=5,N=5 = D10u4 + 62D8u6 + 455D6u8 + 369D4u10 + 44D2u12, (D.310)

Hp=14,(3)
D=5,N=6 = 2D9u5 + 90D7u7 + 251D5u9 + 72D3u11, (D.311)

Hp=14,(3)
D=5,N=7 = 2D8u6 + 58D6u8 + 54D4u10 + 2D2u12, (D.312)

Hp=14,(3)
D=5,N=8 = 4D7u7 + 20D5u9 + 5D3u11, (D.313)
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Hp=14,(3)
D=5,N=9 = 3D6u8 + 3D4u10, (D.314)

Hp=14,(3)
D=6,N=2 = 3D9u5 + 17D7u7 + 13D5u9 + 3D3u11, (D.315)

Hp=14,(3)
D=6,N=3 = 64D8u6 + 280D6u8 + 151D4u10 + 19D2u12, (D.316)

Hp=14,(3)
D=6,N=4 = 14D9u5 + 308D7u7 + 596D5u9 + 175D3u11 + 9D1u13, (D.317)

Hp=14,(3)
D=6,N=5 = D10u4 + 62D8u6 + 456D6u8 + 372D4u10 + 44D2u12, (D.318)

Hp=14,(3)
D=6,N=6 = 2D9u5 + 90D7u7 + 252D5u9 + 73D3u11, (D.319)

Hp=14,(3)
D=6,N=7 = 2D8u6 + 58D6u8 + 54D4u10 + 2D2u12, (D.320)

Hp=14,(3)
D=6,N=8 = 4D7u7 + 20D5u9 + 5D3u11, (D.321)

Hp=14,(3)
D=6,N=9 = 3D6u8 + 3D4u10, (D.322)

Hp=16,(3)
D=2,N=2 = D11u5 + 3D9u7 + 3D7u9 + 2D5u11 +D3u13, (D.323)

Hp=16,(3)
D=2,N=3 = 9D10u6 + 34D8u8 + 38D6u10 + 22D4u12 + 7D2u14, (D.324)

Hp=16,(3)
D=2,N=4 = 3D11u5 + 32D9u7 + 68D7u9 + 53D5u11 + 19D3u13 + 3D1u15, (D.325)

Hp=16,(3)
D=2,N=5 = 7D10u6 + 34D8u8 + 38D6u10 + 16D4u12 + 3D2u14, (D.326)

Hp=16,(3)
D=2,N=6 = 5D9u7 + 10D7u9 + 4D5u11, (D.327)

Hp=16,(3)
D=2,N=7 = D8u8, (D.328)

Hp=16,(3)
D=3,N=2 = 4D11u5 + 22D9u7 + 23D7u9 + 10D5u11 + 2D3u13, (D.329)

Hp=16,(3)
D=3,N=3 = 89D10u6 + 488D8u8 + 491D6u10 + 172D4u12 + 21D2u14, (D.330)

Hp=16,(3)
D=3,N=4 = 19D11u5 + 480D9u7 + 1334D7u9 + 876D5u11 + 183D3u13 + 12D1u15, (D.331)

Hp=16,(3)
D=3,N=5 = D12u4 + 90D10u6 + 808D8u8 + 1105D6u10 + 374D4u12 + 32D2u14, (D.332)

Hp=16,(3)
D=3,N=6 = 3D11u5 + 145D9u7 + 523D7u9 + 318D5u11 + 37D3u13, (D.333)

Hp=16,(3)
D=3,N=7 = 5D10u6 + 101D8u8 + 130D6u10 + 26D4u12, (D.334)

Hp=16,(3)
D=3,N=8 = 8D9u7 + 27D7u9 + 10D5u11, (D.335)

Hp=16,(3)
D=3,N=9 = 3D8u8 +D6u10, (D.336)

Hp=16,(3)
D=4,N=2 = 6D11u5 + 42D9u7 + 43D7u9 + 15D5u11 + 3D3u13, (D.337)

Hp=16,(3)
D=4,N=3 = 138D10u6 + 997D8u8 + 1004D6u10 + 272D4u12 + 23D2u14, (D.338)

Hp=16,(3)
D=4,N=4 = 21D11u5 + 883D9u7 + 3125D7u9 + 2015D5u11 + 323D3u13 + 12D1u15, (D.339)

Hp=16,(3)
D=4,N=5 = D12u4 + 133D10u6 + 1860D8u8 + 3110D6u10 + 1026D4u12 + 71D2u14, (D.340)

Hp=16,(3)
D=4,N=6 = 3D11u5 + 295D9u7 + 1607D7u9 + 1197D5u11 + 152D3u13, (D.341)

Hp=16,(3)
D=4,N=7 = 7D10u6 + 294D8u8 + 611D6u10 + 168D4u12 + 2D2u14, (D.342)

Hp=16,(3)
D=4,N=8 = 15D9u7 + 139D7u9 + 100D5u11 + 7D3u13, (D.343)

Hp=16,(3)
D=4,N=9 = 13D8u8 + 29D6u10 + 6D4u12, (D.344)

Hp=16,(3)
D=4,N=10 = 3D7u9 +D5u11, (D.345)

Hp=16,(3)
D=5,N=2 = 6D11u5 + 46D9u7 + 50D7u9 + 16D5u11 + 3D3u13, (D.346)

Hp=16,(3)
D=5,N=3 = 141D10u6 + 1125D8u8 + 1163D6u10 + 293D4u12 + 23D2u14, (D.347)

Hp=16,(3)
D=5,N=4 = 21D11u5 + 941D9u7 + 3678D7u9 + 2410D5u11 + 351D3u13 + 12D1u15, (D.348)
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Hp=16,(3)
D=5,N=5 = D12u4 + 135D10u6 + 2090D8u8 + 3869D6u10 + 1294D4u12 + 80D2u14, (D.349)

Hp=16,(3)
D=5,N=6 = 3D11u5 + 309D9u7 + 1946D7u9 + 1632D5u11 + 213D3u13, (D.350)

Hp=16,(3)
D=5,N=7 = 7D10u6 + 328D8u8 + 844D6u10 + 276D4u12 + 5D2u14, (D.351)

Hp=16,(3)
D=5,N=8 = 15D9u7 + 181D7u9 + 178D5u11 + 16D3u13, (D.352)

Hp=16,(3)
D=5,N=9 = 14D8u8 + 52D6u10 + 16D4u12, (D.353)

Hp=16,(3)
D=5,N=10 = 5D7u9 + 5D5u11, (D.354)

Hp=16,(3)
D=6,N=2 = 6D11u5 + 47D9u7 + 52D7u9 + 17D5u11 + 3D3u13, (D.355)

Hp=16,(3)
D=6,N=3 = 141D10u6 + 1138D8u8 + 1189D6u10 + 295D4u12 + 23D2u14, (D.356)

Hp=16,(3)
D=6,N=4 = 21D11u5 + 941D9u7 + 3728D7u9 + 2458D5u11 + 351D3u13 + 12D1u15, (D.357)

Hp=16,(3)
D=6,N=5 = D12u4 + 135D10u6 + 2098D8u8 + 3951D6u10 + 1330D4u12 + 80D2u14, (D.358)

Hp=16,(3)
D=6,N=6 = 3D11u5 + 309D9u7 + 1967D7u9 + 1693D5u11 + 224D3u13, (D.359)

Hp=16,(3)
D=6,N=7 = 7D10u6 + 328D8u8 + 862D6u10 + 295D4u12 + 5D2u14, (D.360)

Hp=16,(3)
D=6,N=8 = 15D9u7 + 181D7u9 + 187D5u11 + 18D3u13, (D.361)

Hp=16,(3)
D=6,N=9 = 14D8u8 + 53D6u10 + 19D4u12, (D.362)

Hp=16,(3)
D=6,N=10 = 5D7u9 + 6D5u11, (D.363)

Hp=16,(3)
D=7,N=2 = 6D11u5 + 47D9u7 + 52D7u9 + 17D5u11 + 3D3u13, (D.364)

Hp=16,(3)
D=7,N=3 = 141D10u6 + 1138D8u8 + 1192D6u10 + 295D4u12 + 23D2u14, (D.365)

Hp=16,(3)
D=7,N=4 = 21D11u5 + 941D9u7 + 3730D7u9 + 2461D5u11 + 351D3u13 + 12D1u15, (D.366)

Hp=16,(3)
D=7,N=5 = D12u4 + 135D10u6 + 2098D8u8 + 3954D6u10 + 1331D4u12 + 80D2u14, (D.367)

Hp=16,(3)
D=7,N=6 = 3D11u5 + 309D9u7 + 1967D7u9 + 1694D5u11 + 224D3u13, (D.368)

Hp=16,(3)
D=7,N=7 = 7D10u6 + 328D8u8 + 862D6u10 + 295D4u12 + 5D2u14, (D.369)

Hp=16,(3)
D=7,N=8 = 15D9u7 + 181D7u9 + 187D5u11 + 18D3u13, (D.370)

Hp=16,(3)
D=7,N=9 = 14D8u8 + 53D6u10 + 19D4u12, (D.371)

Hp=16,(3)
D=7,N=10 = 5D7u9 + 6D5u11, (D.372)

Hp=16,(3)
D=8,N=2 = 6D11u5 + 47D9u7 + 53D7u9 + 17D5u11 + 3D3u13, (D.373)

Hp=16,(3)
D=8,N=3 = 141D10u6 + 1138D8u8 + 1192D6u10 + 295D4u12 + 23D2u14, (D.374)

Hp=16,(3)
D=8,N=4 = 21D11u5 + 941D9u7 + 3730D7u9 + 2461D5u11 + 351D3u13 + 12D1u15, (D.375)

Hp=16,(3)
D=8,N=5 = D12u4 + 135D10u6 + 2098D8u8 + 3954D6u10 + 1331D4u12 + 80D2u14, (D.376)

Hp=16,(3)
D=8,N=6 = 3D11u5 + 309D9u7 + 1967D7u9 + 1694D5u11 + 224D3u13, (D.377)

Hp=16,(3)
D=8,N=7 = 7D10u6 + 328D8u8 + 862D6u10 + 295D4u12 + 5D2u14, (D.378)

Hp=16,(3)
D=8,N=8 = 15D9u7 + 181D7u9 + 187D5u11 + 18D3u13, (D.379)

Hp=16,(3)
D=8,N=9 = 14D8u8 + 53D6u10 + 19D4u12, (D.380)

Hp=16,(3)
D=8,N=10 = 5D7u9 + 6D5u11, (D.381)

Hp=3,(4)
D=3,N=4 = u3, (D.382)

Hp=4,(4)
D=2,N=3 = u4, (D.383)
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Hp=4,(4)
D=4,N=5 = u4, (D.384)

Hp=5,(4)
D=3,N=4 = u5, (D.385)

Hp=5,(4)
D=5,N=6 = u5, (D.386)

Hp=6,(4)
D=2,N=3 = 2u6, (D.387)

Hp=6,(4)
D=2,N=4 = Du5, (D.388)

Hp=6,(4)
D=4,N=5 = u6, (D.389)

Hp=6,(4)
D=6,N=7 = u6, (D.390)

Hp=7,(4)
D=3,N=4 = 2D2u5 + 2u7, (D.391)

Hp=7,(4)
D=3,N=5 = D3u4 +Du6, (D.392)

Hp=7,(4)
D=5,N=6 = u7, (D.393)

Hp=7,(4)
D=7,N=8 = u7, (D.394)

Hp=8,(4)
D=2,N=3 = D4u4 + 2D2u6 + 2u8, (D.395)

Hp=8,(4)
D=2,N=4 = D3u5 +Du7, (D.396)

Hp=8,(4)
D=4,N=5 = 2D2u6 + 2u8, (D.397)

Hp=8,(4)
D=4,N=6 = D3u5 +Du7, (D.398)

Hp=8,(4)
D=6,N=7 = u8, (D.399)

Hp=8,(4)
D=8,N=9 = u8, (D.400)

Hp=9,(4)
D=3,N=3 = 3D3u6 +Du8, (D.401)

Hp=9,(4)
D=3,N=4 = 4D4u5 + 8D2u7 + 3u9, (D.402)

Hp=9,(4)
D=3,N=5 = D5u4 + 5D3u6 + 2Du8, (D.403)

Hp=9,(4)
D=5,N=3 = D3u6, (D.404)

Hp=9,(4)
D=5,N=6 = 2D2u7 + 2u9, (D.405)

Hp=9,(4)
D=5,N=7 = D3u6 +Du8, (D.406)

Hp=9,(4)
D=7,N=8 = u9, (D.407)

Hp=9,(4)
D=9,N=10 = u9, (D.408)

Hp=10,(4)
D=2,N=3 = 4D4u6 + 4D2u8 + 3u10, (D.409)

Hp=10,(4)
D=2,N=4 = 2D5u5 + 5D3u7 + 2Du9, (D.410)

Hp=10,(4)
D=2,N=5 = D4u6, (D.411)

Hp=10,(4)
D=4,N=2 = D5u5, (D.412)

Hp=10,(4)
D=4,N=3 = 2D4u6 +D2u8, (D.413)

Hp=10,(4)
D=4,N=4 = D5u5 + 9D3u7 +Du9, (D.414)

Hp=10,(4)
D=4,N=5 = 7D4u6 + 10D2u8 + 3u10, (D.415)

Hp=10,(4)
D=4,N=6 = D5u5 + 6D3u7 + 2Du9, (D.416)

Hp=10,(4)
D=6,N=4 = D3u7, (D.417)

Hp=10,(4)
D=6,N=7 = 2D2u8 + 2u10, (D.418)
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Hp=10,(4)
D=6,N=8 = D3u7 +Du9, (D.419)

Hp=10,(4)
D=8,N=9 = u10, (D.420)

Hp=10,(4)
D=10,N=11 = u10, (D.421)
Hp=11,(4)

D=3,N=3 = 10D5u6 + 14D3u8 +Du10, (D.422)
Hp=11,(4)

D=3,N=4 = 7D6u5 + 35D4u7 + 19D2u9 + 4u11, (D.423)
Hp=11,(4)

D=3,N=5 = D7u4 + 14D5u6 + 21D3u8 + 3Du10, (D.424)
Hp=11,(4)

D=3,N=6 = 5D4u7, (D.425)
Hp=11,(4)

D=5,N=3 = 3D5u6 + 2D3u8, (D.426)
Hp=11,(4)

D=5,N=4 = 6D4u7 +D2u9, (D.427)
Hp=11,(4)

D=5,N=5 = 2D5u6 + 10D3u8 +Du10, (D.428)
Hp=11,(4)

D=5,N=6 = 9D4u7 + 10D2u9 + 3u11, (D.429)
Hp=11,(4)

D=5,N=7 = 2D5u6 + 6D3u8 + 2Du10, (D.430)
Hp=11,(4)

D=7,N=5 = D3u8, (D.431)
Hp=11,(4)

D=7,N=8 = 2D2u9 + 2u11, (D.432)
Hp=11,(4)

D=7,N=9 = D3u8 +Du10, (D.433)
Hp=11,(4)

D=9,N=10 = u11, (D.434)
Hp=11,(4)

D=11,N=12 = u11, (D.435)
Hp=12,(4)

D=2,N=2 = D7u5 +D5u7 +D3u9, (D.436)
Hp=12,(4)

D=2,N=3 = D8u4 + 7D6u6 + 10D4u8 + 6D2u10 + 3u12, (D.437)
Hp=12,(4)

D=2,N=4 = 2D7u5 + 9D5u7 + 8D3u9 + 2Du11, (D.438)
Hp=12,(4)

D=2,N=5 = 2D6u6 + 2D4u8, (D.439)
Hp=12,(4)

D=2,N=6 = D5u7, (D.440)
Hp=12,(4)

D=2,N=7 = D6u6, (D.441)
Hp=12,(4)

D=4,N=2 = 2D5u7, (D.442)
Hp=12,(4)

D=4,N=3 = 13D6u6 + 23D4u8 +D2u10, (D.443)
Hp=12,(4)

D=4,N=4 = 2D7u5 + 52D5u7 + 43D3u9 + 2Du11, (D.444)
Hp=12,(4)

D=4,N=5 = 20D6u6 + 74D4u8 + 27D2u10 + 5u12, (D.445)
Hp=12,(4)

D=4,N=6 = 2D7u5 + 29D5u7 + 31D3u9 + 4Du11, (D.446)
Hp=12,(4)

D=4,N=7 = 2D6u6 + 8D4u8, (D.447)
Hp=12,(4)

D=6,N=3 = D4u8, (D.448)
Hp=12,(4)

D=6,N=4 = 4D5u7 + 4D3u9, (D.449)
Hp=12,(4)

D=6,N=5 = 7D4u8 +D2u10, (D.450)
Hp=12,(4)

D=6,N=6 = 2D5u7 + 10D3u9 +Du11, (D.451)
Hp=12,(4)

D=6,N=7 = 9D4u8 + 10D2u10 + 3u12, (D.452)
Hp=12,(4)

D=6,N=8 = 2D5u7 + 6D3u9 + 2Du11, (D.453)
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Hp=12,(4)
D=8,N=6 = D3u9, (D.454)

Hp=12,(4)
D=8,N=9 = 2D2u10 + 2u12, (D.455)

Hp=12,(4)
D=8,N=10 = D3u9 +Du11, (D.456)

Hp=12,(4)
D=10,N=11 = u12, (D.457)

Hp=12,(4)
D=12,N=13 = u12, (D.458)
Hp=13,(4)

D=3,N=2 = D8u5 + 3D6u7 +D4u9, (D.459)
Hp=13,(4)

D=3,N=3 = 27D7u6 + 71D5u8 + 30D3u10 + 2D1u12, (D.460)
Hp=13,(4)

D=3,N=4 = 11D8u5 + 114D6u7 + 132D4u9 + 35D2u11 + 5u13, (D.461)
Hp=13,(4)

D=3,N=5 = D9u4 + 33D7u6 + 112D5u8 + 53D3u10 + 5D1u12, (D.462)
Hp=13,(4)

D=3,N=6 = D8u5 + 25D6u7 + 26D4u9 +D2u11, (D.463)
Hp=13,(4)

D=3,N=7 = D7u6 + 6D5u8, (D.464)
Hp=13,(4)

D=3,N=8 = D6u7 +D4u9, (D.465)
Hp=13,(4)

D=3,N=9 = D5u8, (D.466)
Hp=13,(4)

D=5,N=2 = D6u7, (D.467)
Hp=13,(4)

D=5,N=3 = 8D7u6 + 26D5u8 + 4D3u10, (D.468)
Hp=13,(4)

D=5,N=4 = 40D6u7 + 63D4u9 + 2D2u11, (D.469)
Hp=13,(4)

D=5,N=5 = 5D7u6 + 90D5u8 + 57D3u10 + 2D1u12, (D.470)
Hp=13,(4)

D=5,N=6 = 33D6u7 + 93D4u9 + 29D2u11 + 5u13, (D.471)
Hp=13,(4)

D=5,N=7 = 4D7u6 + 36D5u8 + 32D3u10 + 4D1u12, (D.472)
Hp=13,(4)

D=5,N=8 = 2D6u7 + 8D4u9, (D.473)
Hp=13,(4)

D=7,N=4 = 2D4u9, (D.474)
Hp=13,(4)

D=7,N=5 = 5D5u8 + 4D3u10, (D.475)
Hp=13,(4)

D=7,N=6 = 7D4u9 +D2u11, (D.476)
Hp=13,(4)

D=7,N=7 = 2D5u8 + 10D3u10 +D1u12, (D.477)
Hp=13,(4)

D=7,N=8 = 9D4u9 + 10D2u11 + 3u13, (D.478)
Hp=13,(4)

D=7,N=9 = 2D5u8 + 6D3u10 + 2D1u12, (D.479)
Hp=13,(4)

D=9,N=7 = D3u10, (D.480)
Hp=13,(4)

D=9,N=10 = 2D2u11 + 2u13, (D.481)
Hp=13,(4)

D=9,N=11 = D3u10 +D1u12, (D.482)
Hp=14,(4)

D=2,N=2 = D7u7 +D5u9 +D3u11, (D.483)
Hp=14,(4)

D=2,N=3 = 8D8u6 + 20D6u8 + 19D4u10 + 8D2u12 + 4u14, (D.484)
Hp=14,(4)

D=2,N=4 = 3D9u5 + 20D7u7 + 29D5u9 + 15D3u11 + 3D1u13, (D.485)
Hp=14,(4)

D=2,N=5 = 4D8u6 + 12D6u8 + 7D4u10, (D.486)
Hp=14,(4)

D=2,N=6 = 2D7u7 + 2D5u9, (D.487)
Hp=14,(4)

D=2,N=7 = D6u8, (D.488)
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Hp=14,(4)
D=4,N=2 = 2D9u5 + 6D7u7 + 3D5u9, (D.489)

Hp=14,(4)
D=4,N=3 = 35D8u6 + 160D6u8 + 71D4u10 + 2D2u12, (D.490)

Hp=14,(4)
D=4,N=4 = 5D9u5 + 218D7u7 + 430D5u9 + 122D3u11 + 4D1u13, (D.491)

Hp=14,(4)
D=4,N=5 = 50D8u6 + 411D6u8 + 347D4u10 + 58D2u12 + 6u14, (D.492)

Hp=14,(4)
D=4,N=6 = 2D9u5 + 101D7u7 + 266D5u9 + 90D3u11 + 6D1u13, (D.493)

Hp=14,(4)
D=4,N=7 = 4D8u6 + 63D6u8 + 48D4u10 +D2u12, (D.494)

Hp=14,(4)
D=4,N=8 = 3D7u7 + 12D5u9, (D.495)

Hp=14,(4)
D=4,N=9 = 2D6u8 +D4u10, (D.496)

Hp=14,(4)
D=4,N=10 = D5u9, (D.497)

Hp=14,(4)
D=6,N=3 = 11D6u8 + 3D4u10, (D.498)

Hp=14,(4)
D=6,N=4 = 16D7u7 + 68D5u9 + 10D3u11, (D.499)

Hp=14,(4)
D=6,N=5 = 63D6u8 + 83D4u10 + 2D2u12, (D.500)

Hp=14,(4)
D=6,N=6 = 8D7u7 + 105D5u9 + 58D3u11 + 2D1u13, (D.501)

Hp=14,(4)
D=6,N=7 = 37D6u8 + 95D4u10 + 29D2u12 + 5u14, (D.502)

Hp=14,(4)
D=6,N=8 = 4D7u7 + 37D5u9 + 32D3u11 + 4D1u13, (D.503)

Hp=14,(4)
D=6,N=9 = 2D6u8 + 8D4u10, (D.504)

Hp=14,(4)
D=8,N=5 = 2D4u10, (D.505)

Hp=14,(4)
D=8,N=6 = 5D5u9 + 4D3u11, (D.506)

Hp=14,(4)
D=8,N=7 = 7D4u10 +D2u12, (D.507)

Hp=14,(4)
D=8,N=8 = 2D5u9 + 10D3u11 +D1u13, (D.508)

Hp=14,(4)
D=8,N=9 = 9D4u10 + 10D2u12 + 3u14, (D.509)

Hp=14,(4)
D=8,N=10 = 2D5u9 + 6D3u11 + 2D1u13, (D.510)

Hp=14,(4)
D=10,N=8 = D3u11, (D.511)

Hp=14,(4)
D=10,N=11 = 2D2u12 + 2u14, (D.512)

Hp=14,(4)
D=10,N=12 = D3u11 +D1u13, (D.513)
Hp=15,(4)

D=3,N=2 = 2D10u5 + 10D8u7 + 8D6u9 +D4u11, (D.514)
Hp=15,(4)

D=3,N=3 = 59D9u6 + 261D7u8 + 205D5u10 + 52D3u12 + 2D1u14, (D.515)
Hp=15,(4)

D=3,N=4 = 17D10u5 + 313D8u7 + 666D6u9 + 337D4u11 + 56D2u13 + 7u15, (D.516)
Hp=15,(4)

D=3,N=5 = 2D11u4 + 69D9u6 + 451D7u8 + 455D5u10 + 111D3u12 + 7D1u14, (D.517)
Hp=15,(4)

D=3,N=6 = 2D10u5 + 86D8u7 + 218D6u9 + 82D4u11 +D2u13, (D.518)
Hp=15,(4)

D=3,N=7 = 3D9u6 + 44D7u8 + 34D5u10 +D3u12, (D.519)
Hp=15,(4)

D=3,N=8 = 5D8u7 + 10D6u9 + 2D4u11, (D.520)
Hp=15,(4)

D=3,N=9 = D7u8 +D5u10, (D.521)
Hp=15,(4)

D=5,N=2 = 3D8u7 + 2D6u9, (D.522)
Hp=15,(4)

D=5,N=3 = 19D9u6 + 173D7u8 + 113D5u10 + 5D3u12, (D.523)
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Hp=15,(4)
D=5,N=4 = 170D8u7 + 693D6u9 + 270D4u11 + 4D2u13, (D.524)

Hp=15,(4)
D=5,N=5 = 16D9u6 + 541D7u8 + 869D5u10 + 185D3u12 + 5D1u14, (D.525)

Hp=15,(4)
D=5,N=6 = 108D8u7 + 695D6u9 + 475D4u11 + 66D2u13 + 7u15, (D.526)

Hp=15,(4)
D=5,N=7 = 6D9u6 + 167D7u8 + 351D5u10 + 100D3u12 + 7D1u14, (D.527)

Hp=15,(4)
D=5,N=8 = 8D8u7 + 82D6u9 + 51D4u11 +D2u13, (D.528)

Hp=15,(4)
D=5,N=9 = 4D7u8 + 12D5u10, (D.529)

Hp=15,(4)
D=5,N=10 = 2D6u9 +D4u11, (D.530)

Hp=15,(4)
D=5,N=11 = D5u10, (D.531)

Hp=15,(4)
D=7,N=4 = 32D6u9 + 10D4u11, (D.532)

Hp=15,(4)
D=7,N=5 = 24D7u8 + 87D5u10 + 12D3u12, (D.533)

Hp=15,(4)
D=7,N=6 = 71D6u9 + 84D4u11 + 2D2u13, (D.534)

Hp=15,(4)
D=7,N=7 = 9D7u8 + 106D5u10 + 58D3u12 + 2D1u14, (D.535)

Hp=15,(4)
D=7,N=8 = 39D6u9 + 95D4u11 + 29D2u13 + 5u15, (D.536)

Hp=15,(4)
D=7,N=9 = 5D7u8 + 37D5u10 + 32D3u12 + 4D1u14, (D.537)

Hp=15,(4)
D=7,N=10 = 2D6u9 + 8D4u11, (D.538)

Hp=15,(4)
D=9,N=6 = 2D4u11, (D.539)

Hp=15,(4)
D=9,N=7 = 5D5u10 + 4D3u12, (D.540)

Hp=15,(4)
D=9,N=8 = 7D4u11 +D2u13, (D.541)

Hp=15,(4)
D=9,N=9 = 2D5u10 + 10D3u12 +D1u14, (D.542)

Hp=15,(4)
D=9,N=10 = 9D4u11 + 10D2u13 + 3u15, (D.543)

Hp=15,(4)
D=9,N=11 = 2D5u10 + 6D3u12 + 2D1u14, (D.544)

Hp=16,(4)
D=2,N=2 = D11u5 + 3D9u7 + 3D7u9 + 2D5u11 +D3u13, (D.545)

Hp=16,(4)
D=2,N=3 = D12u4 + 13D10u6 + 40D8u8 + 46D6u10 + 28D4u12 + 10D2u14 + 4u16, (D.546)

Hp=16,(4)
D=2,N=4 = 3D11u5 + 32D9u7 + 68D7u9 + 53D5u11 + 19D3u13 + 3D1u15, (D.547)

Hp=16,(4)
D=2,N=5 = 5D10u6 + 27D8u8 + 31D6u10 + 10D4u12, (D.548)

Hp=16,(4)
D=2,N=6 = 5D9u7 + 10D7u9 + 4D5u11, (D.549)

Hp=16,(4)
D=2,N=7 = D10u6 + 2D8u8 + 2D6u10, (D.550)

Hp=16,(4)
D=4,N=2 = 2D11u5 + 21D9u7 + 18D7u9 + 3D5u11, (D.551)

Hp=16,(4)
D=4,N=3 = 88D10u6 + 735D8u8 + 717D6u10 + 146D4u12 + 2D2u14, (D.552)

Hp=16,(4)
D=4,N=4 = 8D11u5 + 703D9u7 + 2719D7u9 + 1737D5u11 + 254D3u13 + 5D1u15, (D.553)

Hp=16,(4)
D=4,N=5 = 108D10u6 + 1784D8u8 + 3121D6u10 + 1099D4u12 + 106D2u14 + 9u16, (D.554)

Hp=16,(4)
D=4,N=6 = 5D11u5 + 315D9u7 + 1739D7u9 + 1358D5u11 + 221D3u13 + 10D1u15, (D.555)

Hp=16,(4)
D=4,N=7 = 11D10u6 + 321D8u8 + 658D6u10 + 182D4u12 + 2D2u14, (D.556)

Hp=16,(4)
D=4,N=8 = 14D9u7 + 130D7u9 + 81D5u11 +D3u13, (D.557)

Hp=16,(4)
D=4,N=9 = 10D8u8 + 23D6u10 + 3D4u12, (D.558)
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Hp=16,(4)
D=4,N=10 = 3D7u9 + 2D5u11, (D.559)

Hp=16,(4)
D=6,N=3 = 82D8u8 + 89D6u10 + 4D4u12, (D.560)

Hp=16,(4)
D=6,N=4 = 57D9u7 + 635D7u9 + 415D5u11 + 19D3u13, (D.561)

Hp=16,(4)
D=6,N=5 = 351D8u8 + 1229D6u10 + 402D4u12 + 5D2u14, (D.562)

Hp=16,(4)
D=6,N=6 = 31D9u7 + 793D7u9 + 1073D5u11 + 200D3u13 + 5D1u15, (D.563)

Hp=16,(4)
D=6,N=7 = 151D8u8 + 812D6u10 + 499D4u12 + 68D2u14 + 7u16, (D.564)

Hp=16,(4)
D=6,N=8 = 8D9u7 + 195D7u9 + 365D5u11 + 101D3u13 + 7D1u15, (D.565)

Hp=16,(4)
D=6,N=9 = 11D8u8 + 85D6u10 + 51D4u12 +D2u14, (D.566)

Hp=16,(4)
D=6,N=10 = 4D7u9 + 12D5u11, (D.567)

Hp=16,(4)
D=6,N=11 = 2D6u10 +D4u12, (D.568)

Hp=16,(4)
D=6,N=12 = D5u11, (D.569)

Hp=16,(4)
D=8,N=4 = 2D7u9 + 2D5u11, (D.570)

Hp=16,(4)
D=8,N=5 = 40D6u10 + 12D4u12, (D.571)

Hp=16,(4)
D=8,N=6 = 26D7u9 + 90D5u11 + 12D3u13, (D.572)

Hp=16,(4)
D=8,N=7 = 72D6u10 + 84D4u12 + 2D2u14, (D.573)

Hp=16,(4)
D=8,N=8 = 9D7u9 + 106D5u11 + 58D3u13 + 2D1u15, (D.574)

Hp=16,(4)
D=8,N=9 = 39D6u10 + 95D4u12 + 29D2u14 + 5u16, (D.575)

Hp=16,(4)
D=8,N=10 = 5D7u9 + 37D5u11 + 32D3u13 + 4D1u15, (D.576)

Hp=16,(4)
D=8,N=11 = 2D6u10 + 8D4u12, (D.577)

Hp=16,(4)
D=10,N=7 = 2D4u12, (D.578)

Hp=16,(4)
D=10,N=8 = 5D5u11 + 4D3u13, (D.579)

Hp=16,(4)
D=10,N=9 = 7D4u12 +D2u14, (D.580)

Hp=16,(4)
D=10,N=10 = 2D5u11 + 10D3u13 +D1u15, (D.581)

Hp=16,(4)
D=10,N=11 = 9D4u12 + 10D2u14 + 3u16, (D.582)

Hp=16,(4)
D=10,N=12 = 2D5u11 + 6D3u13 + 2D1u15, (D.583)
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