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1 Introduction

The Large Hadron Collider (LHC) has confirmed the success of the Standard Model (SM)
with the discovery of the SM-like Higgs boson and the non-observation of new particles
below the TeV scale. The separated scales between the SM particles and new physics
suggests that effective field theory (EFT) is quite a suitable framework to parametrize new
physics effects based on the SM degrees of freedom. Pioneered by Weinberg [1], starting
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from the degrees of freedom at a low energy scale, one writes down the most general possible
Lagrangian, including all terms consistent with presumed symmetry principle, with proper
power counting rules. In this bottom-up approach, the Wilson coefficients of the effective
operators are totally free and independent parameters in which all kinds of Lorentz-invariant
new physics effects are encoded and parameterized.

With the assumption that new physics decouples at a high energy scale and the
electroweak (EW) symmetry is in the unbroken phase, the standard model effective field
theory (SMEFT) is appreciated and widely adapted in the description of the new physics
in the EFT framework. In the SMEFT, starting from the fields and symmetries of the
SM, one can write down all possible operators order by order according to the canonical
dimension power counting. Since Weinberg wrote down the dimension 5 operator [2], lots of
progress has been made in writing down complete and independent operators up to the mass
dimension 9 in the SMEFT [2–11], the low-energy effective field theory (LEFT) [12–15],
the standard model effective field theory with right-handed neutrinos (νSMEFT) and the
low-energy effective field theory with right-handed neutrinos (νLEFT) [16–20]. A general
algorithm, implemented in a Mathematica package ABC4EFT [21], has been proposed to
construct the independent and complete SMEFT operator bases up to any mass dimension.

However, there are still new physics scenarios that cannot be described within the
SMEFT framework due to the existence of the non-decoupling effects. In these scenarios, the
heavy particles obtain their physical masses predominantly from the vacuum expectation
value of the Higgs boson, and thus it is not possible to integrate out the heavy particle in
the unbroken phase. On the other hand, since these non-decoupling effects can only be
systematically described in the EW broken phase, it is necessary to adapt the non-linear
realization of the EW symmetry provided by the electroweak chiral Lagrangian with the light
Higgs boson (H-EWChL) [22–27], also known as the Higgs effective field theory (HEFT) [28–
40]. The HEFT provides a more general realization of the EW symmetry breaking, which
includes the SMEFT as a particular case [41–46]. The electroweak symmetry breaking
(EWSB) patterns determine the nature of the Higgs boson, such as the fundamental Higgs,
Nambu-Goldstone Higgs, Coleman-Weinberg Higgs, and tadpole-induced Higgs [42]. Among
all four scenarios, only the elementary Higgs and the Nambu-Goldstone Higgs scenarios
can be described within the SMEFT framework, while all four scenarios can be unified
into the HEFT framework, in which the Higgs boson belongs to the singlet under the
global symmetry.

In the SMEFT the symmetry breaking is manifestly realized under the Higgs mecha-
nism, in which the Higgs boson makes part of an SU(2)L doublet together with the three
electroweak Nambu-Goldstone fields, and the doublet Higgs is transformed linearly under
the EW gauge symmetry. On the other hand, the HEFT does not make any assumption
about the nature of the Higgs field and the pattern of the EWSB. The HEFT provides a
general description of the EWSB sector, in terms of the three Nambu-Goldstone bosons
(NGBs) transformed non-linearly under the EW symmetry, the spurion parametrizing the
custodial symmetry breaking, and the observed Higgs boson as an EW singlet field. Inspired
by the chiral perturbation theory (ChPT) [1, 47, 48] in quantum chromodynamics, the
HEFT operators have been written order by order with the power counting [1, 29, 31, 33–
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35, 49–52] of the chiral dimensions using the coset structure [53, 54]. The electroweak chiral
Lagrangian has been constructed up to the next-to-leading-order (NLO) [28–40], and the
one-loop renormalization has been investigated systematically [55–58]. However, writing
down the complete operator basis including flavor structure has not yet been finished.

In this work, we revisit the HEFT operator basis and write down the complete list of
the effective operators via the Young tensor method developed in refs. [7, 9, 11, 21], with
certain improvements on the NGBs and spurion. Compared with the previous works, we
need the following new treatments:

• For operators involved in the NGBs, the operator basis written by the Young tensor
method needs to satisfy additional constraints from the shift symmetry of the NGBs.
Based on the operator-amplitude correspondence, we impose the Adler zero condition
on the contact amplitude basis and select the amplitudes satisfying the soft theorem
in the soft momentum limit [59–67].

• For operators involved in the spurions, the spurion, as the frozen degree of freedom
of dynamical field to parametrize the custodial symmetry breaking, does not enter
into the Lorentz sector but plays the role of forming the group invariant under the
custodial symmetry together with other SM field degrees of freedom. We remove the
spurion from the Lorentz construction but keep the spurion to be involved in the
gauge and flavor structure. Different from the dynamical field treatment, we also need
to remove the self-contraction of the spurions in effective operators because they do
not have physical effects.

With the new treatments on the NGB and spurion, we obtain the complete and independent
set of operators for both one-generation and three-generation fermions in the HEFT without
(with) the right-handed neutrinos. Comparing with the NLO operators listed in [30, 38, 40],
we find that there were 8(11) terms of operators missing, corresponding to 422(665) operators
for three generation fermions, in the HEFT without (with) sterile neutrinos, and identify
that there were many redundant operators that should be removed. Furthermore, the
flavor structure was not considered and properly treated in the literature, while we list the
complete NLO operators with the complete flavor structure using the flavor tensor. Finally,
we obtain the on-shell amplitude basis for the NLO operators, listed in appendix C, which
would be useful for investigating the scattering amplitudes in the HEFT framework.

The paper is organized as follows. In section 2 we review the essential parts of
electroweak chiral Lagrangian: field contents, symmetry, and the power counting rules.
Based on the operator-amplitude correspondence, we utilize the Young tensor method
to write down the operator basis and impose the Adler zero condition for the operators
involved in the NGBs in section 3. In section 4 we list the complete bosonic operators
while in section 5 we list the complete NLO operators involved in three-generation fermions.
Finally, we conclude in section 6. In appendix A, we summarise the conversion rules between
2-component and 4-component spinors. In appendix B we list the operators comparing
with the literature and appendix C shows the complete on-shell amplitude basis.

– 3 –



J
H
E
P
0
5
(
2
0
2
3
)
0
4
3

2 Electroweak chiral Lagrangian with light Higgs

In this section, we lay out the main ingredients of the H-EWChL (HEFT): the particle
content (build blocks), the global and local symmetries, and the power-counting rules. We
also write down the leading order (LO) Lagrangian and organize the NLO terms based on
the power-counting rules.

2.1 Building blocks and coset construction

First let us briefly review the Callan-Coleman-Wess-Zumino (CCWZ) construction [53, 54]
for the symmetry breaking pattern G → H, which provides a systematic way to write
effective Lagrangians that allow the manifestation of the symmetries of the theory. By the
definition of the coset group, any group element of the global symmetry g[αA] ∈ G can be
decomposed as the product

g[αA] = eiαAT
A = eifâ[α]T̂ â · eifa[α]Ta , (2.1)

where T a and T̂ â are the unbroken and broken generators, respectively, and fa,â[α] =
αa,â +O(α2). Since the fields along the coset directions are in a one-to-one correspondence
with the NGBs, we promote the corresponding parameters to dynamical fields by defining
the field matrix

Ω(Π) ≡ exp
[
i

2fΠ(x)
]
, with Π(x) = ΠâT

â. (2.2)

Let us determine how Ω(Π) and Π transform under an element of the group G, H, and G/H.
Using the decomposition relation above, under the action of a general element g[αA] ∈ G,
the Ω(Π) transforms

g · Ω(Π) = Ω(Π(g)) · h(Π; g) with h(Π; g) = exp(iζa[Π; g]T a) (2.3)

with the compensating transformation h ∈ H and equivalently

Ω(Π)→ Ω(Π(g)) = gΩ(Π)h−1(Π; g). (2.4)

In the particular cases of restricting the general transformation g into the subgroup trans-
formation gH and gG/H, the above transformation on the Goldstone matrix tells the explicit
form of the Π(g):

Πâ → Π(gH)
â =

(
eiαaT

a
π

)b̂
â

Πb̂, with h−1(Π; g) = gH, (2.5)

Πâ → Π(gG/H)
â = Πâ + 2fαâ +O

(
α

Π2

f
+ α

Π3

f2 + · · ·
)
. (2.6)

Thus the NGBs Π transform linearly under the subgroup H while non-linearly with the
shift symmetry under the coset G/H.

Applying the above general construction to the electroweak symmetry breaking, the
chiral symmetry breaking pattern G = SU(2)L × SU(2)R to the custodial symmetry H =
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SU(2)V [1, 47, 48] is identified and the Goldstone matrix Ω can be written in a block-
diagonal form

Ω(Π)≡
[
ξL(Π) 0

0 ξR(Π)

]
=
[

exp
[
i

2vφIτ
I
]

0
0 exp

[
− i

2vφIτ
I
] ] , with ξL(Π) = ξR(Π)†≡u(Π) ,

(2.7)
with the NGBs φI (I = 1, 2, 3). Identifying g = diag(gL(αL), gR(αR)) along with
gL,R(αL,R) = exp( i2αIL,RτI), the Goldstone matrix transformation can be further reduced to

ξL(Π)→ ξL(Π(gL)) = gLξ(Π)h−1(Π; gL, gR), (2.8)
ξR(Π)→ ξR(Π(gR)) = gRξ(Π)h−1(Π; gL, gR). (2.9)

For the symmetric coset1, the compensating transformation h−1(Π; gL, gR) is the same for
the chiral relations since they are related by the automorphism symmetry. Thus combining
the two chiral relations would remove the h and obtain a simpler form with the canonical
Goldstone matrix

U(Π) ≡ ξR(Π)ξ†L(Π) = u2(Π) = exp
[
i

v
φIτ

I
]
−→ gRU(Π)g†L . (2.10)

Promoting the global symmetry G to the local one, we introduce the auxiliary SU(2)L and
SU(2)R matrix gauge fields Ŵµ and B̂µ. The covariant derivative of the U is defined as

DµU = ∂µU− iŴµU + iUB̂µ, (2.11)

where Ŵµ and B̂µ respects the transformation above

Ŵµ −→ gLŴ
µg†L + igL∂

µg†L, B̂µ −→ gRB̂
µg†R + igR∂

µg†R , (2.12)

and the field strength tensors

Ŵµν = ∂µŴν − ∂νŴµ − i
[
Ŵµ, Ŵν

]
−→ gLŴµνg

†
L , (2.13)

B̂µν = ∂µB̂ν − ∂νB̂µ − i
[
B̂µ, B̂ν

]
−→ gRB̂µνg

†
R . (2.14)

The gauge fields are incorporated in the same way as the left and right sources in the ChPT,
and the SM gauge fields are recovered through the identification

Ŵµ = −g~σ2
~Wµ, B̂µ = −g′σ3

2 B
µ = −g′TRBµ , (2.15)

which explicitly breaks the SU(2)R symmetry group while preserving the SU(2)L ×U(1)Y
gauge symmetry. Here the right-handed spurion TR = σ3

2 is introduced to represent the
explicit breaking of custodial symmetry.

1The coset space G/H is identified to be symmetric if there exists an automorphism or “grading” symmetry
R, under which the broken generators change sign

R :
{
Ta → +Ta
Tâ → −Tâ

.

For chiral symmetry breaking, the automorphism corresponds to the parity operator, whose eigenvalues are
±1 for vector and axial-vector generators, respectively.
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The SM fermion multiplets ψL,R = PL,Rψ can be incorporated into the SU(2)L and
SU(2)R doublets respectively:2

QL =
(
uL
dL

)
→ gLQL , QR =

(
uR
dR

)
→ gRQR , (2.16)

LL =
(
νL
eL

)
→ gLLL , LR =

(
νR
eR

)
→ gRLR , (2.17)

and the fermion covariant derivative transformation takes the form DµψL,R → gL,RDµψL,R.
Since the right-handed fermions are the SU(2)R doublets, the U(1)Y symmetry of fermions
is promoted to the U(1)X symmetry, where X = (B − L)/2 is half of the baryon number
B minus the lepton number L. The fermion masses are incorporated through the Yukawa
terms that explicitly break the symmetry via the right-handed spurion field

vψLU(Π)YRψR + h.c. with YR −→ gRYRg†R . (2.18)

In terms of the spurion field TR = σ3/2, the Yukawa couplings take the form

YQR = 1
2(yu + yd) + TR(yu − yd), YLR = 1

2(yv + ye) + TR(yv − ye) , (2.19)

where yv = 0 if no right-handed neutrinos.
In summary, the following building blocks are introduced to keep the Lagrangian

formally invariant under the global symmetry G transformation:

U, ψL, ψR, Ŵµν , B̂µν , Ĝµν , TR, YR. (2.20)

It is also customary to take different building blocks transformed under the unbroken group
H [33, 34, 39] by dressing the above building blocks with the u(Π), such that

uµ = iu (DµU)† u = −iu†DµUu
† −→ gHuµg

†
H (2.21)

fµν± = u†Ŵµνu± uB̂µνu† −→ gHf
µν
± g†H (2.22)

T = uTRu† −→ gHT g†H (2.23)
u†ψL −→ gHu

†ψL (2.24)
uψR −→ gHuψR (2.25)

Y = uYRu† −→ gHYg†H (2.26)

very similar to the building blocks in the QCD chiral perturbation theory. It is also
very convenient to take the form of the building blocks transformed under the group

2Note that the right-handed neutrinos can be naturally included in the doublet LR. Removing right-
handed neutrino degree of freedom

LR =
(

0
eR

)
would recover the SM spectrum.
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SU(2)L [28–32, 35–38, 40] such that

Vµ(x) = iU(x)DµU(x)†, −→ gLVµg
†
L (2.27)

Ŵµν −→ gLŴµνg
†
L (2.28)

B̂µν −→ B̂µν (2.29)
T = UTRU† −→ gLTg†L (2.30)

ψL −→ gLψL (2.31)
UψR −→ gLUψR (2.32)

Y = UYRU† −→ gLYg†L (2.33)

In this work, we would like to adapt the building blocks transforming under the SU(2)L
symmetry, although different choices would give rise to the equivalent operator set.

2.2 Chiral Lagrangian and power counting

In terms of the above building blocks, the effective chiral Lagrangian is organized as an
infinite series expansion in powers of momenta in the low energy

L =
∑
dχ=2

Ldχ = L2 + NLO terms + terms of higher order , (2.34)

where the effective operators are counted by the chiral dimension dχ instead of the canonical
dimension dc.

The structure of the LO Lagrangian determines the power-counting rules of the elec-
troweak chiral Lagrangian. Let us take the LO Lagrangian of the HEFT as

L2 = −1
4G

a
µνG

aµν − 1
2〈WµνW

µν〉 − 1
4BµνB

µν − g2
s

16π2 θsG
a
µνG̃

aµν

+ 1
2∂µh∂

µh− V (h) + v2

4 〈VµVµ〉FC(h) + v2

4 〈TVµ〉〈TVµ〉FT (h)

+ iQ̄L /DQL + iQ̄R /DQR + iL̄L /DLL + iL̄R /DLR

− v√
2

(Q̄LUYQ(h)QR) + h.c.)− v√
2

(L̄LUYL(h)LR + h.c.) , (2.35)

where 〈. . . 〉 ≡ Tr (. . . ) represents the SU(2)L trace. The first line describes the dynamic
terms of the gauge bosons and the theta term, and the second line contains the Higgs
dynamic terms, the Higgs potential, the NGBs dynamic term, and the custodial symmetry
breaking NGB term. The third and fourth lines contain dynamic terms and the mass terms
of fermions. Since the Higgs boson belongs to the singlet under the global symmetry, the
Higgs potential should be a polynomial function of the h field that

V (h) ∼ 1 + a1
h

v
+ a2

h2

v2 +O

(
h3

v3

)
. (2.36)

Note that the canonical dimension is compensated by the electroweak scale v. the dimen-
sionless function FC,T (h) of the Higgs field h appearing in the NGBs dynamic term takes
the form that

F(h) = 1 + b1
h

v
+ b2

h2

v2 +O

(
h3

v3

)
. (2.37)
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This function does not appear in the dynamic terms of fermions and the singlet Higgs h
because they can be removed by field redefinition or equation of motion [30].

As in [34, 35, 39], the usual custodial breaking term 〈TVµ〉〈TVµ〉 sometimes is classified
into the NLO expansion in the chiral expansion since it is not present in the SM at the tree
level. However, this would miss certain non-decoupling scenarios within the weak dynamics.
It is possible that the custodial symmetry breaking could be triggered by new physics at the
electroweak scale, such as the new VEV from the triplet scalar, the tadpole-induced Higgs,
etc. Although the custodial breaking effect is limited to be small from the electroweak
precision data, to incorporate non-decoupling new physics scenarios into the HEFT, we put
it to be at the LO and adapt the standard chiral dimension counting on the spurion fields
as shown in the following.3

The power-counting scheme of the HEFT is similar to the power-counting rules in the
chiral perturbation theory [1, 47, 48], with certain improvements [1, 29, 31, 33–35, 49–51].
To be consistent, we define the LO Lagrangian of the HEFT carries the chiral dimension 2,
thus all the building block’s chiral dimensions are determined. First the NGBs matrix U is
determined to be chiral-dimensionless,4 while the covariant derivative Dµ carries the chiral
dimension 1, thus Vµ is of the chiral dimension 1, which implies that the dynamic term of
NGBs carries the chiral dimension 2.

For the gauge bosons, the external gauge sources Ŵµ and B̂µ, appeared in the covariant
derivative Dµ, have the chiral dimension 1, and their corresponding field strength tensors
have the chiral dimension 2. Since all the gauge boson masses gv have chiral dimension 1,
the gauge coupling constant g, g′ also carries the chiral dimension 1 while the gauge boson
fields Wµ and Bµ are chiral-dimensionless.

The custodial symmetry breaking term is organized into the LO Lagrangian and thus
the spurion T carries no chiral dimension. The physical Higgs h always appears with the
VEV in the denominator as the compensator and thus has no chiral dimension as well,
while the fermions have the chiral dimension 1/2. In particular, since the fermion masses yv
have chiral dimension 1, the Yukawa couplings Y would give rise to the chiral dimension 1.

The power counting rules on the chiral dimension are also consistent with the loop
expansion [29, 31, 34, 35, 50]. The above power counting on the gauge and Yukawa couplings
implies that

p2

16π2v2 ∼
g2

(4π)2 ,
y2

(4π)2 ,
λ

(4π)2 � 1 . (2.38)

A similar argument applies to the case that all the SM gauge bosons and fermions are
weakly coupled to a strong sector. Thus the types of operators containing the fermion
bilinear (ψ̄ψ)n and/or the field strength XnUh would arise at NLO where they come with
explicit factors of the couplings yn and/or gn. Each fermion bilinear and each field strength
tensor would shift the chiral dimension by 1.

Based on the above, a general term in the HEFT can be denoted by

κkiψFiXVi
µνUhDdi , (2.39)

3Adapting the spurion with no chiral dimension would give rise to the operator sets with more LO +
NLO operators than the ones with the spurion with chiral dimensions, for example, in refs. [34, 35, 39].

4Similar to the Higgs boson, its canonical dimension is compensated by the electroweak scale.
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Classes Ntype Nterm Noperator

UhD4 3 + 6 + 0 + 0 15 15

X2Uh 6 + 4 + 0 + 0 10 10

XUhD2 2 + 6 + 0 + 0 8 8

X3 4 + 2 + 0 + 0 6 6

ψ2UhD 4 + 8 + 0 + 0 13(16) 13nf 2 (16nf 2)

ψ2UhD2 6 + 10 + 0 + 0 60(80) 60nf 2 (80nf 2)

ψ2UhX 7 + 7 + 0 + 0 22(28) 22nf 2 (28nf 2)

ψ4 12 + 24 + 4 + 8 117(160) 1
4nf

2(31− 6nf + 335nf 2) (nf 2(9− 2nf + 125nf 2))

Total 123 261(313)
335nf 4

4 − 3nf 3

2 + 411nf 2

4 + 39 (39 + 133nf 2 − 2nf 2 − 2nf 3 + 125nf 4)

Noperatrs(nf = 1) = 224(295), Noperatrs(nf = 3) = 7704(11307)

Table 1. We present the complete statistics of the NLO operators. The types of operators are
separated into four categories (C-B, C/-B, B-C/, C/-B/). The numbers of terms and operators are also
listed for the SM without (with) the right-handed sterile neutrinos.

ψ4 sub-types Number nf = 1 nf = 3

(LL)2

L†L
2
LR

2 + h.c.: nf
2(nf 2 + 1)

1
4nf

2(19nf 2 + 6nf + 7) 8 441LL
2L†L

2: 1
2nf

2(3nf 2 + 2nf + 1)
LR

2L†R
2: 1

4nf
2(nf 2 + 2nf + 1)

LLL
†
LLRL

†
R: 2nf 4

(LL)(QQ)

Q†LQRL
†
LLR + h.c.: 12nf 4

34nf 4 34 2754

Q†LQLL
†
LLL: 6nf 4

Q†RQRL
†
LLL: 6nf 4

Q†LQLL
†
RLR: 2nf 4

Q†RQRL
†
RLR: 2nf 4

Q†LQRL
†
LLR + h.c.: 6nf 4

(QQ)2

Q†L
2
QR

2 + h.c.: 4nf 2(3nf 2 + 1)

nf
2(30nf 2 + 6) 36 2484Q†L

2
QL

2: nf
2(3nf + 1)

Q†R
2
QR

2: nf
2(3nf + 1)

Q†LQLQ
†
RQR: 12nf 4

Q3L

LLQL
3 + h.c.: 4nf 4

nf
2(15nf 2 − 3nf ) 12 1134LLQLQR

2 + h.c.: 2nf 3(3nf − 1)
LRQRQL

2 + h.c.: nf
3(3nf − 1)

LRQR
3 + h.c.: 2nf 4

Table 2. The numbers of the independent operators in class ψ4 without right-handed neutrino in
detail, where (LL)2 is the pure lepton sector, (LL)(QQ) is the mixed quark-lepton sector, (QQ)2 is
the pure quark sector, and Q3L is the baryon-number-violating sector.
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where there are a fixed number ki of the gauge or Yukawa couplings κ, Fi fermion fields ψ,
Vi field-strength tensor Xµν , di covariant derivatives D, and an arbitrary number of both
the NGBs U and the Higgs boson h. The total chiral dimension of the term determines the
loop order Li

dχ + di + ki + Fi
2 + Vi = 2Li + 2. (2.40)

In this work, we focus on the NLO terms, which include effective operators with the chiral
dimension 4. We classify them into the bosonic sector and the fermionic sector, with the
operator types of each5

boson sector: UhD4, X2Uh, XUhD2, X3 , (2.41)
fermion sector: ψ2UhD, ψ2UhD2, ψ2UhX, ψ4 . (2.42)

Operators of each type are presented in section 4 and section 5, with three generation
fermions, included. Based on the custodial symmetry and the baryon number symmetry,
the types of operators can be further separated into four categories:

• custodial symmetry preserving (C), baryon number preserving (B);

• custodial symmetry violating (C/), baryon number preserving (B);

• custodial symmetry preserving (C), baryon number violating (B/);

• custodial symmetry violating (C/), baryon number violating (B/).

Furthermore, we also list the operators without (with) the right-handed sterile neutrinos.
The numbers of operators in each type are listed in table 1. The specific operators are
listed in section 4 and section 5, of which the comparison with the operators in [30, 38, 40]
is presented in appendix B, and the on-shell amplitude form of these operators are given
in appendix C. Although the one-flavor operators has been presented in literature such
as [28–40], there are still several operators missing as discussed below. In particular, the
numbers of the independent operators in the four-fermion sector without right-handed
neutrino are presented in table 2, which, together with the numbers of other classes in
table 1, are consistent with the U(1)X -conserving result counted by the Hilbert series in
refs. [68, 69].

3 HEFT operator bases

Based on the section 2, we obtain the building blocks and their group representations under
the Lorentz and internal symmetries as shown in table 3. With these building blocks, we
can utilize the group theoretic techniques developed in refs. [7, 9, 11, 21], the so-called
Young tensor method, to write down the Lorentz, gauge, and flavor structures of the EFT
operators. At the same time, if an operator involves in the NGBs, the building block Vµ,

5The class of triple gauge bosons is of the chiral dimension 6 according to the power-counting rules
presented in this subsection, but it is presented here for the convenience of comparing with other literature.
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building blocks spinor-helicity Lorentz group SU(2)L SU(3)C dχ

LL LLα (1
2 , 0) Fundamental Singlet 1

2
LR LR

α̇ (0, 1
2) Fundamental Singlet 1

2
QL QLα (1

2 , 0) Fundamental Fundamental 1
2

QR QR
α̇ (0, 1

2) Fundamental Fundamental 1
2

WL WL
I
αβτ

I (1, 0) Adjoint Singlet 1
WR WR

Iα̇β̇τ I (0, 1) Adjoint Singlet 1
GL GLαβ (1, 0) Singlet Adjoint 1
GR GR

α̇β̇ (0, 1) Singlet Adjoint 1
BL BLαβ (1, 0) Singlet Singlet 1
BR BR

α̇β̇ (0, 1) Singlet Singlet 1
Vµ ∼ DµΠ (DφI)α̇βτ I (1

2 ,
1
2) Adjoint Singlet 1

Dµ Dαβ̇ (1
2 ,

1
2) Singlet Singlet 1

T TT τ I (0, 0) Adjoint Singlet 0

Table 3. The building blocks of the HEFT and their group representations under the Lorentz and
internal symmetries. From the soft recursion relation of the NGBs, the building block Vµ can be
replaced by the linearized one DµΠ.

the such operator should satisfy an additional condition on the Lorentz structure: the shift
symmetry in eq. (2.6), correspondingly, the Adler zero condition on the contact on-shell
amplitude. Let us expand the nonlinear field Vµ as

Vµ = iUDµU† = −1
v

[
DµΠ +O

(
DµΠ · Π2

v2

)]
, (3.1)

from which we see that the leading term DµΠ would also respect the shift symmetry. From
the soft recursion relation for the NGBs [63–66], operators involving in DµΠ could recover
all physical effects for the one involving in Vµ. Thus from the on-shell point of view, the
two descriptions should be equivalent. Therefore, in this section, we would like to use
the DµΠ as the building block and build the one-to-one correspondence between them in
the operator

Vµ ↔ DµΠ ≡ Dµφ
Iτ I , (3.2)

and from now on we use the indice I, J to denote the SU(2) indices. The operator involved
in DµΠ would also respect the Adler zero condition. In the following, we will simply
review this Young tensor method and present some examples of the construction of the
HEFT operators.

3.1 Operator amplitude correspondence

An effective operator can be decomposed into the Lorentz, gauge, and flavor structures,
each of which should be the singlet of the Lorentz group and the gauge groups. All the
independent Lorentz (gauge) structures form a basis of a linear space, called the Lorentz
(gauge) basis.
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There exists a correspondence relation between the effective operators and the on-shell
amplitudes. To see that, considering a general building block composed of a field of any
helicity Φ and a number of derivatives D, it takes the form that

(Dr−|h|Φ)α(1)...α(r−h)α̇(1)...α̇(α+h) ≡
{
Dα(1)α̇(1) . . . Dα(r+h)α̇(r+h)Φα(r+h+1)...α(r−h) , h < 0
Dα(1)α̇(1) . . . Dα(r+h)α̇(r+h)Φα̇(r−h+1)...α̇(r+h) , h > 0 ,

(3.3)
where h is the helicity of the particle and r is the half number of the spinor indices of this
building block, by which the number of derivative nD = r − |h| is completely determined.
Since all operators are Lorentz scalars, all the spinor indices appearing in the effective
operators should be contracted by the tensor εαβ or ε̃α̇β̇. The numbers of needed ε, ε̃ are
n = (r − h)/2 and ñ = (r + h)/2, respectively. Thus the Lorentz part of a general effective
operator involving several building blocks such as that in eq. (3.3) takes the form that

O = ε⊗nε̃⊗ñ
∏
i

(Dri−|hi|)Φi . (3.4)

On the other hand, a general light-like momentum can be expressed using the spinor
helicity formalism as pµi = λαi σ

µ

αβ̇
λ̃β̇i up to a U(1) little group transformation:

λi → e−iϕ/2λi, λ̃i → eiϕ/2λ̃i , (3.5)

where ϕ denotes the U(1) phase. Under this transformation, amplitudesM transforms as
M→ eihiϕM for the i-th particle. Thus a massless particle of helicity hi contributes the
amplitude a factor λri−hii λ̃ri+hii , where ri is the half number of the spinor indices in the
factor. Similarly, all spinor indices should be contracted by the ε/ε̃, and the numbers of
them are the same with n/ñ mentioned previously. Making the following identification,

λαi λjα = 〈ij〉, λ̃iβ̇λ̃
β̇
j = [ij] , (3.6)

we obtain that an amplitude involving in several particle Φi with the helicity hi takes the
form that

M =
∏
〈ij〉︸ ︷︷ ︸
n

∏
[kl]︸ ︷︷ ︸
ñ

= ε⊗nε̃⊗ñ
∏

λri−hii λ̃ri+hii . (3.7)

Compared with eq. (3.4), it is natural to make the following translations,

λri±1
i λ̃rI∓1

i ⇔ Dri−1XL/Ri
,

λ
ri±1/2
i λ̃

ri∓1/2
i ⇔ Dri−1/2ψ

(†)
i ,

λrii λ̃
ri
i ⇔ Driφi , (3.8)

which provides the correspondence between the Lorentz part of the effective operators to
contact on-shell amplitudes.

One advantage of this operator-amplitude correspondence is that the on-shell reduction
techniques of the spinor helicity can be utilized to further eliminate the redundancies other
than the equation of motion, such as the momentum conservation∑

i

〈li〉[ik] = 0 (3.9)
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as discussed in [7]. After the removal of all kinds of redundancies, the remaining independent
Lorentz structures can be related to a set of so-called semi-standard Young tableaux (SSYTs).
The shape of these Young tableaux shapes is determined by the field content of each type:

N
−

2


. . .

n︷ ︸︸ ︷
. . .

...
...

︸ ︷︷ ︸
ñ

. . .

, (3.10)

where N is the total number of fields. Such Young diagrams are called the primary Young
diagrams and filling in numbers in such diagrams tells the independent Lorentz structures
in each type of operators [7, 9, 11, 21, 70, 71]. The filling of the primary Young diagrams
follows the rule that numbers in every column increase and in every row weakly increase,
and the number of each particle index is determined by

#i = 1
2nD +

∑
hi>0

(|hi| − 2hi), i = 1, 2, . . . N , (3.11)

where nD is the number of derivatives of this type.
In practice, the above process is reversed to construct independent Lorentz structures:

given a type of operator, we can directly fill in the primary Young diagram following the
rule given above to get SSYTs, by which the independent and complete Lorentz basis is
obtained, called the y-basis. The construction is discussed in detail in [21]. The gauge
structure also forms the gauge y-basis, which can be constructed by the similar Young
tableau method, as discussed in [21]. Combining the Lorentz and gauge basis together, the
general form of an effective operator is

O = T
⊗
n

ε
⊗
ñ

ε̃
∏
i

(Dri−hi)Φi , (3.12)

where T denotes the gauge factor and the rest corresponds to the on-shell amplitude as shown
in eq. (3.4). The y-basis by filling the primary Young diagrams are usually polynomials.
For convenience, the m-basis is introduced by a non-singular linear transformation of the
y-basis [21]. In the m-basis, both the Lorentz and gauge structures are monomials, which
constitute the monomial form of an operator.

Besides, the correspondence between fields and spinors implies that all fermions in this
work are represented by Weyl spinors ψ, and the relation between them and Dirac spinors
Ψ is that

ΨL =
(
ψL
0

)
, ΨR =

(
0
ψR

)
, Ψ̄L =

(
0, ψ†L

)
, Ψ̄R =

(
ψ†R, 0

)
. (3.13)

The transformation of bilinears between different forms of spinors can be found in appendix A
or ref. [9].
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3.2 Adler zero condition and spurions

The above procedure on the operator construction is suitable for the generic Lorentz-
invariant EFT with arbitrary internal symmetry up to arbitrary mass dimension. However,
in the exceptional EFTs [72], such as the theory containing the Goldstone boson and/or
spurion, additional treatment on the Lorentz basis is needed. As mentioned at the beginning
of this section, the building block Vµ in the HEFT indicates the Goldstone nature of the
longitudinal gauge bosons, satisfying the shift symmetry due to the existence of derivative
in the such building block. Similarly, the building block Dµφ in effective operators respects
the shift symmetry. From the operator amplitude correspondence, an operator involving the
Goldstone boson corresponds to the on-shell amplitude satisfying the Adler zero condition in
the soft momentum limit [59–66]. The Adler zero condition [59, 60] states that the on-shell
scattering amplitudes containing the NGBs must vanish when one external momentum p of
the NGBs is taken to be soft

M(p) ∼ p for p→ 0. (3.14)

Although this condition is trivially satisfied in the HEFT operator basis with the building
block Vµ and/or Dµφ, the on-shell amplitude basis obtained in the above subsection does
not automatically satisfy this condition, and thus we need to impose the Adler zero condition
explicitly in the Lorentz sector for the on-shell amplitude involving in the Goldstone bosons.
There are attempts [66, 67] to enumerate independent operators in the chiral perturbation
theory via imposing Adler zero condition on the corresponding amplitude basis for NGBs.
In particular, the procedure in ref. [67] could be applied to on-shell amplitudes involving
external sources such as fermions and gauge bosons in the HEFT. In the following, we
present the procedure of imposing the Adler zero condition which is also shown in ref. [67].

Let us consider a type of operator with N particles, including at least one NGB. Based
on the Young tensor method above, the Lorentz basis can be expressed as the N -point
on-shell amplitudes {B(N)

i , i = 1, 2, . . . dN}, where dN is the dimension of this Lorentz basis.
In terms of such basis, any general amplitude takes the form that

M(N) =
dN∑
i=1

ciB(N)
i , (3.15)

where ci are coefficients in the B basis. If this amplitude satisfies the Adler zero condition,
it vanishes when an external pion momentum pπ becomes soft:

M(N)(pπ → 0) = 0 =
dN∑
i=1

ciB(N)
i (pπ → 0). (3.16)

Here B(N)
i (pπ → 0) becomes (N − 1)-point on-shell amplitudes M(N−1)

i ≡ B(N)
i (pπ → 0),

which are generally redundant in the Lorentz basis without the pion particle. Defining
the Lorentz basis of the (N − 1)-point amplitudes {B(N−1)

i , i = 1, 2, . . . dN−1}, where dN−1
is the dimension of this Lorentz basis, the amplitudes M(N−1)

i can be expanded by this
complete and independent basis,

M(N−1)
i ≡ B(N)

i (pπ → 0) =
dN−1∑
j=1

bijB(N−1)
j . (3.17)
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Furthermore, since any (N − 1)-point amplitudes can be decomposed using the N -point
basis {B(N)

i , i = 1, 2, . . . dN}, we can expand the N − 1-point basis B(N−1)
j as

B(N−1)
j =

dN∑
l=1

fjlB
(N)
l . (3.18)

Using the eq. (3.17) and eq. (3.18), the Adler zero condition in eq. (3.16) becomes

0 =
dN∑
i=1

ci

( dN−1∑
j=1

bij

( dN∑
l=1

fjlB
(N)
l

))
=

dN∑
l=1

( dN∑
l=i

ciKil
)
B(N)
l , (3.19)

where we identify

Kil =
dN−1∑
j=1

bijfjl (3.20)

is the product of the expansion matrice bij and fjl in the eq. (3.17) and eq. (3.18), respectively.
Since the basis {B(N)

i , i = 1, 2, . . . dN} are independent, this equation holds only if all the
coefficients vanish,

0 =
dN∑
i=1

ciKij , (j = 1, 2, . . . dN ) . (3.21)

This is a system of linear equations about ci, whose solutions span the subspace satisfying
the Adler zero condition, which constitutes the amplitude basis with Goldstone bosons. In
sum, for a type of operator, we first treat the NGBs as ordinary scalars and write down all
the relevant on-shell amplitudes, then impose the Adler zero condition on such amplitudes
to eliminate the unwanted Lorentz structures, and thus obtain the Lorentz basis.

Besides, the spurions are introduced to describe the symmetry breaking, in this case, the
breaking of the custodial/weak SU(2) symmetry. They are treated as vacuum expectation
values of a dynamical degree of freedom and thus do not enter the Lorentz sector. As men-
tioned previously, we are using the only spurion T = UTRU† in the adjoint representation
3 of the SU(2) as the source of symmetry breaking. The spurions and the dynamical fields,
such as the SM fields in this case, together form an SU(2) singlet operator, in which one
should prevent any self-contracted singlet factor that only consists of the spurions because
they do not have physical effects. For example, consider an operator with two spurions,
which form a 3⊗ 3 tensor that decomposes

TITJ = T2δIJ + T[ITJ ] + T(ITJ),

3⊗ 3 = 1 + 3 + 5.
(3.22)

The first term should be neglected since the factor T2 is just an irrelevant constant although
it is symmetric for the two spurions. The second term vanishes due to the anti-symmetry
behavior of the two spurions,6 which will be carefully treated in the next section. Therefore,

6This can also be seen from the identification

εIJKTITJAK = Tr(TTA) = Tr(Uσ3

2 U†Uσ3

2 U†A) = 1
4Tr(A) = 0 ,

where A is any building block of the adjoint representation of the SU(2) group.
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the only non-trivial term is the symmetric traceless tensor, indicating the dynamical fields
form a 5 multiplet of the broken SU(2) group. Indeed, in the decomposition of the SU(2)
adjoint representation product, for any number of the spurions, only the highest weight
combination should be considered, which we pick out using the technique of the gauge
j-basis developed in ref. [73].

3.3 P-basis operator and examples

The above discussion does not consider the operators involved in identical particles. Con-
sidering a type of operator containing n identical particles φ with the flavor number nf ,
we identify the operator as the n-rank tensor under the flavor group ⊗n SU(nf ). Based
on the Schur-Weyl theorem, the representation space of this group can be divided into the
subspaces furnishing the irreducible representations of the symmetry group Sn. Thus we
re-organized the y-basis or m-basis to a new basis, in which operators satisfy the specific
permutation symmetry, thus are called the p-basis. If the p-basis contain operators with
the mixed flavor symmetry such as , the irreducible subspace of ⊗n SU(nf ) marked by
this Young diagram has multiplicity equal to the dimension of the irreducible representation
of symmetry group Sn presented by the same Young diagram. It can be proved that these
irreducible subspaces are isomorphic to each other [21], and only one of them needs to be
reserved. After this, the remaining operators form the so-called f-basis or p’-basis.

Here, we will illustrate the construction of the Lorentz basis, gauge basis, and the
conversion among various bases using several examples. The first one is the type φ2h2D4T2,
which is of the class UhD4. There are 6 particles h, h, φ, φ,T,T, labeled by indices 1-6
respectively, and 4 derivatives in this type, among which, the 2 Higgs, 2 NGBs and 2
spurions are identical particles.

As mentioned in the previous subsection, we neglect the spurions T’s from the type
during the construction of the Lorentz basis, and thus the particles considered in the y-basis
construction are h, h, φ, φ, in which the last two must satisfy the Adler zero condition. It is
straightforward to get that n = ñ = 2, thus the primary Young diagram of this type takes
the form that

. (3.23)

The numbers of the 4 indices are the same, #i = 2, i = 1, 2, 3, 4, thus there are only 3
SSYTs that

1 1 3 3
2 2 4 4 ,

1 1 2 2
3 3 4 4 ,

1 1 2 3
2 3 4 4 , (3.24)

whose corresponding amplitude in the y-basis is

B(y)
1 = 〈34〉2[34]2,

B(y)
2 = 〈24〉2[24]2,

B(y)
3 = −〈24〉〈34〉[24][34] . (3.25)

The Adler zero condition tells that when the momenta p3, p4 go to zero, the amplitudes
become zero in the soft momentum limit. We check that all the 3 bases above satisfy that
because the Adler zero condition makes the 4-point amplitudes become 2-point amplitudes,
which are all zero.
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The Y-basis can be translated to the operator form via the amplitude-operator
correspondences,

B(y)
1 = 4(Dνh)(Dνh)(Dµφ)(Dµφ),

B(y)
2 = 4(Dµh)(Dνh)(Dµφ)(Dνφ),

B(y)
3 = 4(DµDνh)h(Dµφ)(Dνφ) + 4(Dµh)(Dνh)(Dµφ)(Dνφ), (3.26)

from which we can construct the Lorentz m-basis

B(m)
1 = (DµDνh)h(Dµφ)(Dνφ)TT,

B(m)
2 = (Dµh)(Dνh)(Dµφ)(Dνφ)TT,

B(m)
3 = (Dµh)(Dνh)(Dµφ)(Dνφ)TT, (3.27)

with the transformation matrix

K(my) =

 0 −1
4

1
4

1
4 0 0
0 1

4 0

 , (3.28)

where the spurions T have been multiplied back to be consistent with the gauge basis we
are going to deal with in the following, and to form the ultimate tensor product space of
the Lorentz and gauge structure.

The gauge basis is simple in this type. The SU(3) structure is trivial. There are only 3
SSYTs of SU(2) that

i3 j3 i4 j4
i5 j5 i6 j6

, i3 j3 i5 j5
i4 j4 i6 j6

, i3 j3 i4 i5
j4 j5 i6 j6

, (3.29)

which corresponds to the gauge y-basis

T (y)
(SU(2),1 = εi3i5εj3j5εi4i6εj4j6τ I3 l3

j3εl3i3τ
I4 l4
j4εl4i4τ

I5 l5
j5εl5i5τ

I6 l6
j6εl6i6

= 4δI3I5δI4I6 ,

T (y)
SU(2),2 = εi3i4εj3j4εi5i6εj5j6τ I3 l3

j3εl3i3τ
I4 l4
j4εl4i4τ

I5 l5
j5εl5i5τ

I6 l6
j6εl6i6

= 4δI3I4δI5I6 ,

T (y)
SU(2),3 = εi3j4εj3j5εi4i6εi5j6τ I3 l3

j3εl3i3τ
I4 l4
j4εl4i4τ

I5 l5
j5εl5i5τ

I6 l6
j6εl6i6

= −2δI3I6δI4I5 + 2δI3I5δI4I6 . (3.30)

The m-basis is chosen to be

T (m)
SU(2),1 = δI3I5δI4I6 , T (m)

SU(2),2 = δI3I4δI5I6 , T (m)
SU(2),3 = δI3I6δI4I5 , (3.31)

with the transformation matrix

K(my)
SU(2) =


1
4 0 0
0 1

4 0
1
4 0 1

2

 . (3.32)
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Because of identical spurions in this operator, the m-basis in eq. (3.31) should be further
reduced to remove the self-contraction of the two spurions. This is performed using the
gauge j-basis decomposition of the two spurions: 3⊗ 3 = 1⊕ 3⊕ 5. Picking up the basis
with the gauge quantum number 5 would select the subspace with the highest weight of the
SU(2)L gauge basis,

T (j)
SU(2) = −3T (m)

SU(2),1 + 2T (m)
SU(2),2−3T (m)

SU(2),3 = −3δI3I5δI4I6 + 2δI3I4δI5I6 −3δI3I6δI4I5 , (3.33)

which is dimension 1 and, for convenience, is denoted by the j-basis of the spurions.
The tensor product of the Lorentz and gauge m-basis (3.26) and (3.31) gives all the

independent operators that

O(m)
1 = (DµDνh)h(Dµφ

I)(Dνφ
J)TITJ ,

O(m)
2 = (Dµh)(Dνh)(Dµφ

I)(Dνφ
J)TITJ ,

O(m)
3 = (Dµh)(Dνh)(Dµφ

I)(Dνφ
J)TITJ ,

O(m)
4 = (DµDνh)h(Dµφ

I)(Dνφ
I)TJTJ ,

O(m)
5 = (Dµh)(Dνh)(Dµφ

I)(Dνφ
I)TJTJ ,

O(m)
6 = (Dµh)(Dνh)(Dµφ

I)(Dνφ
I)TJTJ ,

O(m)
7 = (DµDνh)h(Dµφ

I)(Dνφ
J)TJTI ,

O(m)
8 = (Dµh)(Dνh)(Dµφ

I)(Dνφ
J)TJTI ,

O(m)
9 = (Dµh)(Dνh)(Dµφ

I)(Dνφ
J)TJTI , (3.34)

which is the m-basis of the operators. Due to the repeated fields, we need to convert them
to the physical basis, the p-basis. Furthermore, it is obvious that not all operators above are
independent, for example, the first 3 and the last 3 operators are actually the same, since the
permutation of spurions does not change anything, and the operators O(m)

4−6 contain spurion
self-contractions and should be eliminated. Thus, we need to take the tensor product of
Lorentz m-basis (3.26) and gauge j-basis (3.33) to get the operator j-basis with the spurion
self-contraction removed,

O(j)
1 = −3(DµDνh)h(Dµφ

I)(Dνφ
J)TITJ + 2(DµDνh)h(Dµφ

I)(Dνφ
I)TJTJ

− 3(DµDνh)h(Dµφ
I)(Dνφ

J)TJTI ,

O(j)
2 = −3(Dµh)(Dνh)(Dµφ

I)(Dνφ
J)TITJ + 2(Dµh)(Dνh)(Dµφ

I)(Dνφ
I)TJTJ

− 3(Dµh)(Dνh)(Dµφ
I)(Dνφ

J)TJTI ,

O(j)
3 = −3(Dµh)(Dνh)(Dµφ

I)(Dνφ
J)TITJ + 2(Dµh)(Dνh)(Dµφ

I)(Dνφ
I)TJTJ

− 3(Dµh)(Dνh)(Dµφ
I)(Dνφ

J)TJTI . (3.35)

To obtain the p-basis, we need the generators of the S2 group, which characterizes the
permutation properties of all repeated fields h, φ,T. By the way, the two generators of S2
are identical, we present one of them in the rest of this paper. In the Lorentz y-basis, the
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generators of the S2(h) and S2(φ), denoted by D(y)
B (h) and D(y)

B (φ), respectively, can be
obtained by permuting the y-basis (3.25), which takes the form that

D(y)
B (h) = D(y)

B [(1, 2)] =

 1 0 0
1 1 −2
1 0 −1

 , D(y)
B (φ) = D(y)

B [(3, 4)] =

 1 0 0
1 1 −2
1 0 −1

 , (3.36)

while these generators after transforming to the Lorentz m-basis are

D(m)
B (h) = K(my)D(y)

B (h)K(my)−1 =

 1 0 0
0 1 0
−2 1 −1

 ,

D(m)
B (φ) = K(my)D(y)

B (φ)K(my)−1 =

 1 0 0
0 1 0
−2 1 −1

 , (3.37)

and since the spurion does not carry Lorentz structure, the generator of the S2(T) takes

D(y)
B (T) = D(m)

B (T) = I3×3. (3.38)

As for the SU(2) structure, the generators D(m)
SU(2)(h) is the identity matrix I3×3, since

h is the SU(2) singlet, while the others D(m)
SU(2)(φ),D(m)

SU(2)(T) can be obtained by permuting
the gauge m-basis eq. (3.31) directly,

D(m)
SU(2)(φ) = D(m)

SU(2)[(3, 4)] =

 0 0 1
0 1 0
1 0 0

 , D(m)
SU(2)(T) = D(m)

SU(2)[(5, 6)] =

 0 0 1
0 1 0
1 0 0

 .
(3.39)

At the same time, the generators in the 1-dimension j-basis in eq. (3.33) are just identities,

D(j)(h) = D(j)(φ) = D(j)(T) = 1. (3.40)

The complete generators of the operator m-basis in eq. (3.34) are

D(m)(h) = D(m)
SU(2)(h)⊗D(m)

B (h) =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
−2 1 −1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 −2 1 −1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 −2 1 −1


, (3.41)
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D(m)(φ) = D(m)
SU(2)(φ)⊗D(m)

B (φ) =



0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 −2 1 −1
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 −2 1 −1 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
−2 1 −1 0 0 0 0 0 0


, (3.42)

D(m)(T) = D(m)
SU(2)(T)⊗D(m)

B (T) =



0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0


, (3.43)

while those of the j-basis in eq. (3.35)are just the generators of Lorentz m-basis,

D(j)(h) = D(y)
B (h), D(j)(φ) = D(y)

B (φ), D(j)(T) = D(y)
B (T). (3.44)

In this type all particles carry no flavor number, thus only the symmetrical representa-
tions in the flavor structure are physical. The idempotent element Y[ 1 2 , 3 4 , 5 6 ] of
this operators m-basis in eq. (3.34) takes the form that

Y[ 1 2 , 3 4 , 5 6 ] = Y[ 1 2 ]Y[ 3 4 ]Y[ 5 6 ]
= (I3×3 +D(m)(h))(I3×3 +D(m)(φ))(I3×3 +D(m)(T))

=



4 0 0 0 0 0 4 0 0
0 4 0 0 0 0 0 4 0
−4 2 0 0 0 0 −4 2 0
0 0 0 8 0 0 0 0 0
0 0 0 0 8 0 0 0 0
0 0 0 −8 4 0 0 0 0
4 0 0 0 0 0 4 0 0
0 4 0 0 0 0 0 4 0
−4 2 0 0 0 0 −4 2 0


. (3.45)

This idempotent element has rank 4, thus this subspace has dimension 4. It is actually
arbitrary to choose the 4 independent operators, in this example, we prefer choosing
independent operators projected by the 1st, 2nd, 4th, and 5th rows in the idempotent

– 20 –



J
H
E
P
0
5
(
2
0
2
3
)
0
4
3

element because they are monomials by coincidence,

O(p)
1 = 4O(m)

1 + 4O(m)
7 = 8(DµDνh)h(Dµφ

I)(Dνφ
J)TITJ ,

O(p)
2 = 4O(m)

2 + 4O(m)
8 = 8(Dµh)(Dνh)(Dµφ

I)(Dνφ
J)TITJ ,

O(p)
3 = 8O(m)

4 = 8(DµDνh)h(Dµφ
I)(Dνφ

I)TJTJ ,

O(p)
4 = 8O(m)

5 = 8(Dµh)(Dνh)(Dµφ
I)(Dνφ

I)TJTJ . (3.46)

However, the last 2 contain spurion self-contractions, thus should be eliminated. This
elimination can be seen if we directly use the generator of the operator j-basis in eq. (3.44)
to calculate the idempotent element of them

Y ′[ 1 2 , 3 4 , 5 6 ] = Y ′[ 1 2 ]Y ′[ 3 4 ]Y ′[ 5 6 ] = (I3×3 +D(j)(h))(I3×3 +D(j)(φ))(I3×3 +D(j)(T))

=

 4 0 0
0 4 0
−4 2 0

 , (3.47)

which is of rank 2, thus there are only 2 independent operators. Though it is arbitrary to
choose these 2 operators from the j-basis, we choose O(j)

1,2 here and also denote them as the
final p-basis

O(p)
1 = Y[ 1 2 , 3 4 , 5 6 ](DµDνh)h(Dµφ

I)(Dνφ
J)TITJ ,

O(p)
2 = Y[ 1 2 , 3 4 , 5 6 ](Dµh)(Dνh)(Dµφ

I)(Dνφ
J)TITJ , (3.48)

which correspond to the operators OUhD4
12,13 in next section 4 and their explicit form are given

by O(j)
1,2. Several comments are in order. First, this is consistent with the observation of

the original result (3.46), although the 2 operators O(j)
1,2 are not the same with the O(p)

1,2.
Second, usually operators in the p-basis are polynomials, thus in this work, we always write
the p-basis with the action of the idempotent elements to avoid the complication of writing
the complete polynomials. In the rest of this paper, we will omit the idempotent elements
in the type that the identical particles carry no flavor number, as in this example.

The second example is taken to be the type Q†LQLQ
†
RQRT, which was missing in

previous works ref. [38]. The shape of the primary Young diagram is

, (3.49)

and there is only one SSYT
1 1
2 2 . (3.50)

The corresponding operator form is

B(y)
1 = ψ1

αψ2αψ̄3β̇ψ̄
β̇
4 = εαγεβ̇δ̇ψ1γψ2αψ̄

δ̇
3ψ̄

β̇
4 = −1

2(ψ1σ
µψ̄3)(ψ2σµψ̄4). (3.51)

Thus the Lorentz m-basis is just the y-basis, B(m)
1 = B(y)

1 . As for the SU(3) gauge y-basis,
the primary Young diagram is

, (3.52)
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and there are 2 SSYTs
i1 i2
i3 i4
j3 j4

,
i1 i3
i2 i4
j3 j4

. (3.53)

They correspond to the y-basis

T (y)
SU(3),1 = εi1i3j3εi2i4j4ε

i3j3k3εi4j4k4 = 36δk3
i1
δk4
i2
,

T (y)
SU(3),1 = εi1i2i3εj3i4j4ε

i3j3k3εi4j4k4 = 18(δk4
i1
δk3
i2
− δk3

i1
δk4
i2

), (3.54)

and the m-basis can be taken as

T (m)
SU(3),1 = δk3

i1
δk4
i2
, T (m)

SU(3),1 = δk4
i1
δk3
i2
, (3.55)

with the transformation matrix

K(my)
SU(3) =

(
1
36 0
1
36

1
18

)
. (3.56)

The primary Young diagram of the SU(2) group is

, (3.57)

and there are 3 SSYTs that
i1 i2 i3
i4 i5 j5

, i1 i2 i4
i3 i5 j5

, i1 i3 i4
i2 i5 j5

. (3.58)

The gauge y-basis reads

T (y)
SU(2),1 = εi1i4εi3j3εi2i5τ

I5 i5
l5 ε

l5j5εi2j2εi4j4 = δj4i1 τ
I5j2
i3 ,

T (y)
SU(2),2 = εi1i3εi2i5εi4j5τ

I5 i5
l5 ε

l5j5εi2j2εi4j4 = −δj4i3 τ
I5j2
i1 + δj4i1 τ

I5j2
i3 ,

T (y)
SU(2),3 = εi1i2εi3i5εi4j5τ

I5 i5
l5 ε

l5j5εi2j2εi4j4 = −δj2i1 τ
I5j4
i3 . (3.59)

Thus we choose the gauge m-basis as

T (m)
SU(2),1 = δj4i1 τ

I5j2
i3 , T (m)

SU(2),2 = δj4i3 τ
I5j2
i1 , T (m)

SU(2),3 = δj2i1 τ
I5j4
i3 , (3.60)

with the transformation matrix

K(my)
SU(2) =

 1 0 0
1 −1 0
0 0 −1

 . (3.61)

The tensor product of the 2 space is of six-dimension, and all the 6 operators are physical
since there are no repeated fields in this type, which are presented as OUhψ

4

29−34,

OUhψ
4

29 = (qLsγµTqLp)(qRrγµqRt)F
Uhψ4

29 (h), (3.62)

OUhψ
4

30 = (qLsγµλATqLp)(qRrγµλAqRt)F
Uhψ4

30 (h), (3.63)

OUhψ
4

31 = (qLsγµqLp)(qRrγµU†TUqRt)F
Uhψ4

31 (h), (3.64)

OUhψ
4

32 = (qLsγµλAqLp)(qRrγµλAU†TUqRt)F
Uhψ4

32 (h), (3.65)

OUhψ
4

33 = (qLsγµτ ITqLp)(qRrγµU†τ IUqRt)F
Uhψ4

33 (h), (3.66)

OUhψ
4

34 = (qLsγµλAτ ITqLp)(qRrγµλAU†τ IUqRt)F
Uhψ4

34 (h). (3.67)
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The last example is the type QL3LLT2, which is neglected in the previous literature.
Neglecting the spurions, there are 4 fermions in this type, LL, QL, QL, QL, and the primary
Young diagrams of the Lorentz basis, the SU(2) gauge basis and the SU(3) gauge basis are

, , . (3.68)

For the Lorentz basis, there are 2 SSYTs,

1 3
2 4 ,

1 2
3 4 , (3.69)

which corresponds to the y-basis that

B(y)
1 = (LLQL)(QLQL),

B(y)
2 = 1

2(LLQL)(QLQL)− 1
8(LLσµνQL)(QLσµνQL). (3.70)

We choose the m-basis as

B(m)
1 = (LLQL)(QLQL)TT, B(m)

1 = (LLσµνQL)(QLσµνQL)TT, (3.71)

with the transformation matrix

K(my) =
(

1 0
4 −8

)
, (3.72)

where spurions have been multiplied back.
At the same time, we present the generators of S3 and S2, which are of the symmetric

groups of the QL and T, respectively,

D(m)
B (QL)1 = D(y)

B [(2, 3)] =
(
−1

2
1
8

6 1
2

)
, D(m)

B (QL)2 = D(y)
B [(2, 3, 4)] =

(
−1

2
1
8

−6 −1
2

)
,

D(m)
B (T) =

(
1 0
0 1

)
, (3.73)

where the S3 group has 2 different generators, and the generator of the T is the
identity matrix.

The SU(3) group structure is simple in this type, there is only 1 SSYT,

2
3
4
, (3.74)

and the corresponding y-basis is B(y)
1 = εa2a3a4 , which is also the m-basis. The generator

of S2 in this SU(3) m-basis is trivial because the spurion does not carry SU(3) quantum
number, while the generators of S3 takes the form that

D(m)
SU(3)(QL)1 = −1, D(m)

SU(3)(QL)2 = 1. (3.75)
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As for the SU(2) group, there are 6 gauge SSYTs, thus 6 m-basis, and we present
them directly,

T (m)
SU(2),1 = εi2i3εi4mεI1I2KτK

i1
m,

T (m)
SU(2),2 = εi3mεi4lτ I1 i1

mτ
I2 i2
n ,

T (m)
SU(2),3 = δI1I2εi1i4εi2i3 ,

T (m)
SU(2),4 = εi1mεi3nτ I1 i4

n τ
I2 i2
m,

T (m)
SU(2),5 = εi1mεi2i4εI1I2KτK

i3
m,

T (m)
SU(2),6 = εi3mεi4nτ I1 i1

n τ
I2 i2
m. (3.76)

Similar to the discussion near eq. (3.33), taking the gauge j-basis of the spurions, the
highest-weight subspace of the SU(2) m-basis is of dimension-1, and we take the gauge
j-basis with the gauge quantum number 5

D(j)
SU(2) = iT (m)

SU(2),1 − T
(m)

SU(2),2 − T
(m)

SU(2),3 − 3T (m)
SU(2),4 + 2iT (m)

SU(2),5 − 2T (m)
SU(2),6. (3.77)

The generators in the m-basis (3.76) are

D(m)
SU(2)(QL)1 =



−1 0 0 0 0 0
−i 1 −1 0 0 0
0 0 −1 0 0 0
−i 0 1 1 0 0
−1 0 0 0 1 0
0 0 0 0 0 1


, (3.78)

D(m)
SU(2)(QL)1 =



−1 0 0 0 1 0
0 0 0 0 0 1
i −1 0 0 −i 1
−i 0 1 1 0 0
−1 0 0 0 0 0
−i 1 −1 0 0 0


, (3.79)

D(m)
SU(2)(T) =



−1 0 0 0 0 0
−i 0 1 1 0 0
0 0 1 0 0 0
−i 1 −1 0 0 0
0 0 0 0 −1 0
i −1 1 1 −2i 1


, (3.80)

while those in the j-basis (3.77) are just identities,

D(j)
SU(2)(QL)1 = D(j)

SU(2)(QL)2 = D(j)
SU(2)(T) = 1. (3.81)
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The tensor product of the SU(3) m-basis, the SU(2) m-basis, and the Lorentz m-basis
gives the operator m-basis, in which there are 12 operators,

O(m)
1 = τK

i
mε

abcεIJKεjkεlmTITJ(LLpiQLraj)(QLsbkQLtcl),

O(m)
2 = τK

i
mε

abcεIJKεjkεlmTITJ(LLpiσµνQLraj)(QLsbkσ
µνQLtcl),

O(m)
3 = τ I

i
mτ

J j
nε
abcεkmεlnTITJ(LLpiQLraj)(QLsbkQLtcl),

O(m)
4 = τ I

i
mτ

J j
nε
abcεkmεlnTITJ(LLpiσµνQLraj)(QLsbkσ

µνQLtcl),

O(m)
5 = iTITIεabcεilεjk(LLpiQLraj)(QLsbkQLtcl),

O(m)
6 = iTITIεabcεilεjk(LLpiσµνQLraj)(QLsbkσ

µνQLtcl),

O(m)
7 = τ I

l
nτ

J j
mε

abcεimεknTITJ(LLpiQLraj)(QLsbkQLtcl),

O(m)
8 = τ I

l
nτ

J j
mε

abcεimεknTITJ(LLpiσµνQLraj)(QLsbkσ
µνQLtcl),

O(m)
9 = τK

k
mε

abcεIJKεimεjlTITJ(LLpiQLraj)(QLsbkQLtcl),

O(m)
10 = τK

k
mε

abcεIJKεimεjlTITJ(LLpiσµνQLraj)(QLsbkσ
µνQLtcl),

O(m)
11 = τ I

i
nτ

J j
mε

abcεkmεlnTITJ(LLpiQLraj)(QLsbkQLtcl),

O(m)
12 = τ I

i
nτ

J j
mε

abcεkmεlnTITJ(LLpiσµνQLraj)(QLsbkσ
µνQLtcl). (3.82)

To remove the spurion self-contractions above, we take the SU(2) j-basis in eq. (3.77), the
operator j-basis is obtained after the tensor product

O(j)
1 = iO(m)

1 −O(m)
3 −O(m)

5 − 3O(m)
7 + 2iO(m)

9 − 2O(m)
11 ,

O(j)
2 = iO(m)

2 −O(m)
4 −O(m)

6 − 3O(m)
8 + 2iO(m)

10 − 2O(m)
12 . (3.83)

Following the procedure of converting the m-basis to the f-basis [7, 9, 11, 21], we present
the resulting 4 operators in the f-basis projected from the operator m-basis in eq. (3.82)

O(p)
1 = Y[ 2 3 4 , 5 6 ]τ I imτJ

j
nε
abcεkmεlnTITJ(LLpiσµνQLraj)(QLsbkσ

µνQLtcl),

O(p)
2 = Y[ 2 3

4
, 5 6 ]τ I imτJ

j
nε
abcεkmεlnTITJ(LLpiσµνQLraj)(QLsbkσ

µνQLtcl),

O(p)
3 = Y[ 2 3

4
, 5 6 ]iTITIεabcεilεjk(LLpiσµνQLraj)(QLsbkσ

µνQLtcl),

O(p)
4 = Y[ 2

3
4

, 5 6 ]τ I imτJ
j
nε
abcεkmεlnTITJ(LLpiσµνQLraj)(QLsbkσ

µνQLtcl). (3.84)

To further eliminate the spurion self-contraction, we take the idempotent elements in the
j-basis in eq. (3.83). Since the generators in eq. (3.81) are identities in the SU(2) j-basis in
eq. (3.77), the generators in the operator j-basis in eq. (3.83) are

D(j)(QL)1 = D(j)
SU(3)(QL)1 ⊗D(m)

B (QL)1 =
(
−1

2
1
8

6 1
2

)
, (3.85)

D(j)(QL)2 = D(j)
SU(3)(QL)1 ⊗D(m)

B (QL)1 =
(
−1

2
1
8

−6 −1
2

)
, (3.86)

– 25 –



J
H
E
P
0
5
(
2
0
2
3
)
0
4
3

D(j)(T) = D(m)
B (T) =

(
1 0
0 1

)
. (3.87)

The 3 idempotent elements are

Y[ 2 3 4 , 5 6 ] =Y[ 2 3 4 ]Y[ 5 6 ], Y[ 2 3
4
, 5 6 ] =Y[ 2 3

4
]Y[ 5 6 ], Y[ 2

3
4

, 5 6 ] =Y[ 2 3
4

]Y[ 5 6 ],

(3.88)
where the idempotent element of the S2 is calculated in the same way as the first example
in eq. (3.45),

Y[ 5 6 ] = I3×3 +D(j)(T), (3.89)

but those of the S3 are a little bit complicated, and we give their expressions in terms of
generators,

Y[ 2 3 4 ] =
I2×2+D(j)(QL)1+D(j)(QL)1D(j)(QL)2D(j)(QL)1

−1

+D(j)(QL)1D(j)(QL)2D(j)(QL)1D(j)(QL)2
−1
D(j)(QL)1

+D(j)(QL)1D(j)(QL)2D(j)(QL)1D(j)(QL)2
−1
D(j)(QL)1D(j)(QL)2D(j)(QL)1D(j)(QL)2

−1

+D(j)(QL)2, (3.90)

Y[ 2 3
4

] =

I2×2−D(j)(QL)1−D(j)(QL)1D(j)(QL)2D(j)(QL)1
−1

+D(j)(QL)1D(j)(QL)1D(j)(QL)2D(j)(QL)1
−1
, (3.91)

Y[ 2
3
4

] =

I2×2−D(j)(QL)1−D(j)(QL)1D(j)(QL)2D(j)(QL)1
−1

+D(j)(QL)1D(j)(QL)2D(j)(QL)1D(j)(QL)2
−1
D(j)(QL)1

+D(j)(QL)1D(j)(QL)2D(j)(QL)1D(j)(QL)2
−1
D(j)(QL)1D(j)(QL)2D(j)(QL)1D(j)(QL)2

−1

+D(j)(QL)2 . (3.92)

Thus we obtain the idempotent elements that

Y[ 2 3 4 , 5 6 ] = Y[ 2
3
4

, 5 6 ] =
(

0 0
0 0

)
, Y[ 2 3

4
, 5 6 ] =

(
1
2

1
8

2 1
2

)
, (3.93)

in which the second one is of rank 1. It implies there is only one operator in the f-basis,
with the flavor symmetry ,

OUhψ
4

140 = Y[ r s

t
]εabcεlnεkm((TlLT )pmC(TqL)ran)(qLT rakCqLtcl)F

Uhψ4

140 (h) , (3.94)

which is missing in the previous literature such as the ref. [40]. Several comments are in
order. First, the particle indices 2, 3, 4 in the idempotent element of the f-basis operators,
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have been replaced with the flavor indices r, s, t, which is the convention of writing the
operators with repeated fields carrying flavor numbers in this paper. Second, unlike the
Q3L operators, the operators projected by Y [ 2 3 4 , 5 6 ] and Y [ 2

3
4

, 5 6 ] are all eliminated in

this type. Thus only certain flavor symmetry is allowed for this type of operator.
In summary, the Young tensor method first constructs effective operators in the on-shell

y-basis, which is obtained by filling the primary Young diagram. If such operators contain
the NGBs, the Adler zero condition needs to be imposed on the on-shell amplitude. After
that, transforming the y-basis to the m-basis obtain monomial operators for both Lorentz
and gauge structures, with the spurion included in the operators. Finally, repeated fields
should be considered for both the dynamical fields and the spurion in the operators. In
this stage, all physical operators are classified by permutations of repeated fields, this basis
is the p-basis. For operators involving the flavor structure, the p-basis should be reduced
to the f-basis respecting the flavor symmetry. In this work, we always write operators in
the p/f-basis with the idempotent elements Y of the symmetric group in front of them to
indicate their permutation property, but in the case that repeated field have flavor number
1, the idempotent elements are omitted.

4 Complete bosonic operator list at NLO

The NLO bosonic operators are divided into the following types: UhD4, X2Uh,XUhD2, X3.
Although the Higgs boson h in the HEFT is gauge singlet and thus can appear in the
effective operators freely by the means of the dimensionless function F in eq. (2.37), there
are cases that the number of h can not be arbitrary. In this section, the full list of NLO
bosonic operators will be presented, and we will explain the explicit form of function F in
every type. The previously missing operators are marked in red.

Type: UhD4 This type includes the operators with 4 derivatives applied on the NGBs
and the Higgs, thus the building blocks contain Vµ, h, and the spurion T. The contractions
of SU(2) group among T,Vµ are represented by the matrix trace 〈. . .〉. In particular, the
operator OUhD4

14 in this type is missing in ref. [38].

OUhD4
1 = 〈VµVµ〉2FUhD4

1 (h), OUhD4
2 = 〈VµVν〉〈VµVν〉FUhD4

2 (h),

OUhD4
3 = 〈TVµ〉〈TVν〉〈VµVν〉FUhD4

3 (h), OUhD4
4 = 〈TVµ〉〈TVµ〉〈VνVν〉FUhD4

4 (h),

OUhD4
5 = (〈TVµ〉〈TVµ〉)2FUhD4

5 (h), OUhD4
6 = 〈VµVµ〉〈TVν〉

Dνh

v
FUhD4

6 (h),

OUhD4
7 = 〈VµVν〉〈TVµ〉D

νh

v
FUhD4

7 (h), OUhD4
8 = 〈TVµVν〉〈TVµ〉D

νh

v
FUhD4

8 (h),

OUhD4
9 = 〈TVµ〉〈TVµ〉〈TVν〉

Dνh

v
FUhD4

9 (h), OUhD4
10 = 〈VµVν〉

hDµDνh

v2 FUhD4
10 (h),

OUhD4
11 = 〈VµVµ〉DνhD

νh

v2 FUhD4
11 (h), OUhD4

12 = 〈TVµ〉〈TVν〉
hDµDν

v2 FUhD4
12 (h),

OUhD4
13 = 〈TVµ〉〈TVµ〉DνhD

νh

v2 FUhD4
13 (h), OUhD4

14 = 〈TVµ〉
hDνhDνD

µh

v3 FUhD4
14 (h),

OUhD4
15 = h2(DµDνh)(DµDνh)

v4 FUhD4
15 (h). (4.1)
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The function FUhD4
i in this type takes the form that

FUhD4
i (h) = 1 +

∑
n=1

cUhD
4

n (h
v

)n, (i = 1, 2, . . . , 15). (4.2)

Type X2Uh: the operators of this type involve two gauge field strength tensors with
two gauge coupling constants to be consistent with the power counting. We recombine the
building blocks Xµν and X̃µν as

XL = 1
2(X − iX̃), XR = 1

2(X + iX̃), X = B,W,G, (4.3)

by which, we obtain the 10 operators of this type:

OX2Uh
1 = g′

2
BL

µνBLµνFX
2Uh

1 (h), OX2Uh
2 = g′

2
BR

µνBRµνFX
2Uh

2 (h),

OX2Uh
3 = g2

s〈GLµνGLµν〉FX
2Uh

3 (h), OX2Uh
4 = g2

s〈GRµνGRµν〉FX
2Uh

4 (h),

OX2Uh
5 = g2〈WLµνWL

µν〉FX2Uh
5 (h), OX2Uh

6 = g2〈WRµνWR
µν〉FX2Uh

6 (h),

OX2Uh
7 = gg′BLµν〈WL

µνT〉FX2Uh
7 (h), OX2Uh

8 = gg′BRµν〈WR
µνT〉FX2Uh

8 (h),

OX2Uh
9 = g2〈WLµνT〉2FX

2Uh
9 (h), OX2Uh

10 = g2〈WRµνT〉2FX
2Uh

10 (h). (4.4)

The F in this type takes the form that

FX2Uh
i (h) = 1 +

∑
n=1

cX
2Uh

n

(
h

v

)n
, (i = 1, 2, . . . , 10). (4.5)

Type XUhD2: the operators in this type involve one gauge field strength tensor and
two derivatives. Operators OXUhD2

2,4,8 are missing in ref. [38]. It should be noted that the
first term in the expansion of the F function in this type is h/v instead of 1. The full list
of operators of this type is:

OXUhD
2

1 = g〈WLµν [Vµ,Vν ]〉FXUhD
2

1 (h), OXUhD
2

2 = g〈WRµν [Vµ,Vν ]〉FXUhD
2

2 (h),

OXUhD
2

3 = g′BLµν〈T[Vµ,Vν ]〉FXUhD
2

3 (h), OXUhD
2

4 = g′BRµν〈T[Vµ,Vν ]〉FXUhD
2

4 (h),

OXUhD
2

5 = g〈WLµνVµ〉〈TVν〉FXUhD
2

5 (h), OXUhD
2

6 = g〈WRµνVµ〉〈TVν〉FXUhD
2

6 (h),

OXUhD
2

7 = g〈WLµνT〉〈T[Vµ,Vν ]〉FXUhD
2

7 (h), OXUhD
2

8 = g〈TVµ〉〈T[WRµν ,Vν ]〉FXUhD
2

8 (h).
(4.6)

The F function takes the form that

FXUhD2
i (h) = h

v
+
∑
n=2

cXUhD
2

n (h
v

)n, (i = 1, 2, . . . , 8). (4.7)

Note that the derivative can not only apply on the NGBs, generating operators above but
also on the Higgs boson h, which, however, gives no more operators. The argument is
as follows: if a Vµ in the operators above is replaced by Dµh, the operators would have
at least two h’s, since there is at least 1 h in F . Thus the operators would contain the
repeated field h and spin statistics need to be applied. Because the h carries no flavor
number, only the operators containing the symmetric h’s are physical in the f-basis, while
the Young tensor method utilized in this paper implies that such operators do not exist in
this type. Considering this, several extra operators that appeared in ref. [38] of this type
are actually redundant.
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Type X3: in this type, the operators are built of three gauge field strengths, and there
are only 6 operators:

OX3
1 = fABCGL

A
µνGL

CµλGL
Bν

λFX
3

1 (h), OX3
2 = fABCGARµνG

C
R
µλ
GBR

ν

λF
X3
2 (h),

OX3
3 = εIJKW I

LµνW
K
L
νλ
W J
L
ν

λF
x3
3 (h), OX3

4 = εIJKW I
RµνW

K
R
νλ
W J
R
ν

λF
X3
4 (h) ,

OX3
5 = εIJKTKBLµνW

J
L
λµ
W I
Lλ

νFX3
5 (h), OX3

6 = εIJKTKBRµνW
J
R
λµ
W I
Rλ

νFX3
6 (h).

(4.8)

The F function in this type takes the form that

FX3
i (h) = 1 +

∑
n=1

cX
3

n

(
h

v

)n
, (i = 1, 2, . . . , 6). (4.9)

5 Complete NLO operators involving in fermion

The fermion sector contains the operators composed by a two-fermion current ψ̄Γψ and
several bosonic fields, called the two-fermion operators, and the operators composed by
four fermions called the 4-fermion operators. Besides, the 4-fermion operators violating
the baryon numbers are also presented in this section. Compared with previous works
refs. [38, 40], there are 9(6) terms of operators in this sector missed for the HEFT with
(without) the sterile neutrino, and we present them here,

OUhψ
4

33 = (qLsγµτ ITqLp)(qRrγµU†τ IUqRt)F
Uhψ4

33 (h),

OUhψ
4

34 = (qLsγµλAτ ITqLp)(qRrγµλAU†τ IUqRt)F
Uhψ4

34 (h),

OUhψ
4

89 = (lLsγµτ I lLp)(lRtσµτ IU†TUlRs)FUhψ
4

89 (h),

OUhψ
4

107 = (lLsγµτ ITlLp)(qLtγµτ IqLr)F
Uhψ4

107 (h),

OUhψ
4

113 = (lRsγµτ ITlRp)(qRtγµτ IqRr)F
Uhψ4

113 (h),

OUhψ
4

119 = (lRsγµU†τ ITUlRp)(qLtγµτ IqLr)F
Uhψ4

119 (h),

OUhψ
4

125 = (lLsγµτ ITlLp)(qRtγµU†τ IUqRr)F
Uhψ4

125 (h),

OUhψ
4

140 = Y[ r s

t
]εabcεlnεkm((TlLT )pmC(TqL)ran)(qLTrakCqLtcl)F

Uhψ4

159 (h),

OUhψ
4

160 = Y[ r s

t
]εabcεkmεln((TlRT )pmC(TqR)ran)(qRTsbkCqRtcl)F

Uhψ4

160 (h). (5.1)

The missing operators are marked in red color and the operators involving right-handed
neutrinos are presented in gray color. Besides, previous works only consider the fermion
operators with flavor number 1, while here we consider the general flavor structures. Note
that the last two terms of operators above only appear when there are three generation
fermions because only the mixed flavor symmetry structure is allowed.
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5.1 Fermion current operators

5.1.1 Quark current operators

Type ψ2UhD: In this type, the operators are composed of a fermion-current and a
single derivative. The full list is

Oψ
2UhD

1 = (qLpγµVµqLr)F
ψ2UhD
1 (h), Oψ

2UhD
2 = (qLpγµqLr)〈TVµ〉Fψ

2UhD
2 (h),

Oψ
2UhD

3 = (qLpγµ[Vµ,T]qLr)F
ψ2UhD
3 (h), Oψ

2UhD
4 = (qLpγµTqLr)〈TVµ〉Fψ

2UhD
4 (h),

Oψ
2UhD

5 = (qRpγµU†VµUqRr)F
ψ2UhD
5 (h), Oψ

2UhD
6 = (qRpγµqRr)〈TVµ〉Fψ

2UhD
6 (h),

Oψ
2UhD

7 = (qRpγµU†[Vµ,T]UqRr)F
ψ2UhD
7 (h), Oψ

2UhD
8 = (qRpγµU†TUqRr)〈TVµ〉Fψ

2UhD
8 (h).

(5.2)

The F functions in this type take the form that

Fψ
2UhD

i (h) = 1 +
∑
n=1

cψ
2UhD

n

(
h

v

)n
, (i = 1, 2, . . . , 8). (5.3)

Type ψ2UhD2:

Oψ
2UhD2

1 = (qLpUqRr)〈VµVµ〉Fψ
2UhD2

1 (h), Oψ
2UhD2

2 = (qLpσ
µν [Vµ,Vν ]UqRr)F

ψ2UhD2

2 (h),

Oψ
2UhD2

3 = (qLpσ
µνUqRr)〈T[Vµ,Vν ]〉Fψ

2UhD2

3 (h), Oψ
2UhD2

4 = (qLpVµUqRr)〈TVµ〉Fψ
2UhD2

4 (h),

Oψ
2UhD2

5 = (qLpσ
µνVµUqRr)〈TVν〉Fψ

2UhD2

5 (h), Oψ
2UhD2

6 = (qLpTUqRr)〈VµVµ〉Fψ
2UhD2

6 (h),
(5.4)

Oψ
2UhD2

7 = (qLσ
µν [T,Vµ]UqRr)〈TVν〉Fψ

2UhD2

7 (h), Oψ
2UhD2

8 = (qLp[T,Vµ]UqRr)〈TVµ〉Fψ
2UhD2

8 (h),

Oψ
2UhD2

9 = (qLpσ
µνTUqRr)〈T[Vµ,Vν ]〉Fψ

2UhD2

9 (h), Oψ
2UhD2

10 = (qLpTUqRr)〈TVµ〉〈TVµ〉Fψ
2UhD2

10 (h),

Oψ
2UhD2

11 = (qLpVµUqRr)
Dµh

v
Fψ

2UhD2

11 (h), Oψ
2UhD2

12 = (DµqLpVµUqRr)F
ψ2UhD2

12 (h), (5.5)

Oψ
2UhD2

13 = (qLp[Vµ,T]UqRr)
Dµh

v
Fψ

2UhD2

13 (h), Oψ
2UhD2

14 = (DµqLp[Vµ,T]UqRr)F
ψ2UhD2

14 (h),

Oψ
2UhD2

15 = (qLpUqRr)〈TVµ〉
Dµh

v
Fψ

2UhD2

15 (h), Oψ
2UhD2

16 = (DµqLpUqRr)〈TVµ〉Fψ
2UhD2

16 (h),

Oψ
2UhD2

17 = (qLpTUqRr)〈TVµ〉
Dµh

v
Fψ

2UhD
17 (h), Oψ

2UhD2

18 = (DµqLpTUqRr)〈TVµ〉Fψ
2UhD2

18 (h),

Oψ
2UhD2

19 = (qLpUqRr)
DµhD

µh

v2 Fψ
2UhD2

19 (h), Oψ
2UhD2

20 = (qLpTUqRr)
DµhD

µh

v2 Fψ
2UhD2

20 (h). (5.6)

F functions in this type takes the form that

Fψ
2UhD2

i = 1 +
∑
n=1

cψ
2UhD2

n

(
h

v

)n
, (i = 1, 2, . . . , 20). (5.7)
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Type ψ2UhX: This type is similar with the type ψ2UhD2, operators which are listed
as following:

Oψ
2UhX

1 = g′(qLσµνUqRr)BRµνF
ψ2UhX
1 (h), Oψ

2UhX
2 = g′(qLpσµνTUqRr)BRµνF

ψ2UhX
2 (h),

Oψ
2UhX

3 = gs(qLpσµνGRµνUqRr)F
ψ2UhX
3 (h), Oψ

2UhX
4 = gs(qLpσµνGRµνTUqRr)F

ψ2UhX
4 (h),

Oψ
2UhX

5 = g(qLpσµνWRUqRr)F
ψ2UhX
5 (h), Oψ

2UhX
6 = g(qLpσµν [T,WR]UqRr)F

ψ2UhX
6 (h),

Oψ
2UhX

7 = g(qLpσµνUqRr)〈TWR〉Fψ
2UhX

7 (h), Oψ
2UhX

8 = g(qLpσµνTUqRr)〈TWR〉Fψ
2UhX

8 (h).
(5.8)

The F functions in this type are that

Fψ
2UhX

i = 1 +
∑
n

cψ
2UhX

n (h
v

)n, (i = 1, 2, . . . , 8). (5.9)

5.1.2 Lepton-current operators

The lepton-current operators are similar to the quark-current operators with the quark fields
replaced by the lepton fields. With this analogy, all previous operators can be transformed
into lepton-current operators. For example,

Oψ
2UhD

2 ⇒ (lLpγµlLr)〈TVµ〉Fψ
2UhD

10 (h),

Oψ
2UhD2

19 ⇒ (lLpUlRr)
DµhD

µh

v2 Fψ
2UhD2

39 (h). (5.10)

However, it should be emphasized that the quarks have SU(3) quantum numbers while
leptons do not. Thus Oψ

2UhX
7,8 have no correspondences in lepton-current operators. Here

we present them classified by classes.

ψ2UhD:

Oψ
2UhD

9 = (lLpγµVµlLr)Fψ
2UhD

9 (h), Oψ
2UhD

10 = (lLpγµlLr)〈TVµ〉Fψ
2UhD

10 (h),

Oψ
2UhD

11 = (lLpγµ[Vµ,T]lLr)Fψ
2UhD

11 (h), Oψ
2UhD

12 = (lLpγµTlLr)〈TVµ〉Fψ
2UhD

12 (h),

Oψ
2UhD

13 = (lRpγµU†VµUlRr)Fψ
2UhD

13 (h), Oψ
2UhD

14 = (lRpγµlRr)〈TVµ〉Fψ
2UhD

14 (h),

Oψ
2UhD

15 = (lRpγµU†[Vµ,T]UlRr)Fψ
2UhD

15 (h), Oψ
2UhD

16 = (lRpγµU†TUlRr)〈TVµ〉Fψ
2UhD

16 (h).
(5.11)

ψ2UhD2:

Oψ
2UhD2

21 = (lLpUlRr)〈VµVµ〉Fψ
2UhD2

21 (h), Oψ
2UhD2

22 = (lLpσµν [Vµ,Vν ]UlRr)Fψ
2UhD2

22 (h),

Oψ
2UhD2

23 = (lLpσµνUlRr)〈T[Vµ,Vν ]〉Fψ
2UhD2

23 (h), Oψ
2UhD2

24 = (lLpVµUlRr)〈TVµ〉Fψ
2UhD2

24 (h),

Oψ
2UhD2

25 = (lLpσµνVµUlRr)〈TVν〉Fψ
2UhD2

25 (h), Oψ
2UhD2

26 = (lLpTUlRr)〈VµVµ〉Fψ
2UhD2

26 (h),

Oψ
2UhD2

27 = (lLσµν [T,Vµ]UlRr)〈TVν〉Fψ
2UhD2

27 (h), Oψ
2UhD2

28 = (lLp[T,Vµ]UlRr)〈TVµ〉Fψ
2UhD2

28 (h),

Oψ
2UhD2

29 = (lLpσµνTUlRr)〈T[Vµ,Vν ]〉Fψ
2UhD2

29 (h), Oψ
2UhD2

30 = (lLpTUlRr)〈TVµ〉〈TVµ〉Fψ
2UhD2

30 (h),

Oψ
2UhD2

31 = (lLpVµUlRr)
Dµh

v
Fψ

2UhD2

31 (h), Oψ
2UhD2

32 = (DµlLpVµUlRr)Fψ
2UhD2

32 (h),
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Oψ
2UhD2

33 = (lLp[Vµ,T]UlRr)
Dµh

v
Fψ

2UhD2

33 (h), Oψ
2UhD2

34 = (DµlLp[Vµ,T]UlRr)Fψ
2UhD2

34 (h),

Oψ
2UhD2

35 = (lLpUlRr)〈TVµ〉
Dµh

v
Fψ

2UhD2

35 (h), Oψ
2UhD2

36 = (DµlLpUlRr)〈TVµ〉Fψ
2UhD2

36 (h),

Oψ
2UhD2

37 = (lLpTUlRr)〈TVµ〉
Dµh

v
Fψ

2UhD
37 (h), Oψ

2UhD2

38 = (DµlLpTUlRr)〈TVµ〉Fψ
2UhD2

38 (h),

Oψ
2UhD2

39 = (lLpUlRr)
DµhD

µh

v2 Fψ
2UhD2

39 (h), Oψ
2UhD2

40 = (lLpTUlRr)
DµhD

µh

v2 Fψ
2UhD2

40 (h).

(5.12)

ψ2UhX:

Oψ
2UhX

9 = g′(lLσµνUlRr)BRµνFψ
2UhX

9 (h), Oψ
2UhX

10 = g′(lLpσµνTUlRr)BRµνFψ
2UhX

10 (h),

Oψ
2UhX

11 = g(lLpσµνWRUlRr)Fψ
2UhX

11 (h), Oψ
2UhX

12 = g(lLpσµν [T,WR]UlRr)Fψ
2UhX

12 (h),

Oψ
2UhX

13 = g(lLpσµνUlRr)〈TWR〉Fψ
2UhX

13 (h), Oψ
2UhX

14 = (lLpσµνTUlRr)〈TWR〉Fψ
2UhX

14 (h).
(5.13)

5.2 Four-fermion operators

The four-fermion operators are divided into four classes: pure quark operators, pure lepton
operators, mixed quark-lepton operators, and baryon-number-violating operators. In this
sector, the operators presented in [30, 38, 40] are not complete, and in the following, we will
list all the four-fermion operators with the flavor structures. In appendix B, the detailed
comparisons of literature and our result are tabulated. The missing operators are marked
in red color and the operators involving right-handed neutrinos are presented in gray color.

5.2.1 Pure quark operators

Type Q†
L

2
QR

2:

OUhψ
4

1 =Y[ p r , s t ](qLpUqRs)(qLrUqRt)F
Uhψ4

1 (h),

OUhψ
4

2 =Y[ p r , s t ](qLpλAUqRs)(qLrλAUqRt)F
Uhψ4

2 (h),

OUhψ
4

3 =Y[ p r , s t ](qLpτ IUqRs)(qLrτ IUqRt)F
Uhψ4

3 (h),

OUhψ
4

4 =Y[ p r , s t ](qLpλAτ IUqRs)(qLrλAτ IUqRt)F
Uhψ4

4 (h),

OUhψ
4

5 =Y[ p
r
, s
t
](qLpUqRs)(qLrUqRt)F

Uhψ4

5 (h),

OUhψ
4

6 =Y[ p
r
, s
t
](qLpτ IUqRs)(qLrτ IUqRt)F

Uhψ4

6 (h), (5.14)

OUhψ
4

7 =Y[ p
r
, s
t
](qLpλAUqRs)(qLrλAUqRt)F

Uhψ4

7 (h),

OUhψ
4

8 =Y[ p
r
, s
t
](qLpλAσIUqRs)(qLrλAσIUqRt)F

Uhψ4

8 (h),

OUhψ
4

9 =Y[ p r , s t ](qLpλAUqRs)(qLrλATUqRt)F
Uhψ4

9 (h),

OUhψ
4

10 =Y[ p r , s t ](qLpUqRs)(qLrTUqRt)F
Uhψ4

10 (h),

OUhψ
4

11 =Y[ p r , s
t
](qLpλAUqRs)(qLrλATUqRt)F

Uhψ4

11 (h),

OUhψ
4

12 =Y[ p r , s
t
](qLpUqRs)(qLrTUqRt)F

Uhψ4

12 (h), (5.15)
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OUhψ
4

13 =Y[ p r , s
t
](qLpλAτ IUqRs)(qLrλAτ ITUqRt)F

Uhψ4

13 (h),

OUhψ
4

14 =Y[ p r , s
t
](qLpτ IUqRs)(qLrτ ITUqRt)F

Uhψ4

14 (h),

OUhψ
4

15 =Y[ p
r
, s t ](qLpλAUqRs)(qLrλATUqRt)F

Uhψ4

15 (h),

OUhψ
4

16 =Y[ p
r
, s t ](qLpUqRs)(qLrTUqRt)F

Uhψ4

16 (h),

OUhψ
4

17 =Y[ p
r
, s t ](qLpλAτ IUqRs)(qLrλAτ ITUqRt)F

Uhψ4

17 (h),

OUhψ
4

18 =Y[ p
r
, s t ](qLpτ IUqRs)(qLrτ ITUqRt)F

Uhψ4

18 (h), (5.16)

OUhψ
4

19 =Y[ p
r
, s
t
](qLpλAUqRs)(qLrλATUqRt)F

Uhψ4

19 (h),

OUhψ
4

20 =Y[ p
r
, s
t
](qLpUqRs)(qLrTUqRt)F

Uhψ4

20 (h),

OUhψ
4

21 =Y[ p r , s t ](qLpTUqRs)(qLrTUqRt)F
Uhψ4

21 (h),

OUhψ
4

22 =Y[ p r , s t ](qLpλATUqRs)(qLrλATUqRt)F
Uhψ4

22 (h),

OUhψ
4

23 =Y[ p
r
, s
t
](qLpTUqRs)(qLrTUqRt)F

Uhψ4

23 (h),

OUhψ
4

24 =Y[ p
r
, s
t
](qLpλATUqRs)(qLrλATUqRt)F

Uhψ4

24 (h), (5.17)

where
FUhψ

4

i = 1 +
∑
n=1

cUhψ
4

n (h
v

)n, (i = 1, 2, . . . , 24). (5.18)

Type Q†
LQLQ

†
RQR:

OUhψ
4

25 = (qLsγµqLp)(qRrγµqRt)F
Uhψ4

25 (h),

OUhψ
4

26 = (qLsγµτ IqLp)(qRrγµU†τ IUqRt)F
Uhψ4

26 (h),

OUhψ
4

27 = (qLsγµλAqLp)(qRrγµλAqRt)F
Uhψ4

27 (h),

OUhψ
4

28 = (qLsγµλAτ IqLp)(qRrγµλAU†τ IUqRt)F
Uhψ4

26 (h),

OUhψ
4

29 = (qLsγµTqLp)(qRrγµqRt)F
Uhψ4

29 (h),

OUhψ
4

30 = (qLsγµλATqLp)(qRrγµλAqRt)F
Uhψ4

30 (h), (5.19)

OUhψ
4

31 = (qLsγµqLp)(qRrγµU†TUqRt)F
Uhψ4

31 (h),

OUhψ
4

32 = (qLsγµλAqLp)(qRrγµλAU†TUqRt)F
Uhψ4

32 (h),

OUhψ
4

33 = (qLsγµτ ITqLp)(qRrγµU†τ IUqRt)F
Uhψ4

33 (h),

OUhψ
4

34 = (qLsγµλAτ ITqLp)(qRrγµλAU†τ IUqRt)F
Uhψ4

34 (h),

OUhψ
4

35 = (qLsγµλATqLp)(qRrγµλAU†TUqRt)F
Uhψ4

35 (h),

OUhψ
4

36 = (qLsγµTqLp)(qRrγµU†TUqRt)F
Uhψ4

36 (h), (5.20)

where
FUhψ

4

i = 1 +
∑
n=1

cUhψ
4

n

(
h

v

)n
, (i = 25, 26, . . . , 36). (5.21)
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Type Q†
L

2
QL

2&Q†
R

2
QR

2:

OUhψ
4

37 =Y[ p r , s t ](qLsγµqLp)(qLtγµqLr)F
Uhψ4

37 (h),

OUhψ
4

38 =Y[ p r , s t ](qLsγµτ IqLp)(qLtγµτ IqLr)F
Uhψ4

38 (h),

OUhψ
4

39 =Y[ p
r
, s
t
](qLsγµqLp)(qLtγµqLr)F

Uhψ4

39 (h),

OUhψ
4

40 =Y[ p
r
, s
t
](qLsγµτ IqLp)(qLtγµτ IqLr)F

Uhψ4

40 (h),

OUhψ
4

41 =Y[ p r , s t ](qLsγµqLp)(qLtγµTqLr)F
Uhψ4

41 (h),

OUhψ
4

42 =Y[ p
r
, s t ](qLsγµqLp)(qLtγµTqLr)F

Uhψ4

42 (h), (5.22)

OUhψ
4

43 =Y[ p
r
, s t ](qLsγµTqLp)(qLtγµqLr)F

Uhψ4

43 (h),

OUhψ
4

44 =Y[ p r , s
t
](qLsγµqLp)(qLtγµTqLr)F

Uhψ4

44 (h),

OUhψ
4

45 =Y[ p r , s
t
](qLsγµTqLp)(qLtγµqLr)F

Uhψ4

45 (h),

OUhψ
4

46 =Y[ p
r
, s
t
](qLsγµqLp)(qLtγµTqLr)F

Uhψ4

46 (h),

OUhψ
4

47 =Y[ p r , s t ](qLsγµTqLp)(qLtγµTqLs)F
Uhψ4

47 (h),

OUhψ
4

48 =Y[ p
r
, s
t
](qLsγµTqLp)(qLtγµTqLs)F

Uhψ4

48 (h), (5.23)

OUhψ
4

49 =Y[ p r , s t ](qRsγµqRp)(qRtγµqRr)F
Uhψ4

49 (h),

OUhψ
4

50 =Y[ p r , s t ](qRsγµU†τ IUqRp)(qRtγµU†τ IUqRr)F
Uhψ4

50 (h),

OUhψ
4

51 =Y[ p
r
, s
t
](qRsγµqRp)(qRtγµqRr)F

Uhψ4

51 (h),

OUhψ
4

52 =Y[ p
r
, s
t
](qRsγµU†τ IUqRp)(qRtγµU†τ IUqRr)F

Uhψ4

52 (h),

OUhψ
4

53 =Y[ p r , s t ](qRsγµqRp)(qRtγµU†TUqRr)F
Uhψ4

53 (h),

OUhψ
4

54 =Y[ p
r
, s t ](qRsγµqRp)(qRtγµU†TUqRr)F

Uhψ4

54 (h), (5.24)

OUhψ
4

55 =Y[ p
r
, s t ](qRsγµU†TUqRp)(qRtγµqRr)F

Uhψ4

55 (h),

OUhψ
4

56 =Y[ p r , s
t
](qRsγµqRp)(qRtγµU†TUqRr)F

Uhψ4

56 (h),

OUhψ
4

57 =Y[ p r , s
t
](qRsγµU†TUqRp)(qRtγµqRr)F

Uhψ4

57 (h),

OUhψ
4

58 =Y[ p
r
, s
t
](qRsγµqRp)(qRtγµU†TUqRr)F

Uhψ4

58 (h),

OUhψ
4

59 =Y[ p r , s t ](qRsγµU†TUqRp)(qRtγµU†TUqRs)F
Uhψ4

59 (h),

OUhψ
4

60 =Y[ p
r
, s
t
](qRsγµU†TUqRp)(qRtγµU†TUqRs)F

Uhψ4

60 (h), (5.25)

where
FUhψ

4

i = 1 +
∑
n=1

cUhψ
4

n (h
v

)n, (i = 36, 37, . . . , 60). (5.26)
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5.2.2 Pure lepton operators

Types L†
L

2
LR

2,LL
2L†

L

2
,LR

2L†
R

2
,LLL

†
RLRL

†
L:

OUhψ
4

61 =Y[ p r , s t ](lLpUlRs)(lLrUlRt)FUhψ
4

61 (h),

OUhψ
4

62 =Y[ p r , s t ](lLpτ IUlRs)(lLrτ IUlRt)FUhψ
4

62 (h),

OUhψ
4

63 =Y[ p
r
, s
t
](lLpUlRs)(lLrUlRt)FUhψ

4

63 (h),

OUhψ
4

64 =Y[ p
r
, s
t
](lLpτ IUlRs)(lLrτ IUlRt)FUhψ

4

64 (h),

OUhψ
4

65 =Y[ p r , s t ](lLpUlRt)(lLrTUlRs)FUhψ
4

65 (h),

OUhψ
4

66 =Y[ p r , s
t
](lLpUlRs)(lLrTUlRt)FUhψ

4

66 (h), (5.27)

OUhψ
4

67 =Y[ p r , s
t
](lLpτ IUlRs)(lLrτ ITUlRt)FUhψ

4

67 (h),

OUhψ
4

68 =Y[ p
r
, s t ](lLpUlRs)(lLrTUlRt)FUhψ

4

68 (h),

OUhψ
4

69 =Y[ p
r
, s t ](lLpτ IUlRs)(lLrτ ITUlRt)FUhψ

4

69 (h),

OUhψ
4

70 =Y[ p
r
, s
t
](lLpUlRt)(lLrTUlRs)FUhψ

4

70 (h),

OUhψ
4

71 =Y[ p r , s t ](lLpTUlRs)(lLrTUlRt)FUhψ
4

71 (h),

OUhψ
4

72 =Y[ p
r
, s
t
](lLpTUlRs)(lLrTUlRt)FUhψ

4

72 (h), (5.28)

OUhψ
4

73 =Y[ p r , s t ](lLsγµlLp)(lLtγµlLs)FUhψ
4

73 (h),

OUhψ
4

74 =Y[ p
r
, s
t
](lLsγµlLp)(lLtγµlLs)FUhψ

4

74 (h),

OUhψ
4

75 =Y[ p r , s t ](lLsγµlLp)(lLtγµTlLs)FUhψ
4

75 (h),

OUhψ
4

76 =Y[ p r , s
t
](lLsγµlLp)(lLtγµTlLs)FUhψ

4

76 (h),

OUhψ
4

77 =Y[ p
r
, s t ](lLsγµlLp)(lLtγµTlLs)FUhψ

4

77 (h),

OUhψ
4

78 =Y[ p r , s t ](lLsγµTlLp)(lLtγµTlLs)FUhψ
4

78 (h), (5.29)

OUhψ
4

79 =Y[ p r , s t ](lRsγµlRp)(lRtγµlRs)FUhψ
4

79 (h),

OUhψ
4

80 =Y[ p
r
, s
t
](lRsγµlRp)(lRtγµlRs)FUhψ

4

80 (h),

OUhψ
4

81 =Y[ p r , s t ](lRsγµlRp)(lRtγµU†TUlRs)FUhψ
4

81 (h),

OUhψ
4

82 =Y[ p r , s
t
](lRsγµlRp)(lRtγµU†TUlRs)FUhψ

4

82 (h),

OUhψ
4

83 =Y[ p
r
, s t ](lRsγµlRp)(lRtγµU†TUlRs)FUhψ

4

83 (h),

OUhψ
4

84 =Y[ p r , s t ](lRsγµU†TUlRp)(lRtγµU†TUlRs)FUhψ
4

84 (h), (5.30)

OUhψ
4

85 = (lLsγµlLp)(lRtγµlRs)FUhψ
4

85 (h),

OUhψ
4

86 = (lLsγµτ I lLp)(lRtγµU†τ IUlRs)FUhψ
4

86 (h),
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OUhψ
4

87 = (lLsγµTlLp)(lRtγµlRs)FUhψ
4

87 (h),

OUhψ
4

88 = (lLsγµlLp)(lRtγµU†TUlRs)FUhψ
4

88 (h),

OUhψ
4

89 = (lLsγµτ I lLp)(lRtγµτ IU†TUlRs)FUhψ
4

89 (h),

OUhψ
4

90 = (lLsγµTlLp)(lRtγµU†TUlRs)FUhψ
4

90 (h), (5.31)

where
FUhψ

4

i = 1 +
∑
n=1

cUhψ
4

n (h
v

)n, (i = 61, 62, . . . , 90). (5.32)

5.2.3 Mixed quark-lepton operators

Type: Q†
LQRL

†
LLR

OUhψ
4

91 = (lLpUlRr)(qLsUqRt)F
Uhψ4

91 (h),

OUhψ
4

92 = (lLpσµνUlRr)(qLsσµνUqRt)F
Uhψ4

92 (h),

OUhψ
4

93 = (lLpτ IUlRr)(qLsτ IUqRt)F
Uhψ4

93 (h),

OUhψ
4

94 = (lLpσµντ IUlRr)(qLsσµντ IUqRt)F
Uhψ4

94 (h),

OUhψ
4

95 = (lLpUlRr)(qLsTUqRt)F
Uhψ4

95 (h),

OUhψ
4

96 = (lLpσµνUlRr)(qLsσµνTUqRt)F
Uhψ4

96 (h), (5.33)

OUhψ
4

97 = (lLpTUlRr)(qLsUqRt)F
Uhψ4

97 (h),

OUhψ
4

98 = (lLpσµνTUlRr)(qLsσµνUqRt)F
Uhψ4

98 (h),

OUhψ
4

99 = (lLpτ IUlRr)(qLsτ ITUqRt)F
Uhψ4

99 (h),

OUhψ
4

100 = (lLpσµντ IUlRr)(qLsσµντ ITUqRt)F
Uhψ4

100 (h),

OUhψ
4

101 = (lLpTUlRr)(qLsTUqRt)F
Uhψ4

101 (h),

OUhψ
4

102 = (lLpσµνTUlRr)(qLsσµνTUqRt)F
Uhψ4

102 (h). (5.34)

Type Q†
LQLL

†
LLL&Q†

RQRL
†
RLR:

OUhψ
4

103 = (lLsγµlLp)(qLtγµqLr)O
Uhψ4

103 (h),

OUhψ
4

104 = (lLsγµτ I lLp)(qLtγµτ IqLr)O
Uhψ4

104 (h),

OUhψ
4

105 = (lLsγµTlLp)(qLtγµqLr)F
Uhψ4

105 (h),

OUhψ
4

106 = (lLsγµlLp)(qLtγµTqLr)F
Uhψ4

106 (h),

OUhψ
4

107 = (lLsγµτ ITlLp)(qLtγµτ IqLr)F
Uhψ4

107 (h),

OUhψ
4

108 = (lLsγµTlLp)(qLtγµTqLr)F
Uhψ4

108 (h),

OUhψ
4

109 = (lRsγµlRp)(qRtγµqRr)O
Uhψ4

109 (h),

OUhψ
4

110 = (lRsγµU†τ IUlRp)(qRtγµU†τ IUqRr)O
Uhψ4

110 (h),
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OUhψ
4

111 = (lRsγµU†TUlRp)(qRtγµqRr)F
Uhψ4

111 (h),

OUhψ
4

112 = (lRsγµlRp)(qRtγµU†TUqRr)F
Uhψ4

112 (h),

OUhψ
4

113 = (lRsγµU†τ ITUlRp)(qRtγµU†τ IUQRr)F
Uhψ4

113 (h),

OUhψ
4

114 = (lRsγµU†TUlRp)(qRtγµU†TUQRr)F
Uhψ4

114 (h). (5.35)

Type L†
LLLQ

†
RQR&L†

RLRQ
†
LQL:

OUhψ
4

115 = (lRsγµlRp)(qLsγµqLr)F
Uhψ4

115 (h),

OUhψ
4

116 = (lRsγµU†τ IUlRp)(qLsγµτ IqLr)F
Uhψ4

116 (h),

OUhψ
4

117 = (lRsγµlRp)(qLtγµTqLr)F
Uhψ4

117 (h),

OUhψ
4

118 = (lRsγµU†TUlRp)(qLtγµqLr)F
Uhψ4

118 (h),

OUhψ
4

119 = (lRsγµU†τ ITUlRp)(qLtγµτ IqLr)F
Uhψ4

119 (h),

OUhψ
4

120 = (lRsγµU†TUlRp)(qLtγµTqLr)F
Uhψ4

120 (h),

OUhψ
4

121 = (lLsγµLLp)(qRsγµqRr)F
Uhψ4

121 (h),

OUhψ
4

122 = (lLsγµτ ILLp)(qRsγµU†τ IUqRr)F
Uhψ4

122 (h),

OUhψ
4

123 = (lLsγµLLp)(qRtγµU†TUqRr)F
Uhψ4

123 (h),

OUhψ
4

124 = (lLsγµTLLp)(qRtγµqRr)F
Uhψ4

124 (h),

OUhψ
4

125 = (lLsγµτ ITLLp)(qRtγµU†τ IUqRr)F
Uhψ4

125 (h),

OUhψ
4

126 = (lLsγµTLLp)(qRtγµU†TUqRr)F
Uhψ4

126 (h). (5.36)

Type Q†
LQRL

†
RLL:

OUhψ
4

127 = (qLsγµlLp)(lRrγµqRt)F
Uhψ4

127 (h),

OUhψ
4

128 = (qLsγµτ I lLp)(lRrγµU†τ IUqRt)F
Uhψ4

128 (h),

OUhψ
4

129 = (qLsγµTlLp)(lRrγµqRt)F
Uhψ4

129 (h),

OUhψ
4

130 = (qLsγµlLp)(lRrγµU†TUqRt)F
Uhψ4

130 (h),

OUhψ
4

131 = (qLsγµτ ITlLp)(lRrγµU†τ IUqRt)F
Uhψ4

131 (h),

OUhψ
4

132 = (qLsγµTlLp)(lRrγµU†TUqRt)F
Uhψ4

132 (h). (5.37)

F functions of all these types are of the same form:

FUhψ
4

i = 1 +
∑
n=1

cUhψ
4

n (h
v

)n, (i = 91, 92, . . . , 132). (5.38)
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5.2.4 Baryon-number-violating operators

Types LLQL3,LLQLQR
2,LRQRQL

2,LRQR
3:

OUhψ
4

133 =Y[ r s t ]εabcεikεjl(lLT piCqLraj)(qLT sbkCqLtcl)F
Uhψ4

133 (h),

OUhψ
4

134 =Y[ r s

t
]εabcεikεjl(lLT piCqLraj)(qLT sbkCqLtcl)F

Uhψ4

134 (h),

OUhψ
4

135 =Y[ r
s

t

]εabcεikεjl(lLT piCqLraj)(qLT sbkCqLtcl)F
Uhψ4

135 (h), (5.39)

OUhψ
4

136 =Y[ r s t ]εabcεijεkm(lLT piCσµνqLraj)(qLT sbkCσµν(TqL)tcm)FUhψ
4

136 (h),

OUhψ
4

137 =Y[ r s

t
]εabcεijεkm(lLT piCqLraj)(qLT sbk(TqL)tcm)FUhψ

4

137 (h),

OUhψ
4

138 =Y[ r s

t
]εabcεijεkm(lLT piCσµνqLraj)(qLT sbkCσµν(TqL)tcm)FUhψ

4

138 (h), (5.40)

OUhψ
4

139 =Y[ r
s

t

]εabcεijεkm(lLT piCqLraj)(qLT sbkC(TqL)tcm)FUhψ
4

139 (h),

OUhψ
4

140 =Y[ r s

t
]εabcεlnεkm((TlLT )pmC(TqL)ran)(qLT rakCqLtcl)F

Uhψ4

140 (h),

OUhψ
4

141 =Y[ s t ]εabcεikεjl(lLT piCγµCqRsbk)(qLT rajCγµCqRtcl)F
Uhψ4

141 (h), (5.41)

OUhψ
4

142 =Y[ s
t
]εabcεikεjl(lLT piCγµCqRsbk)(qLT rajCγµCqRtcl)F

Uhψ4

142 (h),

OUhψ
4

143 =Y[ s t ]εabcεjlεkm((TlLT )pmCγµC(UqRsb)k)(qLT rajCγµC(UqRtc)l)F
Uhψ4

143 (h),

OUhψ
4

144 =Y[ s
t
]εabcεjlεkm((TlLT )pmCγµC(UqRsb)k)(QLT rajCγµC(UqRtc)l)F

Uhψ4

144 (h), (5.42)

OUhψ
4

145 =Y[ s
t
]εabcεijεkm(lLT piCγµC(UqRsb)k)(qLT rajCγµC(TUqR)tcm)FUhψ

4

145 (h),

OUhψ
4

146 =Y[ s
t
]εabcεkmεln((TlLT )pmCγµC(UqRsb)k)((TqLT )ranCγµC(UqRtc)l)F

Uhψ4

146 (h),

OUhψ
4

147 =Y[ s t ]εabcεikεjl(qLT paiCγµC(UlRs)k)(qLT rbjCγµC(UqRtc)l)F
Uhψ4

147 (h), (5.43)

OUhψ
4

148 =Y[ s
t
]εabcεikεjl(qLT paiCγµC(UlRs)k)(qLT rbjCγµC(UqRtc)l)F

Uhψ4

148 (h),

OUhψ
4

149 =Y[ s t ]εabcεjkεlm((TqLT )pamCγµC(UlRs)k)(qLT rbjCγµC(UqRtc)l)F
Uhψ4

149 (h),

OUhψ
4

150 =Y[ s
t
]εabcεjlεkm((TqLT )pamCγµC(UlRs)k)(qLT rbjCγµC(UqRtc)l)F

Uhψ4

150 (h), (5.44)

OUhψ
4

151 =Y[ s
t
]εabcεjkεlm((TqLT )pamCγµC(UlRs)k)(qLT rbjCγµC(UqRtc)l)F

Uhψ4

151 (h),

OUhψ
4

152 =Y[ s
t
]εabcεkmεln((TqLT pam)CγµC(ULRs)k)((TqLT )rbnCγµC(UqRtc)l)F

Uhψ4

152 (h),

OUhψ
4

153 =Y[ r s t ]εabcεikεjl((UlR
T
p)iC(UqRra)j)((UqR

T
sb)kC(UqRtc)l)F

Uhψ4

153 (h),
OUhψ

4

154 =Y[ r s

t
]εabcεikεjl((UlR

T
p)iC(UqRra)j)((UqR

T
sb)kC(UqRtc)l)F

Uhψ4

154 (h), (5.45)

OUhψ
4

155 =Y[ r
s

t

]εabcεikεjl((UlR
T
p)iC(UqRra)j)((UqR

T
sb)kC(UqRtc)l)F

Uhψ4

155 (h),

OUhψ
4

156 =Y[ r s t ]εabcεijεkm((UlR
T
p)iCσµν(UqRra)j)((UqR

T
sb)kCσµν(TUqR)tcm)FUhψ

4

156 (h),
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OUhψ
4

157 =Y[ r s

t
]εabcεijεkm((UlR

T
p)iCσµν(UqRra)j)((UqR

T
sb)kCσµν(TUqR)tcm)FUhψ

4

157 (h),
(5.46)

OUhψ
4

158 =Y[ r s

t
]εabcεijεkm((UlR

T
p)iC(UqRra)j)((UqR

T
sb)kC(TUqR)tcm)FUhψ

4

158 (h),

OUhψ
4

159 =Y[ r
s

t

]εabcεijεkm((UlR
T
p)iC(UqRra)j)((UqR

T
sb)kC(TUqR)tcm)FUhψ

4

159 (h),

OUhψ
4

160 =Y[ r s

t
]εabcεkmεln((TUlR

T )pmC(TUqR)ran)((UqR
T
sb)kC(UqRtc)l)F

Uhψ4

160 (h),
(5.47)

F functions in this type takes the form that

FUhψ
4

i = 1 +
∑
n=1

cUhψ
4

n (h
v

)n, (i = 133, . . . , 160). (5.48)

6 Conclusion

In this work, we present the complete and independent sets of the HEFT operators at the
next-to-leading order, enumerating all the 224 (7704) operators for one (three) generation
fermions without right-handed neutrino, and the 295 (11307) operators for one (three)
generation fermions with right-handed neutrino, for the first time. Compared with the
results in literature [30, 38, 40], we find that there were 8 (11) terms of operators missing,
corresponding to 422(665) operators for three generation fermions, without (with) right-
handed sterile neutrinos, and there were many redundant operators. Furthermore, the
numbers of the HEFT operators are consistent with the counting result via the Hilbert series
obtained in refs. [68, 69]. Comparison with the literature is presented in the appendix B
in detail.

Although the Young tensor method has been developed to obtain the operator basis
for generic EFTs up to any mass dimension [21], the operators involving in the Goldstone
bosons and the spurion fields, appear in the HEFT, need further treatments. According
to the operator-amplitude correspondence, for a type of operator, the on-shell amplitudes
form a complete and independent basis in the Lorentz space, and if such operators involve
in the Goldstone bosons, applying the soft theorem on the amplitude would pick up the
Lorentz subspace satisfying the Adler zero condition in the soft momentum limit. All the
HEFT operators have been rewritten with the on-shell contact amplitudes, as shown in
appendix C.

In the HEFT, the spurion field is also quite special because it is not the dynamical
degree of freedom but it transforms as the adjoint representation under the SU(2) symmetry.
The spurion field is introduced to parametrize the custodial symmetry breaking through
freezing the dynamical field degree of freedom, and thus it could only form the SU(2)
invariant together with other dynamical fields in the operator. Thus we remove the spurion
from the Lorentz tensor construction but keep the spurion to be involved in the gauge and
flavor tensor construction.

The complete sets of operator basis, investigated in this work, would benefit vari-
ous phenomenological studies below the electroweak symmetry breaking scale, especially
phenomenologies involved in the three-generation fermions. On the other hand, when
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performing the matching between the UV non-decoupling physics and the HEFT operators,
the complete HEFT basis is necessarily needed during the matching procedure. Furthermore,
based on the power counting rules, the one-loop renormalization of the HEFT [55–58],
including the renormalization group equations, can be organized systematically using the
complete operator basis. With the one-loop renormalization on the NLO operators, the
next-to-next-to-leading-order operators would be quite relevant, and we leave the discussion
in the coming work.
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A Conversion between 2- and 4-spinors

We use Ψ to denote the 4-component spinors, whose conjugate is denoted by Ψ̄ = Ψ†γ0.
Denoting the 2-component left-handed spinors by χ, ξ, and the 2-component right-handed
spinors are denoted by χ†, ξ†. Thus the 4-component spinors can be expressed by the
2-component spinors,

ψ =
(
ξα

χ†
α̇

)
, Ψ̄ =

(
χα, ξ†α̇

)
. (A.1)

Then Dirac bilinears can be expressed by 2-components spinors,

Ψ̄1Ψ2 = χ1
αξ2α + ξ†1α̇χ

†
2
α̇
,

Ψ̄1γ
µΨ2 = χ1

ασµαα̇χ
†
2
α̇ + ξ†1α̇σ̄

µα̇αξ2α ,

Ψ̄1σ
µνψ2 = χ1

α(σµν)αβξ2β + ξ†1α̇(σ̄µν)α̇β̇χ2
β̇ ,

ΨT
1 CΨ2 = ξ1

αξ2α + χ†1α̇χ
†
2
α̇
,

ΨT
1 Cγ

µΨ2 = ξ1
ασµαα̇χ

†
2
α̇ + χ†1α̇σ̄

µα̇αξ2α ,

ΨT
1 Cσ

µνΨ2 = ξ1
α(σµν)αβξ2β + χ†1α̇(σ̄µν)α̇β̇χ

†
2
β̇
,

Ψ̄1CΨ̄T
2 = ξ†1α̇ξ

†
2
α̇ + χ1

αχ2α ,

Ψ̄1γ
µCΨ̄T

2 = χ1
ασµαα̇ξ

†
2
α̇ + ξ†1α̇σ̄

µα̇αχ2α ,

Ψ̄1σ
µνCΨ̄T

2 = ξ†1α̇(σ̄µν)α̇β̇ξ
†
2
β̇ + χ1

α(σµν)αβχ2β , (A.2)

where the gamma matrices in the equations above take the form

γµ =
(

0 σµ
αβ̇

σ̄µα̇β

)
,
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C = iγ0γ2 =
(
εαβ 0
0 εα̇β̇

)
=
(
−εαβ 0

0 −εα̇β̇

)
,

σµν = i

2[γµ, γν ] =
(

(σµν)αβ 0
0 (σ̄µν)α̇β̇

)
. (A.3)

In this work, the left- and right-handed fermions are defined as

qL =
(
QL
0

)
, lL =

(
LL
0

)
, qR =

(
0
QR

)
, lR =

(
0
LR

)
, (A.4)

and their conjugates are

q̄L =
(

0, Q†L
)
, l̄L =

(
0, L†L

)
, q̄R =

(
Q†R, 0

)
, l̄R =

(
L†R, 0

)
. (A.5)

According to these correspondences, we can convert the 2-component notations adopted in
this paper to 4-component notations, for example, the operator OUhψ

4

1 can be expressed in
a 4-component notation that

OUhψ
4

1 = Y[ p r , s t ](q̄LpUqRs)(q̄LrUqRt)F
Uhψ4

1 (h) . (A.6)

B Comparison with the literature on NLO operators

In this appendix we present the comparison with the NLO operators obtained in this work
and previous literature such as [30, 38] and [40].7 The operators in this section follow the
conventions that: first, DµΠ = Dµφ

Iτ I are used to represent the NGBs building block Vµ,
as discussed in section 3.2. The operator involved in the Dµφ

I would be equivalent to the
one with the Vµ, which can be seen from the soft-recursion relation for the NGBs. Second,
the physical Higgs h and its dimensionless function F are omitted in all the operators here.
For comparison, all the operators that were missing are marked in red in the following.

B.1 Bosonic operators

The following notations and conversions among this work and previous ones are utilized
for comparison.

• The field degrees of freedom of gauge bosons in this work are chosen to be

XLµν = 1
2(Xµν + iX̃µν), XRµν = 1

2(Xµν − iX̃µν) , (B.1)

where X̃µν = εµνρσX
ρσ. Thus for the operators involved in the gauge bosons, we

follow the convention that XL corresponds to X and XR corresponds to X̃.
7Refs. [34, 35] also present the NLO operator basis, but a different power counting on the spurion is

adopted. So the LO + NLO operators in total in refs. [34, 35] should be a subset of the operator basis
listed here.
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• If there are many derivatives in a type of operator, the Lorentz structure could be
complicated, and thus there are different choices of the independent Lorentz basis. For
the type D4h4, the Lorentz structure chosen in this paper is (hDµDνh)(hDµDνh),
while in ref. [30] the form DµhDνhD

µhDνh was chosen. They are different but can
be converted to each other by integration-by-part(IBP):

(DµhDνh)(DµhDνh) = −(hDµDνh)(DµhDνh)− (hDνh)(D2hDνh)
− (hDνh)(DµhDµD

νh)
= (hDµDνh)(hDµDνh) + (hDνh)(DµhDµD

νh)
− (hDνh)(DµhDµD

νh)
= (hDµDνh)(hDµDνh) + · · · , (B.2)

where terms involving the d’Alembert operator D2 are eliminated, this procedure can
be completed by the ABC4EFT code automatically.

• Because the choice of the invariant tensors in the gauge group could be arbitrary,
there are several operators which are not exactly the same as their correspondences
in previous literature. For example, the operator OXUhD2

8 corresponds to the OXU12
in the ref. [30] via

OXU12 ↔ igεµνλρ〈WµντL〉〈τL[Lλ, Lρ]〉FXU12(h)
↔ εJLMTITJW Iµν

R Dµφ
LDνφ

M , (B.3)

but is of a different form. This equivalence can be checked via group tensor identities.
For the SU(2) group, there is the identity:

δIJεKLM − δIKεJLM + δILεJKM − δIM εJKL = 0 . (B.4)

Contracting with building blocks TITJXK
µνDµφ

LDνφ
M , the first one is spurion self-

contraction, which should be eliminated, the second one is of the form of OXU12, and
the third one is of the form of OX2Uh

7 . The last one can be converted to the third
one by

δIM εJKLTITJXK
µνDµφ

LDνφ
M

= δIM εJKLTITJXK
µνDνφ

MDµφ
L ([Dµφ

L, Dνφ
M ]→ 0)

= −δILεJKMTITJXK
µνDµφ

LDνφ
M (L↔M,Xµν = −Xνµ) . (B.5)

Thus OXU12 ∝ OXUhD
2

8 , as expected.

Most of the identifications of the operators in this paper and the previous literature in this
appendix are realized in this way. Next, we list the complete operator list.
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Type UhD4:

OUhD4
i Operators [30] [38]
1

(
Dµφ

I
) (
Dνφ

J
) (
DµφI

) (
DνφJ

)
OD1 P6

2
(
Dµφ

I
) (
Dνφ

I
) (
DµφJ

) (
DνφJ

)
OD2 P11

3 TJTK
(
Dµφ

I
) (
Dνφ

K
) (
DνφI

) (
DµφJ

)
OD5 P24

4 TJTK
(
Dµφ

I
) (
Dνφ

J
) (
DµφI

) (
DνφK

)
OD4 P23

5 TITJTKTM
(
Dµφ

I
) (
Dνφ

K
) (
DµφJ

) (
DνφM

)
OD3 P26

6 TJ
(
Dµφ

I
) (
Dνφ

J
)

(Dνh)
(
DµφI

)
OD12 S6

7 TJ
(
Dµφ

I
) (
Dνφ

I
)

(Dνh)
(
DµφJ

)
OD13 S5

8 εJKMTITK
(
Dνφ

J
) (
Dµφ

M
)

(Dνh)
(
DµφI

)
OD6 P18

9 TITJTK
(
Dµφ

I
) (
Dνφ

K
)

(Dνh)
(
DµφJ

)
OD14 S15

10 h
(
Dµφ

I
) (
Dνφ

I
)

(DµDνh) OD8 P8

11 (Dνh)
(
Dµφ

I
)

(Dνh)
(
DµφI

)
OD7 P20

12 hTITJ
(
Dµφ

I
) (
Dνφ

J
)

(DµDνh) OD10 P22

13 TITJ (Dνh)
(
Dµφ

I
)

(Dνh)
(
DµφJ

)
OD9 P21

14 hTI
(
Dµφ

I
)

(Dνh) (DνD
µh) OD15

15 h2 (DµDνh) (DµDνh) OD11 PDH

Type X2Uh:

OX2Uh
i Operators [30] [38]
1 Bµν

L BLµν OXh1 PB
2 Bµν

R BRµν OXh4 SB̃
3 GL

AµνGL
A
Lµν OXh3 PG

4 GAµνR GARµν OXh6 SG̃
5 W Iµν

L W I
Lµν OXh2 PW

6 W Iµν
R W I

Rµν OXh5 SW̃
7 TIBLµνW

Iµν
L OXU1 P1

8 TIBRµνW
Iµν
R OXU4 S1

9 TITJW I
LµνW

Jµν
L OXU2

10 TITJW I
RµνW

Jµν
R OXU5

Type XUhD2:

OXUhD2
i Operators [30] [38]
1 εIJKhW Iνµ

L (Dµφ
J)(Dνφ

K) OXU8 P3
2 εIJKhWKνµ

R (Dµφ
I)(Dνφ

J) OXU11
3 εIJKhTKBνµ

L (Dµφ
I)(Dνφ

J) OXU7 P2
4 εIJKhTKBνµ

R (Dµφ
I)(Dνφ

J) OXU10
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5 hTJW Iνµ
L (Dνφ

I)(Dµφ
J) OXU6 S4

6 hTJW Iνµ
R (Dνφ

I)(Dµφ
J) OXU3 P14

7 εJKMhTITKW Iνµ
L (Dνφ

J)(Dµφ
M ) OXU9 P13

8 εJKMhTITMWKνµ
R (Dνφ

I)(Dµφ
J) OXU12

TypeX3:

OX3
i Operators [30]
1 fABCGALµνG

Cµλ
L GBνLλ PGGG

2 fABCDARµνD
Cµλ
R GBνRλ S ˜GGG

3 εIJKW I
LµνW

Kµλ
L W Jν

Lλ PWWW

4 εIJKW I
RµνW

Kµλ
R W Jν

Rλ P ˜WWW

5 εIJKTKBLµνW
J
L
λµ
W I
Lλ

ν

6 εIJKTKBRµνW
J
R
λµ
W I
Rλ

ν

B.2 Fermionic operators

For the operators involved in the fermions, the treatment of the spurion fields would
be complicated.

• There are 3 useful identities have been proven to be useful for the comparison:

[T,Vµ] = i

2ε
IJK〈TσI〉〈Vµσ

J〉σK , (B.6)

{T,Vµ} = 〈TVµ〉I , (B.7)
TVµT = T〈TVµ〉 −Vµ , (B.8)

where 〈. . .〉 represents matrix trace. For example, the correspondence of Oψ
2UhD2

10 and
NQ

18 can be verified as following:

NQ
18 : TVµTVµ = (TVµT)VµT→ T〈TVµ〉VµT

= 〈TVµ〉TVµT→ 〈TVµ〉〈TVµ〉T
→ TITJTK(Dµφ

I)(DµφJ) . (B.9)

• In type ψ2UhD2, operators Oψ
2UhD2

9 ,Oψ
2UhD2

8 are quite different from their corre-
spondences NQ

17,N
Q
20 in [38]. To verify this relation, recombine the NQ

17,N
Q
20 as

NQ
17 +NQ

20 → 〈TVµ〉〈TVµ〉 , (B.10)
NQ

17 −N
Q
20 → 〈TV〉εIJK〈TσI〉〈VµσJ〉σK . (B.11)

It is straightforward to figure out that Oψ
2UhD2

8 corresponds to NQ
17 − N

Q
20. As for

the first combination, it actually can be converted to Oψ
2UhD2

9 , since there is the
equation that

εIJKτL
j
i = −εILM εMKJδji − ε

IKM εMLJδji − ε
JIM εMLKδji . (B.12)
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The right hand has the expression that −2(δIKδLJ + δIJδKL)δji , one of them corre-
sponds to spurion self-contraction, and the other corresponds to operator Oψ

2UhD2

9 .

• In the case of 4-fermion operators, Fierz identities in appendix A are used for corre-
spondence,

δilδkj = 1
2(σI)ij(σI)kl + 1

2δijδjl ,

δikδjl = 1
2(σI)ij(σI)kl + 1

2δijδjl ,

δilδkj = 1
2(λA)ij(λA)kl + 1

3δijδjl ,

δikδjl = 1
2(λA)ij(λA)kl + 1

3δijδjl ,

δilδkj = 1
6(σ̄µν)ij(σ̄µν)kl + 1

2δijδkl ,

δikδjl = 1
6(σ̄µν)ij(σ̄µν)kl + 1

2δijδkl . (B.13)

For example,

RQ1 = 1
2O

ψ4Uh
3 + 1

2O
ψ4Uh
4

RQ2 = 1
2O

ψ4Uh
1 + 1

6O
ψ4Uh
2 − 1

2O
ψ4Uh
3 − 1

6O
ψ4Uh
4

RQ5 = Oψ
4Uh

1 + 1
3O

ψ4Uh
2 − 1

3O
ψ4Uh
3 −Oψ

4Uh
4

RQ6 = 1
2O

ψ4Uh
1 + 1

2O
ψ4Uh
2 (B.14)

• As fermions’ number increases, there is a general case not considered in previous
literature, which gives extra independent operators. Because the product of δ symbol
δijδ

k
l is invariant tensor under SU(2) group, it satisfies the relation that

τ I
i
jδ
k
l + τ I

k
l δ
i
j + τ I

k
j δ
i
l + τ I

i
lδ
k
j = 0 (B.15)

Thus there are 3 independent invariant tensors of this kind. This fact implies
that in many types involving spurions such as Q†LQLQ

†
RQR, Q

†
LQ

LL†LLL and so on,
operators considered before are not complete, in which only 2 independent tensors
were considered before.

B.2.1 Fermion-current operators

Type ψ2UhD:

Oψ
2UhD

i Operators [30] [38]
1 τ Iijh(Q†ajL σµQLai)(Dµφ

I) OψV 3
2 hTI(Q†aiL σµQLai)(Dµφ

I) OψV 1 NQ
5

3 εIJKτKijhTJ(Q†ajL σµQLai)(Dµφ
I) O†ψV 3
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4 τJijhTITJ(Q†ajL σµQLai)(Dµφ
I) OψV 2

5 τ Iijh(Q†ajR σµQRai)(Dµφ
I) OψV 6 NQ

2
6 hTI(Q†aiR σµQRai)(Dµφ

I) OψV 4 NQ
6

7 εIJKτKijhTJ(Q†ajR σµQRai)(Dµφ
I) O†ψV 6 NQ

4
8 τJijhTITJ(Q†ajR σµQRai)(Dµφ

I) OψV 5 NQ
8

Type ψ2UhD2:

Oψ
2UhD2

i Operators [30] [38]
1 (Q†aiL QRai)(Dµφ

I)(DµφI) OψS1 NQ
15

2 τKjiε
IJK(Q†aiL σ̄µνQRaj)(Dνφ

I)(Dµφ
J) OψT4 NQ

27
3 εIJKTK(Q†aiL σ̄µνQRaj)(Dνφ

I)(Dµφ
J) OψT1 NQ

28
4 τJjiTI(Q†aiL QRaj)(Dµφ

I)(DµφJ) OψS5 NQ
19

5 τJjiTI(Q†aiL σ̄µνQRaj)(Dνφ
I)(Dµφ

J) OψT3 NQ
25

6 τJjiTJ(Q†aiL QRaj)(Dµφ
I)(DµφI) OψS2 NQ

16
7 τMj

iε
JKMTITK(Q†aiL σ̄µνQRaj)(Dνφ

I)(Dµφ
J) OψT2 NQ

26
8 τMj

iε
JKMTITK(Q†aiL QRaj)(Dµφ

I)(DµφJ) OψS6 NQ
20

9 τKjiε
IJMTJTK(Q†aiL σ̄µνQRaj)(Dνφ

I)(Dµφ
M ) OψS3 NQ

17
10 τKjiTITJTK(Q†aiL QRaj)(Dµφ

I)(DµφJ) OψS4 NQ
18

11 τ Ij i(Dµh)(Q†aiL QRaj)(Dµφ
I) OψS12 NQ

11
12 τ Ij ih((DµQ†aiL )QRaj)(Dµφ

I) OψT9 NQ
21

13 τKjiε
IJKTJ(Dµh)(Q†aiL QRaj)(Dµφ

I) OψS13 NQ
13

14 τKjiε
IJKTJ((DµQ†aiL )QRaj)(Dµφ

I) OψT10 NQ
22

15 TI(Dµh)(Q†aiL QRai)(Dµφ
I) OψS11 NQ

12
16 hTI((DµQ†aiL )QRai)(Dµφ

I) OψT7 NQ
23

17 τJjiTITJ(Dµh)(Q†aiL QRaj)(Dµφ
I) OψS10 NQ

14
18 τJjiTITJh((DµQ†aiL )QRaj)(Dµφ

I) OψT8 NQ
24

19 (Dµh)(Dµh)(Q†aiL QRai) OψS14 NQ
9

20 τ Ij iTI(Dµh)(Dµh)(Q†aiL QRaj) OψS15 NQ
10

Type ψ2XUh:

Oψ
2UhX

i Operators [30] [38]
1 BRµν(Q†aiL σ̄µνQRai) OψX1 NQ

29
2 τ Ij iTIBRµν(Q†aiL σ̄µνQRaj) OψX2 NQ

30
3 λAbaG

A
Rµν(Q†aiL σ̄µνQRai) OψX7 NQ

31
4 λAbaτ

Ij
iTIGARµν(Q†aiL σ̄µνQRaj) OψX8 NQ

32
5 TIW I

Rµν(Q†aiL σ̄µνQRai) OψX3 NQ
34

6 τKjiε
IJKTJW I

Rµν(Q†aiL σ̄µνQRaj) OψX6 NQ
35

7 τ Ij iW
I
Rµν(Q†aiL σ̄µνQRaj) OψX5 NQ

33
8 τJjiTITJW I

Rµν(Q†aiL σ̄µνQRaj) OψX4 NQ
36
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B.2.2 Four-fermion operators

Type Q†
L

2
QR

2:

OUhψ
4

1−24 Operator [38]
1 Y[ p r , s t ](Q†aiLpQ

†bj
Lr )(QRsaiQRtbj) RQ1

2 Y[ p r , s t ](Q†aiLp σ̄µνQ
†bj
Lr )(QRsaiσ̄µνQRtbj)

3 Y[ p r , s t ](Q†aiLpQ
†bj
Lr )(QRsajQRtbi) RQ2

4 Y[ p r , s t ](Q†aiLp σ̄µνQ
†bj
Lr )(QRsaj σ̄µνQRtbi) RQ6

5 Y[ p
r
, s
t
](Q†aiLpQ

†bj
Lr )(QRsaiQRtbj)

6 Y[ p
r
, s
t
](Q†aiLp σ̄µνQ

†bj
Lr )(QRsaiσ̄µνQRtbj)

7 Y[ p
r
, s
t
](Q†aiLpQ

†bj
Lr )(QRsajQRtbi)

8 Y[ p
r
, s
t
](Q†aiLp σ̄µνQ

†bj
Lr )(QRsaj σ̄µνQRtbi)

9 Y[ p r , s t ]τ IkjTI(Q†aiLpQ
†bj
Lr )(QRsakQRtbi) RQ7

10 Y[ p r , s t ]τ IkjTI(Q†aiLp σ̄µνQ
†bj
Lr )(QRsakσ̄µνQRtbi) RQ3

11 Y[ p r , s
t
]τ IkjTI(Q†aiLpQ

†bj
Lr )(QRsakQRtbi)

12 Y[ p r , s
t
]τ IkjTI(Q†aiLp σ̄µνQ

†bj
Lr )(QRsakσ̄µνQRtbi)

13 Y[ p r , s
t
]τ IljTI(Q†aiLpQ

†bj
Lr )(QRsaiQRtbl)

14 Y[ p r , s
t
]τ IljTI(Q†aiLp σ̄µνQ

†bj
Lr )(QRsaiσ̄µνQRtbl)

15 Y[ p
r
, s t ]τ IkjTI(Q†aiLpQ

†bj
Lr )(QRsakQRtbi)

16 Y[ p
r
, s t ]τ IkjTI(Q†aiLp σ̄µνQ

†bj
Lr )(QRsakσ̄µνQRtbi)

17 Y[ p
r
, s t ]τ IljTI(Q†aiLpQ

†bj
Lr )(QRsaiQRtbl)

18 Y[ p
r
, s t ]τ IljTI(Q†aiLp σ̄µνQ

†bj
Lr )(QRsaiσ̄µνQRtbl)

19 Y[ p
r
, s
t
]τ IkjTI(Q†aiLpQ

†bj
Lr )(QRsakQRtbi)

20 Y[ p
r
, s
t
]τ IkjTI(Q†aiLp σ̄µνQ

†bj
Lr )(QRsakσ̄µνQRtbi)

21 Y[ p r , s t ]τ IkiτJljTITJ(Q†aiLpQ
†bj
Lr )(QRsakQRtbl) RQ4

22 Y[ p r , s t ]τ IkiτJljTITJ(Q†aiLp σ̄µνQ
†bj
Lr )(QRsakσ̄µνQRtbl) RQ8

23 Y[ p
r
, s
t
]τ IkiτJljTITJ(Q†aiLpQ

†bj
Lr )(QRsakQRtbl)

24 Y[ p
r
, s
t
]τ IkiτJljTITJ(Q†aiLp σ̄µνQ

†bj
Lr )(QRsakσ̄µνQRtbl)

Type Q†
LQLQ

†
RQR:

OUhψ
4

25−36 Operator [38]
25 (QLpaiσµQ†aiLs )(Q†bjRrσµQRtbj) RQ17
26 (QLpaiσµQ†akLs )(Q†biRrσµQRtbk) RQ21
27 (QLpaiσµQ†ciLs)(Q

†aj
Rr σ

µQRtcj) RQ22
28 (QLpaiσµQ†ckLs )(Q†aiRrσµQRtck) RQ26
29 τ IikTI(QLpaiσµQ†akLs )(Q†bjRrσµQRtbj) RQ19
30 τ IikTI(QLpaiσµQ†ckLs )(Q†ajRr σµQRtcj) RQ24
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31 τ IlkTI(QLpaiσµQ†akLs )(Q†biRrσµQRtbl) RQ23
32 τ IlkTI(QLpaiσµQ†ckLs )(Q†ajRr σµQRtcl) RQ18
33 τ IijTI(QLpaiσµQ†akLs )(Q†bjRrσµQRtbk)
34 τ IijTI(QLpaiσµQ†ckLs )(Q†ajRr σµQRtck)
35 τ Iijτ

Jl
kTITJ(QLpaiσµQ†ckLs )(Q†ajRr σµQRtcl) RQ20

36 τ Iljτ
Ji
kTITJ(QLpaiσµQ†ckLs )(Q†ajRr σµQRtcl) RQ25

Type Q†
L

2
QL

2&Q†
R

2
QR

2:

OUhψ
4

37−60 Operator [38]
37 Y[ p r , s t ](QLpaiσµQ†aiLs )(QLrbjσµQ†bjLt ) RQ9
38 Y[ p r , s t ](QLpaiσµQ†ajLs )(QLrbjσµQ†biLt ) RQ12
39 Y[ p

r
, s
t
](QLpaiσµQ†aiLs )(QLrbjσµQ†bjLt )

40 Y[ p
r
, s
t
](QLpaiσµQ†ajLs )(QLrbjσµQ†biLt )

41 Y[ p r , s t ]τ Ij lTI(QLpaiσµQ†aiLs )(QLrbjσµQ†blLt ) RQ10
42 Y[ p r , s

t
]τ Ij lTI(QLpaiσµQ†aiLs )(QLrbjσµQ†blLt )

43 Y[ p r , s
t
]τ IilTI(QLpaiσµQ†ajLs )(QLrbjσµQ†blLt )

44 Y[ p
r
, s t ]τ Ij lTI(QLpaiσµQ†aiLs )(QLrbjσµQ†blLt )

45 Y[ p
r
, s t ]τ IilTI(QLpaiσµQ†ajLs )(QLrbjσµQ†blLt )

46 Y[ p
r
, s
t
]τ Ij lTI(QLpaiσµQ†aiLs )(QLrbjσµQ†blLt )

47 Y[ p r , s t ]τ IikτJjlTITJ(QLpaiσµQ†akLs )(QLrbjσµQ†blLt ) RQ11
48 Y[ p

r
, s
t
]τ IikτJjlTITJ(QLpaiσµQ†akLs )(QLrbjσµQ†blLt )

49 Y[ p r , s t ](Q†aiRpσµQRsai)(Q
†bj
RrσµQRtbj) RQ13

50 Y[ p r , s t ](Q†aiRpσµQRsaj)(Q
†bj
RrσµQRtbi) RQ16

51 Y[ p
r
, s
t
](Q†aiRpσµQRsai)(Q

†bj
RrσµQRtbj)

52 Y[ p
r
, s
t
](Q†aiRpσµQRsaj)(Q

†bj
RrσµQRtbi)

53 Y[ p r , s t ]τ IkjTI(Q†aiRpσµQRsak)(Q
†bj
RrσµQRtbi) RQ14

54 Y[ p r , s
t
]τ IkjTI(Q†aiRpσµQRsak)(Q

†bj
RrσµQRtbi)

55 Y[ p r , s
t
]τ IljTI(Q†aiRpσµQRsai)(Q

†bj
RrσµQRtbl)

56 Y[ p
r
, s t ]τ IkjTI(Q†aiRpσµQRsak)(Q

†bj
RrσµQRtbi)

57 Y[ p
r
, s t ]τ IljTI(Q†aiRpσµQRsai)(Q

†bj
RrσµQRtbl)

58 Y[ p
r
, s
t
]τ IkjTI(Q†aiRpσµQRsak)(Q

†bj
RrσµQRtbi)

59 Y[ p r , s t ]τ IkiτJljTITJ(Q†aiRpσµQRsak)(Q
†bj
RrσµQRtbl) RQ15

60 Y[ p
r
, s
t
]τ IkiτJljTITJ(Q†aiRpσµQRsak)(Q

†bj
RrσµQRtbl)

Pure lepton operators: including types L†L
2
LL

2, LL
2L†L

2
, LR

2L†R
2
, LLL

†
RLRL

†
L.

OUhψ
4

61−90 Operator [38]
61 Y[ p r , s t ](L†iLpL

†j
Lr)(LRsiLRtj) Rl1

62 Y[ p r , s t ](L†iLpσ̄µνL
†j
Lr)(LRsiσ̄µνLRtj) Rl8
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63 Y[ p
r
, s
t
](L†iLpL

†j
Lr)(LRsiLRtj)

64 Y[ p
r
, s
t
](L†iLpσ̄µνL

†j
Lr)(LRsiσ̄µνLRtj)

65 Y[ p r , s t ]τ IkjTI(L†iLpL
†j
Lr)(LRskLRti) Rl9

66 Y[ p r , s
t
]τ IkjTI(L†iLpL

†j
Lr)(LRskLRti)

67 Y[ p r , s
t
]τ IkjTI(L†iLpσ̄µνL

†j
Lr)(LRskσ̄µνLRti)

68 Y[ p
r
, s t ]τ IkjTI(L†iLpL

†j
Lr)(LRskLRti)

69 Y[ p
r
, s t ]τ IkjTI(L†iLpσ̄µνL

†j
Lr)(LRskσ̄µνLRti)

70 Y[ p
r
, s
t
]τ IkjTI(L†iLpL

†j
Lr)(LRskLRti)

71 Y[ p r , s t ]τ IkiτJljTITJ(L†iLpL
†j
Lr)(LRskLRtl) Rl10

72 Y[ p
r
, s
t
]τ IkiτJljTITJ(L†iLpL

†j
Lr)(LRskLRtl)

73 Y[ p r , s t ](LLpiσµL†iLs)(LLrjσµL
†j
Lt) Rl2

74 Y[ p
r
, s
t
](LLpiσµL†iLs)(LLrjσµL

†j
Lt)

75 Y[ p r , s t ]τ Ijl TI(LLpiσµL†iLs)(LLrjσµL
†l
Lt) Rl4

76 Y[ p r , s
t
]τ Ijl TI(LLpiσµL†iLs)(LLrjσµL

†l
Lt)

77 Y[ p
r
, s t ]τ Ijl TI(LLpiσµL†iLs)(LLrjσµL

†l
Lt)

78 Y[ p r , s t ]τ IikτJjlTITJ(LLpiσµL†kLs)(LLrjσµL
†l
Lt) Rl5

79 Y[ p r , s t ](LRpiσµL†iRs)(LRrjσµL
†j
Rt) Rl3

80 Y[ p
r
, s
t
](LRpiσµL†iRs)(LRrjσµL

†j
Rt)

81 Y[ p r , s t ]τ IkjTI(LRpiσµL†kRs)(LRrjσµL
†i
Rt) Rl11

82 Y[ p r , s
t
]τ IkjTI(LRpiσµL†kRs)(LRrjσµL

†i
Rt)

83 Y[ p
r
, s t ]τ IkjTI(LRpiσµL†kRs)(LRrjσµL

†i
Rt)

84 Y[ p r , s t ]τ IkiτJljTITJ(LRpiσµL†kRs)(LRrjσµL
†l
Rt) Rl12

85 (LLpiσµL†iLs)(L
†j
Rrσ

µLRtj) Rl6
86 (LLpiσµL†kLs)(L

†k
Rrσ

µLRti) Rl15
87 τ IikTI(LLpiσµL†kLs)(L

†j
Rrσ

µLRtj) Rl7
88 τ IijTI(LLpiσµL†kLs)(L

†j
Rrσ

µLRtk) Rl13
89 τ IlkTI(LLpiσµL†kLs)(L

†i
Rrσ

µLRtl)
90 τ Iijτ

Jl
kTITJ(LLpiσµL†kLs)(L

†j
Rrσ

µLRtl) Rl14

Type Q†
LQRL

†
LLR:

OUhψ
4

91−102 Operator [38]
91 (L†iLpLRri)(Q

†ak
Ls QRtak) RQl1

92 (L†iLpσ̄µνLRri)(Q
†ak
Ls σ̄

µνQRtak) RQl6
93 (L†iLpLRrj)(Q

†aj
Ls QRtai) RQl2

94 (L†iLpσ̄µνLRrj)(Q
†aj
Ls σ̄

µνQRtai) RQl5
95 τ IlkTI(L†iLpLRri)(Q

†ak
Ls QRtal) RQl3

96 τ IlkTI(L†iLpσ̄µνLRri)(Q
†ak
Ls σ̄

µνQRtal) RQl4
97 τ Ij iTI(L†iLpLRrj)(Q

†ak
Ls QRtak) RQl25

– 49 –



J
H
E
P
0
5
(
2
0
2
3
)
0
4
3

98 τ Ij iTI(L†iLpσ̄µνLRrj)(Q
†ak
Ls σ̄

µνQRtak) RQl28
99 τ IjkTI(L†iLpLRrj)(Q

†ak
Ls QRtai) RQl24

100 τ IjkTI(L†iLpσ̄µνLRrj)(Q
†ak
Ls σ̄

µνQRtai) RQl29
101 τ Iliτ

Jj
kTITJ(L†iLpLRrj)(Q

†ak
Ls QRtal) RQl26

102 τ Iliτ
Jj
kTITJ(L†iLpσ̄µνLRrj)(Q

†ak
Ls σ̄

µνQRtal) RQl27

Type Q†
LQLL

†
LLL&Q†

RQRL
†
RLR:

OUhψ
4

103−114 Operator [38]
103 (LLpiσµL†iLs)(QLrajσµQ

†aj
Lt ) RQl7

104 (LLpiσµL†jLs)(QLrajσµQ
†ai
Lt ) RQl13

105 τ IikTI(LLpiσµL†kLs)(QLrajσµQ
†aj
Lt ) RQl11

106 τ Ij lTI(LLpiσµL†iLs)(QLrajσµQ
†al
Lt ) RQl9

107 τ IilTI(LLpiσµL†jLs)(QLrajσµQ
†al
Lt )

108 τ Iikτ
Jj
lTITJ(LLpiσµL†kLs)(QLrajσµQ

†al
Lt ) RQl12

109 (LRpiσµL†iRs)(QRrajσµQ
†aj
Rt ) RQl8

110 (LRpiσµL†jRs)(QRrajσµQ
†ai
Rt ) RQl32

111 τ IikTI(LRpiσµL†kRs)(QRrajσµQ
†aj
Rt ) RQL30

112 τ Ij lTI(LRpiσµL†iRs)(QRrajσµQ
†al
Rt ) RQl10

113 τ IilTI(LRpiσµL†jRs)(QRrajσµQ
†al
Rt )

114 τ Iikτ
Jj
lTITJ(LRpiσµL†kRs)(QRrajσµQ

†al
Rt ) RQl31

Type Q†
LQLL

†
RLR&Q†

RQRL
†
LLL:

OUhψ
4

115−126 Operator [38]
115 (LRpiσµL†iRs)(QLrajσµQ

†aj
Lt ) RQl15

116 (LRpiσµL†kRs)(QLraiσµQ
†ak
Lt ) RQl35

117 τ Ij lTI(LRpiσµL†iRs)(QLrajσµQ
†al
Lt ) RQl17

118 τ Ij iTI(LRpiσµL†kRs)(QLrajσµQ
†al
Lk) RQl33

119 τ IklTI(LRpiσµL†kRs)(QLraiσµQ
†al
Ll )

120 τ Ikiτ
Jj
lTITJ(LRpiσµL†kRs)(QLrajσµQ

†al
Lt ) RQl34

121 (LLpiσµL†iLs)(QRrajσµQ
†aj
Rt ) RQl14

122 (LLpiσµL†kLs)(QRraiσµQ
†ak
Rt ) RQl20

123 τ IikTI(LLpiσµL†kLs)(QRrajσµQ
†aj
Rt ) RQl16

124 τ IijTI(LLpiσµL†kLs)(QRrajσµQ
†al
Rk) RQj18

125 τ IlkTI(LLpiσµL†kLs)(QRraiσµQ
†al
Rl )

126 τ Iijτ
Jl
kTITJ(LLpiσµL†kLs)(QRrajσµQ

†al
Rt ) RQl19

Type Q†
LQRL

†
RLL:

OUhψ
4

127−132 Operator [38]
127 (LLpiσµQ†aiLs )(L†jRrσµQRtaj) RQl21
128 (LLpiσµQ†akLs )(L†jRrσµQRtak) RQl23
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129 τ IikTI(LLpiσµQ†akLs )(L†jRrσµQRtaj) RQl22
130 τ IlkTI(LLpiσµQ†akLs )(L†iRrσµQRtal) RQl38
131 τ IijTI(LLpiσµQ†akLs )(L†jRrσµQRtak) RQl36
132 τ Iijτ

Jl
kTITJ(LLpiσµQ†akLs )(L†jRrσµQRtal) RQl37

Type Q3L: literature [40] considering only 1 generation, so operators obtained here have
a surjection relation with operators in [40].

OUhψ
4

133−160 Operator [40]
133 Y[ r s t ]εabcεikεjl(LLpiQLraj)(QLsbkQLtcl) R1
134 Y[ r s

t
]εabcεikεjl(LLpiQLraj)(QLsbkQLtcl)

135 Y[ r
s

t

]εabcεikεjl(LLpiQLraj)(QLsbkQLtcl)

136 Y[ r s t ]τ IlmεabcεijεkmTI(LLpiσµνQLraj)(QLsbkσµνQLtcl) R2
137 Y[ r s

t
]τ IlmεabcεijεkmTI(LLpiQLraj)(QLsbkQLtcl)

138 Y[ r s

t
]τ IlmεabcεijεkmTI(LLpiσµνQLraj)(QLsbkσµνQLtcl)

139 Y[ r
s

t

]τ IlmεabcεijεkmTI(LLpiQLraj)(QLsbkQLtcl)

140 Y[ r s

t
]τ IimτJjnεabcεkmεlnTITJ(LLpiQLraj)(QLsbkQLtcl)

141 Y[ s t ]εabcεikεjl(LLpiσµQRsbk)(QLrajσµQRtcl) R5

142 Y[ s
t
]εabcεikεjl(LLpiσµQRsbk)(QLrajσµQRtcl)

143 Y[ s t ]τ IimεabcεjlεkmTI(LLpiσµQRsbk)(QLrajσµQRtcl) R6
144 Y[ s

t
]τ IimεabcεjlεkmTI(LLpiσµQRsbk)(QLrajσµQRtcl)

145 Y[ s
t
]τ IlmεabcεijεkmTI(LLpiσµQRsbk)(QLrajσµQRtcl) R7

146 Y[ s
t
]τ IimτJjnεabcεkmεlnTITJ(LLpiσµQRsbk)(QLrajσµQRtcl) R8

147 Y[ s t ]εabcεikεjl(QLpaiσµLRsk)(QLrbjσµQRtcl) R9
148 Y[ s

t
]εabcεikεjl(QLpaiσµLRsk)(QLrbjσµQRtcl)

149 Y[ s t ]τ IimεabcεjkεlmTI(QLpaiσµLRsk)(QLrbjσµQRtcl) R11
150 Y[ s

t
]τ IimεabcεjlεkmTI(QLpaiσµLRsk)(QLrbjσµQRtcl) R10

151 Y[ s
t
]τ IimεabcεjKεLmTI(QLpaiσµLRsk)(QLrbjσµQRtcl)

152 Y[ s
t
]τ IimτJjnεabcεkmεlnTITJ(QLpaiσµLRsk)(QLrbjσµQRtcl) R12

153 Y[ r s t ]εabcεikεjl(LRpiQRraj)(QRsbkQRtcl) R3
154 Y[ r s

t
]εabcεikεjl(LRpiQRraj)(QRsbkQRtcl)

155 Y[ r
s

t

]εabcεikεjl(LRpiQRraj)(QRsbkQRtcl)

156 Y[ r s t ]τ IlmεabcεijεkmTI(LRpiσ̄µνQRraj)(QRsbkσ̄µνQRtcl) R4
157 Y[ r s

t
]τ IlmεabcεijεkmTI(LRpiσ̄µνQRraj)(QRsbkσ̄µνQRtcl)

158 Y[ r s

t
]τ IlmεabcεijεkmTI(LRpiQRraj)(QRsbkQRtcl)

159 Y[ r
s

t

]τ IlmεabcεijεkmTI(LRpiQRraj)(QRsbkQRtcl)

160 Y[ r s

t
]τ IimτJjnεabcεlnTITJ(LRpiQRraj)(QRsbkQRtcl)
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C On-shell amplitude basis

In this section, we present operators’ amplitude basis, in which spurions are treated as part
of gauge factors and are written as Ti = TIi .

Type UhD4:

φ4 (δI1I3δI2I4)〈34〉2[34]2

(δI1I3δI2I4)〈34〉2[34]2

φ4T2 (δI1I4δI2I5δI3I6T5T6)〈34〉2[34]2

(δI1I4δI2I5δI3I6T5T6)〈24〉2[24]2

φ4T4 (δI1I5δI2I6δI3I7δI4I8T5T6T7T8)〈34〉2[34]2

hφ3T
(δI2I4δI3I5T5)〈34〉2[34]2

(δI2I4δI3I5T5)〈24〉2[24]2

hφ3T2 (δI2I5εI3I4I6T5T6)〈24〉2[24]2

hφ3T3 (δI2I5δI3I6δI4I7T5T6T7)〈34〉2[34]2

h2φ2 (δI3I4)〈34〉2[34]2

(δI3I4)〈24〉2[24]2

h2φ2T2 (δI3I5δI4I6T5T6)〈34〉2[34]2

(δI3I5δI4I6T5T6)〈34〉2[34]2

h3φT (δI4I5T5)〈34〉2[34]2

h4 〈34〉2[34]2

Type X2Uh:

BL
2 〈12〉2

BR
2 [12]2

GL
2 (δA1A2)〈12〉2

GR
2 (δA1A2)[12]2

WL
2 (δI1I2)〈12〉2

WR
2 (δI1I2)[12]2

BLWLT (δI2I3T3)〈12〉2
BRWRT (δI2I3T3)[12]2
WL

2T2 (δI1I3δI2I4T3T4)〈12〉2
WR

2T2 (δI1I3δI2I4T3T4)[12]2

Type XUhD2:

WLhφ
2 (εI1I3I4)[34]〈13〉〈14〉

hφ2WR (εI2I3I4)[24][34]〈23〉
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BLhφ
2T (εI3I4I5T5)[34]〈13〉〈14〉

hφ2BRT (εI2I3I5T5)[24][34]〈23〉
WLhφ

2T (δI1I4δI3I5T5)[34]〈13〉〈14〉
hφ2WRT (δI2I4δI3I5T5)[24][34]〈23〉
WLhφ

2T2 (δI1I5εI3I4I6T5T6)[34]〈13〉〈14〉
hφ2WRT2 (δI2I5εI3I4I6T5T6)[24][34]〈23〉

Type X3:

X3

(fA1A2A3)〈12〉〈13〉〈23〉
(fA1A2A3)[12][13][23]
(εI1I2I3)〈12〉〈13〉〈23〉
(εI1I2I3)[12][13][23]
(εI2I3I4T4)〈12〉〈13〉〈23〉
(εI2I3I4T4)[12][13][23]

Type ψ2UhD:

QLhφQ
†
L (δa1

a4 (τ I3)i1i4)[34]〈13〉

QLhφQ
†
LT

(δi1i4δ
a1
a4δ

I5I3T5)[34]〈13〉
(δa1
a4 ε

I3I5K(τK)i1i4T5)[34]〈13〉
QLhφQ

†
LT2 (δa1

a4δ
I3I6δI5M (τM )i1i4T5T6)[34]〈13〉

Q†RhφQR (δa4
a1 (τ I3)i4i1)[34]〈13〉

Q†RhφQRT
(δi4i1δ

a4
a1δ

I5I3T5)[34]〈13〉
(δa4
a1 ε

I3I5K(τK)i4i1T5)[34]〈13〉
Q†RhφQRT2 (δa4

a1δ
I3I6δI5M (τM )i4i1T5T6)[34]〈13〉

Type ψ2UhD2:

φ2Q†LQR
(δi4i3δ

a4
a3δ

I1I2)〈34〉[34]2

(δa4
a3 ε

I1I2K(τK)i4i3)[34]〈24〉[24]

φ2Q†LQRT

(δi4i3δ
a4
a3δ

I5M εI1I2MT5)[34]〈24〉[24]
(δa4
a3δ

I1MδI2I5(τM )i4i3T5)〈34〉[34]2

(δa4
a3δ

I1MδI2I5(τM )i4i3T5)[34]〈24〉[24]
(δa4
a3δ

I1I2(τ I5)i4i3T5)[34]〈3, 4〉[34]

φ2Q†LQRT2
(δa4
a3δ

I2N εI1I5N (τ I6)i4i3T5T6)[34]〈24〉[24]
(δa4
a3δ

I1I5εI2I6N (τN )T5T6
i4
i3

)〈34〉[34]2

(δa4
a3δ

I1I5εI2I6N (τN )i4i3T5T6)[34]〈24〉[24]
φ2Q†LQRT3 (δa4

a3δ
I1I5δI2I6(τ I7)i4i3T5T6T7)〈34〉[34]2

hφQ†LQR
(δa4
a3 (τ I2)i4i3)〈34〉[34]2

(−δa4
a3 (τ I2)i4i3)[34]〈24〉[24]
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hφQ†LQRT

(δa4
a3 ε

I2I5K(τK)i4i3T5)〈34〉[34]2

(−δa4
a3 ε

I2I5K(τK)i4i3T5)[34]〈24〉[24]
(δa4
a3δ

i4
i3
δI5I2T5)〈34〉[34]2

(−δa4
a3δ

i4
i3
δI5I2T5)[34]〈24〉[24]

hφQ†LQRT2 (δa4
a3δ

I2I5(τ I6)i4i3T5T6)〈34〉[34]2

(δa4
a3δ

I2I5(τ I6)i4i3T5T6)[34]〈24〉[24]
h2Q†LQR (δi4i3δ

a4
a3 )〈34〉[34]2

h2Q†LQRT (δa4
a3 (τ I5)i4i3T5)〈34〉[34]2

Type ψ2UhX:

Q†LQRBR (−δi2i1δ
a2
a1 )[13][23]

Q†LQRBRT (−δa2
a1 (τ I4)i2i1T4)[13][23]

Q†LQRGR (−δi2i1 (λA3)a1
a2

)[13][23]
Q†LQRGRT (−(λA3)a1

a2
(τ I4)i2i1T4)[13][23]

Q†LQRWR (−δa2
a1 (τ I3)i2i1)[13][23]

Q†LQRWRT
(−δa2

a1 ε
I3I4K(τK)i2i1T4)[13][23]

(−δi2i1δ
a2
a1δ

I3I4T4)[13][23]
Q†LQRWRT2 (δa2

a1δ
I3I4δI5M (τM )i2i1T4T5)[13][23]

Type Q†
L

2
QR

2:

Q†L
2
QR

2

C
[2],[2]
f1f2,f3f4

(δi3i1δ
i4
i2
δa3
a1δ

a4
a2 )[12][34]

C
[2],[2]
f1f2,f3f4

(δi3i1δ
i4
i2
δa3
a1δ

a4
a2 )[13][24]

C
[2],[2]
f1f2,f3f4

(δi3i2δ
i4
i1
δa3
a1δ

a4
a2 )[12][34]

C
[2],[2]
f1f2,f3f4

(δi3i2δ
i4
i1
δa3
a1δ

a4
a2 )[13][24]

C
[1,1],[1,1]
f1f2,f3f4

(δi3i1δ
i4
i2
δa3
a1δ

a4
a2 )[12][34]

C
[1,1],[1,1]
f1f2,f3f4

(δi3i1δ
i4
i2
δa3
a1δ

a4
a2 )[13][24]

C
[1,1],[1,1]
f1f2,f3f4

(δi3i2δ
i4
i1
δa3
a1δ

a4
a2 )[12][34]

C
[1,1],[1,1]
f1f2,f3f4

(δi3i2δ
i4
i1
δa3
a1δ

a4
a2 )[13][24]

Q†L
2
QR

2T

C
[2],[2]
f1f2,f3f4

(δi4i1δ
a3
a2δ

a4
a2 (T5τ)i3i2)[12][34]

C
[2],[2]
f1f2,f3f4

(δi4i1δ
a3
a2δ

a4
a2 (T5τ)i3i2)[13][24]

C
[2],[1,1]
f1f2,f3f4

(δi4i1δ
a3
a2δ

a4
a2 (T5τ)i3i2)[12][34]

C
[2],[1,1]
f1f2,f3f4

(δi4i1δ
a3
a2δ

a4
a2 (T5τ)i3i2)[13][24]

C
[2],[1,1]
f1f2,f3f4

(δi3i1δ
a3
a2δ

a4
a2 (T5τ)i4i2)[12][34]

C
[2],[1,1]
f1f2,f3f4

(δi3i1δ
a3
a2δ

a4
a2 (T5τ)i4i2)[13][24]

C
[1,1],[2]
f1f2,f3f4

(δi4i1δ
a3
a2δ

a4
a2 (T5τ)i3i2)[12][34]

C
[1,1],[2]
f1f2,f3f4

(δi4i1δ
a3
a2δ

a4
a2 (T5τ)i3i2)[13][24]

C
[1,1],[2]
f1f2,f3f4

(δi3i1δ
a3
a2δ

a4
a2 (T5τ)i4i2)[12][34]

C
[1,1],[2]
f1f2,f3f4

(δi3i1δ
a3
a2δ

a4
a2 (T5τ)i4i2)[13][24]
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C
[1,1],[1,1]
f1f2,f3f4

(δi4i1δ
a3
a2δ

a4
a2 (T5τ)i3i2)[12][34]

C
[1,1],[1,1]
f1f2,f3f4

(δi4i1δ
a3
a2δ

a4
a2 (T5τ)i3i2)[13][24]

Q†L
2
QR

2T2

C
[2],[2],[2]
f12f34f56

(δa3
a1δ

a4
a2 (T5τ)i3i1(T6τ)i4i2)[12][34]

C
[2],[2],[2]
f12f34f56

(δa3
a1δ

a4
a2 (T5τ)i3i1(T6τ)i4i2)[13][24]

C
[1,1],[1,1],[2]
f12f34f56

(δa3
a1δ

a4
a2 (T5τ)i3i1(T6τ)i4i2)[12][34]

C
[1,1],[1,1],[2]
f12f34f56

(δa3
a1δ

a4
a2 (T5τ)i3i1(T6τ)i4i2)[13][24]

Type: Q†
LQLQ

†
RQR

QLQ
†
RQ
†
LQR

(δi1i3δ
i4
i2
δa1
a3δ

a4
a2 )[34]〈12〉

(i1i2δ
i4
i3
δa1
a3δ

a4
a2 )[34]〈12〉

(δi1i3δ
i4
i2
δa1
a2δ

a4
a3 )[34]〈12〉

(i1i2δ
i4
i3
δa1
a2δ

a4
a3 )[34]〈12〉

QLQ
†
RQ
†
LQRT

(δi4i2δ
a1
a3δ

a4
a2 (T5τ)i1i3)[34]〈12〉

(δi4i2δ
a1
a2δ

a4
a3 (T5τ)i1i3)[34]〈12〉

(i1i2δ
a1
a3δ

a4
a2 (T5τ)i4i3)[34]〈12〉

(i1i2δ
a1
a2δ

a4
a3 (T5τ)i4i3)[34]〈12〉

(δi4i3δ
a1
a3δ

a4
a2 (T5τ)i1i2)[34]〈12〉

(δi4i3δ
a1
a2δ

a4
a3 (T5τ)i1i2)[34]〈12〉

QLQ
†
RQ
†
LQRT2 (δa1

a2δ
a4
a3 (T5τ)i1i2(T6τ)i4i3)[34]〈12〉

(δa1
a2δ

a4
a3 (T5τ)i2i4(T6τ)i1i3)[34]〈12〉

Type Q†
L

2
QL

2&Q†
R

2
QR

2

QL
2Q†L

2

C
[2],[2]
f1f2,f3f4

(δi1i3δ
i2
i4
δa1
a3δ

a2
a4 )[34]〈12〉

C
[2],[2]
f1f2,f3f4

(δi1i4δ
i2
i3
δa1
a3δ

a2
a4 )[34]〈12〉

C
[1,1],[1,1]
f1f2,f3f4

(δi1i3δ
i2
i4
δa1
a3δ

a2
a4 )[34]〈12〉

C
[1,1],[1,1]
f1f2,f3f4

(δi1i4δ
i2
i3
δa1
a3δ

a2
a4 )[34]〈12〉

QL
2Q†L

2
T

C
[2],[2]
f1f2,f3f4

(δi1i3δ
a1
a3δ

a2
a4 (T5τ)i2i4)[34]〈12〉

C
[1,1],[2]
f1f2,f3f4

(δi1i3δ
a1
a3δ

a2
a4 (T5τ)i2i4)[34]〈12〉

C
[1,1],[2]
f1f2,f3f4

(δi2i3δ
a1
a3δ

a2
a4 (T5τ)i1i4)[34]〈12〉

C
[2],[1,1]
f1f2,f3f4

(δi1i3δ
a1
a3δ

a2
a4 (T5τ)i2i4)[34]〈12〉

C
[2],[1,1]
f1f2,f3f4

(δi2i3δ
a1
a3δ

a2
a4 (T5τ)i1i4)[34]〈12〉

C
[1,1],[1,1]
f1f2,f3f4

(δi1i3δ
a1
a3δ

a2
a4 (T5τ)i2i4)[34]〈12〉

QL
2Q†L

2
T2 C

[2],[2]
f1f2,f3f4

(δa1
a3δ

a2
a4 (T5τ)i1i3(T6τ)i2i4)[34]〈12〉

C
[1,1],[1,1]
f1f2,f3f4

(δa1
a3δ

a2
a4 (T5τ)i1i3(T6τ)i2i4)[34]〈12〉

Q†R
2
QR

2

C
[2],[2]
f1f2,f3f4

(δi1i3δ
i2
i4
δa1
a3δ

a2
a4 )[34]〈12〉

C
[2],[2]
f1f2,f3f4

(δi1i4δ
i2
i3
δa1
a3δ

a2
a4 )[34]〈12〉

C
[1,1],[1,1]
f1f2,f3f4

(δi1i3δ
i2
i4
δa1
a3δ

a2
a4 )[34]〈12〉

C
[1,1],[1,1]
f1f2,f3f4

(δi1i4δ
i2
i3
δa1
a3δ

a2
a4 )[34]〈12〉
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Q†R
2
QR

2T

C
[2],[2]
f1f2,f3f4

(δi1i3δ
a1
a3δ

a2
a4 (T5τ)i2i4)[34]〈12〉

C
[1,1],[2]
f1f2,f3f4

(δi1i3δ
a1
a3δ

a2
a4 (T5τ)i2i4)[34]〈12〉

C
[1,1],[2]
f1f2,f3f4

(δi2i3δ
a1
a3δ

a2
a4 (T5τ)i1i4)[34]〈12〉

C
[1,1],[2]
f1f2,f3f4

(δi1i3δ
a1
a3δ

a2
a4 (T5τ)i2i4)[34]〈12〉

C
[1,1],[2]
f1f2,f3f4

(δi2i3δ
a1
a3δ

a2
a4 (T5τ)i1i4)[34]〈12〉

C
[1,1],[1,1]
f1f2,f3f4

(δi1i3δ
a1
a3δ

a2
a4 (T5τ)i2i4)[34]〈12〉

Q†R
2
QR

2T2 C
[2],[2]
f1f2,f3f4

(δa1
a3δ

a2
a4 (T5τ)i1i3(T6τ)i2i4)[34]〈12〉

C
[1,1],[1,1]
f1f2,f3f4

(δa1
a3δ

a2
a4 (T5τ)i1i3(T6τ)i2i4)[34]〈12〉

Pure lepton:

L†L
2
LR

2

C
[2],[2]
f1f2,f3f4

(δi3i1δ
i4
i2

)[12][34]
C

[2],[2]
f1f2,f3f4

(δi3i1δ
i4
i2

)[13][24]
C

[1,1],[1,1]
f1f2,f3f4

(δi3i1δ
i4
i2

)[12][34]
C

[1,1],[1,1]
f1f2,f3f4

(δi3i1δ
i4
i2

)[13][24]

L†L
2
LR

2T

C
[2],[2]
f1f2,f3f4

(δi4i1 (T5τ)i3i2)[12][34]
C

[2],[1,1]
f1f2,f3f4

(δi4i1 (T5τ)i3i2)[12][34]
C

[2],[1,1]
f1f2,f3f4

(δi4i1 (T5τ)i3i2)[13][24]
C

[1,1],[2]
f1f2,f3f4

(δi4i1 (T5τ)i3i2)[12][34]
C

[1,1],[2]
f1f2,f3f4

(δi4i1 (T5τ)i3i2)[13][24]
C

[1,1],[1,1]
f1f2,f3f4

(δi4i1 (T5τ)i3i2)[12][34]

L†L
2
LR

2T2 C
[2],[2]
f1f2,f3f4

((T5τ)i3i1(T6τ)i4i2)[12][34]
C

[1,1],[1,1]
f1f2,f3f4

((T5τ)i3i1(T6τ)i4i2)[13][24]

LL
2L†L

2 C
[2],[2]
f1f2,f3f4

(δi1i3δ
i2
i4

)[34]〈12〉
C

[1,1],[1,1]
f1f2,f3f4

(δi1i3δ
i2
i4

)[34]〈12〉

LL
2L†L

2
T

C
[2],[2]
f1f2,f3f4

(δi1i3 (T5τ)i2i4)[34]〈12〉
C

[2],[1,1]
f1f2,f3f4

(δi1i3 (T5τ)i2i4)[34]〈12〉
C

[1,1],[2]
f1f2,f3f4

(δi1i3 (T5τ)i2i4)[34]〈12〉
LL

2L†L
2
T2 C

[2],[2]
f1f2,f3f4

((T5τ)i1i3(T6τ)i2i4)[34]〈12〉

L†R
2
LR

2 C
[2],[2]
f1f2,f3f4

(δi3i1δ
i4
i2

)[34]〈12〉
C

[1,1],[1,1]
f1f2,f3f4

(δi3i1δ
i4
i2

)[34]〈12〉

L†R
2
LR

2T
C

[2],[2]
f1f2,f3f4

(δi3i1 (T5τ)i4i2)[34]〈12〉
C

[2],[1,1]
f1f2,f3f4

(δi3i1 (T5τ)i4i2)[34]〈12〉
C

[1,1],[2]
f1f2,f3f4

(δi3i1 (T5τ)i4i2)[34]〈12〉
L†R

2
LR

2T2 C
[2],[2]
f1f2,f3f4

((T5τ)i3i1(T6τ)i4i2)[34]〈12〉

LLL
†
RL
†
LLR

(δi1i3δ
i4
i2

)[34]〈12〉
(δi1i2δ

i4
i3

)[34]〈12〉

LLL
†
RL
†
LLRT

(δi4i2 (T5τ)i1i3)[34]〈12〉
(δi4i3 (T5τ)i1i2)[34]〈12〉
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(δi1i2 (T5τ)i4i3)[34]〈12〉
LLL

†
RL
†
LLRT2 ((T5τ)i1i2(T6τ)i4i3)[34]〈12〉

Type Q†
LQRL

†
LLR:

L†LLRQ
†
LQR

(δi2i1δ
i4
i3
δa4
a3 )[12][34]

(δi2i1δ
i4
i3
δa4
a3 )[13][24]

(δi2i3δ
i4
i1
δa4
a3 )[12][34]

(δi2i3δ
i4
i1
δa4
a3 )[13][24]

L†LLRQ
†
LQRT

(δi2i1δ
a4
a3 (T5τ)i4i3)[12][34]

(δi2i1δ
a4
a3 (T5τ)i4i3)[13][24]

(δi4i3δ
a4
a3 (T5τ)i2i1)[12][34]

(δi4i3δ
a4
a3 (T5τ)i2i1)[13][24]

(δi4i1δ
a4
a3 (T5τ)i2i3)[12][34]

(δi4i1δ
a4
a3 (T5τ)i2i3)[13][24]

L†LLRQ
†
LQRT2 C

[2]
f56

(δa4
a3 (T5τ)i4i1(T6τ)i2i3)[12][34]

C
[2]
f56

(δa4
a3 (T5τ)i4i1(T6τ)i2i3)[13][24]

Type Q†
LQLL

†
LLL&Q†

RQRL
†
RLR:

LLQLL
†
LQ
†
L

(δi1i3δ
i2
i4
δa2
a4 )[34]〈12〉

(δi1i4δ
i2
i3
δa2
a4 )[34]〈12〉

LLQLL
†
LQ
†
LT

(δi2i4δ
a2
a4 (T5τ)i1i3)[34]〈12〉

(δi1i3δ
a2
a4 (T5τ)i2i4)[34]〈12〉

(δi2i3δ
a2
a4 (T5τ)i1i4)[34]〈12〉

LLQLL
†
LQ
†
LT2 (δa2

a4 (T5τ)i1i3(T6τ)i2i4)[34]〈12〉

L†RQ
†
RLRQR

(δi3i1δ
i4
i2
δa4
a2 )[34]〈12〉

(δi4i1δ
i3
i2
δa4
a2 )[34]〈12〉

L†RQ
†
RLRQRT

(δi4i2δ
a4
a2 (T5τ)i3i1)[34]〈12〉

(δi3i1δ
a4
a2 (T5τ)i4i2)[34]〈12〉

(δi3i2δ
a4
a2 (T5τ)i4i1)[34]〈12〉

L†RQ
†
RLRQRT2 (δa4

a2 (T5τ)i3i1(T6τ)i4i2)[34]〈12〉

Type L†
LLLQ

†
RQR&L†

RLRQ
†
LQL:

L†RQLLRQ
†
L

(δi2i4δ
i3
i1
δa2
a4 )[34]〈12〉

(δi2i1δ
i3
i4
δa2
a4 )[34]〈12〉

L†RQLLRQ
†
LT

(δi3i1δ
a2
a4 (T5τ)i2i4)[34]〈12〉

(δi3i4δ
a2
a4 (T5τ)i2i1)[34]〈12〉

(δi2i1δ
a2
a4 (T5τ)i3i4)[34]〈12〉

L†RQLLRQ
†
LT2 (δa2

a4 (T5τ)i3i1(T6τ)i2i4)[34]〈12〉

LLQ
†
RL
†
LQR

(δi4i2δ
i1
i3
δa4
a2 )[34]〈12〉

(δi1i2δ
i4
i3
δa4
a2 )[34]〈12〉
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LLQ
†
RL
†
LQRT

(δi1i3δ
a4
a2 (T5τ)i4i2)[34]〈12〉

(δi4i3δ
a4
a2 (T5τ)i1i2)[34]〈12〉

(δi1i2δ
a4
a2 (T5τ)i4i3)[34]〈12〉

LLQ
†
RL
†
LQRT2 (δa4

a2 (T5τ)i1i2(T6τ)i4i3)[34]〈12〉

Type Q†
LQRL

†
RLL:

LLL
†
RQ
†
LQR

(δi1i3δ
i4
i2
δa4
a3 )[34]〈12〉

(δi1i2δ
i4
i3
δa4
a3 )[34]〈12〉

LLL
†
RQ
†
LQRT

(δi4i2δ
a4
a3 (T5τ)i1i3)[34]〈12〉

(δi1i2δ
a4
a3 (T5τ)i4i3)[34]〈12〉

(δi4i3δ
a4
a3 (T5τ)i1i2)[34]〈12〉

LLL
†
RQ
†
LQRT2 (δa4

a3 (T5τ)i1i2(T6τ)i4i3)

Type Q3L:

LLQL
3

C
[3]
f2f3f4

(εi1i3εi2i4εa2a3a4)〈12〉〈34〉
C

[2,1]
f2f3f4

(εi1i3εi2i4εa2a3a4)〈12〉〈34〉
C

[1,1,1]
f2f3f4

(εi1i3εi2i4εa2a3a4)〈12〉〈34〉

LLQL
3T

C
[3]
f2f3f4

(εi1i2εi3mεa2a3a4(T5τ)i4m)〈13〉〈24〉
C

[2,1]
f2f3f4

(εi1i2εi3mεa2a3a4(T5τ)i4m)〈12〉〈34〉
C

[2,1]
f2f3f4

(εi2i4εi3mεa2a3a4(T5τ)i1m)〈12〉〈34〉
C

[1,1,1]
f2f3f4

(εi1i2εi3mεa2a3a4(T5τ)i4m)〈12〉〈34〉
LLQL

3T2 C
[2,1]
f2f3f4

(εi3mεi4nεa2a3a4(T5τ)i1m(T6τ)i2n )〈12〉〈34〉

LLQLQR
2 C

[2]
f3f4

(εi1i3εi2i4εa2a3a4)[34]〈12〉
C

[1,1]
f3f4

(εi1i3εi2i4εa2a3a4)[34]〈12〉

LLQLQR
2T

C
[2]
f3f4

(εi2i4εi3mεa2a3a4(T5τ)i1m)[34]〈12〉
C

[1,1]
f3f4

(εi2i4εi3mεa2a3a4(T5τ)i1m)[34]〈12〉
C

[1,1]
f3f4

(εi1i2εi3mεa2a3a4(T5τ)i4m)[34]〈12〉
LLQLQR

2T2 C
[1,1]
f3f4

(εi3mεi4nεa2a3a4(T5τ)i1m(T6τ)i2n )[34]〈12〉

QL
2LRQR

C
[2]
f3f4

(εi1i3εi2i4εa1a2a4)[34]〈12〉
C

[1,1]
f3f4

(εi1i3εi2i4εa1a2a4)[34]〈12〉

QL
2LRQRT

C
[2]
f12

(εi1i2εi3mεa1a2a4(T5τ)i4m)[34]〈12〉
C

[1,1]
f12

(εi2i4εi3mεa1a2a4(T5τ)i1m)[34]〈12〉
C

[1,1]
f12

(εi2i3εi4mεa1a2a4(T5τ)i1m)[34]〈12〉
QL

2LRQRT2 C
[1,1]
f3f4

(εi3mεi4nεa1a2a4(T5τ)i1m(T6τ)i2n )[34]〈12〉

LRQR
3

C
[3]
f2f3f4

(εi1i3εi2i4εa2a3a4)[12][34]
C

[2,1]
f2f3f4

(εi1i3εi2i4εa2a3a4)[12][34]
C

[1,1,1]
f2f3f4

(εi1i3εi2i4εa2a3a4)[12][34]

LRQR
4T

C
[3]
f2f3f4

(εi1i2εi3mεa2a3a4(T5τ)i4m)[13][24]
C

[2,1]
f2f3f4

(εi1i2εi3mεa2a3a4(T5τ)i4m)[12][34]
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C
[2,1]
f2f3f4

(εi2i4εi3mεa2a3a4(T5τ)i1m)[12][34]
C

[1,1,1]
f2f3f4

(εi1i2εi3mεa2a3a4(T5τ)i4m)[12][34]
LRQR

4T2 C
[2,1],[2]
f234f56

(εi3mεi4nεa2a3a4(T5τ)i1m(T6τ)i2n )[12][34]
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