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ABSTRACT: We enumerate the complete and independent sets of operators at the next-
to-leading order (NLO) in the Higgs effective field theory (HEFT), based on the Young
tensor technique on the Lorentz, gauge, and flavor structures. The operator-amplitude
correspondence tells a type of operator forms the on-shell amplitude basis, and for operators
involved in Nambu-Goldstone bosons, the amplitude basis is further reduced to the subspace
satisfying the Adler zero condition in the soft momentum limit. Different from dynamical
fields, the spurion should not enter into the Lorentz sector, instead, it only plays the
role of forming the SU(2) invariant together with other dynamical fields. With these new
treatments, for the first time, we could obtain the 224 (7704) operators for one (three)
generation fermions, 295 (11307) with right-handed neutrinos, and find there were 8 (11)
terms of operators missing and many redundant operators can be removed in the effective
theory without (with) right-handed neutrinos.
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1 Introduction

The Large Hadron Collider (LHC) has confirmed the success of the Standard Model (SM)
with the discovery of the SM-like Higgs boson and the non-observation of new particles
below the TeV scale. The separated scales between the SM particles and new physics
suggests that effective field theory (EFT) is quite a suitable framework to parametrize new
physics effects based on the SM degrees of freedom. Pioneered by Weinberg [1], starting



from the degrees of freedom at a low energy scale, one writes down the most general possible
Lagrangian, including all terms consistent with presumed symmetry principle, with proper
power counting rules. In this bottom-up approach, the Wilson coefficients of the effective
operators are totally free and independent parameters in which all kinds of Lorentz-invariant
new physics effects are encoded and parameterized.

With the assumption that new physics decouples at a high energy scale and the
electroweak (EW) symmetry is in the unbroken phase, the standard model effective field
theory (SMEFT) is appreciated and widely adapted in the description of the new physics
in the EFT framework. In the SMEFT, starting from the fields and symmetries of the
SM, one can write down all possible operators order by order according to the canonical
dimension power counting. Since Weinberg wrote down the dimension 5 operator [2], lots of
progress has been made in writing down complete and independent operators up to the mass
dimension 9 in the SMEFT [2-11], the low-energy effective field theory (LEFT) [12-15],
the standard model effective field theory with right-handed neutrinos (vVSMEFT) and the
low-energy effective field theory with right-handed neutrinos (vVLEFT) [16-20]. A general
algorithm, implemented in a Mathematica package ABC4EFT [21], has been proposed to
construct the independent and complete SMEFT operator bases up to any mass dimension.

However, there are still new physics scenarios that cannot be described within the
SMEFT framework due to the existence of the non-decoupling effects. In these scenarios, the
heavy particles obtain their physical masses predominantly from the vacuum expectation
value of the Higgs boson, and thus it is not possible to integrate out the heavy particle in
the unbroken phase. On the other hand, since these non-decoupling effects can only be
systematically described in the EW broken phase, it is necessary to adapt the non-linear
realization of the EW symmetry provided by the electroweak chiral Lagrangian with the light
Higgs boson (H-EWChL) [22-27], also known as the Higgs effective field theory (HEFT) [28-
40]. The HEFT provides a more general realization of the EW symmetry breaking, which
includes the SMEFT as a particular case [41-46]. The electroweak symmetry breaking
(EWSB) patterns determine the nature of the Higgs boson, such as the fundamental Higgs,
Nambu-Goldstone Higgs, Coleman-Weinberg Higgs, and tadpole-induced Higgs [42]. Among
all four scenarios, only the elementary Higgs and the Nambu-Goldstone Higgs scenarios
can be described within the SMEFT framework, while all four scenarios can be unified
into the HEFT framework, in which the Higgs boson belongs to the singlet under the
global symmetry.

In the SMEFT the symmetry breaking is manifestly realized under the Higgs mecha-
nism, in which the Higgs boson makes part of an SU(2);, doublet together with the three
electroweak Nambu-Goldstone fields, and the doublet Higgs is transformed linearly under
the EW gauge symmetry. On the other hand, the HEFT does not make any assumption
about the nature of the Higgs field and the pattern of the EWSB. The HEFT provides a
general description of the EWSB sector, in terms of the three Nambu-Goldstone bosons
(NGBs) transformed non-linearly under the EW symmetry, the spurion parametrizing the
custodial symmetry breaking, and the observed Higgs boson as an EW singlet field. Inspired
by the chiral perturbation theory (ChPT) [1, 47, 48] in quantum chromodynamics, the
HEFT operators have been written order by order with the power counting [1, 29, 31, 33—



35, 49-52] of the chiral dimensions using the coset structure [53, 54]. The electroweak chiral
Lagrangian has been constructed up to the next-to-leading-order (NLO) [28—40], and the
one-loop renormalization has been investigated systematically [55-58]. However, writing
down the complete operator basis including flavor structure has not yet been finished.

In this work, we revisit the HEFT operator basis and write down the complete list of
the effective operators via the Young tensor method developed in refs. [7, 9, 11, 21], with
certain improvements on the NGBs and spurion. Compared with the previous works, we
need the following new treatments:

e For operators involved in the NGBs, the operator basis written by the Young tensor
method needs to satisfy additional constraints from the shift symmetry of the NGBs.
Based on the operator-amplitude correspondence, we impose the Adler zero condition
on the contact amplitude basis and select the amplitudes satisfying the soft theorem
in the soft momentum limit [59-67].

e For operators involved in the spurions, the spurion, as the frozen degree of freedom
of dynamical field to parametrize the custodial symmetry breaking, does not enter
into the Lorentz sector but plays the role of forming the group invariant under the
custodial symmetry together with other SM field degrees of freedom. We remove the
spurion from the Lorentz construction but keep the spurion to be involved in the
gauge and flavor structure. Different from the dynamical field treatment, we also need
to remove the self-contraction of the spurions in effective operators because they do
not have physical effects.

With the new treatments on the NGB and spurion, we obtain the complete and independent
set of operators for both one-generation and three-generation fermions in the HEFT without
(with) the right-handed neutrinos. Comparing with the NLO operators listed in [30, 38, 40],
we find that there were 8(11) terms of operators missing, corresponding to 422(665) operators
for three generation fermions, in the HEFT without (with) sterile neutrinos, and identify
that there were many redundant operators that should be removed. Furthermore, the
flavor structure was not considered and properly treated in the literature, while we list the
complete NLO operators with the complete flavor structure using the flavor tensor. Finally,
we obtain the on-shell amplitude basis for the NLO operators, listed in appendix C, which
would be useful for investigating the scattering amplitudes in the HEFT framework.

The paper is organized as follows. In section 2 we review the essential parts of
electroweak chiral Lagrangian: field contents, symmetry, and the power counting rules.
Based on the operator-amplitude correspondence, we utilize the Young tensor method
to write down the operator basis and impose the Adler zero condition for the operators
involved in the NGBs in section 3. In section 4 we list the complete bosonic operators
while in section 5 we list the complete NLO operators involved in three-generation fermions.
Finally, we conclude in section 6. In appendix A, we summarise the conversion rules between
2-component and 4-component spinors. In appendix B we list the operators comparing
with the literature and appendix C shows the complete on-shell amplitude basis.



2 Electroweak chiral Lagrangian with light Higgs

In this section, we lay out the main ingredients of the H-EWChL (HEFT): the particle
content (build blocks), the global and local symmetries, and the power-counting rules. We
also write down the leading order (LO) Lagrangian and organize the NLO terms based on
the power-counting rules.

2.1 Building blocks and coset construction

First let us briefly review the Callan-Coleman-Wess-Zumino (CCWZ) construction [53, 54]
for the symmetry breaking pattern G — H, which provides a systematic way to write
effective Lagrangians that allow the manifestation of the symmetries of the theory. By the
definition of the coset group, any group element of the global symmetry glas] € G can be
decomposed as the product

gloa] = e’iocATA _ eifa[a}T‘i _eifa[oz]T“7 (2.1)

where T% and T are the unbroken and broken generators, respectively, and f, ;[a] =
Qaa + O(a?). Since the fields along the coset directions are in a one-to-one correspondence
with the NGBs, we promote the corresponding parameters to dynamical fields by defining
the field matrix .

Q(IT) = exp Bfn(a;)} . with TI(z) = I, (2.2)
Let us determine how Q(IT) and IT transform under an element of the group G, H, and G/H.
Using the decomposition relation above, under the action of a general element glaa] € G,

the Q(IT) transforms
g- Q) = Q) - (I g)  with b(IL; g) = exp(i¢”[IL; g)T°) (2:3)
with the compensating transformation h € H and equivalently
Q(I1) — Q) = gQ(1)h~" (IT; g). (2.4)

In the particular cases of restricting the general transformation g into the subgroup trans-
formation gy and gg /3, the above transformation on the Goldstone matrix tells the explicit
form of the I1(®):

b

M — T = (&2e7) 0, with 57} (IT;g) = gw, (2.5)
m

Haaﬂggg/”)zﬂa+2faa+(9<af+an+~-> : (2.6)

Thus the NGBs II transform linearly under the subgroup H while non-linearly with the
shift symmetry under the coset G/H.

Applying the above general construction to the electroweak symmetry breaking, the
chiral symmetry breaking pattern G = SU(2); x SU(2)g to the custodial symmetry H =



SU(2)v [1, 47, 48] is identified and the Goldstone matrix € can be written in a block-
diagonal form

&) 0

) = 0 &r(II)

with & (IT) = Ep(TT) T = w(IT),

(2.7)
with the NGBs ¢! (I = 1,2,3). Identifying g = diag(gr(ar),gr(ag)) along with
gr.r(arr) = exp(%af:, RrTI), the Goldstone matrix transformation can be further reduced to

_ exp[igbﬁq 0'
0 exp [—ﬁqﬁﬂ'l] ’

(1) — €, (192)) = g ()b (I; g1, gR), (2.8)
Er(IT) — ER(IIBR) = gre(Ih (I g1, gr). (2.9)

For the symmetric coset!, the compensating transformation h=1(II; gz, gr) is the same for
the chiral relations since they are related by the automorphism symmetry. Thus combining
the two chiral relations would remove the h and obtain a simpler form with the canonical
Goldstone matrix

U = ¢eEL 0D = () = exp | 2o, | — gaUMg].  (210)

Promoting the global symmetry G to the local one, we introduce the auxiliary SU(2)y and
SU(2) r matrix gauge fields Wu and B%. The covariant derivative of the U is defined as

D,U = 9,U — iWhU +{UBH, (2.11)
where W* and B respects the transformation above
WH — gLW“gTL + igLﬁ“gTL, Br gRBngE% + igR(‘?“g}}, (2.12)

and the field strength tensors

WMV = 8},LWI/ - auWu —1 [Wu7 WI/] — gLWuugE 5 (213)
B,uy = 8uéu - auéu —1 [Bm BI/:| — QRB;WQJ}{ . (2'14)

The gauge fields are incorporated in the same way as the left and right sources in the ChPT,
and the SM gauge fields are recovered through the identification

—

Wh = —glWh, B = —g B = g ThB", (2.15)

which explicitly breaks the SU(2)r symmetry group while preserving the SU(2); x U(1)y
. . 3. .

gauge symmetry. Here the right-handed spurion 7r = % is introduced to represent the

explicit breaking of custodial symmetry.

!The coset space G/H is identified to be symmetric if there exists an automorphism or “grading” symmetry
R, under which the broken generators change sign

To — +Tq
R: .
{T@ — =T

For chiral symmetry breaking, the automorphism corresponds to the parity operator, whose eigenvalues are
41 for vector and axial-vector generators, respectively.



The SM fermion multiplets ¢7, r = Pr, gy can be incorporated into the SU(2);, and
SU(2)r doublets respectively:?

u u

Q=1 r* —  91.Qr, Qr={ " —  9grQR, (2.16)
dr, dr
1% 14

Ly = ( L) —  9rLr, Lr = < R) —  grLr, (2.17)
er, €R

and the fermion covariant derivative transformation takes the form D,¥r r — gr,rDu¥r1,R-
Since the right-handed fermions are the SU(2)r doublets, the U(1)y symmetry of fermions
is promoted to the U(1)x symmetry, where X = (B — L)/2 is half of the baryon number
B minus the lepton number L. The fermion masses are incorporated through the Yukawa
terms that explicitly break the symmetry via the right-handed spurion field

’U%U(H)yR’l/)R + h.c. with Yp — gRng}z . (2.18)

In terms of the spurion field Tz = 03/2, the Yukawa couplings take the form

1 1
371‘% = §(yu +ya) + TrR(Yu — Yd), Vi = 5(% + Ye) + Tr(Yo — Ye) » (2.19)

where y,, = 0 if no right-handed neutrinos.
In summary, the following building blocks are introduced to keep the Lagrangian
formally invariant under the global symmetry G transformation:

A A A

U, ¢La wR7 W,uzu B/.Llla G,uzn TRa yR' (2'20)

It is also customary to take different building blocks transformed under the unbroken group
H [33, 34, 39] by dressing the above building blocks with the w(II), such that

Uy = iu (DMU)Jr u=—iu'D,Uul — gHuug;{ (2.21)
= ufW*u + uBut — gq.[ff/g;r,_[ (2.22)
T=uTgu! —  guTol, (2.23)

uly,  — guulyy (2.24)

uYr  —>  GHUYR (2.25)

Y=uYpul — gVl (2.26)

very similar to the building blocks in the QCD chiral perturbation theory. It is also
very convenient to take the form of the building blocks transformed under the group

2Note that the right-handed neutrinos can be naturally included in the doublet Lr. Removing right-
handed neutrino degree of freedom
€R

would recover the SM spectrum.



SU(2),, [28-32, 35-38, 40] such that

V,.(z) =iU(z)D,U(z)!, — grV,gl (2.27)
W —  arWuol (2.28)

Bu — B (2.29)

T=UTRU! — g, Tg} (2.30)

Y — 9L (2.31)

Uyr — gUv¥g (2.32)

Y = UYRUT —  g.Ygh (2.33)

In this work, we would like to adapt the building blocks transforming under the SU(2),
symmetry, although different choices would give rise to the equivalent operator set.

2.2 Chiral Lagrangian and power counting

In terms of the above building blocks, the effective chiral Lagrangian is organized as an
infinite series expansion in powers of momenta in the low energy

L= Z Ly, = L2 + NLO terms + terms of higher order, (2.34)
dy=2

where the effective operators are counted by the chiral dimension d,, instead of the canonical
dimension d..

The structure of the LO Lagrangian determines the power-counting rules of the elec-
troweak chiral Lagrangian. Let us take the LO Lagrangian of the HEFT as

1 1 1 2 .
= (GG = (W W) = LBl B — 85560, G

2 2
+ S 0uh0h — V() + 2 (V) Fo(h) + TV, )TV Fr(h)
+iQrPQr +iQrPQr +iLLPLy +iLrPLg

— %(QLqu(h)QR) +he)— %(ELUyL(h)LR +he), (2.35)

where (...) = Tr(...) represents the SU(2)., trace. The first line describes the dynamic
terms of the gauge bosons and the theta term, and the second line contains the Higgs

Lo =

dynamic terms, the Higgs potential, the NGBs dynamic term, and the custodial symmetry
breaking NGB term. The third and fourth lines contain dynamic terms and the mass terms
of fermions. Since the Higgs boson belongs to the singlet under the global symmetry, the
Higgs potential should be a polynomial function of the A field that
h h? h3
V(h)~1 — —+0(—= ). 2.36

)~ 1ty +ars +0( ) (2:36)
Note that the canonical dimension is compensated by the electroweak scale v. the dimen-
sionless function F¢ 7 (h) of the Higgs field h appearing in the NGBs dynamic term takes
the form that

h h? h3
F =1 — — — . 2.
(h) +blv+b2’02+0<v3) ( 37)



This function does not appear in the dynamic terms of fermions and the singlet Higgs h
because they can be removed by field redefinition or equation of motion [30].

As in [34, 35, 39], the usual custodial breaking term (T'V,)(TV#) sometimes is classified
into the NLO expansion in the chiral expansion since it is not present in the SM at the tree
level. However, this would miss certain non-decoupling scenarios within the weak dynamics.
It is possible that the custodial symmetry breaking could be triggered by new physics at the
electroweak scale, such as the new VEV from the triplet scalar, the tadpole-induced Higgs,
etc. Although the custodial breaking effect is limited to be small from the electroweak
precision data, to incorporate non-decoupling new physics scenarios into the HEFT, we put
it to be at the LO and adapt the standard chiral dimension counting on the spurion fields
as shown in the following.?

The power-counting scheme of the HEFT is similar to the power-counting rules in the
chiral perturbation theory [1, 47, 48], with certain improvements [1, 29, 31, 33-35, 49-51].
To be consistent, we define the LO Lagrangian of the HEFT carries the chiral dimension 2,
thus all the building block’s chiral dimensions are determined. First the NGBs matrix U is
determined to be chiral-dimensionless,* while the covariant derivative D,, carries the chiral
dimension 1, thus V, is of the chiral dimension 1, which implies that the dynamic term of
NGBs carries the chiral dimension 2.

For the gauge bosons, the external gauge sources WH and B*, appeared in the covariant
derivative D,,, have the chiral dimension 1, and their corresponding field strength tensors
have the chiral dimension 2. Since all the gauge boson masses gv have chiral dimension 1,
the gauge coupling constant g, ¢’ also carries the chiral dimension 1 while the gauge boson
fields W# and B* are chiral-dimensionless.

The custodial symmetry breaking term is organized into the LO Lagrangian and thus
the spurion T carries no chiral dimension. The physical Higgs h always appears with the
VEV in the denominator as the compensator and thus has no chiral dimension as well,
while the fermions have the chiral dimension 1/2. In particular, since the fermion masses yv
have chiral dimension 1, the Yukawa couplings ) would give rise to the chiral dimension 1.

The power counting rules on the chiral dimension are also consistent with the loop
expansion [29, 31, 34, 35, 50]. The above power counting on the gauge and Yukawa couplings

implies that
2 2 2

p g Yy A
~ 1. 2.38
16722 ~ @m)2 @2’ (am)? S (2:38)

A similar argument applies to the case that all the SM gauge bosons and fermions are

weakly coupled to a strong sector. Thus the types of operators containing the fermion
bilinear (¢1))"™ and/or the field strength X™Uh would arise at NLO where they come with
explicit factors of the couplings y™ and/or g". Each fermion bilinear and each field strength
tensor would shift the chiral dimension by 1.

Based on the above, a general term in the HEFT can be denoted by

kFpF X URD Y (2.39)

3 Adapting the spurion with no chiral dimension would give rise to the operator sets with more LO +
NLO operators than the ones with the spurion with chiral dimensions, for example, in refs. [34, 35, 39].
4Similar to the Higgs boson, its canonical dimension is compensated by the electroweak scale.



Classes Niype Nierm Noperator
UhD* 3+6+0+0 15 15
X2Uh | 64+4+0+40 10 10
XUhD? | 2+6+0+0 8 8
X3 4+24+0+0 6 6
Y*URD | 44+8+0+0 | 13(16) 13np2  (16ns?)
Y2UhD? | 64+10+0+0 | 60(80) 60ns%  (80n;?)
YURX | T+740+0 | 22(28) 22n2  (28ns?)
Pt 12+24+4+48 | 117(160) inp2(31 — 6ny +335n%)  (ng2(9 — 2ny + 125n42))
ol 3 261513 33omyt_ Sng® | AR L 39 (39 413302 — 20,2 — 2n% + 125n40)
Noperatrs(np = 1) = 224(295),  Noperatss(ny = 3) = 7704(11307)

Table 1. We present the complete statistics of the NLO operators. The types of operators are
separated into four categories (C-B, ¢*B, B-¢, (). The numbers of terms and operators are also
listed for the SM without (with) the right-handed sterile neutrinos.

P sub-types Number ng=1|ny=3
2
LU Le® + he: n2(ng2+1)
2
- Le2LE™ Ing2(3ns2 4 20y 4+ 1)

) Ing2(19n% + 6np +7) 8 441
L QLT . 1.2 2 9 1 ’
R° L+ gngi(ng® +2np+1)

LpLiLpLl: 2ng*
QY QrLY Lg + h.c: 12ng*
QEQLLELL: 6nf4

o t Tt T,

(LL)(QQ) QrQrLpLr: 6ny 34n st 34 | 2754
QEQLLJE%LR: an4
QEQRLJ}%LR: 2nf4

QL QRLILr + h.c: 6ns*
2
QL QR+ hc: 4Ang2(3n% + 1)

(QQ)? QTLzQLQ: ny*(3ng +1) ns2(30ns2 + 6) 36 2484
QL Qr* n2Bns+1)

QL QLQLQr: 120!
L1Q1? + h.c.: 4nf4
LiQrQr*+ h.c: 2ns3(3ny — 1)
LrQrQr? + h.c.: nf3(3nf -1
LRrQR® + h.c: 2ngt

QL ng?(15ns% — 3ny) 12 1134

Table 2. The numbers of the independent operators in class 1)* without right-handed neutrino in
detail, where (LL)? is the pure lepton sector, (LL)(QQ) is the mixed quark-lepton sector, (QQ)? is
the pure quark sector, and Q3L is the baryon-number-violating sector.



where there are a fixed number k; of the gauge or Yukawa couplings k, F; fermion fields 1,
V; field-strength tensor X, d; covariant derivatives D, and an arbitrary number of both
the NGBs U and the Higgs boson h. The total chiral dimension of the term determines the
loop order L;

F.
dx+di+/-si+52+vi=2Li+2. (2.40)

In this work, we focus on the NLO terms, which include effective operators with the chiral
dimension 4. We classify them into the bosonic sector and the fermionic sector, with the
operator types of each®

boson sector: UhD*, X?Uh, XUhD? X3, (2.41)
fermion sector: Y2ULD, ?UhD? ?UhX, o*. (2.42)

Operators of each type are presented in section 4 and section 5, with three generation
fermions, included. Based on the custodial symmetry and the baryon number symmetry,
the types of operators can be further separated into four categories:

o custodial symmetry preserving (C'), baryon number preserving (B);
o custodial symmetry violating (), baryon number preserving (B);

o custodial symmetry preserving (C'), baryon number violating (B);

o custodial symmetry violating (), baryon number violating ().

Furthermore, we also list the operators without (with) the right-handed sterile neutrinos.
The numbers of operators in each type are listed in table 1. The specific operators are
listed in section 4 and section 5, of which the comparison with the operators in [30, 38, 40]
is presented in appendix B, and the on-shell amplitude form of these operators are given
in appendix C. Although the one-flavor operators has been presented in literature such
as [28-40], there are still several operators missing as discussed below. In particular, the
numbers of the independent operators in the four-fermion sector without right-handed
neutrino are presented in table 2, which, together with the numbers of other classes in
table 1, are consistent with the U(1)x-conserving result counted by the Hilbert series in
refs. [68, 69].

3 HEFT operator bases

Based on the section 2, we obtain the building blocks and their group representations under
the Lorentz and internal symmetries as shown in table 3. With these building blocks, we
can utilize the group theoretic techniques developed in refs. [7, 9, 11, 21], the so-called
Young tensor method, to write down the Lorentz, gauge, and flavor structures of the EFT
operators. At the same time, if an operator involves in the NGBs, the building block V¥,

5The class of triple gauge bosons is of the chiral dimension 6 according to the power-counting rules
presented in this subsection, but it is presented here for the convenience of comparing with other literature.

~10 -



building blocks | spinor-helicity | Lorentz group SU(2)L SU(3)c dy
Ly, L, (% ,0) Fundamental Singlet %

Lp Lg% (0, %) Fundamental Singlet %

Qr QL. (3,0) Fundamental | Fundamental | 3

Qr Qr® (0,3) Fundamental | Fundamental | 3

1447 Wilsr! (1,0) Adjoint Singlet 1
Wr Wglabr! (0,1) Adjoint Singlet 1

Gr, GLag (1,0) Singlet Adjoint 1
Gr Gr®’ (0,1) Singlet Adjoint 1

By, Brag (1,0) Singlet Singlet 1

Bpg Bp? (0,1) Singlet Singlet 1

V# ~ DMI (D¢") 557" 1,3 Adjoint Singlet 1
D+ D,z 1,3 Singlet Singlet 1

T T 7! (0,0) Adjoint Singlet 0

Table 3. The building blocks of the HEFT and their group representations under the Lorentz and
internal symmetries. From the soft recursion relation of the NGBs, the building block V# can be
replaced by the linearized one DHII.

the such operator should satisfy an additional condition on the Lorentz structure: the shift
symmetry in eq. (2.6), correspondingly, the Adler zero condition on the contact on-shell
amplitude. Let us expand the nonlinear field V, as

1 I1?
V, =iUD,U' = - [DMH +0 (DMH . UQ)] : (3.1)

from which we see that the leading term D, II would also respect the shift symmetry. From
the soft recursion relation for the NGBs [63-66], operators involving in D,II could recover
all physical effects for the one involving in V,. Thus from the on-shell point of view, the
two descriptions should be equivalent. Therefore, in this section, we would like to use
the D,II as the building block and build the one-to-one correspondence between them in
the operator

V, < D,JI=D,¢'r", (3.2)

and from now on we use the indice I, J to denote the SU(2) indices. The operator involved
in D,II would also respect the Adler zero condition. In the following, we will simply
review this Young tensor method and present some examples of the construction of the
HEFT operators.

3.1 Operator amplitude correspondence

An effective operator can be decomposed into the Lorentz, gauge, and flavor structures,
each of which should be the singlet of the Lorentz group and the gauge groups. All the
independent Lorentz (gauge) structures form a basis of a linear space, called the Lorentz
(gauge) basis.
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There exists a correspondence relation between the effective operators and the on-shell
amplitudes. To see that, considering a general building block composed of a field of any
helicity ® and a number of derivatives D, it takes the form that

r—|h| _ ) Dawg@ - Dyamgram @orantny _gr-ny,  h <0
(D"MR) (1) atr-ma() _glath) = :
D, w5 - Dyriny gorn) Paer—nt1) _ge+n, h >0
(3.3)
where h is the helicity of the particle and 7 is the half number of the spinor indices of this
building block, by which the number of derivative np = r — |h| is completely determined.
Since all operators are Lorentz scalars, all the spinor indices appearing in the effective
operators should be contracted by the tensor €, or €, i The numbers of needed ¢, € are
n = (r—~h)/2 and 7 = (r 4+ h)/2, respectively. Thus the Lorentz part of a general effective
operator involving several building blocks such as that in eq. (3.3) takes the form that

0 = e [ (D=, . (3.4)

On the other hand, a general light-like momentum can be expressed using the spinor

helicity formalism as p!’

= )\?JZ 55\? up to a U(1) little group transformation:
A — eiiw/Z)\i, 5\1 — eigo/Q;\“ (35)

where ¢ denotes the U(1) phase. Under this transformation, amplitudes M transforms as
M — ehi® M for the i-th particle. Thus a massless particle of helicity h; contributes the
amplitude a factor )\:i_hi X;’*h", where 7; is the half number of the spinor indices in the
factor. Similarly, all spinor indices should be contracted by the €/€, and the numbers of

them are the same with n/f mentioned previously. Making the following identification,

N Na = (i), Mgk = id], (3.6)
we obtain that an amplitude involving in several particle ®; with the helicity h; takes the
form that

M =] g) [kl = e®re®n T Az ny i, (3.7)
—— ——

n n

Compared with eq. (3.4), it is natural to make the following translations,
A:iilj\;lq:l = DnilXL/Ri R
rit1/23mF1/2 i—1/2, (1)
NFRRITZ o prizt/2gD
ANl < Drigy (3.8)
which provides the correspondence between the Lorentz part of the effective operators to
contact on-shell amplitudes.
One advantage of this operator-amplitude correspondence is that the on-shell reduction

techniques of the spinor helicity can be utilized to further eliminate the redundancies other
than the equation of motion, such as the momentum conservation

> (li)[ik] =0 (3.9)

7
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as discussed in [7]. After the removal of all kinds of redundancies, the remaining independent
Lorentz structures can be related to a set of so-called semi-standard Young tableaux (SSYTs).
The shape of these Young tableaux shapes is determined by the field content of each type:

n
—

Lo : : (3.10)

where N is the total number of fields. Such Young diagrams are called the primary Young
diagrams and filling in numbers in such diagrams tells the independent Lorentz structures
in each type of operators [7, 9, 11, 21, 70, 71]. The filling of the primary Young diagrams
follows the rule that numbers in every column increase and in every row weakly increase,
and the number of each particle index is determined by

1
#i=-np+ > (|| —2h;), i=12,...N, (3.11)
2 h; >0

where np is the number of derivatives of this type.

In practice, the above process is reversed to construct independent Lorentz structures:
given a type of operator, we can directly fill in the primary Young diagram following the
rule given above to get SSYTs, by which the independent and complete Lorentz basis is
obtained, called the y-basis. The construction is discussed in detail in [21]. The gauge
structure also forms the gauge y-basis, which can be constructed by the similar Young
tableau method, as discussed in [21]. Combining the Lorentz and gauge basis together, the
general form of an effective operator is

0=TQReRe[[(D "), (3.12)

where T denotes the gauge factor and the rest corresponds to the on-shell amplitude as shown
in eq. (3.4). The y-basis by filling the primary Young diagrams are usually polynomials.
For convenience, the m-basis is introduced by a non-singular linear transformation of the
y-basis [21]. In the m-basis, both the Lorentz and gauge structures are monomials, which
constitute the monomial form of an operator.

Besides, the correspondence between fields and spinors implies that all fermions in this
work are represented by Weyl spinors 1, and the relation between them and Dirac spinors
W is that

\I/L_<"‘/(’)L>, pr—<w0R>, Up=(0,v)),  Ur=(¢ho0). (313)

The transformation of bilinears between different forms of spinors can be found in appendix A
or ref. [9].
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3.2 Adler zero condition and spurions

The above procedure on the operator construction is suitable for the generic Lorentz-
invariant EFT with arbitrary internal symmetry up to arbitrary mass dimension. However,
in the exceptional EFTs [72], such as the theory containing the Goldstone boson and/or
spurion, additional treatment on the Lorentz basis is needed. As mentioned at the beginning
of this section, the building block V# in the HEFT indicates the Goldstone nature of the
longitudinal gauge bosons, satisfying the shift symmetry due to the existence of derivative
in the such building block. Similarly, the building block D,,¢ in effective operators respects
the shift symmetry. From the operator amplitude correspondence, an operator involving the
Goldstone boson corresponds to the on-shell amplitude satisfying the Adler zero condition in
the soft momentum limit [59-66]. The Adler zero condition [59, 60] states that the on-shell
scattering amplitudes containing the NGBs must vanish when one external momentum p of
the NGBs is taken to be soft

M(p) ~p for p—0. (3.14)

Although this condition is trivially satisfied in the HEFT operator basis with the building
block V# and/or D,,¢, the on-shell amplitude basis obtained in the above subsection does
not automatically satisfy this condition, and thus we need to impose the Adler zero condition
explicitly in the Lorentz sector for the on-shell amplitude involving in the Goldstone bosons.
There are attempts [66, 67] to enumerate independent operators in the chiral perturbation
theory via imposing Adler zero condition on the corresponding amplitude basis for NGBs.
In particular, the procedure in ref. [67] could be applied to on-shell amplitudes involving
external sources such as fermions and gauge bosons in the HEFT. In the following, we
present the procedure of imposing the Adler zero condition which is also shown in ref. [67].

Let us consider a type of operator with /N particles, including at least one NGB. Based
on the Young tensor method above, the Lorentz basis can be expressed as the N-point
on-shell amplitudes {Bl(N),i =1,2,...dn}, where dy is the dimension of this Lorentz basis.
In terms of such basis, any general amplitude takes the form that

dn
M) =3 ¢,BM (3.15)
=1

where ¢; are coefficients in the B basis. If this amplitude satisfies the Adler zero condition,
it vanishes when an external pion momentum p, becomes soft:

dn
MM (pr = 0)=0="3" 8™ (pr = 0). (3.16)
=1

Here BZ(N) (px — 0) becomes (N — 1)-point on-shell amplitudes MENfl) = Bl(N) (pr — 0),
which are generally redundant in the Lorentz basis without the pion particle. Defining

the Lorentz basis of the (N — 1)-point amplitudes {BZ(N_I), =1,2,...dy_1}, where dy_1
is the dimension of this Lorentz basis, the amplitudes M~N_1)can be expanded by this

~

—~

<

complete and independent basis,

dn -1
MMV = BN (e — 0y = Y b8V (3.17)
j=1
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Furthermore, since any (N — 1)-point amplitudes can be decomposed using the N-point
basis {BgN),i =1,2,...dn}, we can expand the N — 1-point basis B](-N_l) as

dn
BN =3 BN (3.18)
=1

Using the eq. (3.17) and eq. (3.18), the Adler zero condition in eq. (3.16) becomes

dn dy_1 dn N dy ,dn N
0= ZQ( > bij( B! )>> =2 (Zci’cﬂ>5’z( g (3.19)
i=1 j=1 =1

=1 *l=i

where we identify
dn_1

Ki= Y bijfi (3.20)
j=1

is the product of the expansion matrice b;; and fj; in the eq. (3.17) and eq. (3.18), respectively.
Since the basis {BZ(N),Z' =1,2,...dy} are independent, this equation holds only if all the
coefficients vanish,

dn
0=> Ky, (i=12,...dn). (3.21)
=1

This is a system of linear equations about ¢;, whose solutions span the subspace satisfying
the Adler zero condition, which constitutes the amplitude basis with Goldstone bosons. In
sum, for a type of operator, we first treat the NGBs as ordinary scalars and write down all
the relevant on-shell amplitudes, then impose the Adler zero condition on such amplitudes
to eliminate the unwanted Lorentz structures, and thus obtain the Lorentz basis.

Besides, the spurions are introduced to describe the symmetry breaking, in this case, the
breaking of the custodial/weak SU(2) symmetry. They are treated as vacuum expectation
values of a dynamical degree of freedom and thus do not enter the Lorentz sector. As men-
tioned previously, we are using the only spurion T = U7z UT in the adjoint representation
3 of the SU(2) as the source of symmetry breaking. The spurions and the dynamical fields,
such as the SM fields in this case, together form an SU(2) singlet operator, in which one
should prevent any self-contracted singlet factor that only consists of the spurions because
they do not have physical effects. For example, consider an operator with two spurions,
which form a 3 ® 3 tensor that decomposes

TiTJ = T2617 + T[ITJ] + T(ITJ),

(3.22)
33= 1 + 3 + 5.

The first term should be neglected since the factor T? is just an irrelevant constant although
it is symmetric for the two spurions. The second term vanishes due to the anti-symmetry
behavior of the two spurions,® which will be carefully treated in the next section. Therefore,

6This can also be seen from the identification
IJKmImJ 4K o T o3 + 1
€ T T A" = Tr(TTA) = ’I‘r(U?U U;U A) = Z’I‘r(A) =0,

where A is any building block of the adjoint representation of the SU(2) group.
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the only non-trivial term is the symmetric traceless tensor, indicating the dynamical fields
form a 5 multiplet of the broken SU(2) group. Indeed, in the decomposition of the SU(2)
adjoint representation product, for any number of the spurions, only the highest weight
combination should be considered, which we pick out using the technique of the gauge
j-basis developed in ref. [73].

3.3 P-basis operator and examples

The above discussion does not consider the operators involved in identical particles. Con-
sidering a type of operator containing n identical particles ¢ with the flavor number ny,
we identify the operator as the n-rank tensor under the flavor group @, SU(ny). Based
on the Schur-Weyl theorem, the representation space of this group can be divided into the
subspaces furnishing the irreducible representations of the symmetry group S,,. Thus we
re-organized the y-basis or m-basis to a new basis, in which operators satisfy the specific
permutation symmetry, thus are called the p-basis. If the p-basis contain operators with
the mixed flavor symmetry such as Hj, the irreducible subspace of &),, SU(ny) marked by
this Young diagram has multiplicity equal to the dimension of the irreducible representation
of symmetry group S, presented by the same Young diagram. It can be proved that these
irreducible subspaces are isomorphic to each other [21], and only one of them needs to be
reserved. After this, the remaining operators form the so-called f-basis or p’-basis.

Here, we will illustrate the construction of the Lorentz basis, gauge basis, and the
conversion among various bases using several examples. The first one is the type ¢p2h2D*T?,
which is of the class UhD*. There are 6 particles h, h, ¢, ¢, T, T, labeled by indices 1-6
respectively, and 4 derivatives in this type, among which, the 2 Higgs, 2 NGBs and 2
spurions are identical particles.

As mentioned in the previous subsection, we neglect the spurions T’s from the type
during the construction of the Lorentz basis, and thus the particles considered in the y-basis
construction are h, h, ¢, ¢, in which the last two must satisfy the Adler zero condition. It is
straightforward to get that n = 72 = 2, thus the primary Young diagram of this type takes
the form that

(3.23)

The numbers of the 4 indices are the same, #: = 2,7 = 1,2, 3,4, thus there are only 3
SSYTs that

1/113]3 11122 1

—_
[\
w

212044 [3]3]4]4) |2]3]4/4) (3.24)
whose corresponding amplitude in the y-basis is
BYY = (34)°[34]%
B = (24)°[24]%
BY) = —(24)(34)[24][34] . (3.25)

The Adler zero condition tells that when the momenta ps3,ps go to zero, the amplitudes
become zero in the soft momentum limit. We check that all the 3 bases above satisfy that
because the Adler zero condition makes the 4-point amplitudes become 2-point amplitudes,
which are all zero.
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The Y-basis can be translated to the operator form via the amplitude-operator

correspondences,
BY = 4(D,h)(D"h)(Dyd)(D"9),
BY) = 4(D*h)(D"h)(Dud) (Do),
BY) = 4(D*D*h)h(D,o)(Dyé) + 4(D"1)(D"h)(Dud)(Du), (3.26)

from which we can construct the Lorentz m-basis
B™ = (D" Dh)h(D,$)(D,¢)TT,
B™ = (D) (D"h)(D,¢)(D,¢)TT,
BY™ = (D"h)(D"h)(Dy@)(Dy6)TT, (3.27)

with the transformation matrix

PN
o O el

Kmy) — (3.28)

O Rk O
== O

where the spurions T have been multiplied back to be consistent with the gauge basis we
are going to deal with in the following, and to form the ultimate tensor product space of
the Lorentz and gauge structure.

The gauge basis is simple in this type. The SU(3) structure is trivial. There are only 3
SSYTs of SU(2) that

1317312174 |23]J3[051]5)  |13]3]t4 %5 (3.29)

i5|Js5l%6|76] |aljalielje] |Jalislie|de
which corresponds to the gauge y-basis

() _ i3i5 j3js iai jaje . I3l3 Iyla Ish Igle
7ESU(2),1 = PP IOINIOTTE € T €14ig T i Elsis T i Elgis
— 451315(514167
TW)  _ disiaggsiagisic i s o mla L5l Tgle
SU(2),2 — gaClaiz’  jaClaia? 55 Clsis T 6 Clets
— 45[31451516,
T(y) _6i3j46j3j5€i4i6€i5j67_13l?6 .7-[4l,46 .7-15l.56 .7—16l.66 .
SU(2),3 — gatlais™  jaClaia™ g5 Clsis T j6 Clots

= —25%To lals 4 o51sl5 51alo, (3.30)
The m-basis is chosen to be

TS(IT()2),1 = §lals5lals TS(IT()2),2 = §lalaglsls, TS(IT()2),3 = §laleoglals, (3.31)

with the transformation matrix

’C(my)

SOty = (3.32)

= O e
O = O
= O O
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Because of identical spurions in this operator, the m-basis in eq. (3.31) should be further
reduced to remove the self-contraction of the two spurions. This is performed using the
gauge j-basis decomposition of the two spurions: 3 ® 3 = 1@ 3 & 5. Picking up the basis
with the gauge quantum number 5 would select the subspace with the highest weight of the
SU(2) 1 gauge basis,

Tablo) = ~3TS0 2750 y.0 — BTt (y.5 = 301567410 42571157550 —3gTsTe 5l (3.33)

which is dimension 1 and, for convenience, is denoted by the j-basis of the spurions.
The tensor product of the Lorentz and gauge m-basis (3.26) and (3.31) gives all the
independent operators that

D*D"h)h(D,¢")(D,¢" )T T/,
D"R)(D"h)(Du¢")(D,¢” )T T,
D"h)(D"h)(Dué’)(Dy¢”)TI T,
D" DYh)h(D,¢")(D,¢") T T,

= (
(’)(m) (
(
(
(D*h)(D¥h)(Dyg")(Dyo" )T T,
(
(
(
(

D"h)(D"h)(Due’)(Dy¢")T T,
D"D"h)h(D,¢")(D,¢”)T/T!,
D"h)(D"h)(Due’)(Dy¢”) T/ T,
D*h)(D¥h)(D,¢")(Dy¢”) T/ T, (3.34)

which is the m-basis of the operators. Due to the repeated fields, we need to convert them
to the physical basis, the p-basis. Furthermore, it is obvious that not all operators above are
independent, for example, the first 3 and the last 3 operators are actually the same, since the
permutation of spurions does not change anything, and the operators Oz(fi% contain spurion
self-contractions and should be eliminated. Thus, we need to take the tensor product of
Lorentz m-basis (3.26) and gauge j-basis (3.33) to get the operator j-basis with the spurion
self-contraction removed,

O = =3(D"D*h)h(Dyué")(Dy¢”)T'T7 + 2(D* D*h)h(Dye’ ) (D, 6"y T T

— 3(D"D¥h)h(D,¢")(Dy¢”) T/ T,

—3(D"h)(D"h)(Du¢")(D,¢” )T T/ + 2(D*h) (D" h)(D,¢") (D, ¢" )T/ T
—3(D"h)(D"h)(D uczﬂ)( v&7 )T T,

—3(D"R) (DY) (Dyd") (D" )T T + 2(D*h) (D h) (D) (D ") T/ T
—3(D"h)(D"h)(Du¢")(D V¢J>T°’Tf. (3.35)

To obtain the p-basis, we need the generators of the Sy group, which characterizes the
permutation properties of all repeated fields h, ¢, T. By the way, the two generators of Ss
are identical, we present one of them in the rest of this paper. In the Lorentz y-basis, the
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generators of the Sa(h) and Sa2(¢), denoted by Dg/)(h) and Dg/)(qb), respectively, can be
obtained by permuting the y-basis (3.25), which takes the form that

10 0 100
Py () =DP((L,2))=[11-2]|, DP(¢)=D[34)]=|11-2], (3.36)
10 -1 10 -1

while these generators after transforming to the Lorentz m-basis are

100
DI (h) = KD (k) ™ = [ 0 1 0 |,
—-21-1
. 100
Dgn)((b):;C(my)pgy)(qg);c(my)’ =1l o010 |, (3.37)
—-21-1

and since the spurion does not carry Lorentz structure, the generator of the Sa(T) takes
DY(T) = DU(T) = Tsns. (3.38)
As for the SU(2) structure, the generators Déﬁzm(h) is the identity matrix Isxs, since
h is the SU(2) singlet, while the others D (9), Dém) (T) can be obtained by permuting

SU(2) U(2)
the gauge m-basis eq. (3.31) directly,

001 001
Dl (@) = DSy (3,4 = [ 010 |, DY, (T) =Dy [(5,6)] = | 010
100 100

(3.39)

At the same time, the generators in the 1-dimension j-basis in eq. (3.33) are just identities,
DY) (h) = DY) (¢) = DY(T) = 1. (3.40)

The complete generators of the operator m-basis in eq. (3.34) are

100 000 000
010 000 000
—21-1000 000
000 100 000

D™ (h) = Dy (M) @ DY (k)= 000 010 000 [, (3.41)
000 -21-1000
000 000 100
000 000 010
000 000 —21-1
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000 000 100
000 000 010
000 000 —21-1
000 100 000

D™ (g) = D{1, (@) @D (@)= 000 010 000 |, (3.42)
000 -21-1000
100 000 000
010 000 000
21-1000 000

000000100
000000010
000000001
000100000
(T)@DY™(T)={000010000 |, (3.43)
000001000
100000000
010000000
001000000

DO(T) = DY)

while those of the j-basis in eq. (3.35)are just the generators of Lorentz m-basis,
DO =D (h), PG =DF6),  DIT)=DY(T).  (3.44)

In this type all particles carry no flavor number, thus only the symmetrical representa-
tions [T in the flavor structure are physical. The idempotent element ) [[112],[34],[5]6]] of
this operators m-basis in eq. (3.34) takes the form that

= (Isx3 + D" (R))(Isxs + D" (¢))(Isx3 + D"™(T))
4 00

0 40
—420

00 4 00
00 0 40
00-420
00 8 000 00
00080000 ]|. (3.45)
00-840 0 00
000004 00
400000 40
~420 0 00-420

S 0 O O O

S == O O O

This idempotent element has rank 4, thus this subspace has dimension 4. It is actually
arbitrary to choose the 4 independent operators, in this example, we prefer choosing
independent operators projected by the 1st, 2nd, 4th, and 5th rows in the idempotent
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element because they are monomials by coincidence,

o) = 10{™ 4+ 40™ = 8(D*D"h)h(D,¢")(D,¢” )T T,

O = 405 + 40™ = 8(D"h)(D"h)(D,¢")(D,¢” )T T,

O =80{™ = 8(D* D' h)h(Dy¢") (D! )T T,

o) =80 = 8(D*h)(D"h)(D,u¢") (D¢ )T/ T. (3.46)
However, the last 2 contain spurion self-contractions, thus should be eliminated. This

elimination can be seen if we directly use the generator of the operator j-basis in eq. (3.44)
to calculate the idempotent element of them

V', 61, 616 = V'[EE)Y )Y B = (Tsxs + DY (h) (Iaxs + D9 (¢))(Tsxs + DU(T))
4 00
=1 040/, (3.47)
—420
which is of rank 2, thus there are only 2 independent operators. Though it is arbitrary to
choose these 2 operators from the j-basis, we choose (’)EJ% here and also denote them as the
final p-basis

O = Y[ar), 5, 5ls) (D" D* h)h(D,.é7) (D, ¢” )T T |
OF) = Y[, 1, (1] (D*h) (D h)(D,ué!) (Dy¢” ) TITY, (3.48)

which correspond to the operators 0%7@4 in next section 4 and their explicit form are given
by (9%. Several comments are in order. First, this is consistent with the observation of

the original result (3.46), although the 2 operators Ogj% are not the same with the O%.
Second, usually operators in the p-basis are polynomials, thus in this work, we always write
the p-basis with the action of the idempotent elements to avoid the complication of writing
the complete polynomials. In the rest of this paper, we will omit the idempotent elements
in the type that the identical particles carry no flavor number, as in this example.

The second example is taken to be the type QTLQ LQEQ rT, which was missing in
previous works ref. [38]. The shape of the primary Young diagram is

) (3.49)
and there is only one SSYT
; ; : (3.50)
The corresponding operator form is
BY = ?ﬁla%alﬁsglﬁf = fayﬁgswlywo‘@d—}f = —%(1#10“153)(1/}2%@4)- (3.51)

Thus the Lorentz m-basis is just the y-basis, B%m) = Bgy). As for the SU(3) gauge y-basis,
the primary Young diagram is

: (3.52)
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and there are 2 SSYTs

112 11023
i34} |t2]04]

J3ljal |731Ja
They correspond to the y-basis
) _ i3jsks iajaka _ k3 ckq
7-SU(3),1 = CiyiggsCinigga € € = 360;,°05, ,
(v) _ isjsks isjaks _ ka sk3 k3 ska
TSU(3),1 = €iyinin Ejgiaja€ 0 € 18((5 0 — 0;06, ),
and the m-basis can be taken as
(m) k3 cka (m) k4 k3
7-SU(3) 611 512 ’ 7-SU( 3),1 611 512 ’
with the transformation matrix
1
]C(my) _ | 36 0
su@) — |\ 1L 1 |-
36 18
The primary Young diagram of the SU(2) group is
b
and there are 3 SSYTs that
i1lialis|  [i1lia]ia] [i1]ia]ia
e M e e o R e e o
24175175 13175175 12175175
The gauge y-basis reads
(v) 5 (lss iz giaja — §ia Ll J2
7éU(2) — 61”4613%6”157 l 1575 (1272 (iaja 5 513,
’TS(I?.JT)(Z) 62'11'3€i2i56i4j57-15l:€l5]5€Z2J2€Z4]4 = 5]4 15]2 + 5J4 1532
(v) I5%5 lsjs izj2 t4Ja 12 I5Ja
7éU( 2),3 = €i1ip€izi5sCigjs T 15 € € € 5 i3

Thus we choose the gauge m-basis as

T(m) — 5]4 1532

SU(2),1 i37 SU(2),2 i1 SU(2),3
with the transformation matrix
10 0
Koy =11-10
00 -1

T(m) — 5]4 1532 T(m) _ 5]2 1534

239

’L37

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

The tensor product of the 2 space is of six-dimension, and all the 6 operators are physical

4
since there are no repeated fields in this type, which are presented as 05]961%4,

Uh _ Uhapt
Y @ Tar,) @r " ar) Fog v (1),
4
O:[a]ow DL A Tar,) @r V' Mar) Fay (h),
O = (q, ﬂu%p)(qu“UTTUQRt)fUW (h),

7 Tar,y) (@p, 7" U 7! Ugry) Fy™ (h),
L AT T, @r, AP N U Ugry ) FAM ().

Uh’z;‘)4

= (g
(
(
O = (@ A aL,) @r, " MU TUqr,) Fi) ™ (1),
= (
= (g
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The last example is the type Q2L T?, which is neglected in the previous literature.
Neglecting the spurions, there are 4 fermions in this type, Ly, Qr,Qr,Qr, and the primary
Young diagrams of the Lorentz basis, the SU(2) gauge basis and the SU(3) gauge basis are

, : @ (3.68)

For the Lorentz basis, there are 2 SSYTs,

LR (3.69)
which corresponds to the y-basis that
BY = (LQr)(QLQr),
BY) = %(LLQL)(QLQL) - %(LLUMVQL)(QLUquL)~ (3.70)
We choose the m-basis as
B = (LQu)(QuQu)TT, B = (Lro"Qr)(QrowQL)TT, (3.71)
with the transformation matrix
clmy) _ (i _08> , (3.72)

where spurions have been multiplied back.
At the same time, we present the generators of S3 and So, which are of the symmetric
groups of the (1, and T, respectively,

_11 11
D" (Qu) = Dg[(2,3)] = ( . %) - D5(Qu)e = D((2:3.4) = ( & _81) »
2 2
Dy (T) = (; ?) , (3.73)

where the S3 group has 2 different generators, and the generator of the T is the
identity matrix.
The SU(3) group structure is simple in this type, there is only 1 SSYT,

3 (3.74)
and the corresponding y-basis is Bgy) = ¢%2%3% which is also the m-basis. The generator

of Sy in this SU(3) m-basis is trivial because the spurion does not carry SU(3) quantum
number, while the generators of S3 takes the form that

Déﬁz?,)(QL)l =-1, Dé@zg)(QLh =1 (3.75)
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As for the SU(2) group, there are 6 gauge SSYTs, thus 6 m-basis, and we present
them directly,

(m) _ igiz igam I1 o K Kil
7-SU(2),1_6 €4Me T s

(m)  _ igmigl L1 _I%2
TSU(Q)Q—G et T

no
(m) _ shilz iyi4 Li213
7-SU(2),3 =01 enten,

m ; ; 114 _[,%2
7é(U()2),4 = etMenn T T,

, . is
7'8(671()2) 5 — 6’L1m61214611[2K7_K

m

(m) _ digm ian 111152
7~SU(2),6_6 S

(3.76)

Similar to the discussion near eq. (3.33), taking the gauge j-basis of the spurions, the
highest-weight subspace of the SU(2) m-basis is of dimension-1, and we take the gauge
j-basis with the gauge quantum number 5

Pl = 1Tt = T =~ Tty ~ 30 + 275005 = 2iee (377)

The generators in the m-basis (3.76) are

—10 0000
-1 -1000
(m) 1 00-1000
Psue@r=1 g 1 190]" (3.78)
-10 0010
000O0O01
-1 0 0010
0 0 0001
; —1 0 0—21
D(m) — ? )
su QL= g 1100 (3.79)
-1 0 0000
- 1 =10 00
-1 0 00 0 O
- 0 11 00
(m) 1 606 0 1000
Psu™M=| 2 1 100 0 (3.80)
0 0 00-10
: —1 1 1-2¢1
while those in the j-basis (3.77) are just identities,
D)) (Qu)1 = D 5)(Q1)2 = DY) (T) = 1. (3.81)
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The tensor product of the SU(3) m-basis, the SU(2) m-basis, and the Lorentz m-basis

gives the operator m-basis, in which there are 12 operators,

O(m) K:ﬂ abe IJK _jk lmTITJ(LLszLmj)(QstkQLtd)

Kt _abc IJK _jk ImrIlmJ
(’)gm) = 7it Weet St gigmmpiy (LLpZ.UWQL,.aj)(QstkG "Qria),

m
%

Oi(’;m) = TImTJizeabcekmelnTITJ(LLpZ'QLraj)(QstkQLtcl)7

It _JJ abe_km InmpImJ
Oé(lm) =T mT n6a “"Me™ T T (LLPiUMVQLraj)(QstkUquLtcl)’

O =TI T e T (L) Qra;) (QLaps QLiar):
o™ = z'Tfo el eI (L1010 Q1) (QLapk " QLicr)
O™ = 71 771 e dmFTIT (L, Qpya ) (Qrape @i,

l
O(m) In Jzn abc zm knTITJ(LLp UMVQLra])(QstkU QLtCl)

k
O(m) Km abe IJK im ]ITITJ(LLpZQLraJ)(QstkQLtcl)

k
Ol = 7 eee K DI (L 0,0 Q1107) (Qr a0 Qres),

OgT) =T nTJineabcekmelnTITJ(LLpZ‘QLraj)(QstkQLtcl)v

m It _JJi _abe_km InmpImJ
052) =T a7 mea ‘e T'T (LLpiO-NVQLTaj)(Qstka-quLtcl)'

(3.82)

To remove the spurion self-contractions above, we take the SU(2) j-basis in eq. (3.77), the

operator j-basis is obtained after the tensor product

oY) =io{™ —of™ — o™ — 30" 1 2105 — 20{1",
o) =iof™ — o™ — o™ — 30" + 2i0fy) — 20" (3.83)

Following the procedure of converting the m-basis to the f-basis [7, 9, 11, 21], we present

the resulting 4 operators in the f-basis projected from the operator m-basis in eq. (3.82)

oY) = y[ermn, ] L e e I T (L 010Q 110 ) (QLap " QL)
OF) = YEBLEr v e M D T (L 010Q1r 1) QLo Qi)

oy = r-szTf M (L0 QLra))(Qrapkd Qi)
04(1 = I JJ eabeehm lnTITJ(LLpiUMVQLraj)(Qstka "QLiar)- (3.84)

To further eliminate the spurion self-contraction, we take the idempotent elements in the

j-basis in eq. (3.83). Since the generators in eq. (3.81) are identities in the SU(2) j-basis in

eq. (3.77), the generators in the operator j-basis in eq. (3.83) are

])(QL) SU(3 Qo) ®D3 (QL)l = ( 6 i) , (3.85)

el

(3.86)

DUNQL)s = DY) (Qu)1 © D" (QL>1_<

D o=
| oo

N[

~
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DU(T) = DY(T) = (1 O) . (3.87)
The 3 idempotent elements are
VEEREE] = YRR, VR = VRIS, Y =Ry,

(3.88)
where the idempotent element of the S is calculated in the same way as the first example
in eq. (3.45),

Y[EI] = Isyes + DY(T), (3.89)
but those of the S are a little bit complicated, and we give their expressions in terms of
generators,

YV[EBIE] =

Lo +DY(QL)1+DPY(QL)1 DY) (QL) DYV (QL)1

+D ”( Qu1DY(Q1)e DV (QL)i DYV (Qr): PI(Qr)s
D(Qu)PY(Q1):PV(QL)1PV(Qr)2 DV(QL) DY (Qr)eDP(QL) DI (Qr)s
J><QL>2, (3.90)

Y =

Towo— DY (Qp)1 ~ DD QL)1 DD (Q1)2 PV (Qr)r

+D9(Q1)1DYV(Qr) PV (Q1)2DPYV(Qr)r (3.91)
Vel =

Lya— DD (Q1) —DI(QL)1 DD (QL) DI (Qr):
-1

+DINQL)DI(QL)2DD(QL)1 PV (QL)2 DPY(QL):
+D(j)(QL>1D(j)(QL)2D(j)(QL)lp(j)(QL)2_1D(1)(QL)1D(j)(QL)QD(j)(QL)lp(j)(QL)2_1
+DP9(QL)s. (3.92)

Thus we obtain the idempotent elements that

1

0°>, V[, = (;

00

N[ 00| —

V[EEE,E I ( ) : (3.93)

in which the second one is of rank 1. It implies there is only one operator in the f-basis,
with the flavor symmetry Bj,

T hap cabeln km 4
Ol = Ve ™ (TU " )pmC(Tar)ran) (41" rarCarea) Fise” (), (3.94)

which is missing in the previous literature such as the ref. [40]. Several comments are in
order. First, the particle indices 2, 3,4 in the idempotent element of the f-basis operators,
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have been replaced with the flavor indices 7, s,t, which is the convention of writing the
operators with repeated fields carrying flavor numbers in this paper. Second, unlike the
Q3L operators, the operators projected by Y|[2[3[4],[5]6] and Y [, [5]6]] are all eliminated in

this type. Thus only certain flavor symmetry is allowed for this type of operator.

In summary, the Young tensor method first constructs effective operators in the on-shell
y-basis, which is obtained by filling the primary Young diagram. If such operators contain
the NGBs, the Adler zero condition needs to be imposed on the on-shell amplitude. After
that, transforming the y-basis to the m-basis obtain monomial operators for both Lorentz
and gauge structures, with the spurion included in the operators. Finally, repeated fields
should be considered for both the dynamical fields and the spurion in the operators. In
this stage, all physical operators are classified by permutations of repeated fields, this basis
is the p-basis. For operators involving the flavor structure, the p-basis should be reduced
to the f-basis respecting the flavor symmetry. In this work, we always write operators in
the p/f-basis with the idempotent elements ) of the symmetric group in front of them to
indicate their permutation property, but in the case that repeated field have flavor number
1, the idempotent elements are omitted.

4 Complete bosonic operator list at NLO

The NLO bosonic operators are divided into the following types: UhD*, X2Uh, XUhD?, X3.
Although the Higgs boson h in the HEFT is gauge singlet and thus can appear in the
effective operators freely by the means of the dimensionless function F in eq. (2.37), there
are cases that the number of h can not be arbitrary. In this section, the full list of NLO
bosonic operators will be presented, and we will explain the explicit form of function F in
every type. The previously missing operators are marked in red.

Type: UhD* This type includes the operators with 4 derivatives applied on the NGBs
and the Higgs, thus the building blocks contain V,, h, and the spurion T. The contractions
of SU(2) group among T,V are represented by the matrix trace (...). In particular, the

operator OYP" in this type is missing in ref. [38].

OYP" = (v, V) F" (h), OF™P" = (VW V) VIV FYP (h),
OF"" = (TV, )TV, ) (VIVIFSP (), OF"P" = (TV)(TVE)(V, V) FMP (),
OYP" = ((TV,) (TVH)2FM (), 0P = (v, v TV, P F ),
OUM" = (v, v L E ) o = v, vy v R ),
4" = (V) (VY (IV,) T F (), O = (v, v, MR e ),
09" = (v, vy PR i ), O = (v, ) v,) P F ),

D, hD h s hD”hD Dhh FUpD

OYP" = (TV,)(TV*) (h), OV =(TV,)
OUhD4 hQ(DuD,,h)(D“D”h)}_IUE)thl(h)'

v

(h),

(4.1)
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The function FhP !

h
FUP Ry =143 PN, (i=1,2,...,15).

n=1

Type X2Uh:

in this type takes the form that

(4.2)

v

the operators of this type involve two gauge field strength tensors with

two gauge coupling constants to be consistent with the power counting. We recombine the

building blocks X, and X v as

1 -
Xy =5 (X —iX),

1 ~

X = B,W,G, (4.3)

by which, we obtain the 10 operators of this type:

OiXQUh _ gIQBL,u,l/BLMVFff2Uh(h)’
05Uk = 93<GLWGLW>]:§(2U}L(’1),
O™V = g> (W, W) F2“UM (1),
OV = 99/ B (W T) F“ U (1),

Og(QUh _ g'QBR“VBRW}EXQUh(h),
OF Ul = @GRy Gr™)Fi UM h),
OF* U™ = g (Wi W) Fo VM (h),
O = g9 Bryu (Wr T) FEVM (h),

2 2 2 2
Og " = g* (W, T)?Fg U (h), Oy " = ¢*(Wry T2 Fiy "M(h).  (4.4)
The F in this type takes the form that
X2Uh x2un (A" .
: h)=1 — =1,2,...,10). 4.5
FXUM) =14 el (1) = 1,20,10) (15)

n=1

Type XUhD?:
two derivatives. Operators nggghD * are missing in ref. [38]. It should be noted that the

the operators in this type involve one gauge field strength tensor and

first term in the expansion of the F function in this type is /v instead of 1. The full list
of operators of this type is:

OFVMP" = (W [V VD FEMP (), OF " = g (W [V VD FSUP (1),

OFVMP" = g/ B (TIV*, V) FEVM (R), OV = g/ By, (TIVF, V) FEVMP (h),
OFVIP" = (W, VI TV FXVIP (), OFVMP" = g(Wiy,, V) TV FEXVMP" (),

OFXUMP" = g(W,, )TV VD FFUMP (h), - OFUMP" = g(TVH) (T [Wiky, VYT ().
(4.6)

The F function takes the form that
FXUM () = 4 7 exone
v n=2

[

), (i=1,2,...,8). (4.7)
Note that the derivative can not only apply on the NGBs, generating operators above but
also on the Higgs boson h, which, however, gives no more operators. The argument is
as follows: if a 'V, in the operators above is replaced by D,h, the operators would have
at least two h’s, since there is at least 1 h in F. Thus the operators would contain the
repeated field A and spin statistics need to be applied. Because the h carries no flavor
number, only the operators containing the symmetric h’s are physical in the f-basis, while
the Young tensor method utilized in this paper implies that such operators do not exist in
this type. Considering this, several extra operators that appeared in ref. [38] of this type
are actually redundant.
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Type X3: in this type, the operators are built of three gauge field strengths, and there
are only 6 operators:

A A
OF" = AP0, LGP\ (), 0 = 450Gy, 68 GRS (),
05(3 _ EIJKW£MVW[{(V)\WI{V>\]:§3 (h)7 Oi(f} _ EIJKW]-I{“VWIQ(V)\W‘RJVA_Fi(S(h) ’
E A v E A v
O?S = EIJKTKBL;WWZ‘/] MWi)\ ~F5X3 (h)7 (9()3(g = 6IJKTKBRNVWR! MWII%)\ ‘FéX3 (h)
(4.8)
The F function in this type takes the form that
3 3 h n
F(h) =14 e () , (i=1,2,...,6). (4.9)
v
n=1

5 Complete NLO operators involving in fermion

The fermion sector contains the operators composed by a two-fermion current 1/_1].“1/1 and
several bosonic fields, called the two-fermion operators, and the operators composed by
four fermions called the 4-fermion operators. Besides, the 4-fermion operators violating
the baryon numbers are also presented in this section. Compared with previous works
refs. [38, 40], there are 9(6) terms of operators in this sector missed for the HEFT with
(without) the sterile neutrino, and we present them here,
Uhap* _ _ Uhipt
Os3 V= (‘JLs’YuTITQLp)(QRW“UTTIUQRQF% v (h),
Uhapt _ — U ha)*
05" = @A T TaL,) @r, M N U Ugry) Fof ™ (),
O = (17! 11,) (Treo e UTT UL ) FOM (1),
U},/54 7 _ Uh 4
01017U = (ZLSFY,LLTITZLp)(QLtFYMTIqu)Flo;Z] (h)7
Uhypt o _ Uhap?
011?} = Uh’s?;rTITZH,;)<(IF.’/7”TI(IH,-)}~U:§ <h>-
4 — n Thal4
0%y = (lrsu U TUIR,) @77 qr,) Firs” (),
Uhap* 7 _ Uhap*
012;) = (lLs’YuTITle)(QRt”Y“UTTIUQRT)-Flzsw (h)a
Uht Uhap*
Ol = Ve e ™ (T1L ™)y C (s )ran) (a1 ar Cavee) Fif! (1),

Thyt abc _km _In 4
Oy = Ve e e (TUrT)pmC(Tar)ran) (a5 Cania) Fieo” (h): (5.1)

The missing operators are marked in red color and the operators involving right-handed
neutrinos are presented in gray color. Besides, previous works only consider the fermion
operators with flavor number 1, while here we consider the general flavor structures. Note
that the last two terms of operators above only appear when there are three generation
fermions because only the mixed flavor symmetry structure is allowed.
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5.1 Fermion current operators

5.1.1 Quark current operators

Type ¥2UhD: In this type, the operators are composed of a fermion-current and a
single derivative. The full list is

oy =(q, LpY quLT)F“’ YD (p), 0y U =(q pv“qLT)<TVu>f§” YD (p),
0y UMD — (g, AV, Tar, ) FY VP (h), OY VP = (g, 1" Tqp, ) (TV,)FL UMD (h),
0L U — (G “U*v JUar ) FEUP (), O UM = (G A ar, ) (TV,)FE UM (h),
OV = (G AUV, T Uqr, ) FY P (h), O V" = (45, /" UM TUqr, (TV,) FL VP (h).
(5.2)
The F functions in this type take the form that
W2UhD o 2URD h\™ -
F; (h)y=1+)> ¢} -, (i=12,...,8). (5.3)
n=1 v
Type Y?UhD?:
OYIURD® (7, Uqr,)(V,V*)FL UMD (), 0y UMD — (g, o[V, V,]Uqr,)F& V0" (h),
0y UM — (g, 0" Uqr, )(TIV,., V) FL VP (h),  0F° V7" = (G, V,Uqr,)(TV*)FL UM (h),
O M = (@1,0" V., Uan, ) (TV)F M (), OF """ = (@, TUGn, ) (V, V) M (h),

(5.4)

2 2 2 2 2 2
0 VP — (G, o™ [T,V ,.JUqr, ) (TV,)FY VP (), of*UhP
0"V — (G, 0" TUqr,)(T[V,., V) FL VP (h),  OF, UMD

(@, [T, V.. Uqr, ) (TV*)FL VP (),

(@, TUqr, ) (TV,.)(TV*)Fiy U0 (h),

2 2 _ DHh 2 2 2 2 2 2
of " = (@1, Ve Uar,)=—Fi "7 (h), 01, """ = (D4, V., Uqr,) Fiy """ (h), (5.5)

2 DHh 2 2 2 2 2
01U = (g Lp[Vu,T]UQRT)iff@, PN (h),  of UM = (D" qu[VmT]UQRr)]"w (DN
2 2 D"h 2 2 2 2 _ 2
0L = (3, Uge, ) (V) 2L FEUMDA (1), 08U = (D, Ugn, (T, Fiy P (h),
2 2 _ D*"h 2 2 2 2
O """ = (@1, TUqr, (TV,) == F P (), 0" = (D7, TUGR, )TV, FIL " (),

2 2 _ D, hD"h 2 2 2 2 -~ D, ,hD"h 2 2
oy :<quUqRT>“Tf;% PR, Ok U = (3, TUGR,) P F U (). (5.6)

F functions in this type takes the form that

FUURDE gy 3 eptunp? (i) . (i=1,2,...,20). (5.7)

n=1
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Type Y?*UhX: This type is similar with the type ¢?UhD?, operators which are listed
as following;:

Oqlp unx =9 (q al” UqRT‘)BR}LV‘Fw UhX(h)v Og) uhx =9 (QL o’ TUQRT)BRW»FI’Z) UhX(h)v
Oéb UhX:g (quo-# GRququ)‘Fw UhX(h)7 O}f UhX:g (quU GR/U/TUqu)‘Fw UhX(h)7
2 2
O M = g1, 0" WrUar ) F{ "N (). OF " = g(@y,, 0" [0 WalUgn, ) 7™ (h),
2 2 2
oY 7" = g(qp,0" Uqr,)(TWr) F{ " (h), Of UhX:g(qL " TUqr, ) (TWr)FL "X (h).
(5.8)
The F functions in this type are that
h
FUURY 1 4 ZCZQU*LX(;)", (i=1,2...,8). (5.9)
n

5.1.2 Lepton-current operators

The lepton-current operators are similar to the quark-current operators with the quark fields
replaced by the lepton fields. With this analogy, all previous operators can be transformed
into lepton-current operators. For example,

OV = (11,411, )(TV ) Fi VP (1),

D hD hf¢2UhD2

oL 5 (1, Ulg,) = (). (5.10)

However, it should be emphasized that the quarks have SU(3) quantum numbers while

Ozp UhX

leptons do not. Thus have no correspondences in lepton-current operators. Here

we present them clasmﬁed by classes.

Y2UhD:
Oy P = (" Vi) Fy P (h), 01" = (L )TV ) Fs P (h),
0L VP — (1" [V, Tl ) Fiy VP (), 0% UMD — (1, 4" Tl1, ) (TV ) Fiy VP (h),
OL UM — (15, /" UV, Ulg,) iy VP (h), OBURD — (T A1, )TV ) FL U (1),
OLURD — (15 APUNV,, T|Ulg, ) Fls VP (h), WU’LD:( APUTTULR, ) (TV,) FL VP (1),
(5.11)
Y2 UhD?
0L UMP* = (1, Ulp, ) (V, VHYFL UMD (1), 0% UMD = (I1,0" [V 0, Vo] UlLr, ) Fi VM0 (1),
2 2 2 2 2 2 —
0% V0% = (1,0 Ulp, (T[V,, V) FL V0% (h), 050" = (11, V, Ulr, ) (TV*) Fiy VP (h),
0% UM® — (14,0 V, Ulr, (TV)FL VP  (h), 0% VD" = (1, TULe, ) (V, V) 7 U2 (),
OLURD® — (116" [T,V |Ulr, ) (TV.)FL UMP (h),  OLURD? = (1, [T, VUL, ) (TV*)FL UM% k),
(Ir

2 2 (7 LV 137,1,2 2 2 7 ) () J L \
0% YP" = (11,0" TUIR, ) (T[V,, V.])Fie ""P (h), 0% V"’ = (11, TUIR,)(TV,)(TV' >J?m”“ (h),

D*h,
Oy URD? (leVHUlRT)—}"/’zUhDQ(h), OL U (DML, V, Ulg, ) FL VP (h),
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- DHF
Og’;UhD2 (//,)[V ]UZ/I,) - 7]__1 2UhD? (h)? O¢2uhD ( ),1[”) V ]U[/e,)]:‘ 2UhD? (71).

2 2 - D* 2 2 2 2 - 2 2
035 """ = (11, Ulg,)(TV,) "f” TP (), O35 "P" = (D", Ulg, )(TV ) Fiy 7P (h),
O;p;Uth _ (ZL,,TU/B, ) (TV,.) /)/ h F’— 2 hDU ), O%ZJQUhD = )”/LI,TU/[,,)<TV“>fZ 2UhD? (h),
2 2 - r 2 2 2 . D, hD"}I b2UhD2
05, 1P :(lLPUlRT)WI;‘; TP (h), Oy V" = (11, TUIR,) /]:‘2 LFn UM (h).
(5.12)
Y2UhX:
QYU g’(ZLa“”UlRT)BRWJ-"szhX(h), QYUY (/LI)(I/”’TUII,,)le,,ffo(]' (h),
O X = gLy Wr Ul ) Fiy X (), O = (11,0 [T, W)Ul 71y " (1),
OL VX = 91,0 Ul )(TWR)FL U (h), 0LV = (1, 0" ULy ) (TW ) 7L U (),
(5.13)

5.2 Four-fermion operators

The four-fermion operators are divided into four classes: pure quark operators, pure lepton
operators, mixed quark-lepton operators, and baryon-number-violating operators. In this
sector, the operators presented in [30, 38, 40] are not complete, and in the following, we will
list all the four-fermion operators with the flavor structures. In appendix B, the detailed
comparisons of literature and our result are tabulated. The missing operators are marked
in red color and the operators involving right-handed neutrinos are presented in gray color.

5.2.1 Pure quark operators
124 2,
Type Q; Qr":
4
oy = Y[l E) (g, Uqu)(qLTUth)fth (h),
4
O = Y[l E17) (3, A Ugr,) @1, A Ugny) Fy ™ (1),
4
oYM = Y[, E10)(q,,, 7 Ugr,) (@, 7 Udr,) F5 "™ (1),
4
oYM = Y[EIF, T (g, , A7 Ugr,) @, A7 Ugr ) FU (),
oy’ = VR (@, Udr.) @, Ugr) F " (),

oy’ =Yz} El @, "Uqr) (@, Uqr, ) FI (), (5.14)

oUnv! y,}(qu)\AUqRS)(@LTAAUth)}—ghW(h)’
OUW _y[ll qu)\AJ Uqr,) (@, A"0'Ugr )‘Fth (h),
Oy = YT, T (G, A Ugn, ) (@1, A TUgr ) FE™ (1),
0Ly = YEIF7 @, , Udn, )@, TUgr ) Fiy™ (h),
OF"" = VB @, M Ugn,) @, A TUgs ) F™ (1),

o = VB 1@, Udr,) @y, TUqr) Fg™" (), (5.15)
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where

OF = VB )@, A 7 Ut @1, X7 TUas ) Fis™ (1),

Uhypt _
014 -

Uhvy
o’

Uha*
Ol() -

4
OV = VIELEI (@, M7 Ug,) (@, A7 TUgr) FF (1),

Uhyt
O1s

Uh* -
Olg -

Uh z,
Oy =

Uha*
021

OUM’ — Y[, CI)(q,, A TUqR,) (T, A" TUqr,)FU" (h),

Uh*
02% -

Uhyp*
024 -

VLI L) @, Uan,) @, 7 ITUgR)Fi{™ (),
y[|- 0, N Ugr,) (@, N TUqr,) FE" (1),

= Y[} T (@, Udr.) (@, TUqr) Fia™" (h),

= V[ E @, 7 Un,) @z, ITUqr) FA™" (),

4
Y[} )@, Uar.) (@, A TUGR) Fro™ (),
=YL (@1, Udr.) @1, TUqr) Fay™" (),

— Y[, 517)(q,,, TUqr, ) (@1, TUqr, ) Fo™ (h),

=V | 1@, TUqr.) @y, TUqr,) Fo™" (1),

(= _ U hap?
Y (@, TUqr,) (@, A TUqr) Foy™ (R),

h
FOME 1 SN (1=1,2,...,24).

Type Q1 QrQLQr:

where

oumt —
ourt —
o =
oumt —
ot —
oumt
oUmt =
o;ghw
oy
oMt -

Uhapt
036

Z

n=1 v

(Tr7u9L,) (@R, " QRt)]:25 ( ),

(@277 41,) @r, 7" U'T IUQRf)fz%W(h)a

(@1 A 01y) @, Mar) F (1),

(@ AT 41,) @, " N U Uy Fo (h),

(@17 Tay) T, are) Fay™ (),

(q LS’YN)\ Tqu)(qRT’yl )\Ath)]_—th (h),

T1s7u9Lp) (@R U TUqg,) M (h),
LA L) @R, VA UTTUgr, ) Fi) ™ (h),
L™ T4, (@R, U T Ugry) F (1),

TN T Ta,) (@R, VAU "Uqr,) FL (h),
LA Tar,) (@g, 7" AAUTTUth)féé" (h),

(
(@
=(q
= (
(@
= (@1, Ta1,) @R, U T Uqr,) Fig ™ (h),

n
FURy! 1+Z UW“( ) ., (i=25,26,...,36).
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2 2
Type Q) Qr2&Q%, Qr*:

where

O = VIER (@ uary) @ ) For® (),
O = VIEET (@ v a1) @ ) Fag™ (1),
oL = YELEN @ mar,) @ aL) Folv (n),

ol =V @rmr' any) @' Ta, ) Fil (),
o5 =y, n](qm 4,) @ Tar) Fin™ (h),
oy = V[ T 3L,y “q1,)@reTar,) For (h),

O = VEVET (@11 Ta,) @rvuaen ) Fi3 ™ (),

O = YT @ arp) @reuTas) Fii (h),

oM = yem l Q07" Tary) @pvua,) Fi (),

05" = VI @r.v"asy) @ Tas) Fig™ (h),

O = VI, BT (7,7 Tarp) (@ Tar) Fiy ™ (h),

oy’ _y, ﬁLs’mTqu)(ﬁLﬂ“Tqu)ﬂshw (h),

0LV = y[ar, CI (R Vutrp) (@ry" 4R ) Fag (),

05" = V[E E) (g, 7, Ut T Ugry) (@r v U Ugn, ) g™ (1),

oy = V@R, vmar,) @r” ar ) Fo (h),

O = Y @r Ut Uty (a7 U, ) 75 1),

0N = YT @Ry aryp) @i U T UgR, ) FL™ (1),
Uhy = Y[} T (@R arp) @R U I TUqR,) F5M" (h),

o5 = V[ @R, VU UgR,) @i vuan,) Fos™ (),

O™ = VET ) @ra"ary) @re UM TUar, ) F5g™ (h),

oM =y, B (@ UTTUgr,) @riypar,) For (),

O = qE l Tra"ary) @y UTTUGR, ) Fi™ (1),

0L = Y[ET,F17( 5,7, U TUGR,) @y U TUgr,) Fig™ (1),
0L = V2] (a1 U T, (a5, U T U, ) 735 (1),

i 1+ZUW‘ )y, (i =36,3T,...,60).
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5.2.2 Pure lepton operators
Types L} L2, Lr2L} ", Lr2Lt L L LeL}:
oYM = Y, 519 (11, Ulg,) (1, Ulry) FOM (1),
OYM* = Y1, 517 (11,7 Ul ) (I, 7 Ul ) Fo " (h),
O = V] (11, Ula) T, Ul Fi™" (k).
oMt = n I (10,7 Ulgy) (10,7 Ulg) FSM (),
OYM" = YT, 517 (11, Ulre) (1, TU LRy ) FE (h),
o = [.} (10, Ulgy) (1, TULR ) Fol (h), (5.27)

oy — alcy (T2, 7" Ulgy) (I, 7 TULR ) FSM (),
Uhl/’ _ ) Uhapt

oY , |(12, Ulrs) (11, TULRy) Feg™" (),

OUW‘:y[,}(ZLpr’UzRg.)(ZLrT’TUzRf);ff(j” (h),

out — VI 111, Ulgy) (I, TULR ) Fl (),

OUM* = Y1), 517) (11, TUlgy ) (I, TULg ) FI (h),
oUm _ V[ ) (12, TULR) (I, TULR,) Fry " (), (5.28)

OUW = Y[l 17] (ZLs’Yule)(ZLt’Y“lLs)]:UW (h),
OUW y[’] (Trsvulry) Ty ) Foy™ (),
O = Y[l ET) (T yuly) (o T Fr (h),
OUW = [7](ZLs’mle)(ZLt’y“TlLs)]-“UW (h),

Op"" = VLT yuliy) Qi Tl Fog ™ (h),
ORM" = VI BT (T3 Tl Ly Tle ) Fig™ (), (5.29)
OLY" = Y1), B10) (Try vl ry) (e L) Frg ™ (h),

OUhd} :y[?](ZRS’V;LZIE[))(Z]HA/“Z[{S)‘Féohh ( )

og! y[ ) (U syl vp) Ly U T UL Fo™ (),
O™ = VI U vulny) (T UM T UL Fig™ (h),

O = oGy [kl rp) ey UTTULR ) FE™ (1),

OYM* = Y1), 517) (13,7, U TUL g, ) (Lrey U TULR, ) FY (B), (5.30)

4
O = (1 vulip) TRy lrs) FEM' (),
OUW = (st ly) (rey* U Ule)]:th (h),

— 35 —



OUM" = (11,7, Tl,) Ty L) FL (h),
OS* = (Ipyuley) (R UM T ULR ) FE (h),
ng¢4:<ﬁﬁf~7leﬂJRn“T’Lﬁanu%>f£3”A(z»
OU™ = (11T, (0 U TULR ) F (1),

where "
Uh 4 4 .
FM =143 ()" (i=61,62,...,90).

n=1
5.2.3 Mixed quark-lepton operators
Type: Q;QrL}Lr

4 — 4
O™ = (11, UlRr,) (@1, Ugry) For ™" (h),
O = (11,0, UlR, ) (@1 ,0" Ugry) Fo' (),
OS5 = (I, UzR»(qu quRofU’“/’ (h),

05 = ZLPUZR»(qLSTUth)fW (),
O = (11,0, Ulr, ) (@1 .0 TUqr,) FL" (h),

4 7 Thap
O&hw = Z pTUZRr>(GLSU(]RT)‘E{;# (h>1

4 7 T ha)*
(’)gghw = (I£,0,, TUlR,) (7, Sa*“’qu)]:éS} (h),
7 LpT UZR,)((][ sT TU(JP/)JTO‘) (h>7

4 7 W
Oonhiw = (I UZH:)((IISTU(IM)}—UE ( )
7 ha*
12p0w TUlR,) (G 0" VTU(IHL)-FH,Q (h).

4 —
(91Uo]§w ! s%le)((ILﬂ QLT)O103 (h)a
— 4
OV = (Ll @ qmd{)’z" (),
Cjﬁ%w J squan)(QLtV qu)]aOS (h%

= (rsuley) @y Tar,) Fioe (h),
Ty Tl @ T an, ) Figh (h),
= (L Tly) @  Tan,) Fios” (h),
= (Trs ) @R ar,) 0505 (1),

_ 4
IR, U UlR,) (@r " U Ugr,) OV (h),

Uhy
Olos

Uhapt
Olo9

Uhapt
O11o

=
8?
N e e e e e
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(
(I
= (

O = (11,07 Ulg, ) @, 0™ " TUqr) Figp” (),
(i1,
= (

(5.31)

(5.32)

(5.33)

(5.34)



4 = + - Jhap*
OV = (17, UTTUlR, )(thqx“UlTUQH,,A)}](‘IZ (h). (5.35)

Type L} L;QLQr&LLLrQ} Qy:

Uh
115111 ( RszRp)(QLs’Y qu)]:115 (h)a
— 4
O = (Ipgy, U Ulg, ) (@ 0" ar,) Frag' (h),
4 7 VY
01U1};¢ = (lh’s //lllfp)((ILfﬂrl T(IL )-F1(1}7 (h’)?

Uhy* 7 1)

Ons” = (Ins U TUlR,) (@ e, Fioe’ (h),

Uhy* U hap?
0119 —( fr TUZR[})(QL)‘/ T fH )~7:11<) (fl)

4
O?Q}(l)w = ( Rs ,,,U TU[Rp)((]Lf /% Tqr, )Jr120 (h)

Uhapt < U hap
O = (v Liy) @rar ar) Fio” (h),

O = (Ipyyur Liy) @R U Ugr, ) FLRY (1),
4 —
O = (pyyuLry) @r" U TUgr,) FIAY (h),

Uh o Uh
ony = (lLsvuTLLy)(@r" QRT)}—124w (h),

Uhab* Uh
Ons" = (Irs YT TLL,) (@ry"UTT IUQRT)}—msw (h),
oV = (1,7, TL nutT Uy

126 — \ULsVu Lp)(QRt’Y U UQRT)-7:126 (h)- (5-36)

Type QL QrL}L;

4
0?2}# qr, szLp)(er’Y th)]:127 (h)v
4
O’ = (@pyvumlr,y) (r Ut "Ugr) Fom (h),

. Vulny) (" U TUqr, ) FURY (),
)
QL1 Tly) (r, " Ut Ugry) FILY (h),

(
= (
O = (@1 Tley) (" an) Fio” (h),
=
=
= (@p W Tlr,) (R UTTUqgr, ) Fin? (). (5.37)

F functions of all these types are of the same form:

h
FoM 14 % cﬁ{W‘(;)", (i =91,92,...,132). (5.38)

n=1
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5.2.4 Baryon-number-violating operators

Types LQr? LrQrQr?, LrQrQr? LrQr>:

Orss” = VLT e* e (11T i 0qn o) (ar” o Canie) Fis” (1),
OYBZU :))[]eabceikeﬂ(lLTpiC(qLTaj)(q[szbkC’q[ztcl)‘7:.1U3{4“/’Y (h)7

hapt abe ik _j 4
0?3]5/ :y[e b€ ké]l(lLTpiCquaj)(qLstkCQLtcl)flUiﬁgw (h), (5.39)

4 .. 4
OYae” = VLI ™ (1,7 i Counqr ey (an” souCo™ (Tqr)iem) Frag. (),
Uha* i7 Uhap*
01317/ :y[]GabcewEkm(lLTpiC‘JLmj)(‘JLstk(TCIL)tcm)]:m?w (h),

Ol =VETTe e e (17 i ComL o) (1" sonCo™ (Tar)rem) Frs” (), (5.40)
Lap abc 17 _km 4
Ol =y[e beell Fm (11T L) (ar” sk C(TaL)iem) Fing” (),

1,1)4 aoc __tn m *
OVl = Vel e ™ (Tl )y C(Tan)van) (01 v Carac) FLig” (),

4 . . 4
Ogﬁw :y[]eabceuce]l(lLTpiCPYHCQRSbk)(QLTrajCPyMCQthl)‘Fl({lTb (h)7 (541)

O :y[€abcfik€jl(lLTpiC%CQRsbk)(QLijCW“CQRtCz)]:ﬁZw (h),
Ols” = VT e e (T1 )y €7 C (Vs i) (41" 1a; O C(Uanie) ) F1is" (h),
Oy = Ve e e (Tl )pmCruC(Uang ) Q1 1oy C1*C(Uane)) Fias” (), (5.42)

4 L] 4
Ori” = Ve e e (17 i C9uC(Ugna)i) (a1 1oy O C(TUGR)eem) Fis” (),
Of’ :y[ e e ((TILT) pn CYuC(Ugr k) (Tar”)ranCy" C(Ugry)) Frae' (h),
4 3 ] 4
oL = Ve e e (qr” i CYuC(Ulrs)i) (ar” 1y CYC(Ugry) 1) Frant (h), (5.43)
U abc i j 4
Ors’ :y[e Peet el (T i ChuC(Ulrg)i) (L 1;C* C(Ugry ) Fras' (h),
Uh¢4 —_ VIsTelabe gk Im T Y. ¥ T LY \ U hab
0149 _J/[}( «c ((T(]/‘ )/mm(/ /'NC’ (Ullfs)/g)((]h r‘bJ'(/ Y (/<U(]/\’,t(¢>[)f1 49 (h).
4 j 4
Ot :y[6“bc€ﬂ€km((TQLT)pamaC(Ule)k)(QLTrbjCWMC(UQth)l)f%}Sw (h), (5.44)

o Zy[}‘”'b"f"%f[”"((T(]LT)zm7n(77w€(Ulm)AT)((ILTrb_j(f'?"(/'(Uf]fm)/)]‘—lz’ﬁ;}fl' (h),
Uhd)4 V) _abe _km _In T A ~ T N Y U hap*
O159 *J/[k e ((Tqr pum)c' ,V;:(/(ULR,S)A)((T([L )ronCY*C(Uqry)i1) Frsew (),
OYgy" = VLI e e (Ulr",)iC(Uqnr,q);)(Uar” )k C(Ugr,)i) Fras' (),
oL = abecih el (U1RT,)iC(Ugrya);) (UgrT )k C(Uary)) Fih? (h 5.45
154 ,y[ Je** €™ e ((Ulr" 1)iC(Uqryq);)((Ugr™ )kC(Ugrie)) Fiss (h), (5.45)

Olgs” =V e™ e (Ul"},)iC(Uar,);)(Uar" )k C(Uarie)) Fiss” (h),
Otz =YL eIt ™ (UlR" )00, (Uanyg) ) (Ugr” 3)eCo™ (TUGR) em) Fizg” (),
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“‘)4 3 1be 17k ( T Y Y v J )4
0157 :MV“ €7eF((UIRT,)iC0, (Udrya);) (Ugr” 3)kCo™ (TUGR)em ) Fios? (h),

57

(5.46)
Wt abc 17 _km 4
Ols" = VTN e 7™ (ULR",)iC(Ugn,a);) (Uar" )k C(TUGR)em) Fi5s"” (h),
O = Y[ e? e (Uln")iC(Uanrsa);) (Ugn” )kC(TUGR)iem )Fise” (h),
Olbg(L)w :y[}((lb(’(/l‘m([“((TU]HT>/WC(TU(]H)NLN)((U(/H’I-,s[;)/\'C<U(/Hh:)/)J:ll(v;/tl)u (I")-
(5.47)
F functions in this type takes the form that
h
FOM 14 % cghw“(;)", (i = 133,...,160). (5.48)

n=1
6 Conclusion

In this work, we present the complete and independent sets of the HEFT operators at the
next-to-leading order, enumerating all the 224 (7704) operators for one (three) generation
fermions without right-handed neutrino, and the 295 (11307) operators for one (three)
generation fermions with right-handed neutrino, for the first time. Compared with the
results in literature [30, 38, 40], we find that there were 8 (11) terms of operators missing,
corresponding to 422(665) operators for three generation fermions, without (with) right-
handed sterile neutrinos, and there were many redundant operators. Furthermore, the
numbers of the HEFT operators are consistent with the counting result via the Hilbert series
obtained in refs. [68, 69]. Comparison with the literature is presented in the appendix B
in detail.

Although the Young tensor method has been developed to obtain the operator basis
for generic EFTs up to any mass dimension [21], the operators involving in the Goldstone
bosons and the spurion fields, appear in the HEFT, need further treatments. According
to the operator-amplitude correspondence, for a type of operator, the on-shell amplitudes
form a complete and independent basis in the Lorentz space, and if such operators involve
in the Goldstone bosons, applying the soft theorem on the amplitude would pick up the
Lorentz subspace satisfying the Adler zero condition in the soft momentum limit. All the
HEFT operators have been rewritten with the on-shell contact amplitudes, as shown in
appendix C.

In the HEFT, the spurion field is also quite special because it is not the dynamical
degree of freedom but it transforms as the adjoint representation under the SU(2) symmetry.
The spurion field is introduced to parametrize the custodial symmetry breaking through
freezing the dynamical field degree of freedom, and thus it could only form the SU(2)
invariant together with other dynamical fields in the operator. Thus we remove the spurion
from the Lorentz tensor construction but keep the spurion to be involved in the gauge and
flavor tensor construction.

The complete sets of operator basis, investigated in this work, would benefit vari-
ous phenomenological studies below the electroweak symmetry breaking scale, especially
phenomenologies involved in the three-generation fermions. On the other hand, when
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performing the matching between the UV non-decoupling physics and the HEFT operators,
the complete HEFT basis is necessarily needed during the matching procedure. Furthermore,
based on the power counting rules, the one-loop renormalization of the HEFT [55-58],
including the renormalization group equations, can be organized systematically using the
complete operator basis. With the one-loop renormalization on the NLO operators, the
next-to-next-to-leading-order operators would be quite relevant, and we leave the discussion
in the coming work.
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A Conversion between 2- and 4-spinors

We use ¥ to denote the 4-component spinors, whose conjugate is denoted by ¥ = W0,
Denoting the 2-component left-handed spinors by ¥, &, and the 2-component right-handed
spinors are denoted by x,&f. Thus the 4-component spinors can be expressed by the

w:(ﬁa), U= (x &) (A1)

X
Then Dirac bilinears can be expressed by 2-components spinors,
U0y = 1%, + ﬂdxéd ;
Uiy = XlaUZaXJéd + €],
U107 9Py = x1%(0 o 2 + ﬁd(&“l’)dgxfa
VTow, = £,%;, + XLMXE& ;
U070 = 6%t b + ] 6"

la

2-component spinors,

VIO Wy = 6%(0)0 €2 + XTla(‘}W)dBX;B ;
U008 = &6 + 1%Y2a s
Uy CV] = XlaU”aaﬁgd + §Id5“da><2a :
107 CFF = €] ()% + 312 (") X2 (A.2)

where the gamma matrices in the equations above take the form
o
o 0 Tt
GHaB ’
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—_eaB
0.2 [€as 0' _ € 0
C—Z’V’Y—<O Ed'8>_< 0 _6d6_>7
_:

ohv B
2[,Yu77u] _ <( O)a (O—ug)dﬁ-) . (A.3)

ot

In this work, the left- and right-handed fermions are defined as

() an(8) (@) () w

and their conjugates are
a=(0.QL), L=(0L}), ar=(Qk0), Ia=(Lk0). (A5

According to these correspondences, we can convert the 2-component notations adopted in
4

this paper to 4-component notations, for example, the operator (’)ij " can be expressed in

a 4-component notation that

4 4
OV — Y, 17 (7, Uqrs) (42, Ugr) FL ™ (). (A.6)

B Comparison with the literature on NLO operators

In this appendix we present the comparison with the NLO operators obtained in this work
and previous literature such as [30, 38] and [40].” The operators in this section follow the
conventions that: first, D, II = Duqﬁl 71 are used to represent the NGBs building block Vo,
as discussed in section 3.2. The operator involved in the DM¢I would be equivalent to the
one with the V,, which can be seen from the soft-recursion relation for the NGBs. Second,
the physical Higgs h and its dimensionless function F are omitted in all the operators here.
For comparison, all the operators that were missing are marked in red in the following.

B.1 Bosonic operators

The following notations and conversions among this work and previous ones are utilized
for comparison.

e The field degrees of freedom of gauge bosons in this work are chosen to be

1 . 1 .o
X +1X,0), Xpuw = (X — X)), (B.1)

XL,uu = 5( 9

where X w = €upoXP?. Thus for the operators involved in the gauge bosons, we
follow the convention that X corresponds to X and Xp corresponds to X.

"Refs. [34, 35] also present the NLO operator basis, but a different power counting on the spurion is
adopted. So the LO + NLO operators in total in refs. [34, 35] should be a subset of the operator basis
listed here.
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o If there are many derivatives in a type of operator, the Lorentz structure could be
complicated, and thus there are different choices of the independent Lorentz basis. For
the type D*h*, the Lorentz structure chosen in this paper is (hD,D,h)(hD*D"h),
while in ref. [30] the form D, hD,hD"hD"h was chosen. They are different but can
be converted to each other by integration-by-part(IBP):

(D, hD,h)(D*hD"h) = —(hD, D, h)(D"hD"h) — (hD,h)(D>*hD"h)
— (hD,h)(D*hD,,D"h)
= (hD,D,h)(hD*D"h) + (hD,h)(D"hD, D" h)
— (hD,h)(D*hD,,D"h)
= (hD,Dyh)(hD*D"h) + - - - , (B.2)

where terms involving the d’Alembert operator D? are eliminated, this procedure can
be completed by the ABC4EFT code automatically.

e Because the choice of the invariant tensors in the gauge group could be arbitrary,
there are several operators which are not exactly the same as their correspondences
in previous literature. For example, the operator (’)g( UhD? corresponds to the Oxp12
in the ref. [30] via

Oxui2 < ig€uurp(WH rL) (1 [L*, LP]) Fxy2(h)
& e TITWHY D, o* D, oM (B.3)

but is of a different form. This equivalence can be checked via group tensor identities.
For the SU(2) group, there is the identity:

Orjexim — Orke€jrm +0rnesem — Ormeskrn = 0. (B.4)

Contracting with building blocks T/T/ X ﬁDHqﬁLDyéM , the first one is spurion self-
contraction, which should be eliminated, the second one is of the form of Ox12, and
the third one is of the form of O “Uh_ The last one can be converted to the third

one by

51M€JKLTITJX£Du¢LDu¢M
= 51M€JKLTITJXK D,¢M D" ([Duo", Dyo™] — 0)
= —drregjkmT 'T/x M¢LDV¢ (L < M, X/U/ = _Xu,u) . (B'5)

XUhD?
Oz

Thus Oxpi12 , as expected.

Most of the identifications of the operators in this paper and the previous literature in this
appendix are realized in this way. Next, we list the complete operator list.

— 492 —



Type UhD*:

ov hD* Operators [30] [38]
1 Du!) (Duo”) (Dro!) (D¥¢’ Op1  Ps
N || st A
3 T/TX (Do) (D" ) (D7) (Do’ Ops  Pas
4 T/TX (Do) (Duo”) (Dro!) (Do Ops  Pa
5 TIT/TNTY (Do) (D,o”) (Dre”) (DY6™)  Ops P
6 T/ Duéﬁ[; EDM)J) (D"h) (Duéf?[; Op12  Se
7 T (D¢’ Duqﬁ[) (D¥h) (D”¢J Opis S5
8 JKMTITK (DV¢J> (Du¢>M ) (D"h) (D“¢I ) Ops  Pis
9 T'T/TX (D,o!) (Duo") (D7h) (Do) Opir  Sis
10 h (Dyg") (Duo?) (D#D¥h) Ops  Ps
11 (D, h) (D“¢I) (D¥h) (D/‘qbl) Opr  Pa
12 WTIT? (Dyo!) (Dye”) (DD h) Opio P2
13 TIT7 (D,h) (Dyg!) (Dh) (Do) Opy  Pa
14 hT! (DM¢I) (D¥h) (D, D"h) Op1s
15 h?(D,Dy,h) (D*D"h) Opnn Ppu

Type X2Uh:
OXUR Operators [30]  [38]
1 B} Bruw Oxm Ps
2 By Bruw Oxna  Sp
3 GL* Gt  Oxws Po
4 Gé“ "G Oxne Sa
5 Wk Wi, Oxn2  Pw
6 Wi Wh,, Oxns Sy
7 TIBLWW,{W Oxuv1 P
8 T! BR#uWé“ Y Oxun S
9 TITWL, W/ Oxps
10 TITJWI{EWW&!W Oxus
Type XUhD?:
OXURD? Operators [30]  [38]
1 KWV (D,¢7 ) (D, o) Oxys B3
2 e”KthW(Duqu) (D, ¢”) Oxu11
3 KR TE B (D ¢! ) (D97 Oxur Py
4 KRR B (Do) (Do) Oxu1o
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5 hTI WM (D,¢") (D¢ ) Oxve S
6 W/ W (D, ¢") (D, ¢”) Oxys Pu
7 I EMppITEW (D, o7 ) (Do™M)  Oxpe  Pra
8 eJKMhTITMWg”“(D,,qu) (Duo’)  Oxuz
TypeX3:
0X’ Operators [30]

1 FABC GfWG(é“in;’ Paca

2 fABCDIéLuVDRu G%K SGGG

3 el JK WiNVWIz ”iWLJ v Puww

4 GIJKWII%;WWR g WRJK 7DWVVW

IJKmK JANrs T Y
€ T BL,UVWL)\ WLA
IJKmK JAyrrI Y
€ T BRWWR Wga

S Ot

B.2 Fermionic operators

For the operators involved in the fermions, the treatment of the spurion fields would
be complicated.

e There are 3 useful identities have been proven to be useful for the comparison:

[T,V,] = %GUK<TUI><V#JJ>UK, (B.6)
{T,V,} =(TV,I, (B.7)
TV, T =T(TV,) -V,, (B.8)
. Y2UhD?
where (...) represents matrix trace. For example, the correspondence of Oy, and

Nl% can be verified as following:

NZ:TV,TV! = (TV,T)V*T — T(TV,)VT
= (TV,)TV*T — (TV,)(TVH)T
— T!IT/TX(D,¢")(D"¢”). (B.9)

2 2 2 2
e In type ¥2UhD?, operators (’)g’ UhD ,(’)g URD™ are quite different from their corre-
spondences Nf%,/\@% in [38]. To verify this relation, recombine the Ng,/\@% as

NE+NE = (TV, )(TVH), (B.10)
NE = NE = (TV)TE(Tol ) (Via’ )oK . (B.11)

It is straightforward to figure out that C’);f?UhD2 corresponds to ./\/'1% - ./\/'2%. As for

Y2UhD?
9

the first combination, it actually can be converted to O , since there is the

equation that

EIJKTLg — _6ILM6MKJ(5§ . 6IKM6MLJ(5§ . 6JIMGMLK(sg ) (B.12)
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The right hand has the expression that —2(§/% %7/ 4 §17/6K L)(Sf , one of them corre-

2 2
sponds to spurion self-contraction, and the other corresponds to operator ng UhD®
o In the case of 4-fermion operators, Fierz identities in appendix A are used for corre-
spondence,

1 1
0k = 5 (01)ij(or)k + 593041 5

2
1 1

dirdjt = 5 (on)ij(@n)m + 500,
1 1

00k = 5()\A)ij()\A)kl + §5z‘j5ﬂ,
1 1

0ind = 5 (Aa)ig(Aa)m + 306505,

1 _ _ 1
0ilrj = E(U”V)z‘j(auu)kz + §5ij5kl,
1 _ _ 1
5ik5jl = E(Uuy)ij(auu)kl —+ Qéijékl . (B.13)
For example,
Q o 1 1/14U]’L 1 1/14Uh
2 2
Lowton | 1 gpton 1 pton 1 oyton
wwn | 1 owtun 1 pton Uk
RZ =V +§0;” —gogf —oY
1 4 1 4
RY = 50;” Uh 50;” un (B.14)
o As fermions’ number increases, there is a general case not considered in previous

literature, which gives extra independent operators. Because the product of § symbol
5;6{“ is invariant tensor under SU(2) group, it satisfies the relation that

rfj-él’“ + rfféji + 71555 + 713‘5;; =0 (B.15)

Thus there are 3 independent invariant tensors of this kind. This fact implies
that in many types involving spurions such as QTLQ LQTRQ R, QTLQLLTLL 1, and so on,
operators considered before are not complete, in which only 2 independent tensors
were considered before.

B.2.1 Fermion-current operators

Type Y2?UhD:
oY “UhD Operators [30]  [38]
1 QI 0" Qrai)(Dud’) Oy
2 hTI( TLMO'MQLM')(DMgf)I) va1 N5Q

EIJKTKithJ(QTL“ja“QLai)(Du¢1) Oj/JV3
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| 7GR T (QYY 0 Qrai)(Dug’) Oy

5 T h(QE 07 QRai) (Do) Oyve N

6 hT QY 0" QRai) (Do) Oyvi Ng

7 GIJKTKz‘thJ( ngjO'MQRaz’)(Dugf)I) Oj/)VG Nf

8 TR T QR o Qrai) (Dud’)  Opvs  NE
Type Y?UhD?:

O;ﬁzUhDZ Operators [30] [38]
1 (QY" Qrai)(Duo! ) (DH 1) Oysi NZ
2 9! Q151 Qrag) (Dud!) (D) Oyrs  Ngj
3 TR Q5 QRaj) (Do) (D) Oyr1 N
4 TN QT Qrag) (D! ) (DFe) Oyss  Ni3
5 773, T QI 5 Q paj) (Dy ") (Dyud”) Oyrs N
6 79T Q1 Qraj) (Dug?) (DHT) Oups2  Nip
7 TMI T EMTITR Q161 Q oy ) (Dy¢!)(Dpo”) Oy Nig
8 TV KNTITR(Q)  Qry ) (Do) (D 67)  Oyss Nop
9 TRIIMTITE QI 61 Qpyy) (Dyd!) (Dud™)  Opss N2
10 KT TR QI Q pay) (D oh) (DF7) Oyss N
11 71 (DP 1) QY Q Rag) (Dyd!) Oysiz N9
12 T1h((D"QY™)Q Raj) (Dyd!) Oyry NY
13 759 KT (DFR) QY Q Raj) (D) Oysis  Ni3
14 TKjv:GUKTJ((D“QTLM)QRaJ)( w97) Oyti10 Ng%
15 T/ (D*h)(Q1" QRai) (D) Opsti N%
16 W (D*QY™)Q rai) (Dy") Oyrr N
17 7T (DR QY QRag) (Dyd?) Oypsio NG
18 7T (D Q™) Q raj) (Dyd') Oyrs Nii
19 (Duh)(D*h)(QY Qai) Oysia N
20 T, T (DLh) (DAY (QY Qray) Oysis NY

Type Y2 XUh:
(9;/} “URX Operators [30]  [38]
1 BR,LLV( Taia_u QRai) Oq/)Xl Nng
2 71,0 Bryu (Q1 5" Q ray) Oyx2 Ng
3 AAb GRMV(QTM " Q Rai) Oyx7 Ng}
4 A T3, TIGR!W( TMO';WQRa]) quxg N?)QQ
5 TIWR;W(QTM M Q Rai) OwX3 Négl
6 ™ EUKTJWRW(QTGF YQraj) Ouxs Nip
7 W, Q16" Qraj) Oyxs N
8 77 T[TJWRMV( Tmff””QRa;) Oyxa Ns%

— 46 —



B.2.2 Four-fermion operators

T T2+ 2,
ype Q; Qr*:

OlU_hgf Operator [38]
VI, E QT Q) (Qrsai Qresy) RY

2 V[, 5 ](QTM_MVQTb])(QRsazU/u/QRtbj)
3 V[l ](QT‘” 7Y (Q Reaj Q Ribi) RY
4 Y[l = -](QT‘” Q)@ a0 Q) R
5 VB QLRI Qi)
6 l l QW “”QW N (QRsai0 i QRib;)
7 VI E(QE, Q) (QRaajQrini)
: VE, | QL7 “”Q“” ) (QRs0j%u Q)
9 Ve L STQLY “’J)(QRsakQRtb» R?
10 y[- -] TI(QW QWY (Q Reak @ Q Riti) R§
11 I k.1t QT‘” i I)(QRsakQRebi)
12 | T/ (Q%7 WQ*’)J)(CQRSM&WQMM)
13 | LT QI Q) (QReai Qrint)
14 l TI QW Q) (QRsaiu QRuvt)
15 , TI(QW 19 (Q RearQ riti)
16 yu] Tf(@*‘“W”Q*”ﬂ)(QRsak&WQRM
17 37[, T](QT(“ 7Y (Q Rsai Qrevt)
18 yl ”-TI(QT‘” w Q19 (Q Roai @ Q Rivt)
19 l I kTt QW ) (QrsarQriti)
20 I l kTt QTM QYN (QRsak v QReti)
21 Y[l G ”“J‘”JTITJ(QW Tbj)(QRsakQRtbl) R
22 y[,]TIki Il TITJ(QW_WQ N QrsakGuwQrint) RS
23 37[7 ]lei It TITJ(QTMQTIU)(QRsakQRtbl)
24 y[, ]leiTJleIT‘]( E(Z_#VQ?Z)(QRsaka'uuQRtbl)

Type Q1 QrQLQr:

(’)gg)h%z Operator [38]
25 (QLpaiou Q) QR ' Qravy) R%
26 (QLpaiou QN QW o Q rik) RS
27 (QLWUMQ%(QT“JU QRrecj) RS,
28 (QLpaivu Q) (QW o Qrecr) R,
29 TIZkTI(QLpazUuQTak)(QTb]U“QRth) R%
30 T (Qrpaiou Q) QR 0" Qrecj) RS,
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31 T (QLpaio QY )N (Q1 o Q rivn) RS,

32 T (QLpaio Q) (Q WU“Qthl) RY

33 T (QmeaﬂQ*“’fx o Qv

34 Qo QN QR Q)

35 TIi TJlkTITJ(QLW%QLS )( TaJUuQthl) RQQ()

36 T T T (Qrpaio QY QT o Qrit) RS,
Type Q)" Qr%&Ql; Qr*:

(’)57%40 Operator [38]
37 Y[l 1] (QLpazU,uQLC?) (Qrrbs UMQTbJ) RY
38 y[,mmau@m )(QLrjo™ @Ln R
39 y[, ](QmeUuQLS)(QLerU“Q )

40 V2 E)Qrpaion@E ) (@Qrno Q)

41 VB, G 1 ZTI<QLWU”QLS>(QLrb]auQLt) R
42 y[7]TIJlT (Qrpaic” QLS)(QLrbquQLt)

43 VI T (Qupaio Q1Y) (Qurnyon @)

44 VL EI 9T (Qupaie? QL) (Qurnyon @)

45 y[, I T (Q Lpai o QD) (Q Lo Q1Y)

N VBT Qe QL) (Qurvy QL)

47 YL T Qi Q) (Quny Q) B
8 VEE T (QpaionQE ) Qo' QL)

49 VI E) Qo Q eat) (Qy 0w Qriny) R
50 VI, Q0% @ ons Q10 @) R
51 | B Q*‘“a“QRm)(QRTA%QRW)

52 | | QUi " Qroai) QR 04 Qruvi)

53 y[ CI T Qo Qrear) QR 0 Qrnt) RS
54 o Q*“’aMQRsaw(Qmo—u@Rtbz)

55 | T QR " Qhaa) (QRl owQrun)

56 l TI(QTQZU“QRsak)( 7 . Q Ribi)

57 Vg e T” TI(QT%MQRW)(QRT 0uQrin)

58 Vi Elr T QR o# Qraak) (QRl 0w Q)

59 V[EE,GEH)r fk@TJlJTITJ(Q}?;a“QRSQk)(QRTU#QM) RY
60 VRN T Q) 0" Qraat) (Rl 0w Qrun)

2 2 2
Pure lepton operators: including types LTL LLQ,LLQLTL ,LRQLTR ,LLLELRLTL.

(’)glh%z Operator [38]
61 VIl B (L, LY ) (Lrsi LRej) Ry
62 V[er, -}( LY & LY ) (Lrsiouw L) R
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63 y[lq J(LY LY ) (LrsiLrij)

64 y[ : 76/11/L[J LRS?'U,UI/LRtj)

65 y[m Bk TI(L*LYVLTLJ,)(LMLRU) R}

66 i ik 'TI Lprh )(LRsA LRtl)

67 V[l I kT L'/p]w ' WL psko™ L)

68 I B A L“)(L sk LRii)

69 I ik T[(L'Llp’w, Y ) (L psrd™ L i)

70 25" T’(L'LLPLE’,,,ngskLHm)

71 y[7 LR ol (LTL"']JLTL",)(LRSA,,LRH) R,

72 I I ik JLTiT (LLIpLU)(LRakLRLl)

73 V[, ](LLma,,LLS)(LLma L) R,

74 l l (LLpiop L) (Lot L))

75 Y[z, -]TZJTI (LLp,aMLLS)(LLWU LLt) Rl

76 Y[l lTl]TI Lipioy LV ) (Lot LY,

7 Yz CI7 T (L pio, LY ) (Lo LY,)

78 V[, Gl 73, i (LLPZUMLLS)(LLWJ Ly RL

79 y[- -](LH,),U#LRS)(LH,JJ% L") R,

80 v LRPZUHL}%.s)(LRT‘JU“L%‘,)

81 VI I T (Lo, L, (Lrejo"LYy)  Riy

82 ﬂ I ik TI(LRPZUMLRQ)(LR?70/‘L§%f)

83 I []t] TIAJT[(LR])lUllLR<>(LR']U ‘Lm)

84 Y[, I ™* 77T T (Lppio L) (Lpejo L) Rhg

85 (LLPZUHLTLZS)(LRTU LRtJ) Rlﬁ

86 (LLpZUMLLS)(LRTU Lrs) R,

87 Tt (LLPlO—IILLS)(LR]IJuLRf]) Rl7

88 T (LLI)IU#LIL];)(L;?l,rgﬂl’mk) Rl

89 T (Lo, LYY (LY ot Lgy)

90 i Iy T (Lo, LYY (LY o Ly R,

Type Q}QRLTLLM
(951}11%2 Operator [38]

91 (LEZPLRN)(QLS QRtak) R?;
92 (LLPU[,LVLR’I"Z)(Q UuuQRtak) Rég
93 (LprRT])(QLs QRtal) Régl
94 (LEPU;WLRTJ)( Tajo"u QRtaz) Rst
95 TIlkTI(LTLZpLRm)(QLS QRtal) Rg?
96 7'UkTI(LJr O',uuLRm)(QLS UuVQRtal) ngl
97 [] T[(LTLIPLRrJ)(CQT”kQRI‘(LA) RQQE,l
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a ng l
98 [/ TI(LL[)O—/II/LRU)((JI LO_/ (2H1(1k> Rggg

99 T (L L) QL Q) RS,
100 []AT[(LIPU/U/LIH j)((yal‘o—l“/(ghfm) RQng
101 T (L L) (QUY Qrvar) R

102 i (LII)U/LI/LRI})((QTH 7" Qpial) RS

Type QQrL! L1 &Q4,QrLl,L:

(’)%}?ﬁil A Operator [38]

103 (LLsz,u Ls)(QLij Q ) Rgl
104 (LLszu Es)(QngO' QLC;Z) R%
105 T”kTI(LLszu TLs)(QLmJU”QLt ) R%l
106 I]lTI(LLplUM Es)(QLrajUMQTal) Rggl
107 TthI(LLsz',uLLs)(QngO' QTGZ)
08 7l T (Lo, L) (Qurgo QL) B
109 (LszU,u Rs)(QRrayauQRt) Rgl
110 (LRplU,u ]]L%s)(QRmJO' QTGZ) R?%l
111 T (Lryiou Ly, ) (Qrrajo Q) Ry
112 T (L gpioy L [us)((gRW}O—/,(Q}{’lf[) R?Ol
113 T (L piou L) (Qrraj o QL))

114 T A/ ]JIT T](Llaplo—/zLJt{s)((JIUGJO—IQ'”[) R?C,gll

Type Q! QL Lr&QL,QrL} Ly:

(’)ﬂ}?ﬁi% Operator [38]
115 (LszUu st)(QLra]UuQ ¥ ) R%
116 (Lsza,u Jl’r%s)(QLsz' QTak) R3Q5l
117 71, T! ([l?ngulvl] )(QINUU‘QTGZ) R%l
118 i, TI(LRJNU/I ]1s)((2[7(1] “Qlal) R%
119 ”‘IT (LRPIUN jufs)(QIm/U/l '](;[>
120 ki Ji Tl T’(LJWU/IL'RJ(Qm/ff“ ) RS
121 (LLsz,u TLs)(QRmJO' Q ) R1Q4l
122 (LLmUu TLS)(QRrazU”ngtk) ) R2Q0l
123 TIikTI(LLpiO'MLE]Z)(QRrajO"uQ}Lgtj) R?Gl.
124 TG (Lo L) (QRrago Qi) R
125 T (Lpiou L) (Qrraic Q)

126 it iT kTITJ(LLszu TLS)(QRrajUMQPfL):l) Rngl

Type QL QrL}L;

(’)?2’%4132 Operator [38]
127 (L1 Qry) (Lig, " Qo) Ry
128 (Lrpion@Y ) (LR, 0" Qriar) RS,
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129 T T (Lo Q) (LY, 0" QRiag) R,
I

130 TIZ}T (L[p/U/IQWA L' ot 'QRtal) R3QSZ
131 | (LL,),UHQT”A)@UR’ "Qriar) R
132 Th// ]]AT T ]<LLl)zglt 2“11 )(I‘ll'{z 0—/1(2111‘(1/) R3Q7l

Type Q3L: literature [40] considering only 1 generation, so operators obtained here have
a surjection relation with operators in [40].

U™

Ol33- 160 Operator [40]
133 YV[EEIHe®e® el (L1 i Q Lraj) (QLsvk @ Ltct) Ry
134 []€abc *eI (L1piQLraj)(QLsbkQLtct)

135 y[]eabc R (LrpiQLraj)(QLsvk@Ltct)

:
136 V[T abc €T T (L 1pi0 1 QLraj) (QLsvko™ QrLict)  Ro
137 y[]T”mﬁabcﬁij T (L1 Q Lraj) (QLstkQrLict)
138 y[]TllmfabceijﬁkaI(LLpiUuVQLraj)(Qstko"uVQLtcl)
139 Y []Tllmﬁabc*fij T (L1 Q Lraj) (QLsvkQLict)
140 y[]TlimTJjneabcﬁkmﬁlnTITJ(LLpiQLraj)(QstkQLtcl)
141 V[T e e* e (L pioQ rsvk) (QLrajo" QRict) RS
142 Y [] e eI (L 1pioQ rsvk) (QLrajo" Q Rict)
143 VeIl eveeltef™ T (L1 i0,Q Rovk ) (QLrajo Q Rict) Rg
144 y[]T”mﬁabcﬁjlfkaI(LLpz'UuQRsbk)(QLij“Qthl)
145 Y []T €T P (L1100 Q Robk) (Q Lraj 0" Q Rect) Ry
146 y[]T”mTJanab%kal"TITJ(LLpz‘UuQRsbk)(QLij“Qthz) Rg
147 VT eI (Q Lpaiou Lrsk ) (QLrbj 0" Q Rtcr) Ry
148 y[]5abceik6jl(QLpaiUuLRsk)(QLrbjUMQthl)
149 VT T, e e ™ T (Q L paiop Lrsk) (Q Lrbj 0" Q Recl) R
150 y[]TlimeabcfﬂﬁkaI(QLpaz'UuLRsk)(QLrbjU“Qthl) Ry
151 y[h“m e B el (Q rpaiou Lrsk) (QLrvj 0" Q Rict)
152 y[}T“mTJ‘jnf“b“fk””f[”T[T'J(QLpaz(TﬂLmkf)(QLWU“Qm(:/) Ryo
153 V[T e® et (L ppi@Q Rraj) (Q Rtk @ Rect) R3
154 Yy [] e eI (L ppiQ Rraj) (Q Rsbk QRict)
155 N% [] e eI (L ppiQ Rraj) (QRsvk Q@ Rict)

:
156 Y[l 71/77('1""61*76/"’""'11[ (LRpi®uvQRraj)(QRstk0" QRrict)  Ra
157 y[]T”nzf'"b(’fjjfm’T[ (L RpiO v QRraj ) (QRsokd™” Q Ricl)
158 Y []T I e®e€ld T (L ppiQ praj) (Q Rtk @ Rect)
159 y [}T”m T F T (L ppiQ Rraj) (Q Rsbk @ Rect)

:

160 Y [Hm 777 ,€P " T T (L i Q Rraj ) (QRsbk @ Rtct)
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C On-shell amplitude basis

In this section, we present operators’ amplitude basis, in which spurions are treated as part
of gauge factors and are written as T; = T,

Type UhD*:

50113 §1214) (34)2[34)2
50113 §T214) (34)2[34)2

§Tlaghals §1sIs T T ) (34)2[34]?
§Tlagl2ls 5Isls T ) (24)2[24]?

¢4

¢4T2

H*TH | (611 512ls 51317 5Tals T T T7 T ) (34)%[34]2
51211513155 (34)2[34)
512145115 75) (24)2[24]

(
(
(
(
(
(
(
h¢3T2 (512[56]3[41(3':[\ T )(24>2[24]2
(
(
(
(
(
(
(

h¢3T

h?T3 | (672155716 §1aln T 5T T ) (34)2[34]2
o781 (34)[34]?

§7sT)(24)[24]?

61305 514165 T6) (34)2[34]2

61305 514165 T6) (34)2[34]2

h2 ¢2

h2¢2T2

h3¢T
h4

5155 (34)2[34)2

34)°[34]°

Type X2Uh:

Bp? 12>

12
512 >

(

[

( (1

( [12]”

(67172)(12)
WR2 (51112)[ 2

(

(

(

(

)
5A1A2)
{

2]
6121373 (12)2
6L Ty)[12]°
§hils §lzlamyT ) (12)2
511135 la T Ty ) [12)2

Type XUhD?:

Wirhe? | (el11311)[34](13)(14)
hd*Wr | (e"27314)[24][34](23)
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Bph¢*T

Islals ) (34](13) (14)

(¢
h¢?BrT | (e21355T5)[24][34](23)
Wihg*T | (571116%75T5)[34](13)(14)
h*WrT | (67274673157 5)[24][34](23)
Wi he*T? | (57175 l3 141575 Tg)[34](13) (14)
he?WRT? | (61215 ¢l31416 5 T) [24][34] (23)
Type X3:
(fAr424)(12)(13)(23)
3 | (P 2)[13][23]
(ehl213)(12)(13)(23)
(el 213)[12][13][23]
(el21314T) (12) (13)(23)
(el2Is1ay)[12][13][23]
Type ¥2UhD:
QuhoQl | (321(77%);!)[34)(13)

b | (67081677 T5)(34](13)
GROOLT | (gt () T 34(13)
QLhdQ}T? | (521673%6575M (M) T Tg)[34](13)
QLhoQr | (624(77);")[34](13)

; (67004675175 [34](13)
QrhoQRT (§04TsT5K (1 )ZT5)[34]<13>
QLh¢QRT? | (534673%6575M (M)A T Tg)[34](13)
Type Y?UhD?:
; (5;;53;51112)<34>[34]2
PR | el (r1 a2 o1
(9730530 M AT [34] (24) 24
. (32261 M §12T5 (M )T ) (34)[34]
PQLORT | Saugrant iats (7)1, 34 24) 4]
(8216772 (1) D5 [34] (3, 4)[34]
(604512N el IsN (716 T5T6)[34]<24> 24]
$*QLQRT? | (821615 l2loN (1 >T5T613><34>[3412
( a45I1I5EI2IGN( )Z4T5T6)[34]<24>[24]
¢2QTLQRT3 (5a45111551216( 17)2;‘T5T6T7)<34>[34]
i (024(72);0)(34) [34]2
MOQLER | (o (12)14) 34 24) 24
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((5a461215K( )Z4T5)<34>[34]2
t (—oasel2lsK (rK) A5 ) [34](24)[24]
h¢QLQRT ( 33524(51512T5)<34>[34]
(—0a4514 51125 ) [34] (24) [24]
i (0487215 (718) 2 T5 T ) (34) [34]
NOQUART™ | i siats (r1o) b, ) 34]24) 24
h?Q1Qr | (9]16a1)(34)[34)2
R2QLQRT | (24(775) T5) (34)[34)?
Type Y?UhX:
QLQrBr | (—02022)[13][23]
QLQRBRT | (022 (") T4)[13][23]

QL QrGR | (=07 (\2)21)[13][23]

QLQRGRT | (—(M19)2 (r11)2Ty)[13][23]

QLo | IR T 5]

11 ~a1

(=
(=
(=
(=
QLORWR | (=082(r");?)[13][23]
(=
(=
(

5’25“25131@4)[13] [23]
QTLQRWRT2

5(12513[46]5M( )ZT4T5)[13] [23]

2
Type Q} Qr*:

0[2 [2] (6135145(135(14

G
A 7(6:365683053)] ]
513 514 5(13 50,4
. ww%;;;;ﬁ }
Cr Cr { ]{1 (52,523153252)[12 [34]

11 12 a1 a2

11053003 0g3) | ]
)| ]
)l ]

3f4
1
3f4
{ ]{1} (5135%45%5(14
1
f
1
f

]
]
]
]
]
]
{11 ’i] {1 (553531*53?533 12][34
C{21 f[22]f3 4(6? 52;153? 63; 1?:] [24
5 Jife 4(6235555%@57)5)[12][34]
{2{[1f3f4 (62 5;72 5;151 (T5T)Z) [13][24]
il S L
{2{[1f3f4 (52 5Zi 5Zi ($57—)Z) [13] [2;1]
2, {2{[1f3f4( 21 32 22( 57—)22)[12][3 ]
L Qr°T {1 T pa g (012003004 (T57);4)[13][24]
{fi ; LT 121
e e 1o
{1]%] 3 4( 21 ZQ ZQ( 57')2)[12][34]
f1f2 f3fa (6Zf5a§ 5a§ (T57)12) [13] [24]
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Ol Comos Tamiales
Clttag, (011 0a30a5 (T57) 5 ) [13][24]
0}1[{” (623081 (T57) i (Ter)14)[12][34]
Q1% Qn?T? C%iﬁmlfiﬁ[gsffsg ﬂ;ﬁ(;f@;;)igmnzzx]
8 A P
Chl bt (053002 (T57)2 (Ter);1 ) [13][24]
Type: QLQLQLQr
(072 012 051021)[34](12)
1514501 594)[34](12)
Quakalen | it
(25701 604) [34](12)
(012041041 (T5)12)[34](12)
(61362150 (T5m)21)[34](12)
P (116182 (T57)14)[34)(12)
Qu@rQLORT | i 5ol jos (170 34)12)
(61462603 (T57)11)[34)(12)
(51501503 (T57)21)[34)(12)
031044 (T57);2 (Ter);2 ) [34] (12
QR | o o2
T T2 2 T2 2
ype Q; Qr°&Qpr Qr
R
QLQQTL2 ][cllfl] 131?(6”522533524)[34](12)
1f2 dfjl(éﬁégéz%ég)[?,zl](12)
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