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ABSTRACT: In holographic theories, the reflected entropy has been shown to be dual to
the area of the entanglement wedge cross section. We study the same problem in ran-
dom tensor networks demonstrating an equivalent duality. For a single random tensor we
analyze the important non-perturbative effects that smooth out the discontinuity in the
reflected entropy across the Page phase transition. By summing over all such effects, we
obtain the reflected entanglement spectrum analytically, which agrees well with numerical
studies. This motivates a prescription for the analytic continuation required in computing
the reflected entropy and its Rényi generalization which resolves an order of limits issue
previously identified in the literature. We apply this prescription to hyperbolic tensor net-
works and find answers consistent with holographic expectations. In particular, the random
tensor network has the same non-trivial tripartite entanglement structure expected from
holographic states. We furthermore show that the reflected Rényi spectrum is not flat, in
sharp contrast to the usual Rényi spectrum of these networks. We argue that the various
distinct contributions to the reflected entanglement spectrum can be organized into approx-
imate superselection sectors. We interpret this as resulting from an effective description
of the canonically purified state as a superposition of distinct tensor network states. Each
network is constructed by doubling and gluing various candidate entanglement wedges of
the original network. The superselection sectors are labelled by the different cross-sectional
areas of these candidate entanglement wedges.
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1 Introduction

Understanding the entanglement structure of holographic states has played a significant role
in demystifying quantum gravity and the emergence of spacetime. In particular, quantum
error correction has served as a useful paradigm for explaining various features of quantum
gravity including the holographic principle [1, 2], the Ryu-Takayanagi (RT) formula [3—
6] and subregion duality [7-9]. In particular, random tensor networks [10], which are
understood to model fixed-area states in holography [11-13], have been particularly effective
in capturing non-perturbative gravitational effects.

While calculations of the von Neumann entropy have led to most of the insight into
holography, it is useful to consider other quantum information (QI) quantities in order
to give a more complete picture of the emergence of spacetime from entanglement. For
example, von Neumann entropy cannot discriminate between different kinds of multipartite
entanglement. In this paper, we will focus on a quantity called the reflected entropy, Sg(A :
B) [14], defined for a mixed state pap on two parties A, B. Sr(A : B) is simply defined
using a canonical purification M/@} interpreted as a pure state on the Hilbert space
of linear matrices, a familiar operation in the context of going from the thermal density
matrix to the thermofield double state [15]. This Hilbert space hosts a doubled/reflected
copy of the A, B parties and Sg(A : B) is defined as

Sr(A: B) = Sun(paa+)| /pas): (1.1)

the von Neumann entropy of the canonical purification reduced to AA* where A* is the
reflection of A. We will review the definition in more detail and recall some basic properties
of Sr(A : B) in section 2. While an operational interpretation of Sg(A : B) is lacking, and
its broader status as a quantum information measure is not yet clear (see ref. [16] for some
recent progress), reflected entropy has the advantage that it is computable using various
analytic and numerical techniques.

Further, reflected entropy is of particular interest in holography, due to its relationship
to the so-called entanglement wedge cross-section [17], the minimal area surface I'4.p in
the dual bulk geometry that divides the entanglement wedge of AB into two parts a and
b, one bounded by A UTI' 4.5, the other by BU I 4.p as shown in figure 1. Using similar
arguments to Lewkowycz-Maldacena (LM) [18], including a key assumption about the
possible dominating saddles for the Euclidean gravitational path integral, it was shown in
ref. [14] that:

Si(A: B) = 2EW(A: B) = min 22r¢U4:8)
T'a.B 4G N

up to O(1) corrections in the small G expansion, where G is Newton’s constant. Here,

(1.2)

we have restricted to the time-independent setting although there is a simple generalization
to time-dependent situations using a maximin formula [19, 20].

Why should one expect eq. (1.2) to be true? An intuitive proof, also discussed in
ref. [14], is that |\/pap) is dual to two copies of the original entanglement wedge, glued along
the RT surface as depicted in figure 1. The entropy Sr(A : B) then equals 2EW(A : B)
by the RT formula and symmetry.



(a) (b)
Figure 1. (a) A spatial slice of AdS with A and B chosen to be two intervals. The figure depicts
the entanglement wedge of AB (gray), the entanglement wedge of C' (green), the RT surface yap
and the entanglement wedge cross section I'4.p. (b) A spatial slice of the proposed holographic
dual to the canonically purified state |\/pap). The RT surface for AU A* is given by a doubled
copy of the entanglement wedge cross section.

The relationship eq. (1.2) provides another example like the RT formula, relating a
hard-to-compute information theoretic quantity to the area of a bulk surface. As such, it
has already given new insight into holographic CFTs, for example demonstrating the large
amount of tripartite entanglement required [21], a feat that could not be accomplished with
the RT formula alone [22]. Also because of eq. (1.2), the reflected entropy provides a novel
measure of the connectedness of the entanglement wedge. If the entanglement wedge jumps
discontinuously as a function of some parameter, the reflected entropy jumps accordingly
by an amount O(1/Gy). This jump is in sharp contrast with the large- N phase transitions
of entanglement entropy that arise in AdS/CFT, which are continuous.

In this paper, we begin to explore the non-perturbative physics that describes such
a discontinuity using toy models. That is, we compute the reflected entropy near such
a phase transition, paying special attention to how non-perturbative effects smooth out
the transition. In our random tensor network models, we will find a sharp, continuous
transition analogous to the Page curve [23], which reproduces the expected discontinuous
transition in the limit that the bond dimension goes to infinity.

At the same time, we aim to test the assumptions that led to the relationship eq. (1.2).
Such assumptions were recently shown to be delicate, even in the case of the RT formula,
and leading order corrections to the RT formula were found in certain setups [24]. Here
we will find significant non-perturbative effects away from the EW phase transition, most
notably when computing the (m,n)-Rényi reflected entropy (a generalization of reflected
entropy which we define below in section 2), where new saddles are important beyond the
previously discussed, naive saddles. We will show that these effects go away as n — 1,
giving back eq. (1.2).

We will start by working with a simple model of a single random tripartite tensor, which
turns out to be perfectly tractable analytically. It models a three-boundary wormhole with
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Figure 2. “Page curve” of the reflected entropy, for a single tripartite random tensor with bond
dimensions x4, xB, Xc- The blue curve corresponds to the infinite bond dimension limit, x — oo.
The other curves correspond to large but finite bond dimension, correctly limiting to the blue curve
as the bond dimension increases.

horizon areas fixed to a small window [11-13] and a large interior. This results in an
entanglement wedge (EW) phase transition as we tune the bond dimensions (the horizon
areas). The “Page curve” for such a transition has the characteristic jump in reflected
entropy shown in figure 2. We then work with hyperbolic tensor networks, where the
results are harder to control. Nevertheless, we extrapolate lessons from the simpler models
(since they show many similarities with the larger networks) to compute the reflected
entropy in these models as well.

In this paper we will also study the reflected entanglement spectrum, defined as the
spectrum of psa+ as well as a two parameter family of generalizations called the (m,n)-
Rényi reflected entropy:

Sg”’")(A :B) = — In tr(Pfan*)nv (1:3)

n—1
where IO,(AT)Z{)* is the reduced density matrix on AA* associated to the state | p%é2> after
normalization. The (m,n)-Rényi reflected entropy for integer n > 1 and even integer
m > 2 is computed at intermediate steps in the replica trick, and can also be used to
extract the reflected entropy by analytic continuation:

Sr(A: B) = lim lim S7""(A: B). (1.4)

m—1n—1

These detailed quantities give further insight into our results.
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Figure 3. The reflected spectrum in the single tensor model has two superselection sectors corre-
sponding to the disconnected and connected phase respectively.

We now summarize some of the main points in the paper:

o For the single tensor model, we prove some general results for the (m,n)-Rényi re-
flected entropy, including various continuity arguments as a function of m which
establishes independence of m away from the phase transition. These will serve as
checks on our later computations, and help motivate the prescription we use to ana-
lytically continue in (m,n). We then describe the phase diagram of dominant saddle
points at integer m/2,n. See section 3.1 and section 3.2.

e In the single tensor model, we use a Schwinger-Dyson re-summation method simi-
lar to [25, 26] to compute the reflected spectrum. We make an assumption about
the class of diagrams that dominates, and prove this to be correct in various limits.
The reflected spectrum thus obtained has two main components: a single eigenvalue
representing the disconnected EW phase, and a broad peak with exp(2EW (A : B))
eigenvalues representing the connected EW phase. These two contributions are al-
ways present irrespective of the relevant phase, but their respective weights move
around as we tune the bond dimensions in the tensor network. They make dominant
contributions to the reflected entropy in their respective phases. We show a cartoon
of the reflected spectrum for the single tensor model in figure 3. See section 3.3 and
section 3.4.

e Based on the above we argue that near the phase transition both sets of eigenvalues
contribute. In the single tensor, the reflected entropy takes the form:

2
Sr(A:B)=—polnpyo —piInp; +p (lnxi - 2XX’3> + O(XZ?B) (1.5)
B

where xx > 1 are the bond dimensions for X = A, B, C' and the classical probabili-
ties are:

c c
po = X 2 F1(1/2,-1/2;2; X ), p1+po=1. (1.6)
XAXB XAXB

We argue that these results can be understood as arising from an effective description
of the entanglement structure for the canonically purified state as a superposition
of tensor networks states. Here, one state is described by a doubled random tensor



network, representing the connected phase, while the other tensor network is trivially
factorized:

A B A B A B

PAB ~ A/ P1 + \/Po . (L)

A* B* A* B* A* B*

The two terms are weighted by the associated probabilities pp and p; = 1 — pg. The
reduced density matrices on AA* are approximately orthogonal, so these represent
(approximate) superselection sectors' with an associated area operator:

Laa= P Son(é) (1.8)

s=0,1

where (1 ~ 1AA*/X,24 and (o = [1a/xa) (1a/xal. We also check the above results
against numerics. See section 3.5 and section 3.7.

o For the hyperbolic networks we compute S&m’n) (A : B) at large bond dimension x
and at integer m/2,n by looking for dominant saddle points in the effective spin
model that computes the Haar random average. There are potentially many com-
peting saddle points, so this turns out to be a difficult problem. However when the
entanglement wedge is in the connected phase we conjecture, by analogy to the single
tensor, that two types of saddles give the main contribution for all n,m/2. These
phases were not accounted for in the original discussion of ref. [14]. However, the
difference to the naive approach does not show up in the reflected entropy Sg. The
(m,n)-Rényi reflected entropy in the connected phase (x > 1/2) can be written as:

aeg (A, B)

SU™™(A: B) = min (1.9)

In x X ming< <4, {2./4 + % In cosh(A, — A)}

where A4, = In % and I(A,B) = 2InxIn(1 — x)/z is the mutual information.
The first term arises from a disconnected saddle, that is still present in the connected
phase, while the second term represents the connected saddles. The area A, repre-
sents the cross-sectional area of the AB entanglement wedge. While A represents
the cross-sectional area of a “pinched” entanglement wedge which arises due to the
non-trivial tension of the entanglement brane, when n > 1.

IThese are also sometimes referred to as a-blocks or a-sectors.



We can again give an interpretation of this result using a superposition of networks,
analogous to eq. (1.7):

where the state described by each side of this equation have the same S%mm). The
tensor networks on the right hand side are doubled and glued networks similar to
those discussed in [27]. The probabilities above can be read directly from eq. (1.9)
and we will further expound upon the meaning of these pictures in section 4.

o Our results will resolve the order of limits issue pointed out in ref. [28]. In particular
if one applies the naive LM-like saddle point analysis in the limit (m,n) — (1,1) then
the “wrong” phase can dominate if one takes the limit m — 1 first and then n — 1,
leading to a formula different from eq. (1.2). This later formula fails several quantum
information bounds, so one can rule out this order of limits on these grounds. However
a better understanding of this issue and justification of eq. (1.4) is desired. In fact
we will show that no such order of limits issue occurs after we give a prescription for
continuing the (m,n)-Rényi reflected entropies from m > 2 to m = 1. We will give
evidence for this prescription based on the single random tensor, and show how it is
consistent with a more general set of QI bounds.

We start now with section 2, where we review reflected entropy and random tensor net-
works and make a first pass at computing Sr(A : B) in those networks, reviewing the usual
large bond dimension, leading saddle computation, analogous to making the Lewkowycz-
Maldacena (LM) assumption. We will then explain the deficiencies of this calculation.
After this we move onto the results summarized above. Section 3 focuses on the single ten-
sor case while section 4 moves to more complicated networks. In section 5, we discuss these
results and future directions. Several appendices support our calculations, most notably
appendix B where we give a proof of the phase diagram for the single network case.

Our focus in this paper is on reflected entropy in random tensor networks. In a
complementary paper [29], we will explore the reflected entropy transition in the PSSY
model of Jackiw-Teitelboim gravity and end-of-the-world branes.

2 Setup and a first pass

In this section, we introduce the basic ingredients that go into our calculation. In sec-
tion 2.1, we review the definition of reflected entropy and its Rényi generalization. In
section 2.2, we review the construction of random tensor networks which will be the set-
ting for our main calculations. In section 2.3, we review the replica trick calculation for



reflected entropy, originally discussed in ref. [14]. While their discussion was in the gravita-
tional context, we rephrase it in terms of the random tensor network which have analogous
features. This then leads us to section 2.4, where we attempt to calculate the reflected
entropy using a naive saddle point approximation. This works in certain regimes, but isn’t
a completely satisfactory solution in the entire parameter space. We point out various
issues with the calculation, which will then be resolved in section 3.

2.1 Reflected entropy

The reflected entropy Sgr(A : B) is a function defined for a density matrix psp on a
bipartite quantum system AB. One first considers the canonical purification of pap on a
doubled Hilbert space

IV/paB) € End(Ha) ® End(Hp) = (Ha® HY) @ (Hp @ Hy) | (2.1)

where the space of linear maps End(H,4) acting on H 4 itself forms a Hilbert space with
inner product (X|Y) = tra(X'Y). In general End(#) is isomorphic to the doubled copy
H ® H*. In other words, define |\/pap) by finding the unique positive matrix square root
of pap, regarding the result as a state in End(H4 ® Hp).

The reflected entropy is then defined as:

Sr(A: B) = S(AAY)| joag) = Sun(paa<),  paar =Trpp« [\/paB) (Vpasl, (2.2)

where S, is the von-Neumann entropy.
For our purposes, it will be useful to consider a two parameter Rényi generalization,
based on the following state:?

™) = (Trplip) ™2 |04 ) - (2:3)

The Rényi generalization is then given by

Sp"(A:B) = ———7In ()", P = To, Trpp-

Pt ) (Pt

for m > 0,n > 0. We will refer to this as the (m,n)-Rényi reflected entropies.

, (24)

The reflected entropy satisfies various properties that make it a useful measure of
correlation. Of these, an important condition that will be useful for us is continuity [21], i.e.,

|SR(A : B)pay —Sr(A: B)gap| < 4V2Taplogmin(da,dp) —2v/2Taplog(Tag), (2.5)

where Ty p is the trace distance between the reduced density matrices pap and og4p and
da p is the dimension of the Hilbert space of A, B respectively. Another useful property is
that the reflected entropy is upper and lower bounded by

I(A: B) < Sg(A: B) < 2min(S(A), S(B)), (2.6)

where I(A : B) is the mutual information between A and B.

2Note that |z/)<m>> is no longer a purification of pap.



Figure 4. (a) We tile the hyperbolic disk isometrically by a graph. Each blue circle represents a
random tensor and the connecting edges indicates contraction of the tensors. This tensor network
defines a state on the Hilbert space spanned by the dangling legs on the boundary. (b) The Ising
domain wall that arises in the calculation of Rényi entropies of region A in the RTN. Minimizing
the length of the domain wall gives rise to an entropy formula that corresponds to the RT formula
in AdS/CFT.

2.2 Random tensor networks

Here we quickly review random tensor networks (RTNs). For more detail, refer to ref. [10].

Consider a graph G = {V,E}. For each vertex € V we assign a rank-k tensor
T iy pio--pi » Where the indices p; label the edges connecting the point z. Thinking of each
connecting edge as a Hilbert space H; spanned by basis vectors |u;), the tensor T, defines
a state

Te) = Tz [12) [12) - |1k) (2.7)

on the product Hilbert space of each edge @), H;. For simplicity, the bond dimensions x of
the individual edge Hilbert spaces are chosen to be the same. To define a tensor network,
we contract all the adjacent vertices among their shared common edges

( ® <my|) (®m). 2.8)

{zy}eFE zeV

Here |zy) = 5#1#} 1) |p;) is an un-normalized maximally entangled state defined on the
doubled Hilbert space of the edge (xy) where the i-th index of tensor x is contracted with
the j-th index of tensor y.

While we can work with a general graph, we will often be interested in models of
AdS/CFT, where it is natural to pick a triangulation of two dimensional hyperbolic space,
thought to represent a fixed time slice of the AdS3 spacetime, see figure 4. At the boundary
of the network (at a cutoff region near the boundary of hyperbolic space) we leave the edges
un-contracted and think of the resulting network as describing a pure state in a Hilbert



space associated to the dangling legs Hy.

) = ( R <wy|) (@ m») c Ho. (2.9

{zy}€E\0 zeV

For RTNs, we demand the tensor |T;) is sampled from a uniform random ensemble on
the tensor Hilbert space. This can be achieved by acting with a unitary matrix U, picked
from a Haar-random measure on some fixed anchor state |0,). Then the average over such
a measure can be readily done using Schur’s lemma [30]:

(V) VD = [(DU] (U2 102) (0,1 U)o - g (2.10)
9z €Sm

where g, is a element of the symmetry group 5,, whose action is to permute the contraction
edges of the m-replicas. The state |¥) is unnormalized. Normalization can be achieved
“on average” by dividing by the average of the norm of |¥). At large bond dimension this
procedure is sufficient for our purposes.

We now consider a factorization of the boundary Hilbert space as Hy = Ha ® H .
The m-th Rényi entropy of subregion A can be written as the expectation value of a twist
operator ¥ 4(7,,) which acts on the tensor product of m copies of H 4. The twist operator
cyclically permutes the different copies of H4 and we label this operator 7,,, € Sy, the
cyclic permutation element in the symmetric group S,,. After averaging and normalizing
as described above one finds at large bond dimension:

Zm(A) = Traphy = (U[*" Sa(rn) (W)= Y exp [—lnx > d(gx,gy)] (2.11)
{92€Sm}b.c. {zy}€E

which is a classical Ising-like model with nearest neighbor interaction where each “spin”
takes value in the symmetry group S,,. The interaction strength is given by the Cayley
distance

d(g,h) = m —#(gh™") (2.12)

where #(-) is a function that counts the total number of cycles of a group element, including
trivial cycles that map a given element to itself. We summarize various useful results for
the symmetric group in appendix A. The boundary conditions on the sum {g, € Sy, }p.e.
are dictated by the presence of the twist operators, i.e. we impose g, = 7, on boundary
region t € AC dand g, = e on x € A = 9\ A. In the case of large bond dimension, the
Ising model is in its low temperature limit and is localized to its ground state. The field
configuration in this limit is given by domains of group elements 7, and e, separated by a
domain wall as shown in figure 4. Minimizing the energy of this domain wall, we recover
the usual RT formula for entanglement entropy. At large bond dimension we do not need
to worry about taking the logarithm since:

1 (l Trp'y )N 1 Trp'}

L—m\" (Trpa)™/) 1—m " (Trps)"

Sm(pa) (2.13)



Note that the above calculation gives the same results for the Rényi entropies S, for
all m > 0. The entanglement spectrum for the RTN is therefore flat, which is clearly
not true for generic holographic states. Instead, RTN have been interpreted as models of
fixed-area states in such theories [11-13]. Generic holographic states can be obtained as
a superposition of fixed-area states. Later we will see such superpositions naturally arise
from the canonical purification without adding this structure in by hand.

2.3 Reflected entropy for RTNs

To set up the calculation for reflected entropy, we now divide the boundary into three
different regions {A, B,C}. As a simple example, we take both A and B to be connected
intervals and trace out C' = AU B to get the reduced density matrix pap. The first step
is to construct the canonical purification in the doubled Hilbert space

paB = |\/paB) (V/paB| = papa-p- (2.14)

where the A* (respectively B*) is the canonical purified counterpart of the original region.
We will achieve this by first computing the (m,n)-Rényi reflected entropies defined in
eq. (2.4). This is possible using a similar Ising-like model, for integer n > 1 and even
integer m > 2. We introduce two group elements g4 € Sy, and g € Sy, below that
act as twist operators needed to compute the (m,n)-Rényi reflected entropy. Using the
same procedure as above, including an appropriate normalization that works at large bond
dimension, we find:

(157 (a:) _ (YI®"™EA(94)EB(gB)[V)E

Zm,n(A7B) =e (<\I}’®m2AB<Tm)|\II>®m)n

(2.15)

= (Zm(AB))™ Y exp [— Inx > d(gx,gy)] (2.16)
{92€Smnt}y.c {zy}eE
where the new boundary condition on the sum, denoted b.c.’, imposes g, = ga for x € A,
gz = gp for x € B and g, = e for x € C.
We now describe the group elements of S,,,,. For a detailed derivation of these twist

operators see ref. [14]. Denoting a specific replica by («,3), where « = 1,--- ,m and
B8 =1,---,n, we represent the elements in S,,, in the following notation:
, , a,l- a=1
fim e g i (a0, 8) = ( 2 . teS, (2.17)
(,8)  a#i

and similarly:

(K'Oé,ﬁ) /B:j
(c, B) B#J

The group elements that permute the regions A, B can thus be written as

gp =I5 ga= (" (H Tiﬂ;ln) T (2.19)
j=1 j=1

~10 -



Figure 5. A graphical representation of g4 and gp. The individual circles each represents the m
replicas of the original tensor and each of the circles is further replicated n times. Going clockwise
in each circle increases the m replica number and going to the next circle on the right increases the
n replica number. A cycle of the permutation is represented by a closed directed loop. The element
ga can be thought of as cutting open the m-circles of gg from the middle, shifting the bottom half
cyclically in the n direction (as the red arrows) and then gluing them back together.

where 7,,, 7, are the respective full cyclic twist operators on .S,,, S,. If we define

m/2
by = [ i (2.20)
=1

as the group element corresponding to the full n-cyclic permutation in the lower half replicas
[ > m/2, we can express g4 as a conjugation of gp such that

9A = V9B (2.21)

where it is useful to note that conjugation relabels the elements while preserving the cycle
structure.

Since these definitions are a bit complicated to unpack, we introduce a graphical vi-
sualization for elements in Sy,, in figure 5. We represent each column of replicas with the
same n index by a circle. We will sometimes refer to this as a puddle. The same circle is
then repeated n times to make the full mn copies for g to act on. Each individual replica
(including both a bra and a ket) corresponds to a dot on the circles — there will be m
dots on the circle. The action of g € S, is represented by drawing directed closed loops
corresponding to the cycle decomposition of g. For each circle we denote the upper half to
be the 8 =1,---,m/2 replicas of the column and the lower half to be 5 =m/2+1,--- ,m.
The action of conjugation by ~, is simply cutting open each circle along its middle line,
making a cyclic permutation on the lower halves, and then gluing back together.

- 11 -



The intuition behind these specific elements is that gp cyclically permutes the ele-
ments in each puddle, computing Trp"}'s. These puddles have a specific Zy symmetry that
exchanges the lower half and upper half. It is useful to think of this symmetry as a time
reflection symmetry. Cutting open the traces at fixed points of this Zy action will give
the canonical purification ’ pZLé2>. Then relative to gg we introduce into g4 two n-twist

operators, T,[lo]m and (7, Dl™/4m that compute the n-Rényi entropies and live at the fixed
points of this Zo. The two twist operators correspond to A and A* respectively, so putting

this together it is clear that we are computing Tr(pfa)*)”.

2.4 The naive saddles

We now consider two natural saddle points, i.e. domain wall configurations for the Ising
problem that arose in computing the (m,n)-Rényi reflected entropy. These saddles are
the tensor network analogs of the saddle points that were considered in ref. [14] and used
to prove the correspondence in eq. (1.2). These were also interpreted as arising from the
gluing construction of refs. [31, 32], which has a natural analog in the tensor network
case [27].3 In particular, these saddles are analogs of the LM saddles [18] used to compute
Rényi entropies in AdS/CFT.

With the above results at hand, we are now ready to make a first-pass calculation of
the reflected entropy in RTN using the saddle-point approximation. We remind our readers
that the presentation in this subsection will be schematic and brief, merely touching on
the issues that arise during the calculation. We return to those issues with a more detailed
treatment in section 3 after our study of the one-site tensor model.

Imposing the boundary elements to be g4 on region A and gg on region B and allowing
the corresponding domains to propagate into the bulk, we immediately identify two possible
geometrical saddles (see figure 6). The first saddle is characterized by each region bounded
by its minimal homology surface (we call this the naive disconnected saddle). The second
saddle features a non-trivial entanglement wedge, with the minimal wedge cross-section
marked as the domain wall for g4 <> gp (we call this the naive connected saddle). The
tensions of these domain walls are found from the Cayley distances:

d(ga,e) =d(gp,e) =n(m—1), d(ga,g8) =2(n—1) (2.22)

Assuming the naive disconnected saddle dominates and doing a simple analytic contin-
uation to (m,n) — (1,1) one finds that the reflected entropy vanishes, while a similar
procedure for the naive connected saddles gives a reflected entropy proportional to the EW
cross-section. It is then expected that as we vary the size of regions A, B, one of the two
solutions gains dominance over the other, with a phase transition at some critical size.
Furthermore, one can verify that the transition point occurs right at the point when the
RT surface of AU B jumps. Hence the conjecture “Sr(A : B) = 2EW(A : B)” seems to be
true in RTN.

3This was one of several methods suggested for proving the correspondence in ref. [14]. The other method
is studying the modular flowed correlators, which doesn’t obviously extend to the tensor network case.
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(a) The naive disconnected phase. (b) The naive connected phase.

Figure 6. Two naive solutions for the bulk spin model. The white region indicates the identity
permutation e.

We do expect that our construction of the two semi-classical saddles works well when
the bulk is far from the transition point, where the sum in the partition function is strongly
dominated by a single saddle. However there are several issues that arise from this proposal:

e This construction fails to correctly account for the n-Rényi reflected entropies at
m = 1 even away from the phase transition. To see this consider the difference in
free energies of the two saddles:

AF = Fyisconn. — Feonn. = Inx x (n(m — 1)y, — 2(n — 1)ley) (2.23)
1-— 1++v1-—
i = 2% g —mi PV T (2.24)
x NZa

where x is the conformal cross ratio of the end points of the boundary intervals and
x < 1/2 in the connected phase. Here /,,; is the difference of lengths for the RT
surfaces that compute the mutual information in the connected phase. Also £y is
the length of the cross section. We have approximated the discrete network by a
continuum in order to write simple formulas. If we treat these saddles seriously for
all (m,n) then we find the Rényi entropies for n > 1 at m = 1 are dominated (have
smaller free energy) by the disconnected phase and thus vanish to leading order in
In y. Taking the limit n — 1 after setting m = 1 gives 0 for the reflected entropy
even in the connected phase. In particular this indicates an order of limits issue that
was first pointed out in ref. [28]. This answer is not obviously inconsistent, however
we will argue that it is nevertheless incorrect.

o While the two bulk solutions are legitimate saddles at integer (m/2,n) and each
carries physical significance, it is not obvious that other semi-classical bulk configu-
rations do not dominate over these. In fact as we will see section 4, there will be a
new class of solutions featuring a new group element X € S,,, that can dominate
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the partition function. We will see how this new element interacts with the existing
solutions, and we will argue that phases involving X are the correct ones for com-
puting the Rényi entropies at m = 1.* These solutions do not have the same order
of limits issue above.

e At the phase transition there is considerable uncertainty with how to proceed. So
far the calculations we discussed were based on some fixed integer replica number
n,m > 1. To obtain the reflected entropy we need to analytically continue n,m — 1.
While the solutions we obtained above work w independently, we need to include
both of them to make a phase transition. However simply summing the two saddles
is known to lead to incorrect results [35]. The simplest issue that arises is from the

normalization. Sending n — 1 we expect:

VraB) (Vpagl) (2.25)

However since we view the two bulk solutions as independent from one another, each

1 =trpaas = tr (trpp=

of them contributes unity to the trace exactly at the phase transition. Adding those
up we obtain a paradoxical result trpsa+ = 2. It is clear that we should somehow
treat the two seemingly different saddles as limits of a more general class of solution.

e Indeed, around the phase transition point we expect there will be other previously
sub-leading saddles that will smooth out the sharp transition. A notable example for
such effect is the calculation of entanglement entropy for two disjoint regions [36, 37]
(see also ref. [25]), where a summation over a larger class of group elements called
the non-crossing permutations is performed. In our case the problem is harder due to
the appearance of the domain wall g4 <> ¢gp in our bulk solution. However when we
include a summation over a larger set of saddles, we also expect to find a smoothing
out of the reflected entropy phase transition.

The above issues suggest we need to sum over a larger set of non-trivial bulk saddles.
However, the bulk geometry is complicated, and it is not a priori obvious how to construct
these solutions. To make our life easier and also to improve our understanding of the
underlying mechanics of the RTN calculation, we will warm up in the next section with a
toy model consisting of only a single random tensor. Being a simpler model, we are able
to perform an analytic computation of the full entanglement spectrum of the canonical
purified density matrix. We will see that this simple model exhibits interesting behaviors
that capture and resolve many of the issues we listed above. We will return to the more
complicated network states in section 4.

3 Single random tensor

In order to resolve the issues we faced in the previous section, we will consider a much
simpler version of the problem. Consider a single tripartite random tensor 7" with bond

4While this is somewhat similar to the new “replica symmetry breaking” group elements that are im-
portant for negativity computations [26, 33, 34], the details differ significantly.
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Figure 7. (Left) A state on the Hilbert space Hapc is prepared by a single tripartite random
tensor with bond dimensions x4, xp and x¢. (Right) The three-boundary wormhole solution,
which is modeled by the single random tensor when its horizon areas are fixed to a small window.
The horizon areas of the wormhole corresponds to the bond dimensions of the single tensor.

dimensions x 4, xp and x¢ that prepares a state |1)) 4, 5 on the Hilbert space Hapc. This
setup can be thought of as a toy model for the holographic setting of a multiboundary
wormhole with three asymptotic boundaries, where the area of the mouths A4 pc are
related to the bond dimensions x4 B.c as

AaBc

e (3.1)

log xa,8,c =
by the standard relation between the bulk spacetime and the tensor network that discretizes
it [10, 38], as shown in figure 7. More so, when computing the Rényi entropy, there is an
exact correspondence (including non-perturbative effects) between the single random tensor
and the multiboundary wormhole when the horizon areas are fixed to a parametrically small
window [11-13].5

Note that in order for the connection between the single tensor and the three boundary
wormhole to be sharp, we require that the interior region is large enough that there are no
other competing entanglement wedge cross sections except the horizons of A and B since
there is no analog of such surfaces in the single tensor. It seems plausible that this can
be arranged for by adding sufficient matter in the interior to support a long wormhole like
in ref. [39].

This setup is much more tractable than the general tensor network and allows us to
understand phase transitions in the reflected entropy in detail. We will use the resolvent
trick described in [25] to compute the exact entanglement spectrum of pg4+ in the limit of
large bond dimension. This allows us to compute the reflected entropy Sr(A : B), along
with other generalizations such as its Rényi versions, as a function of the bond dimensions.

5Note that by non-perturbative effects we mean effects of O(eil/ Gn ) ~ X" for some k, i.e., power law
corrections in the bond dimension.
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We will find a phase structure that is consistent with the holographic proposal [14] for
the reflected entropy at least away from phase transitions, and the spectrum will smoothly
interpolate between the different phases.
We summarize now the various parameter ranges we will be interested in, each some
limit with x4, xB, xc > 1. We consider the following fixed parameters as we take y; large:
In x4 Inxp
" In XC = In x¢
with 0 < z4,2rp < oo. The “entanglement wedge” phase transition, corresponding to the

A

(3.2)

Page phase transition that we are mostly interested in, lives along the line z4 +xp = 1.
There are other phase boundaries along x4 = 1+ and g = 1+ x4 where the derivative
of the mutual information jumps. However, the reflected entropy Sg(A : B) does not have
interesting behavior here so we are less interested in them.

In terms of these parameters the mutual information approaches

I(A:B)_> 0, Tat+axp <1

(3.3)
In xc rat+xp—1, za4+2B>1 & Tp—1<aB<Ta+1,

in the large bond dimensions limit. Also, as we will demonstrate below, the reflected
entropy behaves like

SR(A:B)% 0, A+ <1

(3.4)
Inxo 2min(zg,xg), zat+rp>1& za—1<zxp<zsp+1.

Note the value of the reflected entropy in the connected phase matches the holographic

expectation; it is the entanglement wedge cross-section in this single-tensor model. Our

goal will be to compute this rigorously and to also study Sgr near the phase boundaries.
Consider now the phase boundary near x4 + xp = 1. Set:

qg=xaxB/xc, y=Iknxa/lnxs. (3.5)

We will explore the parameter range 0 < ¢ < oo and 0 < y < oo fixed as we send
xc — 00. The mutual information is well studied in this limit as it can be computed
from the entanglement entropies [23]. The behavior across the phase transition is generally
referred to as the Page result/transition.

There is also another limit of interest at the edge of this phase boundary which lives
near zgp = 0 and z4 = 1 where we fix xp > 1 and send x¢c — oo holding p = xa/xc
fixed and xp fixed. This limit is mostly of interest because the analytic calculation is more
tractable.

We start by proving certain results rigorously for the reflected entropy in different
regimes of parameter space in section 3.1. We then compute the phase diagram for the
Rényi reflected entropy in the saddle point approximation in section 3.2. We then analyze
the phase transitions in reflected entropy by using the resolvent trick. Before doing so, in
section 3.3 we describe the phase transition in entanglement entropy which reproduces the
Page curve as a warm up problem. This helps us establish the formalism and ingredients
required to describe the reflected entropy phase transition in section 3.4. We discuss the
results of this calculation in section 3.5 and check these against numerics in section 3.7.
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3.1 General considerations

Let us start by proving some rigorous results on reflected entropies and the Rényi general-
izations in the large bond dimension limit. These results will help guide our way through
the replica treatment of this problem.

The intuition behind the following result is that for a random state, the reduced density
matrix pap has an approximately flat spectrum, implying it is approximately proportional
to a projector at large bond dimension. This implies that the states ‘ pzll/;2> for different
m and after normalization, are close in the Hilbert space norm. This implies a certain
continuity in m for the (m, n)-Rényi reflected entropies. While continuity results for Rényi
entropies are weak, the states in question are sufficiently close at large bond dimension to
imply a useful result. We prove the following lemma:

Lemma 1. The (m,n)-Rényi reflected entropy for a tripartite random state with xco <
XAXB satisfies a continuity bound as a function of m for 1 <m <2 andn > 1:

n m,n 2n (m — 1)XC 1/2 . 2(n—1) _ 2(n—1)
SEma. gy~ smm 4. Byl < ( ) min , . (3.6
k™A B) =S A B)| < ST (R DATYaE T 60)

Also the reflected entropy (at n = 1) satisfies:

1/2
[Sp(A:B)— s§D(4:B)| <2 (Wl)xc) " in{nyalnxg) 2. (37
XAXB
Proof. We will also need the continuity bound for reflected entropy [21], which follows from
applying the Fannes-Audenaert inequality [40, 41] to the reflected entropy. In fact we will
need a Rényi generalization of this inequality, which is usually considered to be a weak

bound [42]:

2(n—1)
m X n —n mn
[Su(plih) = Sulpfid)| < A (1= Q=T = (A -D'T") n>1
nXZA(n—l)
< =L T .
| (3.8)

where T is the trace distance:

O (Trp(Alng)Q
= 1PV, — p 1 < — D [hm)) |2 = _
7= ke = P = 21— [0 =2y 1 = (39)

The later inequality follows from the bound of the trace norm by the fidelity, as well as
monotonicity of the fidelity under tracing from ABA*B* to AA*. The overlap |{(y(1)[y(™)))|
is the fidelity on ABA*B*. The last equality uses the Hilbert-Schmidt norm. We estimate:

T < 2\/1 — exp (—(m = D) (Stm+1)/2(pan) — Sm(PAB)))

((m = 1)2(S(mi1y/2(paB) — Sm(pan))'/?
((m—1))"*(Inxc — S2(pap))*/? (3.10)
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where we used some elementary bounds and in the last line we used monotonicity of the
Rényi entropies as a function of m: Sy, > Sy for m < 2. We also used S(;,,41)/2(pap) <
In x¢ which follows from Schmidt rank and the assumption xo < xaxp. Averaging over

the Haar random unitaries we have:

T < 2((m —1)"?(In xo — S2(pan))/2?. (3.11)

We now apply the Lubkin result [43], see ref. [44]:

(S2(pap)) > Inxc — X (3.12)
XAXB
So we have:
1/2 1/2
(nxc — Sa(pam)"” < (e~ Satoam) < () (3.13)
XAXB

by Jensen and concavity of the square root. Putting all these inequalities together we
find that:

_ xo \Y?

ngmn—nﬂﬂ<> (3.14)

XAXB

which gives eq. (3.6) after using the symmetry between A and B. A similar analysis for
the n = 1 case using now the Fannes continuity result and the bound on the Shannon
correction term —T'InT — (1 = T)In(1 — T) < In2 gives eq. (3.7). O

While we focused on 1 < m < 2 there is no obstruction to finding similar results
for later m > 2, say by generalizing the Lubkin bound eq. (3.12) for other integer Rényi
entropies. The most efficient way to do this for general m would involve taking the large
bond dimension limit, whereas the result above is for any bond dimensions. We expect the
conclusions are the same for m > 2.

As an application of these results, consider sitting on the (z4,zp) phase diagram
above x4 + xp > 1 and assume that x4 < xp. We see that there is always some window
1 < n < ne where the leading large x (m,n)-Rényi entropies are provably independent
of m:

[Sa(Plias) = Salpi)] < Wxé/z“‘“‘“”m("‘” (3.15)
which implies that the change in the (m,n)-Rényi reflected entropy as a function of m is
non-perturbatively small for n > 1 and n < n. where n. = 5/4 — (1 —xp)/(4z4) > 1.
Additionally at n = 1 the shift as a function of m can be order 1. Based on explicit
calculations we will argue that this is true for all n > 1, although these results will be
less rigorous, relying on certain assumptions about the analytic continuation. In this way
lemma 1 will serve as a check on our method for analytic continuation.

We can make a similar argument for yaxp < x¢, but now we expect the reflected
density matrix to be close to a factorized density matrix pap ~ 14 ® 15/(xaxp). This
allows us to make a stronger statement since the reflected entropy of this density matrix
vanishes.
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Lemma 2. For a tripartite random state with xaxs < Xxc

m,n 2n XAXB 1/2 . 2(n—=1) _ 2(n—1

for1 <m <2 andn > 1. Similarly for the entropy:

_ 1/2
S](%m’l)(A :B) <2 (X;§B> / min{ln y4,Inxp} +In2. (3.17)
Proof. We use the same proof idea as in lemma 1, except now one of our states in the
Fannes-like inequalities is the reduced state g4+ associated to the canonical purification for
the maximally mixed state pap = 1ap/(xaxs). Of course the reflected entropy vanishes for
this state, and thus g4+« is a minimal projection. Again the trace distance can be estimated
in terms of the overlap | (1/)(m)|5114/§> = (Trpzl/;)Q/(XAXBTrpZ‘B). For 1 < m < 2 we apply
monotonicity Sy, 2 > Sz and Sy, > Sz and finally we use the Lubkin bound (for the case
XaxB > Xc). This gives the stated results. O

Note that if we simply set m = 1 we see this constrains the answer that we are
interested in. Both the reflected entropy and the Rényi reflected entropies are provably
non-perturbatively small, i.e. power law suppressed in x¢, for 4 + x5 < 1 and for n > 1
(using monotonicity with n).

3.2 Phase diagram and Rényi reflected entropies

In order to proceed we will use the replica trick at (m/2,n) integer to evaluate the (m,n)-
Rényi reflected entropy. We will find a phase diagram as a function of the bond dimensions
and then give some arguments for how to analytically continue this phase diagram away
from the integers.

The integer moments of the density matrix for the reflected entropy reads (up to the
usual small corrections from the treatment of the normalization):

> geSmn XD (—In xc(24d(g, 94) + 25d(9,9B) + d(g,¢€))) '

T = "
(PaA+) (desm exp (—Inxc((za + zB)d(g, Tm) + d(g, e))))

(3.18)

We now simply find the phase diagram (as a function of the various bond dimensions) at
fixed integer (m/2,n). At each point in the phase diagram some set of g dominates. We
will find a picture of the phase diagram where at each point one of four possible elements
dominates: e, g4,gp and a new element we call X.

To set the stage we are interested in minimizing the following free energy:

f(9) = zad(9,94) + xpd(g,98) + d(g,€) g€ Spmn (3.19)

where we have factored out In xo. Since f is a linear function of z4 and xp, any region of
the phase diagram in the (x4 > 0,2 > 0) plane must be convex.® The Cayley distance,
as a metric on Sy,,, satisfies the triangle inequality d(g1, g2) + d(g2,93) > d(g1, g3). It will

5See lemma 9 in appendix B for a proof.
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be useful to introduce the geodesics in the Cayley that pass between two group elements
g1, g2 as the set that saturates this inequality. We denote these elements using:

L(g1,92) = {9 € Spn : d(g1,9) + d(g, 92) = d(g1,92)} - (3.20)

See appendix A for a discussion of elements on this geodesic.

We now determine the two-dimensional phase diagram in terms of (z4,xp). As a first
step we proceed as follows. We solve for the dominating elements at various special points
in the phase diagram. Then we fill in the undetermined regions by the convexity of the
phase diagram. As a limiting case, it is easy to show that the identity element e dominates
at 4 = xp =0 and g4(gp) dominates at x4(xp) — co. For the other regions:

e Along the line x4 + xp = 1:

f=wa(d(g,94) + d(g,¢)) + (1 = z4)(d(g, gB) + d(g, ¢)) (3.21)
> xad(ga,e) + (1 —za)d(gp,e) =n(m—1) (3.22)

with saturation is achieved for g € I'(ga,e) NI'(gp,e€).

e Along the line x4 = zp + 1:

f==p(d(g,94) + d(g,9B)) + (d(g,9a) + d(g, €)) (3.23)
> xpd(ga,gB) +d(ga,e) =2(n— 1)z +n(m —1) (3.24)

with saturation for g = g4 since this is the single element in I'(ga, g5) N I'(ga4,€).

o Along the line x5 = x4 + 1 is the same as above with A <> B.

After applying convexity to the above results the only region left is for 4 + xp > 1
and 1 —zp < x4 < 1+ xp. This is of course the main region of interest where the
entanglement wedge is connected. Because there is no common geodesic element between
all three elements (that is I'(ga,e) N T'(gB,e) N T'(ga,gB) is empty), there is no simple
argument that determines the phase in this region.” This is the main difference between
our calculation and the negativity computations in [26, 33, 34]. Instead we must seek other
methods for determining the phase in this region. Indeed, there exists a proof for this main
region, providing a complete picture of the phase diagram. However, because the proof is
relatively involved, we present it in appendix B for interested readers. For now we just
summarize the results we find:

e There exists a new phase with a non-trivial element, which we denote X, in the
triangular region xa+xp > 1,24 < 14+2p(1-2/n),zp < 1+x4(1-2/n). X is a group
element with the special property that it lies on the joint geodesic I'(g4,e) NT'(gp,€)
while being closest to g4 or gp. It has the following form:

X = H(Trg/z)[i]"(ﬂlr?m)[i]" (3.25)
i=1

If there was a common geodesic element then this element would sit on all three edges of the region
under consideration — so we could then fill the phase diagram inside the region with this common element
using convexity.
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Figure 8. A graphical representation of the special element X, using the same conventions as
figure 5.

gA
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Figure 9. An example of the phase diagram of the single tripartite tensor. The tip of the X
triangle lies at (n/2,n/2).

where Tfé /2 is the cyclic permutation that acts on the upper half of each puddle (that
is it cyclically permutes elements 5 = 1,---,m/2 within each fixed puddle) and
T£ /2 is the full cyclic permutation on the lower half (cyclically permuting elements
B =m/2+1,---;m within each fixed puddle). See the discussion around figure 5
to unpack this notation. We give a graphical representation for the element X in
figure 8.

e The phase of g = g4 smoothly extends into the main region and occupies the upper-
diagonal wedge x4 > zp,z4 > 1+ 2p(1 —2/n). The same is also true for gp, where
it occupies the lower-diagonal wedge. At the boundary where the two phases meet
(i.e. z4 = zp and x4 > n/2) we have a large degeneracy shared by a complicated set
of elements.®

e No other elements are dominant in the space between the co-existence boundaries.

We give an example of the phase diagram in figure 9.
We now extract the consequences for Sk and its Rényi versions. For the disconnected
entanglement wedge with 4 + zp < 1, there is only ever one phase for all (n,m) so it is

8For detailed description of this set please see appendix C.
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reasonable that this remains the case upon analytic continuation. Indeed this always gives
S]({m’n) = 0 upon correctly normalizing the free energy. This is of course consistent with
lemma 2.

From now on we consider only x4 + xp > 1. The free energies of the four possible
phases, including the normalization subtraction (which is different to the disconnected

phase) are:

F(e)/Inxc = (xa+2xzp—1)(m—1)n, F(X)/lnxc=-n+(xa+zxp)n

(3.26)
F(ga)/Inxc =2xp(n—1), F(gp)/Inxc =2z4(n—1).

We make some observations. Firstly, at fixed (z4,2p) in certain regions of the phase
diagram there is a new novel behavior where there is a phase transition as a function of n.
This indicates that the entanglement spectrum is not flat for the reflected density matrix,
as compared to the usual reduced density matrix of a random pure state. Secondly, if we
do a very naive analytic continuation away from the integers, where we include all four
phases and re-minimize at each (n,m) we arise at some puzzling results. For example at
m = 1 and fixed n > 1 the e phase has minimal free energy and:

sUml—0,  n>1. (3.27)

naive

Which seems to imply that taking limn — 1, Sgr(A : B) = 0 for x4 +zp > 1 which cannot
be the case. In particular it violates the mutual information bound Sr > I. Previously
this was attributed to an order of limits issue [28] where one must take lim,,_,; lim, 1 to
get the right answer — indeed here that resolution does work. However this result gives
a very puzzling set of Rényi entropies, which were naively still consistent. However we
can now observe using lemma 1 that they are in fact not consistent, since for m = 2, we
see that either F(X) = F(e) or F(ga,p) dominates and neither gives the same reflected
entropy as the naive m = 1 phase with g = e given in eq. (3.27). This is inconsistent with
the continuity bounds of lemma 1, at least in some window of parameters.

Note that one way to understand the origin of this latter issue is as follows. The Cayley
distance between X and e reads

d(X,e) =n(m—2). (3.28)

For m < 2 this is negative. The effect of this negative tension is to exchange the two phases
e <> X in the phase diagram figure 9. This leads to the dominance of the e phase even
deep in the phase diagram where the entanglement wedge is connected.

The resolution that we land on is to simply discard the F'(e) saddle for x4 + zp > 1.
This is reasonable since it never appears in the x4 + xp > 1 part of the phase diagram for
integer (n,m/2). This will now give a different answer for the Rényi entropies as compared
to the naive analysis. We motivate this prescription as follows. Rather than analytically
continue the Rényi entropies we will analytically continue the spectrum of pfﬁ)* from m > 2
down to m = 1. This has the same effect of discarding the e saddle. In fact the analytic

continuation in m is trivial since there is simply no dependence on m in the free energies
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of X,ga,9p. This is now consistent with the bounds we derived in lemma 1. The Rényi
entropies read:

S = In v e xmin{2$3,2x,4,n?11(x3+$14—1)} n>1 (3.29)
and the entanglement spectrum defined via:
Tr(pt™ )" = / AA"D()) (3.30)
is given by:
D(A) = Di5(A— M) +6(A—Xo),  Di=min{xF*, x&"} (3.31)
where \g = XéfofxB and \; = max{x@QmA,vaxB,)\o}.g

This is a crude approximation to the actual spectrum that we will compute in the next
section. One obvious crude feature, for example, is that it has one more than the allowed
number of non-zero eigenvalues, min{x%, x%}, although this is clearly a small correction
in the large x¢ limit.

We now turn to an examination of the phase transition near x 4+xp = 1. This will give
some further evidence for the prescription given above, and will also give a more complete
picture of the reflected entropy and spectrum. It is clear from the above discussion that
there are potentially many ¢ elements that we need to sum up in order to compute the
cross-over corrections. While we might attempt to directly sum over a class of g this
approach turns out to be somewhat ad-hoc. The main difficulty is that certain classes of
elements can be more important at different values of n, so the issue of which elements
to include is mixed up with the question of how to analytically continue in n. This is in
turn related to the fact that the spectrum itself does not have a uniform limit as x — oo,
being made up of distinct contributions. Instead, in the next few sections, we will develop
a diagrammatic approach that attempts to directly extract the spectrum. Having said this
we briefly discuss an explicit sum over elements in appendix C, where we do find consistent
results.

3.3 Schwinger-Dyson for entanglement entropy

In this section we will present a standard diagrammatic technique for computing the en-
tanglement spectrum of a Haar random pure state on a bipartite Hilbert space AB reduced
to A [23]. This is of course the setting for the Page curve, so these results are very well
known. We review it here just to setup notation used in the next section for the reflected
entanglement spectrum problem.

The approach we present was first proposed by refs. [45-47]. It was recently applied to
find the entanglement entropy of JT gravity [25] and generic fixed area states [24]. Similar

9Note that for z4 < x5 — 1 then n(xp+za—1) > 2nza > 2(n— 1)z so the last possibility in eq. (3.29)
is never dominant for n > 1. We interpret this to say that the single eigenvalue Ao gets absorbed by the
large set of D; eigenvalues at A1 in this particular part of the phase diagram. We have written the spectrum
in a way that is consistent with this.
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techniques were used to calculate the negativity [33, 48]. This powerful approach enables
us to write down the Schwinger-Dyson equation for the resolvent of p4p, which then gives
full information about the entanglement spectrum.

A density matrix |¢) (| is represented as a four-legged tensor

) (] = h ﬂ (3.32)

AB B*A*

where we use black (green) lines to represent the subspace associated to A (B). We can
form the reduced density matrix by tracing over the B indices

pa =Trp |¥) (4] = M | (3.33)

Averaging over random states is accomplished by means of pair contractions between bras
and kets. In section 2.2 we reviewed the fact that an average over (the m-th power of) a
Haar random state can be recast as a summation over permutation group elements g € Sy,.
In terms of diagrams these permutations become pairwise contractions between the bras
and kets:

all possible contractions

([) (W)™ o< Y ﬁ/ % . (3.34)

A single pair contraction is defined by simply connecting the corresponding legs:

ﬂ = xAle ﬁ . (3.35)

1

A solid black (green) line represents the Kronecker delta. The purpose of the (xaxB)~
factor associated to each contraction is to maintain the correct normalization of the density
matrix. The element g € Sy, is recovered by tracing out the contractions from bras to kets.
This allows one to recover the Haar averaged expression eq. (2.11). See figure 10 for an
example.

As a simple example, let us compute the second Rényi entropy (purity) of the reduced
state using this method. Connecting the lower legs appropriately we have

Trp’ = +
(3.36)
1

1

XA XB
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FOrrt Far

Figure 10. (Left) An example of the planar diagram in the calculating p?, featuring a non-crossing
permutation for the contraction. (Right) An example of a non-planar diagram. The contribution
is always suppressed by powers of .

where we have used the fact that a full contraction of black (green) loop gives a factor of
x4 (xB), the corresponding Hilbert space dimension.
To get the full eigenvalue distribution of p4 we will make use of the resolvent trick.
The resolvent R(\) for the density matrix p4 is defined formally as
1
R(A) = tr ( — pA> (3.37)
from which one can extract the eigenvalue distribution function D()) using

L. ,
D(\) = — lg% ImR(\ + ie) . (3.38)
To evaluate R()\), we expand the matrix inverse around A\ = oo:
XA o (PR)ij
Rij(A) = =~0ij + 2—21 /\nf+f- (3.39)
In terms of diagrams, this is
g€ NC;

(3.40)

o 1 1
R X W/{}\WMM+“"

where we have restricted our summation to planar diagrams only, or equivalently, over all
the corresponding non-crossing permutations. The contribution of non-planar diagrams
are always suppressed in the limit of the large bond dimension.

Now denote Fjj(A) to be the connected part of the resolvent, defined by

: TR R SR R ) W) SR
Y PR PN

1

=

— R — =
k (3.41)

It allows us to write down a Schwinger-Dyson equation for R;;(A) and Fj;(\):

1 1
R A AR AR AR
i AR AR AR

(3.42)
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which after taking the trace gives rise to the following algebraic equation

o m 1
tr Fyi(\) = = . 3.43
2] z:: XAXB 1 . Xli(;\jl ( )

Combining this with eq. (3.41), and using the fact that both R and F' are proportional
to the identity matrix (as implied by contraction rules) we obtain a quadratic equation
for R(\):

ARZ(\ 1 1
( )+<——)\>R()\)+XA=0- (3.44)
XAXB XA  XB

Solving for R(A) and picking the square root sign by demanding the correct behavior at
A — oo we find

2
RO) =X (3= h = - 000 an) s A= (1 = 1) (3.45)

2\ XA  XB VXA VXB
and
DY) = 2B = A = N + 30 (a = xp)f0xa —xp). (3.46)

Thus, we have found that the eigenvalue spectrum consists of a large peak within the
range [A_, A\;+] and a number of extra zero eigenvalues when y4 > xp. This is the famous
Marchenko-Pastur (MP) distribution. It describes the singular value distribution of a
random m x n matrix when both m,n > 1. This result was first shown by Page [23].
Using the spectrum, the entanglement entropy is given by

log(xa) — 4,  xa<xs

XB

(3.47)
log(xB) — 3%,  xB <Xa.

S(A)z—trpAlnpAz{

3.4 Schwinger-Dyson for reflected entropy

We now move on to our main problem. We want to find the resolvent for the reduced
density matrix psa- obtained from the Rényi generalization of the canonically purified
state [¢(™)) defined in eq. (2.3), i.e

7’L

tI‘ pAA*
R Xa Z T (3.48)

where the integer moments of the (normalized) density matrix are given by

# # #
(m) B Zn 7 desmn XAggA XngB Xo(g) 4
tr(py )" = n = el (3.49)
> geSmn (XAXBXC)

We would like to evaluate this sum in the limit where the bond dimensions x 4, xB, xc are
taken to be large and the ratio ¢ = xaxp/xc and r = x4/xp are held fixed. We will do so
by a diagrammatic technique, keeping track of the important diagrams. Ultimately we are
interested in the analytic continuation m — 1, where the normalized factor Z; = tr(p}g) —
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%) (W] = h ﬂ ﬁ = (xaxsxe)™ ﬁ

Figure 11. (Left) The density matrix |¢) (1| is representation by a pair of three-legged tensors, with
each leg representing the subspace associated to A, B or C. (Right) An extra factor of (xaxBXc)
is divided out with each contraction to account for the over all normalization.

1, so it suffices to only consider the numerator partition function 7, for now. We will later
discuss how to restore correct normalizations in our calculation for general m. Most of the
notation in the previous section carries over, except that our state |¢) is now a three-legged
tensor. Note that the denominator in Z,, will be approximated as (xaxsxc)™" from the
identity group element, which dominates for large bond dimensions. We can easily account
for this factor in the diagrammatic expansion by dividing by xaxBXxc for each contraction
as shown in the figure 11.

We now setup a slightly more general problem. Consider the following 2 x 2 “matrix”
of resolvents:!'®

R()\) _ i )\—l—k/Q ( 0 (pZ”LéQ)F]L)k (350)
= T 0 )

where p — p! is an involution defined to take a linear operator p on H.p to a linear operator
from Haa« — Hpp+. It is defined by re-arranging the incoming/outgoing legs in the
obvious (and canonical/basis independent) way. In fact it is the same as the correspondence
between the Choi state 7 of a channel (here, the would be channel maps B(H%) to B(Hg))
and the linear representation of the channel via a transfer matrix 7°. Similarly p — pFT
spits out an operator from Hgpg» — H a4+~ which is also the adjoint operator. Each insertion
of (p%/;)r (and (pﬁ,@)ﬁ) has m/2 replicas of each of the bra and ket of the original random
state |¢). Note that R(\) € B(Haa«®H pp+). These involuted density operators are related

to the canonical purified density matrix by

m/2.17t, m/2 m m/2 m/2\T1 m
O AT =W (DT T = o (3.51)

up to an overall normalization factor that we will correct for later. In terms of diagrams,
this is (e.g. for m = 6)

m —
Paax =

(3.52)

0 All powers of the (involuted) density matrix pgﬁ*, (ngz)r, etc. .. appearing in the resolvent calculation,

unless otherwise noted, refer to the Haar averaged version pf:g, (pzléf)r ete.
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In the following calculations we will represent them diagrammatically using a short-hand:

= = . (3.53)

From these results we can infer an alternative expression for matrix R(\):

R(A) = S A7 <(pA 2 (TS) n) (3.54)
n=0

0 (PBB*)
+ i A~1/2-n ( 0 ) (P(A@x)*)"_l(P%Q)FT>
= (P ()T 0

which diagrammatically looks like

— A U T+ U+
S+ —+ U U T+

(3.55)
Thus the actual resolvent we are interested in is

R(\) = Traas(Ryp(N)). (3.56)

Now, as in the calculation of the entanglement entropy, the Haar averaging over the
states is done by summing over all possible pair contractions over bras and kets. We call
each pattern of contractions a diagram. We call a single copy of (p(X%/ 2))F a puddle. Each
diagram corresponds to an element in g € S,/ where k is the total number of puddles.
A sub-diagram is a subset of puddles and associated contractions that act only inside this
subset. We say a diagram is connected if the diagram cannot be split into more than
one sub-diagrams each made up of a contiguous set of puddles. Otherwise the diagram is
disconnected.

Consider the connected part of R, which we call F. This corresponds to a sum over a
subset of diagrams which are connected. We have

1 F F? 1
R()\):X+F+F+"':m‘

Note that F and R are constrained to take the following form: (all possible contractions

(3.57)

give rise to this form, for example see figure 12)

F()) — (Gll(lAA* —ea) + Friea Fis lea) {ep] > |

3.58
F1 |eB) (ea| G22(lpp —ep) + Fxep (3.58)
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5800 G.0-

Figure 12. Example contractions of the diagram that give rise to the projector or the identity,
where it should be clear that all the possible diagrams are either proportional to identity operator
laax,1pp~, or one of the four projectors |e4,g) (€4 5]

where |e4) = X;;l/2 |14) is the maximally mixed state on AA* (same for [eg)), ea = |€a) (€4]
and ep = |ep) (ep| are normalized minimal projectors and F' is a 2 x 2 matrix of scalars
(not to be confused with ). Also 144+ is the identity acting on H 44+ etc. A similar form
applies to

R(\) = (Sll(lAA* —eq) + Riea Ri2 |ea) (eB| ) _ (3.59)

R lep) (eal S22(1pp —ep) + Razep
Meanwhile we must have F}, = Fy; and Rjy = Ro; (for real A). Then from eq. (3.57) we
obtain:

Su=A-Gu)", Su=0A-Gun)', Rj=0N\-F); (3.60)

ij
and the resolvent of interest is
R()) = trRi1 = (x% — 1)Su1 + Rur. (3.61)

We now seek a Schwinger-Dyson equation for F(A). There will be many different diagram-
matic contributions to F. We can organize them by the number of R insertions: k — 1 for
E=1,2.... ThatisF =}, F(*). Note that k is also the number of external puddles in
each diagram:

conn. conn.

F(A) = A (3.62)

conn. conn.

OO Tl

where we have used the shorthand conn. to indicate all the connected contractions.

The lowest order contribution (k = 1) for F only features diagrams with a single
disconnected puddle:

les) {eal 0

IFU):Dm\fA( 0 lea <€B|>, (3.63)

where the number D,, is defined as

he Sm/z

VA #(h)—m/2 -1
D. — - % xaxp)#h Tms2)—(mt1)/2 3.64
™ J/XaXB U hEZS ; c (xaxB) (3.64)
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At large y, this sum is dominated by non-crossing permutations and we have D,, ~
Xgﬁl)/Q\/(ij/g(l/q) ~ O(XgnH/Q)). Using eq. (3.60) we can find the lowest order solu-
tion for the matrix R:

1 1 A 12Dp,
R = W <)\_1/2Dm 1 )ij +... (3.65)

This represents the single eigenvalue contribution we had originally around eq. (3.31) by
summing elements. We will find significant corrections to this pole from the next order.

At the second order (k = 2), we have diagrams that contain exactly one R insertion.
Their contributions split into two parts according to the pattern of contractions between
the first and last legs of each puddle. That is if we follow the contractions in the resulting
diagram — following lines above and below puddles — the pattern of outer contractions
tracks where the first and last legs connect to in the rest of the diagram.

For example, let’s take a look at the diagonal component Iﬁ‘ﬁ) :

conn.

=

(2)
11

- = N /K\\ ’
(3.66)
where the bold blue lines after the second equality represent the pattern/topology of outer

|

contractions. By using this pattern to follow the green and black curves below the pud-
dle, we can see if the contribution should be either proportional to the identity and thus
contributing to (G11) or a projector, contributing to (Fi1). On the other hand, for the
off-diagonal part of F(?), both permutation types only contribute to the projector, e.g.,

conn.
2
Ry

w = %f\) |
) o O O

(3.67)
For both Fﬁ) and Fg), the first diagram shown above necessarily involve elements

h € Sy, that are crossing or higher genus, so these are naturally suppressed by powers of
external bond dimensions.

We can compute these diagrams to find F) written as:

(xaxB)?GSY = A(Saa(x% — 1) + Ro2) B,

(XAXB)QG%) = AMS11(x4 — 1) + R11) B,

2 (2) 2
(xaxs)” (Fu Fiz _ (B2 Rz E,, + S22(xp — 1) 2 B, (3.69)
A Fy1 Fy Ri2 Ri1 0 S1i(xi — 1)

(3.68)
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where the numbers B,,, and E,, are defined by the following diagrams

he Sm\sm/Z X Sm/Z

By = A w Em = XXxaxB) @ @

(3.70)
More explicitly, we have
1 - 17 y_
Bn = o =1 (—Em + > XY ey m”) (3.71)
XAXE h‘ESm\SnL/ZXS'm/Z
E, = Z Xﬁ(h)fm(XAXB)#(h—lrm/g><7—m/2)—m—l-17 (3.72)
heSm\Sm/QXSm/Q
where we have used the identity
h € 5 \Sm/2 X Sz . h € S\Sm/2 X Smy2
ST w (T O

(3.73)

(1 ) =

which follows from the fact that crossing permutations are projected out from the l.h.s.

We now conjecture that the main contribution to the matrix F comes from lowest two
orders in k, i.e. F ~ F) 4 F® in large bond dimensions. Unfortunately this truncation
does not obviously follow from a genus counting argument. We base our conjecture on
four pieces of evidence: first, we explicitly calculated the contribution from k£ = 3 and a
special class of £ = 4 diagrams and found that they only give corrections to higher orders
of x. Secondly we power counted a particular class of diagrams for general k (which we
believe to be the dominant contributions for k) and find it to be suppressed by powers
of x. Thirdly, although our diagrammatic approach is not entirely the same as the direct
summation of group elements in appendix C, the two approaches give results that differ
only by sub-leading x corrections. Finally, we numerically evaluated the reflected entropy
and eigenvalue spectrum for a Haar random state and we indeed find good match to the
analytical results obtain from this truncation. The numerical results will be discussed in
section 3.7.

We rescale various quantities to restore the correct normalization from eq. (3.49)

G—)GZl, F—)FZl, S—)S/Zl, R—)R/Zl, )\—))\Zl (374)

in which all the above equations take the same form but with B,, = B, /71, E,, = E, /7

and D,, = Dy, / le /% and these hatted quantities are now all O(1) at large x¢ with ¢ fixed.
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We have the sum rule:

~ ~ 1 ~
D2+<1>B 4+ —5Fn=1. 3.75
" (xaxs)?/) ™" (xaxs)? " (3.75)
We now attempt to solve for the system of matrix equations eq. (3.60), eq. (3.68)-
eq. (3.69). We can completely solve this system if we make one approximation, which we
will later check is self-consistent. We will assume that we can drop the “back-reaction” of
R on eq. (3.68) that determined Si1, Sa2. We have

(xaxB)?*(A = S111) = AS22a(x% — 1)Bim,  (xaxs)*(A — S5) = AS11(x4 — 1) By . (3.76)

The solution is

2.2 2 2
2 2 4 _XéXB(_ _ ~ _)iXA_XB '
0 = DS, (0~ DSz = 5205 (A VO =a) ) 2 4XE - (377)
where N
A _ Bm (2 2 —24+ 20/ (3 - 1D(x4 -1 3.78
+= 35— (Xa+XB xa-Dxg—-1)- (3.78)
XaXB

This is a Marchenko-Pastur distribution with support between Ay ~ Em(le +x5')? and
min(x%4 — 1,x% — 1) eigenvalues. We can check that our initial assumption for solving
Si1, S22 is indeed valid since Rj; ~ O(1) and (X,24 —1)S11 ~ X%x%. The validity of this
assumption breaks down at A > XZZ, XE;Q, but as we have seen already, this is well outside
the spectral weight of the MP distribution and so does not effect the spectrum that we find.

The second equation eq. (3.69) determines correction to the leading order solution of
matrix R;; eq. (3.65) we obtained earlier. Together with eq. (3.60) and eq. (3.63), this
yields a quadratic equation of 2 x 2 matrices. We can solve this equation completely,
although the algebra is a bit more involved and the it only features corrections of O(x~2)
and higher orders. For this reason we only summarize our findings here:

1. The position of the single pole at A = ﬁ?n is now shifted to

~ 1 1 ~
A=D2 + (xi + x2> B +0(x7%). (3.79)
B

2. The same pole is now resolved to a small peak of width

8D\ E,
SN~ — VT

—4
OO, (3.80)

For the detailed form of R and its derivation please refer to appendix D. As a final remark,
we stress here that the various techniques we used here, such as the truncation at £ = 2 and
various approximations we made to solve the SD equation, rely on the limit of large bond
dimension x4, XB, xc — o0. However we do not require all the external bond dimensions
to be large for our analysis to work. In fact there are two interesting parameter ranges
to take:
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1. xa,XB,Xc — 00 with ¢ = xaxp/xc and r = xa/xp fixed.
This is the main parameter range of our interest in this paper. The resolvent has two
interesting regimes. For A ~ 1/x¢ we simply find the MP distribution

Ry = D (00 0+ MoXE L g

And for A = D,, ~ O(x?) we find a simple pole. This pole is resolved into a mini-peak
each with width 0\ ~ 8ﬁm\/ meal for finite x¢.
2. x4, xc — oo with x4/xc and xp fixed.

The main MP distribution becomes narrow, approximating a pole centered at AL =
XBQ with weight x% — 1. The other single pole is located at A\ = Bmng + D2:

2 -1 1
R(\) = —XB b . (3.82)
—2 —2
A= Buxz®  A— Buxg® - D2,

The first, smaller peak, is resolved into a peak with width A ~ 8D,, Em(XAXB)_I,
and the larger peak is resolved into an MP distribution of width:

1 2B VxEs -1
A= ——VE (3.83)
XA XB
This regime is not relevant to the random tensor model we study in this section.
However it will prove to be useful for a 2-site random tensor model that aims to

better model the holographic phase transition, which we will aim to discuss in our
upcoming work [49].

3.5 Spectrum and reflected entropy

We have seen how to use diagrammatic methods to construct the resolvent of the reflected
entropy. We summarize what we have found here:

RO\ = W;;'” (3 T ( - 2) /M B = A )N B u) TR—

B, g XA A— D2
(3.84)
with
Ai:1<\/x‘i—1i\/x2 —1>2. (3.85)
(xaxs)? B

We have given evidence that this form is asymptotically correct under the limit yo — oo
with ¢ = xaxB/xc and r = x4/xp fixed. For higher order corrections to the resolvent
refer to the previous section and appendix D. Under the limit of large bond dimension, the
permutation sums B,, and D,, are dominated by non-crossing permutations and can be

expressed in terms of g-Catalan numbers.!!

~y  Coplg!)? s Cnla!) = Crpala™')?
D2 ~ W =po, DBy~ G (q_l/) =p;. (3.86)

HThe g-Catalan numbers generalize the Catalan numbers away from ¢ = 1. They can be written in terms

of Hypergeometric functions. For the complete definition see appendix A.
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Figure 13. The plot showing the trend of p;(¢). We have taken m = 1 here.

We now have the simplified sum rule:
po+p1r=1. (387)

See figure 13 for a plot for these quantities. We will see that these quantities act like classical
probabilities, which control the phase transition between the connected and disconnected
entanglement wedges, with ¢ being the tuning parameter. We have the following asymptotic
expressions:

(0.1) ~ {(1 Sttt o] (3.59)

(1/¢,1—1/q), g>1

and around g ~ 1 the two probabilities are both order 1.

The reflected entropy that follows from this resolvent is given by (assuming x4 < xB)

2
Sr=—polnpy — p1Inp; + p1 (ln X4 — 2){’3) +0(x7%). (3.89)
B

This is the main result of this section. Note that the entropy has a contribution from
the classical Shannon entropy of a single bit p; plus a term proportional to what seems to
be the entropy of a Haar random state on AA* BB* reduced to AA* (the standard Page
result). This contribution however is multiplied by p.

We can better understand the physics by looking at the eigenvalue spectrum:

2
D) = XL (Mt A0) + B0 — )0 — xb) + 60— po).
(3.90)

We see that the spectrum is given by a shifted Marchenko-Pastur distribution with a
total of min(x% — 1, X2B — 1) eigenvalues, plus a single eigenvalue located at A = pg The
Rényi entropies can be reconstructed by the sum of the moments of the two pieces in
resolvent

Sn(A47) =

—n

In (py +x4 " 2Cu ()t ) (3.91)
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where 7 = x% /x%. Note that the (m,n) dependence has essentially factorized: the only m
dependence is through the probabilities po(m), p1(m).

The Rényi entropies have three different approximate behaviors based on the relative
ratio of the external bond dimensions. We have:

125, Inpo ~ 0, xAB < XC
2(n—1)
Sn(AA") ~ q 2olnpy = By In X8 o < xap < XOX4 " (3.92)
2(n—1)
~ 2Inxg, XAB > XcXp "

and we have assumed x4 < xp and n > 1. These three different behaviors exactly match
the three phases we found in section 3.2, and their transitions match the phase boundary
lines in figure 9. As we take n — 1 the middle regime vanishes and we get back the single
transition in the reflected entropy as expected, as we move from disconnected to connected
entanglement wedges.

3.6 Effective description

Based on the results of the previous subsection, we now give an alternative effective de-
scription of the canonically purified state and its m generalization: | p%éf) <pf§é2 . Consider
the following pure state on the Hilbert space AA*BB*: a superposition of a factorized

state (with probability pg) plus a random maximally entangled state (with probability p;):

Wity = o/ Ix0) + 117 [x1) - (3.93)

Here |x0) = [1a/Xx4) a4+ ® |1B/XB) g+ is the factorized state and we construct |x1) using
a random tensor network state as follows. We use a new network geometry that comes
from doubling across the connected entanglement wedge:

’X1> XX <1C’ UABCUA*B*C* |0>ABC |0>A*B*C* (394)

where |1¢) is the (canonical) un-normalized maximally entangled state on the CC* Hilbert
space. It is natural to pick Uapc |0) 4 to be the same random state that we started with,
but we choose U'j. g«c» to be an independent Haar random unitary. We will comment on
this choice further below. See figure 14 for a picture of these states.

Note that |xo) is the canonical purification of a maximally mixed state pap = 1ap/
(xaxp) — this is the density matrix pap that usually arises from a Haar random state
reduced to AB when x¢c > xaxB. And, |x1) is the natural guess for the canonical purifica-
tion of the original Haar random state reduced to AB when y¢o < xaxp: that is, when the
entanglement wedge is connected. The doubling procedure is motivated by the AdS/CFT
discussion in [14].

The claim is that |1eg) has the same entanglement structure as ‘ pf{;>, at large bond
dimension and for all m (note that pp; depend on m). In particular we will see that it
has the same AA* entanglement spectrum. Similarly, observe that the two states |xo.1),
when working in their respective phases, give the same expectation values for operators in
AB as the original density matrix psp. Thus the entanglement structure for sub-regions
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pAB ~ 1/P1 + /Po

A* B* A* B* AY B*

Figure 14. An illustration of eq. (3.93). We argue that the canonical purification is effectively
described by a sum over tensor network states. The first state comes from the natural doubling
procedure outlined in ref. [27] for the connected entanglement wedge of the original network in
figure 7 and the second is the trivial factorized network which is obtained by doubling the triv-
ial/disconnected entanglement wedge of the original network.

of AB is also maintained, at least away from the phase transition. Since we think of the
entanglement structure as being closely linked to the emergent bulk geometry, we can think
of |Yefr) as capturing the effective geometry of the canonical purification.

Such superpositions eq. (3.93) over different tensor networks, have been postulated as
models of gravitational states in AdS/CFT [11, 12, 50-52], see also [53]. In particular these
states allow for non-trivial fluctuations in the area of the RT surface, and do not suffer from
the issue of a flat entanglement spectrum that is not expected in typical holographic states.
Each wavefunction in the superposition is then thought of as a fixed area state, where the
gravitational state is projected onto approximate eigenstates of the area operator.

More specifically, on the physical Hilbert space the reduced density matrices on AA*
will have approximately orthogonal support:

supp((po)aa+) L supp((p1)aa=)  supp((po)sr+) L supp((p1)BB*) - (3.95)

So the resulting states behave like approximate superselection sectors with respect to AA*:
the phase between the two components in the wavefunction is unobservable when restricting
to AA* or BB*. This turns out to be approximately true for |xo) , |x1), in particular because
of how we chose U/, g«» in eq. (3.94): we picked an independent random unitary not equal
to (Uapc). This latter choice might have seemed more natural, considering the m = 2
case |pap) exactly gives such a network, albeit without the disconnected wave-function
Ixo). Note that the choice U’ = UT leads to correlations between different tensors in the
doubled tensor network. Our claim here is that for the effective state, such correlations
have already been taken into account by |yo) so we should not double count this effect.
This leads us to eq. (3.94).

Given the discussion above, we can easily compute the entropy S(AA*) of |1)eg) and
indeed it agrees with eq. (3.89). Similarly the Rényi entropies also agree.

Let us push this interpretation a little further, and give an quantum error correction
interpretation of this superposition of tensor networks states, and emergent area operator.
For simplicity let us assume the density operators have exactly orthogonal support. We in-
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troduce an area operator that labels the different superselection sectors. The superselection
sectors in this case are described by a single bit s = 0,1. The area operator is:

L aa+ 233150“) (3.96)

accounting for the entropy of each sector. The two orthogonal subspaces, determined by
projections g, 71, are defined using the supports:

7o = supp(pa+) @ supp(pG5+) (3.97)

and similarly for 7. Then:

Laa+ |Xs> = S(Xs) |Xs> . (3'98)
In this case we can define a simple quantum/classical error correcting code, that protects
a single classical bit from quantum errors. Define the code subspace as a single bit and
the isometry V' = |xo) (0| + |x1) (1|. This code protects from errors on either AA* or BB*,
which can be confirmed by computing:

Vi1aas ® Oppa)V = 0) (0] (xo| OB+ |x0) + 1) (1] {(x1] OBB* [X1) - (3.99)

So the error, represented by an arbitrary operator on BB*: Opp+, does no damage to
the classical information. This is the Knill-Laflamme condition stated for operator algebra
error correction with complementary recovery and a center, see refs. [50, 54] (in this case
the center is everything in the code).

We know how to compute the entropy for states on such a code, following [50] we find:

Siper (AAY) = —poInpo — prInpr + (Yesr| Laax [Yerr) (3.100)

as expected. Note that, in reality the supports of the reduced density matrices are not
exactly orthogonal. This is because the error correcting code is not exact.

3.7 Numerical results

Our main result eq. (3.89) corrects the naive holographic reflected entropy, from a step
function to a smooth transition. In this subsection, we corroborate these corrections,
comparing our answer to numerical results, showing they indeed capture the details of the
phase transition. All numerical results are obtained by generating a random tripartite state
of appropriate bond dimension and numerically computing its reflected entropy.

First, in figure 16 we plot a histogram of (the logarithm of the) eigenvalues of paax,
corroborating eq. (3.90) and figure 15. We choose bond dimensions x := x4 = 23, x5 =
25, xc = 11, and 50 trials.

In figure 17, we present two plots of the “Page curve” for reflected entropy. Solid lines
are analytic results eq. (3.89). Dots are numerical results (only obtained for small bond
dimension). All values are normalized by twice the entanglement entropy of A, the upper
bound on Sg(A : B). In the top figure, the blue step function is the large-x limit, with
zA+xp =log(xaxn)/log(xc) held fixed. The other dimensions are logs x4 = logs xp =
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Figure 15. The spectrum obtained from the resolvent eq. (3.90). We take x4 < xp here so the
MP distribution has no zero eigenvalues.

LogEigs[paa]

p1/(x*-1) Po

Figure 16. The blue histogram is a numerical plot of the spectrum of p4 4+ for a tripartite tensor.
The orange curve is our analytic prediction for the spectrum eq. (3.90). Note that the tick values
on the x-axis are not exactly pg from eq. (1.6), but instead include a small correction, replacing pg
with its shifted version eq. (C.39), differing only at O(log(x)/x?). This gives the value in the plot
of pg = 0.226.

x4 logs xo = {16,11,6,1}. The numerics agree, with larger deviation at large x 4. This is
as expected, because large x4 at fixed x4 means small xc, and eq. (3.89) was derived in
the large bond dimension limit. Besides illustrating that eq. (3.89) agrees with small bond-
dimension numerics and limits to the correct semiclassical answer in the limit y — oo, this
plot also illustrates the novel prediction for Sg(A : B) very near the phase transition.

Our results are depicted more precisely in the bottom figure: where we zoom into
a narrower range of x4 around the phase transition point. The horizontal blue dashed
line depicts the predicted value of Sr(A : B)/2S4 in the limit x — oo. To demonstrate
agreement with numerics, we have included curves and numerics corresponding to smaller
dimensions, x4 = xp = x¢&@* = {3,4,6,7}. It is evidence that eq. (3.89) is sufficient to
capture many of the non-trivial features of the transition.
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Figure 17. Plots of the “Page curve” for reflected entropy. Our results capture the phase transition
and agree with numerics. The disagreement in the top figure at small y¢ is to be expected from
eq. (3.89) not being valid at small bond dimension. Note that the analytic functions plotted are
not exactly eq. (3.89), but instead include a small correction, replacing py with its shifted version
eq. (C.39), differing only at O(log(x)/x?).

4 More general tensor networks

We have seen how the single tensor model, despite being relatively simple, still exhibits
complicated behaviors such as a sharp jump in the reflected entropy. We also saw how this
model should be thought of as describing the emergence of superselection sectors associated
to an area operator for the entanglement wedge cross section. In this section we revisit the
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tensor network calculation for reflected entropy with the insights we gained from the single
tensor. We focus on a regime away from the phase transition. We do not investigate the
phase transition itself.

To begin our discussion, recall that in section 2 we identified two possible bulk solutions
(figure 6). And indeed, we found their counterpart in the single tensor model, which
corresponded to a phase with permutation element g = e (the disconnected phase) and
g = ga or g = gp (the connected phase). One of the obvious issues we must confront
for more general tensor networks is the possible appearance of new phases associated to
g = X. In addition to this there are several new complications that we have to deal with
relative to the single tensor case:

1. Kinks in the domain walls.
In the EW phase, the tension of the EW cross-section d(g4,gg) = 2(n — 1) is non-
zero whenever n > 1. This will cause the cross-section to contract, resulting in two
“kinks” where the two regions meet. The sharpness of the kink depends on both m
and n. See for example:

(4.1)

Since the tension o (n — 1), the larger n is, the sharper the kink is. When n =1 the
kink disappears and we recover the EW phase solution.

2. Multiple phases with element X.
Certainly we expect X to make an appearance as it did in the single tensor calcu-
lation, see section 3.2. We will actually find several new phases where X makes an
appearance. To get some feeling for how X can show up, assume that we have the
following bulk configuration:
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showing a tripartite bulk configuration that can be deformed to include a new element
h. For permutations h that lie on both geodesics I'(g4,e) and I'(gp, €), we have

d(ga,h) +d(h,e) = d(ga,e),

(4.3)
d(gp,h) +d(h,e) = d(gp,e).

It then takes no energy to include a thin layer of A at the domain wall where g4 and
gp transition to e. Next, imagine we pull out the thin layer to create a “pocket” of h.
This will lower the overall energy since the new domain wall has shorter total length.
It is easy to see that the change in the free energy will be proportional to —d(h,e).
So the optimal version of this process pulls out the element h = X: recall that by
definition this element has the largest d(h,e) amongst all h € T'(ga,e) N T'(gp,e).
We expect such a pocket to appear whenever the region g4 and gp meet at an angle
larger than 180 degrees.

Both phenomena together have an important effect on the bulk picture of the relevant
phase. At n > 1, the kink creates a non-flat angle at the EW cross-section, allowing a
h-pocket to appear. Whenever this happens, it also shifts the domain wall from g4, <> €
to ga/p <+ X, therefore changing the sharpness of the kink. Since d(X, gA/B) does not
depend on m, the new kink angle is independent of m.

With this in mind, we can categorize different possible phases by the inclusion of an
X-pocket or not. We consider four such possible saddles. In general it is a non-trivial
problem to prove that these are the only saddles possible. We will simply assume this
to be the case for now. The resulting physics we get from this assumption passes many
tests, and so we strongly suspect these phases dominate in at least some finite window of
parameter space.

Working with a connected entanglement wedge, with conformal cross ratio z < 1/2,
we now show possible minimal solutions to the hyperbolic network model and list their
normalized free energies. More specifically the (m,n)-Rényi Reflected entropies are In x x f
for some minimal f. The candidate f’s arising from the phases in figure 18 are:

e phase I

fr=4(n—1)In

w? +4n(m —1) (H(py,p—) —In2) (4.4)

N3

where py =1/2 (1 + n((%__l%)) and H(py,p-) = —p4+Inpy — p_Inp_ is the Shannon

entropy.

e phase II

fH=4(n—1)1n1+\\/F?+4n (H (1—217%2171) —ln2> (4.5)
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(a) Phasel. (b) Phase II.

(c) Phase III. (d) Phase IV.
Figure 18. Different phases that can dominate in the reflected entropy bulk configuration.

e phase IIL,!?

1
fim=2n(m—1)In x

- (4.6)

e phase IV
1—2

fIV =2nln (47)
Note that x is the conformal cross-ratio for end points of the intervals on the boundary,
such that 0 < x <1 and x — 0 gives the phase with a connected entanglement wedge. We
have assumed that we can approximate the network geodesics by a continuum geometry
where there is a conformal symmetry, this is a crude approximation that is sufficient for

our purposes.

We now analytically continue in (n,m). Our first approach is naive and will fail for
1 < m < 2. We simply analytically continuing the expressions in eq. (4.4)—(4.7), and then

2For x > 1/2 we are always in the disconnected phase corresponding to phase ITI. The free energy for

x > 1/2 differs by an amount 2n(m — 1)In((1 — z)/z) compared to that shown here, due to the phase
transition in the normalization of the reflected Rényi entropies.
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Figure 19. The phase diagrams for the four phases introduced above. The horizontal axis is n
and the vertical is m. Note the flip in the two phases in the last diagram.

compare all four free energies at each point in parameter space. For example, we plot the
resulting phase diagram in the (m,n) plane for several different values of z in figure 19.
As we can see there is always a transition line at m = 2, and above the transition line
the phases are independent of m. The reason for this transition is that the tension of the
X > e domain wall d(X, e) = n(m—2) becomes negative. Indeed this was exactly the same
as with the single tensor case. So rather than follow the above naive approach we apply
our prescription from the single tensor case (which has already passed many checks) and
this implies that the phase diagram in figure 19 is incorrect for m < 2. Instead we should
analytically continue the phase transitions above m > 2 all the way to m = 1, without
re-minimizing over the different phases. The resulting phase diagram is then independent
of m for all m > 1.
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Figure 20. The bulk setup used to calculate eq. (4.9). We work within Poincaré hyperbolic
coordinate with moving downward as going deeper into the bulk. The position of various end
points are shown in terms of a and z.

We now compute the full entanglement spectrum for this model away from the phase
transition point. Analytically continuing from m > 2 gives for all m:

1 o, z>1/2
n—1 min{fn,flv}, T < 1/2

While the expression in eq. (4.5) seems rather complicated there is an interesting way to

Sp=—

(4.8)

write fi1 at large x:
1 1
In E exp{—lnx(—4(n—1)lnz+4nln (a—i—Z))} (4.9)
n—1 2\z a
a<z<1

where a = /z/(1 + /1 — z) determines the un-pinched EW cross-section: —2Ilna, and
—21In z is the area of pinched cross-section, see figure 20.

Srr=—

We are being schematic about the sum. One is tempted to make this an integral, but
recall that the network in question is really discrete and so there will indeed be a discrete
set of cuts for the cross section. This form agrees with the previous one since we have
to evaluate the sum in a saddle point approximation at large x. In particular figure 20
represents how we computed eq. (4.5) in the first place.

Following the discussion in section 3.6 for the single tensor case, we now interpret
eq. (4.8) as arising from an effective description of the canonical purification as a superpo-
sition of wavefunctions. Thes wavefunctions then live in approximate superselection sectors
when reduced to AA*. It is clear the different sectors are associated to tensor networks
with different /pinched cross-sectional areas. We think of this pinching as being determined
by an area operator that is now allowed to fluctuate. The area is A(z) = —21Inz.

Given this discussion we can read off from eq. (4.8) the probabilities of each sector
arising:

P(A) = (cosh((A— Ag)/2))™*"X  0< A< A (4.10)

where Ay = A(a) = —21Ina, the unpinched cross section. These probabilities are exponen-
tially small except when A = —21n a where the probability goes to 1. In general, there will
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be some perturbative corrections that help maintain the normalization condition. Thus we
write our effective model for the canonical purification state using a new set of doubled
and glued random tensor networks labelled by A:

1p2) ZP )2 1 (A)) (4.11)

where |¥(A)) is defined as a random tensor network state as follows. Consider the pinched
entanglement wedge consisting of the vertices with group elements g4, gp in figure 20. We
construct a new tensor network by doubling and gluing along the X <> ga,gp domain
wall. This domain wall is slightly pinched relative to the original entanglement wedge. As
before we can pick the random tensors on the AB entanglement wedge to match those of
the original tensor network, while we pick the tensors on the (AB)* to be independent and
random.

Note that 2A(z) will represent a true minimal cut, homologous to AA*, through this
new doubled network. In particular there is an associated AA* entanglement wedge consist-
ing of the region outside of this minimal cut/cross-section. Since the entanglement wedges
for these random tensor networks associated to the boundary region AA* are very different
for different A(z) we expect the density matrices reduced to AA* to be approximately
orthogonal. This is also true for BB*.

It then follows that Trax [¥(A)) (U(A’)| o< 64,4 and Trpp« |V(A)) (U(A’)| o d4,4 up
to small non-perturbative corrections, and our results now parallel the results discussed in
section 3.6. In particular an area operator on the physical Hilbert space emerges, by using
the approximately orthogonal supports of psa+(A(z)) and ppp+(A(z)). This area operator
then determines the Rényi reflected entropy:

e—(n—l)SRJ] ZP n —(n—1)A (412)

which agrees with eq. (4.9). Evaluating the sum in the saddle point leads back to eq. (4.5).
The dominant area A shifts as a function of n and in particular the n — 1 limit gives back
the entanglement wedge cross section since P(A) — 1 in this limit.

For large enough n the dominant phase actually becomes the disconnected phase IV
which is the same n dependent phase transition that occured for the single random tensor
model. The final effective description of the canonical purification, that capures all these

A*
a5

effects, is shown pictorially here:

g X

(4.13)
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5 Discussion

While the main goal of this paper was simple, to compute reflected entropy in random
tensor networks, we ended up discovering some surprises along the way. We summarize
these here and also comment on some possible extensions of these results.

5.1 Effective description of canonical purification

Given a state pap, we have suggested a recipe for computing the reflected entangle-
ment spectrum in random tensor networks. First construct the canonical purification
|\/PAB) aa+ppe using a generalized gluing construction — allowing for a superposition
of networks for different possible entanglement wedges. Then compute the spectrum of
the density matrix on AA* using the fact that the individual density matrices on AA* are
approximately orthogonal.

Let us comment in more detail how this relates to the gravitational gluing construction

used in ref. [14]. There, the canonical purification |\/pag) , was described as dual to

a particular bulk geometry, the one formed by gluing two ?osigs of the AB entanglement
wedge together. If we naively follow this procedure for a random tensor network we arrive
at the following picture. Firstly the entanglement spectrum of p,p is flat in this case, so
up to normalization we can replace p114/ é by pap. Then seemingly the gluing procedure
automatically follows, since we know there is an isometry from the bulk legs at the AB
RT surface to the AB boundary legs and psp already contains two copies of the tensor
network for the bra and the ket [27].

To see how this works, consider again the single tripartite tensor example. The canon-
ical purification |\/paB) 4 4. g+ following this procedure corresponds to a tensor network
with two tensors T4pc and T') .~ contracted along leg C. This however is not exactly the
analog of gluing two copies of the entanglement wedge together. The difference is that
these two tensors are now correlated. Normal tensor network analogs of any given geome-
try discretize that geometry with a collection of tensors that are all chosen independently
at random. Hence the random tensor network analogous to the glued entanglement wedges
from gravity [14] would have completely uncorrelated tensors in the two copies!

How big is this difference? It is certainly somewhat important: while the network of two
uncorrelated tensors would have a completely flat entanglement spectrum, the canonical
purification does not. As computed in section 3, the spectrum of AA* involves two peaks.
These two peaks can trade dominance as a function of Rényi parameter n. For example,
when the entanglement wedge is in the connected phase, the single eigenvalue peak is
subdominant, and the spectrum of AA* is approximately that of two uncorrelated tensors
— yet for large enough n, the single eigenvalue peak begins to dominate. This phase
transition as a function of n is completely absent in two uncorrelated tensors. Hence the
canonical purification in this tensor network example is not entirely described by the analog
of gluing of two entanglement wedges.

That said, there is a simple fix, an updated effective description of the canonical pu-
rification that does capture this more complicated spectrum. As we described in sections 1
and 3, the spectrum of AA* appears analogous to that obtained by summing, with ap-
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propriate weights, two tensor networks as in eq. (1.7), one with two uncorrelated tensors
and one with no tensors at all. And note, for the purposes of describing psa«, this ef-
fective description is quite consistent with the original, naive gluing of the entanglement
wedge, as long as we are far from any m-dependent phase transition, i.e. as long as one
peak dominates and the other is an exponentially small correction to the state. Therefore
this effective description is nice for at least two reasons: (1) it gives a good description of
the reduced density matrix of AA*, and (2) it clarifies the sense in which we should trust
the doubled-and-glued description of the canonical purification.

How good is this effective description for more general purposes? Can we use it to
compute things besides the Rényi entropies of AA*, such as the spectrum of AB? At
least far from phase transitions, this seems roughly correct: as long as |AB| < |C| or
|AB| > |C|. In the former case, pap is approximately maximally mixed, which is indeed
the density matrix in the effective description of that regime (AB maximally entangled
with A*B*). In the latter case, pap is approximately maximally mixed on a random
dimension |C| subspace, which is indeed the density matrix of the effective description in
that regime (two uncorrelated tensors contracted across a dimension |C| leg). Hence this
effective description seems valuable, capturing the far-from-transition physics as well as at
least some of the physics near transitions.

We note one interesting subtlety: the two networks in the effective description eq. (1.7)
are not generally orthogonal. So while it is approximately correct for some purposes to
view them as defining separate superselection sectors, their overlap is not always ignorable.

How does this effective description generalize beyond the single tensor example, to
hyperbolic networks? As we described in sections 1 and 4, it seems the spectrum of AA*
is well-modeled by as a sum of many tensor networks, each formed by doubling and gluing
the tensor network along a different, possibly kinked candidate entanglement wedge, with
all tensors chosen independently at random. See eq. (1.10).

What do these lessons say about reflected entropy in a gravitional theory? Because
something is clearly missed in the random tensor network by the naive doubling and gluing
of the entanglement wedges, we can expect that the same is true in gravity. Albeit we still
expect the Reflected entropy /EW cross-section duality to hold, just not away from n = 1.

Likely there is some effective description that improves upon this naive doubling,
analagous to the tensor network case sketched in eq. (1.10). That said, it’s not entirely
clear how to interpret such an effective description in gravity. For example it is not obvious
that the ‘kinked’ geometries in eq. (1.10) correspond to any saddles in gravity. We leave a
precise investigation of this question to future work.

5.2 Non-flat spectrum and building geometry from RTNs

This effective description offers an interesting possibility. Perhaps the canonical purification
is a useful tool for constructing, out of tensor networks, a geometry with gravity-like area
fluctuations.

To explain this, let us recall some background. While impressive in many ways, the
precise relationship between random tensor networks and AdS/CFT is not yet fully un-
derstood. So far, the best understanding is that tensor networks resemble so-called fixed-
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area states, which have approximately flat Rényi spectra just like random tensor net-
works [11, 12]. This matching is quite good; both fixed-area states and random tensor
networks have exactly the same non-perturbative corrections to the Rényi entropies [25].
However, it would be nice to have a random tensor network model of something more
realistic than a fixed-area state. Our results suggest an interesting method for obtaining
such a model. The procedure is as follows. First, start with some conventional random
tensor network, say [¢) 45-. Second, find the canonical purification |\/pan). As we've

VPaB) (v/paB|) has a non-flat spectrum. That said, this is only a
partial success. Not all factors of the canonical purification have a non-flat spectrum. In

shown, paa = trpp«(

particular, pap is the same as in the original tensor network. To fix this we can iterate,
now finding the canonical purification of the canonical purification, this time canonically
purifying, say, paa«. Then all factors have non-flat spectra. If we like, we can continue
to iterate, building up increasingly sophisticated superpositions over tensor networks and
associated spectrum. In this way we might even build up complicated tensor networks
describing higher dimensional space times just starting from a single random tensor. This
seems a bit like the Eguchi-Kawai mechanism which grows extra dimensions out of large- N
matrices. See for example ref. [55].

Having said this, this is not the only method for building up a tensor network with
a non-flat spectrum. Another possibility is to simply add degrees of freedom to each of
the legs connecting the tensors, as in [56]. This raises the question, is there any reason
one might prefer this iterative canonical purification method for building a tensor network
with a non-trivial entanglement spectrum?

Here’s one possible reason. In conventional random tensor networks, even those with
degrees of freedom on each of the links as in [56], the area operators associated to two
crossing cuts commute. That is, if you consider one cut through the tensor network,
and then a second cut that crosses it (but nowhere overlaps it), the ‘areas’ associated
to those cuts can be simultaneously fixed. This cannot happen for overlapping cuts in
AdS/CFT [51]. There, crossing areas do not commute because the area is conjugate to
the boost angle across the surface, and fixing one area makes the geometry of the Cauchy
surface highly uncertain. Hence simply adding link degrees of freedom does not capture
this subtle behavior seen in gravity.

Very speculatively, perhaps this is captured by the iterative canonical purification
geometry. If so, this would be an interesting reason to take these seriously as toy models
of holography. We leave such an investigation to future work.
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A Symmetric group and set partitions

In this appendix, we will summarize certain aspects of the symmetric group Sy, the group
of all permutations on N elements. These are closely related to set partitions Py, the set
of all partitions of N elements. We start with a quick review of some well-known theorems
of non-crossing permutations NCpy. These theorems can be given a topological meaning
via the relation to set partitions, which allows us to generalize the theory of non-crossing
permutations to multiple disjoint boundaries. They will play an important role in the proof
of the form of the phase diagram for reflected entropy.

A.1 Cayley distance

The Cayley distance d(g, h) is a metric on Sy defined by the minimal number of transpo-
sitions, i.e., swaps of two elements, required to go from g to h. Any permutation can be
decomposed into disjoint cycles, where a cycle of n elements is represented by the notation
(i1i2...in). We first note that conjugation of an element g by an element h results in an
element hgh™! with the same structure of cycles as g but with a relabelling of the entries
in each cycle dictated by h as

Using this it is easy to show that the Cayley metric is both left and right invariant, i.e.,
d(g,h) = d(gz, h) = d(xg, zh). (A.2)

The right invariance follows from the definition, while left invariance uses the fact that
conjugation of a product of transpositions by z is still a product of transpositions.

In particular, this means we can reduce all calculations of distance between two ele-
ments to the distance of an element from the identity element e, i.e.,

d(g,h) = d(e,g " h) = d(e,hg™?). (A.3)

A special example is a cycle of k elements for which the distance from e is simply k£ — 1, as
can be seen by constructing an optimal decomposition

(i1ig...in) = (ini1) ... (i311)(i211). (A.4)
Using the above fact and the decomposition of an arbitrary permutation ¢ into k disjoint
cycles of size ny, we have

dle,g) =Y (ng—1) = N — #(g), (A.5)

k
where we use the notation #(g) = k to denote the cycle counting function.'® This makes
it manifest that d(e,g) = d(e, hgh™!), i.e., distance from the identity is invariant under

conjugation.

13Note that elements that map to themselves are counted as cycles of size 1.
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A.2 Non-crossing permutations

The Cayley metric like any other metric satisfies a triangle inequality
d(g,h) +d(h,r) > d(g,r), (A.6)

where equality implies h lies on a geodesic between g and r, and the elements lying on
the geodesic are collectively denoted I'(g, 7). In the case where one of the elements is the
identity, the set I'(g, e) can be easily classified using the theory of non-crossing permutations
as we review below.

Definition A.1 (non-crossing permutations). Let g € Sy. Consider a disk with N
cyclically ordered (say clockwise) marked points on its boundary and connect the points
with directed lines according to the cycle decomposition of g. Then g is non-crossing if and
only if every directed cycle are also clockwise oriented and can be drawn in the interior

of the disk without ever crossing each other. The set of non-crossing permutations is
denoted NCy.

Theorem 3 (Biane [57]). An element g lies on the geodesic between e and mazimal cyclic
permutation T = (12--- N), i.e., satisfies

d(evg) + d(97 7-) =N —1, (A?)
or equivalently,

#(9) +#(rg™ ) =N +1, (A.8)
if and only if it is a non-crossing permutation.
We need the following lemma.

Lemma 4. Suppose g is a permutation such that #(g) = k and o is a transposition. Then
#(go) = k + 1 if and only if the elements exchanged by o are in the same cycle of g, else

#(go) =k — 1.

Proof. Suppose the elements transposed by o, labelled i1 and io, are part of the same cycle
in g, then go splits into two cycles of the form

(i1, g(i), .- g " (1)) (i, g(in), ..., g " (i)). (A.9)

On the other hand if ¢; and iy were not part of the same cycle in g, then go couples them
into a single cycle of the form

(’il, g(’iQ), ceey 12, g(il), .. ) (A‘lO)
O

Proof of theorem 3. Consider an element g such that d(g,e) =k or #(9) = N — k. Using
lemma 4, we see that 7¢g~! has at most k& + 1 cycles and this precisely happens when
the transpositions generating ¢—' break the cycles of 7 at each step. The action of a
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Figure 21. The transposition (¢, j) breaks the cyclic permutation 7 into two cycles divided across
the chord joining points ¢ and j. In order to satisfy the geodesic condition, all further transpositions
should act on elements within the given cycles. Thus, we end up with a non-crossing permutation.

transposition (i,j) is to break 7 into cycles (1,2,...,i,5 +1,...,N) and (i + 1,...,7).
This can be represented on a disk as two cycles divided by the chord joining elements
7 and j as seen in figure 21. This process can be repeated k times, while ensuring that
transpositions always act on elements within the same cycle. The figure makes it clear that
the element 7¢~! obtained this way is a non-crossing permutation.

To prove the other direction, it is useful to introduce a topological representation as
shown in figure 22, where the green blocks represent the group action of g while the orange

blocks represents the action of ¢~

Theses blocks can never cross as implied from the
non-crossing condition. Now reinterpreting the figure as a graph we identify 2N vertices,
3N edges and the faces represent a cycle of either g or 7g~!. Thus, using the Euler formula

we have

V-E+F=%#@g)+#(rg)-N=2-2G-B (A.11)
= #(g) +#(rg™) =N +1-2G, (A.12)
where G is the genus of the Riemann surface and we have used B = 1 for the number of

boundaries. Since the graph is planar, G = 0, and we find that the geodesic condition is
satisfied for non-crossing permutations. O

We note a nice corollary of theorem 3.

Corollary 5. Suppose g is a permutation with a decomposition into disjoint cycles By,
Bs,...,Byj. Then an element h lies on the geodesic between e and g if and only if Vj Bj is
a union of disjoint cycles of h, and h restricts to a non-crossing permutation on each B;.
In this case, non-crossing is defined with respect to the orientation of cycles of g.

Proof. This follows from a simple application of theorem 3 for each B; separately. 0
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Figure 22. The group action of a non-crossing permutation g is represented by its orbits (green)
acting on the elements i € 1,2,..., N, where N = 8. The action of 7¢g~! is represented by its orbits
(orange) acting on the same elements denoted i’ for clarity.

Remark. The topological representation (figure 22) relates a permutation to a graph defined
on 2N vertices. The converse is also true and there is a bijection between such graphs
and permutation elements g € Sy. However the corresponding graph is only planar iff.
g € NCyu. In general one can think of embedding this graph onto some Riemann surface
and make this statement much more refined by relating the genus directly to the failure to
comply the geodesic condition, i.e. for g, h € Sy,

d(e,g) + d(g, h) = d(e, h) + 2(C — B) + 2G (A.13)

where B is the number of boundaries in the graph which is set by #(h), C' is the number
of connected components of the graph and G is the genus of the surface.'* For example
when h = 7, we have B = C' = 1 and we recover the geodesic condition eq. (A.7). This
allows us to study the group geodesic in a more general setting and have a better handle
on the resolvent calculation. We will give a proof for this proposition in appendix A.4.

In the calculation of various entropic quantities we will encounter group summations
over non-crossing permutations, weighted by the individual cycle counts. The outcome of
these summations can be expressed in terms of q-Catalan numbers.

Definition A.2 (g-Catalan numbers). Given any positive integer n € N and ¢ € C, the
q-Catalan number Cy(q) is defined by the following sum

Cnlq) = Z q#(g) = Z qu(TL, k), (A.14)
geNC, k=0

where N(n,k) = () (p21) are called the Narayama Numbers.

The meaning of C and G is ambiguous at this point. In particular the genus of the embedding surface
is not the same as the common definition of the genus of the graph itself since our surface has nontrivial
boundaries. We will clarify what we mean by these numbers when we set out to prove this proposition.
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N (n, k) counts the number of distinct non-crossing permutations with exactly k cycles.
Thus C),(q) is also the generating function for Narayama Numbers. The ¢-Catalan numbers
can be expressed in terms of the Hypergeometric functions

Cnl(q) = g 2F1(1 —n,—n;2;q). (A.15)
For positive integer n > 0 we have the following relationship:
Cn(1/q) = ¢ " 'Cnlq) - (A.16)

This is not true for non-integer n. Because of the ambiguity in Hypergeometric function
due to the branch cut at ¢ = 1 we give the following analytic continuation in n at fixed ¢:

Definition A.3 (analytic continuation of g-Catalan numbers). For n > 0 and ¢ > 0,

Cn(q) = (A.17)

q2F1(1—n,-n;2;q), g<1
q" oF1 (1 —n,—n;2;1/q), qg>1.

A.3 Set partitions

We now establish the relation between symmetric group Sy and set partitions Py. We
then show that it is naturally equipped with a lattice structure which defines a way to
compare elements in Py.

A partition p € Py is a disjoint set of subsets, or blocks, whose disjoint union is
Zy. Given a g € Sy we can use the cycles to produce a partition P : Sy — Py. This
map is surjective but not injective. For example, if g = (132)(45) € S5 then P(g) =
{{1,2,3},{4,5}}. We can similarly define the counting function #(p) as the number of
blocks in the partition. So #(g) = #(P(g)). We denote the finest partition by e =
{{1},{2},...,{N}} and the coarsest by {Zx}.

There is a natural partial order on such partitions given by a refinement of the parti-
tions or sub-partitions. That is p; < po if for every block ¢ € py there is a subset of blocks
in p; that forms a partition of ¢. It turns out Py satisfies nicer properties that makes it a
lattice. We review the definition and basic properties of lattices below.

Definition A.4 (lattice). A lattice is a partially ordered set L in which each two elements
a,b € L always have a meet and join, where:

Definition A.5 (meet and join). Let P be a partially ordered set and a,b € P. The join
of a and b, denoted a V b, is the least upper bound of a and b, i.e. a Vb < x for every z that
simultaneously satisfies x > a and x > b. Conversely, the meet of a and b, denoted a A b,
is the greatest lower bound of a and b, i.e. a A b > y for all y such that y < a and y < b.

The join satisfies certain properties:

aVb=bVa (commutativity) (A.18)
aV(bVe)=(aVbd) Ve (associativity) (A.19)
aVa=a, (idempotent) (A.20)
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and similarly for the meet. If a < b then a Vb = b and a A b = a. They commute
with the order, e.g. a < b = aVc < bVe Note however in general they do not
satisfy the distributive property that is familiar from set intersections and unions, i.e.
aV(bAc)#(aVb)A(aVc).

We now show that the set partition Py is indeed a lattice by explicitly constructing
p1V p2 and p; Apa. The latter p; A py is simply the set of pairwise non-empty intersections
taken over all blocks in py,p2. While the former can be found recursively via: p; V ps =
p1V (d1) V (dg) ... where po = (d1)(d2) ... is the block decomposition. Then for a single
block: ¢V (d1) is simply (Ug,ne,20¢:)q" with (Ugne,20¢:) = the single block formed by all
¢’s that intersect d and ¢’ = []4,~.,—p(ci) are the remaining blocks that do not.

It turns out this lattice is also graded and (upper) semimodular.

Definition A.6 (grading of a lattice). A lattice L is graded if there exists a map
p: L — N such that for a,b € L:

o It is compatible with the ordering of the lattice: we have p(a) > p(b) when a > b.

o It is compatible with the covering condition: p(a) = p(b) + 1 iff. a covers b (denoted
a:>b),i.e. a > b and there is no other ¢ € L such that a > ¢ > b.

The map p is called a grading of the lattice L.

For the lattice at hand the grading p(q) = N — #(q) satisfies these properties. We
can check that p is graded by the fact that when p; > ps and there is no other ps such
that p1 > ps > po, then p; must to be formed from ps by merging two blocks implying

that p(p1) = p(p2) + 1.
A graded lattice L is semimodular iff. the grading p satisfies the following property:!®

plaVb)+ pla ANb) < p(a) + p(b) Va,be L. (A.21)
We give a proof that set partitions satisfy this inequality.

Lemma 6 (semimodularity of Py). For all p1,ps € Py then:

#(p1V p2) + #(p1 Ap2) > #(p1) + #(p2) (A.22)

with equality iff. the graph, formed by #(p1) + #(p2) vertices, and connected via #(p1 A p2)
edges in the natural way, is a disconnected union of tree graphs.

Proof. Without loss of generality we can consider the case where #(p; V p2) = 1 since the
different blocks in p; V pa contribute independently to the inequality. So the general case
can be written as a sum over this case.

Consider a bi-partitle graph formed by black vertices for each block in ¢} € p; and
white vertices for each block in ¢} € py. Connect the vertices by edges for each non-trivial

15For a general lattice L the semimodular condition is that Va,b € L,a A b <: a implies b <: a V b. The
equivalence of two definitions can be found on standard textbooks on lattice theory, e.g. Birkoff [58].
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intersection ¢} N c% # (). There must be exactly F = #(p1 A p2) edges by definition. The
graph must also be connected by p; V ps = Zy. A connected graph has the simple bound:

E>V -1 (A.23)

which is easy to prove by induction on the number of vertices. But V = #(p1) + #(p2)
and we are done. Saturation of the inequality implies the graph is a tree (with no cycles),
and this follows from the induction proof mentioned above. O

A.4 Annular non-crossing and topology

We now make precise the statement in (A.13) and provide a proof for it. In particular
we will define what we mean by the embedding surface and various topological quantities
associated to it. The statement of proposition gives rise to an inequality which is saturated
when the genus G = 0. This marks the proposition as a generalization to the geodesic
conditions of non-crossing permutations and we will denote the set of the elements that
saturates the inequality as multi-annular non-crossing permutations.®

Fix a special element gy € Sy with cycle decomposition gg = [[; ¢?. From corollary 5 we
know that geodesics to the identity g € I'(e, go) are products of non-crossing permutations
of length |?| for each cycle. We will denote these simply as NC,, = NC\C5|,\cg|...' There
is a geometric picture of these elements as curves living on a disjoint union of #(go)
disconnected discs.

Beyond non-crossing permutations we now discuss multi-annular non-crossing permu-
tations that allow for connections between the different gy cycles but continue to have zero
genus. We will need a way to describe how the different cycles in gg are connected through
the action of g.

Definition A.7 (connectedness). Given two elements g, g9 € Sy. We define the con-
nectedness of g over go, written as gq,(g), to be the set quotient (P(g) V P(g0))/P(g0),
which is itself a partition gg,(g) € Pu(g)-

Note that the quotient is well defined since P(gg) < P(g)VP(go). We will often drop the
subscript go when it is clear which base permutation we refer to. The connectedness ¢4, (g)
measures how the different orbits of gg are joined by actions of g. Besides connectedness
there is another quantity we can define that measures the number of connected components.

Definition A.8. Given g,g9 € Sy. We denote #(g V go) to be the number of orbits of
where Zy is split under the joint action of g and gg. By the “joint action” we mean the
action on Zy by the subgroup generated by (g, go).

Note that #(g'V go) = #(P(9) V P(90)) = #(4go(9)). This mumber equals (g V go) =
#(go) for g € T'(go,e). More generally, we have to discuss the topology of permutation
elements.

16This terminology comes from [59] who first studied the case of two boundaries, where the embedding
surface of the graph is annular.
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0

Figure 23. An illustration showing the marked points |(¢;

2)| on a connected boundary of ¥.. The

action of g is represented by oriented curves connecting between different marked points.

Definition A.9. Given elements g, gy € Sy we define an admissible surface ¥ for g (based
over gp) as a disjoint union of oriented two dimensional Riemann surfaces with a total of
#(go) connected boundaries, and such that it is possible to decorate this surface as follows:

1. Each connected boundary has |(c})| marked points where i = 1,...,#(go) labels the
boundary. Each point is ordered and marked using an element from the cycle (c?).
The orientation of the ordering is fixed by the orientation of the surface.

2. The permutations in g are represented by oriented curves on ¥ that pass between
two different marked points on the boundaries according to g. Each marked point
has a curve entering and leaving, and we locally pick these in the same direction as
the cycles in ¢q (see figure 23).

3. The curves are all mutually non-crossing.

Theorem 7. For all g € SN write:

d(go, g) + d(g,e) = d(go,e) + 2(#(g0) — #(g V 90)) + 2G g, (9) (A.24)

then Gg,(g) > 0. Furthermore there exists an admissiable surface for g that has genus
Ggo(9) and #(g V go) connected components. This is the minimal possible genus and maz-
1mal possible number of connected components.

Proof. 1t is clear we can always work with surfaces that have #(g V go) connected com-
ponents and this is the maximal number. Without loss of generality we can now assume
that #(g V g0) = #(q4,(9)) = 1, since the more general case is then just a sum over the
partitions in gg, (g).

Firstly there always exists at least one admissible surface (not necessarily with minimal
genus) since we can simply thicken the lines defined by ¢ into tubes and connect these tubes
onto #(go) disks near the marked points on the boundaries of the disk and according to
g. Then each curve segment simply pass through their respective tubes and do not cross
each other.

Consider some admissible surface X. Let ¢; € g be a cycle. The corresponding line
segments are Li where k = 1,...|c;|. Consider a closed curve C; that hugs tightly to the
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line segments in this cycle — following the direction of the cycle and strictly “inside” the
boundary anchored curve Ukﬁz. Locally “inside” is defined such that the curve does not
intersect the boundary. It also does not intersect any of the g curves by the non-crossing
condition. Perform surgery on this closed curve C;. That is cut along the curve, and
insert two disks to close up the surface along the cuts. Discard any boundaryless Riemann
surface that gets disconnected under this process — by the non-crossing condition the result
is a single surface with the original #(go) boundaries. There can only be one boundaryless
surface B that is discarded. This produces a new Riemann surface ¥’ that is also admissible.
The genus of this new surface must decrease:

G < GE). (A.25)

This is because the Euler character under connected sum must decrease by an amount
corresponding to the Euler character of a sphere:

x(Z)=x(X'uB)-2. (A.26)
The Euler character of B is bounded above by 2 and contributes additively:
X(2) = x(X) +x(B) -2 < x(¥). (A.27)

Since the number of simple boundaries in ¥ and ¥’ is the same we get eq. (A.25). On X’
the curve C; is now contractible.

Continue this process for all cycles in g such that the corresponding curves U;CE?C for
all 7 are contractible. Similarly by including line segments between adjacent marked points
on the boundaries, oriented opposite to the ¢js, we can cut along closed cycles on the
“outside” of the cycles. It is easy to see that these can be represented by the cycles in
(90)g~!. Applying surgery to all of these cycles gives the final surface that we call y. We
now give a triangulation of the surface ¥y. We have edges corresponding to the curves
defined by g. There are N of these. There are also edges on the boundaries of ¥y between
the marked points. There are also N of these. So we have £ = 2N. The vertices have 4
lines meeting at the boundary for each marked point on the boundary. There are V = N
of these. See for example:

The faces are the interiors of the cycles in g and gga1 so F = #(g)+#(g(g0)~"). Thus:

X =2 —2G(X0) — #(90)
=V -—E+F=-N+#(g)+#(99;") = N —d(g,e) — d(g, 90) - (A.28)
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Thus:
2G(%9) = 2+ d(g, e) + d(g, go) — d(go, e) — 2#(go) - (A.29)

Which gives G(X) > G(Xo) = Gg,(g). In particular this implies that 3¢ has the minimal
genus, since for any other valid surface ¥ with lower genus G(X) < Gy,(g) we run the
above surgery argument and arrive at a contradiction: G(X) > Gy, (g). O

Finally we give a definition of the multi-annular non-crossing permutations.

Definition A.10. A multi-annular non-crossing permutation g for gy with #(gp) > 1 is a
group element with G(g) = 0 as defined in eq. (A.24) and such that #(g V go) = 1 (fully
connected). We will denote these ANCy, = ANC‘C(%M%L“.

B Proof of the 1-site phase diagram

In this appendix we give a proof for the single site phase diagram figure 9 appeared in
section 3.2. This proof draws heavily from the results in appendix A, in particular the
theorem given in appendix A.4.

To set up the problem, we consider the group Sy = S, and the elements g4 and gp
with n cycles each and defined as

ge=1...m)(m+1...2m)...(nm—m+1...nm) (B.1)
ga=(m/2+1...3m/2)(3m/2+1...5m/2)...(nm —m/2+1...m/2) (B.2)

where the cycles contain all element that appear in between the numbers shown and are
cyclicly ordered. These are defined for n > 1 and m/2 > 1 integers. These have the
property that I'(g4,e) NT'(gp, €) is non-trivial (contains more than the identity), although
the triple intersection I'(ga,e) N T'(gp,e) N T'(ga,g5) = 0. This is the main origin of
“frustration” in the problem below, and distinguishes the reflected entropy from negativity.
There is a unique element we call X that satisfies the property X € I'(g4,e) NI'(gp,€) and
it minimizes d(X, ga,g). It has 2n cycles:

X=0...m/2)(m/2+1...m)...(nm—m/2+1...nm). (B.3)

Note that P(X) = P(ga) A P(gp). If m = 2 then X =e.

The free energy function we wish to minimize is:

f(9) = zad(g,94) + xpd(g,9B) + d(g,e) (B.4)
for x4 g > 0. We wish to prove:

Theorem 8. For all z4,xp > 0 then the following minimum is achieved on a simple four
element subset:

min = in = min . B.5
f gesmf(g) gG{e,X,gA,gB}f(g) (B.5)
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Remark. This theorem only states that the minimum of f(g) can be achieved for g €
e, X,g4,9B, but does not exclude the possibility of other elements also saturating the
minimum. In fact there exists other minimal elements g € S,,, that lives at the phase
boundaries of the phase diagram figure 9, and they are crucial for smoothing out the phase
transition near x4 + xp = 1. We will investigate the detailed form of these elements in
appendix C.

Preliminary. We firstly note there are regions in the phase diagram that are easy to
deal with:

zatap<l: = [flg) 2d(g,e)(1—za—2zp)+f(e) = f(e) (B.6)

where we have used the triangle inequality: d(ga,p,9) + d(g,e) > d(e,ga ). So we have
equality iff. d(g,e) = 0. For x4 + xp = 1 then we have quality for g € T'(ga,e) UT'(gp,€).
Similarly:

rp>ap+1: f(9) = (xa —zp —1)d(g,94) + f(ga) > f(ga) (B.7)

where we have used the triangle inequality: d(ga,g) + d(g,98) > d(g4, gB) and d(ga,g) +
d(g,e) > d(e,ga). Equality is achieved iff. ¢ = g4. For x4 = zp + 1 we still only have g4
as the minimal element since the intersection I'(g4,95) UT'(ga,€) = {ga}. Similarly for
A < B. Thus the non-trivial region is x4 +xp > 1, 24 < xp+1and xp < x4+ 1. Indeed
the phase diagram is convex:

Lemma 9. If the minimum for f(g) is achieved for some g. at two locations in the
(xa,xB)1,2 phase diagram then g, is also minimal at:

(xa,xzB)x = Mza,zp)1 + (1 = N)(za,2B)2 0<A<1. (B.8)
Proof. Note that (in hopefully clear notation) for g € Sy,,:

a(g) = Afig) + (1 = A) fa(g) = Afi(ge) + (1 = A) fa(g«) = fa(gs) - (B.9)
O

Thus, for the general theorem 8 we can limit ourselves to the line x4 = zp > 1/2.
Convexity will do the rest, since all four elements {ga, gp, X, e} are already represented
somewhere on the phase diagram away from the non-trivial region. For m = 2 there is a
much simpler proof than the proof discussed below, we present this in appendix B.1.

Proof of theorem 8. As discussed above we need only consider x4 = zp = x > 1/2. Con-
sider the topological discussion of appendix A.4 for g9 = X. We classify all elements in
Smn using their connectedness gx(g) over X. Recall that gx(g) = (P(g) V P(X))/P(X).
The quotient is a partition gx(g) € Pay,.
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Set ¢ = gx(g) and n1 = #1(q), where #1(q) counts the number of length 1 blocks in
q. It satisfies 0 < n; < 2n. Now write:

1(9) = fle) + (1 = 2a)d(e, X) +n — [n1/2] = 2085, 0 (B.10)
+22(Ga — Gx)+22(Gp — Gx) + 2(Gx) ( )
+ (20— 1) (d(g, X) — 20 + #(q)) (B.12)
+ 22 (#(g) — #(q V ta) = #(qV 1) + Gny o) (B.13)
+ (n+ [m/2) - #(a)) (B.14)

where [-| is the floor function, Gap = Gy, ;(9) and Gx = Gx(g) were defined in
lemma 7. And tap = q(ga,p) or more specifically: tp = (12)(34)...(2n — 1,2n) and
ta=(23)(34)...(2n,1). To arrive at the formula above we have used:

#(gaVg) =#taValg),  #(gsVg)=#(tsVa(g)) (B.15)

which follows from #(ga V g) = #(P(ga) V P(g)) and since P(ga) > P(X) this implies
that P(ga) V P(g) > P(X) and so we can take the set quotient (P(ga) V P(g))/P(X) =
(P(ga)V (P(g)VP(X)))/P(X)=1taVq(g). And the number of sets is the same under the
quotient #(P(ga) V P(g)) = #(ta V qq). Similarly for #(gp V g).

We aim to show that each bracketed terms in lines (B.11)—(B.14) are all positive. That
is we wish to establish the estimate:

flg) = fle) + (1 = 2x)d(e, X) + (n — [11/2]) — 226n, 0 - (B.16)

Assuming this is the case then:

i > 1-2 X i — 21 —2 = i
in. f(g) = fle) + (1 = 2z)d(e, X) + Sr;;lf%ﬂ((ﬂ [n1/2]) — 226, 0) e f(g)
(B.17)
which, together with:
min < min B.18

proves the theorem. The last step in eq. (B.17) is by direct computation. It also fol-
lows since the bounds (B.11)—(B.13) that we derive below are all tight for the elements
9=X,94, 9B

We need the bound G4 > Gx in line eq. (B.11). This follows from the construction
of the genus. We use the surface Yy for g based over g4 which has genus G4. We then
deform the n boundaries of this surface into 2n boundaries by pinching — dividing the m
marked points into two sets of m/2 marked points on the new boundary (see figure 24).
This deformed X, is an admissible surface of genus G(3) for g based over X since we
can do this deformation without touching any of the curves. By theorem 7 we must have
Ga=G(Xo) = G(X) > Gx. Similarly Gg > Gx and Gx < 0 always.

Moving to the next line we also need the lower bound eq. (B.12):

d(g, X) = (2n — #(qx(9))) - (B.19)
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FAH

Figure 24. The action of deforming the n boundaries of ¥ into two 2n new boundaries.

Note that gx (X 'g) = gx(g) since (X,g) = (X, X 'g). So we can equivalently prove
d(g,e) > (2n — #(gx(g))) for all g. This follows from lemma 10 applied to go = X
and N = nm.

We also need to bound eq. (B.13):

#(q) — #(qVta) — #(qVip) + 04,90 = 0. (B.20)

To do this we use lemma 11, which simply follows from the semimodular condition
eq. (A.21). We apply this lemma with N = 2n, ¢ = ¢, s = tp and t = t4, and use
the fact that t4 Vtp = (Za,) and t4 A tp = e, giving the estimate:

#(q) —#(qVta) —#(qVip)+12>0. (B.21)

We can improve this estimate as follows. If there is at least one block in g of length-1 then
we remove one of the double blocks in tp where this length-1 ¢-block would overlap. That
is we split this double block into two single blocks to give a new t3 < tp. After doing this
we still have:

taVity = (Zan) tahtg=e #(qVitg)=#(qVip)+1 (B.22)

such that #(q) — #(qV ta) — #(q vV tp) > 0. Together the final estimate is eq. (B.20).
Finally line eq. (B.14) is positive since #(q) < n + [#1(q)/2] (the floor) which comes

simply from maximizing #(q) by splitting the remaining non length 1 blocks into pairs if

#1 is even, or pairs and a triplet if #; is odd. ]

Above we needed the following results:
Lemma 10. For all go,9 € SN, then:
d(g,e) = #(g0) — #(g V 90) - (B.23)

Proof. Map to the set of partitions Py and consider:

d(g,e) — (#(g0) = #(gV g0)) = N — #(P(9)) — #(P(g0)) + #(P(9) V P(90)) (B.24)
> #(P(g9) A P(g0)) — #(P(9)) — #(P(g0)) + #(P(g9) V P(g0)) > 0
(B.25)
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where the first equality follows since for all partitions #(P) < N and the second inequality
uses the semi-modularity property of p on Py. Saturation requires that P(g) A P(go) = e
and also that for all p < P(gp) then:

P(go) A (pV P(g)) = (P(g0) A P(g9)) Vp=p. (B.26)
O

Lemma 11. Given three partitions q,t,s € Py then:

#V(tNs)—H#(qVt)—#(qVs)+#(@qAN({tVs)>0. (B.27)

Proof. Since set partitions form a p-graded semimodular lattice with: p(q) = N — #(q) we
know that the grading satisfies:

plq1 V g2) + plq1 A g2) < plq1) + plge) - (B.28)

Set g1 =qVtand g =qVs,then ¢ Vg =qVsVtand g1 Ag2 > qV (tASs) (sincet >tAs
implies that ¢Vt > qV (t As)). Thus:

plgVsVit)+plgV (tENs)) <plaVa)+pla Ag) < plgVit)+plgAs) (B.29)
as required. ]

B.1 Simpler proof at m = 2

There is an independent proof of theorem 8 for m = 2, where there is only a three element
subset on the right hand side. A quick sketch:

Proof form =2. Set x4 = xp = x > 1/2. Write:

fin = min f'(9)  f'(9) = f(9a9) = 2(d(g,95'9B) +d(g,e)) +d(g.g5")  (B.30)

where it is easy to see that gzl gp is made of two cycles of length n. We have the more
general bound

f(9) > x(d(gy g, €) +2(#(g91" 98) — #(91 98 V 9))) + d(g.9,") (B.31)

where recall 1 < #(QZIQB Vyg) < #(92193) = 2 is the number of connected components
discussed above. We minimize over the partition of .S,,, defined by the integer #(gg1 gB VvV

g) =12

fmin1 = min f(9) > x(d(g5'gm,e) +2) +d(g,95") > 22n = f'(g3")
gE€San:#(9, 9BVg)=1

(B.32)
with equality iff. g = g;l. And also
frmin2 = min f'(9) > zd(gy gp,e) +d(g,94") (B.33)
9ESan:#(9, 9BVg)=2
= zd(gy g, €) + (2n — #(kq)) = ['(e) (B.34)
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where we have used the fact that all elements with #(g;1 9B V g) = 2 must take the form
g = ki1ga where k,q € S, and acts on the respective elements in the two cycles of gzl gB.
The minimal is achieved for fiin2 iff. g € F(gzlgB, e) and k = ¢~!. Minimizing over the
two different sets gives:

Jmin = mingEe,gA,!]B f(g) (B'35)
where the minimum is achieved iff. g € {gaki(k™1)2 : k € T'(7,e)} C T'(ga,gp) or g =e.
O

C Reflected resolvent via direct group summation

In this appendix we provide a parallel approach for finding the reflected entropy resolvent
eq. (3.84). We consider factorization of g € S, into different ¢ = gx(g) sectors. In each
sector we will find conditions that must be satisfied for g that minimizes the free energy.
By restricting the full permutation group to these special elements we are able to arrive at
an expression of the reflected entropy resolvent that matches the form given in main text.

C.1 Minimal elements in a fixed sector

The problem of finding elements that minimizes the free energy function eq. (B.4) factorizes
into two parts. Firstly, we seek for minimal elements for a fixed #(q) sector that saturates
the two conditions eq. (B.13) and eq. (B.14):

#(q) — #(qVta) = #(qViB) + 0n0 =0, n+|n1/2] —#(q) =0. (C.1)

Secondly, for a fixed ¢ € Say,, it should be possible to find all the minimal g € S,;,,, elements
where:

Ga=Gp=Gx =0, d(g,X) =2n—#(q). (C.2)

Note that at x = 1/2 (which is at the vicinity of reflected entropy phase transition at
n = 1) we can drop the latter condition in which case the answer can be written in terms
of multi-annular non-crossing elements. These elements marks the contribution of the new
dominant saddles that smooth out the phases transition. We will return to this problem
when we have a better handle on the minimal ¢ elements discussed next.

Let’s begin with the first minimization problem. We will look for minimal elements for
fixed [n1/2] = 0,...n sector. Note that we have, somewhat arbitrarily chosen to fix the
ceiling of n1(q)/2 since this removes the odd case.!” That is fix ng = 0,1...n then look
for ¢’s such that:

#1(q) = 2ng, #(q) = n +ng, #(qVita) +#(@Vip)=n+ng+dn0. (C3)

'"Recall that the saturation of #(q) < n + |n1/2] enforces the non length-1 blocks of ¢ into pairs if n4
is even, or pairs and a triplet (which we do not have a good handle on) if n; is odd. If we instead fix the

ceiling then one can show that the inequality will never be saturated when #i(q) is odd. This will likely
not change our conclusion of this section and we suspect that the effect of odd ng sector will only serve as
a correction to the resolvent.
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Theorem 12. For fized integer 0 < ng < n all partitions which satisfy eq. (C.3) take the
form q = P(iALgB|m:2) where h € Soy, and is best described as the following diagram:

2n

2ngq

2

'/4'
n

In words, form the diagram by placing 2n points on the top (representing element
135...(2n — 1)) and 2n points on the bottom (representing element 246...(2n)). The left
and right ends of the strip are further identified (so it is really a annulus). he ANGC,,, C
Son s then drawn by connecting the points pairwise without crossing as per the permutations
m B, where we split each of the 2n elements into two, each representing the incoming and
outgoing lines of h. Pick 2ng vertically aligned defect elements that is unique up to cyclic
translation. h is then constrained to take the form that it directly connects the 2ng pairs of
vertical defects (one-way) and otherwise only connects within the top/bottom half strip as
an inverse with respect to each other.

Proof. Fix gap = ga,Blm=2 the m = 2 version of these group elements. That is gp =
(12)(34)...(2n — 1,2n) and g4 = (23)(34)...(2n,1). The first two conditions eq. (C.3)
require g to be composed of pairs or singlets. In this case there is a canonical map to a
permutation element h, € Sz, since the order does not matter for cycles of length 2 or 1.
Given this, we can easily compare #(hggp) and #(q V tg) since the latter is either made
of “closed even blocks” (a block that does not include any singlets) or “ng blocks” that
start and end on a singlet. The counting is doubled in #(hqgp) for the closed blocks in
#(q V tp) (since the block factors into an even and odd orbits under the action of hqygp)
while it is not for the blocks containing singlets. Thus:

#(hqga) = 2#(qV ta) —na,  #(hegp) =2#(qVtp) —n4. (C.4)

Substituting these relations into eq. (C.3) and defining h = hqgp one can show that the
conditions eq. (C.3) are equivalent to
#(h)+ #(hgpga) = 2n+265,0,  #(hgs) =n+na,  #i(hgs) =2na. (C5)
Define 7 = gagp = (135...2n—1)(246...2n)~ 1. We will use the notation (k);(q)2 for
k,q € S, to mean permuting (1,3,5...2n—1) according to k and the elements (2,4,6...2n)
according to ¢. So 7 = (7,,)1(7,;1)2. We then recognize the first condition in eq. (C.5) as
the problem of finding annular non-crossing permutations: ANC, = ANC,, ,,, i.e.

d(h,e) + d(h,7) = d(r,e) + 2(#(1) — #(h V 7)) (C.6)

which implies that the genus G, must be zero, see definition A.10.
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For ng = 0 we can only have factorized h = (k)1 (k'~1)2 on the two cycles in g 495 where
k,k' € NC,, are non-crossing permutations. Now also #(hq) = #(hgg) = #(kk'™1) = 2n
implying that k = k’. Thus:

q= P((k)1(k™")298)- (C.7)

For ng # 0 we have annular non-crossing permutations. In particular we can only get
one-cycles in iLgB iff. there are straight crossings between the two sectors. Thus we are
looking for a certain class of annular non-crossings with 2ng straight crossings — where we
count either direction of crossings.

Draw h as shown in the diagram in the statement of the theorem. Such a diagram can

be intepreted as an operator acting on the Hilbert space (H, ® 7-[;)‘8" of dimension y?".
.18

A~

We define this corresponding operator as D(h)

D(ﬁ) ‘ €janion @ €jan_rizp—1 -+ & 6jn+1in+1> = j—n[ <Zk ‘jﬁ(k)>
B (C.8)

<6m1 ® €ixgo - - - @ €injn

where e;; = |i) (j| for some basis |i) on the #, Hilbert space.

~ A~ A~

Given h € ANC; or it’s corresponding D(h), we can define s(h) as the number of
straight crossings and t(ﬁ) as the total number of crossings. These are both even numbers.
We can form h by considering two non-crossing permutations ki, ko € NC,,4,, each with
t defect elements placed cyclically together and such that k is constrained to connect all
the ng defect elements to and from other non-defect elements. The first defect is further
constrained to connect the non-defect element directly next to it, as shown in figure 25.
he ANC,, , can be constructed by cutting open the connections at the defects of ki and
(k2)~! and glue the open connections in order, which we denote by h =k #iky ', We have

the obvious bound s(h) < t(h).
Now we seek elements h € ANC,, with s(h) = 2ng such that

X#(EQA) = TrHS?an(iAL) e (C.9)
In fact we have the following inequality:
TrH;Q?%D(iL) < xHsh/2 (C.10)

and this is saturated iff. h = k#.k~" for some k € NC%H/2 in which case s =t = 2ng4. This
proves the theorem (after applying an arbitrary rotation by conjugating by powers of to
(Tn)1(Tn)2). We prove eq. (C.10) and the saturation condition just used in lemma 13. [

Lemma 13. For any he NCsy,, then we have the estimates:
Trygean D(h) < 3072 Ty g0, D(R) < " 0/2 (C.11)

Furthermore the later inequality is saturated iff. h = k#tkt for some k € NC;LH/2

where t = t(h).

8The relevant non-crossing diagrams can be understood as arising from the affine Temperley-Lieb (TL)

algebra on 2n strands, which in turn has a representation acting on this Hilbert space. Indeed there is a
well known correspondence between the annular non-crossing permutations and the affine TL algebra.
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Figure 25. The procedure for constructing kj#:k5 1 The green lines represent the would-be
crossings.

LE N/ A AAA/E AT I m
N ADA A cnaal
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m v MVUUU \ WAL A A
ATARW AN AV A U

Figure 26. An example illustrating the action of taking Tr, een D(k1#:ky 1). We have included a
X

single straight crossing that may be removed trivially.

Proof. Note that:
Tryoon D(k#tk™") = X2 (C.12)
by direct computation.
Consider now the first inequality eq. (C.11). We can remove any straight crossings
since they factor out trivially from both sides of this inequality. So wlog consider only

A~

elements with s(h) = 0. We can then write:
Trﬂgan(kl#tkgl) = (k1| = |K5) kio € NCpy (C.13)

defined as follows (see figure 26). Here & 5 are constructed from k; and k2 by removing
the defects/crossing lines and considering the remaining elements as a non-crossing per-
mutation on n — ¢ points. These can then be interpreted as pure states (non-normalized
maximally entangled states) in the Hilbert space of dimension 2=t Finally ¥ is a
unitary permutation on this Hilbert space formed by following crossing lines in k;#:ky !
around the trace.

Then Cauchy-Schwarz gives:
[Ty o0 D(kngteky ) = | (k1| S [ke) |2 < (k| STS[R]) (K [ K3)

= (k1 |k1) (ko [k2)
= X*%Trﬂgznp(kl#tkl—l)TrH%an(kz#tkgl) =\t (C.14)
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as required. The second inequality in eq. (C.11) is trivial now. Saturation of this later

inequality requires t(h) = s(h) and saturation of the Cauchy-Schwarz inequality above
(now with no ) requires &} = k) implying the correct condition. O

We now consider the saturation condition for ¢ in eq. (C.2). To make progress we
consider only the form of ¢ given by theorem 12.

Theorem 14. Fiz an ng and a corresponding q satisfying eq. (C.3). Then there is a unique
g € Smn that satisfies eq. (C.2). This element is:

9(q) = t(h)gs (C.15)

where h € Say, is the unique element that satisfies ¢ = P(fng|m:2) and where . embeds the
subgroup Sap into Syyn. The subgroup acts only on elements jm/2+ 1 for j =0...2n—1
fizing all other elements.

If we relax the second condition in eq. (C.2) then all the dominant elements are those
satisfying g : P(g') < P(g(q)) where g(q) was defined above, and also P(q') £ P(g(q")) for
any ¢ < q. There are:

(Con = C2,p)" 4 (C2, ) (C.16)

m

of these, where C,, are the Catalan numbers.

Proof. We first consider the case where we ignore second part of eq. (C.2). Given a con-
nectivity fixed by ¢ satisfying eq. (C.3) first consider the blocks of length 1 in a; € g. These
contribute to all Gx, G4, Gp for a given ¢’ independently, and so we have zero genus for ¢’
restricted to these blocks, iff. these ¢’ forms a NC permutation within the corresponding
m/2 block. We call these NC permutation a; € NC,, /o It is not hard to see that L(ﬁ)gA
contains a cycle 7,,, /5 on this same m/2 block. Thus the statements of the theorem are true
for the 2n4 unit blocks.

Now consider a block b; € ¢ of length 2. From the form of g given in lemma 12 we
can see that such a block sits either in a closed block of ¢ V¢4 or a closed block of ¢V tp
(or both). Assume without loss of generality it is the former. Now recall the “pinching
argument” in theorem 8. Start with the zero genus surface ¥ 4 describing ¢’ with resect to
ga. Now pinch to form the surface with respect to X. Since 0 < Gx < G4 = 0 the pinched
surface must also be an admissible surface X x for ¢’ (with respect to X) that has minimal
genus 0. Focus on the curves connecting the two m/2 boundaries on ¥ x associated to b;
that describe a disconnected genus 0 surface with two boundaries ¥;. These must form an
annular non-crossing permutations in Sy, C ANC,, /3, /o that we call 8;. We now show
that these must be a special subset of annular non-crossing permutations.

We will show that we can add to X; a curve that starts between the marked points 1 and
m/2 on the first boundary and ends between the marked points 1 and m/2 on the second
boundary, and does not cross any other curves on ¥;. We construct this as follows (see
figure 27). Since we found ¥ x by pinching ¥ 4 between the marked points 1 and m/2 and
m/2+ 1 and m on the boundaries of ¥4, we can add new non-crossing curves to X x that
pass between pairs of boundaries described by the blocks in 4 that start and end between
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9'lbo)e u

Figure 27. The surface X x is constructed from ¥ 4 in such away that we can insert non-crossing
curves on Xy, shown in pink. These curves pass between the two boundaries associated to the
blocks in t4. We can use these curves and some other non-crossing curves, labelled ¢’ |b§, to pass
between the two boundaries associated to the block b; € g.

the 1 and m/2 marked points on each X boundary. On ¥ x shrink all boundaries except
for the two described by b; to arrive at X; plus some bulk points where the boundaries
shrunk, and non-crossing curves between the bulk points. Since ¢ V t4 contains the block
b; in a “closed block” we can find a curve on X x that follows alternatively the new curves
that we constructed using ¢4 and the curves in ¢’ not associated to b;. The result connects,
via the bulk points, the two remaining boundaries as required.

An annular non-crossing permutation (ANC,, /3 ,,,/2) does not cross a line between
the two boundaries iff. it is a non-crossing permutation NC,, associated to the joined
boundaries, where we join the boundaries through the non-crossing line. This is a special
subset NC;;, C ANC,,,/2,,/2. It is not hard to see that in our case these are defined as
non-crossing permutations with respect to the remaining cycles 7, of length m in g(q) =

1(h))gp. Thus we solve the condition Gx = G4 = G = 0 by demanding P(g ’) P(g ( )
(such that the connectivity of ¢’ is still described by ¢ which requires that P(¢’) £ P(g(¢))
for ¢’ < q).

For the first statement of the theorem (including the second condition in eq. (C.2)),

we now simply need to compute the following for ¢’ < g(q):

d(ng =mn — Z# Tm/2 Oéz Z# Tm/2 X Tm/Z(BJ) )

=mn — Z(m/z +1- #(o«)) = > (m—#(5;))
= (n—na)+ Y (#(a) — 1)+ > _(#(8;) — 1) (C.17)
where n — ng = 2n — #(q). So we get equality for the second part of eq. (C.2) iff. «; and

B; have one cycle — namely they equal 7,/ or 7,,, within their respective blocks. Again
it is not hard to check that the unique element that does the job is g(q). O

The surfaces that describe ¢’ with respect to gg, are disconnected NC,, /2 discs and,
the k-fold branched coverings of the disk. See figure 28 for some pictures describing the
dominant saddles.
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Figure 28. A part of ¢’ corresponding to single block in #(q V tp) and represented as a surface
with respect to gg. The boundary represented by the cycles of gp is shown in blue. The purple
line can be thought of as a “twist operator” which relates the different branches of the block.

Lastly we mention how these elements make their appearances in the phase diagram.
The minimal elements are constituted by g(q) € Sy, described in theorem 14 but also
saturating eq. (B.11), which in turn forces either ng = n or ng = 0. They are:

{6}, T < 1/2,

{9:P(9) < P(X)} =T(ga,e)NL(gpe), r=1/2, (C.18)
{X}, 1/2 <2z <n/2,

{EWm (p=1)Im/2Hmgp . k€ NC,} € T(ga, 9B), r>n/2,

in terms of the notation of section 2.3. We see that the X element comes from ng = n,
whereas the x > n/2 elements come from ng = 0. Intuitively one can also regard the ele-
ments with 0 <7ng<n as smoothly interpolating between {X} and {k[Mm (k=1)lm/241m g1,
They are essential around the reflected entropy phase transition = n/2 = 1/2, where all
the four regions in eq. (C.18) come on top of each other. The fact that phase transition
occurs at x = 1/2 also implies that we drop the second condition of eq. (C.2), that is we
must sum over all the elements prescribed in theorem 14.

C.2 Generating functions

Let us compute the generating function for elements that saturate the ¢ conditions in
eq. (C.3). Define:

Z(z,w,p) = Z Z w"d " Z p~#tava)+#(tsVa) (C.19)
n=0n4=0 g€ P2 eq. (C.3)V

where we pick the ng = n = 0 term to equal p (which then violates the seeming p — 1/p
symmetry). We use the result in lemma 12. Let us separate out the ngy = 0 contribution.
For n = ng we simply get the generating function of the g-Catalan numbers:

= ] VO i=2) 1 1
Zpg=0 = Zp AT = O(2,p) = — b
‘ gae%ln 2z 2z 2\/2_;,_7
(C.20)
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where 2z = p(1 £ p)~2 and we pick the cut such that \/zyz— = p/(1 — p?) which is the
term that violates the symmetry p — 1/p. This function satisfies:

C(z,1/p) =Clz,p)+ (' —p),  20(2,p)C(2,1/p) = C(z,p) — p. (C.21)

Focus now on the rest. Consider the integer partition n — ng = Zizdl £y, where 0 <
lr, < n — ng, then diagram represented in theorem 12 is described by 2ng4 group elements
by, € NCy, and is weighted in the partition function above by:

wndznpzk(—1)k(2#(bk)_£k_3/2) (022)

where we pick #(b;) = 0 for ¢, = 0. We also need to account for translations of the
diagram up to an amount of 1 + ¢; + ¢5. By cyclic symmetry we can pick any two £’s and
sum ( S2md (1/2 + Ek)) /ng = n/ng. Thus we need to compute:

nd;ﬁD N Z Z ng Z Z 1 Ezzdlﬂk,n—nd w'z" ka F (2 (0k) = gk)

n=1ng= 1 {Zk 0,..n—ng}tk {bkENCgk
(C.23)
We introduce a contour integral to extract the correct power of y:

_ nd_n)+z o
Zind len—nqg f 2my ' (C-24)

where C' encircles the origin y = 0. This also allows us to extend the sum Z?:i 0~ 2tr=0-

Computing this:

Z Z ”dZ"y(”d’”) (C(y,p)C(y,1/p))"* . (C.25)

n= 1n—l

Znato = 2my

Shifting the sums tong=1,...coand 7 =n —ng =0, ...00 allows us to do the sums:

dy 1

- %m In(1 —wzC(y,p)C(y,1/p)) (C.26)

Zntﬁé[) :Zaz

converging for small w,z. Then doing the contour integral to pickup the pole at z = y
(we can pick the contour C' to be at sufficiently small y to avoid non-analyticities from the
C(y,p) terms above, but large enough to encircle this pole):

Znpg#0 = zaaz In(1 —wzC(z,p)C(z,1/p)) (C.27)

while this derivation required small z, w we can then analytically continue this answer away
from this regime.
Putting it together we find:

Z@ZC(Z, p)

Z = .
(z,w,p) = C(z,p) + Clop)—p—wl

(C.28)

Note that the second term has a pole at z = with unit residue.

pw
(1+pw) (p+w)
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Now consider the problem of the minimal elements for g € Sy, in a fixed ng sector,
satisfying eq. (C.2).

(z,w,p) Z Z w" 3 p3(#(992)=#(995") (C.29)

n=0n4=0 feq. (C.2)v
gESmn.{eq. (C.3)lg=qqg v
and this gives the same generating function.
We finally drop the second condition in eq. (C.2) such that we have a new degree of
freedom. Motivating the more complicated generating function:

Ewpr Z:0 Zow Z r—#g )p%(#(ggA )—#(995")) (C.30)
n=0n Ga=Gp=0v
’ g€ '{eq. ?0-3)?(1:!19‘/

In a fixed ¢ sector we have to sum over all elements g < L(ﬁq) ga which simply gives:

pr(r)" Mpo(r), pi(r) = Cn(rTh) = Copa(r™h)? polr) = Crpe(r™)? - (C31)

where Cy, (1) = 3 enc,, r#(9) with C;(r) = 1. So that:

Y (z,w,p,r) = Z(p1(r)z, po(r)pr(r) " w,p) . (C.32)
C.3 Reflected resolvent

The resolvent can be expressed using the generating functions we found in previous sub-
section. We set:

:p1/2q1/2X1/2 71/2q1/2X1/2

XA XB =D X =X (C.33)

and take y large. This zooms into the z4 = zp = 1/2 part of the phase diagram.

[e.e]

RO = 3 A7 A o 31 (Ovglp(a) + po(@) Lxapg) (C34)
n=0 (TTPAB)

= A"'Z((Axq) p1(a). xapo(a) /p1(q), p) - (C.35)

Where Y(z,w,p, q) = (xq¢ — 1Y (2,0,p,q) + Y(z,w,p,q) and similarly for Z. We have

defined:
po.1(q)

po(q) +p1(q)

At large x there are multiple scales in the resolvent, which makes it difficult to prove a

poa(q) = (C.36)

clean statements on the large y answer. We have the main part of the resolvent which
describes the MP distribution given by:
R(A)xer/y = A xqC((Axa) " 'p1(q), )

e VO] 1
X 22/ Ax 22 2D x\/Zr 2=

(C.37)
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and is found near eigenvalues A ~ 1/x where we have defined 2’ = p1(q)/q and 21+ = 24 (p)
was defined previously. Then there is a single pole approximately at zw ~ 1 (taking w
large and zw held fixed). That is A &~ po(q). For A ~ O(1) we have z small so we can
approximate C(z,p) ~p+z+ ...

1
A—=polq)

In particular the naively leading MP distribution is not relevant because it has zero imag-

R(A) a1 & (C.38)

inary part for this range of .
Note the general location of the pole is:

|
)\:po(p—i- p1>(+ p1>:p0<1+ p12><1+ p12> (C.39)
boxa b Poxq boXa PoXB

although there is no reason to expect there are not other 1/x corrections that possibly even

compete with the corrections implied by the above formula. The more general resolvent
that is represented by eq. (C.30) is not accessible in this physical quantity since it lies
outside of the domain of validity for the approximation that we are using. This is due to
the large w ~ x value that we must use in the generating function. In order to access this
we need a way to hold fixed w without changing q or p.

D Full solution to &k = 2 SD-equation

In section 3.4 we have the following set of matrix equations for the 2 x 2 matrix R which
determines the resolvent at A ~ O(x2):

1
Ri1 Ria _ A—Fi —Fip
R21 R22 —F21 /\_F22
Fi F 0 D, ME,, (Ra R B, [Sa2(x% —1 0
11 112 :\f)\ A 4 . 22 21 4 - 22(XB ) ) )
oy Fy D,, 0 (xaxB)? \ Ri2 Ry (xaxB) 0 S1i(xa—1)
(D.1)

With Sy1 and S9s given by

2 2

2.2 _
Ok = 1), (¢ — )5 = S22 (A —JO=a)( - L)) XX (D)

We now attempt to find a complete solution for matrix R. Define

M = < A —\/Xﬁm> . )\ém <511(X124 — 1) 0 > — (Mll M12> .

~VADp A (xaxB)? 0 Saa(xB — 1) Moy Moo
(D.3)
Note that M is symmetric, Mo = M. We can write eq. (D.1) as
~ -1
AE
T'RT=|M- —"=R (D.4)
(xaxB)
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where

T=T"'= (0 1) (D.5)
10
is the x4 <> xp basis flip matrix. Multiply both sides by T from the left we obtain
AE, -
RT = MT — 7RT i (D.6)
(xaxs)?

What we have shown is that RT and MT are simultaneously diagonalizable. Our strategy
is then straightforward: we simply go to the basis where both matrices are diagonalized.
Doing so allows us to solve for the eigenvalues of RT easily, then we transform back to the
familiar basis and undo the effect of T'. Start by diagonalizing MT"

MT — <M12 M11> —Q <d+ 0 > o1

M22 M12 0 d_
~1
_ (VM =V M\ (Mg + v My Map 0 VM —/Mn
vV Mz v/ Mao 0 My — /M1 Mz ) \vV/Maz /Mao
(D.7)
We find that the eigenvalues of MT are
d+ = Mo £ v/ M1 Moo (D.8)
so we have
R:Q(T+ O>Q—1T
0 r_
1 %—;(r+—r,) T4 4o (D.9)
2 re+r_ %—ff(nr—r_)
with r1 given by
(XAXB)2 ) 4)\Em
=20 dye — 8 |d——— | . D.10
MNE, |- ' (xaxs)? (B-10)
In calculating the resolvent we only need the Rq; component. It is
_ [Mn ANEp,
Rii(A (axes)” 2V My Mag + | (M2 — v M1 M22)? — ———
May 4\E,, (xaxB)
ANE,
—\| (M2 + VM1 Ma2)? — ———5 (D.11)
(XAXB)
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The form of Ry1(\) seems to predict two “mini-MP” peaks with width oc \/ Em/(xaXB),
centered at A\, where the condition

My = ++/My1 Mo (D.12)

is satisfied. However since Mis x VA, from the branch cut of square root we see that
solutions for these two equations lie immediately above and below real axis, respectively.
In fact they represent the same peak, as we must have R(A + ie) = —R(A — i¢) for any
resolvent R(\). Solving for A, gives

(Bi(1 — x32)x52 + D2) (B (1 — x5)xa> + D2)

)\* — =
D7,
(D.13)
~ 1 1 ~
=D+ |+ | Bn+0OK™?).
We can calculate the width of this mini-MP peak via solving the relation
s ANEp,
(Mg £/ M11Myy)® = 5 - (D.14)
(xaxs)
We find
s SDmy/ Em (1 L BLOG - DG~ 1)
XAXB 4E,, — D2 y2y2%)?
(4Em — D3 XAXE) (D.15)
8D/ E
XAXB
Note that: )
~o _a OG- DY - Y2
M—M=|D3¥B D.16
) ( e (xaxB)? (D-16)
so the A, pole never reaches the main MP peak. It rather bounces when
=R =R 2 1 1/2(,2 _ 1 1/2

(xaxB)?

which is outside of the validity of our approximations.
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