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1 Introduction

The correlation functions of superconformal primary operators in the stress tensor multi-
plet of N = 4 super Yang-Mills theory (SYM) have received intensive study both at weak
coupling and at strong coupling. Recently, the concept of the integrated correlators was
introduced in [1], where it was found that, when integrated over spacetime coordinates with
certain integration measures that preserve supersymmetry, the correlators of four supercon-
formal primary operators in N = 4 SYM with SU(N) gauge group can be computed using
supersymmetric localisation techniques.1 This has led to many interesting developments.
In particular, the integrated correlators were used as constraints for determining unfixed
parameters in the perturbative computation of holographic correlators in AdS5 × S5 at
supergravity limit and beyond [1–3]. Exact results of the integrated correlators with finite
complexified Yang-Mills coupling τ were also obtained, in the large-N expansion [4, 5] as
well as for arbitrary values of N [6, 7]. These exact results of integrated correlators have
important applications to the numerical bootstrap of understanding non-BPS operators in

1There were two such integrated correlators that have been studied in the literature, and we will refer
them as the first integrated correlator and the second integrated correlator, respectively.
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N = 4 SYM [8] and to the study of ensemble average of N = 4 SYM [9]. The integrated
correlators have been generalised for N = 4 SYM with general classical gauge groups,
in the large-N expansion [10] and for gauge groups with arbitrary ranks and finite cou-
pling τ [11]. One may further extend the integrated correlators for correlation functions
with more than four operators; in [12, 13], the integrated n-point maximal U(1)Y -violating
correlators were introduced and their implications to the n-point maximal U(1)-violating
superstring amplitudes [14, 15] in AdS5 × S5 were studied.

In this paper, we will study perturbative aspects of integrated correlators using stan-
dard Feynman diagram methods. We will compute the integrated correlators order by
order in the perturbation expansion using the loop integrands constructed in [16, 17] (see
also [18, 19] for higher-loop contributions) for the un-integrated correlator. It was observed
in [16] that the integrands of the four-point correlator of superconformal primary operators
of stress-tensor supermultiplets in N = 4 SYM has a hidden complete permutation symme-
try of external and integration points. This observation has led to very powerful graphical
representation of the loop integrands. In particular, the integrands of the four-point cor-
relator at L-loop order can be expressed as linear combination of particular graphs, with
(L + 4) degree-(−4) vertices — each propagator counts as degree minus one, and each
numerator (or inverse propagator) counts as degree plus one. Some of these graphs are
simple 4-regular graphs, but in general they contain numerators. These loop integrals have
been computed explicitly up to three loops. At one loop [20–22] and two loops [23, 24],
the resulting correlator is expressed in terms of polylogarithms with transcendental weight
two and four, respectively. The three-loop integrals are much harder to evaluate. The
correlator at three loops was computed analytically in [25], and the final result involves
much more complicated multiple polylogarithms.

To obtain the integrated correlators, in principle one may take these analytical expres-
sions for the un-integrated correlator and then integrate them over spacetime coordinates
(more precisely the conformal cross ratios) with the integration measures in the definition
of the integrated correlators, as given in (2.3) and (2.4). However, given the fact that the
un-integrated correlator is given by complicated polylogarithms, and even multiple poly-
logarithms, it is rather challenging to integrate these functions directly with the non-trivial
integration measures. Furthermore, there are no analytical results for the un-integrated
correlator beyond three loops, which makes it impossible to study the integrated correlators
using Feynman diagram methods at higher loops in this way.

The observation of this paper is that, instead of taking the analytical results of the
un-integrated correlator, it is much more convenient to simply use the loop integrands of
the correlator. When integrated with the integration measures that are used in the def-
inition of the integrated correlators, the graphs representing the loop integrands of the
un-integrated correlator become precisely the periods of certain Feynman graphs with ver-
tices of degree-(−4), and such periods have been studied quite extensively in the literature,
see for example [26–33]. In particular, for the first integrated correlator at L loops, it
involves the computation of (L + 1)-loop periods; for the second integrated correlator at
L loops, it is given by a sum of (L + 2)-loop periods. Special powerful techniques and
packages (such as HyperInt [30] and HyperlogProcedures [34]) have been developed for
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computing these periods, which allow us to evaluate the first integrated correlator up to
four loops — it was computed up to two loops in [7] — and up to three loops for the second
integrated correlator. We find these results from explicit loop integrals of periods match
precisely with the results that are obtained using supersymmetric localisation.

It should be stressed that the construction of the loop integrands based on the methods
of [16, 17], and hence the periods for the integrated correlators, are general and not spe-
cific to the SU(N) gauge group. Especially for the planar sector, which we consider in this
paper, the correlator takes a universal form for all classical gauge groups once we use appro-
priate ’t Hooft couplings [11]. We therefore compare our Feynman diagram computations
with the results obtained from supersymmetric localisation for the integrated correlators in
N = 4 SYM with general classical gauge groups. The perturbative contribution of the first
integrated correlator has in fact been evaluated in [10, 11] using localisation. We will also
compute the second integrated correlator for general classical groups using supersymmetric
localisation in this paper, for the comparison with the Feynman diagram results.

On the one hand, the agreement between Feynman diagram results and the localisa-
tion computation provides important confirmation of the integrated correlators obtained
from supersymmetric localisation. The analysis also provides interesting insights of the
correlation function in the weak coupling region. In particular, it highlights the simplicity
of the integrated correlators. On the other hand, since the integrated correlators can be
computed using supersymmetric localisation to arbitrarily high orders, these results from
localisation provide very interesting and new relations among the periods associated with
these degree-(−4) Feynman graphs that are relevant for the correlator. In particular, when
the periods cannot be computed using current techniques, the results of localisation give
predictions. We will illustrate this idea by considering one of the integrated correlators
at five loops in the planar limit, the results of localisation lead to a prediction for the
analytical expression of a period of a certain six-loop integral.

The paper is organised as follows. In section 2, we will review the integrated four-
point correlators in N = 4 SYM with general classical gauge groups, and some of the
perturbative results obtained from supersymmetric localisation. In section 3, we will review
the construction of the loop integrands for the un-integrated four-point correlator. These
integrands can be naturally represented in terms of degree-(−4) Feynman graphs. We will
then show that once integrated over the integration measures introduced in section 2 for
the definition of integrated correlators, they become periods of these degree-(−4) Feynman
graphs. In section 4, we will evaluate all the relevant periods for the first integrated
correlator up to four loops in the planar limit, and for the second integrated correlator up
to three loops. In both cases, the computation involves periods that are up to five loops.
We will also consider the first integrated correlator at five loops in the planar limit. For
this case, we are able to compute all the relevant periods except one (they are all six-loop
integrals). The known result from localisation then allows us to predict this particular
unknown six-loop period. We conclude in section 5, and some technical details of our
calculation are described in the appendices.
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2 Integrated correlators in N = 4 SYM

In this section, we will review the definition of integrated four-point correlators in N = 4
SYM, and their relations to the localised partition function of N = 2∗ SYM on S4. We
are interested in the correlation function of four superconformal primary operators in the
stress-tensor multiplet of N = 4 SYM with a gauge group GN , which can be expressed as

〈O2(x1, Y1) . . .O2(x4, Y4)〉 = 1
x4

12x
4
34

[TGN , free(U, V ;Yi) + I4(U, V ;Yi)TGN (U, V )] , (2.1)

where the superconformal primary operator is defined as O2(x, Y ) := tr(ΦI(x)ΦJ(x))YIYJ ,
which has conformal dimension 2. We have introduced null vector YI ’s (I = 1, 2, · · · , 6)
taking care of the SO(6) R-symmetry indices, and the conformal cross ratios, U, V are
given by

U = x2
12x

2
34

x2
13x

2
24
, V = x2

14x
2
23

x2
13x

2
24
. (2.2)

The quantity TGN , free(U, V ;Yi) represents the free theory part of the correlator. The non-
trivial part of the correlator has been factorised into two pieces: the pre-factor I4(U, V ;Yi)
is fixed by the superconformal symmetry due to partial non-renormalisation theorem [35,
36] (the expression of I4(U, V ;Yi) is given in (3.6)), and TGN (U, V ) is the dynamic part of
the correlator, which will be the focus of our study.

We will be interested in the perturbative aspects of the correlator. As we commented
in the introduction, in perturbation theory, TGN (U, V ) has been computed only up to three
loops [25]. However the integrands in the planar limit have constructed up to ten loops
using very efficient graphic tools [19]. The non-planar contributions first appear at four
loops, and the corresponding integrand is also known [37].

It was shown in [1, 3] that when integrated over suitable integration measures, the
correlator can be determined in terms of the partition function of N = 2∗ SYM (N = 4
SYM with certain mass deformation on the hypermultiplet) on S4, which can be computed
using supersymmetric localisation [38]. There are two kinds of integrated correlators that
have been studied in the literature due to different choices of the integration measures.2
Concretely, they are defined as3

CGN ,1(τ, τ̄) := I2 [TGN (U, V )] = − 8
π

∫ ∞
0

dr

∫ π

0
dθ
r3 sin2(θ)

U2 TGN (U, V ) , (2.3)

and

CGN ,2(τ,τ̄) :=I4 [TGN (U,V )]=−32
π

∫ ∞
0
dr

∫ π

0
dθ
r3sin2(θ)

U2 (1+U+V )D̄1111(U,V )TGN (U,V ),
(2.4)

where r and θ are related to cross ratios by U=1+r2−2rcos(θ) and V =r2. The function
D̄1111 is the usual D-function that appears in the computation of contact Witten diagrams,

2Some possible generalisation of these two integrated correlators was suggested in [39].
3The normalisation of TGN (U, V ) follows the convention of [7] and differs from that in [1, 3] by a factor

of c2
GN

, and cGN is the central charge given in (2.9).
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which can be expressed as a one-loop box integral in four dimensions, given by

D̄1111(U,V )=− 1
π2 x

2
13x

2
24

∫
d4x5

x2
15x

2
25x

2
35x

2
45
. (2.5)

In the notation for the integrated correlators, we have made clear that they are indepen-
dent of the spacetime coordinates, and they are functions of the (complexified) Yang-Mills
coupling

τ = τ1 + iτ2 := θ

2π + i
4π
g2
YM

. (2.6)

In this paper, we will be mostly concerned with the perturbative contributions, in which
case, τ1 = 0 (or equivalently the θ angle vanishes), and the integrated correlators are
functions of τ2 (or g2

YM
) only. As we commented earlier, with the choices of the integration

measures given in (2.3) and (2.4), the integrated correlators are known to be related to
the partition function of N = 2∗ SYM on S4 through the following relations. For the first
integrated correlator, the relation takes the following form,

CGN ,1(τ, τ̄) = 1
4∆τ∂

2
m logZGN (τ, τ̄ ,m)

∣∣
m=0 , (2.7)

where the hyperbolic Laplacian is given by ∆τ = 4τ2
2 ∂τ∂τ̄ = τ2

2
(
∂2
τ1 + ∂2

τ2

)
, and

ZGN (m, τ, τ̄) is the partition function of N = 2∗ SYM on S4 with GN gauge group and m
is the mass of the hypermultiplet. The second integrated correlator is then given by

CGN ,2(τ, τ̄) = −48 ζ(3) cGN + ∂4
m logZGN (m, τ, τ̄)

∣∣
m=0 , (2.8)

where cGN is the central charge,

cSU(N) = N2 − 1
4 , cSO(n) = n(n− 1)

8 , cUSp(n) = n(n+ 1)
8 . (2.9)

The partition function ZGN (m, τ, τ̄) can be expressed as a matrix model integral due to
supersymmetric localisation [38]. Explicitly, it can be expressed as

ZGN (m, τ, τ̄) = 〈 Ẑpert
GN

(m, a) |Ẑ inst
GN

(m, τ, a)|2 〉GN , (2.10)

where we have separated the partition function into the perturbative term Ẑpert
GN

(m, a) and
the non-perturbative instanton contribution Ẑ inst

GN
(m, τ, a). We will omit the instanton con-

tribution, therefore in our consideration Ẑ inst
GN

(m, τ, a) = 1. The explicit form of Ẑpert
GN

(m, a)
for each classical gauge group GN and the definition of the expectation value 〈· · · 〉GN can
be found in appendix A. Focusing on the perturbative terms, the localisation expressions
for integrated correlators reduce to

Cpert
GN ,1(τ2) = 1

4τ
2
2 ∂

2
τ2〈∂

2
mẐ

pert
GN

(m,a)
∣∣
m=0 〉GN , (2.11)

Cpert
GN ,2(τ2) =−48ζ(3)cGN +〈∂4

mẐ
pert
GN

(m,a)
∣∣
m=0 〉GN −3

(
〈∂2

mẐ
pert
GN

(m,a)
∣∣
m=0 〉GN

)2
.

In the following we will compute the perturbative terms of integrated correlators
Cpert
GN ,1(τ2) and Cpert

GN ,2(τ2) using the matrix model integrals given in the appendix A. As
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was found in [11], it is convenient to express the perturbation series in terms of central
charge, as given in (2.9), and the ’t Hooft coupling

λSU(N) = g2
YM

N , λSO(n) = g2
YM

(n− 2) , λUSp(n) =
g2
YM

(n+ 2)
2 , (2.12)

where λSU(N) is the standard ’t Hooft coupling for SU(N) gauge group, and the others are
the generalisations for other gauge groups [11] (see also [40]).

The perturbative expansion for the first integrated correlator was already computed
in [11]. It was found that Cpert

GN ,1(τ2) takes the following universal form for all the gauge
groups GN ,

Cpert
GN ,1(τ2) = 4 cGN

[
3 ζ(3)aGN

2 −
75 ζ(5)a2

GN

8 +
735 ζ(7)a3

GN

16 −
6615 ζ(9) (1 + PGN ,1) a4

GN

32

+
114345 ζ(11) (1 + PGN ,2) a5

GN

128 +O(a6
GN

)
]
, (2.13)

where aGN = λGN /(4π2). We see that the first three perturbative contributions are uni-
versal and their dependence on N is contained entirely within cGN and aGN , therefore the
first three loops are all planar, and the non-planar terms only start to enter at four loops.
Furthermore, the planar contribution is universal for all gauge groups. Explicit non-planar
factors, PGN ,i (where i = L− 3 and L is the loop number), first enter at four loops and the
first two orders for all classical groups are listed below:

PSU(N),1 = 2
7N2 , PSU(N),2 = 1

N2 ,

PSO(n),1 = −n
2 − 14n+ 32
14(n− 2)3 , PSO(n),2 = −n

2 − 14n+ 32
8(n− 2)3 ,

PUSp(n),1 = n2 + 14n+ 32
14(n+ 2)3 , PUSp(n),2 = n2 + 14n+ 32

8(n+ 2)3 ,

(2.14)

where for n = 2N or 2N + 1 for SO(n), and n = 2N for USp(n). It was observed in [11]
that the expression manifests the relations between the correlators of SU(N) theory and
SU(−N) theory, as well as the correlators of SO(n) theory and USp(−n) theory [41, 42]:

Cpert
SU(N),1(τ2) = Cpert

SU(−N),1(−τ2) ,

Cpert
SO(n),1(τ2) = Cpert

USp(−n),1(−τ2/2) .
(2.15)

It is straightforward to evaluate higher-order terms in perturbative expansion, where one
finds similar structures for the integrated correlator, and the relations given in (2.15) also
hold at higher orders.

Similarly, using (2.11) and the matrix model description of the partition function
given in appendix A, we have also evaluated the perturbative contributions to the second

– 6 –
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integrated correlator Cpert
GN ,2(τ2), which is given by,

Cpert
GN ,2(τ2)=4cGN

[
−60aGN

ζ(5)+
3a2
GN

(36ζ(3)2+175ζ(7))
2 −

45a3
GN

(20ζ(3)ζ(5)+49ζ(9))
2

+
45a4

GN

(
340ζ(5)2+588ζ(3)ζ(7)+1617ζ(11)+PGN ,1

(
840ζ(5)2+1617ζ(11)

))
16

−
63a5

GN

(
1820ζ(5)ζ(7)+1512ζ(3)ζ(9)+4719ζ(13)+ 21PGN ,1

2 (840ζ(5)ζ(7)+144ζ(3)ζ(9)+1573ζ(13))
)

16

+O(a6
GN

)
]
, (2.16)

where the non-planar contribution PGN ,1 is given in (2.14). We see that Cpert
GN ,2(τ2) is consid-

erably more complicated compared to Cpert
GN ,1(τ2) (that is also the reason that we do not show

the higher-order terms). However, some important features of Cpert
GN ,1(τ2) that we commented

earlier remain to be true for Cpert
GN ,2(τ2). In particular, once again, the planar contribution

is universal for gauge groups and the non-planar contributions only start to enter at four
loops. The expression given in (2.16) (as well as for the higher-order terms which we did
not show explicitly) makes it clear that the relationships (2.15) also hold for Cpert

GN ,2(τ2).
In the following section, we will study these two integrated correlators using Feynman

diagram methods. In particular, by using the definitions given in (2.3) and (2.4), we
will argue that applying the loop integrands constructed in [16, 17] using graphical tools,
the integrated correlators are given by linear combinations of periods associated with the
graphs that represent the loop integrands (and their simple generalisations). By computing
these higher-loop periods explicitly, we will show that, up to four loops in the planar limit
for the first integrated correlator and up to three loops for the second integrated correlator,
the numerical coefficients of the perturbation expansion given in (2.13) and (2.16) agree
precisely with the direct loop computations from Feynman diagrams.

3 Integrated correlators and Feynman graph periods

In this section, following [16, 17], we will review the construction of perturbative loop
integrands for the four-point correlation function of superconformal primary operators in
the stress tensor multiplet of N = 4 SYM. It was shown in [16, 17] that due to conformal
symmetry and certain hidden permutation symmetry, the Feynman integrals relevant for
the correlation function are of very particular forms. At L loops, they are given by the
so-called f (L)-functions, which can be represented by the so-called f -graphs [19]. We will
then argue that these f (L)-functions, when integrated the measures given in (2.3) and (2.4)
for the definition of the integrated correlators, are precisely periods of (L + 1) loops and
(L + 2) loops, respectively. Furthermore, these types of Feynman integral periods have
been studied in the literature (see e.g. [26–33]), and special techniques, especially computer
packages, have been developed for their computations. Therefore this observation allows us
to compute the integrated correlators to high-loop orders, as we will do in the next section.
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P (1). P (2). P (3).

Figure 1. Here we draw examples of the P -graphs for the numerator polynomials P (L) with
L = 1, 2, 3, they are taken from figure 1 in [17]. As one can see that each P (L)-graph has (L + 4)
vertices, and each vertex has degree (L− 1).

3.1 Four-point correlator in N = 4 SYM and its loop integrands

The Feynman integrals that are relevant for the L-loop contribution to the four-
point correlator of the superconformal primary operators O2 operators are the so-
called f (L)-functions [17]. In general, f (L)-function is given by a linear combination of
f

(L)
α (x1, x2, . . . , x4+L) with coefficients that are determined by physical requirements,

f (L)(xi) =
nL∑
α=1

c(L)
α f (L)

α (x1, x2, . . . , x4+L) . (3.1)

and f
(L)
α may contain both planar and non-planar topologies. We will only consider the

planar ones in this paper. Each function f (L)
α is given by

f (L)
α (x1, x2, . . . , x4+L) = P

(L)
α (x1, x2, . . . , x4+L)∏

1≤i<j≤4+L x
2
ij

, (3.2)

where the subscript α denotes different planar topologies, and we sum over all nL number
of them, see table.1 in [17] for nL at lower loops. The function f (L) without the subscript α
simply means it has only one planar topology, i.e. nL = 1. The numerator P (L)

α is a polyno-
mial that is determined by the so-called P -graphs. The P -graphs are loop-less multigraph
with (4 +L) vertices of degree (L− 1). A line that connects vertices i, j represents a factor
x2
ij — a loop (i.e. a line that connects to the same vertex) is therefore not allowed, it would

otherwise lead to a vanishing result, x2
ii = 0. The function P (L)

α is then given by the product
of these factors x2

ij associated with a given P -graph. For example see figure 1, where we
give P -graphs for L = 1, 2, 3. It is easy to see that f (L)

α (x1, x2, . . . , x4+L) has degree-(−4)
at each point xi. Furthermore, f (L)

α (x1, x2, . . . , x4+L) is permutation symmetric due to the
hidden permutation symmetry found in [16]. The f (L)

α -functions can also be represented as
graphs: where the solid straight lines denote propagators in (3.2) and dashed lines denote
the numerators, and each vertex has weight (−4) if we count a solid straight line as (−1)
and a dashed line (+1). Such graphs are called f -graphs [19]. Examples of such f (L)-
graphs for L = 4 is shown in figure 2 — they are the loop integrands that contribute to
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the correlator at four loop in the planar limit, and for the first three loops, they are shown
in figure 4.

As shown in [16, 17], these f (L)-functions are the building blocks for constructing the L-
loop integrands for the four-point correlator. In particular, we may write the perturbative
expansion of the correlator as

〈O2(x1, Y1) . . .O2(x4, Y4)〉pert = 2 cGN
∞∑
L=1

aLGNG
(L)
4 (1, 2, 3, 4) , (3.3)

where cGN is the central charge of gauge group GN given in (2.9), and aGN = λGN /(4π2)
with the ’t Hooft coupling λGN defined in (2.12). The L-loop contribution to the correlation
function, denoted by G(L)

4 (1, 2, 3, 4), is given by

G(L)
4 (1, 2, 3, 4) = R(1, 2, 3, 4)× F (L)(xi) , (3.4)

where the prefactor R(1, 2, 3, 4) is completely fixed by superconformal symmetries [35, 36],
and is defined as

R(1, 2, 3, 4) = Y12Y23Y34Y14
x2

12x
2
23x

2
34x

2
14

(x2
13x

2
24 − x2

12x
2
34 − x2

14x
2
23)

+ Y12Y13Y24Y34
x2

12x
2
13x

2
24x

2
34

(x2
14x

2
23 − x2

12x
2
34 − x2

13x
2
24)

+ Y13Y14Y23Y24
x2

13x
2
14x

2
23x

2
24

(x2
12x

2
34 − x2

14x
2
23 − x2

13x
2
24)

+ Y 2
12Y

2
34

x2
12x

2
34

+ Y 2
13Y

2
24

x2
13x

2
24

+ Y 2
14Y

2
23

x2
14x

2
23
, (3.5)

where Yij = Yi · Yj , and it is proportional to I4(U, V, Yi) in (2.1) as,

I4(U, V, Yi) = x2
13x

2
24 UV R(1, 2, 3, 4) . (3.6)

The function F (L)(xi) is related to f (L)(xi), as the following

F (L)(xi) = x2
12x

2
13x

2
14x

2
23x

2
24x

2
34

L!(−4π2)L
∫
d4x5 · · · d4x4+L f

(L)(xi) . (3.7)

The loop integrands f (L)(xi) have been computed up to ten loops in the planar limit [16–
19], and up to four loops for the non-planar contribution [37]. Finally, comparing (3.3)
with (2.1) and using (3.6), we find the perturbative contribution to the correlator can be
expressed as

TGN (U, V ) = 2 cGN
U

V

∞∑
L=1

aLGN x
2
13x

2
24 F

(L)(xi) . (3.8)

This is the formula that we will be using for the computation of integrated correlators in
the next subsection.
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f
(4)
1 . f

(4)
2 . f

(4)
3 .

Figure 2. Here we draw f -graphs that contribute the correlator at four loops in the planar limit.
They are also given in figure 8 in [17]. The solid straight lines denote propagators and the dashed
lines are the numerators (or inverse propagators). The blue or red vertex means it has one or two
numerator(s) attached, respectively. This ensures that each vertex has degree (−4), if we count
each solid straight line as (−1) and dashed line as (+1).

3.2 Integrated correlators as Feynman graph periods

A period [43] is defined to be the absolutely convergent integral of a rational differential
form over a domain given by polynomial inequalities:

π−2n
∫

∆
dx1 . . . dxn

P (x1, . . . , xn)
Q(x1, . . . , xn) , (3.9)

where the integration domain ∆ is defined by {hi(x1, . . . , xn) ≥ 0}, and P,Q, hi are poly-
nomials with rational coefficients. The construction of periods has many fascinating appli-
cations to number theory as well as to the computations of Feynman diagrams in quantum
field theory. In this subsection, we will argue that the integrated correlators defined in (2.3)
and (2.4) using the loop integrands reviewed in subsection 3.1 are precisely periods of Feyn-
man graphs associated with the f (L)-functions. In particular, we find the first integrated
correlator can be expressed in terms of the periods of f -graphs, whereas for the second in-
tegrated correlator, it is given by the periods of f̃ -graphs. A f̃ -graph is the generalisation
of the f -graph by attaching it with an additional one-loop box integral, which will define
later with more details.

3.2.1 First integrated correlator

We begin with the first correlator given in (2.3),

CGN ,1(τ2) = I2 [TGN (U, V )] = − 8
π

∫ ∞
0

dr

∫ π

0
dθ
r3 sin2(θ)

U2 TGN (U, V ) , (3.10)

then plug in the perturbative contribution of TGN (U, V ) in (3.8) to arrive the following
expression

I2 [TGN (U, V )] = − 8
π

(2cGN )
∫ ∞

0
dr

∫ π

0
dθ r3 sin2(θ) 1

UV
x2

13x
2
24
∑
L≥1

aLGNF
(L)(xi) . (3.11)

For the later convenience and comparison with the localisation result (2.13), we will consider
the integration acting on F (L) at each loop order, and pull out an overall factor (4 cGN ) as
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follows
I2 [TGN (U, V )] = 4 cGN

∑
L≥1

aLGN I
′
2

[
F (L)(xi)

]
, (3.12)

and define the I ′2 integral as

I ′2

[
F (L)(xi)

]
= − 4

π

∫ ∞
0

dr

∫ π

0
dθ r3 sin2(θ) 1

UV
x2

13x
2
24F

(L)(xi) . (3.13)

As observed in [7], the above integral (3.13) can be viewed as an integration over a four-
dimensional vector, PV , with P 2

V = V . Using the relations U = 1 + r2 − 2r cos(θ) and
V = r2, we have ∫

d4PV = 4π
∫ ∞

0
dr r3

∫ π

0
dθ sin2(θ) . (3.14)

In this form, the integrated correlator can be expressed as

I ′2

[
F (L)(xi)

]
= − 1

π2

∫
d4PV

1
UV

x2
13x

2
24 F

(L)(xi) . (3.15)

Substituting the definition for the cross ratios U, V given in (2.2) in terms of xi’s, we find,

I ′2

[
F (L)(xi)

]
= − 1

π2

∫
d4PV

x6
13x

6
24

x2
12x

2
34x

2
14x

2
23
F (L)(xi)

= − 1
π2L!(−4π2)L

∫
d4PV x

8
13x

8
24

∫
d4x5 · · · d4x4+L f

(L)(xi) , (3.16)

where we have used the relation (3.7) to arrive at the final expression.
The integrated correlator is given by finite conformal integrals, which allow us to fix

three points, for the convenience, we choose them to be (0,1,∞). Firstly, we set x4 to be
infinity, and the integration (3.16) reduces to the following expression,

I ′2

[
F (L)(xi)

]
= − 1

π2L!(−4π2)L
∫
d4PV x

8
13

∫
d4x5 · · · d4x4+L f

(L)(xi) , (3.17)

and we also observe under the x4 →∞ limit, the cross ratios become

U = x2
12
x2

13
, V = x2

23
x2

13
. (3.18)

We further choose x3 = 0, x1 = 1, then x2 is identified with PV . Finally, putting everything
together, we find the integrated correlator is given by

I ′2

[
F (L)(xi)

]
= − 1

π2L!(−4π2)L
∫
d4x2

∫
d4x5 · · · d4x4+L f

(L)(xi)
∣∣∣
(x3,x1,x4)=(0,1,∞)

, (3.19)

which is exactly the definition of a period with (x3, x1, x4) = (0,1,∞). Therefore, we
conclude4

I ′2

[
F (L)(xi)

]
= − 1

L!(−4)LPf (L) . (3.20)

4Note the factor 1/(π2)L has been absorbed in the definition of periods in (3.9).
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Importantly, since f (L)(xi) is permutation invariant, the result is independent of choosing
which three points to take special values.

Because these graphs are finite and conformal, we may ‘complete’ the graph by putting
back x1, x3, x4 in (3.19), in terminology of [29]. The periods defined above are then asso-
ciated with f -graphs, such as those in figure 2. In the simplest case when the numerator
cancels completely some of the denominators, P

f
(L)
α

reduces to the period associated with
certain Feynman diagram of the φ4 theory, and it is then a 4-regular graph. While for the
integrated correlators we consider here, the graphs generally involve numerators, but all
the graphs are still restricted to be Feynman graphs with each vertex of degree-(−4).

In summary, we conclude that the first integrated correlator can be expressed as a sum
of periods at every loop order,

I2 [TGN (U, V )] = 4 cGN
∑
L≥1

aLGN I
′
2

[
F (L)(xi)

]
= −4 cGN

∑
L≥1

aLGN
L!(−4)LPf (L)

= −4 cGN
∑
L≥1

aLGN
L!(−4)L

nL∑
α=1

c(L)
α Pf (L)

α
,

(3.21)

where we have used (3.1) to arrive at the final expression.

3.2.2 Second integrated correlator

Let us now consider the second integrated correlator as defined in (2.4). We will see that,
at L loops, the integrated correlator is expressed as a sum of periods of (L + 2) loops.
Compared to the first integrated correlator, there is an additional loop integral, this is
because of the one-loop box integral D̄1111(U, V ) in the integration measure.

The second integrated correlator is given in (2.4), which we quote below,

CGN ,2(τ2) = I4 [TGN (U, V )]

= −32
π

∫ ∞
0

dr

∫ π

0
dθ
r3 sin2(θ)

U2 (1 + U + V )D̄1111(U, V ) TGN (U, V ) . (3.22)

Using the definition of TGN (U, V ) in terms of F (L)(xi) in (3.8), and we arrive at the following
expression

I4[TGN
(U,V )]=−32

π
(2cGN

)
∫ ∞

0
dr

∫ π

0
dθ
r3sin2(θ)
UV

(1+U+V )D̄1111(U,V )x2
13x

2
24
∑
L≥1

aLGN
F (L)(xi).

(3.23)
Similarly to (3.12) and (3.13), we define the integral that acts on F (L)(xi) at each loop
order,

I4 [TGN (U, V )] = 4 cGN
∑
L≥1

aLGN I
′
4

[
F (L)(xi)

]
. (3.24)

The I ′4 integral is defined as

I ′4

[
F (L)(xi)

]
= −16

π

∫ ∞
0

dr

∫ π

0
dθ
r3 sin2(θ)
UV

x2
13x

2
24 (1 + U + V )D̄1111(U, V )F (L)(xi)

= 4 I ′2
[
F̃ (L)(xi)

]
, (3.25)
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where in the last step we have used (3.13) to express the I ′4 integral as the I ′2 integral with
a different function in the argument, called F̃ (L)(xi), which is defined as

F̃ (L)(xi) = (1 + U + V )D̄1111(U, V )F (L)(xi) . (3.26)

Furthermore, using the definition of the one-loop box integral D̄1111(U, V ) given in (2.5),
we can express F̃ (L)(xi) as

F̃ (L)(xi) = 4 x
2
12x

2
13x

2
14x

2
23x

2
24x

2
34

L! (−4π2)L+1

∫
d4x5 · · · d4x4+Ld

4x5+L f̃
(L)(xi) , (3.27)

with
f̃ (L)(xi) =

∑
�=1,U,V

f̃
(L)
� (xi) = x2

13x
2
24(1 + U + V )

x2
1,5+Lx

2
2,5+Lx

2
3,5+Lx

2
4,5+L

f (L)(xi) , (3.28)

where � specifies the three terms, 1, U , and V , and we sum over all these terms to ensure
S4 permutation symmetry.5 Since the I ′2

[
F̃ (L)(xi)

]
integral gives the period of f̃ (L) as

in (3.20), we therefore conclude

I ′4

[
F (L)(xi)

]
= 4 I ′2

[
F̃ (L)(xi)

]
= 4× 1

L!(−4)LPf̃ (L) . (3.29)

Due to the extra one-loop box integral, f̃ (L) only respects S4 × SL permutation symmetry
instead of full S4+L symmetry. The isometry of a graph will then depend on which four ver-
tices are attached to the extra x5+L point, hence may result in different period values. We
will call the graphs associated with f̃ -functions as f̃ -graphs, which are f -graphs attached
with an additional one-loop box (see figure 3 for some examples). Using the fact that
f -graphs have degree-(−4) at each point xi, (3.28) implies that f̃ -graphs also have degree-
(−4) at each point xi. Note, due to the additional one-loop box, a f̃ -graph may become
non-planar even when the corresponding f -graph is a planar diagram (as shown in figure 3).

The period of f̃ (L) needs to be summed over all different isometries, f̃ (L,k), explicitly

f̃ (L)(xi) =
ñL∑
k=1

f̃ (L,k)(xi) , (3.30)

where each f̃ (L,k) respects S4 × SL permutation symmetry, and ñL denotes the number of
graphs that have distinguished isometries. Within each f̃ (L,k), it contains three terms with
different prefactor, 1, U and V . We denote these three terms by f̃ (L,k)

1 , f̃ (L,k)
U , and f̃ (L,k)

V

(some examples are given in figure 3), therefore,

f̃ (L,k)(xi) =
∑

�=1,U,V
f̃

(L,k)
� (xi) . (3.31)

To conclude, P
f̃ (L) can be expressed as,

P
f̃ (L) =

ñL∑
k=1

∑
�=1,U,V

P
f̃

(L,k)
�

. (3.32)

5In general, f̃ (L)
� could have another subscript α, but since we only consider up to three loops for the

second correlator, where f (L) only has one planar topology, we will drop the subscript α.
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f̃
(2,1)
1 . f̃

(2,2)
1 . f̃

(2,2)
U .

Figure 3. Here we draw some examples of f̃ -graphs, f̃ (2,1)
1 ,f̃ (2,2)

1 , f̃ (2,2)
U , which are isomorphic to

f
(3)
1 ,f (3)

3 ,f (3)
4 in figure 2 in [17], respectively. Other f̃ (2,k)

� ’s are isomorphic to the graphs shown
above or to the three loop planar graph f (3) in figure 4. The grey vertices in the graphs denote the
point x5+L arising from inserting the one-loop box D̄1111 in the definition of the second integrated
correlator. We note all the examples of f̃ -graphs are non-planar, even though the corresponding
f -graphs are planar.

Here again ñL is the number of the non-isomorphic graphs. For example, at two loops, we
have two terms (i.e. ñ2 = 2), g × h(1, 2; 3, 4) + S4 × S2 and g × [g(1, 2, 3, 4)]2 + S4 × S2,
which are a one-loop box times a two-loop ladder, and a one-loop box times a square of
one-loop boxes, respectively. At three loops, we find ñ3 = 5, as we will use later.

4 Integrated correlators from Feynman graph periods

In this section, we will apply the relation between the integrated correlators and peri-
ods that we discussed in the previous section to concretely compute the integrated cor-
relators order by order in the perturbative expansion. We will use the Maple package
HyperlogProcedures developed by Schnetz [34] for the evaluations of the periods associ-
ated with f -graphs and f̃ -graphs to high-loop orders, and find agreement with the pertur-
bation expansion of the integrated correlators obtained using supersymmetric localisation,
as given in (2.13) and (2.16).

The identification between the integrated correlators and periods of certain degree-(−4)
Feynman graphs also implies interesting relations among these periods. In particular, the
sum of these particular periods should produce the results of the integrated correlators that
are given by supersymmetric localisation. We will consider the first integrated correlator at
five loops in the planar limit, for which, we have computed all the relevant periods, except
one. In this case, using the result from supersymmetric localisation, one can predict an
analytical expression for the period of a six-loop Feynman graph.

4.1 First integrated correlator up to four loops

We begin by considering the first integrated correlator at one and two loops. This was
already done in [7], and was shown that the results from explicit loop integrals agree
with what was obtained from localisation. Here we will reproduce these results using the
technique of periods (3.20). We will then present new results of the integrated correlator
at three and four loops.
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f (1). f (2). f (3).

Figure 4. Here we draw the planar f -graphs up to three loops. (They have been given in figure 2
in [17]).

Recall that in general the first integrated correlator can be expressed as a sum of
periods,

I2 [TGN (U, V )] = 4 cGN
∑
L≥1

aLGN I
′
2

[
F (L)(xi)

]
= −4 cGN

∑
L≥1

aLGN
L!(−4)L

nL∑
α=1

c(L)
α Pf (L)

α
. (4.1)

At one and two loops, as shown in figure 1, the P (L)-graphs with L = 1, 2, are unique.
Therefore, the associated loop integrands f (1), f (2) are also unique, as we show in figure 4.
Using (4.1), we have

I ′2

[
F (1)(xi)

]
= − 1

1!(−4)1 × Pf (1) , (4.2)

where the f (1)-function, see figure 4, is given by

f (1)(xi) = c(1) P
(1)(x1, . . . , x5)∏

1≤i<j≤5 x
2
ij

, with c(1) = 1 , P (1)(x1, . . . , x5) = 1 , (4.3)

Using the period of f (1)(xi), which is well-known,

Pf (1) = 6ζ(3) , (4.4)

we arrive at
I ′2

[
F (1)(xi)

]
= 3ζ(3)

2 . (4.5)

Similarly, at two loops (i.e. L = 2), the f (2)-function, see figure 4, is given by

f (2)(xi) = c(2)P
(2)(x1, . . . , x6)∏

1≤i<j≤6 x
2
ij

, (4.6)

where the coefficient c(2) = 1 and the numerator P (2) is given by

P (2)(x1, . . . , x6) =
( 1

48x
2
12x

2
34x

2
56

)
+ S6 . (4.7)

A few comments are in order regarding the numerator P (2), which will also be useful for
higher-loop computations. Here S4+L (in this case L = 2) denotes total permutations of
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(x1, · · · , x4+L) labels. The factor 48 ensures the each term in the sum appears with a unit
weight, i.e. it mods out the over-counting of S4+L permutations. There are 6! terms in
S6 permutations, while they all have the same value when taking periods. So the Pf (2) is
simply given by 6! (and divided by 48) times the period of a single term. For example,
we take the first term in P (2), which is x2

12x
2
34x

2
56, divided by numerator ∏1≤i<j≤6 x

2
ij , and

this single term gives a period with value of 20ζ(5). So the period of f (2) is given by

Pf (2) = 6!× 1
48 × 20ζ(5) . (4.8)

Put all the factors together, we finally obtain,

I ′2

[
F (2)(xi)

]
= − 1

2! (−4)2 c
(2) Pf (2) = −75ζ(5)

8 . (4.9)

We see that the results of L = 1, 2 cases given in (4.5) and (4.9) reproduce the computation
of [7] and match precisely with the first two orders of the localisation result given in (2.13).
The same methods apply to higher-loop terms, and below we will consider three- and
four-loop cases.

At three loops, it was shown in [16] that even though one may be able to draw graphs
with non-planar topologies at this order, only the planar diagram (and there is a single
such planar diagram) can contribute to the four-point correlator. Therefore, just as the
one- and two-loop cases, there is a unique integrand at this order, as shown in figure 4,
and it is given by

f (3)(xi) = c(3)P
(3)(x1, . . . , x7)∏

1≤i<j≤7 x
2
ij

, (4.10)

with coefficient c(3) = 1 and the numerator given by

P (3)(x1, . . . , x7) =
( 1

20x
4
12x

2
34x

2
45x

2
56x

2
67x

2
37

)
+ S7 . (4.11)

There are 7! terms in S7 permutations (the factor 20 again ensures the unit weight of each
term in S7 permutations), while they all have the same value when taking periods. So the
Pf (3) is simply given by 7! (and divided by 20) times the period of a single term, which is
given by

Pf (3) = 7!× 1
20 × 70ζ(7) , (4.12)

where we have used the Maple program HyperLogProcedures to the evaluate this period.6
Together, we find

I ′2

[
F (3)(xi)

]
= − 1

3! (−4)3 × c
(3) Pf (3) = 735ζ(7)

16 , (4.13)

which agrees with the localisation result (2.13).
We would like to remark that the three-loop integration over points x5, x6, x7 of f (3)

leads to the three-loop contribution to the correlator [25], where the answer was found to
6Recall that the periods associated with the L-loop contributions to the first integrated correlator are

(L+ 1)-loop integrals. So in this case with L = 3, the period is a four-loop integral.
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be expressed in terms of rather complicated multiple polylogarithms. As we showed above,
with one additional integral with the measure given in (3.10), the result actually simplifies
dramatically and reduces to simply some rational number times ζ(7), as given in (4.13).
This example shows clearly the simplicity of the integrated correlator.

Starting at L = 4, there are non-trivial non-planar contributions [17, 37]. We will only
focus on the planar contribution here. At this order, there are three planar f -graphs (see
figure 2), explicitly they are expressed as

f (4)(xi) =
3∑

α=1
c(4)
α f (4)

α (x1, · · · , x8) =
3∑

α=1
c(4)
α

P
(4)
α (x1, . . . , x8)∏

1≤i<j≤8 x
2
ij

, (4.14)

where c(4)
1 = c

(4)
2 = −c(4)

3 = 1, and the numerator P (4)
α ’s are given by

P
(4)
1 (x1, . . . , x8) =

(1
8 x

2
12x

2
13x

2
16x

2
24x

2
27x

2
34x

2
38x

2
45x

4
56x

4
78

)
+ S8 ,

P
(4)
2 (x1, . . . , x8) =

( 1
24 x

2
12x

2
13x

2
16x

2
23x

2
25x

2
34x

2
45x

2
46x

2
56x

6
78

)
+ S8 ,

P
(4)
3 (x1, . . . , x8) =

( 1
16 x

2
12x

2
15x

2
18x

2
23x

2
26x

2
34x

2
37x

2
45x

2
48x

2
56x

2
67x

2
78

)
+ S8 . (4.15)

The first integrated correlator at four loops (the planar sector) is then given by

I ′2

[
F (4)(xi)

]
= − 1

4! (−4)4 ×
(
P
f

(4)
1

+ P
f

(4)
2
− P

f
(4)
3

)
= −6615ζ(9)

32 , (4.16)

where we have used the results of each period of f (4)
α

P
f

(4)
1

= 8!× 1
8 × 252ζ(9) ,

P
f

(4)
2

= 8!× 1
24 × 252ζ(9) ,

P
f

(4)
3

= 8!× 1
16 × 168ζ(9) .

We have again utilised Maple package HyperLogProcedures and the S8 permutation sym-
metry of f (4)-graph periods for the computation. The Feynman diagram result (4.16) once
again agrees with the localisation computation given in (2.13) for the planar part at the
order a4

GN
.

4.2 First integrated correlator at five loops and relations of periods

As we anticipated, beyond four loops, we have not computed all the periods that are
relevant for the first integrated correlator and cannot compare with the supersymmetric
localisation results. We will however take a different point of view by considering the
localisation results as constraints on these higher-loop Feynman periods. This then leads
to non-trivial relations among these periods. In the four-loop example we considered in the
previous subsection, one may consider (4.16) as the required relationship of the five-loop
periods for the graphs in figure 2. We will now apply this consideration to the five-loop
integrated correlator, which will lead to prediction for a particular six-loop period.
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Figure 5. The graph for f (5)
4 , whose period is predicted by supersymmetric localisation in (4.26).

At five loops, there are seven planar f -graphs that contribute to the four-point corre-
lator in the planar limit [17], which can be written as

f (5)(xi) =
7∑

α=1
c(5)
α f (5)

α (x1, · · · , x9) , (4.17)

with the coefficients determined in [17], c(5)
2 = c

(5)
3 = c

(5)
4 = c

(5)
6 = c

(5)
7 = 1 and c(5)

1 = c
(5)
5 =

−1. The explicit forms of f (5)
α are given in equations (6.2) and (6.5) of the paper [17] in

terms of P -polynomials. They are also shown in figure 9 in [17].
Using HyperlogProcedures, we have evaluated all the periods for f (5)

α , except for f (5)
4 ,

which is shown in figure 5. The results of these periods that we have evaluated are listed
below:

P
f

(5)
1

=9!×1
2

×
[
−40ζ(3)2ζ(5)+4240ζ(11)+8π6

63 ζ(5)−8π4

5 ζ(7)−360π2ζ(9)−48ζ(5,3,3)
]
, (4.18)

P
f

(5)
2

=9!×1
4×924ζ(11), (4.19)

P
f

(5)
3

=9!×1
4×924ζ(11), (4.20)

P
f

(5)
5

=9!×1
8

×
[
320ζ(3)2ζ(5)+800ζ(5)2−29300ζ(11)−64π6

63 ζ(5)

+64π4

5 ζ(7)+2880π2ζ(9)+384ζ(5,3,3)
]
, (4.21)

P
f

(5)
6

=9!× 1
28×924ζ(11), (4.22)

P
f

(5)
7

=9!× 1
12×400ζ(5)2. (4.23)

The multiple zeta value is defined as

ζ(nd, · · · , n1) =
∑

kd>···>k1≥1

1
kndd · · · k

n1
1
, nd ≥ 2 . (4.24)
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In order to match with the localisation result given in (2.13) at order a5
GN

, it requires the
following relations among the periods of f (5)

α to hold

I ′2

[
F (5)

]
= − 1

5! (−4)5 ×
(
−P

f
(5)
1

+ P
f

(5)
2

+ P
f

(5)
3

+ P
f

(5)
4
− P

f
(5)
5

+ P
f

(5)
6

+ P
f

(5)
7

)
= 114345

128 ζ(11) . (4.25)

Knowing P
f

(5)
α

for all the α’s except α = 4 (as given in figure 5), the above relation allows
us to determine the period P

f
(5)
4

, which we find to be

P
f

(5)
4

= 9!× 1
6 ×

[
120ζ(3)2ζ(5) + 400ζ(5)2 − 10410ζ(11)

− 8π6

21 ζ(5) + 24π4

5 ζ(7) + 1080π2ζ(9) + 144ζ(5, 3, 3)
]
, (4.26)

where the prefactor 9!× 1
6 is some combinatorics factors associated with the permutation

symmetry of the integrand, and the numerical value of P
f

(5)
4

is 9!× 1
6 × (967.13267 · · · ).

4.3 Second integrated correlator up to three loops

In this subsection, we will consider the second integrated correlator. As we argued in the
section 3.2.2, the L-loop contribution of the second integrated correlator can be expressed
in terms of periods of (L+ 2) loops. We will compute all the second integrated correlators
up to three loops.

Let us begin by considering the integrated correlator at one loop. Using (3.29)
and (3.32), we have

I ′4

[
F (1)(xi)

]
= 4× 1

(−4)1 × Pf̃ (1,1) , (4.27)

where
f̃ (1,1)(xi) =

∑
�=1,U,V

f̃
(1,1)
� (xi) = x2

13x
2
24 (1 + U + V )∏
1≤i<j≤4 x

2
ij

g × g(5)
(1,2,3,4) . (4.28)

The function g(5)
(1,2,3,4) is the integrand of the one-loop box

g
(5)
(1,2,3,4) = 1

x2
1,5x

2
2,5x

2
3,5x

2
4,5

, (4.29)

and we define a short-hand notation, g × [· · · ], which is the product of a one-loop box g
and an L-loop integrand,

g × [· · · ] := 1
x2

1,5+Lx
2
2,5+Lx

2
3,5+Lx

2
4,5+L

× [· · · ] , (4.30)

where [· · · ] is the integrand of any L-loop integral. The period of f̃ (1,1) can be evaluated
straightforwardly, and it is given by

P
f̃ (1,1) =

∑
�=1,U,V

P
f̃

(1,1)
�

= 20ζ(5) + 20ζ(5) + 20ζ(5) = 60ζ(5) . (4.31)
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In conclusion, we find
I ′4

[
F (1)(xi)

]
= −60ζ(5) , (4.32)

which agrees with the localisation result given in (2.16).
At two loops, we have

I ′4

[
F (2)(xi)

]
= 4× 1

2!(−4)2 ×
(
P
f̃ (2,1) + P

f̃ (2,2)

)
, (4.33)

where f̃ (2,1) and f̃ (2,2) are give by

f̃ (2,1)(xi) =
∑

�=1,U,V
f̃

(2,1)
� (xi) =

(
x2

13x
2
24 (1 + U + V )∏
1≤i<j≤4 x

2
ij

g × h(5,6)
(1,2;3,4)

)
+ S4 × S2

f̃ (2,2)(xi) =
∑

�=1,U,V
f̃

(2,2)
� (xi)

=
(
x2

13x
2
24 (1 + U + V )∏
1≤i<j≤4 x

2
ij

g ×
[
g

(5)
(1,2,3,4) × g

(6)
(1,2,3,4)

])
+ S4 × S2 , (4.34)

and h(5,6)
(1,2;3,4) is the integrand of a two loop ladder

h
(5,6)
(1,2;3,4) = x2

34
(x2

15x
2
35x

2
45)x2

56(x2
26x

2
36x

2
46) . (4.35)

Here S4×SL (for the case we are considering, L = 2) means that we first sum over distinct
permutation of S4 of the four external points (x1, x2, x3, x4), and then sum over distinct
permutations of SL for the L vertices that we integrate over. In practice, this implies

(· · · ) + S4 × SL = ((· · · ) + S4) + SL = ((· · · ) + SL) + S4 . (4.36)

By ‘distinct permutation’ we mean, for example, h(5,6)
(1,2;3,4) and h

(5,6)
(1,3;2,4) are distinct under S4

permutation, while h(5,6)
(1,2;3,4) and h

(5,6)
(2,1;3,4) are not. Following such counting rules, we deduce

f̃ (2,1) and f̃ (2,2) have 12 and 3 terms, respectively. We will again utilise the fact that the
period for each term inside S4 × S2 permutations has the same value. Their periods are
explicitly given by

P
f̃ (2,1) =

∑
�=1,U,V

P
f̃

(2,1)
�

= 12×
(441

8 ζ(7) + 70ζ(7) + 441
8 ζ(7)

)
= 12× 721

4 ζ(7) , (4.37)

P
f̃ (2,2) =

∑
�=1,U,V

P
f̃

(2,2)
�

= 3×
[
36ζ(3)2 +

(
72ζ(3)2 − 21ζ(7)

)
+ 36ζ(3)2

]
= 3×

(
144ζ(3)2 − 21ζ(7)

)
.

Using these results, we find

I ′4

[
F (2)(xi)

]
= 4× 1

2!(−4)2 ×
(

12× 721
4 ζ(7) + 3× (144ζ(3)2 − 21ζ(7))

)
= 3

2 ×
(
36ζ(3)2 + 175ζ(7)

)
, (4.38)
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f̃
(3,5)
1 . f̃

(3,5)
U . f̃

(3,5)
V .

Figure 6. Here we draw some examples of f̃ -graphs, f̃ (3,5)
1 ,f̃ (3,5)

U , f̃ (3,5)
V , which are relevant for the

three-loop computation. Once again, they are all non-planar diagrams.

which is in agreement with the result of supersymmetric localisation computation, as given
in (2.16).

At three loops, summing over ñ3 = 5 structures, we have

I ′4

[
F (3)(xi)

]
= 4× 1

3!(−4)3 ×
( 5∑
k=1
P
f̃ (3,k)

)
, (4.39)

where the f̃ (3,k) terms are give by (according to (4.16) of [17]),

f̃ (3,1)(xi) =
(
x2

13x
2
24 (1 + U + V )∏
1≤i<j≤4 x

2
ij

g × T (5,6,7)
(1,3;2,4)

)
+ S4 × S3 , (4.40)

f̃ (3,2)(xi) =
(
x2

13x
2
24 (1 + U + V )∏
1≤i<j≤4 x

2
ij

g × E(5,6,7)
(1,3;2,4)

)
+ S4 × S3 , (4.41)

f̃ (3,3)(xi) =
(
x2

13x
2
24 (1 + U + V )∏
1≤i<j≤4 x

2
ij

g × L(5,6,7)
(1,3;2,4)

)
+ S4 × S3 , (4.42)

f̃ (3,4)(xi) =
(
x2

13x
2
24 (1 + U + V )∏
1≤i<j≤4 x

2
ij

g × (g × h)(5,6,7)
(1,3;2,4)

)
+ S4 × S3 , (4.43)

f̃ (3,5)(xi) =
(
x2

13x
2
24 (1 + U + V )∏
1≤i<j≤4 x

2
ij

g ×H(5,6,7)
(1,3;2,4)

)
+ S4 × S3 . (4.44)

The explicit expressions of these integrands and their corresponding periods P
f̃ (3,k) are

given in appendix B. As an example, we have illustrated the Feynman graphs for
f̃

(3,5)
1 , f̃

(3,5)
U , f̃

(3,5)
V in figure 6. Using the results that are given in appendix B and after

summing over all the periods P
f̃ (3,k) ’s (in particular (B.2)), we obtain,

I ′4

[
F (3)(xi)

]
= 4× 1

3!(−4)3 ×
( 5∑
k=1
P
f̃ (3,k)

)

= −45
2 × (20ζ(3)ζ(5) + 49ζ(9)) , (4.45)

which again agrees with the localisation result (2.16) for the a3
GN

term.
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5 Conclusion

In this paper, we studied the perturbative aspects of recently introduced integrated correla-
tors in N = 4 SYM with general classical gauge groups. We identified interesting relations
between the integrated correlators and periods of so-called f -graphs and their generalisa-
tion f̃ -graphs. f -graphs were used for constructing loop integrands of the un-integrated
correlators. This identification paves the way of systematically computing integrated cor-
relators to higher loops. In this paper, we applied the idea and computed all the relevant
periods for the first integrated correlator up to four loops and for the second integrated
correlator up to three loops, and we found the results perfectly agree with the expressions
obtained from supersymmetric localisation. Our results extend the earlier computation
of [7], where the first integrated correlator was computed for the first two loops.

These explicit perturbative results verify the prediction of supersymmetrical localisa-
tion. Furthermore, the results also show explicitly the simplicity of the integrated corre-
lators. A nice example of this is that even though the three-loop un-integrated correlator
takes rather complicated form, the additional integration arising from the definition of inte-
grated correlators simplify the structures drastically. It would be interesting to extend the
computation of this paper to higher loops and the non-planar sectors, and systematically
understand the simplicity of integrated correlators from Feynman diagram point of view,
which may help to find new integration measures different from those considered in this pa-
per that can also simply the un-integrated correlator. It will also be interesting to consider
correlators involving higher-weight operators. In particular, the perturbative contribution
of integrated four-point correlator of 〈O2O2OpOp〉 can also be computed using supersym-
metric localisation [1]. It would be interesting to analyse these integrated correlators with
higher-weight operators using our methods and the corresponding integrands constructed
in [44, 45] and more recently [46].

Our observation that relates the integrated correlators and periods also provides new
non-trivial relations for the periods, given the fact that the integrated correlators can
be computed using supersymmetric localisation exactly to any orders in the perturbation
theory. This idea was illustrated and used to predict an analytical expression for a six-
loop period, by using the localisation result of the first integrated correlator at five loops.
It is of interest to verify our prediction by a direct computation of this particular six-
loop period. It is also very interesting to understand these relations from mathematical
viewpoints, and such an understanding will help to lead to systematic evaluation of the
integrated correlators in the perturbation theory. In particular, each period may contain
multiple zeta values, and their particular combinations to form integrated correlators, from
the results of supersymmetric localisation, we know that these multiple zeta values should
actually all cancel out when we add the periods together to form the integrated correlators.
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A Matrix model computations

In this appendix we review the perturbative contribution of the N = 2∗ SYM partition
function on S4, Ẑpert

GN
(m, a), for all classical gauge groups GN , and the corresponding matrix

model expectation values.7 The perturbative contribution for the first integrated correlator
has been computed in [10, 11]. Therefore, we use these expressions of Ẑpert

GN
(m, a) mainly for

the computations of the perturbative contribution of the second integrated correlators in the
main text. The expressions of Ẑpert

GN
(m, a) for GN = SU(N), SO(2N), SO(2N+1),USp(2N)

are listed below.

• For SU(N), we have

Ẑpert
SU(N)(m, a) = 1

H(m)N−1

∏
i<j

H2(aij)
H(aij −m)H(aij +m) , (A.1)

with aij = ai − aj , and the expectation value of a function F (ai) is defined as

〈F (ai)〉SU(N) = 1
NSU(N)

∫
dNa δ

(∑
i

ai

)∏
i<j

a2
ij

 e
− 8π2
g2
YM

∑
i
a2
i
F (ai) , (A.2)

where NSU(N) is a normalisation factor such that 〈1〉SU(N) = 1. The function H(m)
is defined as

H(m) = e−(1+γ)m2
G(1 + im)G(1− im) , (A.3)

where G(m) is a Barnes G-function (and γ is the Euler constant).

• For SO(2N), we have

Ẑpert
SO(2N)(m, a) = 1

H(m)N
∏
i<j

H2(aij)H2(a+
ij)

H(aij −m)H(aij +m)H(a+
ij −m)H(a+

ij +m)
, (A.4)

where a+
ij = ai + aj , and the expectation value is defined as

〈F (ai)〉SO(2N) = 1
NSO(2N)

∫
dNa

∏
i<j

a2
ij(a+

ij)2

 e
− 8π2
g2
YM

∑
i
a2
i
F (ai) . (A.5)

• For SO(2N + 1), we have

Ẑpert
SO(2N+1)(m, a) = 1

H(m)N
∏
i

H2(ai)
H(ai +m)H(ai −m)

×
∏
i<j

H2(aij)H2(a+
ij)

H(aij −m)H(aij +m)H(a+
ij −m)H(a+

ij +m)
, (A.6)

7The non-perturbative instanton contributions to the partition function, the Nekrasov partition func-
tion [47, 48], with general gauge groups can be found in [49–51], and their contributions to the first integrated
correlator were studied in [11].
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and the expectation value is defined as

〈F (ai)〉SO(2N+1) = 1
NSO(2N+1)

∫
dNa

(∏
i

a2
i

) ∏
i<j

a2
ij(a+

ij)2

 e
− 8π2
g2
YM

∑
i
a2
i
F (ai) .

(A.7)
When N = 1 (i.e. for the correlator of SO(3)), one needs to rescale g2

YM
→ 2 g2

YM
in

the above formula, as discussed in [10].

• For USp(2N), we have

Ẑpert
USp(2N)(m, a) = 1

H(m)N
∏
i

H2(2ai)
H(2ai +m)H(2ai −m)

×
∏
i<j

H2(aij)H2(a+
ij)

H(aij −m)H(aij +m)H(a+
ij −m)H(a+

ij +m)
, (A.8)

and the expectation value is defined below

〈F (ai)〉USp(2N) = 1
NUSp(2N)

∫
dNa

(∏
i

a2
i

) ∏
i<j

a2
ij(a+

ij)2

 e
− 16π2
g2
YM

∑
i
a2
i
F (ai) .

(A.9)

B Periods for the second integrated correlator at three loops

We list the relevant f -graphs and their periods for the three loop computations. The
functions associated with f̃ (3,k)’s in (4.40) are given by

T
(5,6,7)
(1,2;3,4) = x2

34x
2
17

(x2
15x

2
35)(x2

16x
2
46)(x2

27x
2
37x

2
47)(x2

56x
2
57x

2
67) ,

E
(5,6,7)
(1,2;3,4) = x2

23x
2
24x

2
16

(x2
15x

2
25x

2
35)x2

56(x2
26x

2
36x

2
46)x2

67(x2
17x

2
27x

2
47) ,

L
(5,6,7)
(1,2;3,4) = x4

34
(x2

15x
2
35x

2
45)x2

56(x2
36x

2
46)x2

67(x2
27x

2
37x

2
47) ,

(g × h)(5,6,7)
(1,2;3,4) = x2

12x
4
34

(x2
15x

2
25x

2
35x

2
45)(x2

16x
2
36x

2
46)(x2

27x
2
37x

2
47)x2

67
,

H
(5,6,7)
(1,2;3,4) = x2

14x
2
23x

2
34x

2
57

(x2
15x

2
25x

2
35x

2
45)x2

56(x2
36x

2
46)x2

67(x2
17x

2
27x

2
37x

2
47) . (B.1)

The periods of f̃ (3,k)’s are given by

5∑
k=1
P
f̃ (3,k) = 2160× [20ζ(3)ζ(5) + 49ζ(9)] , (B.2)
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where each term in the sum above is given by

P
f̃ (3,1) = 72×

(
16ζ(3)3 + 5402

9 ζ(9)
)
,

P
f̃ (3,2) = 72×

(
−48ζ(3)3 + 240ζ(5)ζ(3) + 1231ζ(9)

3

)
,

P
f̃ (3,3) = 36×

(
16ζ(3)3 + 5402

9 ζ(9)
)
,

P
f̃ (3,4) = 36×

(
48ζ(3)3 − 144ζ(3)2 + 432ζ(5)ζ(3) + 378ζ(7)− 388ζ(9)

3

)
,

P
f̃ (3,5) = 36×

(
144ζ(3)2 + 288ζ(5)ζ(3)− 378ζ(7) + 448ζ(9)

)
. (B.3)

The factor 72 and 36 above are numbers of terms inside the S4 × S3 permutations, and
they have the same period value. We note that ζ(3)3 terms cancel out in the sum (B.2),
and each P

f̃ (3,k) in (B.3) consists of three periods P
f̃

(3,k)
�

’s with � = 1, U, V , therefore

P
f̃ (3,k) =

∑
�=1,U,V

P
f̃

(3,k)
�

, (B.4)

and each P
f̃

(3,k)
�

is listed below

P
f̃

(3,1)
1

= 72×
(1567

9 ζ(9) + 8ζ(3)3
)

P
f̃

(3,1)
U

= 72× (252ζ(9))

P
f̃

(3,1)
V

= 72×
(1567

9 ζ(9) + 8ζ(3)3
)
, (B.5)

and

P
f̃

(3,2)
1

= 72×
(

120ζ(3)ζ(5) + 727
6 ζ(9)− 24ζ(3)3

)
P
f̃

(3,2)
U

= 72× (168ζ(9))

P
f̃

(3,2)
V

= 72×
(

120ζ(3)ζ(5) + 727
6 ζ(9)− 24ζ(3)3

)
, (B.6)

and

P
f̃

(3,3)
1

= 36×
(1567

9 ζ(9) + 8ζ(3)3
)

P
f̃

(3,3)
U

= 36× (252ζ(9))

P
f̃

(3,3)
V

= 36×
(1567

9 ζ(9) + 8ζ(3)3
)
, (B.7)

and

P
f̃

(3,4)
1

= 36×
(
−36ζ(3)2 + 189

2 ζ(7) + 108ζ(3)ζ(5)
)

P
f̃

(3,4)
U

= 36×
(
−72ζ(3)2 + 189ζ(7) + 216ζ(3) ζ(5) + 48ζ(3)3 − 388

3 ζ(9)
)

P
f̃

(3,4)
V

= 36×
(
−36ζ(3)2 + 189

2 ζ(7) + 108ζ(3)ζ(5)
)
, (B.8)
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and

P
f̃

(3,5)
1

= 36× (120ζ(3)ζ(5))

P
f̃

(3,5)
U

= 36×
(

24ζ(3)ζ(5) + 2126
9 ζ(9) + 72ζ(3)2 − 189ζ(7) + 16ζ(3)3

)
P
f̃

(3,5)
V

= 36×
(

144ζ(3)ζ(5) + 1906
9 ζ(9) + 72ζ(3)2 − 189ζ(7)− 16ζ(3)3

)
. (B.9)

Using these results and (B.4), one finds the expressions given in (B.3).
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