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1 Introduction and summary

The AdS/CFT correspondence has been a two-way lane leading to insights both into quan-
tum gravity and into aspects of the strong coupling structure of quantum field theories.
Significant computational (and conceptual) developments have sprung from modern tech-
nologies devised to compute correlation functions using the full resource of the symmetries
of holographic CFTs. Progress has been notable, in particular, in the context of four-
dimensional N = 4 SYM dual to AdS5×S5, with some results extending to other instances
of AdSd+1/CFTd with d > 2. Meanwhile, the study of correlation functions in AdS3/CFT2
has progressed at a somewhat different pace. Methods such as Witten diagrams and
Mellin transforms meet some technical difficulties when faced with the idiosyncrasies of
two-dimensional CFTs [1–3]. On the other hand, it is precisely the exceptional nature of
CFT2 and of AdS3× S3 that makes AdS3/CFT2 special [4–7], and correlation functions in
the holographic symmetric orbifold CFT particularly relevant.

1.1 On the problem of computing four-point functions in the D1-D5 CFT

One of the ongoing programs for computing four-point functions in AdS3/CFT2 uses ‘mi-
crostate geometries’ as a tool [1, 2, 8–14]. Microstate geometries are horizonless solutions
of Type IIB supergravity that are asymptotically AdS3 × S3 ×M . They are part of the
conjectured ‘fuzzball’ resolution of black holes formed by bound D1-D5 branes wrapping
T ×M , with M being T4 or K3 [15, 16]. The dual CFT2, called ‘the D1-D5 CFT’, is a
N = (4, 4) superconformal theory in the moduli space of the symmetric orbifold MN/SN .
A vast collection of such geometries has now been found, largely due to the development
of the fuzzball program. In particular, 1

4 -BPS geometries have been completely classified,
being dual to superpositions of Ramond ground states; classes of 1

8 -BPS geometries are
known as well [15–20]. In the semi-classical limit where N � 1, the central charge of the
D1-D5 CFT, c = 6N , is very large. As c → ∞, an operator is said to be ‘heavy’ if its
conformal weight scales as hH ∼ c, or ‘light’ if its weight hL is fixed and finite. Operators
dual to specific (microstate) geometries are heavy: for example, the Ramond ground states
have hH = 1

24c. On the other hand, probe-like fields in the bulk are light. If OH and OL
are heavy and light, respectively, the four-point function〈

ŌH(∞) ŌL(1)OL(z, z̄)OH(0)
〉

(1.1)

can be regarded as a two-point function of OL in the state |OH〉. In the bulk, this cor-
responds to the propagator of the light field dual to OL in the asymptotically AdS3 × S3

geometry dual to |OH〉.
Relating the bulk and CFT descriptions requires, first of all, that one knows the precise

translation of OH into a microstate geometry, and of OL into a bulk field. Pages of the
holographic dictionary were written some time ago [16–21], others more recently [22–24].
From the bulk perspective, several examples of heavy-light correlators based on microstate
geometries [1, 2, 8–10, 12–14] have been studied, the computation of (1.1) amounting to
solving a wave equation in the fixed space-time background. One of the interesting uses
of these correlators is to contrast them against known universal semi-classical properties

– 2 –



J
H
E
P
0
5
(
2
0
2
2
)
1
0
6

of correlators in AdS. At large c, the form of conformal blocks of heavy-light four-point
functions is constrained by AdS symmetries [25–32], resulting in phenomena associated
with the thermality of AdS black holes, such as “spurious singularities” outside of OPE
limits, that contradict the unitarity of the CFT. It has been argued that these paradox-
ical properties should be resolved by corrections appearing at order 1/c, but in [8, 10]
explicit computations with known microstate geometries revealed examples of heavy-light
correlators that are unitary already at leading order in c.

The holographic dictionary between SUGRA and the D1-D5 CFT in the free orbifold
point is based on the proper identification of protected states, BPS operators, their OPE
algebra, and the corresponding three-point functions [20–24]. Now, four-point functions
are not guaranteed to be protected when the free CFT is deformed in moduli space, even
if they involve only protected operators. This is because four-point functions typically
depend also on non-BPS (i.e. non-protected) fields that might appear in channels of the
OPEs between pairs of twisted operators. This is true, in particular, of the deformation
modulus, which has twist 2. Thus, while the holographic dictionary allows us to iden-
tify which heavy/light SUGRA fields correspond to which heavy/light CFT operators,
there is generally a mismatch between computing the heavy-light function (1.1) in terms
of linear fluctuations around microstate geometries, or as the corresponding correlator in
the free CFT. Explicit examples of this can be found, for instance, in refs. [8, 9]; the
correlators computed in [8] in the SUGRA and in the free CFT descriptions match, but
those computed in [9], involving less symmetric heavy fields, do not. So, to completely
fix the dictionary between four-point functions, it is necessary to determine the conditions
that select contributions (at leading order) only from OPE channels containing BPS op-
erators. The computation of (1.1) in the free orbifold point, as well as a study of the
non-BPS content of the different OPE channels, appears to be an important step towards
this goal.

Computing functions like (1.1), even at the free point, is not always easy. The twisted
boundary conditions of the symmetric orbifold MN/SN often causes correlation functions
to be rather complicated. The orbifold has twisted sectors corresponding to permutations∏
n(n)Nn ∈ SN , where (n) is a cycle of length n, and the multiplicities [Nn] form a partition∑
n nNn = N . The fact that permutations are uniquely decomposable into disjoint cycles

can be interpreted as saying that multi-cycle fields are “composite”, while single-cycle
fields are indecomposable. In this sense, single- and multi-cycleness in the orbifold CFT2
is analogous to single- and mutli-traceness in four-dimensional N = 4 SYM. Heavy fields,
such as the Ramond ground states, are multi-cycle, while light fields, and in particular
“elementary” fields, are generically single-cycle. Typically, Ramond ground states are in
fact made of many cycles, also known as ‘strands’, with different lengths and “spins”.
Hence (1.1) is typically a complicated function, with all the SN monodromy properties and
selection rules that ensue. One way to still have a not-very-complicated function is to take
the light fields in (1.1) to be untwisted. This simplifies the permutations to such an extent
that one does not even need to resort to covering surfaces. Examples of such computations
have been considered in many places [1, 8–10, 14], leading to very interesting results as
mentioned above. It is well known, however, that the complete holographic bulk-boundary
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dictionary — for, say, light NS chiral fields with conformal dimension one or two — must
include both untwisted and twisted (with twist 2) fields with equal conformal dimensions.

1.2 A summary of our results

In the present paper we consider examples of four-point functions with the simplest config-
uration of twisted light NS fields. That is, our goal is to study correlators where all fields
are non-trivially twisted and, besides, some of the fields (e.g. the heavy Ramond ground
states) can be multi-cycle.

The paper can be divided in two parts. In sections 2–3, we study general properties
of correlation functions with multi-cycle fields in MN/SN orbifolds. In section 4, we apply
our general results to the D1-D5 CFT, computing a collection of four-point functions with
Ramond ground states, NS chiral fields and the deformation modulus.

More precisely, in section 2 we study generic Q-point functions of twisted fields, and
extract their decomposition into components associated with equivalence classes of per-
mutations in SN . (To improve clarity, detailed derivations of the results of section 2 are
presented appendix B.) We follow the work of [33], but with some relevant differences.
First, we keep the twists generic, not restricted to single cycles. Second, the derivation,
in ref. [33], of the N -dependence of twisted correlators relies heavily on a diagrammatic
interpretation of connected functions, while ours does not. Instead, we use a construction
of equivalence classes of twist permutations entering in a given Q-point function. This is
also a technology developed in [33]: the equivalence classes are in one-to-one correspon-
dence with diagrams for connected correlators. Hence, although we do not resort to the
diagrammatic interpretation, our analysis is in fact an application of the methodology
of [33] to (often disconnected) correlation functions with generic, multi-cycle fields. That
is a powerful technique, relating an orbifold CFT to the geometry of coverings of the Rie-
mann sphere, via the conjugacy classes of twists, being thus related to ‘Hurwitz theory’
(see e.g. [34]). Here we try to outline how this language can be used explore symmetries
of twisted correlation functions.

Specifically, we want to compute four-point functions involving (light) fields Z[`] with
single-cycle twists of length ` = 2, and (heavy) multi-cycle fields [

∏
ζ,n(X̄ζ

[n])
Nζ
n ], with

arbitrary twist given by a partition of N ,〈[∏
ζ,n

(X̄ζ
[n])

Nζ
n

]
(∞) Z̄[2](1)Z[2](v, v̄)

[∏
ζ,n

(Xζ
[n])

Nζ
n

]
(0)
〉
,

where
∑
n,ζ

N ζ
n n = N.

(1.2)

Here we use an index ζ to possibly distinguish between distinct components of the multli-
cycle field which have the same cycle length n. For example, in the case where the multi-
cycle field is a Ramond ground state, ζ indicates the R-charges of the strands. We focus on
twists ` = 2 for the single-cycle Z fields for two reasons. First, it is the simplest non-trivial
twist. Second, the interesting moduli that deform the free orbifold CFT into an interacting
theory dual to SUGRA solutions lie in the twisted sector with ` = 2 [35, 36]. We will
specifically consider the marginal deformation operator O(int)

[2] which is a scalar under all
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SU(2) symmetries of the N = (4, 4) superconformal algebra. We also consider NS chirals
with ` = 2 which include, in particular, another set of operators with dimension one, the
“middle-cohomology” NS chirals.

The function (1.2) is typically disconnected. By this, we mean that it factorizes into
products of functions involving only some of the operators that compose the multi-cycle
field — not only products of two-point functions, but also of three- and four-point functions
with “smaller” composite fields. In other words, the ‘disconnected four-point functions’
addressed in this paper are not “bubble diagrams”; in fact, they are still dynamical objects.
It is well-known that twisted correlation functions are associated with ramified covering
surfaces of the Riemann sphere [37, 38]. The nomenclature ‘disconnected’ also agrees with
the fact that, since the correlator factorizes, its associated covering surface can be seen as
a product of disconnected surfaces.

One important information to be extracted from correlation functions is how they
depend on N or, at least, how they scale with large N . For connected correlators, the
exact dependence found in [33] reproduces the result of [37],

Connected single-cycle Q-point function ∼
∑

g
N−g+1− 1

2Q (1.3)

where g is the genus of the covering surface. For multi-cycle fields, the disconnected
functions are associated with disconnected covering surfaces, for which the g is not well-
defined. Still, we find a natural generalization of (1.3), featuring the Euler invariant χ
instead of g, [

Disconnected* multi-cycle Q-point function
with R ≥ Q cycles

]
∼
∑
χ

N
1
2 (χ−R). (1.4)

The Euler invariant χ is a well-defined, additive property of disconnected surfaces. For
connected surfaces/correlators, it reduces to χ = 2− 2g, and, if the fields are single-cycle,
i.e. R = Q, eq. (1.4) reduces to (1.3). The reason for the * in eq. (1.4) is that the formula
requires some assumptions about the twists: the number of cycles and their lengths must
both be kept fixed when N → ∞. These assumptions are very natural for connected
single-cycle functions, but they do not hold for some of the most important examples of
multi-cycle fields. In particular, they do not hold for functions like (1.2), unless N ζ

1 →∞.
To find how functions that do not fulfill the assumptions of (1.4) depend on N can be
a rather difficult problem in general, that is strictly dependent on the twists of all fields
entering the correlator. Let us note that many results that we derive in section 2 were
previously found by Dei and Eberhardt in [39].

In section 3, we apply the language developed in section 2 for generic Q-point func-
tions, to study (1.2) in full detail. Generalizing our previous works [40, 41], where similar
functions were considered, here we work at the level of MN/SN orbifolds, i.e. focusing only
on the twists, not on the specific form of the fields Xζ

[n] and Z[2]. Because transpositions
are the simplest non-trivial elements of SN , we are able to derive in detail the structure of
these four-point functions, including the explicit way it factorizes into connected parts〈[

X̄ζ1
[n1]X̄

ζ2
[n2]

]
(∞) Z̄[2](1)Z[2](v, v̄)

[
X̄ζ1

[n1]X̄
ζ2
[n2]

]
(0)
〉
, (1.5)
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containing only double-cycle components of the original multi-cycle field, multiplied by
“symmetry factors”. The double-cycle functions (1.5) always appear in the factorization
of (1.2) in association with a covering surface of genus zero. While, for connected correlators
with the same number of twists, the genus-zero contributions always dominate over higher
genera, in the factorization of (1.2) there are also genus-one contributions, but with only
one single-cycle component Xζ

[n], instead of the composite double-components seen in (1.5).
By themselves these single-cycle, genus-one functions contribute at order N−2, which is the
same as the double-cycle, genus-zero functions (1.5). But we show that, when multiplied
by their symmetry factors, the genus-zero contributions do dominate when N is large.

Let us note that, apart from the argument that the genus-zero functions dominate at
large N , we will not take N to be large in our formulas, so most of our formulas are exact
at finite N . This is why, through most of the paper, we avoid the nomenclature ‘heavy’
and ‘light’ fields, preferring ‘multi-cycle’ and ‘single-cycle’ fields instead. It should be kept
in mind, nevertheless, that, in the D1-D5 CFT examples we consider, the multi-cycle fields
are almost always heavy (Ramond) fields, the single-cycle fields are always light, and that
heavy-light correlators in the semi-classical limit are an important part of our motivations.

Focusing on (1.5), the appropraite genus-zero covering map was derived in [40]. Here we
present a detailed analysis of the geometry of the covering surfaces, and the relation between
coverings and permutation classes. The goal is to understand how the geometry dictated
by the twists controls the form of the correlation functions. The connected functions
can be decomposed into H ‘Hurwitz blocks’, where H is the Hurwitz number of different
coverings of the sphere.1 These blocks are defined by the roots of an algebraic equation,
which cannot be found in closed form when n1 6= n2, but nevertheless fix many properties
of the correlation functions. In particular, they determine the twists of the fields appearing
in the OPE channels,

Z̄[2] × Z[2] = CZZ̄U {U[1]}+ CZZ̄S {S[3]}

Z[2] ×
[
Xζ1

[n1]X
ζ2
[n2]
]

= C[X̄X̄]Z̄Y
{
Y[n1+n2]

}
+ CX̄Z̄[WX]BX̄X

{[
W[n1−n2]X

ζ2
[n2]X

ζ2
[n2]
]} (1.6)

where Cs are structure constants, B a two-point function normalization, and curly brackets
indicate conformal families. The appearance of the composite field containing the operator
W[n1−n2], with twist length n1 − n2, is the result of an interesting interaction between
the twist permutations in the v → 0 channel, which was previously overlooked in our
papers [40, 41], and is now analyzed in detail within this more general context of MN/SN
orbifolds. When n1 = n2, we also find a special symmetry between covering surfaces (or
equivalence classes, or Hurwitz blocks), that allow us to compute the correlators in closed
form on the base sphere, while “reducing the Hurwitz number by half”.

In section 4 we turn our attention from MN/SN orbifolds in general to the D1-D5
CFT (at the free-orbifold point) specifically. We derive a pair of “master formulas” that
encompass many different choices for the operators in (1.2)–(1.5). The multi-cycle fields

1Hurwitz blocks correspond to diagrams in the language of [33].
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can be Ramond ground states or composite NS chirals, and the single-cycle fields can be
Ramond fields, NS chirals or the scalar deformation modulus taking the CFT away from
the free-orbifold point. With these functions, we can use the technology of section 3 to
extract conformal data. Besides the twists, we can find the dimensions of the operators
and the structure constants in the OPEs (1.6). In refs. [40, 41] this analysis was performed
when Z[2] is the interaction modulus O(int)

[2] , and the Xζ
[n] are Ramond ground states of the

n-twisted sector. Here, with our general functions, we can extend these results to find the
OPEs between O(int)

[2] and NS chirals, between NS chirals and Ramond ground states, and
also between single-cycle and composite NS chirals themselves. In the latter case, we note
that the form of the correlation functions is restricted by the NS chiral ring, and show that
we can recover some known structure constants [42–44] by taking n2 = 1, reducing the
composite field to a single-cycle one.

The D1-D5 CFT’s N = (4, 4) superconformal algebra has a symmetry under ‘spectral
flow’ [45], that changes weights and R-charges of fields, and relates states in the NS and
Ramond sectors. In section 4.4, we discuss the effect of spectral flow on four-point functions,
and show how it connects specific pairs of functions derived with our master formulas.

We close with a brief discussion of our results and a few comments concerning the
derivation of a new family of four-point functions related to D1-D5-P superstrata. These
four-point functions, which involve excitations of the left-moving twisted Ramond ground
states, can be found in terms of the correlators calculated in the present paper, using
standard N = 4 super-conformal Ward identities.

2 Multi-cycle correlators on SN orbifolds

The MN/SN orbifold is made by N identical copies of a “seed theory” in M , each copy
labeled by an index I = 1, · · · , N , and all independent, so that the total central charge
is c = Ncseed. The Hilbert space decomposes into twisted sectors created by ‘bare twist
fields’ σg(z). The permutation g acts on copy indices of operators going around the twist,
OI(e2πiz)σg(0) = Og(I)(z)σg(0). Every g ∈ SN can be uniquely decomposed as a product
of disjoint cycles of different lengths ni, (ni) = (I1, · · · , Ini) ∈ Zni ,

g =
∏
n(n)Nn ,

∑
n nNn = N. (2.1)

The conformal weight of σg, with g given in (2.1), is the sum

hσ[Nn] =
∑
n

Nnh
σ
n, hσn = 1

4
(
n− 1

n

)
= h̃σn (2.2)

where hσn is the dimension of the single-cycle components [37, 46]. The same is true for
anti-holomorphic weight h̃σ[Nn], and the total dimension is ∆σ

[Nn] = hσ[Nn] + h̃σ[Nn]. The
weight (2.2) is the same for any g in the conjugacy class [g] = {hgh−1 |h ∈ SN}, associated
with the partition

[Nn] ≡ {Nn ∈ N |
∑
n nNn = N}. (2.3)

Twists corresponding to individual permutations are not invariant under actions of
SN . An invariant field can be built by summing over the orbit of g ∈ SN under the action
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of SN by conjugacy,
σ[g] ≡

1
S[g]

∑
h∈SN

σhgh−1 . (2.4)

The factor S[g] ensures that the SN -invariant two-point function normalization is the same
as that of its (non-SN -invariant) components. In section B.1 we show that

S[g] =
√
N !|Cent[g]| (2.5)

where the order of the centralizer of g in SN is2∣∣Cent[g]
∣∣ =

∏
n

Nn!nNn for g =
∏
n

(n)Nn ,
∑
n

Nnn = N. (2.6)

The result (2.5) was previously found in [39]. For single cycles g = (n)(1)N−n, it yields the
usual normalization factor [33, 37, 48] which we will denote by Sn, and for double cycles
g = (n1)(n2)(1)N−n1−n2 we obtain a normalization denoted by Sn1,n2 ,

Sn =
√
N !(N − n)!n, Sn1,n2 =

√
N !(N − n1 − n2)!n1n2. (2.7)

Excited twisted fields can also be combined into SN -invariant operators, in the same way
as (2.4), and with the same normalization (2.5).

2.1 Twisted Q-point functions

Q-point functions of twisted operators are subject to selection rules associated with the
permutations carried by the fields. A fundamental property of a twisted correlator, possibly
with a collection X of excitations, is that the permutations must compose to the identity
id ∈ SN , 〈

X
Q∏
i=1

σgi(zi)
〉
6= 0 only if g1 · · · gQ = id (2.8)

otherwise the function would have ill-defined monodromy. If the gi can be separated into
two disjoint sets {gi} = {gk}t{g`}, such that one set commutes with the other, the function
factorizes, 〈

X
∏
i

σgi(zi)
〉

=
〈
Y
∏
k

σgk(zk)
〉 〈

Y ′
∏
`

σg`(z`)
〉

(2.9)

where Y and Y ′ are excitations of the respective sets of bare twists. A function which
cannot be factorized in such a way is called ‘connected’. In this section, we will be interested
only on the SN -related properties of twisted correlators, so we now consider functions of
bare twists σ[g] only. The Q-point function of invariant operators is the sum

〈
σ[g1](z1) · · ·σ[gQ](zQ)

〉
= 1∏

i S[gi]

∑
h1∈SN···
hQ∈SN

〈
σh1g1h

−1
1

(z1) · · ·σhQgQh−1
Q

(zQ)
〉
. (2.10)

2We recall the definition of Cent[g] in (B.5). See e.g. [47] for a derivation of formula (2.4).
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Many terms of the sum of the r.h.s. vanish because they do not satisfy the condition (2.8).
It is convenient to replace the individual sums over the orbits of the {gi} by sums of
different equivalence classes of permutations that do satisfy (2.8). Let pi = higih

−1
i be the

permutations in the r.h.s. of (2.10), and consider an ordered sequence {p1, · · · , pQ} that
satisfies (2.8),

p1 p2 · · · pQ = id. (2.11)

This will also be satisfied by every other sequence in the equivalence class α defined by

α : {p1, p2, · · · , pQ} ∼ {kp1k
−1, kp2k

−1, · · · , kpQk−1}, (2.12)

i.e. a global conjugation of every pi by the same k ∈ SN . Moreover, all correlators
〈σp1(z1) · · ·σpQ(zQ)〉 with the {pi} in a given class α will be equal by symmetry, because
the global conjugation only relabels every copy in the twists, and all copies are identical.
If we denote the set of all such conjugacy classes by Cl, the sum over orbits in (2.10) can
be replaced by a sum over all α ∈ Cl, where we take one representative correlator for each
class α, and multiply it by a “symmetry factor” Nα, counting the number of permuta-
tions in α. It is convenient to separate the classes according to the number c of distinct
copies that participate in non-trivial cycles (i.e. cycles of length n > 1).3 This number
is, of course a class property, so we can decompose Cl = ∪cClc. In the end, the r.h.s. of
eq. (2.10) becomes〈

σ[g1](z1) · · ·σ[gQ](zQ)
〉

= 1∏
i S[gi]

∑
c

∑
αc∈Clc

Nαc

〈
σpαc

1
(z1) · · ·σpαc

Q
(zQ)

〉
(2.13)

In appendix B we give several examples of classes α and discuss the set Cl in detail.
Some of the classes are made of permutations that factorize, as in (2.9), one or more
times. The type of factorization is, also, a class property. In appendix B we show that the
symmetry factor Nαc is basically the same for every class αc ∈ Clc,

Nαc = N !
(N − c)!

 Q∏
i=1

∣∣Cent[gi]
∣∣ ναc . (2.14)

The only class-dependent factor, ναc , is given by eq. (B.18). In classes αc where no two-
point function factorizes, ναc = 1; in classes αc where there is a factorization of d two-point
functions with cycles nj , j = 1, · · · , d, we have ναc = 1/

∏
j nj . eqs. (2.13) and (2.14)

contain the exact N -dependence of the twisted Q-point function,

〈 Q∏
i=1

σ[gi](z1)
〉

=

 Q∏
i=1

√
|Cent[gi]|

N !

∑
c

N !
(N − c)!

∑
αc∈Clc

ναc

〈 Q∏
i=1

σpαc
i

(zi)
〉

(2.15)

This formula generalizes a result of [33], which only considers connected functions. The
connected classes α ∈ Clg can be described in a diagrammatic language developed in [33];
each class α corresponds to a different diagram, and the sum in eq. (2.22) is a “sum over
diagrams”.

3For example, for N = 9, the permutation (1, 2, 3)(5, 6), has c = 5 non-trivial copies, namely copies
I = 1, 2, 3, 5, 6. Copies I = 4, 7, 9 are trivial, as they do not participate in any non-trivial cycle. See the
discussion below (B.12) for examples of classes of permutations with different c.
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2.1.1 The large-N limit

The way eq. (2.15) depends on N seems to dwell solely in the coefficients multiplying the
last sum over αc ∈ Clc. If this was the case, it would suffice to expand these coefficients
as functions of N to find scaling of the function as N → ∞. This works for single-cycle
correlators with cycles of fixed length [33], but when we consider multi-cycle fields, there
are subtleties. A multi-cycle twist may be allowed to have a large number of cycles; an
important example is gi = (n)N/n ∈ SN . So the centralizers of gi may depend on N , in
eq. (2.15). Also, the number of terms in the sum over αc ∈ Clc may be very large, scaling
with N . In summary, determining the scaling of a multi-cycle Q-point function in the
large-N limit is a problem that depends intrinsically on the specific properties of the twists
involved. The detailed analysis of a relatively simple case is the subject of section 2.1 below.

But, under certain assumptions, we can find an interesting generalization of the results
of [33]. Let us isolate trivial cycles in the twist permutations,

gi = (1)N−
∑

j
N

(i)
j n

(i)
j
∏
j

(n(i)
j )N

(i)
j , n

(i)
j > 1 (2.16)

such that the order of the centralizers are∣∣Cent[gi]
∣∣ =

(
N −

∑
j N

(i)
j n

(i)
j

)
!
∏
j

Nj ! n
Nj
j . (2.17)

If we now assume that the cycle lengths n(i)
j and their multiplicities N (i)

j are fixed as N →
∞, we can use Stirling’s formula to find√

|Cent[gi]|
N ! ≈

√∏
j N

(i)
j ! (n(i)

j )N
(i)
j e

− 1
2
∑

j
N

(i)
j n

(i)
j N

− 1
2
∑

j
N

(i)
j n

(i)
j (2.18)

expanding the factor N !/(N − c)! as well, eq. (2.15) becomes, up to order 1/N ,

〈 Q∏
i=1

σ[gi](z1)
〉
≈
∑

c
N

c− 1
2
∑

i

∑
j
N

(i)
j n

(i)
j $

∑
αc∈Clc

ναc

〈
σpαc

1
(z1) · · ·σpαc

Q
(zQ)

〉
(2.19)

The factor

$ = e
c− 1

2
∑

i

∑
j
N

(i)
j n

(i)
j

√∏
i

∏
j N

(i)
j ! (n(i)

j )N
(i)
j (2.20)

is the same for all classes αc, depends on the lengths nr and on c but not on N . Let R be
the total number of non-trivial cycles in all the permutations gi, and nr > 1, r = 1, · · · , R,
be their lengths, in such a way that we can write the sum in the exponent of N in eq. (2.19)
as
∑
i

∑
j N

(i)
j n

(i)
j ≡

∑R
r=1 nr. Inserting this into eq. (2.19) leads to eq. (2.21).

〈 Q∏
i=1

σ[gi] (z1)
〉

=
∑

c
Nc− 1

2
∑R

r=1 nr

[
1 + O

( 1
N

)]
$

∑
αc∈Clc

ναc

〈 Q∏
i=1

σpαc
i

(zi)
〉

(2.21)

Note that the total number of these cycles is R ≥ Q, and if all gi are single-cycle per-
mutations, R = Q. If we further assume that the sum over classes αc ∈ Clc in eq. (2.21)
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also do not depend on N , then we have found the leading large-N scaling of the function.
This assumption about the sum over classes is not unrelated to the assumption used to de-
rive (2.18). If there is a finite number of cycles with fixed (and finite) lengths nr, then it is
reasonable to expect a finite number of non-vanishing classes satisfying the condition (2.11).
(This is true, for example, in the case of single-cycle fields.)

Eq. (2.21) can be written as

〈 Q∏
i=1

σ[gi] (z1)
〉

=
∑
χ

N
1
2 (χ−R)

[
1 + O

( 1
N

)]
$ (nr)

∑
αχ∈Clχ

ναχ

〈 Q∏
i=1

σpαχi
(zi)

〉
(2.22)

if we define the number

χ (c) ≡ 2c +R−
R∑
r=1

nr. (2.23)

We can interpret χ as the Euler characteristic of covering surfaces, as follows. It is well-
known that a connected twisted correlator is associated with a ramified covering surface Σ
of the ‘base sphere’ S2

base [37]. In a connected correlator, the number R of non-trivial cycles
is the number of ramification points of Σ, the number c of distinct copies entering these
cycles is the number of sheets of Σ, and the order of the ramification point associated with
the cycle (nr) is its length nr. With this ramification data, the Riemann-Hurwitz formula
gives the genus of the (connected) covering surface Σ to be

g = 1− c− 1
2R+ 1

2

R∑
r=1

nr (2.24)

which is compatible with (2.23), i.e. χ = 2 − 2g. But some of the classes αc may give
disconnected correlators, which are products of ` connected functions. The latter are each
associated with a covering surface Σi, and we can assoaciate the factorized correlator with
their disjoint union Σ1 t · · · t Σ`. The c non-trivial copies and the non-trivial cycles will
be split among the factorized correlators in such a way that eq. (2.23) gives, schematically

χ(Σ1 t · · · t Σ`) = χ(Σ1) + · · ·+ χ(Σ`), (2.25)

which is the appropriate behavior of the Euler characteristic. Note that the maximum
value of the Euler invariant is χ = 2 when the covering surfaces have g = 0, followed by
χ = 0 for g = 1, and for higher genera χ < 0. So, in eq. (2.22), as in the standard case, the
leading-N contribution to the correlator comes from (possibly disconnected) the zero-genus
covering surfaces.

Eq. (2.22) is a natural generalization, for disconnected functions, of the well-known
scaling of connected Q-point functions as ∼

∑
g N

−g+1− 1
2Q [37]. Of course, for single-

cycle, connected functions, our derivation above can be reduced to that of [33]. See also
the more general results of [39].

Let us stress that formulas (2.21) and (2.22) for the large-N scaling only hold under
certain assumptions about the twists of the multi-cycle fields. Essentially, we are assuming
that, when N → ∞, the number of cycles in the correlation function does not proliferate
— hence, although the function may be disconnected, it disconnects into a product of a
finite number of connected functions/covering surfaces.
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σp2 σp1

a)

p′ 1 = p2 p1 p−12

b)

σp′ 1 σp2

p′ 2 = p′ 1 p2 p′ −11

c)

σp′ 1

σp′ 2 σp′ 1

d)

σp′ 2

Figure 1. Moving twist operators on S2
base. Each twist creates a branch cut (dotted lines).

Whenever a twist crosses a branch cut, its permutation changes.

2.1.2 The monodromy of classes

The twist σp(z) creates a branch cut at z ∈ S2
base. When an operator crosses it, the copy

indices are permuted by the action of p. If σp1 crosses the branch cut of σp2 counterclockwise
(figure 1b), p2 acts on p1 by left conjugation, and σp1 becomes σp′1 where p′1 = p2p1p

−1
2 .

(If the branch cut is crossed clockwise, p2 acts by right conjugation on p1 7→ p−1
2 p1p2.)

Completing the circular movement of the first twist, the second one crosses a branch cut
and is also affected (figure 1c). The final configuration (figure 1d) has two different twists
than the initial one (figure 1a), but the product of the permutations is preserved:

p′2p
′
1 = p2p1. (2.26)

Thus, when we rotate the σpi(zi) around each other inside a Q-point function we obtain
a function with different twists. The condition (2.8) is, however, preserved, as a result
of (2.26).

Suppose we start with a twisted Q-point function whose permutations belong to the
equivalence class α. After rotating the twists as in figure 1, the final permutations belong
to a different class α′ 6= α. The fact that moving twist fields around each other moves
between the different equivalence classes α ∈ Cl was called “channel crossing symmetry”
in [33]. (Since each class is associated with a diagram, “channel crossing” is a symmetry
of the set of all diagrams under the monodromies of a connected correlation function [33].)

In summary, correlation functions of individual permutations, such as (2.8), do not
have well-defined monodromies, because individual twists are altered when they go around
another twist. But the SN -invariant functions (2.10) do have well-defined monodromies,
because they are a sum over all equivalence classes α, hence explicitly channel-crossing
symmetric.

2.2 Untwisted operators

When the correlation function contains operators in the untwisted sector, the discussion
above must be modified. In this case, the sum over conjugacy orbits of (2.4) is not a good
definition for an SN -invariant untwisted operator. Instead, it should be replaced by a fully
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symmetrized tensor product

[∏
i

(Xζi
[1])

pi
]
≡ 1

S
Sym[⊗i

(
Xζi

I
(i)
1
⊗ · · · ⊗Xζi

I
(i)
pi

)
], S =

√
N !

(N −
∑
i pi)!

∏
i(pi!)

. (2.27)

Here it should be understood that the copies I entering the symmetrized tensor product
are all different. The normalization factor S , whose structure is different from the one
in (2.4), counts the number of equivalent terms in the symmetrized product, and is derived
in section B.4. When there is only one untwisted field, we have a simple sum over copies:
X[1] ≡ N−

1
2
∑N
I=1XI . For the N -fold product of two components Xζ1

I = XI and Xζ2
I = YI ,

we have [ 2∏
i=1

(Xζi
[1])

pi
]

= 1
S

Sym
[
X⊗pY ⊗(N−p)], S =

√√√√(N
p

)
. (2.28)

Fields with this structure appear, for example, in [9].
There is a way to extend the definition (2.27) to products of composite twisted fields,

which is widely used in the literature concerned with fuzzballs and microstate geometries.
A detailed derivation of the normalization factor analogous to the one in (2.27) can be found
e.g. in [12]. This type of construction of SN -invariant twisted fields is different from the
sum over orbits that we use here, and the normalization factor in [12] differs from the one in
eq. (2.4).4 We note that, although it seems perhaps less intuitive than the straightforward
symmetrization of copies, the sum over orbits is particularly useful for correlators whose
fields are all twisted, as it is amenable to the equivalence-class decomposition of [33, 44, 49]
discussed in section 2.1.

3 Four-point functions with two fields of twist two

From now on, we will be interested in four-point functions of the type

A(v, v̄) =
〈
X̄[Nζ

n](∞)Z̄[2](1)Z[2](v, v̄)X[Nζ
n](0)

〉
(3.1)

where v is a anharmonic ratio. Z[2] is an SN -invariant single-cycle field of length 2, and
X[

Nζ
n

] is a generic multi-cycle field with
[
N ζ
n

]
=
{
N ζ
n ∈ N |

∑
ζ,n nN

ζ
n = N

}

X[
Nζ
n

] ≡ 1
S
[
N ζ
n

] ∑
h∈SN

∏
ζ,n

(
Xζ
h(n)h−1

)Nζ
n

 ≡
∏
ζ,n

(
Xζ

[n]

)Nζ
n

 (3.2)

It is usual to interpret single-cycle fields as “winding stands”, see e.g. [15, 50]. In this
language, Z(2) and X

ζ
(n) are excitations of a 2-wound and an n-wound strand, respectively.

The index ζ labels possibly different excitations of the multiple strands that make up X[Nζ
n],

and the bar over X̄ζ
(n) indicates a field with opposite charges. For example, in the D1-D5

4The sum over the orbits in SN has many “repeated” terms because the centralizer of the permutation
is non-empty, as discussed extensively in appendix B; these repeated terms are duly accounted for in the
normalization factor. In contrast, following [12] we sum over less terms.
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CFT, ζ labels different SU(2) charges.5 In the D1-D5 CFT, we will mostly be interested in
the case where Z[2] is a NS chiral or the interaction operator, and Xζ

(n) are Ramond ground
states, but, at this point, we focus only on the twist structure, which rules the factorization
properties of the full correlator.

3.1 Factorization

The correlation function (3.1) factorizes because the cycles of Z[2] and Z̄[2] can overlap
with at most four of the cycles of X[N(s)

n ] and X̄[N(s)
n ]. To find the exact way the factor-

ization occurs, recall that the r.h.s. of (3.1) is a multiple sum over orbits, and, apart from
normalization factors, each term has the structure

Aαc =
〈[∏

ζ,n

(X̄ζ
(n))

Nζ
n
]
(∞) Z̄(2)(1) Z(2)(v, v̄)

[∏
ζ,n

(Xζ
(n))

Nζ
n
]
(0)
〉
. (3.3)

The term (3.3) factorizes in two different ways, depending on how the cycles of the four
operators overlap. The first is a four-point function with only one component of each heavy
field (we omit position dependences for brevity)〈

X̄ζ1
(n1) Z̄(2) Z(2) X

ζ1
(n1)

〉
, (3.4a)

and the other possibility is a four-point function with double-cycle fields〈[
X̄ζ1

(n1)X̄
ζ2
(n2)

]
Z̄(2) Z(2)

[
Xζ1

(n1)X
ζ2
(n2)

]〉
. (3.4b)

This restricted factorization follows because in both eqs. (3.4) there is, implicit, a product
of factorized two-point functions 〈X̄ζ

(n)(∞)Xζ
(n)−1(0)〉 = 1, and the fields Xζ

(n) and X̄ζ
(n)

whose cycles do not overlap with Z(2) nor Z̄(2) must all match in such a way that none of
these two-point function vanishes, see section B.3.6

Besides (3.4) there is, sometimes, a third possible type of factorization of (3.3), resulting
in a product of three-point functions. This only happens for some special configurations
of the cycles in the composite field [

∏
ζ,n(Xζ

(n))
Nζ
n ], and for special configurations of the R-

charges, including that of Z[2]. Since this type of factorization is not generically present, we
will ignore it in the remaining of this paper, and henceforth it should be always understood
that the composite fields are not such that this factorization occurs. Still, we note that, in
the cases where it does occur, the contribution of the factorized three-point functions can
be determined in a similar way as we derive the contributions of the connected four-point
functions below. We give a more detailed discussion of this case in section B.3.

Applying eq. (2.15) to the four-point function (3.1), we get

A(v, v̄) = |Cent[g]||Cent[(2)]|
N !

∑
c

1
(N − c)!

∑
αc∈Clc

ναcAαc(v, v̄). (3.5)

5We use X to denote arbitrary fields. They are not to be confused with the bosons XȦA
I of the seed

CFT defined in appendix A, which do not appear in the main text.
6See also [41]. Here we derive the factorization in a slightly different way.
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Here g =
∏
n(n)Nn , with

∑
n nNn = N , is the permutation in the multi-cycle field. The

number of active copies is constrained by the conjugacy class of g. We now assume, for
simplicity, that N1 = 0, i.e. that all cycles entering the correlation function are non-trivial.
Then all N copies enter the correlation function non-trivially, and7

c = N (if g =
∏
n(n)Nn , with all n > 1). (3.6)

Assuming (3.6), and using (2.6),

A(v, v̄) = (
∏
n>1Nn!nNn)(N − 2)!2

N !
∑
α∈Cl

ναAα(v, v̄)

= 2(N − 2)!
∏
Nn!

N !

[∑
α0

n1n2
〈[
X̄ζ1

(n1)X̄
ζ2
(n2)

]
Z̄(2)Z(2)

[
Xζ1

(n1)X
ζ2
(n2)

]〉
α0

+
∑
α1

n
〈
X̄ζ

(n)Z̄(2)Z(2)X
ζ
(n)

〉
α1

]
.

(3.7)

The classes α can be divided into two subgroups, denoted α0 and α1, according to whether
they factorize as in (3.4a) or (3.4b), respectively. In each case, many two-point functions
factorize, and inserting the factors να given by (B.18) we find the final result in (3.7).
Among the terms in the classes α0, are all possible pairings of components X̄ζi

(ni), and of
components Xζi

(ni), from the multi-cycle fields. The classes with the same pairing recon-
struct the connected part of the SN -invariant function with double-cycles and with the
number of colors restricted to c = n1 + n2, that is〈[

X̄ζ1
[n1]X̄

ζ2
[n2]
]
(∞) Z̄[2](1)Z[2](v, v̄)

[
Xζ1

[n1]X
ζ2
[n2]
]
(0)
〉

0

≡
[

2(N − 2)!(N − n1 − n2)!n1n2
N !

×
∑

c

1
(N − c)!

∑
αc

〈[
X̄ζ1

(n1)X̄
ζ2
(n2)

]
Z̄(2) Z(2)

[
Xζ1

(n1)X
ζ2
(n2)

]〉
αc

]
c=n1+n2

= 2(N − 2)!n1n2
N !

∑
α0

〈[
X̄ζ1

(n1)X̄
ζ2
(n2)

]
Z̄(2) Z(2)

[
X

(ζ1)
(n1)X

ζ2
(n2)

]〉
α0
.

(3.8)

We assumed n1 6= n2; for n1 = n2 = n, the overall coefficient in the r.h.s. must be multiplied
by 2!. The index 0 in the function 〈· · · 〉0 ∼

∑
α0〈· · · 〉α0 indicates that its associated

covering-surfaces have genus g = 0, as given by the Riemann-Hurwitz formula (2.24) with
c = n1+n2. Similarly, the classes α1, which have c = n, reconstruct the connected function〈

X̄ζ
[n](∞) Z̄[2](1)Z[2](v, v̄)Xζ

[n](0)
〉

1
= 2(N − 2)!n

N !
∑
α1

〈
X̄ζ

(n)Z̄(2)Z(2)X
ζ
(n)

〉
α1

(3.9)

whose index indicates that the associated covering surfaces have genus g = 1.
7If N1 > 0, then (in a given class αc) c = N −N1 + λ, where λ is the number of copies which are trivial

in g, but participate in the cycles of Z(2) and/or of Z̄(2).
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Combining everything, we gather that eq. (3.7) gives

A(v, v̄) =
〈[∏

ζ,n

(X̄ζ
[n])

Nζ
n

]
(∞) Z̄[2](1)Z[2](v, v̄)

[∏
ζ,n

(Xζ
[n])

Nζ
n

]
(0)
〉

=
(∏

n

Nn!
)[ ∑

n1 6=n2
ζ1 6=ζ2

(
N ζ1
n1N

ζ2
n2

)2 〈[
X̄ζ1

[n1]X̄
ζ2
[n2]

]
Z̄[2] Z[2]

[
Xζ1

[n1]X
ζ2
[n2]

]〉
0

+
∑

n1=n2=n
ζ1 6=ζ2

(
N ζ1
n N

ζ2
n

)2 〈[
X̄ζ1

[n]X̄
ζ2
[n]

]
Z̄[2] Z[2]

[
Xζ1

[n]X
ζ2
[n]

]〉
0

+
∑
n,ζ

P2(N ζ
n)
〈[
X̄ζ

[n]X̄
ζ
[n]

]
Z̄[2] Z[2]

[
Xζ

[n]X
ζ
[n]

]〉
0

+
∑
n,ζ

(N ζ
n)2
〈
X̄ζ

[n] Z̄[2] Z[2]X
ζ
[n]

〉
1

]
.

(3.10)

The coefficients in each sum are ‘symmetry factors’, given by the number of equivalent
ways of forming pairs of components from the original multi-cycle fields; see [41]. (They
are squared because there are two multi-cycle fields.) The function P(q) is the number of
ways to pair q objects,

P(2p) = (2p)!
p!2p , P(2p+ 1) = (2p)!

p!2p + 2p. (3.11)

We have reduced the four-point function with two full multi-cycle fields to a sum of
connected four-point functions with, at most, double-cycle fields. Note that to arrive at
eq. (3.10) we have not used the large-N approximation. Although the connected functions
〈· · · 〉0 and 〈· · · 〉1 have genera g = 0 and g = 1, respectively, we see from eq. (2.22) that,
for large N , both scale as ∼ N−2. This is because 〈· · · 〉0 has an extra pair of cycles
giving an extra pair of ramification points to the covering surface. The symmetry factors,
which depend on the multiplicities N ζ

n, also depend on N because they are constrained by∑
n,ζ N

ζ
n n = N . Hence, depending on the configuration of this partition, and on how the

large-N limit is taken (e.g. leaving the cycle’s lengths fixed or not), the symmetry factors
can also become large. It is to be expected that if some of the N ζ

n grow parametrically
with N , the terms with P(N ζ

n) dominate the r.h.s. of (3.10), as they contain factorials. In
this case, the genus-one functions end up being subleading.

As a concrete example, consider the multi-cycle field8

X =
[(
Xζ1

[n1]

)2p (
Xζ2

[n2]

)2q
]

; 2p n1 + 2q n2 = N ; n1 > n2 > 1, ζ1 6= ζ2. (3.12)

8We tacitly assume that max(n1, n2) 6= 2 min(n1, n2), so that the type of three-point function factoriza-
tion discussed below (3.4) does not exist.
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In this case, the second sum in (3.10) is void:〈 [(
X̄ζ1

[n1]

)2p (
X̄ζ2

[n2]

)2q
]
Z̄[2]Z[2]

[(
Xζ1

[n1]

)2p (
Xζ2

[n2]

)2q
] 〉

= (2p)! (2q)!
[
(4pq)2

〈 [
X̄ζ1

[n1]X̄
ζ2
[n2]

]
Z̄[2] Z[2]

[
Xζ1

[n1]X
ζ2
[n2]

] 〉
0

+
((2p)!
p!2p

)2 〈 [
X̄ζ1

[n1]X̄
ζ1
[n1]

]
Z̄[2] Z[2]

[
Xζ1

[n1]X
ζ1
[n1]

] 〉
0

+
((2q)!
q!2q

)2 〈 [
X̄ζ2

[n2]X̄
(ζ2)
[n2]

]
Z̄[2] Z[2]

[
Xζ2

[n2]X
ζ2
[n2]

] 〉
0

+ (2p)2
〈
X̄ζ1

[n1] Z̄[2] Z[2]X
ζ1
[n1]

〉
1

+ (2q)2
〈
X̄ζ2

[n2] Z̄[2] Z[2]X
ζ2
[n2]

〉
1

]
.

(3.13)

Since n1(p/N)+n2(q/N) = 1
2 , if we keep the cycles’ lengths fixed in the large-N limit, there

must be a large number of both components, i.e. p, q � 1. Using Stirling’s formula, we see
that the g = 1 terms in the last line are subleading to all terms with double-cycle fields.

An even simpler example is a field with only one type of component,

X =
[
(Xζ

[n])
2p
]
, 2p = N/n. (3.14)

The four-point function simplifies further,

〈[
(X̄ζ

[n])
N
n

]
Z̄[2]Z[2]

[
(Xζ

[n])
N
n

]〉
=
(N
n

)
!
[( (

N
n

)
!(

N
2n

)
!2

N
2n

)2〈[
X̄ζ

[n]X̄
ζ
[n]

]
Z̄[2] Z[2]

[
Xζ

[n]X
ζ
[n]

]〉
0

+
(
N

n

)2 〈
X̄ζ

[n] Z̄[2] Z[2]X
ζ
[n]

〉
1

]
.

(3.15)

For N/n� 1, we find again that the genus-one term is strongly suppressed.

3.2 Genus-zero covering surfaces and Hurwitz blocks

We have seen that the main ingredient of the four-point functions (3.10) are the connected
functions

Aζ1,ζ2n1,n2(v, v̄) ≡
〈[
X̄ζ1

[n1]X̄
ζ2
[n2]
]
(∞) Z̄[2](1)Z[2](v, v̄)

[
Xζ1

[n1]X
ζ2
[n2]
]
(0)
〉

0
. (3.16)

From now on we omit the label 0, and always assume that we are dealing with the connected
function with a genus-zero covering surface, which is obtained with the covering map [40]

z(t) =
(
t

t1

)n1 ( t− t0
t− t∞

)n2 ( t1 − t∞
t1 − t0

)n2

. (3.17)

The ethos of a covering map [38] is to cover the “base Riemann sphere” S2
base 3 z,

where (3.16) is evaluated, with a ramified surface Σg 3 t of genus g, whose ramifica-
tion points have the property of trivializing the twists in (3.16). The map (3.17) defines
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such a covering surface with g = 0, i.e. a covering of the sphere by the sphere. The pair of
(disjoint) twist insertions at z = 0 lift to the pair of ramification points t = 0 and t = t0
with ramifications n1 and n2. The same happens to the pair of twists at z = ∞. The
single-cycle twists at z = 1 and z = v must, each, be lifted to one ramification point, which
we call t = t1 and t = x, respectively. At these points, the map must have the correct
monodromy, i.e. the derivative must be factorizable as z′(t) ∼ (t− t1)(t−x). This imposes
relations among the parameters t0, t1, t∞ and x, that can be satisfied by choosing

t0 = x− 1, t1 =
(x− 1)

(
x− 1 + n1

n2

)
x+ n1

n2

, t∞ =
x
(
x− 1 + n1

n2

)
x+ n1

n2

. (3.18)

The asymmetry between n1 and n2 in eqs. (3.17)–(3.18) is “fictitious”: it stems from
a freedom in parametrizing the covering map [40]. Without loss of generality, we will
consider n1 ≥ n2.

The covering surfaces with the same ramification data, i.e. the same number of rami-
fication points with fixed orders and positions on S2

base, are not unique. The number H of
such surfaces it is a Hurwitz number [33, 44]. It is the number of inverses of

v = z(x) =
(
x+ n1

n2

x− 1

)n1+n2(
x

x+ n1−n2
n2

)n1−n2

(3.19)

found by inserting (3.18) into (3.17). This is equivalent to the algebraic equation

v (x− 1)n1+n2

(
x
n1 − n2
n2

)n1−n2

−
(
x+ n1

n2

)n1+n2

xn1−n2 = 0, (3.20)

with
H = 2 max (n1, n2) (3.21)

roots xa(v), a = 1, · · · ,H. Also, as explained in [33] (see also [44]), there is also a cor-
respondence between covering surfaces and the equivalence classes α that compose the
SN -invariant function (3.16), cf. (3.8),

Aζ1,ζ2n1,n2(v, v̄) = 2n1n2(N − 2)!
N !

∑
α∈Cl
g=0

〈[
X̄ζ1

(n1)αX̄
ζ2
(n2)α

]
Z̄(2)αZ(2)α

[
Xζ1

(n1)αX
ζ2
(n2)α

]〉

= 2n1n2(N − 2)!
N !

H∑
a=1

∣∣Aζ1,ζ2n1,n2(xa(v))
∣∣2

(3.22)

In other words, in the first line there are H different equivalence classes α with g = 0, each
class associated to one of the solutions xa(u) in the second line. So the sum in (3.22) is
over the H = 2 max(n1, n2) topologically distinct covering surfaces with R = 6 ramification
points of orders given by the twists, and c = n1 + n2 sheets, as per the Riemann-Hurwitz
equation (2.24).

As v sweeps S2
base, each function xa(v) fills one out of H disjoint regions, which compose

again the entire Riemann sphere. We will call this regions ‘Hurwitz regions’. Eq. (3.22)
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Figure 2. Plot of v(x) for n1 = n2 = 3.
Colors depicts the phase of v(x), and
the shading follows the curves of con-
stant |v(x)|, as indicated by the scales.
The x-plane is divided into H = 6 re-
gions, v(x) taking all values in C inside
of each.

shows that the SN -invariant function Aζ1,ζ2n1,n2(v, v̄), with domain on S2
base, is decomposable

as a sum of H ‘Hurwitz blocks’, derived from the function Aζ1,ζ2n1,n2(x), with domain in the
x-plane. It is crucial that all Hurwitz blocks are summed for the total function to be SN -
invariant, because each block correspond to one of the equivalence classes α. As discussed
by the end of section 2.1, when one twisted operator revolves around another (cf. figure 1)
the equivalence classes are shuffled. Hence a missing Hurwitz block makes the monodromies
of the correlation function not well defined.

It is often possible to compute the “Hurwitz block function” Aζ1,ζ2n1,n2(x) in closed form.
We will do this in section 4 for a varied collection of operators. But even when this is the
case, it is, in general, not possible to write the SN -invariant function itself in closed form,
because the xa(v) are the roots of eq. (3.20), which has order higher than 5 for almost
all twists.

3.2.1 Exact Hurwitz bloks for composite fields with equal cycles

The exception is when n1 = n2. The polynomial (3.20) simplifies to

v = z(x) =
(
x+ 1
x− 1

)2n
(3.23)

and we can find its H = 2n solutions exactly:

xa(v) = −1 + v
1

2n e
aπi
n

1− v
1

2n e
aπi
n

, a = 0, 1, 2, · · · , 2n− 1, (3.24)

where v
1

2n is a (single) 2nth root of v. The division of the x-plane into H = 2n disjoint
Hurwitz regions can be clearly seen in the plot of v(x), shown in figure 2 for n = 3. The
shading of the plot follows the contours where |v(x)| = constant, distinguishing the curves
traced on the x-plane when v goes in circles around the origin of the base sphere. All
regions meet at the two critical points x = ±1.

As stated above, each of the H regions of the x-plane are associated, on the one hand,
to a topologically distinct ramified covering of S2

base and, on the other hand, to a distinct
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class α of permutations satisfying (2.11). But in the case of n1 = n2, there is a subtlety.
The functions (3.24) can be grouped in n pairs related by inversion:

xa+n = 1
xa
, (3.25)

for a = 0, · · ·n−1. This is a global conformal transformation of the x-plane, which suggests
that the two solutions xa and xa+n describe covering surfaces with the same topology. This
is indeed the case, as illustrated in figure 3, again with the example of n = 3. There are
2n = 6 solutions of v = z(x) for fixed v. The values of xa for the panels in the bottom and
upper rows are related by inversion (3.25). Surfaces in the same row are all topologically
distinct. But comparing the pairs of surfaces in the same columns, we find that they are
equivalent. Let us focus on the first column, with the pair x0 = −2 and x3 = 1/x0 = −1/2.
Rotating the upper panel 180◦, we do get the same topology of the bottom panel, but with
the positions of the points t = t0 and t = 0 swapped in relation to the other ramification
points. This is highlighted by the green arrows in figure 3; following the arrow in the
upper panel we find the sequence t1 → t∞ → t0 → x → 0. Rotating the plane we get an
arrow in the opposite direction, to be contrasted with that indicated in the bottom panel:
t1 → t∞ → 0 → x → t0. The relative positions of every point are the same, except for
t = 0 and t = t0, which are swapped.

As ramification points, t = 0 and t = t0 are equivalent: they are both the preimages of
z = 0, and with equal ramification because they correspond to cycles of equal length. In
this sense, swapping these two points does not matter, and the number of distinct ramified
coverings is reduced to H = n. This “reduction by half of the Hurwitz number” when
n1 = n2 = n can also be seen from the perspective of H as counting the number of different
equivalence classes α. An explicit construction of the 2 max(n1, n2) different classes in the
function (3.22) can be found in appendix B of ref. [40]. It is clear from the construction
given there that when n1 = n2 the otherwise distinct 2 max(n1, n2) inequivalent classes are
grouped in pairs, and only n distinct classes remain. Eq. (3.25) is the manifestation of this
pairing in terms of the geometry of the covering surfaces.

But there is still one further subtlety. In (3.22) we may have different excitations of
the strands n1 and n2, even if the strands have the same length. Then the ramification
points t = 0 and t = t0 are “decorated” with different operators, and are distinct, even
though they are equivalent with regard to the twist structure.

In summary, for functions with double-cycles of the same length, the SN -invariant
four-point function (3.22) is

Aζ1,ζ2n1,n2(v, v̄) = 4n2(N − 2)!
N !

2n−1∑
a=0

∣∣Aζ1,ζ2n,n (xa(v))
∣∣2 (3.26)

where xa(v) are given in closed form by eq. (3.24). Furthermore, when, in addition to the
twists having cycles of the same length, the excitations are also equal, i.e. ζ1 = ζ2, then
the Hurwitz blocks have the symmetry

Aζ,ζn,n(xa(v)) = Aζ,ζn,n

( 1
xa(v)

)
(3.27)

and only half the terms in the sum (3.26) are independent.
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Figure 3. Covering surfaces for n1 = n2 = 3. In each panel, the horizontal axis is Re(t) and
the vertical axis Im(t). Blue patches are the preimages of the upper-half plane Im(z) > 0, and
pink patches the preimages of the lower-half plane Im(z) < 0, under the covering map (3.17). The
positions of the ramification points t0, t1, t∞ depend on the position of the ramification point x
according to (3.18). The 6 panels correspond to the 6 solutions xa of eq. (3.20) for z(x) = v = 1

729 .

3.2.2 Composite fields with unequal cycles

The geometry of the x-plane is more complicated when n1 6= n2. In figure 4 we show it
for n1 = 7, n3 = 3. There are H = 2 max(n1, n2) = 14 regions, v(x) taking all values in
C inside of each. (The number of regions can be found by counting, say, the different red
streaks in the plot, where Arg(v) . π.) The main difference from figure 2 is that in figure 4
there is an inner region with three critical points,

x = −n1 − n2
n2

, x = −n1 − n2
2n2

, x = 0, (3.28)

which collapse into a trivial one when n1 = n2. The trefoil structure of the innermost
regions (labeled 1, 5 and 14 in figure 2c) around the middle-point x = −n1−n2

2n2
is the same

for any values of n1 6= n2. Increasing the difference n1 − n2 increases just the number of
“petals” (labeled 2, 3 and 4) between x = −n1

n2
and x = −n1−n2

n2
, as well as the symmetric

ones (labeled 11, 12 and 13) between x = 0 and x = 1. There are always n1 − n2 such
petals at each side. The petals and the trefoil are associated with the twist structure of
the four-point function’s OPE channels.
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Figure 4. Plot of v(x) for n1 = 7, n2 = 3. The frames’ horizontal and vertical axes are Re(x),
and Im(x), respectively. Colors depict the phase of v(x), and shading follows the curves of constant
|v(x)|, as indicated by the scales. a) Complete borders of the Hurwitz regions, with “outer” regions
labeled. b-c) Four contours with |v(x)| = constant. c) Close up of the inner region near the critical
points x = −n1

n2
, x = −n1−n2

n2
, x = −n1−n2

2n2
, x = 0, x = 1 (red dots from left to right, respectively),

with all 14 different regions labeled.

3.3 OPEs and Hurwitz blocks

The four-point function (3.16), there are two inequivalent OPE limits:

v → 1 with OPE Z̄[2] × Z[2] (3.29a)

v → 0 with OPE Z[2] ×
[
Xζ1

[n1]X
ζ2
[n2]
]

(3.29b)

In v → ∞, the OPE is equivalent to (3.29b) in what concerns the twists, but with the
double-cycle fields having opposite charges. (That is, the operators appearing in the fusion
rules are different, but with the same twists discussed below.)

The critical points of v(x) correspond to OPE limits. Although it is not possible to
find xa(v) in closed form for n1 6= n2, we can find them asymptotically for v ≈ 0, 1. At
v = 1, there are two critical points

xℵ(1) =∞ and x(1)ג = −n1 − n2
2n2

. (3.30)

The root xℵ has multiplicity one, and xג has multiplicity three. Explicitly, expanding v(x)
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in the vicinity of (3.30) and inverting the series,

xℵ(v) = − 4n1
1− v + n2 − n1 + 4n1n2

2n2
+
[
n1
3 −

1
24n1

− n1
24n2

2

]
(1− v)

+
[
n1
6 −

1
48n1

− n1
48n2

2

]
(1− v)2 + O(1− v)3

(3.31a)

xג (v) = −n1 − n2
2n2

+ 3
1
3

4

((
n2

1 − n2
2
)2

n1n4
2

) 1
3

(1− v)
1
3

− 3
40
n2

1 + n2
2

n1n2
2

(1− v) + 1
8 · 3

2
3

((
n2

1 − n2
2
)2

n1n4
2

) 1
3

(1− v)
4
3 + O (1− v)

5
3

(3.31b)

These functions are plotted as magenta and cyan contours with |v(x)| ≈ 1 in figure 4b-c.
The contours extend to x = ∞ in a single direction, but move towards xג from three
different directions in the inner trefoil region.

When v = 0, all H = 2n1 roots are easily found:9

xi(0) = −n1
n2

and xk(0) = 0, (3.32)

with multiplicities n1 +n2 and n1−n2, respectively. Expanding v(x) near these points and
inverting the series expansion, we find

xi(v) = −n1
n2
−
(

1 + n1
n2

)(
n1
n2

)n2−n1
n1+n2

v
1

n1+n2

×
[
1 +

(
n1
n2

)−n1−n2
n1+n2

(
n1
n2

+ n2
n1
− 1

)
v

1
n1+n2 + O

(
v

2
n1+n2

)] (3.33a)

xk(v) =
(

1− n1
n2

)(
n2
n1

)n1+n2
n1−n2

v
1

n1−n2

×
[
1 +

(
n2
n1

)n1+n2
n1−n2

( 1
n2

+ 1
n2

+ n1
n2

2

)
v

1
n1−n2 + O

(
v

2
n1−n2

)] (3.33b)

The two functions can be visualized in figure 4b-c as the orange and green contours with
|v(x)| ≈ 0. The contours split in two closed parts. One part, given by xk(v), circles around
x = −n1

n2
, as shown in figure 4b. They avoid n1 − n2 regions in the petals-trefoil patch in

figure 4c, thus crossing a total of H−(n1−n2) = n1 +n2 regions. The other closed contour,
given by xג(v), encircles x = 0, passing over the n1 − n2 remaining regions. As v → 0, the
contour xi(v) tightens around x = −n1

n2
, and xk(v) tightens (much faster) around x = 0.

3.3.1 Fusion rules

The twists of operators resulting from the OPEs (3.29) must appear as branches of the
correlation function Aζ1,ζ2n1,n2(v, v̄). The branches correspond to the multiplicity of roots xa

9As stated before, we are assuming, without loss of generality, that n1 > n2; see [40].
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in the coincidence limits. The multiplicities can be read both from the leading powers in
the expansions (3.31) and (3.32), and also from the number of regions around the critical
points discussed above in figures 2 and 4.

For v → 1, since xℵ(v) has no branch cuts, the OPE has an untwisted field U[1], while
the third-order branch of xג(v) indicates an operator S[3] of twist 3. This agrees with the
composition of permutations: a product of two transpositions is either the identity or a
cycle of length three,

[2]× [2] = id + [3]. (3.34)

Hence the OPE (3.29a) reads

Z̄[2] × Z[2] = CZZ̄U {U[1]}+ CZZ̄S {S[3]} (3.35)

where Cs are structure constants and {· · · } indicates conformal families.
Similarly, in the OPE (3.29b), two types of resulting permutations contribute to the

four-point function,

[2]× [(n1)(n2)] = [n1 + n2] + [(n1 − n2)(n2)(n2)]. (3.36)

In the first term in the r.h.s., a transposition (2) joins two cycles (n1)(n2) into a single
cycle of length n1 +n2; this is what we find from the branch cut of xi(v) in (3.33a). In the
other type of contribution, the transposition splits the longer cycle in two: (2) × (n1) =
(n1 − n2)(n2). The resulting cycle of length n1 − n2 is seen in the branch cut of xk(v)
in (3.33b). The total fusion rule extracted from the four-point function is

Z[2] ×
[
Xζ1

[n1]X
ζ2
[n2]
]

= C[X̄X̄]Z̄Y
{
Y[n1+n2]

}
+ CX̄Z̄[WX]BX̄X

{[
W[n1−n2]X

ζ2
[n2]X

ζ2
[n2]
]} (3.37)

where BX̄X is the normalization constant of a two-point function.
The appearance of the operator W[n1−n2] is an example of how there are non-trivial

interactions in the fusion rules of composite, multi-cycle twisted fields, and it deserves a
more detailed discussion. The terms in the r.h.s. of eq. (3.37) come from different types of
equivalence classes α in the sum (3.22). Consider the following examples of representatives
of classes contributing to each term, for n1 = 5, n2 = 3 (we label cycles by the corresponding
twist position):

id = (1, 2, 3, 4, 5)∞(6, 7, 8)∞ × (1, 6)1 × (1, 4)v × (8, 7, 6, 5, 4)0(3, 2, 1)0 (3.38a)
id = (1, 2, 3, 4, 5)∞(6, 7, 8)∞ × (1, 4)1 × (4, 6)v × (8, 7, 6, 5, 4)0(3, 2, 1)0 (3.38b)

Taking the limit v → 0 in each case,

(1, 4)v × (8, 7, 6, 5, 4)0(3, 2, 1)0 = (8, 7, 6, 5, 4, 3, 2, 1)∗ (3.39a)
(4, 6)v × (8, 7, 6, 5, 4)0(3, 2, 1)0 = (4, 5)∗(8, 7, 6)∗(3, 2, 1)0 (3.39b)

where new cycles resulting from the composition are marked by a star. So, keeping track
of the cycles, the composite operator in the r.h.s. of (3.37) is, schematically,

Z(2)v ×
[
Xζ1

(n1)0
Xζ2

(n2)0

]
= CX̄Z̄[WX]BX̄X

{[
W(n1−n2)∗X

ζ2
(n2)∗X

ζ2
(n2)0

]}
. (3.40)
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The branch cut of (3.33b) only “sees” the cycle of length n1 − n2 from W(n1−n2) because,
in this OPE, Z(2)v does not interact with Xζ2

(n2)0
, and Xζ2

(n2)∗ factorizes from the correlation
function. The factorization can be seen comparing (3.38b) and (3.39b). The cycle (n2)∞
in the composite operator at ∞, and the cycle (n2)∗, resulting from the OPE, are inverses
of each other, (n2)∞(n2)∗ = id. They also commute with the remaining cycles, so

id = (1, 2, 3, 4, 5)∞(6, 7, 8)∞ × (1, 4)1 × (4, 5)∗(8, 7, 6)∗(3, 2, 1)0

=
[
(6, 7, 8)∞ × (8, 7, 6)∗

]
×
[
(1, 2, 3, 4, 5)∞ × (1, 4)1 × (4, 5)∗(3, 2, 1)0

] (3.41)

(Note that there is no factorization of (6, 7, 8)∞ in (3.38b), before the OPE.) The effect of
the OPE inside the four-point function is〈[

X̄ζ1
(n1)∞X̄

ζ2
(n2)∞

]
Z̄(2)1

[
W(n1−n2)∗X

ζ2
(n2)∗X

ζ2
(n2)0

]〉
=
〈
X̄ζ2

(n2)∞X
ζ2
(n2)∗

〉〈
X̄ζ1

(n1)∞Z̄(2)1

[
W(n1−n2)X

ζ2
(n2)0

]〉 (3.42)

The factorized two-point function cannot vanish (unless the branch cut (3.33b) is absent
from the four-point function expansion), which explains why the new operator with twist
(n2)∗ must be Xζ2

(n2)∗ . A similar reasoning explains the product of constants in (3.37)

BX̄X ≡
〈
X̄ζ2

[n2](∞)Xζ2
[n2](0)

〉
, CX̄Z̄[WX] ≡

〈
X̄ζ2

[n1](∞)Z̄[2](1)
[
W[n1−n2]X

ζ2
[n2]
]
(0)
〉
. (3.43)

We assume the strands Xζ
[n] are individually normalized, hence BX̄X = 1.

Note that classes (3.38a) and (3.38b), which differ only by the cycles (2)1 and (2)v,
are related by channel crossing symmetry. Starting from (3.38a) and moving (1, 4)v coun-
terclockwise around (1, 6)1, as in figure 1, we obtain (3.38b). Hence the operators in the
r.h.s. of the OPE (3.37) are intimately related.

3.3.2 Composite fields with equal cycles

When n1 = n2, the solutions in the coincidence limits are

∞ = xℵ(1) = x0(1), (multiplicity 1)
1 = xi(0) = xa(0) ∀ a (multiplicity 2n)

(3.44)

as can be seen directly from (3.24). Solutions xג(v) and xk(v) are missing. It follows
that, for n1 = n2, there is no operator S[3] in the v → 1 channel, and no W[n1−n2] in the
v → 0 channel. This can also be understood from the perspective of SN selection rules.
For example, σ[3] disappears because there is no three-point function satisfying (2.8) with
a cycle of length 3 and two double-cycle twists [(n)(n)].

4 Four-point functions of twisted fields in the D1-D5 CFT

We now turn to the D1-D5 CFT at the free orbifold point. Conventions for the notation
of fields are given in appendix A. The holomorphic Ramond ground states of the n-twisted
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strands can be written in bosonized language as

R±(n)(z) = exp
(
± i

2n

n∑
I=1

[
φ1,I(z)− φ2,I(z)

])
σ(n)(z) (4.1a)

R1̇
(n)(z) = exp

(
− i

2n

n∑
I=1

[
φ1,I(z) + φ2,I(z)

])
σ(n)(z) (4.1b)

R2̇
(n)(z) = exp

(
+ i

2n

n∑
I=1

[
φ1,I(z) + φ2,I(z)

])
σ(n)(z) (4.1c)

All have conformal weight hR
n = n

4 = ncseed
24 , the correct weight of a spin filed in a CFT with

central charge ncseed. are distinguished by their SU(2) charges (j, j).10 For R±(n) and RȦ(n),
respectively, (j = ±1

2 , j = 0) and (j = 0, j = ±1
2). NS chiral primaries can be expressed

in bosonized form as

O
(0)
(n)(z) = exp

(
i(n− 1)

2n

n∑
I=1

[
φ1,I(z)− φ2,I(z)

])
σ(n)(z) (4.2a)

O
(2)
(n)(z) = exp

(
i(n+ 1)

2n

n∑
I=1

[
φ1,I(z)− φ2,I(z)

])
σ(n)(z) (4.2b)

O
(1±)
(n) (z) = exp

(
n∑
I=1

[
i(n± 1)

2n φ1,I(z)− i(n∓ 1)
2n φ2,I(z)

])
σ(n)(z) (4.2c)

(see e.g. [42–44]). They have conformal weights and R-charges

h(0)
n = 1

2(n− 1) = j(0)
n ; h(2)

n = 1
2(n+ 1) = j(2)

n ; h(1)
n = 1

2n = j(1)
n . (4.3)

Anti-chiral operators Ō(p)
(n)(z) have opposite R-charges and the same dimensions. The labels

(p) in refer to the associated cohomology of T4. The two middle-cohomology fields O(1±)
(n)

have degenerate dimension and R-charge, but are distinguished by the global SU(2) charges
j
(p)
n , with respect to which the other fields are neutral. There are analogous fields in the
anti-holomorphic sector.

The operator that drives the theory away from the free orbifold point is a specific
excitation of the 2-twisted lowest weight NS chiral with super-current modes,

O
(int)
[2] (z, z̄) ≡ εABG−A− 1

2
G̃−̇B− 1

2
O

(0,0)
[2] (z, z̄)

= εAB

∮ dw
2πi

∮ dw̄
2πiG

−A(w)G̃−̇B(w̄)O(0,0)
[2] (z, z̄).

(4.4)

This is an exactly marginal deformation, with dimensions h = 1 = h̃, and it is a singlet of
all the SU(2)s, with j = ̃ = 0, j = j̃ = 0.

From the single-cycle fields above, we can build multi-cycle, SN -invariant fields such
as the Ramond ground states of the full orbifold,

R[Nζ
n] ≡

∏
ζ,n

(Rζ[n])
Nζ
n

 with hR = N

4 , j =
∑
ζ,n

N ζ
n jζ . j =

∑
ζ,n

N ζ
njζ , (4.5)

10We denote by j and j the eigenvalues of the components J3 and J3, not of the Casimirs.
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and also composite NS chirals

O[Np
n] ≡

[∏
p,n

(O(p)
[n] )

Np
n

]
, with h = j = N

2 + # O(2)s−# O(0)s
2 (4.6)

where #O(p) denotes the number of strands of the type p entering the composite fields. In
both eqs. (4.5)–(4.6), the multiplicities form a partition of N =

∑
ζ,n nN

ζ
n. In the large-N

limit, the Ramond ground states (4.5) are heavy, hR ∼ N . The multi-cycle NS chirals (4.6)
can also be heavy, if the number of lowest-cohomology components is parametrically small.

4.1 Formulas for two classes of connected functions

We want to compute explicitly correlation functions of the type (3.22), using the fields
above. We can do a rather generic computation, if we define the following “adjustable”
operators (from which we build SN -invariant combinations)

Z
{α,β}
(2) ≡ exp

[
i

4

2∑
I=1

(
αφ1,I + βφ2,I

)]
σ(1,2) (4.7)

[
X
{σ̂,%̂}
(n1) X

{σ̌,%̌}
(n2)

]
≡ exp

[
i

2n1

n1∑
I=1

(
σ̂φ1,I + %̂φ2,I

)
+ i

2n2

n1+n2∑
I=n1+1

(
σ̌φ1,I + %̌φ2,I

)]
σ(1,··· ,n1)σ(n1+1,··· ,n1+n2)

(4.8)

with holomorphic conformal weights

hZ = α2 + β2

16 + 1
4

(
2− 1

2

)
= α2 + β2 + 6

16 (4.9)

hXX = σ̂2 + %̂2

8n1
+ σ̌2 + %̌2

8n2
+ n2

1 − 1
4n1

+ n2
2 − 1
4n2

(4.10)

The anti-holomorphic counterparts of (4.7)–(4.8) are completely analogous. Adjusting the
parameters α, β, σ̂, %̂, σ̌, %̌ we obtain all the Ramond or NS chiral double-cycle fields,
following table 1. We can then compute

Aαβ|σ̂%̂|σ̌%̌n1,n2 (v) ≡
〈[
X̄
{σ̂,%̂}
[n1] X̄

{σ̌,%̌}
[n2]

]
(∞) Z̄{α,β}[2] (1) Z{α,β}[2] (v)

[
X
{σ̂,%̂}
[n1] X

{σ̌,%̌}
[n2]

]
(0)
〉
, (4.11)

and find the desired cases fixing the parameters afterwards. The twisted correlator (4.11)
can be computed in the way of Lunin and Mathur [37, 38], or using conformal Ward
identities to find a first-order differential equation, in what is known as the ‘stress-tensor
method’ [33, 44, 46, 48, 51]. The computation for generic Xs, using both techniques,
was done in detail in appendix B of ref. [41] for the case where Z[2] = O

(int)
[2] . The case of

Z[2] = O
(p,p)
[2] is much simpler, and will be described now, using the Lunin-Mathur technique.

Details are left to appendix C.
The fermionic exponentials in (4.11) are lifted to ramification points on the covering

surface, with an appropriate factor depending on the local behavior of the map (3.17); see
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O
(0)
[2] O

(2)
[2] O

(1+)
[2] O

(1−)
[2]

{α, β} {1,−1} {3,−3} {3,−1} {1,−3}

O
(1+)
[n1] O

(2)
[n2] O

(1+)
[n1] O

(0)
[n2] O

(1+)
[n1] O

(1+)
[n2] O

(1+)
[n1] O

(1−)
[n2]

{σ̂, %̂} {n1 + 1, 1− n1} {n1 + 1, 1− n1} {n1 + 1, 1− n1} {n1 + 1, 1− n1}

{σ̌, %̌} {n2 + 1,−1− n2} {n2 − 1, 1− n2} {n2 + 1, 1− n2} {n2 − 1,−1− n2}

O
(1−)
[n1] O

(2)
[n2] O

(1−)
[n1] O

(0)
[n2] O

(1−)
[n1] O

(1−)
[n2] R±[n1]R

∓
[n2]

{σ̂, %̂} {n1 − 1,−1− n1} {n1 − 1,−1− n1} {n1 − 1,−1− n1} {±1,∓1}

{σ̌, %̌} {n2 + 1,−1− n2} {n2 − 1, 1− n2} {n2 − 1,−1− n2} {∓1,±1}

O
(2)
[n1]O

(2)
[n2] O

(0)
[n1]O

(2)
[n2] O

(0)
[n1]O

(0)
[n2] R±[n1]R

±
[n2]

{σ̂, %̂} {n1 + 1,−1− n1} {n1 − 1, 1− n1} {n1 − 1, 1− n1} {±1,∓1}

{σ̌, %̌} {n2 + 1,−1− n2} {n2 + 1,−1− n2} {n2 − 1, 1− n2} {±1,∓1}

R1̇
[n1]R

±
[n2] R2̇

[n1]R
2̇
[n2] R1̇

[n1]R
2̇
[n2] R1̇

[n1]R
1̇
[n2]

{σ̂, %̂} {−1,−1} {+1,+1} {−1,−1} {−1,−1}

{σ̌, %̌} {±1,∓1} {+1,+1} {+1,+1} {−1,−1}

Table 1. Parameters for making Z
{α,β}
[2] and [X{σ̂,%̂}[n1] X

{σ̌,%̌}
[n2] ] into different NS chirals or Ra-

mond fields.

eqs. (C.2)–(C.3). The resulting covering-surface correlator is a six-point function,

Aαβ|σ̂%̂|σ̌%̌n1,n2 (x)cover =
〈
X̄{σ̂,%̂}(∞)X̄{σ̌,%̌}(t∞)Z̄{α,β}(t1)Z{α,β}(x)X{σ̌,%̌}(t0)X{σ̂,%̂}(0)

〉
.

(4.12)
The relation between Aαβ|σ̂%̂|σ̌%̌n1,n2 (x)cover and the base-sphere correlator Aαβ|σ̂%̂|σ̌%̌n1,n2 (x) is

Aαβ|σ̂%̂|σ̌%̌n1,n2 (x) = eSLAαβ|σ̂%̂|σ̌%̌n1,n2 (x)cover (4.13)

where SL is a Liouville action induced by the covering map [37]. In fact, eSL is the
correlation function of the bare twists within (4.11), and is universal, independent of the
specific excitations that define Xζ and Z. The algorithm by Lunin and Mathur [37, 38]
to derive SL involves a careful regularization of the path integral around the ramification
points. (See also [52] for a very detailed account.) An alternative, described in [41, 53], is to
use the stress-tensor method to compute the bare-twist correlation function, bypassing the
regularization procedure.11 The results for Aαβ|σ̂%̂|σ̌%̌n1,n2 (x)cover and SL are given in eqs. (C.5)
and (C.6), respectively, yielding our desired master formula:

Aαβ|σ̂%̂|σ̌%̌n1,n2 (x) = CZ xK1 (x− 1)K2

(
x+ n1

n2

)K3 (
x+ n1

n2
− 1

)K4 (
x+ n1 − n2

2n2

)K5

(4.14a)

11Computing the functions independently in both ways also gives an important cross-check of the final
results, which we have performed.
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with the exponents

K1 = (−n1 + n2) (α2 + β2 + 6)
16 − n1(2− %̌2 − σ̌2)

8n2
− n2(2− %̂2 − σ̂2)

8n1

+
α2 + β2 + 2

[
1− %̌%̂− σ̌σ̂ − α(σ̌ − σ̂)− β(%̌− %̂)

]
8

K2 = (+n1 + n2)(α2 + β2 + 6)
16 + n1(2− %̌2 − σ̌2)

8n2
+ n2(2− %̂2 − σ̂2)

8n1

+
α2 + β2 + 2

[
1 + %̌%̂+ σ̌σ̂ − α(σ̌ + σ̂)− β(%̌+ %̂)

]
8

K3 = (−n1 − n2)(α2 + β2 + 6)
16 + n1(2− %̌2 − σ̌2)

8n2
+ n2(2− %̂2 − σ̂2)

8n1

+
α2 + β2 + 2

[
1 + %̌%̂+ σ̌σ̂ + α(σ̌ + σ̂) + β(%̌+ %̂)

]
8

K4 = (+n1 − n2)(α2 + β2 + 6)
16 − n1(2− %̌2 − σ̌2)

8n2
− n2(2− %̂2 − σ̂2)

8n1

+
α2 + β2 + 2

[
1− %̌%̂− σ̌σ̂ + α(σ̌ − σ̂) + β(%̌− %̂)

]
8

K5 = −2 + 3(α2 + β2)
8

(4.14b)

Some constant factors involving n1 and n2 have been absorbed into the constant CZ , which
also takes into account the arbitrariness of normalization of the bare twists, and is fixed
by the correct normalization of the correlation function in the identity OPE channel.

The function

Aint|σ̂%̂|σ̌%̌
n1,n2 (v, v̄) ≡

〈[
X̄
{σ̂,%̂}
[n1] X̄

{σ̌,%̌}
[n2]

]
(∞) O(int)

[2] (1) O(int)
[2] (v, v̄)

[
X
{σ̂,%̂}
[n1] X

{σ̌,%̌}
[n2]

]
(0)
〉
, (4.15)

is more complicated than (4.11) because the deformation operator O(int)
[2] is not simply a

fermionic exponential, but a linear combination of terms with bosonic factors and contri-
butions from the integral defining the modes of the super-current excitation, cf. (4.4). Its
computation, carried on in appendix B of ref. [41], is, nevertheless, completely analogous to
the one above, including the same Liouville factor, because the twist structure is identical.
In the end, we obtain

Aint|σ̂%̂|σ̌%̌
n1,n2 (x, x̄) =

∣∣∣A(x)
(
1 + B(x)

)∣∣∣2 (4.16a)

where

A (x) = Cint
2

xP1−Q1 (x− 1)P2−Q2
(
x+ n1

n2

)P3−Q3 (
x+ n1

n2
− 1

)P4−Q4

(
x+ n1−n2

2n2

)4

B (x) = x2Q1 (x− 1)2Q2

(
x+ n1

n2

)2Q3 (
x+ n1

n2
− 1

)2Q4

(4.16b)
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with the exponents

P1 = +n2 − n1 −
%̌%̂+ σ̌σ̂ − 6

4 + n2
(
%̂2 + σ̂2 − 2

)
8n1

+ n1
(
%̌2 + σ̌2 − 2

)
8n2

P2 = +n2 + n1 + %̌%̂+ σ̌σ̂ + 6
4 − n2

(
%̂2 + σ̂2 − 2

)
8n1

− n1
(
%̌2 + σ̌2 − 2

)
8n2

P3 = −n2 − n1 + %̌%̂+ σ̌σ̂ + 6
4 − n2

(
%̂2 + σ̂2 − 2

)
8n1

− n1
(
%̌2 + σ̌2 − 2

)
8n2

P4 = −n2 + n1 −
%̌%̂+ σ̌σ̂ − 6

4 + n2
(
%̂2 + σ̂2 − 2

)
8n1

+ n1
(
%̌2 + σ̌2 − 2

)
8n2

(4.16c)

and

Q1 = −σ̌ − %̌+ σ̂ + %̂

4 = −Q4, Q2 = −σ̌ − %̌− σ̂ − %̂4 = −Q3 (4.16d)

This result is, in fact, more general than the one derived in ref. [41], because in the latter
case we had restricted our attention to double-cycle Ramond fields, for which σ̌2 = %̌2 =
σ̂2 = %̂2 = 1, hence the last two terms in each exponent Pi vanishes. The present result
allow us to give also the correlators for [X{σ̂,%̂}[n1] X

{σ̌,%̌}
[n2] ] made by NS chirals, using the

dictionary in table 1.

Composite fields with equal cycles. In section 3.2 we showed that when n1 = n2 = n,
the covering maps develop a symmetry that reflects upon the Hurwitz blocks. We can
check this property, using our master formulas. The correlators (4.16) and (4.14) simplify
considerably in this case,

Aαβ|σ̂%̂|σ̌%̌n,n (x) = 1
(−4n)2hZ

xK0(x− 1)K−(x+ 1)K+ (4.17a)

where

K0 = (σ̌ − σ̂)2 + (%̌− %̂)2

4 − α2 + β2 + 6
8

K± = %̌%̂+ σ̌σ̂ ± α(σ̌ + σ̂)± β(%̌+ %̂)
4 − %̌2 + σ̌2 + %̂2 + σ̂2

8 + (1∓ n)(α2 + β2 + 6)
8

(4.17b)

and

Aint|σ̂%̂|σ̌%̌
n,n (x) = 1

16n2 xP0(x− 1)P−+Q(x+ 1)P+−Q
[
1 +

(
x+ 1
x− 1

)2Q
]

(4.18a)

where

P± = 2(1∓ n)− (σ̌ − σ̂)2 + (%̌− %̂)2

8 , P0 = (σ̌ − σ̂)2 + (%̌− %̂)2 − 8
4 ,

Q = σ̌ + %̌+ σ̂ + %̂

4

(4.18b)
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The symmetry (3.27) of the Hurwitz blocks can be checked explicitly. We see that
Aαβ|σ̂%̂|σ̌%̌n,n (x) = Aαβ|σ̂%̂|σ̌%̌n,n (1/x) and Aint|σ̂%̂|σ̌%̌

n,n (x) = Aint|σ̂%̂|σ̌%̌
n,n (1/x) iff

0 = 2K0 +K+ +K− = (%̌− %̂)2 + (σ̌ − σ̂)2

4 = 2P0 + P+ + P−. (4.19)

This only holds if %̌ = %̂ and σ̌ = σ̂, i.e. if the strands X{σ̂,%̂}[n] = X
{σ̌,%̌}
[n] are identical, as

expected from the discussion leading to eq. (3.27).
Since the xa(v) are expressible in closed form (3.24), we can write a closed formula for

the correlation functions directly on the base sphere,

Aαβ|σ̂%̂|σ̌%̌n,n (v) = 4n2(N − 2)!
N !

n−1∑
a=0

∣∣∣∣∣∣∣
2K++K−

(4n)2hZ

(
v

1
2n e

aπi
n

)K+ (1 + v
1

2n e
aπi
n

)K0

(
1− v

1
2n e

aπi
n

)2hZ

∣∣∣∣∣∣∣
2

(4.20)

where we have used the fact that K0 +K− +K+ = 2hZ . When n = 1, there are only two
inverse functions,〈[

X
{σ̂,%̂}
[1] X

{σ̌,%̌}
[1]

]†
(∞) Z{α,β}†[2] (1) Z{α,β}[2] (v)

[
X
{σ̂,%̂}
[1] X

{σ̌,%̌}
[1]

]
(0)
〉

= 22−2K0−K+−K−

∣∣∣∣∣
(
v

1
2
)K+ (1 + v

1
2
)K0

(
1− v

1
2
)2hZ

∣∣∣∣∣
2

+
∣∣∣∣∣
(
v

1
2
)K+ (1− v

1
2
)K0

(
1 + v

1
2
)2hZ

∣∣∣∣∣
2
 (4.21)

using the appropriate expression for the N -dependent factor. Note that functions with
n = 1 scale as N0. There are only two non-trivial twists, hence two ramification points in
the covering surface of the connected correlators, so R = 2 in eq. (2.22).

4.2 OPE limits

We can now derive not only the twists but the conformal dimensions and structure constants
of operators appearing in the OPE limits v → 1 and v → 0. In the channel v → 1, the
Huwitz blocks where x→ xℵ(1) =∞, give

A (xℵ(v)) = CZx
2hZ
ℵ (v)

[
1 + O(1/xℵ(v))

]
= (−4n1)2hZCZ

(1− v)2hZ

[
1 + O(1− v)

]
(4.22)

for both Aαβ|σ̂%̂|σ̌%̌n1,n2 (x), where hZ is given by eq. (4.9), and for Aint|σ̂%̂|σ̌%̌
n1,n2 (x), where hZ = 1.

Looking at the power of the leading singularity, we see that the untwisted operator U[1] in
the OPE (3.35) is the identity. Since we have assumed that the individual cycle fields are
normalized, the arbitrary constant in the correlator is now fixed to

CZ = 1
(−4n1)2hZ

. (4.23)

The Hurwitz blocks where x → x(1)ג again have the same form for Aαβ|σ̂%̂|σ̌%̌n1,n2 (x) and
Aint|σ̂%̂|σ̌%̌

n1,n2 (x),

A (xi (v)) = constant×
(
xi (v) + n1 − n2

2n2

)−6hL+2 [
1 + O

(
xi (v) + n1 − n2

2n2

)]
= constant

(1− v)2hZ− 2
3

[
1 + O (1− v)

1
3
] (4.24)
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with a constant that is readily computable but given by a cumbersome expression in general.
The power of the leading singularity shows that twist-three operator S[3] in the OPE (3.35)
is a primary with dimension hp = 2

3 , that is the bare twist σ[3].
In channel v → 0, the function (4.14) expands as

Aαβ|σ̂%̂|σ̌%̌n1,n2 (xi(v)) = eiψ

2K5(4n1)2hZ

(
n1
n2

)K1−
n1−n2
n1+n2

K3 (
1+n2

n2

)K2+K3+K5

v
K3

n1+n2 +· · · (4.25a)

Aαβ|σ̂%̂|σ̌%̌n1,n2 (xk(v)) = eiψ

2K5(4n1)2hZ

(
n1
n2

)n1+n2
n1−n2

K1+K3 (
1−n2

n2

)K1+K4+K5

v
K1

n1−n2 +· · · (4.25b)

Here eiψ simply denotes an unimportant phase that is not necesseraly the same in all
functions. The leading order coefficients give the structure constants in the OPE

Z[2] ×
[
Xζ1

[n1]X
ζ2
[n2]
]

= C[X̄X̄]Z̄Y
{
Y[n1+n2]

}
+ CX̄Z̄[WX]BX̄X

{[
W[n1−n2]X

ζ2
[n2]X

ζ2
[n2]
]} (4.26)

for the fields in table 1. We can read the conformal weights from the leading powers (4.25).
For the single-cycle field Y[n1+n2],

hY = K3
n1 + n2

+ hZ + hXX , (4.27)

where hZ and hXX are given in (4.9). Similarly, the dimension of the composite opera-
tor [W[n1−n2]X

ζ2
[n2]X

ζ2
[n2]] is K1

n1−n2
+ hZ + hXX , but since we know the dimensions of the

components Xζ2
[n2], we can extract the dimension of W[n1−n2] alone,

hW = K1
n1 − n2

+ hZ + hXX − 2
(
σ̌2 + %̌2

8n2
+ n2

2 − 1
4n2

)
(4.28)

The same analysis holds for the functions (4.16) with the deformation operator O(int)
[2] ,

with weight h = 1. The leading-order expansions are

Aint|σ̂%̂|σ̌%̌
n1,n2 (xi(v)) = eiψ(n1 + n2)M2−4nM1−2

1 n4−M1−M2
2 v

M3
n1+n2 + · · · (4.29a)

Aint|σ̂%̂|σ̌%̌
n1,n2 (xk(v)) = eiψ(n1 − n2)M4−4nM3−2

1 n4−M3−M4
2 v

M1
n1−n2 + · · · (4.29b)

where Mi ≡ max(Pi −Qi, Pi +Qi). We can read the conformal data of the OPE

O
(int)
[2] ×

[
Xζ1

[n1]X
ζ2
[n2]
]

= C[X̄X̄]Z̄Y
{
Y[n1+n2]

}
+ CX̄Z̄[WX]BX̄X

{[
W[n1−n2]X

ζ2
[n2]X

ζ2
[n2]
]} (4.30)

and find the weights

hY = M3
n1 + n2

+ 1 + hXX , hW = M1
n1 − n2

+ 1 + hXX − 2
(
σ̌2 + %̌2

8n2
+ n2

2 − 1
4n2

)
(4.31)

where hXX is given in (4.9).
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4.3 Functions with NS chiral fields and other examples

Although the exponents (4.14b), (4.16c), (4.16d) may look complicated functions, they are,
in fact, usually very simple after the parameters of table 1 are inserted. We now discuss
some examples of functions and their conformal data.

4.3.1 Single-cycle NS chirals, composite Ramond

Take Z[2] to be a middle-cohomology NS chiral, hence (hZ , h̃Z) = (1, 1), and the composite
fields be made of be R-charged Ramond fields R++̇

[ni]. The function (4.14) is the same for
both O(1±,1±)

[2] ,

A1±|+|+
n1,n2 (x) = 1

16n2
1

x1−n1+n2(x− 1)n1+n2
(
x+ n1

n2

)4−n1−n2 (
x+ n1−n2

n2

)1+n1−n2

(
x+ n1−n2

2n2

)4 (4.32)

The expansion of the SN -invariant function (3.22) in the channel v → 1 is〈[
R̄++̇

[n1]R̄
++̇
[n2]

]
(∞)Ō(1±,1±)

[2] (1)O(1±,1±)
[2] (v, v̄)

[
R++̇

[n1]R
++̇
[n2]

]
(0)
〉

=

2n1n2(N − 2)!
N !

{∣∣∣∣∣ 1
(1− v)2

[
1− 1

2

( 1
n1

+ 1
n2

)
(1− v) + O(1− v)2

]∣∣∣∣∣
2

+ 3
∣∣∣∣∣ 1
(1− v)

4
3

[
(n1 + n2)2

12
[
3n2

1n
2
2(n2

1 − n2
2)2] 1

3
+ n1 + n2

6n1n2
(1− v)

1
3 + O(1− v)

2
3

]∣∣∣∣∣
2}

+ Non-singular Hurwitz blocks

(4.33)

The factor of 3 in front of the terms ∼ (1 − v)−
4
3 comes from the multiplicity of the

function (3.31b). The leading coefficients give products of structure constants in Ō(1±,1±)
[2] ×

O
(1±,1±)
[2] ∼ {id}+{σ[3]} Note that, although the NS chirals’ OPEs form a ring [42–44], here

the OPE is not between two chirals, but between a chiral and an anti-chiral field, which
explains why the σ3 block is not forbidden.

For the OPE O
(1±,1±)
[2] × [R++̇

[n1]R
++̇
[n2]] in channel v → 0, we find the following conformal

weights for the operators Y[n1+n2] and W[n1−n2]

hY = n1 + n2
4 + 4

n1 + n2
, hW = n1 − n2

4 + 1
n1 − n2

(4.34)

suggesting that these are fractional-mode excitations of Ramond ground states in (n1±n2)-
twisted strands. This should be expected, since the OPE of a NS field with a Ramond field
is always in the Ramond sector.

4.3.2 Composite NS chiral and interaction modulus

In [41] we have discussed four-point functions with O
(int)
[2] and composite Ramond fields.

Here our generalized formula (4.16) allow us to take the composite fields to be made of NS
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chirals. For example, for highest-weight chirals we find

Aint|2|2
n1,n2 (x) = 1

16n2
1

x1−n1+n2(x− 1)2+n1+n2
(
x+ n1

n2

)2−n1−n2 (
x+ n1−n2

n2

)1+n1−n2

(
x+ n1−n2

2n2

)4 (4.35)

and expanding the vacuum and σ3 blocks,〈[
Ō

(2,2)
[n1] Ō

(2,2)
[n2]

]
(∞)O(int)

[2] (1)O(int)
[2] (v, v̄)

[
O

(2,2)
[n1] O

(2,2)
[n2]

]
(0)
〉

=

2n1n2(N − 2)!
N !

{∣∣∣∣∣ 1
(1− v)2

[
1− 1

192

( 5
n2

1
+ 5
n2

2
+ 6
n1n2

− 16
)

(1− v)2 + O(1− v)3
]∣∣∣∣∣

2

+
∣∣∣∣∣ 1
(1− v)

4
3

[
(n1 + n2)2

12
[
3n2

1n
2
2(n2

1 − n2
2)2] 1

3

−
(

(n2
1 − n2

2)2

32n4
1n

4
2

) 1
3 7(n2

1 + n2
2)− 10n1n2

80(n1 − n2)2 (1− v)
2
3 + O(1− v)

3
3

]∣∣∣∣∣
2}

+ Non-singular Hurwitz blocks
(4.36)

An important difference between the expansion above and (4.33) is the absence of the term
of order (1 − v) in the identity block, and of the term of order (1 − v)

1
3 in the σ3 block.

Hence there are no operators with h = 1 in the OPE, a confirmation that O(int)
[2] is, indeed,

exactly marginal — it does not couple to other operators of weight 1. This is also found
in functions with Ramond ground states [41].

4.3.3 Functions with only NS chiral fields

If we take every field in the correlator to be an NS chiral, the resulting function is con-
strained by the NS chiral ring. Only a restricted number of three-point functions involving
(single-cycle) NS chirals is non-vanishing [42–44], and the OPEs of fields in the ring are
non-singular. This reflects on the structure of the functions (4.14) at x = 0 and x = −n1

n2
,

i.e. at the v → 0 channel. Namely, powers of x and (x + n1
n2

) are positive, so that there
are no singularities, or zero, when the corresponding field is absent from the OPE. These
features can be seen in the list of formulas (D.1).

For example, using a schematic notation, we have

〈[
Ō

(2,2)
[n1] Ō

(2,2)
[n2]

]
Ō

(1+,1+)
[2] O

(1+,1+)
[2]

[
O

(2,2)
[n1] O

(2,2)
[n2]

]〉
= 1

16n2
1

x
(
x+ n1

n2

)4 (
x+ n1−n2

n2

)
(
x+ n1−n2

2n2

)4 (4.37)

which vanishes both at x → 0 and x → −n1
n2
. Hence the OPE O

(1+,1+)
[2] × [O(2,2)

[n1] O
(2,2)
[n2] ] is

void. This is not surprising, as there is no OPE O
(1+,1+)
[n] × O(2,2)

[m] in the (single-cycle) NS
chiral ring.

By contrast, the function〈[
Ō

(0,0)
[n1] Ō

(0,0)
[n2]

]
Ō

(0,0)
[2] O

(0,0)
[2]

[
O

(0,0)
[n1] O

(0,0)
[n2]

]〉
= − 1

4n1

(1− x)2

x+ n1−n2
2n2

(4.38)
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is finite at both limits. Eqs. (4.27)–(4.28) give the dimensions hY = 1
2(n1 + n2 − 1) and

hW = 1
2(n1 − n2 + 1). The former is the correct dimension of a lowest-weight NS chiral

of twist n1 + n2, and the latter of a highest-weight chiral of twist n1 − n2. Hence the
OPE (4.26) reads

O
(0,0)
[2] ×

[
O

(0,0)
[n1] O

(0,0)
[n2]

]
= C1

{
O

(0,0)
[n1+n2]

}
+ C2

{[
O

(2,2)
[n1−n2]O

(0,0)
[n2] O

(0,0)
[n2]

]}
(4.39)

The appearance of O(0,0)
[m] and O(2,2)

[m] in the OPE with the composite field agrees with what
one should expect from the single-cycle OPE of the chiral ring. The structure constants
squared, |C1|2 and |C2|2, can be read from value of (4.38) at x = 0 and x = −n1

n2
, combined

with the multiplicities and the “dressing” factor for N -dependence:

∣∣∣〈Ō(0,0)
[n1+n2]O

(0,0)
[2]

[
O

(0,0)
[n1] O

(0,0)
[n2]

]〉∣∣∣2 = 2n1n2(N − 2)!
N !

(n1 + n2)3

(2n1n2)2 (4.40)

∣∣∣〈Ō(0,0)
[n1] O

(0,0)
[2]

[
O

(2,2)
[n1−n2]O

(0,0)
[n2]

]〉∣∣∣2 = 2n1n2(N − 2)!
N !

n2
2

(2n1)2(n1 − n2) (4.41)

As a third and final example, we consider

〈[
Ō

(2,2)
[n1] Ō

(0,0)
[n2]

]
Ō

(0,0)
[2] O

(0,0)
[2]

[
O

(2,2)
[n1] O

(0,0)
[n2]

]〉
= − 1

4n1

x2

x+ n1−n2
2n2

(4.42)

The function vanishes at x = 0, so there is no composite operator with W[n1−n2] in the
OPE. But it is finite at x = −n1

n2
, with an operator of dimension hY = 1

2(n1 + n2 + 1),
i.e. the highest-weight NS chiral:

O
(0,0)
[2] ×

[
O

(2,2)
[n1] O

(0,0)
[n2]

]
= C1

{
O

(2,2)
[n1+n2]

}
(4.43)

The (square of the) structure constant can be read from by evaluating (4.42) at x = −n1
n2

and using the multiplicity and dressing factor:

∣∣∣〈Ō(2,2)
[n1+n2]O

(0,0)
[2]

[
O

(2,2)
[n1] O

(0,0)
[n2]

]〉∣∣∣2 = 2n1n2(N − 2)!
N !

n2
1

(2n2)2(n1 + n2) (4.44)

If we take n2 = 1 and n1 = n> 1, the lowest-weight chiral in the composite field
becomes the vacuum. The N -dependent dressing factor, which is proportional
to |Cent[(n1)(n2)(1)N−n1−n2 |= n1n2(N−n1−n2)!, becomes proportional to
|Cent[(n)(1)N−n|= n(N−n)!, so we must multiply (4.44) by a factor of (N−n−1)
to obtain the result

∣∣∣〈Ō(2,2)
[n+1]O

(0,0)
[2] O

(2,2)
[n]

〉∣∣∣2 = (N − 2)!(N − n− 1)
N !

n3

2(n+ 1) (4.45)

This matches precisely with a known structure constant computed, e.g. in [43], providing
a very non-trivial check of our results.
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4.4 The effect of spectral flow

The N = 4 superconformal algebra has an automorphism called ‘spectral flow’ [45]. The
currents are transformed, and fermionic modes (and boundary conditions) are changed by
a continuous parameter usually called spectral flow ‘units’. Flow by ξ units affects the
R-charge and the Virasoro currents in such a way that the weight and R-charge of a field
changes as

h 7→ hξ = h+ ξj + c

24ξ
2, j 7→ jξ = j + c

12ξ, (4.46)

while the super-currents GαA(z) have their modes shifted by ±1
2ξ. Since every NS chiral

has h = j, their spectral flow by ξ = −1 gives a field with h−1 = 1
24c, that is a Ramond

ground state. Which NS chiral flows to which Ramond ground state is seen from the R-
charges. For example, in the n-twisted sector, with c = 6n, the lowest weight NS field
O

(0)
(n) has R-charge j = n−1

2 , so it flows to the Ramond ground state R−(n), with R-charge
j = n−1

2 + 6n
12 ξ = −1

2 . Overall,

|O(0)
[n] 〉 −−−−−→ξ=−1

|R−[n]〉 , |O(2)
[n] 〉 −−−−−→ξ=−1

|R+
[n]〉 , |O(1±)

[n] 〉 −−−−−→ξ=−1
|RȦ[n]〉

|Ō(0)
[n] 〉 −−−−−→ξ=−1

|R+
[n]〉 , |Ō(2)

[n] 〉 −−−−−→ξ=−1
|R−[n]〉 , |Ō(1∓)

[n] 〉 −−−−−→ξ=−1
|RȦ[n]〉

(4.47)

Naturally, spectral flow relates pairs of functions involving these fields. In fact, it is usual
in the literature on the D1-D5 CFT to compute three-point functions with fields on the
NS sector, and then relate these to functions on the Ramond sector (where SUGRA states
live) via spectral flow; see for example [52, 54].

Given a state |Ψ〉, the automorphism of the Hilbert space will map it to another state
|Ψ〉ξ, while an operator O(z) will be mapped to Oξ(z), with a linear operator Uξ such that

|Ψ〉ξ = Uξ |Ψ〉 , Oξ(z) = UξO(z)U−1
ξ , (4.48)

preserving amplitudes 〈Ψ|O |Ψ〉. In the free orbifold CFT, the linear operator has a nat-
ural implementation in terms of the bosonized fermions, inserted at the origin (i.e. at
past infinity),

Uξ(z) = exp
(
iξ

2

N∑
I=1

[
φ1,I(z)− φ2,I(z)

])
, Uξ = Uξ(0). (4.49)

This is an SN -invariant operator, including all copies I = 1, · · · , N of the free bosons that
bosonize the fermions. Moving Uξ past a bare twist σg, for any g ∈ SN , only has the effect
of shuffling the copies, which leaves Uξ invariant, hence Uξσg = σgUξ. Bosons also commute
with Uξ. Let O(z) be a primary fermionic field which can be written in bosonized language
as an exponential of a linear combination of the φr,I , multiplied (or not) by a bare twist
σg. The most important examples of such fields are the composite NS chirals (4.6) and
Ramond ground states (4.5). Commutation with Uξ is then

O(z)Uξ(0) = z−jξ Uξ(0)O(z), hence Oξ(z) = UξO(z)U−1
ξ = zjξO(z). (4.50)
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Here j is the R-charge of O. The first equation follows from the commutation of Uξ and
σg, along with the well-known formula (see e.g. [55]) for commuting a pair of exponentials:
ekaφa(z)ek

′
bφb(z

′) = ekak
′
b〈φa(z)φb(z′)〉ek

′
bφb(z

′)ekaφa(z), where ka, k′b ∈ C, there are sums over a, b,
and the c-number exponential in the r.h.s. includes the two-point function 〈φa(z)φb(z′)〉 =
δab log(z − z′), valid for our bosons; cf. eq. (A.3). The second equation in (4.50) also
uses that U−1

ξ = U−ξ = U †ξ , as readily seen from the explicit realization (4.49). Since Uξ
commutes with bare twists and bosons, which are R-neutral, formulas (4.50) actually hold
for these fields as well.

To confirm that Uξ in (4.49) is indeed the correct operator leading to (4.46), we can
look at how it affects the weight and the charge of a state |O〉 = O(0) |∅〉 generated by an
operator that transforms as (4.50). According to (4.48), we have

|O〉ξ = Uξ |O〉 = lim
z→0

(
UξO(z)U−1

ξ

)
Uξ |∅〉 = lim

z→0
zjξO(z)Uξ |∅〉 . (4.51)

The dimension of the state in the r.h.s. is a sum of the dimensions of O and Uξ, plus a
factor of jξ coming from zjξ. Since the exponential (4.49) has weight h = c

24ξ
2 and R-

charge j = c
12ξ, c = 6N , the result matches (4.46). Alternatively, we can explicitly write

the most general possible exponential and take the OPE with (4.49),

O(z) = exp
(
i

2
∑N
I=1

[
αIφ1,I(z) + βIφ2,I(z)

])
σg(z), with j =

∑ 1
4(αI − βI),

O(z)Uξ(0) = z−jξ exp
(
i

2
∑N
I=1

[
(αI + ξ)φ1,I + (βI − ξ)φ2,I

])
σg(0).

So the factor zjξ cancels in eq. (4.51), giving

|O〉ξ = exp
(
i

2

N∑
I=1

[
(αI + ξ)φ1,I(0) + (βI − ξ)φ2,I(0)

])
σg(0) |∅〉 . (4.52)

The weight and the charge of this last exponential again agree with (4.46). Further, by
looking at (4.1)–(4.2), eq. (4.52) explicitly reproduces the map (4.47) between Ramond
ground states and NS chiral states.

If we are considering just a specific n-twisted sector of Hilbert space generated by a bare
twist σ(n), the sums over copies I = 1, · · · , N in all exponentials above can be replaced by
sums over only the n copies in the corresponding cycle (n), say I = 1, · · · , n. This is possible
because fields in different copies commute, so the normal-ordered exponential in (4.49) can
be readily factorized.12 We can in fact repeat the argument above, using these restricted
sum over copies, to derive the transformation of the single-cycle fields (4.1)–(4.2) more
directly. This restricted version of the Uξ operator also defines a notion of spectral flow on
the individual n-twisted sectors (or n-twisted “strands”), where the transformations (4.46)
hold with c = 6n < 6N . Although quite useful for some computations on the free orbifold,
these individual flows are broken when the theory is deformed by O(int)

[2] , because its twist

12The factors of Uξ made by the copies I ′ that do not enter the operator O ∼ σ(n), they act on |∅〉 to
create a tensor product of untwisted Ramond fields |R−

I′〉.
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mixes different sectors, as discussed in [53]. Only the full spectral flow of the c = 6N
theory, involving all N copies simultaneously, is preserved.

In order to relate our four-point functions by spectral flow, it is convenient to regard
them as two-point functions on non-trivial states. We can be rather general: consider a
state |X 〉, created by an operator X (z) which transforms as in (4.50). Now consider the
expectation value of a pair of conjugate operators Z and Z̄ on the flowed state |X 〉ξ =
Uξ |X 〉. Using the transposition property (4.50) twice,

ξ〈X |Z̄(1)Z(v) |X 〉ξ = 〈X |U †ξ Z̄(1)Z(v) Uξ |X 〉

= vξjZ 〈X |U †ξ Z̄(1) Uξ Z(v) |X 〉

= vξjZ 〈X |U †ξUξ Z̄(1)Z(v) |X 〉

= vξjZ 〈X | Z̄(1)Z(v) |X 〉

(4.53)

where jZ is the R-charge of Z, and passing Uξ over Z̄ at z = 1 gives a trivial factor. In the
last line, we used that U †ξ = U−ξ = U−1

ξ . This computation relates correlators of the fields
Z and Z̄ on different states |X 〉 and |X 〉ξ. But looking at the r.h.s. of the first line, we see
that if we insert id = UξU

−1
ξ between fields, to get 〈X | (U−1

ξ Z̄(1)Uξ)(U−1
ξ Z(v) Uξ) |X 〉,

we can also find a relation between functions with flowed operators on the (fixed) state
|X 〉. In summary,

〈X | Z̄ξ(1)Zξ(v) |X 〉 = ξ〈X |Z̄(1)Z(v) |X 〉ξ = vξjZ 〈X | Z̄(1)Z(v) |X 〉 . (4.54)

We can now apply these results to four-point functions of the type (3.1), where the
Z fields carry a twist σ[2], and the states |X 〉 are created by the multi-cycle fields (3.2).
Factorization lets us consider only the functions with double-cycle states in eq. (3.10), so we
focus on the four-point functions (4.11), which are given by the master formulas computed
in section 4.1. We will omit the various indices of Aαβ|σ̂%̂|σ̌%̌n1,n2 (v) for economy:

A(v) =
〈[
X̄
{σ̂,%̂}
[n1] X̄

{σ̌,%̌}
[n2]

]∣∣∣ Z̄{α,β}[2] (1) Z{α,β}[2] (v)
∣∣∣[X{σ̂,%̂}[n1] X

{σ̌,%̌}
[n2]

]〉
(4.55)

and
Aξ(v) =

ξ

〈[
X̄
{σ̂,%̂}
[n1] X̄

{σ̌,%̌}
[n2]

]∣∣∣ Z̄{α,β}[2] (1) Z{α,β}[2] (v)
∣∣∣[X{σ̂,%̂}[n1] X

{σ̌,%̌}
[n2]

]〉
ξ

(4.56)

are related as in (4.54). The R-charge of Z{α,β}[2] is jZ = 1
4(α− β), hence

Aξ(v) = v
(α−β)ξ

4 A(v). (4.57)

The functions (4.13) are written in terms of x, that should be related to v by the inverse
covering maps xa(v) and eq. (3.22). Using eq. (3.19), we then have

Aξ (x) = x
1
4 (α−β)(n1−n2)ξ (x− 1)−

1
4 (α−β)(n1+n2)ξ

×
(
x+ n1

n2

) 1
4 (α−β)(n1+n2)ξ (

x+ n1
n2
− 1

)− 1
4 (α−β)(n1−n2)ξ

A (x) .
(4.58)
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Written this way, the shift in the exponents Ki in (4.14b) is explicit. Let us emphasize
that, although eq. (4.58) is parameterized by x, we are performing a standard spectral flow
on the base sphere.13

For example, consider the function in eq. (4.38), with only lowest weight NS chirals

〈[
Ō

(0)
[n1]Ō

(0)
[n2]
]∣∣∣ Ō(0)

[2] O
(0)
[2]

∣∣∣[O(0)
[n1]O

(0)
[n2]
]〉

= − 1
4n1

(1− x)2

x+ n1−n2
2n2

. (4.59)

Here α = −β = 1, see table 1. (We are using a schematic notation omitting the arguments
of operators.) If we flow the double-cycle states by ξ = −1, we get the double-cycle
Ramond state |[O(0)

[n1]O
(0)
[n2]]〉ξ=−1

= |[R−[n1]R
−
[n2]]〉, while flowing the anti-chiral state gives

the conjugate Ramond state. Hence, by eq. (4.58),〈[
Ō

(0)
[n1]Ō

(0)
[n2]
]∣∣∣ Ō(0)

[2] O
(0)
[2]

∣∣∣[O(0)
[n1]O

(0)
[n2]
]〉∣∣∣

states flowed by ξ = −1

= − 1
4n1

x−
n1−n2

2 (x− 1)2+n1+n2
2 (x+ n1

n2
)−

n1+n2
2 (x+ n1

n2
− 1)

n1−n2
2

x+ n1−n2
2n2

=
〈[
R̄−[n1]R̄

−
[n2]
]∣∣∣ Ō(0)

[2] O
(0)
[2]

∣∣∣[R−[n1]R
−
[n2]
]〉

(4.60)

the same result that we find if we apply the master formula (4.14) directly to the function
in the last line. As another example, take the function (4.37),

〈[
Ō

(2)
[n1]Ō

(2)
[n2]
]∣∣∣ Ō(1+)

[2] O
(1+)
[2]

∣∣∣[O(2)
[n1]O

(2)
[n2]
]〉

= 1
16n2

1

x
(
x+ n1

n2

)4 (
x+ n1

n2
− 1

)
(
x+ n1−n2

2n2

)4 . (4.61)

Now α = 3, β = −1. The flowed state is |[R+
[n1]R

+
[n2]]〉, and formula (4.58) gives

〈[
Ō

(2)
[n1]Ō

(2)
[n2]
]∣∣∣ Ō(1+)

[2] O
(1+)
[2]

∣∣∣[O(2)
[n1]O

(2)
[n2]
]〉∣∣∣

states flowed by ξ = −1

= 1
16n2

1

x1−n1+n2(x− 1)n1+n2(x+ n1
n2

)4−n1−n2(x+ n1
n2
− 1)1+n1−n2(

x+ n1−n2
2n2

)4

=
〈[
R̄+

[n1]R̄
+
[n2]
]∣∣∣ Ō(1+)

[2] O
(1+)
[2]

∣∣∣[R+
[n1]R

+
[n2]
]〉

(4.62)

which is, again, what we find using the master formula (4.14) directly.
The interaction operator is more complicated than the exponential operator for which

we have derived the transformation (4.50) above, but it has been shown [57, 58] that O(int)
[2]

is, in fact, invariant under spectral flow,14 hence it actually does obey (4.50), being R-
neutral. Now, the first equation in the chain of equalities (4.54) tells us that four-point

13Variants of the original [45] automorphism of the superconformal algebra are known, e.g. the ‘fractional
spectral flow’ related to fractional modes in twisted sectors [56], and the recently introduced “partial spectral
flow” [57] that changes only two of the four fermions.

14Here we mean the usual, “original” spectral flow; in [57] the authors also discuss a “partial” spectral
flow, under which O(int)

[2] is (crucially) not invariant.
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functions including O(int)
[2] and states related by spectral flow must be equal. For example,

based solely on spectral flow applied to the function (4.35), we conclude that〈[
Ō

(2)
[n1]Ō

(2)
[n2]
]∣∣∣O(int)

[2] O
(int)
[2]

∣∣∣[O(2)
[n1]O

(2)
[n2]
]〉

= 1
16n2

1

x1−n1+n2(x− 1)2+n1+n2
(
x+ n1

n2

)2−n1−n2 (
x+ n1−n2

n2

)1+n1−n2

(
x+ n1−n2

2n2

)4

=
〈[
Ō

(2)
[n1]Ō

(2)
[n2]
]∣∣∣O(int)

[2] O
(int)
[2]

∣∣∣[O(2)
[n1]O

(2)
[n2]
]〉∣∣∣

states flowed by ξ = −1

=
〈[
R̄+

[n1]R̄
+
[n2]
]∣∣∣O(int)

[2] O
(int)
[2]

∣∣∣[R+
[n1]R

+
[n2]
]〉

(4.63)

This is, indeed, the correct function for Ramond fields found by the master formula, and
previously known from [40] (see eq. (61) ibid.).

5 Discussion and further developments

The present paper tries to contribute to a problem that is particularly important for the
fuzzball conjecture: the complete description of the D1-D5 CFT at the free orbifold point
and away from it. This requires the derivation of all three- and four-point functions involv-
ing the symmetric orbifold’s Ramond and NS fields (and some of their excitations), the
complete list of their OPEs and the full spectrum of the non-BPS fields that might appear
at the OPE channels.

We have given here a detailed description of twisted Q-point functions in MN/SN
orbifolds, applying a technology of [33] to correlators with multi-cycle twisted fields. We
have thoroughly analyzed a special class of relatively simple four-point functions where
all operators are twisted: two being composite, multi-cycle fields and two being single-
cycle fields with twists of length 2. We showed how to decompose these functions into
connected parts where the multi-cycle fields are reduced to double-cycle fields, then studied
these connected functions, with a detailed discussion of the geometry of the genus-zero
covering surfaces.

Q-point functions with multi-cycle fields are disconnected, and can become rather
complicated. Even extracting the large-N dependence is a task that strongly depends on
the types of twist in the composite fields. We have shown that if the fields are composite
but have a finite number of cycles, i.e. if the number of cycles does not grow with N →∞,
then the function scales as ∼

∑
χN

1
2 (χ−R), which is a natural generalization of the well-

known formula ∼
∑

g N
−g+1− 1

2Q for connected functions, the genus g replaced by the Euler
characteristic χ. But if the number of cycles in the composite field grows with N , this
generalized formula does not apply. This happens for important types of composite fields,
like Ramond ground states [(R[n])N/n], with n fixed, that source well-known Lunin-Mathur
geometries [59]. In our examples of functions involving these types of field, the total N -
dependence comes from computing the N -dependent number of factorizations of the total
correlator into connected parts. This factorization strongly depends on the structure of
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the twists involved in the function. Here the non-composite fields are simple twist-2 single-
cycle fields, which yield a manageable result. It would be interesting to try to find a way
of determining the N -dependence in a more general way. It would also be important to
explore the connection of our results with those of [14].

After reducing the factorized multi-cycle four-point function into a sum of connected
functions with a finite number of cycles (in our example, the remaining composite field has
at most two cycles), we can use covering surfaces methods. The full SN -invariant correlator
is a sum of ‘Hurwitz blocks’, each associated with one of the H allowed topologies of covering
surfaces, where H is a Hurwitz number. Different types of coalescences of ramification
points in these surfaces dictate the resulting twists of operators that appear in the OPE
channels of the four-point function. Twists configurations can restricts the correlators to
such an extent that, for special classes of functions subject to other restraints, e.g. the ring
of NS chiral fields in the D1-D5 CFT, Hurwitz theory may suffice to fix the correlators
completely [44]. We would like to explore the structure of Hurwitz blocks in more generality,
as well as their connection with conformal blocks.

Since many four-point functions involving untwisted light fields are already known, let
us mention some uses of the functions with twisted light NS fields we have calculated. One
possible application is in the reconstruction of S-matrix elements of a process of absorption
and emission of light (or massless) quanta from the heavy object in the bulk, as suggested
in [60]. Also, our correlators can be used for deriving functions with 1

8 -BPS operators,
relevant for 3-charge microstate solutions [61, 62]. These operators are chiral excitations of
Ramond ground states, and the corresponding functions can be obtained from derivatives
of the functions derived here, using Ward identities. Many particular examples of such
correlators are known in the context of D1-D5-P superstrata bulk geometries. For example,
in [12] it is shown that the Ward identity for the simplest Virasoro excitation L−1 amounts
to applying a differential operator Dv to the function of unexcited fields,15

Dv = (1− v)2 ∂

∂v

(
v
∂

∂v

)
+ 1. (5.1)

As our four-point functions are known in closed form only in terms of the covering-surface
variables x, x̄, the question arises of whether we could translate this Ward identity to a
differential operator in terms of x instead of the base-sphere anharmonic ratio v. The
answer is rather simple: since we do know the mapping function v(x) explicitly, we can
rewrite Dv as an operator D̃x acting on our functions A(x, x̄),

D̃xA(x, x̄) =
[
{1− v(x)}2

v′(x)
∂

∂x

(
v(x)
v′(x)

∂

∂x

)
+ 1

]
A(x, x̄), (5.2)

where v′(x) = dv/dx. Therefore the problem of reconstructing four-point functions with
excited states from our correlators — even in more complicated cases involving also other
generators, say J+

−1 and integer powers of it — is rather straightforward. Let us note, as a
last comment, that once these functions are known, the methods of [41, 53] can be used:

15See eqs. (5.2)-(5.4) of ref. [12]; their variable z corresponds to our v.
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one computes integrals of the four-point functions with the deformation O(int)
[2] to find the

anomalous dimension of the heavy fields at second order in conformal perturbation theory.
Thus we may assess the renormalization or the protection of the excited states.
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A Conventions for the D1-D5 CFT

Here we gather definitions and notations for the seed N = (4, 4) CFT. In general, we
follow [41]. The R-symmetry group is SU(2)L × SU(2)R. We work with (T4)N/SN , and
there is an additional global group SU(2)1 × SU(2)2. In the superalgebra, the R-currents
JaI (z), J̃ ȧI (z̄), and supercurrents GαAI (z), G̃α̇ȦI (z̄) have indices in the SU(2) groups: a =
1, 2, 3 and ȧ = 1̇, 2̇, 3̇ are triplets of SU(2)L and SU(2)R; α = ± and α̇ = ±̇ doublets of
SU(2)L and SU(2)R; A = 1, 2 and Ȧ = 1̇, 2̇ doublets of SU(2)1 and SU(2)2, respectively.
The index I = 1, · · · , N distinguishes the N identical copies of the seed SCFT. Each
copy can be realized in terms of four real bosons plus four real holomorphic and four real
anti-holomorphic fermions. They are written in complexified form as XȦA

I (z, z̄), ψαȦI (z)
and ψ̃α̇ȦI (z̄), respectively. Fermions can be conveniently bozonized by chiral bosons φr(z)
and φ̃r(z̄), [

ψ+1̇
I (z)

ψ−1̇
I (z)

]
=
[
e−iφ2,I(z)

e−iφ1,I(z)

]
,

[
ψ+2̇
I (z)

ψ−2̇
I (z)

]
=
[
eiφ1,I(z)

−eiφ2,I(z)

]
(A.1)

and similarly for ψ̃α̇ȦI (z̄). Exponentials are always normal-ordered throughout the paper.
See [58, 63] for cocycles that we ignore. The non-vanishing two-point functions are

〈∂XȦA
I (z)∂XḂB

I (z′)〉 = 2εȦḂεAB

(z − z′)2 , (A.2)

〈ψαȦI (z)ψβḂI (z′)〉 = −ε
αβεȦḂ

z − z′
, or 〈∂φr,I(z)∂φs,I(z′)〉 = − δrs

(z − z′)2 (A.3)

Two-point functions between fields on different copies vanish. The “magnetic-components”
J3 of the R-current and J3 of the SU(2)2 current can be most conveniently written in
bosonized form,

J3
I (z) = i

2
[
∂φ1,I(z)− ∂φ2,I(z)

]
, J3

I(z) = i

2
[
∂φ1,I(z) + ∂φ2,I(z)

]
(A.4)

We denote the respective eigenvalues as j, j, and the ones in the anti-holomorphic sector as
̃, j̃. Note that these are “magnetic”, not “azimuthal” quantum numbers.
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B Derivation of the N -dependence of twisted Q-point functions

We now derive the key formulas of section 2 in detail. As mentioned in the text, we use
the technology of [33], but generalized for generic, multi-cycle permutations, and without
recurring to diagrams.

B.1 Two-point functions

First, we derive the normalization factor S[g] of the SN -invariant twist σ[g] in eq. (2.4).
We want to compute the two-point function

〈
σ[g](0)σ[g′](1)

〉
≡
〈
σ[g]σ[g′]

〉
≡ 1

S 2
[g]

∑
h∈SN

∑
h′∈SN

〈σhgh−1 σh′g′h′−1〉 (B.1)

We omit the arguments z = 0, z′ = 1 for economy of space. The functions inside the sum,
which contain individual elements of SN , vanish unless

(hgh−1) (h′g′h′−1) = id. (B.2)

The class [g] consists of all permutations with the same cycle type of g, including its inverse
g−1. So 〈σ[g]σ[g′]〉 = 0 if g and g′ have different cycle structures, i.e. if [g] 6= [g′], hence we
take [g′] = [g]. Due to symmetry, all terms in the sum are equal, so we need the number of
non-vanishing terms, i.e. terms that satisfy eq. (B.2).

For a fixed element h in the first sum in (B.1), we count the non-vanishing terms in
the sum over h′. This is the number of elements h′ ∈ SN that solve the equation

h′gh′−1 = q for fixed g and fixed q = (hgh−1)−1 ∈ SN (B.3)

Note that q ∈ [g], hence ∃ k ∈ SN such that q = kgk−1, and

p−1gp = g where p = h′k, with fixed k ∈ SN (B.4)

The number of elements h′ which solve (B.3) is the same as the number of elements p which
solve (B.4). The latter are elements of the centralizer of g

Cent[g] = {p ∈ SN | pgp−1 = g}, (B.5)

whose order (see e.g. [47]),∣∣Cent[g]
∣∣ =

∏
n

Nn! nNn for g =
∏
n

(n)Nn ,
∑
n

Nnn = N (B.6)

only depends on the cycle structure of [g]. Thus (B.1) reduces to

〈
σ[g]σ[g′]

〉
= |Cent[g]|

S 2
[g]

∑
h∈SN

〈σhgh−1 σ(hgh−1)−1〉 = |Cent[g]| |SN |
S 2

[g]
〈σg σg−1〉 (B.7)

By construction, all the terms in this last sum over h are non-vanishing as they trivially
satisfy (B.2), resulting in the factor |SN | = N !. This gives the normalization factor S[g] =√
N !|Cent[g] in eq. (2.4).
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B.2 Q-point functions

The Q-point function of SN -invariant fields is a multiple sum

〈 Q∏
i=1

σ[gi](zi)
〉

= 1∏
i S[gi]

∑
h1∈SN···
hQ∈SN

〈
σh1g1h

−1
1

(z1) · · ·σhQgQh−1
Q

(zQ)
〉

(B.8)

We will now follow [33], but with some differences: we do not rely on the existence of
diagrams; we do not assume that the gi are single cycles; we do not assume (for now) that
the functions are connected. Our goal is to extract the N -dependence of the function (B.8)
which comes from the multiplicity of equivalent terms. In the r.h.s. of eq. (B.8), the
correlation functions’ twists are individual representatives elements pi = higih

−1
i ∈ SN

within the conjugacy classes [gi] in the l.h.s. The non-vanishing correlators are those for
which

∏Q
i=1 pi = id. A non-vanishing function 〈σp1(z1) · · ·σpQ(zQ)〉 will depend on how the

copies inside the permutations interact. All functions whose sets {pi} = {p1, · · · , pQ} are
related by a global permutation must be equal, as that amounts to an overall relabeling
of all copies, and the CFT copies are identical — only their relative positions within the
cycles matter. Thus we have equivalence classes, denoted by α, of the ordered list of
permutations {pi},

α : {p1, p2, · · · , pQ} ∼ {kp1k
−1, kp2k

−1, · · · , kpQk−1}, for k ∈ SN (B.9)

and functions with {pi} in the same equivalence class α are equal by symmetry:

〈σp1(z1)σp2(z2) · · ·σpQ(zQ)〉 = 〈σkp1k−1(z1)σkp2k−1(z2) · · ·σkpQk−1(zQ)〉 (B.10)

We emphasize the difference between the functions in the r.h.s. of eq. (B.8) and that in
the r.h.s. of eq. (B.10): in the former case, each twist has been conjugated by a different
hi, and in the latter all twists have undergone a global conjugation by the same element
k. Let us call a representative of class α by {pαi } ∈ α, and the set of different equivalence
classes by Cl 3 α.

It is very instructive to look at concrete examples. Take the SN -invariant four-point
function 〈

σ[(3)(2)](z1)σ[(2)](z2)σ[(2)](z3)σ[(3)(2)](z4)
〉

(B.11)

and consider

α1
5 3

{
p
α1

5
1 , p

α1
5

2 , p
α1

5
3 , p

α1
5

4

}
∼ {(1,2,3)(4,5), (1,4), (1,4), (1,3,2)(4,5)}

∼ {(1,7,3)(2,5), (1,2), (1,2), (1,3,7)(4,5)}
(B.12a)

α2
5 3

{
p
α2

5
1 , p

α2
5

2 , p
α2

5
3 , p

α2
5

4

}
∼ {(1,2,3)(4,5), (1,4), (1,3), (3,5,4)(1,2)}

∼ {(1,7,3)(2,5), (1,2), (1,3), (3,5,2)(1,7)}
(B.12b)

α3
5 3

{
p
α3

5
1 , p

α3
5

2 , p
α3

5
3 , p

α3
5

4

}
∼ {(1,2,3)(4,5), (1,2), (1,3), (2,3,1)(4,5)}

∼ {(1,7,3)(2,5), (1,7), (1,3), (7,3,1)(2,5)}
(B.12c)
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α4
6 3

{
p
α4

6
1 , p

α4
6

2 , p
α4

6
3 , p

α4
6

4

}
∼ {(1,2,3)(4,5), (1,6), (3,6), (6,2,1)(4,5)}

∼ {(1,7,3)(2,5), (1,6), (3,6), (6,7,1)(2,5)}
(B.12d)

Here we show four different classes α1
5, α

2
5, α

3
5, α

4
6 ∈ Cl contributing to (B.11), and two

representatives of each class.16 The boldface numbers c in αc indicate the number of
distinct copies entering the permutations non-trivially. Distinct copies are painted with
distinct colors. The coloring emphasizes that a class is determined not by the specific copies
(i.e. the algarisms) that enter the cycles, but by their relative positions within the cycles
— that is, different orderings of the colors. Different representatives of the same class are
different ways of filling one arrangement of relative positions with algarisms I = 1, · · · , N .
Different classes are different arrangements of the relative positions, i.e. different orderings
of the colors. We can see that α1

5 6= α2
5, because p

α1
5

2 = (pα
1
5

3 )−1, while pα
2
5

2 6= (pα
2
5

3 )−1. In
classes α3

5 and α4
6 the double cycles p1 and p4 factorize, because they contain copies that

do not appear in the other permutations. Note that the permutations in these examples
might be elements of SN with N � 6, but we omit the trivial cycles (of length one).

We can organize the sum in (B.8) as a sum over the different classes α ∈ Cl (we are
leaving the normalization factors S[gi] behind for a while),

∑
hi∈SN

〈
σh1g1h

−1
1

(z1) · · ·σhQgQh−1
Q

(zQ)
〉

=
∑
α∈Cl
Nα
〈
σpα1 (z1) · · ·σpαQ(zQ)

〉
=
∑

c

∑
αc∈Clc

Nαc

〈
σpαc

1
(z1) · · ·σpαc

Q
(zQ)

〉
(B.13)

In the first line, {pαi } is an arbitrary representative of class α and Nα is the number of
collections {pi} ∈ α. In the second line, we decompose the sum further, by cataloguing
the classes α ∈ Cl into subsets Clc ⊆ Cl, according to the number c of distinct copies
entering the non-trivial cycles of {pi}. By construction, ∪cClc = Cl. For fixed c, there is
a collection of different classes αc ∈ Clc, with a number Nαc of representatives {pαc

i }, one
of which is chosen to appear in the correlation function.

Let us determine Nαc . In the l.h.s. of (B.13), the sum runs over configurations of the
individual permutations gi, while in the r.h.s. there is a sum over different collections of
permutations {pαc

i } (not individual permutations). In summing over orbits of gi in the
l.h.s., whenever h1 ∈ Cent[pα1 ] we get the same collection {pαi };17 whenever h2 ∈ Cent[pα2 ]
we again get the same collection {pαi }, and so on, up to hQ ∈ Cent[pαQ]. Since in the r.h.s. of
eq. (B.13) the sums over hi are independent, the number of repeated occurrences of the
collection {pα1 , · · · , pαQ} is

|Cent[pα1 ]| × · · · × |Cent[pαQ]| = |Cent[g1]| × · · · × |Cent[gQ]| (B.14)

16In all four examples, the representatives are related by {pαi } ∼ {kpαi k−1} with k = (2, 4, 7).
17Not just a different collection {p′αi } ∼ {pαi } ∈ α within the same equivalence class α, but exactly the

same collection {pαi }.
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since |Cent[pαi ]|, only depends on the cycle structure of pai , which is the same as that of gi.
The same is true for the classes αc, which are special types of α, hence

Nαc =

 Q∏
i=1

∣∣Cent[gi]
∣∣×Wαc (B.15)

The remaining factor Wαc counts the number of different sequences {pαc
i } which are

not identical but still belong to the same equivalence class αc. For example, in (B.12b) we
can see two sequences {pα

2
5
i } with different individual permutations (compare each cycle in

the first line with the one immediately below it in the second line) that belong to the same
conjugacy class α2

5 (compare the relative positions of repeated copies, i.e. the order of the
colors). To find Wαc , we proceed in two steps. First, we must choose the c copies that will
enter the non-trivial permutations out of the N copies available,

Wαc =
(
N

c

)
× wαc = N !

(N − c)!c! wαc . (B.16)

The final remaining factor wαc counts the number of ways we can arrange the c copies
and still find collections {pi} within the same class. This number wαc , which we will
determine shortly, can depend on c and on the cycle structure of the [gi], but it clearly
cannot depend on N . So we have already completely determined the N -scaling dependence
of the Q-point function.

It turns out that wαc has a subtle dependence on the factorization of the functions
in class αc. As we can see from the examples (B.12), some classes will have discon-
nected correlators, and note that connectedness is indeed a class property: all functions
〈σpα1 (z1) · · ·σpαQ(zQ)〉 in the same class α factorize the same way. So the r.h.s. of (B.13)
decomposes further,∑

αc∈Clc
Nαc

〈
σpαc

1
(z1) · · ·σpαc

Q
(zQ)

〉

=

 Q∏
i=1

∣∣Cent[gi]
∣∣ N !

(N − c)!c!

 ∑
αc∈
[

fully
connected
classes

]wαc

〈
· · ·
〉

+
∑

αc∈
[ once
disconnected

classes

]wαc

〈
· · ·
〉〈
· · ·
〉

+
∑

αc∈
[ twice
disconnected

classes

]wαc

〈
· · ·
〉〈
· · ·
〉〈
· · ·
〉

+ · · ·


(B.17)

The possible types of factorizations of the initial correlator will depend on the original cycle
structure of the [gi], and also on c. For example, it is possible that the cycle structure
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(   ,   )
( 1 , 2 , 3 )

( 1 , 5 , 4 )
( 5 , 3 , 2 )

( 3 , 1 , 2 )

( 4 , 5 )
( 1 , 4 )
( 3 , 2 )
( 4 , 5 )

(   ,   ,   )
( 1 , 4 )

( 1 , 3 )
( 5 , 1 )

( 3 , 4 )

(   ,   )
( 1 , 3 )

( 1 , 4 )
( 5 , 2 )

( 3 , 2 )

(   ,   )
( 5 , 4 , 3 )

( 2 , 3 , 4 )
( 4 , 1 , 2 )

( 5 , 4 , 2 )

( 1 , 2 )
( 5 , 3 )
( 1 , 5 )
( 3 , 1 )

(   ,   )(   ,   ,   )

Figure 5. Four different representatives of class α2
5 (the same featured in example (B.12b). All

representatives have the same active copies 1, 2, 3, 4, 5 appearing in different orders, but preserving
the relative positions of repeated copies.

of the [gi] be incompatible with fully connected classes — this is what happens with the
functions considered in section 3 — and in this case, the first sum in the r.h.s. above is
void. The factor wαc is given by

wαc = c! ναc , ναc =

1 if no two-point function factorizes
1/[
∏
nj ]αc if one or more two-point function factorizes

(B.18)

where the nj are the lengths of cycles in eventual two-point functions that factorize in the
class αc.

Formula (B.18) can be obtained as follows. In eq. (B.16), we had chosen c copies to
enter the non-trivial cycles of the set {pαc

1 , · · · , pαc
Q }. Now we start to fill the cycles of the

pαc
i with these copies. We choose an ordering of the copies to fill the first non-repeated

slots, and then the copies in the repeated slots are fixed by the structure of the class
αc. So we have the freedom of choosing all c! orderings of c elements to get different
collections {pαc

i } belonging to the same class αc. If no two-point functions factorize, the
collections {pαc

i } obtained in this way will all be different, yielding the first line of (B.18).
But whenever the class αc has factorized two-point functions as in 〈σpαc

1
(z1) · · ·σpαc

Q
(zQ)〉 =

〈· · · 〉
∏
j〈σ(nj)σ(nj)−1〉, the orderings that differ only by cyclic reorderings of the copies in

the factorized cycles (nj) will actually give the same collections {pαc
i }. There are nj cyclic

arrangements of nj objects, and taking these into account we get the second line of (B.18).
Again, this is best understood by looking at an example. Consider class α2

5 in (B.12b).
In figure 5 we show different collections {pα

2
5
i }, all made with the same copies I = 1, 2, 3, 4, 5.

In each collection (each line), we fill the first five positions with the copies in a given
ordering, and then the copies in the remaining positions cannot be chosen: they are fixed
by the structure of the class, here highlighted by the coloring (positions with the same
color must have the same copy). Compare the first and the last lines of figure 5, where
the choices of copies differ only by a cyclic reordering of the first cycle, (1, 2, 3) = (3, 1, 2).
Hence, in these two orderings, the first two cycles are the same. Nevertheless, the collections
as a whole are not the same because their remaining cycles are not equivalent. This is a
consequence of the connectedness of this class. In accordance with formula (B.18), in this
case there are wα2

5
= c! = 5! = 120 ways of ordering the copies I = 1, 2, 3, 4, 5, all of them

giving different sequences {pα
2
5
i } in the same class.
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(   ,   )
( 1 , 2 , 3 )

( 2 , 3 , 1 )
( 2 , 3 , 1 )

( 4 , 5 )

( 5 , 4 )
( 4 , 5 )

(   ,   ,   )
( 1 , 2 )

( 2 , 3 )
( 2 , 3 )

(   ,   )
( 1 , 3 )

( 2 , 1 )
( 2 , 1 )

(   ,   )
( 2 , 3 , 1 )

( 3 , 1 , 2 )
( 3 , 1 , 2 )

( 4 , 5 )

( 5 , 4 )
( 4 , 5 )

(   ,   )(   ,   ,   )

( 1 , 2 , 3 )( 5 , 4 ) ( 1 , 2 ) ( 1 , 3 ) ( 2 , 3 , 1 ) ( 5 , 4 )

Figure 6. Different representatives of class α3
5, the same featured in example (B.12c). All rep-

resentatives have the same active copies 1, 2, 3, 4, 5 appearing in different orders, preserving the
relative positions of repeated copies.

Now consider the analogous examination of class α3
5 in (B.12c), shown in figure 6.

In this class, there is a factorization of the two-cycles of p1 and p4, making a two-point
function:〈

σ(•,•,•)(•,•)(z1)σ(•,•)(z2)σ(•,•)(z3)σ(•,•,•)(•,•)(z4)
〉

=
〈
σ(•,•,•)(z1)σ(•,•)(z2)σ(•,•)(z3)σ(•,•,•)(z4)

〉 〈
σ(•,•)(z1)σ(•,•)(z4)

〉 (B.19)

Now the choices of I = 1, 2, 3, 4, 5 that only differ by cyclic reordering of the copies entering
the factorized cycles do result in identical collections {pα

3
5
i }. As an example, consider the

first two lines of figure 6: they differ by a cyclic reordering of copies 4 and 5, entering
the factorized cycles, and the configuration of the remaining, non-factorized cycles is left
invariant. So the two ordered choices of copies, 1, 2, 3, 4, 5 and 1, 2, 3, 5, 4, must not be
counted as different collections {pα

3
5
i }. The same happens for all other choices, for instance

the ones in the third and fourth lines of figure 6. Thus, in accordance with formula (B.18),
we must divide the total number c! = 5! of ordered choices of copies by the number n = 2
of cyclic reorderings of the copies entering the factorized cicles. Finally, compare the first
and the last lines of figure 6, which differ by a cyclic reordering of the first, non-factorized
cycle (1, 2, 3) = (2, 3, 1). These two collections are not identical, as you can see that the
permutations pα

3
5

2 = (•, •) are not the same in the two collections, and neither are the
permutations pα

3
5

3 = (•, •).

B.3 Restrictions on the possible factorizations

The restricted possibilities of factorization of the function (3.3) is due to the fact that the
connected functions (3.4a) and (3.4b) are implicitly multiplied by a product of factorized
two-point functions 〈

X̄ζi
(ni)(∞)Xζi

(ni)(0)
〉

= 1, (B.20)

where the fields Xζ
(n) and X̄ζ

(n) are the ones whose cycles do not overlap with Z(2) nor
Z̄(2). For a hypothetical connected function with components X̄ζ

(n) and X
ζ
(n) of the original

multi-cycle fields in (3.3), such that the remaining components do not all match into pairs
like (B.20), the factorization is forbidden. For example, a factorizations leading to the
connected function 〈

[X̄ζ1
(n1)X̄

ζ2
(n2)]Z̄(2)Z(2)X

ζ3
(n1+n2−1)

〉
, (B.21)
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seems possible because it satisfies (2.8), but is forbidden because the factorized operators
have different cycles so the analogous to (B.20) vanishes.

A more subtle case is a factorization leading to a product of three-point functions:〈[∏
ζ,n

(X̄ζ
(n))

Nζ
n
]
Z̄(2) Z(2)

[∏
ζ,n

(Xζ
(n))

Nζ
n
]〉

=
〈[
X̄ζ1

(n1)X̄
ζ2
(n2)

]
Z̄(2) X

ζ3
(n1+n2)

〉 〈
X̄ζ3

(n1+n2) Z(2)
[
Xζ1

(n1)X
ζ2
(n2)

]〉
.

(B.22)

This is, in general, not forbidden. But for this factorization to occur, the original composite
field must, necessarily, have at least one component with cycle length equal to the sum of
other two components, i.e.[∏

ζ,n

(Xζ
(n))

Nζ
n

]
=
[
Xζ1

(n1)X
ζ2
(n2)X

ζ3
(n3) · · ·

]
with n3 = n1 + n2.

So functions with fields like X = [(Xζ
[n])

N/n], for example, never factorize as (B.22).
Furthermore, in the concrete case of the D1-D5 CFT, the fields carry SU(2) charges —

in particular, the R-charge — which must add to zero inside a non-vanishing correlation
function. This imposes more selection rules. For example, if Z[2] is R-neutral, e.g. Z[2] =
O

(int)
(2) , and the Xζ

(n) = Rζ(n) are Ramond fields (4.1), all possible three-point functions
like (B.22) vanish. Meanwhile, for specific configurations, e.g.[∏

ζ,n

(Xζ
(n))

Nζ
n

]
=
[
R+

(n1)R
+
(n2)R

+
(n1+n2) · · ·

]
and Z(2) = Ō

(0,0)
(2)

(note that Z(2) is an anti-chiral field, with j = −1
2), the three-point functions in (B.22) do

have zero R-charges. If all fields in (B.22) are (possibly different types of) NS chirals, there
may also be non-vanishing three-point functions. For example, if[∏

ζ,n

(Xζ
(n))

Nζ
n

]
=
[
O

(0,0)
(n1)O

(0,0)
(n2)O

(0,0)
(n1+n2) · · ·

]
and Z(2) = Ō

(0,0)
(2)

the factorization (B.22) becomes〈[
Ō

(0,0)
(n1) Ō

(0,0)
(n2)

]
O

(0,0)
(2) O

(0,0)
(n1+n2)

〉 〈
Ō

(0,0)
(n1+n2) Ō

(0,0)
(2)

[
O

(0,0)
(n1)O

(0,0)
(n2)

]〉
, (B.23)

which is non-vanishing: the R-charges in the first correlator are

−1
2(n1 − 1)− 1

2(n2 − 1)− 1
2(2− 1) + 1

2(n1 + n2 − 1) = 0

and likewise for the second correlator.
As mentioned in the main text below (3.4), if the factorization into three-point func-

tions occurs, it can be dealt with using basically the same procedure we have used for the
factorizations (3.4). There will be an additional contribution to the r.h.s. of eq. (3.7), with
a sum over classes that factorize as (B.22). The factorized terms can then be reduced to
(products of) SN -invariant three-point functions, that will appear in the r.h.s. of eq. (3.10)

– 49 –



J
H
E
P
0
5
(
2
0
2
2
)
1
0
6

multiplied by “symmetry factors”. These factors are what connects the SN -invariant three-
point functions to the full four-point function with the multi-cycle composite fields. They
can be found following the same type of combinatoric analysis used to derive e.g. P, but
are highly “example-sensitive”: given two cycles of length n1 and n2 in the composite field,
the symmetry factors will depend on how many components with cycle length n3 = n1 +n2
there are in the field, on the corresponding R-charges etc. Hence it would be cumbersome
to try to find a more or less generic formula — which is yet another reason why we omit
these cases in the paper. Going forward, once the symmetry factors in a given case are
known, there still remains to compute the SN -invariant connected three-point functions,
as we do in the paper for the connected four-point functions (3.16). But, compared with
four-point functions, the analysis of twisted three-point functions is much better known.
General formulas can be found in the work of Lunin and Mathur [38] and, for functions
involving only NS chiral fields, many structure constants are known since they form the
NS chiral ring [24, 43, 44]. We should note, yet, that the functions in (B.22) include one
composite double-cycle field, and these are less studied in the literature. But this kind of
structure constant is just what appears in the OPEs we have studied here, see eq. (4.26).
Hence our own results can also be used to complete the computation of the special cases
where the factorization (B.22) exists.

B.4 Untwisted composite fields

Let us compute the normalization factor S of a generic untwisted field (2.27). The sym-
metrization

Sym[⊗fi=1
(
Xsi

I
(i)
1
⊗ · · · ⊗Xsi

I
(i)
pi

)
] (B.24)

is a sum of all possible configurations of the copies. A generic term in the sum is(
Xζ1

I
(1)
1
⊗ · · · ⊗Xζ1

I
(1)
p1

)
⊗
(
Xζ2

I
(2)
2
⊗ · · · ⊗Xζ2

I
(2)
p2

)
⊗ · · · ⊗

(
X
sf

I
(f)
f

⊗ · · · ⊗Xsf

I
(f)
pf

)
(B.25)

where the copies I(i)
pi are all distinct. How many equivalent such terms are there? One

must choose p1 copies out of N to enter the first parenthesis (inside of which all fields are
equivalent, i.e. have the same s), so there are

(N
p1

)
options. Then one must choose p2 copies

out of the remaining N − p1 copies to enter the second parenthesis, and there are
(N−p1

p2

)
options. And so on. The total number of equivalent terms is therefore

S =
(
N

p1

)
×
(
N − p1
p2

)
× · · · ×

(
N −

∑f−1
j=1 pj

pf

)
= N !(

N −
∑f
i=1 pi

)
!
∏f
i=1(pi!)

(B.26)

which is the result appearing in (2.27). Note that we have not required that every one of
the N copies appear in each term (B.25), that is, we have not required that

∑
i pi = N . If

this is the case, then the expression in the last line of (B.26) simplifies

N !(
N −

∑f
i=1 pi

)
!
∏f
i=1(pi!)

= N !∏f
i=1(pi!)

for
f∑
i=1

pi = N. (B.27)

If there are only two powers, p1 = q and p2 = N − q, this formula reduces to (2.28).
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Factorization of four-point functions. For untwisted composite fields, since there is
no sum over orbits of trivial cycles, we must redo our computations. For definiteness,
consider the operator in (2.28), and the two-point function〈[

Xp
[1]Y

q
[1]
]†(∞) Z†[2](1) Z[2](v, v̄)

[
Xp

[1]Y
q

[1]
]
(0)

〉
, q = N − p. (B.28)

There are two sums over orbits of the 2-cycles, and symmetrization of the copies in the
composite fields. Leaving the normalization factors, a generic term in the sum has the
following permutation structure (coordinates omitted for economy of space)〈[

XI1 · · ·XIpYIp+1 · · ·YIp+q
]†
Z†
h1(2)h−1

1
Zhv(2)h−1

v

[
XJ1 · · ·XJpYJp+1 · · ·YJp+q

] 〉
. (B.29)

The function can factorize in three ways, depending on the interaction of the cycles in the
middle. If the cycles are disjoint, then the factorization is〈

· · · Z†
h1(2)h−1

1
· · ·
〉 〈
· · ·Zhv(2)h−1

v
· · ·
〉

= 0 (B.30)

which vanishes because the remaining correlators do not satisfy the fundamental condi-
tion (2.8). If the cycles are not disjoint, they can either compose to a three cycle, or be the
inverse of each other. In the former case, if h1(2)h−1

1 hv(2)h−1
v = (3), then the correlator

also vanishes because, again, it fails to satisfy (2.8). The final remaining possibility is that
the cycles are the inverses of each other; then the factorized function does satisfy (2.8), so
this is the only non-vanishing factorization.

C Derivation of the master formula

Here we give details of the derivation of the four-point function (4.11), namely

〈[
X
{σ̂,%̂}
[n1] X

{σ̌,%̌}
[n2]

]†
(∞) Z{α,β}†[2] (1) Z{α,β}[2] (v)

[
X
{σ̂,%̂}
[n1] X

{σ̌,%̌}
[n2]

]
(0)
〉
, (C.1)

as parameterized by the pre-image x of u on the covering surface. Near a ramification
point z∗, where z(t) ≈ z∗ + b∗(t − t∗)n, the bosonized fermionic exponentials lift to (the
lifted field is in the r.h.s.) [38]

exp
[
i

2n

n∑
I=1

[
σφ1,I(z∗) + %φ2,I(z∗)

]]
σ(n)(z∗)←[ b

−σ
2+%2
8n∗ exp

[
iσ

2 φ1(t∗) + i%

2 φ2(t∗)
]
(C.2a)

When inserted at z =∞, the exponential lifts with a positive power of b∗,

exp
[
i

2n

n∑
I=1

[
σφ1,I(∞) + %φ2,I(∞)

]]
σ(n)(∞)←[ b

+σ2+%2
8n∗ exp

[
iσ

2 φ1(t∗) + i%

2 φ2(t∗)
]

(C.2b)
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The coefficients at the branching points of (3.17) are

b0 = x−n2 (x−1)−n1

(
x+ n1

n2

)n1+n2 (
x+ n1

n2
−1
)−n1

(C.3a)

bt0 =
(
−n1
n2

)−n2

(x−1)−n2

(
x+ n1

n2

)n1+n2 (
x+ n1

n2
−1
)n2−n1

(C.3b)

bt1 =−n1 (x−1)−2
(
x+ n1

n2

)2(
x+ n1

n2
−1
)−2(

x+ n1−n2
2n2

)
(C.3c)

bx = n1x
n1−n2−2 (x−1)−(n1+n2)

(
x+ n1

n2

)n1+n2 (
x+ n1

n2
−1
)n2−n1 (

x+ n1−n2
2n2

)
(C.3d)

bt∞ =
(
n1
n2

)n2

xn1 (x−1)−(n1+n2)
(
x+ n1

n2

)−n2 (
x+ n1

n2
−1
)n2

(C.3e)

b∞ = (−1)n2 (x−1)−(n1+n2)
(
x+ n1

n2

)n1 (
x+ n1

n2
−1
)n2−n1

(C.3f)

and the fields that we use are lifted to

X{σ̂,%̂}†(∞)X{σ̌,%̌}†(t∞) = b
σ̂2+%̂2

8n1∞ b
σ̌2+%̌2

8n2
t∞ e−

i
2 [σ̂φ1(∞)+%̂φ2(∞)] e−

i
2 [σ̌φ1(t∞)+%̌φ2(t∞)] (C.4a)

X{σ̂,%̂}(0)X{σ̌,%̌}(t0) = b
− σ̂

2+%̂2
8n1

0 b
− σ̌

2+%̌2
8n2

t0 e
i
2 [σ̂φ1(0)+%̂φ2(0)] e

i
2 [σ̌φ1(t0)+%̌φ2(t0)] (C.4b)

Z{α,β}†(t1) = b
−α

2+β2
16

t1 e−
i
2 [αφ1(t1)+βφ2(t1)] (C.4c)

Z{α,β}(x) = b
−α

2+β2
16

x e
i
2 [αφ1(x)+βφ2(x)] (C.4d)

Lifted fields carry no twist indices because they are untwisted. Apart from the b∗ fac-
tors, the function (4.12) is a six-point function of exponentials only, whose computation is
immediate. Therefore,

Aαβ|σ̂%̂|σ̌%̌n1,n2 (x)cover = b
1

4n1∞ b
1

4n2
t∞ b

− 1
8

t1 b
− 1

8
x b

− 1
4n1

0 b
− 1

4n2
t0

×
[(t∞ − t1)(t0 − x)

(t∞ − x)(t0 − t1)

]ασ̌+β%̌
4

(
x

t1

)ασ̂+β%̂
4

(
t0
t∞

) σ̌σ̂+%̂%̌
4

(t∞ − t0)−
σ̌2+%̌2

4 (t1 − x)−
α2+β2

4

(C.5)

where we need to express t1, t0, t∞ all in terms of x via (3.18). The final result for
the base sphere four-point function, parameterized by x, is (4.13), i.e. Aαβ|σ̂%̂|σ̌%̌n1,n2 (x) =
eSLAαβ|σ̂%̂|σ̌%̌n1,n2 (x)cover, where eSL is the bare-twist correlation function; using either the re-
sults in [52] or the stress-tensor method of [41, 53], we can find

SL (x) = −2n2
2 + (2 + 3n2) (n1 − n2)n1

8n1n2
log x

+ 2n2
2 + (2 + 3n2) (n1 + n2)n1

8n1n2
log (x− 1)

+ 2n2
2 + (2− 3n2) (n1 + n2)n1

8n1n2
log

(
x+ n1

n2

)
− 2n2

2 + (2− 3n2) (n1 − n2)n1
8n1n2

log
(
x+ n1

n2
− 1

)
− 1

4 log
(
x+ n1 − n2

2n2

)
(C.6)
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O
(0)
[2] O

(1+)
[2] O

(1−)
[2] O

(2)
[2]

{r, s} {0, 0} {1, 0} {0, 1} {1, 1}

Table 2. Parameters r, s for different NS chirals.

apart from a constant which we fix later by looking at OPE limits of the final correlator.
Combining (C.5) with (4.13)–(C.6), we obtain the final result (4.14).

D List of double-cycle four-point functions

Here we list a collection of selected examples of functions Aαβ|σ̂%̂|σ̌%̌n1,n2 (x) and Aint|σ̂%̂|σ̌%̌
n1,n2 (x).

For economy of space, we omit the arguments of the fields.

Functions with NS chirals〈[
Ō

(0,0)
[n1] Ō

(0,0)
[n2]

]
Ō

(0,0)
[2] O

(0,0)
[2]

[
O

(0,0)
[n1] O

(0,0)
[n2]

]〉
= − 1

4n1

(1− x)2

x+ n1−n2
2n2〈[

Ō
(2,2)
[n1] Ō

(2,2)
[n2]

]
Ō

(0,0)
[2] O

(0,0)
[2]

[
O

(2,2)
[n1] O

(2,2)
[n2]

]〉
= − 1

4n1

(
x+ n1

n2

)2

x+ n1−n2
2n2〈[

Ō
(1±,1±)
[n1] Ō

(1±,1±)
[n2]

]
Ō

(0,0)
[2] O

(0,0)
[2]

[
O

(1±,1±)
[n1] O

(1±,1±)
[n2]

]〉
= − 1

4n1

(
x+ n1

n2

)
(x− 1)

x+ n1−n2
2n2〈[

Ō
(2,2)
[n1] Ō

(0,0)
[n2]

]
Ō

(0,0)
[2] O

(0,0)
[2]

[
O

(2,2)
[n1] O

(0,0)
[n2]

]〉
= − 1

4n1

x2

x+ n1−n2
2n2〈[

Ō
(1±,1±)
[n1] Ō

(1∓,1∓)
[n2]

]
Ō

(0,0)
[2] O

(0,0)
[2]

[
O

(1±,1±)
[n1] O

(1∓,1∓)
[n2]

]〉
= − 1

4n1

x
(
x− 1 + n1

n2

)
x+ n1−n2

2n2〈[
Ō

(0,0)
[n1] Ō

(0,0)
[n2]

]
Ō

(1+,1+)
[2] O

(1+,1+)
[2]

[
O

(0,0)
[n1] O

(0,0)
[n2]

]〉
= 1

16n2
1

x(x− 1)4
(
x+ n1−n2

n2

)
(
x+ n1−n2

2n2

)4

〈[
Ō

(2,2)
[n1] Ō

(2,2)
[n2]

]
Ō

(1+,1+)
[2] O

(1+,1+)
[2]

[
O

(2,2)
[n1] O

(2,2)
[n2]

]〉
= 1

16n2
1

x
(
x+ n1

n2

)4 (
x+ n1−n2

n2

)
(
x+ n1−n2

2n2

)4

(D.1)

Functions with Ramond ground states and NS chirals. With parameters (r, s)
such that the NS chirals are given by the choices in table 2,

Aζ1ζ2;(p)
n1,n2 (v, v̄) =

〈[
Rζ1[n1]R

ζ2
[n2]]

†(∞)O(p,p)†
[2] (1)O(p,p)

[2] (v, v̄)
[
Rζ1[n1]R

ζ2
[n2]](0)

〉
(D.2)

is given by formula (4.14) as

A++(p)
n1,n2 (x) = C x−

n1−n2
2 (x− 1)

n1+n2−2(r+s)
2

(
x+ n1

n2

)−n1+n2−4−2s+s
2

×
(
x− 1 + n1

n2

)n1−n2
2

(
x+ n1 − n2

2

)−1−r(r+1)−s(s+1)
(D.3)
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A+−(p)
n1,n2 (x) = C x−

n1−n2−4−2(r+s)
2 (x− 1)

n1+n2
2

(
x+ n1

n2

)−n1+n2−2r(r+1)−2s(s+1)
2

×
(
x− 1 + n1

n2

)n1−n2−2(r+s)
2

(
x+ n1 − n2

2

)−1−r(r+1)−s(s+1)
(D.4)

A1̇+(p)
n1,n2 (x) = C x−

n1−n2−2r
2 (x− 1)

n1+n2−2s
2

(
x+ n1

n2

)−n1+n2−2r(r+1)−2s(s+1)
2

×
(
x− 1 + n1

n2

)n1−n2+2+2r
2

(
x+ n1 − n2

2

)−1−r(r+1)−s(s+1)
(D.5)

A1̇−(0)
n1,n2 (x) = C x−

n1−n2−2−2s
2 (x− 1)

n1+n2+2
2

(
x+ n1

n2

)−n1+n2−2r(r+1)−2s(s+1)
2

×
(
x− 1 + n1

n2

)n1−n2−2s
2

(
x+ n1 − n2

2

)−1−r(r+1)−s(s+1)
(D.6)

A1̇1̇(0)
n1,n2 (x) = C x−

n1−n2
2 (x− 1)

n1+n2+2+2(r−s)
2

(
x+ n1

n2

)−n1+n2−2
2

×
(
x− 1 + n1

n2

)n1−n2
2

(
x+ n1 − n2

2

)−1−r(r+1)−s(s+1)
(D.7)

A1̇2̇(0)
n1,n2 (x) = C x−

n1−n2−2
2 (x− 1)

n1+n2
2

(
x+ n1

n2

)−n1+n2
2

×
(
x− 1 + n1

n2

)n1−n2+2
2

(
x+ n1 − n2

2

)−1
(D.8)
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