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1 Introduction

This paper illustrates a method to take solutions of type IIA supergravity on a three-sphere,
with NSNS flux, to new solutions of 11-dimensional supergravity on a four-dimensional
space with particular properties. Principal amongst these properties is that the geometry
of this space is secretly controlled by an underlying algebraic structure incorporating the
structure constants of a three-algebra symmetry. This structure generalises that found in
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solutions generated by non-abelian T-duality, which produces geometries controlled by an
underlying Lie algebra symmetry. We focus on an example where we start with the F1-
NS5 near horizon solution of type IIA supergravity, and construct a new 11-dimensional
solution involving M2-M5-M5’ charges.

The context for our work is the question of how to formulate and use generalised
dualities in M-theory. The classic formulation of a string or M-theory duality is in terms
of an equivalence between theory 1 on space X1 and theory 2 on space X2. Conventional
(abelian) T-duality corresponds to the case when theory 1 is type IIA string theory, theory
2 is type IIB string theory, and X1 and X2 are circles of inverse radius. U-duality can be
stated as an equivalence between M-theory on dual d-dimensional tori, or type II theory
on (d− 1)-dimensional tori.

In supergravity, these dualities can be rephrased as expressing the fact that a dimen-
sional reduction or consistent truncation of supergravity 1 on X1 gives the same lower-
dimensional theory as a reduction of supergravity 2 on X2. This allows duality to be used
as a solution generating technique, where solutions of supergravity 1 of the form M ×X1
can be mapped to solutions of supergravity 2 of the formM×X2, by reducing and uplifting.

Generalised T- and U-duality extend this notion of duality to special classes of dual
spaces X1 and X2, which are not tori. At a minimum, this is a solution generating method:
given a supergravity solution meeting particular conditions, a generalised duality will pro-
duce a second supergravity solution related in a particular manner to the first. Whether
this extends to a genuine duality of the full (quantum) string or M-theory is far from guar-
anteed, even in T-duality examples where worldsheet methods can be used to formulate
aspects of the duality. However, these techniques have proven their value in supergrav-
ity alone as a source of new solutions with applications to holography, integrability and
other areas (see [1] for a review and further references). It is perhaps also worth remem-
bering that what is now known as U-duality first appeared — almost accidentally — in
supergravity [2], long before the idea of M-theory was developed [3, 4].

The most well-appreciated generalisation of T- or U-duality is non-abelian T-duality
(NATD) [5]. This has a worldsheet derivation, at least for the transformation of the NSNS
sector fields. The basic structure of this duality is that it takes a space with non-abelian
isometries, for example a group manifold, to a space with fewer isometries. The dual
solution is characterised by an underlying algebraic structure controlled by ‘dual’ structure
constants f̃abc 6= 0 inherited from the Lie algebra of the original non-abelian symmetry.

Unlike abelian T-duality, the worldsheet path integral derivation of the dual back-
ground does not lead to global information, in particular about the range or periodicity of
the dual coordinates [6]. It is however possible to find various arguments to globally ‘com-
plete’ the supergravity solution. For instance, combined with the correct transformations
for the RR sector [7], non-abelian T-duality has been extensively applied to generate AdS
solutions with interesting CFT duals. A common approach for NATD solutions with an
AdS factor is to find a holographic completion by embedding the NATD solution into a
supergravity solution with a well-defined holographic interpretation, usually in terms of a
quiver field theory stemming from an underlying Hanany-Witten brane configuration [8].
Alternatively, as pointed out in [9, 10], non-abelian T-dual solutions could be viewed glob-
ally as T-folds.
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Both abelian and non-abelian T-duality are special cases of Poisson-Lie T-duality [11,
12]. This applies to d-dimensional backgrounds which may in general lack isometries,
but which geometrically encode data associated to a 2d-dimensional Lie algebra called
the Drinfeld double. This can be made manifest by adopting a generalised geometric (or
double field theory) description [13, 14]. For backgrounds admitting Poisson-Lie T-duality
there exists a generalised parallelisation [15, 16] providing a consistent truncation to a lower
dimensional gauged supergravity. In general, two inequivalent higher-dimensional solutions
admitting consistent truncations to the same lower dimensional theory can be viewed as
dual in the sense we are considering. (Indeed, NATD was expressed in terms of consistent
truncations [17] some years prior to its doubled geometry formulation [13, 14, 18, 19]).

The generalised geometry approach opens the door to the study of new variants of
U-duality, by using the exceptional generalised geometry (or exceptional field theory) de-
scription of 11-dimensional supergravity. This led to the proposals for Poisson-Lie U-duality
and an associated ‘exceptional Drinfeld algebra’ (EDA) introduced in [20, 21] and further
studied from a variety of angles in [22–28].

Whereas the Drinfeld double naturally encodes a pair of ordinary Lie subalgebras, the
content of the EDA is more exotic. The EDA itself is generically a Leibniz rather than a
Lie algebra. For M-theory backgrounds, the structure constants of the EDA are assembled
from those of a Lie algebra fabc and a ‘dual’ 3-algebra with structure constants f̃abcd (as
well as other n-algebra structure constants if the dimension of the algebra is large enough).

In our previous paper [23], cases where f̃abcd 6= 0 but fabc = 0 were studied. These
should underlie backgrounds (termed ‘three-algebra geometries’ in [23]) analogous to those
which are generated by non-abelian T-duality. A particularly simple example is the Eu-
clidean 3-algebra in four-dimensions, f̃abcd ∼ εabcd. The EDA in this case is the Lie algebra
CSO(4, 0, 1), and the generalised geometry construction gives a consistent truncation to
seven-dimensional CSO(4, 0, 1) gauged supergravity. An alternative consistent truncation
in this case is provided by type IIA on S3 with NSNS flux [29]. This gives a solution gener-
ating mechanism, whereby type IIA solutions of this form can be consistently truncated to
solutions of the seven-dimensional CSO(4, 0, 1) gauged supergravity, and then uplifted to
new solutions of 11-dimensional supergravity using the generalised geometric formulation
of [20, 21, 23].

In this paper, we apply this logic to produce a new 11-dimensional solution start-
ing with a non-extremal pp-F1-NS5 solution of type IIA, after taking the five-brane near
horizon limit. Our new 11-dimensional solution has the following properties:

• Just as for non-abelian T-duality, the global properties of the new solution are a priori
unknown. It can be described using a non-geometric generalised frame involving a
trivector linear in the new four-dimensional dual coordinates, and so one possible
global interpretation is as a U-fold. (See section 4.1.)

• The new solution can be viewed as carrying M2 and M5 brane charges. (See sec-
tion 4.2.)
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• In the extremal case, it admits a limit in which it becomes AdS3 × S3 × T4 foliated
over an interval. This solution fits into the general class of M-theory AdS3 solutions
derived in [30]. These solutions are directly inspired by solutions generated by non-
abelian T-duality, and provide a global completion of our solution (in this AdS limit),
with a known holographic dual and brane interpretation. This is exactly analogous
to NATD solutions. (See section 4.3.)

• The full extremal solution can be viewed as a deformation of the AdS3 limit generated
by a six-vector deformation parameter valued in E6(6). This deformation is inherited
from an SO(2, 2) T-duality-valued bivector deformation of the extremal F1-NS5 near
horizon solution, which describes the interpolation from the AdS3 near horizon region
to an asymptotic linear dilaton spacetime. In that case, the deformation has been
identified as being dual to (a variant of) the T T̄ deformation of the dual CFT [31].
This identifies the task of understanding a corresponding field theory deformation
dual to our full solution as an interesting open question. (See section 4.4.)

• The AdS limit of our solution admits a 1
2 -BPS solution of the 11-dimensional Killing

spinor equation. (See section 4.5.)

• Finally, our solution can be used to generate new type IIA solutions by dimensional
reduction (and hence other type II solutions by standard dualities). (See section 4.6.)

In section 2, we review the notions of generalised T- and U-duality that we are exploring
in this paper. We then specialise to our example involving the Euclidean 3-algebra and in
section 3 explain the derivation of our new solution. We then analyse this solution (in the
extremal limit) in section 4, explaining the points listed above. Finally we conclude with
some discussion in section 5. Appendix A lists some technical ingredients used in the main
part of the paper, and appendix B discusses in more detail the charges of our new solution.

2 Generalised T- and U-duality

2.1 Duality and generalised geometry

We study notions of generalised duality which can be cleanly expressed using techniques
from generalised geometry and double/exceptional field theory. Here we give a brief de-
scription of the necessary methods. For the d-dimensional ‘internal space’ X1 we work with
the generalised tangent bundle TX1⊕Λ(p)T ∗X1. Sections of this are known as generalised
vectors and consist of a pair V = (v, ω) of a vector v and p-form ω. We only need the cases
p = 1, corresponding to O(d, d) generalised geometry relevant for discussing generalised
T-duality in type II supergravity, and p = 2, allowing us to describe the SL(5) exceptional
generalised geometry relevant for discussion of 11-dimensional supergravity when X1 is
four-dimensional. In both these cases, there is a common formula for the generalised Lie
derivative of generalised vectors:

LV V ′ = (Lvv′, Lvω′ − ιv′dω) . (2.1)
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This captures the local symmetries of X1, namely diffeomorphisms and gauge transforma-
tions of a (p + 1)-form. The geometry in the guise of the metric and this (p + 1)-form
is encoded in a generalised metric, denoted MMN . This can be factorised in terms of a
generalised vielbein, MMN = EM

A∆ABEN
B. If we are just interested in describing the

geometry of X1 then we may take ∆AB = δAB, but in particular solutions on M × X1
then ∆AB may depend on the coordinates of M and describe scalar fields in the lower
dimensional theory on M obtained by reducing on X1. The inverse generalised vielbein
gives a generalised frame EA, providing a basis for generalised vectors. This frame will
generate an algebra under generalised Lie derivatives:

LEAEB = −FABCEC . (2.2)

If FABC are constant, then EA provides a generalised parallelisation, which allows for a
consistent truncation to a lower-dimensional supergravity.

A second (dual) consistent truncation then corresponds to the existence of an alterna-
tive generalised parallelisation built using a frame ẼA describing the generalised geometry
on X2. This frame should obey the same algebra (2.2) (possibly up to some change of basis
corresponding to a constant O(d, d) or Ed rotation on the indices A). This allows one to
translate the problem of finding inequivalent dual consistent truncations to the problem of
finding algebras admitting multiple solutions to the differential equations encoded in (2.2).
As we will review below, in known variants of generalised or Poisson-Lie T- and U-duality,
this can be done algorithmically within certain classes of algebras.

2.2 Non-abelian T-duality

The prototypical example of a generalised duality is non-abelian T-duality [5]. This applies
to spacetimes with non-abelian isometries. A simple example is to consider a spacetime
with an S3 factor (equipped with the round metric), regarded as the group manifold SU(2).
Starting with the worldsheet sigma model, we can gauge the (left) action of the group on
itself and (assuming no other fields are turned on) arrive at the following dual background:

ds2 = δij + xixj
1 + xkxk

dxidxj , Bij = εijkx
k

1 + xmxm
, e−2ϕ = 1 + xkxk . (2.3)

The new dual coordinates xi, i = 1, 2, 3 originally appear in the dualisation procedure as
Lagrange multipliers imposing the flatness of the gauge field gauging the non-abelian isom-
etry. Unlike in abelian T-duality, path integral arguments do not constrain the periodicity
or range of these coordinates [6]: we will discuss two different methods to specify the global
completion of NATD solutions below.

Underlying this duality is a pair of generalised frames for the O(d, d) generalised ge-
ometry. (We describe this now with reference to the specific SU(2) example, with d = 3,
but the essential features apply to d-dimensional group manifolds and their duals.) The
first describes the consistent truncation on the S3 ∼= SU(2) group manifold. It makes use
of the following geometric data: the left-invariant forms la and dual vectors va obeying

dla = 1
2fbc

alb ∧ lc , Lvavb = −fabcvc , (2.4)
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where for SU(2) the algebra index is three-dimensional, a = 1, 2, 3, and the structure
constants are fabc = εab

c. The generalised frame EA = {Ea, Ea} gives a basis for sections
of T (S3)⊕ T ∗(S3) with

Ea = (va, 0) , Ea = (0, la) . (2.5)

Under generalised Lie derivatives, we have the algebra (2.2) with

FAB
C → {Fabc = fab

c , F abc = 0 , Fabc = F abc = 0} . (2.6)

The second generalised frame describes the dual consistent truncation on the NATD ge-
ometry (2.3). This is not a group manifold, but it can be described in terms of an under-
lying Poisson-Lie group structure associated to the group U(1)3 (or R3) with a non-trivial
Poisson-Lie bivector, πab. The latter here obeys dπab = −f̃abc l̃c, where l̃a are trivial
left-invariant one-forms, l̃ai = δci (with dual vectors ṽai = δia) and f̃abc are dual struc-
ture constants. For the NATD of SU(2), these also describe the su(2) Lie algebra with
f̃abc = εabc. We can therefore take a bivector linear in the coordinates πab = −εabcxc. The
generalised frame ẼA = {Ẽa, Ẽa} gives a basis for sections of the extended tangent bundle
of the dual geometry, with

Ea = (ṽa, 0) , Ea = (πabṽb, l̃a) . (2.7)

Under generalised Lie derivatives, we have the algebra (2.2) with

FAB
C → {Fabc = 0 , F abc = f̃abc , Fabc = F abc = 0} . (2.8)

The use of the generalised frame (2.7) allows for a non-geometric interpretation of the global
properties of the NATD geometry. As pointed out in [9, 10], if we take the coordinates xi
to be periodic, then under xi ∼ xi + constant the bivector πab shifts by a constant. Such
a bivector shift can be viewed as a non-geometric O(3, 3) transformation. If we patch the
dual solution by such a transformation, it must be regarded as a T-fold.

It is however more common to construct global completions of NATD solutions by
leveraging information about brane charges and — for cases where there is an AdS factor in
the full spacetime — holographic duals. To illustrate how this works, consider the example
of the IIB D1-D5 near horizon solution, for which the spacetime is AdS3×T4×S3, supported
by RR flux. The NATD dual geometry is a solution of massive IIA supergravity, with:

ds2 = ds2
AdS3 + ds2

T4 + d%2 + %2

1 + %2ds
2
S2 , B = %3

1 + %2 VolS2 , e−2ϕ = 1 + %2 , (2.9)

along with dual RR fields [7]. Here we have adopted spherical coordinates xi → (%, θ, φ).
The issue of the non-compactness of dual coordinates is then concentrated in determining
the range of %. This can be done by embedding the NATD solution into a global completion
with a well-defined holographic dual and brane interpretation. For the NATD of AdS5×S5

obtained in [7] this method was demonstrated in [8], and has since been applied to many
examples. For the solution (2.9), the requisite completion is provided by the construction
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and analysis [32–35] of a general class of massive IIA AdS3×S2 solutions with 3d N = (0, 4)
supersymmetry and an SU(2) structure. The NSNS fields take the form:

ds2 = u√
h4h8

(
ds2

AdS3 + h8h4
4h8h4 + u′2

ds2
S2

)
+
√
h4
h8
ds2

T4 +
√
h4h8
u

d%2 ,

B = 1
2

(
−%+ uu′

4h8h4 + u′2
+ 2nπ

)
VolS2 ,

(2.10)

This solution exhibits the following general features found in global completions of NATD
AdS solutions: the coordinate % takes values in a finite interval which is further divided
into subintervals % ∈ [%n, %n+1]. The functions determining the solution (u, h4 and h8) are
linear in %. They may however only be piecewise linear, and their slopes can jump from
subinterval to subinterval. The 2-form B is modified by a large gauge transformation as
one crosses each subinterval. There is a (flat space) dual brane configuration, with some
branes wrapping the % direction and others orthogonal and located at the endpoints of the
subintervals. This dual brane configuration allows for the identification of a dual quiver
field theory. The NATD solution (2.9) can be regarded as giving the more general solution
in the first subinterval, with % ∈ [0, %1], and u ∼ h4 ∼ h8 ∼ %.

Restricting to the case of vanishing Romans mass, the solutions of [32–35] give ordinary
IIA solutions which can be uplifted to M-theory [30], giving a class of 11-dimensional AdS3
solutions which we will re-encounter later.

2.3 Poisson-Lie T- and Poisson-Lie U-duality

Poisson-Lie T-duality. Non-abelian T-duality can be viewed as a special case of
Poisson-Lie T-duality [11, 12], which applies to spacetimes which may lack isometries. They
instead admit an underlying Poisson-Lie group structure, involving a group G equipped
not only with left-invariant forms and vectors, but with a Poisson-Lie bivector. Altogether
these data obey:

dla = 1
2fbc

alb ∧ lc , Lvavb = −fabcvc , dπab = −f̃abclc − 2lcfcd[aπb]d , (2.11)

involving simultaneously structure constants for both a Lie algebra g and a ‘dual’ Lie alge-
bra g̃. The corresponding spacetime geometry is very efficiently described by a generalised
frame with: [13, 14]

Ea = (va, 0) , Ea = (πabvb, la) , FAB
C → {Fabc = fab

c , F abc = f̃abc , Fabc = F abc = 0} .
(2.12)

The case of a standard non-abelian group manifold then has fabc 6= 0, f̃abc = 0, while
the NATD has the reverse. The full doubled Lie algebra (with structure constants FABC)
here is known as the Drinfeld algebra. Introducing generators TA = {Ta, T̃ a} obeying
[TA, TB] = FAB

C , we have

[Ta, Tb] = fab
cTc , [Ta, T̃ b] = f̃ bcaTc − facbT̃ c , [T̃ a, T̃ b] = f̃abcT̃

c (2.13)

The algebra is further equipped with an invariant bilinear form defined by η(Ta, T̃ b) = δba,
and otherwise zero. The subalgebras g = {Ta} and g̃ = {T̃ a} are maximally isotropic with
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respect to this bilinear form, and duality at the level of the algebra involves changing one
maximally isotropic subalgebra for another. This is upgraded to a duality at the level of
geometry by constructing a dual generalised frame now built using the left-invariant forms
and vectors of G̃ = exp g̃ (hence the frame generates the new maximally isotropic subalge-
bra as its vector part), together with the corresponding Poisson-Lie bivector encoding the
structure constants for g.

Poisson-Lie U-duality. A proposal was made in [20, 21] for the algebra and generalised
frames which should describe a notion of Poisson-Lie U-duality. Let us concentrate on the
case of d = 4, for which the U-duality group is SL(5). The proposal is to consider the
natural generalisation of the Poisson-Lie group to the case where the bivector is replaced
by a trivector. We then specify left-invariant forms and vectors and this trivector to obey1

dla = 1
2fbc

alb ∧ lc , Lvavb = −fabcvc , dπabc = f̃abcdl
d + 3fed[aπbc]dle , (2.14)

where now a, b = 1, . . . , 4. This introduces dual structure constants f̃abcd which can be
viewed as defining an antisymmetric three-bracket, associated to a 3-algebra rather than
an ordinary Lie algebra.

These can be used to construct a generalised frame for SL(5) generalised geometry.
A generalised vector in this case is a pair of a vector and a two-form, and lies in the
ten-dimensional (antisymmetric) representation of SL(5). We pick a generalised frame
EA = (Ea, Eab), where Eab = −Eba, given by

Ea = (va, 0) , Eab = (πabcvc, la ∧ lb) . (2.15)

Computing the algebra of generalised Lie derivatives (2.2) one finds an algebra dubbed the
exceptional Drinfeld algebra (EDA). In terms of generators TA = (Ta, T̃ ab), this algebra is

[Ta, Tb] = fab
cTc , [T̃ ab, T̃ cd] = 2f̃ab[ceT̃ d]e ,

[Ta, T̃ bc] = 2fad[bT̃ c]d − f̃ bcdaTd , [T̃ bc, Ta] = 3f[de
[bδ

c]
a]T̃

de + f̃ bcdaTd .
(2.16)

Note that these brackets are generically not antisymmetric: the EDA is generically an
example of Leibniz rather than a Lie algebra. Closure of the algebra imposes the Jacobi
condition for the Lie algebra with structure constants fabc, a cocycle condition involving
both fabc and f̃abcd, and the fundamental identity for three-algebras involving just f̃abcd.

A notion of isotropic subalgebra exists, using now not a bilinear form but a bilinear map
η : 10 ⊗sym 10 → 5̄. The subalgebra g = {Ta} is isotropic with respect to this definition.
However, unlike in the case of the Drinfeld double, we are not guaranteed the existence of
a second, dual maximal isotropic subalgebra. Note as well that the ‘symmetry’ between f
and f̃ is now broken, and there are now more dual generators T̃ ab than physical ones Ta.

One could nonetheless proceed to interrogate the notion of non-abelian U-duality, by
starting with solutions defined by fabc 6= 0, f̃abcd = 0, and dualising these, as for instance

1For simplicity, these formulae assume that facc = 0 and that an additional scalar present in the
generalised frame is constant, as is the case for the example we will study. See appendix A.4 for more
general formulae.
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in [26]. However, an alternative goal is to inverse the usual order, and instead look at
solutions with fabc = 0, f̃abcd 6= 0.

2.4 Dual three-algebras and beyond Poisson-Lie U-duality

The logic of focusing on solutions with fab
c = 0, f̃abcd 6= 0 is that they should be in

some sense similar to the solutions generated by NATD. Our goal is therefore to construct
examples of such solutions, verify whether they are actually ‘dual’ to known solutions, and
verify to what extent this really resembles NATD. Furthermore, such solutions will encode
three-algebra structure constants and so are perhaps intrinsically interesting as examples
of a relationship between geometry and a non-standard algebraic structure.

In [23], examples of this kind were studied, and a first look at the corresponding ‘3-
algebra geometries’ was taken, but without constructing full supergravity solutions. A
particularly interesting example is to take:

f̃abcd ∝ εabcd . (2.17)

This is the unique Euclidean 3-algebra. It can be viewed as the direct generalisation of
the NATD of SU(2), for which we had f̃abc = εabc. The conditions (2.14) can be solved by
taking lai = δai , vai = δia and a linear trivector, πabc ∝ εabcdxd, introducing coordinates xi,
i = 1, . . . , 4. The EDA (2.16) in this case turns out to be the Lie algebra CSO(4, 0, 1).

However, it turned out that it is not possible to find valid dual isotropic subalgebras
within this EDA [23]. This precludes using the Poisson-Lie U-duality framework of [20, 21]
to construct a dual configuration. As noted in [23], this suggests simply that this framework
may just be more restrictive than the T-duality case. In particular, we could relax the
condition that the dual isotropic be a subalgebra. For example, we could allow ourselves to
consider alternative bases (for the same overall algebra) but for which the selected physical
generators Ta obey

[Ta, Tb] = 1
2FabcdT̃

cd . (2.18)

This would be the starting point for defining a “quasi’-EDA.2
Equivalently, we may forget about specific algebraic interpretations. The EDA con-

struction allows us to construct a generalised frame realising a consistent truncation from
11-dimensional SUGRA to 7-dimensional CSO(4, 0, 1) gauged SUGRA. This consistent
truncation is on a non-trivial background geometry, resulting from the generalised frame
with the trivector. However, it is already known that this gauged SUGRA can be obtained
using a consistent truncation of type IIA on an S3 with NSNS flux [29]. Viewing this as
M-theory on S3 × I, we have constant four-form flux, in line with the commutation re-
lation (2.18).3 Hence, we can alternatively find ‘generalised U-dual’ solutions by starting
with solutions of type IIA supergravity to which this consistent truncation can be applied,

2In the case of T-duality, it is possible to relax the condition that the Drinfeld double has two isotropic
subalgebras, allowing to describe models with H-flux, such as those studied in the context of certain inte-
grable deformations in [36].

3This algebra would be explicitly realised by generalised geometric constructions of this consistent trun-
cation [16, 37] — see [23] for a comparison with the generalised frames of [37] in particular.
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reducing these to 7 dimensions, and then uplifting them using our EDA generalised frame
for this gauging. We will now adopt this procedure and show what it leads to for a simple
brane intersecting solution.

3 11-dimensional solution from exceptional Drinfeld algebra uplift

3.1 Type IIA pp-F1-NS5 and reduction to 7 dimensions

We begin our solution generating procedure by taking as our original solution the non-
extremal pp-F1-NS5 solution of type IIA supergravity. After taking the five-brane decou-
pling limit (as reviewed in appendix A.1) to go to the near horizon limit of the five-branes,
this solution becomes:

ds2
s = f−1

1

−f−1
n Wdt2 + fn

(
dz + 1

2
r2

0 sinh 2αn
fnr2 dt

)2
+R2W−1dr2

r2 +R2ds2
S3 + ds2

T4 ,

H(3) = r2
0 sinh 2α1

1
r3f2

1
dt ∧ dz ∧ dr + 2R2VolS3 , e−2ϕ = r2

R2 f1 , (3.1)

where W = 1− r2
0
r2 , R2 ≡ N5l

2
s and

f1 = 1+ r2
0 sinh2α1

r2 , fn = 1+ r2
0 sinh2αn

r2 , sinh2α1 = 2N1l
2
s

v

1
r2

0
, sinh2αn = 2Nnl

4
s

R2
xv

1
r2

0
.

(3.2)
Here N1 is the number of F1s, N5 the number of NS5s, Nn the number of units of pp-wave
momentum, and the four-dimensional transverse space is taken to be a torus of volume
(2πls)4v.

We will be particularly interested in the extremal limit. Turning off the pp-wave
contribution (Nn = 0) the solution in this limit is

ds2
s = f−1

1 (−dt2 + dz2) +R2dr2

r2 +R2ds2
S3 + ds2

T4 ,

H(3) = 2r2
1

r3f2
1
dt ∧ dz ∧ dr + 2R2VolS3 , e−2ϕ = r2

R2 f1 ,

(3.3)

with f1 = 1 + r2
1
r2 , r2

1 = N1l
2
s/v. This exhibits an interpolation from the near horizon region

of the F1 to an asymptotic linear dilaton background. The former corresponds to taking
f1 = r2

1
r2 and the solution has the form

ds2
s = r2

r2
1

(−dt2 + dz2) +R2dr2

r2 +R2ds2
S3 + ds2

T4 ,

H(3) = 2r
r2

1
dt ∧ dz ∧ dr + 2R2VolS3 , e−2ϕ = r2

1
R2 ,

(3.4)

with the metric being AdS3 × T4 × S3. Asymptotically, setting f1 = 1 and defining a
coordinate U by r = ReU/R the solution approaches the pure NS5 near horizon solution:

ds2
s = −dt2 + dz2 + dU2 +R2ds2

S3 + ds2
T4 , H(3) = 2R2VolS3 , e−2ϕ = e2U/R , (3.5)
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with a flat metric and a linear dilaton. We will discuss later how this interpolating be-
haviour is inherited by our new 11-dimensional solution.

Owing to the presence of the S3 factor with accompanying NSNS flux, the back-
ground (3.1) can be reduced to a solution of seven-dimensional CSO(4, 0, 1) gauged max-
imal supergravity using the ansatz of [29]. The necessary part of the truncation ansatz
that we need is summarised in appendix A.2. Applying this to the solution (3.1) gives the
seven-dimensional metric, scalars Mab and Φ, and a three-form field strength F̃(3):

ds2
7=(r/R)4/5f

2/5
1

f−1
1

−f−1
n Wdt2+fn

(
dz+1

2
r2

0sinh2αn
fnr2 dt

)2
+R2W−1dr2

r2 +ds2
T4

,
Mab=δab, Φ=f−4/5

1 (r/R)−8/5, F̃(3)=r2
0sinh2α1

1
f2

1 r
3dt∧dz∧dr. (3.6)

All other fields in the ansatz are vanishing. We next identify the data of (3.6) with the ap-
propriate SL(5) covariant fields of the CSO(4, 0, 1) gauged supergravity. Take A = (a, 5) to
be a five-dimensional fundamental SL(5) index, and let A denote a ten-dimensional index
for the antisymmetric representation. The SL(5) covariant fields are: the SL(5)-invariant
metric ds2

7, a scalar matrix MAB parametrising the coset SL(5)/SO(5), and gauge fields
in SL(5) representations. The latter include a one-form AµA, in the 10-dimensional repre-
sentation and a two-form BµνA in the five-dimensional representation, with corresponding
field strengths FµνA and HµνρA. The fields (3.6) provide a non-trivial scalar matrix and
three-form field strength:

MAB =
(

Φ− 1
4 δab 0
0 Φ

)
, H(3)A = (0, F̃(3)) . (3.7)

3.2 11-dimensional uplift via exceptional field theory

Having mapped our solution to seven-dimensional gauged supergravity, we now uplift it to
a different higher-dimensional solution using a distinct consistent truncation corresponding
to the exceptional Drinfeld algebra realisation of the CSO(4, 0, 1) algebra [23]. This makes
use of the SL(5) covariant reformulation of supergravity provided by SL(5) exceptional
field theory (ExFT). To describe this uplift, let yµ denote seven-dimensional coordinates
describing the solution (3.6). We introduce an SL(5)-valued generalised frame field denoted
by ẼMA(x) in the ten-dimensional representation or by ẼMA(x) in the five-dimensional
representation, as well as a scalar function ∆(x). These depend on a set of four-dimensional
coordinates xi, i = 1, . . . , 4, which will describe the internal space of the new eleven-
dimensional solution. The new eleven-dimensional solution has a simple SL(5) covariant
construction: we define the ExFT external metric, generalised metric and field strengths by

gµν(y, x) = ∆2(x)gµν(y) , MMN (y, x) = ẼAM(x)ẼBN (x)MAB(y) ,
F(2)

M (y, x) = ∆(x)ẼMA(x)F(2)
A(y) , H(3)M(y, x) = ∆2(x)ẼAM(x)H(3)A(y) .

(3.8)

It is in fact the combination EMA ≡ ∆ẼMA that must be used to construct the
generalised frame (2.15) obeying the generalised parallelisation condition (2.2). To realise
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type IIA SUGRA
pp-F1-NS5 near horizon

CSO(4, 0, 1) gSUGRA

11-dim SUGRA
M2-M5-M5’ 3-algebra geometry

IIA on S3 truncation
uplift via EDA generalised frame

‘generalised U-dual’

Figure 1. The relationship between our solutions.

the CSO(4, 0, 1) algebra we take trivial left-invariant forms and vectors, lai = δai , vai = δia,
and a trivector linear in the coordinates xi. The choice πabc = 1

Rε
abc

dx
d reproduces the

CSO(4, 0, 1) algebra and the scalar potential arising from the truncation of type IIA on
an S3 of radius R (see appendix A.4). Note here we can use δai to identify curved and flat
indices here, for convenience. In terms of the five-dimensional representation of SL(5),
this gives a generalised frame:

ẼAM =
(
δam 0
−xm

R 1

)
, ∆ = 1 . (3.9)

Using (3.9) and (3.8) applied to the background arising from the pp-F1-NS5 solution, we
obtain a generalised metric and three-form of the form

MMN =
(

Φ− 1
4 δmn + Φ 1

R2xmxn −Φ 1
Rxm

−Φ 1
Rxn Φ

)
, H(3)M =

(
−xm
R
F̃(3), F̃(3)

)
, (3.10)

while the seven-dimensional ExFT external metric is unchanged. It is then a straightfor-
ward matter to convert this to a standard description in terms of the eleven-dimensional
metric and four-form field strength using the known ExFT dictionary (see for instance the
review [38]), summarised in appendix A.3.

3.3 Resulting solution

Using equation (A.15) for the parametrisation of the generalised metric allows one to obtain
the new internal four-dimensional metric and three-form, with the latter given by

Cijk = − εijklRx
l

r2f1 + xmxm
. (3.11)

As there is no ExFT one-form present, the Kaluza-Klein vector Aµi vanishes, and us-
ing (A.12) one obtains the full 11-dimensional metric

ds2
11 = (r2f1 + xkx

k)1/3
[

(r2f1)1/3

R4/3

(
ds2
M3 + ds2

T4

)
+R2/3(r2f1)1/3

(
δij + xixj

r2f1

)
r2f1 + xkxk

dxidxj
]

(3.12)
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where

ds2
M3 = f−1

1

−f−1
n Wdt2 + fn

(
dz + 1

2
r2

0 sinh 2αn
fnr2 dt

)2
+ R2dr2

r2W
. (3.13)

The three-form (3.11) and the new four-dimensional part of the metric in equation (3.12)
closely resemble the two-form and metric appearing in the NATD of S3 (2.3), but now in
one dimension higher (this is easiest to see by setting r2f1 = 1).

To complete the solution, we use (A.16) to extract the remaining components of the
four-form field strength (via a dualisation, as Hµνρ5 directly gives components of the seven-
form field strength). This gives a total four-form field strength:

F(4) = r2
0 sinh 2α1
(r2f1)2

rxi
R

dt ∧ dz ∧ dr ∧ dxi − r2
0 sinh 2α1
R3 VolT4

+
R 1

4!εijkldxi ∧ dxj ∧ dxk

(r2f1 + xpxp)2 ∧
(
(4r2f1 + 2xqxq)dxl − 4xl∂r(r2f1)dr

)
.

(3.14)

The dual seven-form field strength is4

?F(4) = r2
0 sinh2α1
r2f1 +xpxp

εijklx
l

R2
1
3!dx

i∧dxj∧dxk∧VolT4

− r2
0 sinh2α1

rf1(r2f+xpxp)
1
4!εijkldt∧dz∧dr∧dx

i∧dxj∧dxk∧dxl (3.16)

+ 2r
R4 (2r2f1 +xkx

k)dt∧dz∧dr∧VolT4 + r2W

R3rf1

xi
R
∂r(r2f1)dt∧dz∧dxi∧VolT4 .

Note that (?F(4))ijky1...y4 = +CijkFy1...y4 . We have d ? F(4) = +1
2F(4) ∧ F(4).

4 Analysis of the extremal 11-dimensional solution

We now restrict to the extremal limit and set the pp-wave contribution to zero, making
the replacements W → 1, f1 → 1 + r2

1
r2 , r2

0 sinh 2α→ 2r2
1, αn → 0. We can also simplify the

form of our solution by appropriately rescaling the coordinates as well as the metric and
three-form so as to effectively set the constants r1 and R equal to 1.5

4We define the Hodge dual of a p-form F via

(?F )µ1...µD−p = 1
p!
√
|g|εµ1...µD−pν1...νpg

ν1ρ1 . . . gνpρpFρ1...ρp , (3.15)

where εµ1...µD denotes the Levi-Civita symbol ε01...D−1 = +1. This obeys ? ? F = (−1)(−1)p(D−p)F .
5To be precise: this involves setting (t, z, yI) = R(t̃, z̃, ỹI) and (r, xi) = r1(r̃, x̃i), such that ds2

11 =
R2/3r

4/3
1 d̃s

2
11, F(4) = Rr2

1F̃(4). We then work with d̃s
2
11 and F̃(4), in which no dimensionful constants

appear (and drop tildes). This scaling of the metric and gauge field is a symmetry of the equations of
motion (the trombone). We can also introduce this scaling directly into the ExFT frame by introducing a
constant parameter α as in appendix A.4.
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4.1 Solution as a U-fold

Having made these simplifications, we henceforth study the following solution of 11-
dimensional supergravity:

ds2
11 = (r2f1 + xkx

k)1/3(r2f1)1/3
(
f−1

1 (−dt2 + dz2) + dr2

r2 + ds2
T4

)
+ (r2f1 + xkx

k)−2/3(r2f1)1/3
(
δij + xixj

r2f1

)
dxidxj

F(4) = 2rxi
(r2f1)2dt ∧ dz ∧ dr ∧ dxi − 2VolT4 + (4r2f1 + 2xqxq)

(r2f1 + xpxp)2
1
4!εijkldx

i ∧ dxj ∧ dxk ∧ dxl

+ xl∂r(r2f1)
(r2f1 + xpxp)2

1
3!εijkldr ∧ dxi ∧ dxj ∧ dxk . (4.1)

with f1 = 1 + 1
r2 .

If we take the xi coordinates to be periodic, this should be identified as a U-fold. This
is analogous to the interpretation of NATD solutions as T-folds suggested in [9, 10]. For
our solution, this U-fold interpretation follows from the form of the EDA frame, which
features a trivector depending linearly on the coordinates xi. The patching for xi ∼ xi+
constant amounts therefore to a shift of this trivector, which is a non-trivial non-geometric
U-duality transformation. From (3.9) we have

ẼAM(xi +Rni) = ẼANU
N
M , UNM =

(
δnm 0
−nm 1

)
. (4.2)

If ni = δijn
j are integers the matrix defines an SL(5;Z) U-duality transformation. We

can describe its action on the four-dimensional internal geometry with metric φij and
three-form Cijk using the generalised metric MMN , which is a symmetric unit determi-
nant five-by-five matrix, parametrised by the metric and three-form as in (A.15). Under
U ∈ SL(5), this transforms as MMN → UPMU

Q
NMPQ. In the present case, we fac-

torise MMN (y, x) = ẼAM(x)MAB(y)ẼBN (x), where as above y denotes 7-dimensional
coordinates. This manifestly shows that the generalised metric and hence four-dimensional
metric and three-form together transform under the U-duality transformation, or mon-
odromy, in (4.2), for periodic xi.

Associated to this U-fold interpretation is the fact that one can interpret the three-
algebra structure constants as (non-geometric) M-theory Q-flux [39]. This is here defined
by Qabcd ∼ ∂aπbcd ∼ f̃ bcda.

We will not further pursue this U-fold interpretation, but now focus on ordinary geo-
metric properties of the solution (4.1).

4.2 Solution in spherical coordinates and brane charges

We can rewrite the solution (4.1) by changing to spherical coordinates, letting xi = ρµi

with µiµjδij = 1. This is what is usually done for solutions obtained via non-abelian T-
duality. The possible non-compactness of the solution will now be determined by the range
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of ρ. In these coordinates, the metric and field strength of (4.1) have the form

ds2
11 = (r2f1 + ρ2)1/3(r2f1)1/3

(
1
f1

(−dt2 + dz2) + dr2

r2 + ds2
T4 + dρ2

r2f1

)
+ (r2f1 + ρ2)−2/3(r2f1)1/3ρ2ds2

S3 ,

F(4) = 2rρ
(r2f1)2dt ∧ dz ∧ dr ∧ dρ− 2VolT4

+ (4r2f1 + 2ρ2)
(r2f1 + ρ2)2 ρ

3dρ ∧VolS3 −
ρ4∂r(r2f1)

(r2f1 + ρ2)2dr ∧VolS3 .

(4.3)

The dual field strength is

?F(4) = − 2ρ4

r2f1 + ρ2 VolS3 ∧VolT4 −
2ρ3

rf1(r2f1 + ρ2)dt ∧ dz ∧ dr ∧ dρ ∧VolS3

+ 2r(2r2f1 + ρ2)dt ∧ dz ∧ dr ∧VolT4 + rρ

f1
∂r(r2f1)dt ∧ dz ∧ dρ ∧VolT4 .

(4.4)

We can discuss the possible M2 and M5 brane charges carried by this solution. These will
be given by integrals6

qM2 =
∫
JPage , qM5 =

∫
F(4) , (4.5)

where the Page charge density for M2 branes is JPage = ?F(4)− 1
2C(3)∧F(4). Let us consider

the latter. Let Csphere and Ctorus denote the restriction of the three-form to the sphere and
torus respectively. We have

Ctorus ∧ dCsphere + Csphere ∧ dCtorus = d(Ctorus ∧ Csphere) + 2Csphere ∧ dCtorus . (4.6)

An explicit choice of potential is:

C(3) = ρ

f1
dt ∧ dz ∧ dρ− 2c(3) + ρ4

r2f1 + ρ2 VolS3 , (4.7)

where dc(3) = VolT4 . For this potential, the second term in (4.6) cancels with the con-
tribution from ?F(4) such that JPage = −d

(
c(3) ∧ ρ4

r2f1+ρ2 VolS3

)
and therefore is a total

derivative. Hence the M2 charge vanishes up to large gauge transformations. In particular
we can consider a large gauge transformation given by

C(3) → C(3) + 4πjVolS3 (4.8)

such that TM2
∫
C(3) → TM2

∫
C(3) + 2πj, with j ∈ Z. Using (4.6) this means

JPage → 8πjVolS3 ∧VolT4 , (4.9)

which generates a non-trivial M2 charge.
6It is possible to make this more exact and to in particular require quantised charges: we defer this

discussion to appendix B.
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Next we consider the possible M5 brane charge. We firstly have a non-trivial M5 charge
given by integrating F(4) against the torus. The M2 charge generated by the above large
gauge transformation will be proportional to this M5 charge.

A further M5 charge, denoted M5’, could be obtained by integrating F(4) over a four-
cycle involving r, ρ and the sphere directions. Following closely the analysis of NATD
solutions in [40], we look for a path in the (r, ρ) directions such that the three-sphere
shrinks to zero size at beginning and end of the path, giving a closed four-cycle. This
happens at ρ = 0; suppose it also happens for some value of r = rs. Then a possible
integration is to integrate from ρ = 0 to ρ = ρ̄ at fixed r = r̄, and then integrate at fixed
ρ̄ from r̄ to r = rs. Letting C(ρ, r) = ρ4

r2f1+ρ2 we would then have

∫ ρ=ρ̄

ρ=0
F(4)

∣∣∣
r=r̄

+
∫ r=rs

r=r̄
F(4)

∣∣∣
ρ=ρ̄

= 2π2 (C(ρ̄, r̄)− C(0, r̄) + C(ρ̄, rs)− C(ρ̄, r̄))

= 2π2(C(ρ̄, rs)− C(0, r̄)) = 2π2ρ̄4

r2
sf1(rs) + ρ̄2 .

(4.10)

This is independent of r̄. The issue is now whether one can find a closed four-cycle with
the above properties. This issue is linked to the question of finding a global completion of
the solution (4.3). Indeed, for the full metric (4.3) there is no way to close the cycle to
give a non-zero value for the above integration. This is a signal that one needs additional
ingredients, such as will be discussed in the next subsection at least for the AdS limit.

For the solution with f1 = 1, that we would obtain by starting with the pure NS5 near
horizon solution (3.5), extra ingredients are not needed. Our new 11-dimensional solution
in this case has the form:

ds2
11 = (r2 + ρ2)1/3r2/3

(
−dt2 + dz2 + dr2

r2 + ds2
T4 + dρ2

r2

)
+ (r2 + ρ2)−2/3r2/3ρ2ds2

S3 ,

F(4) = d
(

ρ4

r2 + ρ2 VolS3

)
. (4.11)

A valid choice for the above four-cycle is to take rs = 0 for which

qM5 = 2π2ρ̄2 . (4.12)

Restoring dimensionful constants and requiring this to give a quantised brane charge pro-
vides one possible way to determine the range of ρ, fixing it to lie in the finite interval
ρ ∈ [0, ρ̄].

4.3 AdS limit and holographic completion

The AdS limit amounts to setting r2f1 = 1 in the solution (4.3):

ds2
11 = (1 + ρ2)1/3

(
ds2

AdS3 + dρ2 + ds2
T4

)
+ (1 + ρ2)−2/3ρ2ds2

S3 ,

F(4) = 2ρVolAdS3 ∧ dρ− 2VolT4 + (4 + 2ρ2)
(1 + ρ2)2 ρ

3dρ ∧VolS3 .
(4.13)
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In terms of the original F1-NS5 solution (3.3), this corresponds to going to the near horizon
region also of the F1.

The solution (4.13) fits into a general class of M-theory AdS3 solutions constructed
in [30]. These solutions are of the form AdS3×S3/Zk×CY2 foliated over an interval. They
are closely related to the AdS3×S2 solutions (2.10) in massive IIA which provide a way to
complete the NATD of AdS3 ×T4 × S3. Restricting this class of solutions to ordinary IIA
(by setting h8 constant) allows for an uplift to M-theory. The resulting solutions presented
in [30] read as follows:

ds2
11 = ∆

 u√
ĥ4h8

ds2
AdS3 +

√
ĥ4
h8

ds2
CY2 +

√
ĥ4h8

u
d%2

+ h2
8

∆2ds
2
S3/Zk

,

∆ =
h

1/2
8

(
ĥ4h8 + 1

4u
′2
)1/3

ĥ
1/6
4 u1/3

, (4.14)

F(4) =−d
(
uu′

2ĥ4
+2%h8

)
∧VolAdS3−∂%ĥ4 VolCY2 +2h8 d

(
−%+ uu′

4ĥ4h8 +u′2

)
∧VolS3/Zk ,

where the quotiented 3-sphere is written as an S1 Hopf fibration over an S2

ds2
S3/Zk

= 1
4

[(dψ
k

+ η

)2
+ ds2

S2

]
, dη = VolS2 . (4.15)

The functions u and ĥ4 are again linear functions of %, but h8 is given by h8 = k an integer.
To match this to our solution (4.13), we relate our radial spherical coordinate ρ to the

coordinate % appearing in (4.14) via:

ρ2 = 2% . (4.16)

This allows us to write (4.13) as

ds2
11 = (1 + 2%)1/3

(
ds2

AdS3 + d%2

2% + ds2
T4

)
+ (1 + 2%)−2/32%ds2

S3 ,

F(4) = 2VolAdS3 ∧ d%− 2VolT4 + 8(1 + %)
(1 + 2%)2 %d% ∧VolS3 .

(4.17)

It is straightforward to confirm that the solution (4.17) is included in the class of solu-
tions (4.14) for:7

k = 1 , u(%) = ĥ4(%) = 2% , (4.18)

giving ∆ = (1 + 2%)1/3/(2%)1/2, and taking the CY2 to correspond to T4 specifically (we
could equally well have considered our solution on either T4 or K3 from the beginning).

7To match precisely, we need to take into account some freedom to change signs of components of our
four-form field strength, e.g. the overall sign C(3) → −C(3) is a matter of convention/orientation, we may
also flip the sign of a torus coordinate, or change the sign of the electric B-field components of the original
F1-NS5 solution.
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The general class of solutions (4.14) then has the necessary properties needed to
provide a global completion and holographic dual of the AdS limit of our solution. As
specified in [30], one considers the following set-up. The coordinate % takes values in a
finite interval % ∈ [0, 2π(P + 1)], which is divided into subintervals % ∈ [2πj, 2π(j + 1)] for
j = 0, . . . P . The function u is linear in %, while ĥ4 is piecewise linear, with its slope jump-
ing from subinterval to subinterval. It further is taken to obey ĥ4(0) = ĥ4(2π(P + 1)) = 0,
which has the effect of ‘ending’ the space at the endpoints of the interval (and allows for
the computation of M5’ brane charge by integrating the four-form flux on the full ρ interval
and S3). The 3-form C(3) is modified by a large gauge transformation (of the form (4.8))
as one crosses the endpoints of each subinterval. There is a (flat space) underlying brane
configuration, involving M5 branes wrapping the (t, z, r) and S3 directions, M5’ branes
wrapping the (t, z) and torus directions, and positioned at % = 2πj, and M2 branes
wrapping the (t, z, %) directions stretched between these M5 branes. This dual brane
configuration allows for the identification of a dual quiver field theory, described in [30].
Our solution (4.13) can be regarded as giving the more general solution only in the first
subinterval, with % ∈ [0, 2π]. This is exactly analogous to the situation with NATD
solutions, and shows that our solution based on dual three-algebra rather than Lie algebra
structure constants admits a similar holographic interpretation.

4.4 Full solution as a six-vector deformation of AdS limit

We now return to the full solution (4.3), in order to explain how it can be viewed as
a particular interpolation away from, or deformation of, its AdS3 limit. To show this,
it is helpful (though not strictly necessary) to introduce a dimensionless parameter λ by
rescaling the AdS coordinates as

t→ λ−1/2t , z → λ−1/2z , r → λ+1/2r . (4.19)

The parameter λ now serves as a book-keeping device for describing the deformation of
the AdS limit, which corresponds to λ = 0. The function f1 is now f1 = 1 + 1

λr2 and hence
the λ → 0 limit picks out the near horizon region where one drops the constant term.
Evidently for λ = 0 the rescaling (4.19) is singular, but nonetheless the metric and field
strength are well-defined. Explicitly, one has:

ds2
11 = (1 + ρ2 + λr2)1/3(1 + λr2)−2/3

(
r2(−dt2 + dz2) + dρ2

)
+ (1 + ρ2 + λr2)1/3(1 + λr2)1/3

(
dr2

r2 + ds2
T4

)
+ (1 + ρ2 + λr2)−2/3(1 + λr2)1/3ρ2ds2

S3 ,

F(4) = 2rρ
(1 + λr2)2dt ∧ dz ∧ dr ∧ dρ− 2VolT4 + d

(
ρ4

1 + λr2 + ρ2 VolS3

)
.

(4.20)

This indeed reduces to the AdS limit (4.13) for λ = 0. For λ 6= 0 one has the full solution
(in which we can always undo the rescaling by setting λ = 1).

The solution (4.20) with finite λ can be expressed as an E6(6)-valued deformation of
the λ = 0 limit. This involves an action of E6(6) on the t, z, ρ and S3 directions. This E6(6)
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transformation should be viewed as a solution generating transformation rather than a U-
duality. It may at first seem highly mysterious that the group E6(6) should appear rather
than the SL(5) we used to generate the solution: this can be explained by tracing the origin
of this deformation back to an SO(2, 2) T-duality transformation acting just on the (t, z)
directions of the original F1-NS5 solution. Our full solution therefore inherits non-trivial
structure associated to the action of ‘duality’ transformations in 2+4 = 6 directions, which
singles out E6(6). We will explain this further below.

An E6(6) transformation non-trivially mixes the metric with the three-form and six-
form potentials, which can be explicitly introduced as:

C(3) = r2ρ

1 + λr2dt ∧ dz ∧ dρ+ ρ4

1 + λr2 + ρ2 VolS3 ,

C(6) = −r
2ρ3

2

( 1
1 + λr2 + 1

1 + λr2 + ρ2

)
dt ∧ dz ∧ dρ ∧VolS3 .

(4.21)

The remaining components of C(3) and C(6), which have components along the torus, are
electromagnetically dual to those written here. The relevant component of the dual field
strength leading to the six-form potential is

?F(4) ⊃ −
2ρ3rdt ∧ dz ∧ dr ∧ dρ ∧VolS3

(1 + λr2)(1 + λr2 + ρ2)
(4.22)

As d ? F(4) − 1
2F(4) ∧ F(4) = 0 we then define C(6) by dC(6) = ?F(4) − 1

2C(3) ∧ F(4). The
gauge choice for C(6) has been chosen so that it is finite for λ→ 0.

To describe the action of E6(6), we make a (6 + 5)-dimensional split of the coordinates.
Let xi = (t, z, ρ, θα), where θα denote the coordinates on the unit sphere, and let
xµ = (r, y1, . . . , y4) with the yi corresponding to the torus coordinates. We decompose the
metric as

ds2 = φijdxidxj + |φ|−1/3gµνdxµdxν , (4.23)

such that the metric gµν is an E6(6) invariant given by

gµνdxµdxν = r4/3ρ2
(
dr2

r2 + ds2
T4

)
. (4.24)

In particular, it is independent of λ.
The metric φij transforms alongside the three-form components Cijk and the six-form

component Cijklmn ≡ Cεijklmn. The E6(6) covariant object containing these fields is a 27 ×
27 generalised metric. This can be written as [41, 42]

MMN (φ,C(3),C(6))=UMKM̄KLUN
L, M̄MN=|φ|1/3

φij 0 0
0 2φi[jφj′]i′ 0
0 0 (detφ)−1φij

, (4.25)

UM
N=

δi
j −Cijj′ +δi

jC+ 1
4!ε

jk1...k5Cik1k2Ck3k4k5

0 2δii′
jj′ − 1

3!ε
ii′jk1k2k3Ck1k2k3

0 0 δi
j

. (4.26)
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Here the 27-dimensional E6(6) fundamental index decomposes as VM = (V i, Vii′ , V
ī) where

Vii′ = −Vi′i and VMWM ≡ V iWi + 1
2Vii′W

ii′ + V īWī. There are thus two six-dimensional
vector indices: the second one can be viewed as coming from a dualisation of five-form
indices V ī ≡ 1

5!ε
ij1...j5Vj1...j5 .8

It is straightforward to evaluate the generalised metric for the six-dimensional metric
and form-fields obtained from (4.20). Some general formulae applicable to situations where
the six-dimensional metric and form-fields admit a (3+3)-dimensional decomposition are
recorded in appendix A.5. One finds that the generalised metric depends linearly on λ, and
furthermore that the λ dependence can be factorised via an E6(6)-valued transformation in-
volving a six-vector parameter. Generally, we can introduce an E6(6)-valued matrix describ-
ing deformations involving a trivector Ωijk and a six-vector Ωijklmn ≡ Ωεijklmn, such that [42]

ŨM
N =

 δi
j 0 0

−Ωii′j 2δii′
jj′ 0

δi
jΩ + 1

4!εik1...k5Ωjk1k2Ωk3k4k5 − 1
3!εijj′k1k2k3Ωk1k2k3 δi

j

 . (4.27)

Again using the formulae in appendix A.5, it can be straightforwardly checked that the
generalised metric describing the background (4.20) admits a factorisation

MMN (λ) = ŨM
K(λ)MKL(λ = 0)ŨNL(λ) (4.28)

where ŨMN (λ) has the form of (4.27) with

Ωijk = 0 , Ω = − λ

2ρ3√det gS3
, (4.29)

where
√

det gS3 denotes the volume element on the unit three-sphere. Hence the factori-
sation (4.28) demonstrates that the full solution (4.20) is a six-vector deformation of the
λ = 0 background corresponding to the AdS limit.

The fact that the deformation parameter is non-constant can be understood by
viewing this form of the deformation as involving a change of coordinates as well as
a constant E6(6) transformation. This change of coordinates is just that which defines
Cartesian coordinates xi in place of the ‘spherical’ coordinates (ρ, θα). In terms of the
Cartesian coordinates one has simply:

Ωtzijkl = −λ2 ε
ijkl . (4.30)

It is still non-trivial that this is a solution generating transformation, as the full solution
depends on the xi coordinates, and so we are not in a situation with isometries to which we
would automatically be entitled to apply U-duality transformations. The six-vector defor-
mation however commutes with the EDA generalised frame containing the trivector Ωijk ∼
εijklxl. Prior to applying the EDA generalised frame, what we have is an 11-dimensional
configuration (that is not a solution) which already admits the six-vector factorisation.

8Here both ε012345 = ε012345 = +1 are Levi-Civita symbols defined without relative minus signs for
convenience.
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This follows directly from the properties of the original F1-NS5 extremal solution. Us-
ing the same coordinate redefinition that introduces the parameter λ, the F1-NS5 extremal
solution (3.3) can be written as9

ds2
s = r2

1 + λr2 (−dt2+dz2)+dr2

r2 +ds2
S3 +ds2

T4 , Btz = r2

1 + λr2 , e−2ϕ = 1+λr2 . (4.31)

The λ dependence now corresponds to an SO(2, 2) T-duality deformation acting on the
(t, z) directions. This is seen by passing to the appropriate SO(2, 2) covariant description
via a generalised metric

HMN (λ) =
(
g −Bg−1B Bg−1

−g−1B g−1

)
=
(

0 Z

Z (r−2 + λ)η

)
, Z ≡

(
0 1
1 0

)
, η ≡

(
−1 0
0 1

)
,

(4.32)
factorising as

HMN (λ) = UM
K(λ)HKL(λ = 0)UNL(λ) , UM

N =
(

1 0
−β 1

)
, β ≡ λ

2

(
0 1
−1 0

)
. (4.33)

The deformation matrix β has an interpretation as a bivector βij . (This can alternatively
be seen as a TsT transformation.) In addition, the SO(2, 2) invariant generalised dilaton
is e−2ϕ√| det(g)| = r2 and is independent of λ.

When we apply the reduction ansatz for type IIA on S3 to the F1-NS5 background,
the field strength component Htzr = ∂rBtz becomes the A = 5 component of the SL(5)
covariant field strength H(3)A. On uplifting to an eleven-dimensional solution (using the
coordinates xi), this leads to the identification Ftzrijkl ∼ Htzrεijkl giving a non-trivial
dual seven-form field strength. Hence the B-field component Btz induces the component
Ctzijkl of the eleven-dimensional dual six-form. Accordingly, the bivector deformation βtz
becomes the six-vector deformation Ωtzijkl = βtzεijkl. The smallest U-duality group capable
of describing such a deformation is E6(6), and this provides the exact explanation for why
E6(6) appears.

The structure of the F1-NS5 solution appearing here is associated to some intriguing
physics. The solution can be viewed as interpolating from an AdS3 geometry to a linear
dilaton spacetime, holographically dual to Little String Theory [44, 45]. This interpolation,
realised above via the bivector deformation, has been argued to correspond to a single-trace
T T̄ deformation of the dual CFT2 [31], and has a worldsheet interpretation as a marginal
current-current coupling. We might therefore expect that our full solution captures again a
deformation related to T T̄ of the CFTs dual to the AdS3 limit of our solution (these are the
quiver field theories described in [30]). Making this precise would be interesting future work.

A final comment here is that deformations of the form (4.27) generically lead to terms
quadratic in the six-vector deformation unless the upper left block of the generalised metric
vanishes,Mij = 0. This block is of the formMij ∼ (φ+C2

(3)+(C(6)+C2
(3))2)ij and so involves

terms quadratic C(6) as well as both quadratic and quartic in C(3). Rather remarkably the
gauge choice made above for the three- and six-form is such that hereMij = 0.

9This rewriting is inspired by [31, 43].
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4.5 Supersymmetry

In this section we discuss the supersymmetry of the AdS3 limit (4.13) of our solution. The
Killing spinor equation in our conventions10

δεψµ = 2Dµε+ i

144(Γνρσλµ − 8Γρσλδνµ)εFνρσλ = 0 . (4.34)

We will proceed to solve this explicitly, finding a 1
2 -BPS solution (4.61). We denote the

AdS coordinates by (t, z, r), the torus coordinates by yi, i = 1, . . . , 4 and the (standard)
three-sphere coordinates by (χ, θ, ϕ). Unless otherwise indicated, in the below equations
the indices on the gamma matrices should be assumed to be flat.

We first assume that ε is independent of the torus coordinates yi. Then the µ = yi

components of (4.34) provide an algebraic condition on ε:[
ρ(1+ρ2)−1Γρ−

i

2(1+ρ2)−1/2
(

2ρΓtzrρ−4Γy1...y4 +4
(

1 + 1
2ρ

2
)

(1+ρ2)−1/2Γρχθϕ
)]
ε = 0 .

(4.35)
The AdS components of (4.34) give differential equations

Dm̂ε+ 1
6Γm̂Xε = 0 , (4.36)

where

X=
(
−(1+ρ2)−1ρΓρ+i(1+ρ2)−1/2

(
−2ρΓtzrρ−Γy1...y4 +2

(
1+ 1

2ρ
2
)

(1+ρ2)−1/2Γρχθϕ
))

.

(4.37)
In (4.36) m̂ denote curved AdS indices. The spin connection components are Dr̂ε = ∂rε

and Dâε = ∂aε− 1
2Γarε, with â labelling the t and z directions, and Γr̂ = r−1Γr, Γâ = rΓa

where Γr and Γa are the gamma matrices with flat indices. The form of the r-dependence
of the m̂ = r equation implies that the r-dependence of ε has to be of the form rβ , with
a matrix β to be determined later, leading to a further algebraic condition on ε. Indeed,
letting explicitly ε = rβ ε̃, where ε̃ depends on t, z and the other spacetime coordinates, we
get an equation (

β + 1
6ΓrX

)
ε = 0 . (4.38)

It follows that Dm̂ε = −Γm̂Γrβε. For the (t, z) components we get

∂aε = Γar
(
−β + 1

2

)
ε⇒ ∂aε̃ = r−βΓarrβ

1
2(1− 2β)ε̃ . (4.39)

We have an r-independent expression on the left hand side, and so by our assumptions the
right hand side of has to be r-independent as well, thus, differentiating the right hand side
with respect to r we end up requiring the following expression to vanish:

r−β
(
Γar − [β,Γar]

)
(1− 2β)rβ ε̃ = 0 , (4.40)

10We follow [46] so that {Γa,Γb} = 2ηab with ηab having mostly minus signature.
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which can be achieved if (
Γar − [β,Γar]

)
(1− 2β) = 0 . (4.41)

If β commutes with Γar then the only solution is β = 1
2I. Alternatively, if β anticommutes

with Γar, then we can extract Γar from the equation again leading to(
(2β)2 − 1

)
= 0 , (4.42)

which tells us 2β should square to a unit matrix. This condition and that of anticommuting
with Γtr and Γzr is compatible with multiple choices for β, for instance 2β = ±Γtz, 2β =
±iΓr, 2β = ±Γtzy1...y4 . However, not all options will lead to a non-trivial solution for ε̃,
and some of them have fewer supersymmetries than others, as we will see shortly.

Now let’s assemble and make sense of the algebraic conditions on ε. We can
rewrite (4.38) as[

2Γrβ + 1
3ρ(1 + ρ2)−1Γρ (4.43)

− i

6(1 + ρ2)−1/2
(

4
(

1 + 1
2ρ

2
)

(1 + ρ2)−1/2Γρχθϕ − 2Γy1...y4 − 4ρΓtzrρ
)]
ε = 0

Subtracting 1
3 (4.35) from (4.43) we get:[

2Γrβ + i(1 + ρ2)−1/2(ρΓtzrρ + Γy1...y4
)]
ε = 0 (4.44)

This (for suitable β) will provide a coordinate-dependent projector condition on ε, similar to
that appearing in non-abelian T-dual solutions [7]. We can also deduce a second projector
condition. Let’s first split the Γρχθϕ and Γr parts of (4.43) as

1
3
[
2Γrβ + i(1 + ρ2)−1/2

(
ρΓtzrρ + Γy1...y4

)]
ε (4.45)

+ 2
3
[
2Γrβ + ρ(1 + ρ2)−1Γρ − iΓρχθϕ − i(1 + ρ2)−1Γρχθϕ − i(1 + ρ2)−1/2Γy1...y4

]
ε = 0

the first line of which is exactly (4.44) thus vanishes. We can write the second line as[
2Γrβ − iΓρχθϕ + Γtzr(1 + ρ2)−1

(
ρΓtzrρ + iΓtzrρχθϕ

)
− i(1 + ρ2)−1/2Γy1...y4

]
ε = 0 (4.46)

then using the fact that the product of all gamma matrices is (in our conventions) −i, we
can rewrite Γtzrρχθϕ = iΓy1...y4 , and use (4.44) again to obtain[

2Γrβ − iΓρχθϕ + i(1 + ρ2)−1/2
(
Γtz − Γy1...y4

)]
ε = 0 (4.47)

and then again rewriting Γy1...y4 = iΓtzrΓρχθϕ, and Γtz = −ΓtzrΓr, we finally extract a
common factor (

1 + i(1 + ρ2)−1/2Γtzr
)[

2Γrβ − iΓρχθϕ
]
ε = 0 (4.48)

multiplying this by
(
1− i(1 +ρ2)−1/2Γtzr

)
and extracting the non-negative resulting ρ2 we

arrive at the second projector condition on ε:[
2Γrβ − iΓρχθϕ

]
ε = 0 . (4.49)
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As we want our solution to be as supersymmetric as possible, we want to choose a β that
will cancel some of the algebraic conditions on ε. Looking at (4.49) and keeping in mind
that Γtzry1...y4 = −iΓρχθϕ, we immediately see that the choice 2β = Γtzy1...y4 will turn this
condition into a trivial one! Thus, we can conclude the choice 2β = Γtzy1...y4 corresponds to
a most supersymmetric solution; other choices would impose (4.49) and lead to a solution
with fewer supersymmetries.

Now let us look at the full AdS part of the solution that corresponds to 2β = Γtzy1...y4

and then come back to the remaining equations. We will write our solution in the form

ε = εAdSερεS3ε0 (4.50)

with ε0 is a constant spinor and the other factors are matrices depending on the AdS, ρ
and sphere coordinates respectively.

The differential equation (4.39) on ε̃ becomes

∂aε̃ = 1
2Γar(1− 2β)ε̃ (4.51)

with the solution

ε̃ = exp
[1

2x
aΓar(1− 2β)

]
ε̄ =

(
1 + 1

2x
aΓar(1− 2β)

)
ε̄ (4.52)

where in the second equality we take into account our previous assumption that β anti-
commutes with Γar and (2β)2 = I so that we can make an expansion of the exponent to
the linear term. Here ε̄ = ερεS3ε0. Hence the full factor εAdS is

εAdS = r
1
2 Γtzy1...y4

(
1 + 1

2x
aΓar(1− Γtzy1...y4)

)
. (4.53)

Expanding the r exponent, this can be seen to match the form of the AdS solutions obtained
in [47].

Now we consider the remaining differential equations on ε. We start with the case
corresponding to the ρ coordinate:

∂ρε−
i

6(1 + ρ2)−1/2Γρ
[
Γy1...y4 + 2ρΓtzrρ + 4

(
1 + 1

2ρ
2
)

(1 + ρ2)−1/2Γρχθϕ
]
ε = 0 (4.54)

Using the projector conditions (4.44) and (4.49) (the latter of course now an identity given
the form of β), as well as gamma matrix identities, we can simplify this to

∂ρε−
1
6ρ(1 + ρ2)−1ε+ Γrρβ(1 + ρ2)−1ε = 0 . (4.55)

and now the solution for ερ will depend on how εAdS permutes with β. For our choice of
β, all the matrices in εAdS commute with Γrρβ, and we can simply move εAdS to the left
of each term in the equation. We then end up with a differential equation for ερ with the
following solution:

ερ = (1 + ρ2)1/12 exp
[1

2 tan−1 ρΓtzry1...y4ρ

]
(4.56)
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We move on to the sphere components of the Killing spinor equation. We let εS3 =
εχ(χ)εθ(θ)εϕ(ϕ). The χ equation becomes after similar simplifications using the projector
conditions

∂χε+ 1
2(1 + ρ2)−1/2Γρχ

[
1 + ρΓρtzry1...y4

]
ε = 0 , (4.57)

or
∂χε+ 1

2 exp[Γtzry1...y4ρ tan−1 ρ]Γρχε = 0 . (4.58)

Permuting Γρχ in the second term in this equation with ερ we change the sign in the
exponent of ερ from equation (4.56), which combined with the exponential of this equation
gives the same ερ finally in the second term on the left. Thus, after extracting ερ from the
both terms of the equation to the left, we have the simple equation

∂χεχ + 1
2Γρχεχ = 0⇒ εχ = exp

[
− 1

2Γρχχ
]
. (4.59)

The same technique can be applied to obtain εθ and εϕ parts of the solution, which end up
being

εθ = exp
[
− 1

2Γχθθ
]
, εϕ = exp

[
− 1

2Γθϕϕ
]
. (4.60)

The full solution we have obtained can therefore be written as

ε = (1 + ρ2)1/12rβ
(

1 + 1
2x

aΓar(1− 2β)
)

exp
[
− βΓrρ tan−1 ρ

]
εΩε0 , (4.61)

with β = 1
2Γtzy1...y4 , εΩ = εχεθεϕ. In addition we have the projector condition (4.44), which

we can rewrite as (
1 + i√

1 + ρ2

(
Γtzr − ρΓy1...y4ρ

))
ε = 0 . (4.62)

This can be shown to reduce to a single projector condition on the constant spinor ε0.
To show this, we apply the projector condition in its original form (4.44) to (4.61) and
proceed as follows. We first permute the exponential in ερ with Γrβ from (4.44). After
then factoring out a common ερ we can use the identities sin tan−1 ρ = ρ(1 + ρ2)−1/2,
cos tan−1 ρ = (1 + ρ2)−1/2 to rewrite (4.44) applied to (4.61) as

(1 + ρ2)−1
[(

1 + ρΓtzry1...y4ρ
)
2Γrβ + i

(
ρΓtzrρ + Γy1...y4

)]
εχεθεϕε0 = 0 . (4.63)

Then permuting with εχ, the terms linear in ρ give different signs in the exponent containing
Γρ, leading to 2 equations:

(2Γrβ + iΓy1...y4)ε0 = 0 , (Γρ + iΓtzrρ)ε0 = 0 . (4.64)

However these are actually equivalent and give the single condition:

(1 + iΓtzr)ε0 = 0 . (4.65)

Therefore we have 1 condition on ε0, reducing the degrees of freedom by 1
2 , so this is a

1
2 -BPS solution. This is the same amount of supersymetry as the original F1-NS5 solution
in its AdS3 limit. Away from this limit we expect our full solution (4.3) is 1

4 -BPS. It is
worth noting that the solutions of [30] are generically 1

4 -BPS, suggesting that our solution
allows for an enhancement, likely due to the special case k = 1. We note that a similar
explicit Killig spinor solution was found in [48].

– 25 –



J
H
E
P
0
5
(
2
0
2
2
)
0
8
1

4.6 IIA reductions

Finally, let us record the expressions for different solutions of type IIA supergravity which
can be obtained by reducing the solution (4.3) in different ways. All these solutions could
further be T-dualised in multiple ways to give solutions of type IIB supergravity.

Reduction on T4 direction. Reducing on one of the T4 directions we obtain

ds2
10 =(r2f1+ρ2)1/2(r2f1)1/2

(
1
f1

(−dt2+dz2)+dr2

r2 + dρ2

r2f1
+ds2

T3

)
+(r2f1+ρ2)−1/2(r2f1)1/2ρ2ds2

S3 ,

H(3) =−2VolT3 , e−2ϕ=(r2f1+ρ2)−1/2(r2f1)−1/2 , F(2) =0,

F(4) = 2rρ
(r2f1)2dt∧dz∧dr∧dρ+ (4r2f1+2ρ2)

(r2f1+ρ2)2 ρ
3dρ∧VolS3−

ρ4∂r(r2f1)
(r2f1+ρ2)2dr∧VolS3 .

(4.66)

This still has an AdS3 near horizon limit, and the full solution is a six-vector deformation
of this. The six-vector is now associated to the NSNS six-form.

Reduction on Hopf fibre. Writing the metric on the three-sphere as

ds2
S3 = 1

4
(
(dψ + η)2 + ds2

S2

)
, dη = VolS2 . (4.67)

and reducing on the Hopf fibre direction parametrised by ψ we obtain

ds2
10 = (r2f1)1/2 ρ

2

(
1
f1

(−dt2 + dz2) + dr2

r2 + dρ2

r2f1
+ ds2

T4

)

+ (r2f1 + ρ2)−1(r2f1)1/2
(
ρ

2

)3
ds2

S2 ,

H(3) = 1
8

(4r2f1 + 2ρ2)
(r2f1 + ρ2)2 ρ

3dρ ∧VolS2 −
1
8
ρ4∂r(r2f1)

(r2f1 + ρ2)2dr ∧VolS2 ,

e−2ϕ = (r2f1 + ρ2)(r2f1)−1/2
(
ρ

2

)−3
,

F(2) = VolS2 , F(4) = 2rρ
(r2f1)2dt ∧ dz ∧ dr ∧ dρ− 2VolT4 .

(4.68)

This still has an AdS3 near horizon limit, and the full solution is a five-vector deformation
of this, with the five-vector associated to the RR five-form. As the M-theory AdS3 × S3

solutions of [30] were obtained by uplifting the AdS3×S2 IIA solutions constructed in [32–
35] on a Hopf fibre, the solution (4.68) can be interpreted using the latter.

Reduction on AdS direction. Reducing on the z direction we obtain

ds2
11 = (r2f1 + ρ2)1/2r

(
− 1
f1

dt2 + dr2

r2 + dρ2

r2f1
+ ds2

T4

)
+ (r2f1 + ρ2)−1/2rρ2ds2

S3 ,

H(3) = 2rρ
(r2f1)2dt ∧ ∧dr ∧ dρ , e−2ϕ = (r2f1 + ρ2)−1/2 f1

r
, F(2) = 0 ,

F(4) = −2VolT4 + (4r2f1 + 2ρ2)
(r2f1 + ρ2)2 ρ

3dρ ∧VolS3 −
ρ4∂r(r2f1)

(r2f1 + ρ2)2dr ∧VolS3 .

(4.69)
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This now has an AdS2 near horizon limit, and the full solution is a five-vector deformation
of this. The five-vector is associated to the RR five-form.

5 Discussion

In this paper we first discussed the idea of generalised T- and U-dualities, viewed as a
solution generating technique in supergravity. We reviewed how these generalised dualities
can be linked to special classes of algebras, which are efficiently geometrically encoded using
generalised parallelisations in generalised geometry. Building on our previous paper [23], we
focused on an example in 11-dimensional supergravity characterised by non-vanishing dual
3-algebra structure constants in the underlying exceptional Drinfeld algebra introduced to
control Poisson-Lie U-duality in [20, 21].

To produce a new supergravity solution, we had to step slightly outside the confines of
the EDA set-up. We used the fact that our EDA generalised frame incorporating the Eu-
clidean 3-algebra solution provided a consistent truncation to CSO(4, 0, 1) maximal gauged
supergravity in 7 dimensions. We were able to use this pragmatically to produce dual pairs
of solutions by starting with the known truncation of type IIA on S3 leading to the same
gauged supergravity, reducing solutions of the latter form, and then uplifting with our EDA
frame. Algebraically, this alternative starting point can be viewed as relaxing the require-
ment that one has to pick an isotropic set of dual generators forming a subalgebra. It would
be interesting to complete this observation by formulating a more precise understanding
of which families of generalised frames produce the EDA with the subalgebra requirement
relaxed (the systematic approach of [49] would likely be useful here). This would allow our
construction to be viewed in terms of a slightly enlarged notion of Poisson-Lie U-duality
than that initially suggested in [20, 21].

The example described in this paper can be viewed as a proof-of-concept for the idea
that it is possible to generate new supergravity solutions by formulating generalised no-
tions of U-duality. It would be beneficial to develop a more systematic approach. For
instance, it is very clear which spacetimes admit non-abelian T-duals: those with non-
abelian isometries. It is not clear what spacetimes admit generalised U-duals characterised
by non-vanishing dual 3-algebra structure constants. It is also not clear what role, if any,
is played by an actual 3-algebra symmetry in such spacetimes.

Generalising to higher dimensions will also lead to higher-rank polyvectors and n-
algebra symmetries. It would appear that solutions characterised by an ansatz involving
polyvectors linear in the coordinates have notable properties. They describe not only the
plethora of known NATD solutions, but also solutions such as the one constructed in this
paper, which as we saw shared many features with solutions generated by NATD, including
the general properties of its holographic completion. Classifying and understanding the
types of solutions of this form, and the possible dual solutions they may arise from, would
not only help establish generalised U-duality as a useful technique on a par with non-abelian
T-duality but help elucidate the general structure.

Here it would also be important to develop an understanding of which properties
(supersymmetry, brane charges) of such solutions are induced by the initial solution. For
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non-abelian T-duality, for example, one can precisely discuss which supersymmetries are
preserved in terms of whether the action of the initial non-abelian isometries preserve the
Killing spinor [7, 17, 50]. Generically one finds a reduced amount of supersymmetry in the
dual solution as a result. In our example, in the AdS limit, we found our new solution
had as many supersymmetries as the original near horizon F1-NS5 solution. It would be
useful to understand from a general viewpoint why this was the case. This might be best
formulated using exceptional field theory as a master formalism.

It would be possible to generate further examples by focusing on specific solutions of the
gauged supergravities that appear in these polyvector constructions. For the CSO(4, 0, 1)
supergravity, numerous solutions were found in [51–53], all of which can be used to generate
dual solutions by uplifting to type IIA on S3 and to 11-dimensional supergravity via our
EDA generalised frame.

Turning now to the specific example studied in this paper, this exhibits numerous
interesting features linked to deformations and holographic duality. We argued that a
holographic completion of the AdS3 limit of our solution can be obtained from the class
of solutions obtained in [30], which have well-defined quiver field theory duals. We showed
that our full solution can be viewed as a six-vector deformation away from this AdS3 limit.
This deformation was inherited from the interpolation of the original F1-NS5 solution
from its AdS3 limit (in the near horizon region of the F1s) to the asymptotic linear dilaton
spacetime associated to the pure NS5 near horizon limit. This interpolation has been argued
to correspond to a ‘single-trace’ variant of the T T̄ deformation in the CFT2 dual of the AdS3
limit [31] (the CFT dual (to the long string sector) of string theory on AdS3 is a symmetric
productMN1/SN1 and the T T̄ deformation of [31] deforms the block CFTM→MT T̄ ).

The immediate question is whether there is an analogous interpretation applicable to
our six-vector deformation of our AdS3 limit in terms of a deformation of the CFT duals
of [30]. This is not to necessarily suggest that this deformation will again be describable
as a T T̄ deformation, but it may have similar properties. In general, we would expect
generalised U-duality, as for non-abelian T-duality, to produce backgrounds with different
CFT duals. However, we can at least say that our solution generating technique preserved
the fact that there is a deformation, encoded geometrically, and suggest that this may turn
out to have a relationship to T T̄ .

A further comment is that in the F1-NS5 case, the endpoint of the deformation can
be viewed as a vacuum of the Little String Theory [44, 45] dual to the asymptotic linear
dilaton spacetime: for our solution, the latter spacetime maps to the 11-dimensional solu-
tion (4.11) (not an AdS geometry) which may accordingly itself have a similar holographic
interpretation in terms of a dual M5 brane theory.
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It may be therefore be interesting to study the deformation of the general class of
geometries (4.14) of [30]. If we define

gabdxadxb = ∆

 u√
ĥ4h8

r2(−dt2 + dz2) +

√
ĥ4h8

u
d%2

 , hαβdxαdxβ = h2
8

∆2ds
2
S3/Zk

,

Gµνdxµdxν = ∆

 u√
ĥ4h8

dr2

r2 +

√
ĥ4
h8

ds2
CY2

 , (5.1)

and make the naturally analogous gauge choice

C1 ≡ Ctzρ = r2

2 ∂%
(
uu′

2ĥ4
+ 2%h8

)
, C2 ≡ Cψθφ = 2h8

(
−%+ uu′

4ĥ4h8 + u′2

)√
gS3/Zk ,

C6 = −r
2

2
4h2

8u
2ĥ′24

h(4h8ĥ4 + u′2)
√
gS3/Zk + 1

2C1C2 , (5.2)

then we can immediately read off a deformed background from the expressions in ap-
pendix A.5. This requires choosing a deformation parameter which produces a new solu-
tion: this is not guaranteed. Note that generically the E6(6) generalised metric block Mij
is non-zero for the metric and potentials picked here. This means that the deformed metric
will depend quadratically on λ instead of just linearly. This is not necessarily a problem,
however it is possible that situations with vanishingMij are special.

Other deformations of the AdS3 limit of the F1-NS5 solution correspond to single-
trace JT̄/J̄T deformations of the dual CFT2, see for instance [54, 55]. These again have a
straightforward worldsheet interpretation as TsT i.e. O(d, d) transformations, and modify
the bulk geometry. Focusing on deformations which preserve the ansatz for type IIA on
S3, it would be possible to map the corresponding backgrounds to new 11-dimensional
geometries using our methodology, and to examine how the deformations are inherited by
the new solution, as trivector deformations for example.

It may also be productive to explore these deformations algebraically in the context of
the EDA proposal. For instance, embedding our SL(5)-valued trivector into E6(6) and com-
bining with the six-vector deformation discussed in section 4.4, could be viewed through the
lens of the E6(6) EDA [24]. This may connect to related work on polyvector deformations,
including in the context of the EDA construction, such as [56].
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A Ingredients

A.1 Five-brane near horizon limit of pp-F1-NS5

Initial solution. We adapt the notation of [46, 57]. The non-extremal pp-F1-NS5 solu-
tion is

ds2
s = f−1

1

−f−1
n Wdt2 + fn

(
dz + 1

2
r2

0 sinh 2αn
fnr2 dt

)2
+ f5(W−1dr2 + r2ds2

S3) + ds2
T4 ,

Btz = −1
2
r2

0 sinh 2α1
f1r2 , Btz1...4 = −g−2

s

1
2
r2

0 sinh 2α5
f5r2 , e−2ϕ = g−2

s f1f
−1
5 , (A.1)

where

fn = 1 + r2
n

r2 , f1 = 1 + r2
1
r2 , f5 = 1 + r2

5
r2 , W = 1− r2

0
r2 ,

r2
1 = r2

0 sinh2 α1 , r2
5 = r2

0 sinh2 α5 , r2
n = r2

0 sinh2 αn ,

(A.2)

and in terms of the numbers N1, N5, Nn of strings, five-branes and pp-waves, as well as the
(dimensionless) volume parameter v of the T4, we have

sinh 2α1 = 2N1l
2
s

v

g2
s

r2
0
, sinh 2α5 = 2N5l

2
s

r2
0

, sinh 2αn = 2Nnl
4
s

R2
xv

g2
s

r2
0
. (A.3)

The extremal limit sends r0 → 0 and α1, α5, αn →∞ such that r2
0 sinh 2α1, r2

0 sinh 2α5 and
r2

0 sinh 2αn are constant and given by (A.3). Then sinhα2
a ≈ 1

2 sinh 2αa and so

r2
1 = N1l

2
sg

2
s

v
, r2

5 = N5l
2
s , r2

n = Nnl
4
sg

2
s

R2
xv

(A.4)

NS5 near horizon limit. To obtain a solution we can apply our reduction and uplift
procedure to, we need to go to the NS5 near horizon limit. This limit can be taken by
sending the string coupling to zero such that

gs → 0 , r0
lsgs

fixed . (A.5)

This is the Little String Theory (LST) limit [44, 45].In this limit, α1 and αn are fixed, but

sinh 2α5 ≈
2N5l

2
s

r2
0
→∞⇒ f5 →

N5l
2
s

r2 . (A.6)

If we define u = r
lsgs

, u0 = r0
lsgs

, then the three-charge background then becomes in the
limit

ds2
s = f−1

1

−f−1
n Wdt2 +fn

(
dz+ 1

2
u2

0 sinh2αn
fnu2 dt

)2
+N5l

2
sW
−1du

2

u2 +N5l
2
sds2

S3 +ds2
T4 ,

H3 =−u
2
0 sinh2α1

2 d

( 1
f1u2

)
∧dt∧dx+2N5l

2
sVol(S3) , (A.7)

e−2ϕ =N−1
5 u2f1 ,
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with
f1 = 1 + u2

0 sinh2 α1
u2 , fn = 1 + u2

0 sinh2 αn
u2 , W = 1− u2

0
u2 . (A.8)

Redefining u = r′/ls, u0 = r′0/ls and immediately dropping the primes we obtain the
background in the form (3.2). In effect this is just the original three-charge background
with the “1 + ” dropped from f5 and gs set to 1.

A.2 CSO(4, 0, 1) from IIA on S3

This gauging is known to result from a warped reduction of IIA SUGRA on S3 [29, 58].
For the pp-F1-NS5 solution, we only need to make use of the NSNS sector reduction
ansatz. Here we need to introduce µa, a = 1, . . . , 4 as constrained coordinates on the S3,
δabµ

aµb = 1, a unit determinant symmetric matrix11 Mab with inverse Mab, and define

U = 2MabM bcµaµc −∆Maa , ∆ = Mabµaµb . (A.9)

Then the ansatz is

ds2
s = Φ1/2ds2

7 + 1
g2 ∆−1M−1

ab Dµ
aDµb , e2ϕ = ∆−1Φ5/4 ,

H3 = F̃(3)−
1
2εa1a2a3a4g

−1∆−1F a1a2
(2) ∧Dµ

a3Ma4bµb (A.10)

− 1
6εa1a2a3a4g

−2∆−2(Uµa1Dµa2 ∧Dµa3 ∧Dµa4 +3Dµa1 ∧Dµa2 ∧DMa3bMa4cµbµc
)
,

where Dµa ≡ dµa + gA(1)
abµb, DMab = dMab + 2gA(1)

(a|cM c|b) and F(2)
ab = dA(1)

ab +
gA(1)

ac ∧ A(1)
cb. However these Kaluza-Klein gauge potentials will play no role in the

cases we consider. Although we only write here the ansatz in the NSNS sector, we do
need to make use of the full ansatz of [29] to identify the SL(5) covariant multiplets that
result. For instance, the ansatz for the RR four-form field strength introduces a further
four three-forms. These combine with the single three-form F̃(3) in (A.10) to form the
five-dimensional representation of SL(5). Similarly the scalars Mab and Φ are joined by
four additional scalar fields from the RR sector in order to obtain the full scalar coset
SL(5)/SO(5). With the RR contribution set to zero, the SL(5) covariant scalar matrix
MAB, and accompanying scalar potential V , are given by:

MAB =
(

Φ−1/4Mab 0
0 Φ

)
, V = 1

2g
2Φ1/2(2MabδbcM

cdδad − (Mabδab)2) . (A.11)

A.3 Exceptional field theory dictionary

Exceptional field theory (see the review [38]) describes 11-dimensional supergravity back-
grounds after splitting into a d-dimensional internal part, with coordinates xi, and (11−d)-
dimensional external part, with coordinates Xµ. Fixing the 11-dimensional Lorentz sym-
metry we write the metric as

ds2
11 = φ−

1
9−d gµνdX

µdXν + φijDx
iDxj , Dxi ≡ dxi +Aµ

idXµ , (A.12)
11Note that what we call Mab is denoted M−1

αβ in [29].

– 31 –



J
H
E
P
0
5
(
2
0
2
2
)
0
8
1

where φ ≡ detφij . The three-form and its four-form field strength are decomposed as
follows:

C(3) = C(3) + C(2)iDx
i + 1

2C(1)ijDx
iDxj + 1

3!CijkDx
iDxjDxk , (A.13)

F(4) = F(4) + F(3)iDx
i + 1

2F(2)ijDx
iDxj + 1

3!F(1)ijkDx
iDxjDxk

+ 1
4!FijklDx

iDxjDxkDxl , (A.14)

where the (p) subscript denotes an n-dimensional p-form and all wedge products are im-
plicit.

The fields carrying purely internal indices enter a generalised metric parametrising
a coset Ed(d)/Hd, while those carrying external indices (asides from the external metric,
gµν) are treated as components of (11 − d)-dimensional forms in a tensor hierarchy. For
instance, one has AµM ∼ (Aµi,Cµij , . . . ). Here one has to eventually include components
of the dual six-form (and putative dualisations of the metric). In this way, each p-form
gives a representation of Ed(d).

For d = 4, we have E4(4) = SL(5). Let M = 1, . . . , 5 denote a fundamental index of
SL(5). The generalised metric is represented by a five-by-five unit determinant symmetric
matrix:

MMN = φ
1

10

(
φ−

1
2φij −φ−

1
2φikC

k

−φ−
1
2φikC

k φ
1
2 + φ−

1
2φklC

kC l

)
, (A.15)

where Ci ≡ 1
6ε
ijklCjkl, Cijk = −εijklC l. The relevant part of the SL(5) tensor hier-

archy consists of gauge fields AµMN = −AµNM, BµνM, CµνρM, with field strengths
FµνMN , HµνρM, JµνρσM. These field strengths can be identified with components of the
eleven-dimensional four-form and its seven-form dual as follows:

Fµνi5 = Fµν
i , Fµνij = 1

2ε
ijkl(Fµνkl −CklmFµν

m) ,

Hµνρi = −Fµνρi , Hµνρ5 = 1
4!ε

ijkl(−Fµνρijkl + 4FµνρiCjkl) ,

Jµνρσ5 = −Fµνρσ , Jµνρσi = 1
3!ε

ijkl(+Fµνρσjkl −CjklFµνρσ) .

(A.16)

The bare three-forms appear here as these field strengths transform covariantly under
generalised diffeomorphisms. The minus signs are fixed such that the Bianchi identities
of ExFT in the conventions used reproduce those of 11-dimensional supergravity, with
dF̂7 − 1

2 F̂4 ∧ F̂4 = 0.

A.4 Exceptional Drinfeld algebra frame

Generalised frames. A generalised frame in the SL(5) ExFT can be represented in
the 10- or 5-dimensional representations. However we can only take the generalised Lie
derivative with respect to generalised frames EAB in the former. The algebra of generalised
frames is

LEABE
M
C = −FABCDEMD , (A.17)
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or
LEABE

MN
CD = −1

2FAB, CD
EFEMNEF , FAB, CD

EF = 4FAB[C
[Eδ
F ]
D] . (A.18)

The gauging FABCD can be decomposed in terms of irreducible representations of SL(5)

FABC
D = ZABC

D + 1
2δ
D
[ASB]C −

1
6τABδ

D
C −

1
3δ
D
[AτB]C . (A.19)

Here τAB ∈ 10 is the so-called trombone gauging, SAB ∈ 15 and ZABC
D ∈ 40 obeys

ZABC
D = Z[ABC]

D, ZABCC = 0.

Exceptional Drinfeld algebra frame. For the exceptional Drinfeld algebra introduced
in [20, 21] one has

ẼMA = ∆−
1
2

(
l

1
2α

1
2 via 0

l−
1
2α−

1
2πa l

− 1
2α−

1
2

)
, ∆ ≡ α

3
5 l

1
5 , (A.20)

in terms of data (α, lai, via, πa = 1
3!εbcdaπ

bcd) describing a particular group manifold with
left-invariant frames lai and a trivector πabc, obeying certain compatibility and differential
conditions, in particular

dla = 1
2fbc

alb ∧ lc , Lvavb = −fabcvc , Lva lnα = 1
3La ≡

1
3(τa5 − faf f ) , (A.21)

dπabc = f̃abcdl
d + 3fed[aπbc]dle + 1

3π
abcLdl

d . (A.22)

These imply that the components of the gaugings are

S55 = 0 , Zabc
5 = 0 , Zab5

5 = 2
3τab , Zabc

d = −τ[abδ
d
c] ,

Sa5 = −2
3τa5 −

4
3fab

b , Zab5
c = −fabc −

2
3δ

c
[afb]d

d .
(A.23)

while Sab and τab are defined via the “dual” structure constant with three upper antisym-
metric indices

f̃abcd = 1
4ε

abce(Sde + 2τde) . (A.24)

In terms of generators TAB obeying [TAB, TCD] = 1
2FAB,CD

EFTEF the algebra can be written
in a compact form reminiscent of the Drinfeld double algebra if we let Ta ≡ Ta5, T̃ ab ≡
1
2ε
abcdTcd. The brackets are:

[Ta,Tb] = fab
cTc , [T̃ ab, T̃ cd] = 2f̃ab[ceT̃ d]e , (A.25)

[Ta, T̃ bc] = 2fad[bT̃ c]d− f̃ bcdaTd−
1
3LaT̃

bc , [T̃ bc,Ta] = 3f[de
[bδ

c]
a]T̃

de+ f̃ bcdaTd+Ldδ
[b
a T̃

cd] .

CSO(4, 0, 1) frame and scalar potential. This frame has α = 1, via = δia and πabc =
gεabcdxd [23] (where we use δia to identify the curved and flat indices on xi and δab to
raise/lower). This results in f̃abcd = gεabcd or equivalently Sab = 4gδab, with the other
structure constants components all vanishing.
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When SAB 6= 0 is the only non-vanishing SL(5) gauging, the scalar potential resulting
from ExFT is in our conventions

V = 1
32
(
2MABSBCMCDSDA − (MABSAB)2

)
. (A.26)

For the CSO(4, 0, 1) case with the scalar matrix as in (A.11) and the gauging SAB resulting
from the EDA frame, this exactly matches the scalar potential of (A.11).

A.5 E6(6) generalised metric for a 3+3 split and six-vector deformation

Components. Write the six-dimensional index as i = (a, α), where both a and α are
three-dimensional. Consider the case where

φij =
(
gab 0
0 hαβ

)
, Cijk → (C1εabc, C2εαβγ) , εabcαβγ = εabcεαβγ , (A.27)

and Ci1...i6 = C6εi1...i6 . Let t denote the number of timelike directions of the metric φij, and
let g ≡ det(gab), h ≡ det(hαβ). The components of the E6(6) generalised metric defined
by (4.25) can then be computed block-by-block to be

Mab = |φ|1/3gab
(

1 + 1
gh

(
hC2

1 +
(
C6 + 1

2C1C2

)2
))

,

Mαβ = |φ|1/3hαβ
(

1 + 1
gh

(
gC2

2 +
(
C6 −

1
2C1C2

)2
))

, Maα = 0 , (A.28)

Ma
bc = −(−1)t|φ|−2/3gadε

bcd
(
hC1 + C2

(
C6 + 1

2C1C2

))
,

Mα
βγ = −(−1)t|φ|−2/3hαδε

βγδ
(
gC2 − C1

(
C6 −

1
2C1C2

))
,

Ma
βγ = 0 =Mα

bc =Mb
aα =Mβ

aα , (A.29)

Mab̄ = (−1)t|φ|−2/3gab

(
C6 + 1

2C1C2

)
, Mαβ̄ = (−1)t|φ|−2/3hαβ

(
C6 −

1
2C1C2

)
,

Maᾱ =Mαā = 0 , (A.30)
Mab

c̄ = −(−1)t|φ|−2/3gcdε
dabC2 , Mαβ

γ̄ = (−1)t|φ|1/3hγδεδαβC1 ,

Maα
b̄ =Maα

β̄ =Mab
ᾱ =Mαβ

ā = 0 (A.31)
Māb̄ = (−1)t|φ|−1/3gab , Mᾱβ̄ = (−1)t|φ|1/3hαβ , Māᾱ = 0 , (A.32)

Six-vector deformation. Using (4.27), one sees that the six-vector deformation has the
relatively simple effect of

Mīj →Mīj+Ω̃Mij , Mii′
j̄ →Mii′

j̄+Ω̃Mii′
j , Mī̄j →Mī̄j+Ω̃(Mīj+Mj̄i)+Ω̃2Mij (A.33)

leaving other blocks invariant. Then given a configuration with

ds2
11 = gabdxadxb + hαβdxαdxβ +Gµνdxµdxν (A.34)
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and gauge field components C1 and C2 and C6 as above, the effect of a six-vector defor-
mation is to produce the following metric and gauge fields:

d̃s2
11 = (1 + Θ1)1/3(1 + Θ2)−2/3gabdxadxb + (1 + Θ1)−2/3(1 + Θ2)1/3hαβdxαdxβ

+ (1 + Θ1)1/3(1 + Θ2)1/3Gµνdxµdxν , (A.35)

C̃1 = 1
1 + Θ2

(
C1 − Ω

(
gC2 − C1

(
C6 −

1
2C1C2

)))
,

C̃2 = 1
1 + Θ1

(
C2 + Ω

(
hC1 + C2

(
C6 + 1

2C1C2

)))
,

C̃6 = 1
2

1
1 + Θ1

(
C6 + 1

2C1C2 + Ω
(
gh+ hC2

1 +
(
C6 + 1

2C1C2

)2
))

+ 1
2

1
1 + Θ2

(
C6 −

1
2C1C2 + Ω

(
gh+ gC2

2 +
(
C6 −

1
2C1C2

)2
))

(A.36)

where
Θ1 = 2Ω

(
C6 + 1

2C1C2

)
+ Ω2

(
gh+ hC2

1 +
(
C6 + 1

2C1C2

)2
)
,

Θ2 = 2Ω
(
C6 −

1
2C1C2

)
+ Ω2

(
gh+ gC2

2 +
(
C6 −

1
2C1C2

)2
)
.

(A.37)

B Charge quantisation

In this appendix we consider the requirement of brane charge quantisation for our new
solution. We therefore reinstate the dimensionful constants r1 and R inherited from the
original F1-NS5 solution. We also note that we can include a constant α (assumed dimen-
sionless) in the EDA frame corresponding to the trombone rescaling of the 11-dimensional
solution. Including this, the extremal solution in spherical coordinates would be:

ds2
11 = α2/3(r2f1 + ρ2)1/3R−4/3(r2f1)1/3

(
1
f1

(−dt2 + dz2) + R2dρ2

r2f1
+ R2dr2

r2 + ds2
T4

)
+ α2/3(r2f1 + ρ2)−2/3R2/3(r2f1)1/3ρ2ds2

S3 ,

F(4) = α
2r2

1
(r2f1)2

rρ

R
dt ∧ dz ∧ dr ∧ dρ− α2r2

1
R3 VolT4

+ α
R(4r2f1 + 2ρ2)

(r2f1 + ρ2)2 ρ3dρ ∧VolS3 − α
Rρ4

(r2f1 + ρ2)2∂r(r
2f1)dr ∧VolS3 . (B.1)

The dual field strength is

?F(4) =−α2 2r2
1

r2f1 +ρ2
ρ4

R2 VolS3 ∧VolT4−α2 2r2
1

rf1(r2f1 +ρ2)ρ
3dt∧dz∧dr∧dρ∧VolS3 (B.2)

+α2 2r
R4 (2r2f1 +ρ2)dt∧dz∧dr∧VolT4 +α2 rρ

R4f1
∂r(r2f1)dt∧dz∧dρ∧VolT4 .

The number of membranes and fivebranes will be determined by

NM2 = 1
(2π)6l6p

∫
JPage , NM5 = 1

(2π)3l3p

∫
F(4) (B.3)
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As discussed in section 4.2, JPage vanishes up to large gauge transformations of the form
C(3) → C(3) +4πjl3pVolS3 , j ∈ Z, which shift JPage → JPage +4πjl3pα

2r2
1

R3 VolS3∧VolT4 . Hence

NM2 = N14πj l
6
s

l3p

α

R3 . (B.4)

Now consider the M5 branes. Integrating the flux through the torus we have

NM5 = − 1
(2π)3l3p

α
2r2

1
R3 (2π)4vl4s = −4πN1

l6s
l3p

α

R3 . (B.5)

Notice that NM2 = j|N (T4)
M5 |.

Next integrating the flux through the four-cycle in (r, ρ, S3) directions as described in
section 4.2 gives, if r1 = 0

NM5′ = 1
(2π)3l3p

2π2αRρ̄2 = αR

4πl3p
ρ̄2 (B.6)

where ρ̄ corresponds to the limit of the ρ integration (starting at ρ = 0). Then charge
quantisation requires

ρ̄2 = N
4πl3p
αR

, N ∈ N . (B.7)

The above results work remarkably well with the matching to the AdS solutions of [30].
Restoring the Planck length appropriately in the solution (4.14) such that ρ has units of
length and % is dimensionless, and carefully working through the identification with the
AdS limit r2f1 = r2

1 of (B.1), the matching condition (4.16) and (4.18) become

ρ2 =
2l3p
Rα

% , u = α
2r2

1%

lpR
, ĥ4 = α

2r2
1lp%

R3 . (B.8)

In [30] we have a sequence of intervals % ∈ [2πj, 2π(j + 1)]. Viewing our solution as lying
in the first interval, % ∈ [0, 2π] we have ρ̄2 = 4πl3p

αR giving one unit of charge. Meanwhile the
relationship between the M2 and M5 charges matches that following from equations (3.6)
to (3.8) of [30].

Finally we can try to fix the relationship between the 11-dimensional Planck length and
the 10-dimensional string length appearing in the original solutions in type IIA on S3. A
crude way to do this is to reduce the Newton’s constant prefactor of 11- and 10-dimensional
supergravity to the 7-dimensional theory, via

1
2κ2

11

∫
dρ ρ3dΩ3 = 1

2κ2
10

∫
R3dΩ3 ⇒

2π2 1
4 ρ̄

4

(2π)8l9p
= 2π2R3

(2π)7l8s
⇒ l3s

l3p
= α2N

5/2
5

2π , (B.9)

which implies
NM5 = 2N5α

3N1 . (B.10)

It seems most natural to take α = (2N5)−1/3, as the field strength component giving rise
to this flux comes directly from the three-form flux due to the F1 in the original brane
solution.
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