
J
H
E
P
0
5
(
2
0
2
2
)
0
5
7

Published for SISSA by Springer

Received: February 11, 2022
Accepted: April 17, 2022
Published: May 10, 2022

The two-sphere partition function from timelike
Liouville theory at three-loop order

Beatrix Mühlmann
Department of Physics, McGill University,
3600 Rue University, Montreal, QC H3A 2T8, Canada

E-mail: beatrix.muehlmann@mcgill.ca

Abstract: While the Euclidean two-dimensional gravitational path integral is in general
highly fluctuating, it admits a semiclassical two-sphere saddle if coupled to a matter CFT
with large and positive central charge. In Weyl gauge this gravity theory is known as
timelike Liouville theory, and is conjectured to be a non-unitary two-dimensional CFT. We
explore the semiclassical limit of timelike Liouville theory by calculating the two-sphere par-
tition function from the perspective of the path integral to three-loop order, extending the
work in [6]. We also compare our result to the conjectured all-loop sphere partition function
obtained from the DOZZ formula. Since the two-sphere is the geometry of Euclidean two-
dimensional de Sitter space our discussion is tied to the conjecture of Gibbons-Hawking,
according to which the dS entropy is encoded in the Euclidean gravitational path integral
over compact manifolds.

Keywords: 2D Gravity, Models of Quantum Gravity

ArXiv ePrint: 2202.04549

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP05(2022)057

mailto:beatrix.muehlmann@mcgill.ca
https://arxiv.org/abs/2202.04549
https://doi.org/10.1007/JHEP05(2022)057


J
H
E
P
0
5
(
2
0
2
2
)
0
5
7

Contents

1 Introduction 1

2 Timelike Liouville theory 4
2.1 Fadeev-Popov gauge fixing, round saddle & small fluctuations 5
2.2 One-loop contribution 6

3 Diagramatics 8
3.1 Propagators & spherical harmonics 8
3.2 Two-loop contributions 9
3.3 Three-loop contributions 10

4 Sphere partition function 12
4.1 Cancellations 12
4.2 Three-loop two-sphere partition function 14

5 Comparison to (timelike) DOZZ 15
5.1 Sphere partition function from (timelike) DOZZ 15

6 Outlook 17

A Spherical harmonics 18

B More three-loops 19
B.1 Numerical evidence 21

1 Introduction

Very little is known about de Sitter space at the quantum level. In particular, there is no
S-matrix as for an asymptotically flat spacetime, or correlation functions as we encounter in
the AdS/CFT dictionary (for a review see e.g. [1–3]). Because of the accelerated expansion,
an observer in a de Sitter spacetime is surrounded by a cosmological horizon. Conjecturally
a finite entropy is associated to this horizon, which in our Universe is of order SdS = 10120.
Macroscopically, Gibbons and Hawking [4, 5] conjectured that the entropy of a de Sitter
universe is encoded in the path integral

eSdS =
∑
M

∫
M

[Dg]e−SE [Λ,gij ,M]Zmatter[gij ,M, cm] , (1.1)

where Λ > 0 is the cosmological constant and we are integrating over compact manifoldsM;
SE is the Euclidean Einstein-Hilbert action with dominant sphere saddle. The round sphere
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is the geometry of Euclidean de Sitter space. The sphere is the analytic continuation of both
the global and the static dS patch. We also include a matter CFT with central charge cm.

There are several questions about (1.1) which require further exploration. Firstly, no
microscopic model for the de Sitter entropy is known. Moreover, performing the path
integral (1.1) in general dimensions is a difficult task. Recent developments include [6–14].
In this paper, following the spirit of [6, 12, 13, 16, 17], we restrict to a two-dimensional
spacetime and explicitly calculate the gravitational path integral (1.1) in Weyl gauge [18,
19]. While the path integral of two-dimensional quantum gravity is in general highly
fluctuating, if coupled to a matter CFT with large and positive central charge cm, it admits
a semiclassical two-sphere saddle. Vanishing conformal anomaly then implies that the
Liouville central charge is large and negative, leading to timelike Liouville theory (TLT).
TLT is conjectured to be a CFT [6, 20, 21]. Unlike in (spacelike) Liouville theory, in
TLT [6, 20, 21] the sign of the kinetic term is reversed. In Weyl gauge g = e2βϕg̃ the action
of TLT on a two-sphere is given by

StL[ϕ] = 1
4π

∫
S2

d2x
√
g̃
(
−g̃ij∂iϕ∂jϕ− qR̃ϕ+ 4πΛe2βϕ

)
. (1.2)

In the above ϕ denotes the Weyl mode, g̃ the fiducial metric with Ricci scalar R̃; Λ > 0 is the
cosmological constant. Furthermore q = β−1 − β and the timelike Liouville central charge
is given by ctL = 1− 6q2. Restricting to genus zero, the path integral of interest is now

ZtL[Λ] = 1
volPSL(2,C)

×
∫

[Dϕ]e−StL[ϕ] . (1.3)

We calculate three-loop corrections on top of the two-sphere saddle, extending the work
in [6]. This allows us to explore the Gibbons-Hawking conjecture and could be useful to
constrain a possible microscopic theory of a two-dimensional de Sitter universe.

Whereas the gravitational path integral (1.3) admits a semiclassical, β → 0, two-sphere
saddle on top of which we can calculate loop corrections, there also exists a path integral
independent approach toward the two-sphere partition function. Originally introduced for
spacelike Liouville theory by Dorn-Otto [23] and Zamolodchikov-Zamolodchikov [24], the
DOZZ formula captures the three-point function of the Liouville vertex operators. The
DOZZ formula has been extended to TLT by Zamolodchikov and Kostov-Petkova [25–
28] (see also [21]). Since however e.g. the timelike DOZZ formula in [21] for three area
operators Oβ = e2βϕ vanishes, contradicting the fact that the path integral yields a non-
vanishing result, our comparison relies instead on analytically continuing the spacelike
DOZZ formula, i.e.

〈Oβ(z1)Oβ(z2)Oβ(z3)〉 = 1
volPSL(2,C)

× C(b, b, b; Λ)|b→±iβ
|z1 − z2|2|z1 − z3|2|z2 − z3|2

, (1.4)

where we also highlight the Λ dependence of the structure constant. Below we summarise
the sphere partition functions obtained from the two approaches described above.
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Results.

• Analytically continuing C(b, b, b; Λ)|b→±iβ and thrice integrating with respect to Λ
leads to the sphere partition function [6, 29]

ZDOZZ
tL [Λ] = ±i

(
πΛγ(−β2)

)− 1
β2 +1 (1 + β2)

π3qγ(−β2)γ(−β−2) e
q2−q2 log 4 (1.5)

≈ ±e−
1
β2−

1
β2 log(4πβ2)Λ−

1
β2 +1

(
1− e

2iπ
β2
)

×
( 1
β

+ 1
6 (19− 6 log 4)β +

(1
2 ×

1
36(19− 6 log 4)2 − 2

3ζ(3)
)
β3 + . . .

)
,

where γ(x) ≡ Γ(x)/Γ(1 − x). This is conjectured to be the two-sphere partition
function of TLT [29].

• On the other side, evaluating (1.3) on the round two-sphere saddle and calculating
three-loop corrections on top of this saddle yields

ZtL[Λ]≈±ie−
1
β2−

1
β2 log(4πβ2)

υ
ctL
6 Λ

7
6−β

2

uv Λ−
1
β2 +1×

(
1
β

+
(1

6(19−6log4)−(2γE+logπ)

+	− 10
3 + 5πa1

2a0

)
β+

(1
2×

(1
6(19−6log4)−(2γE+logπ)+	− 10

3 + 5πa1
2a0

)2

+loopsβ4−
17
27 + 15πa1

4a0
− 25π2a2

1
8a2

0
− 1

2	
2
)
β3+...

)
, (1.6)

where a1 = 27a0/(20π), γE is the Euler-Mascheroni constant; Λuv is the UV cutoff
of our theory and 4πυ denotes the area of the two-sphere. Finally 	 denotes a “mel-
onic” type of diagram, whereas “loopsβ4” comprises all three-loop diagrams. These
diagrams appear at order O(β4), and after taking into considerations all cancellations
are diagrams of the form shown in figure 1. The gauge fixing of volPSL(2,C) and the
saddle create the expansion in odd powers of β in (1.6);

It is immediately visible that ZDOZZ
tL and ZtL do not agree with each other. From the path

integral perspective, the conformal anomaly of the sphere, υctL/6, is immediate, and the
UV cutoff Λuv combines with the area and the cosmological constant to render the sphere
partition function dimensionless. These dimensions must be reverse-engineered in (1.5).
Furthermore, whereas the forms of the small β expansions agree with each other, the coef-
ficients do not. This was noted already in [6] and a conjectured solution was put forward.
In this paper, by extending the loop corrections to third order, we could test this proposal.
Taking scheme dependency into consideration and allowing the rescaling Λuv → sΛuv, we
conjecture that for log s = − (2γE + log π) the small β expansions of (1.5) and (1.6) agree
not just to second but up to third order. Furthermore we observe a systematic cancellation
of UV divergent diagrams as well as cancellations between UV finite diagrams. After the
dust settles only the type of diagrams shown below survives at order O(β4).

These diagrams suggest a nice generalisation of the melonic type diagrams appearing
at order O(β2) to higher orders. Furthermore, we note that the agreement between (1.5)
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Figure 1. Type of diagrams surviving at order O(β4).

and (1.6) also at three-loop order provides further evidence that the semiclassical expansion
leads to a loophole around Gribov-phenomena [30].

A major difference between (1.5) and (1.6) clearly remains. This is the appearance
of the term e

2iπ
β2 in ZDOZZ

tL [Λ]. From a path integral perspective, it can be interpreted as
the contribution of a second complex saddle. As we will explain in section 5, in the spirit
of [31], both saddles are allowed from a path integral perspective.

Outline. The outline of this paper is as follows. In section 2 we introduce TLT and
explain its main features. We explain the round two-sphere saddle and the small fluctua-
tions thereof. For details of the calculations we refer to [6]. In section 3 we delve into the
diagramatics. After introducing the propagator on the two-sphere we recap the two-loop
diagramatics explored in [6]. Our main calculations are the three-loop contributions stud-
ied in section 3.3. In section 4 we summarise the two- and three-loop contributions, explain
the cancellations of the UV divergences, and present the TLT sphere partition function. In
section 5 we compare our result for the two-sphere partition function to the one obtained
upon analytically continuing the spacelike DOZZ formula for three area operators. We
discuss scheme dependency and the allowability of the complex saddle. Finally section 6
provides some concluding and speculative remarks.

2 Timelike Liouville theory

In this section we introduce the components of (1.3). We will not delve into any details,
for which we refer to [6].

We fix the background fiducial metric ds̃2 to be the Fubini-Study metric on the two-
sphere with area 4πυ. If we denote by ϕ the Weyl mode we have

ds2 = e2βϕds̃2 , ds̃2 = 4υ dzdz̄
(1 + zz̄)2 ≡ e

2Ω(z,z̄)dzdz̄ . (2.1)

The action of TLT on a two-sphere topology in Weyl gauge is given by

StL[ϕ] = 1
4π

∫
S2

d2x
√
g̃
(
−g̃ij∂iϕ∂jϕ− qR̃ϕ+ 4πΛe2βϕ

)
, (2.2)

where R̃ = 2/υ is the Ricci scalar of the fiducial metric g̃ij ; Λ > 0 is the cosmological
constant. Furthermore we have q = β−1 − β. TLT, believed to be a two-dimensional CFT
has central charge ctL = 1 − 6q2. Together with the central charge of the matter theory,
coupled in (2.2) via the identity operator to gravity, and the central charge cgh = −26 of
the ghost theory, arising upon gauge fixing, it obeys the condition

ctL + cm + cgh = 0 , (2.3)
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guaranteeing the vanishing of the conformal anomaly. The path integral of TLT is

ZtL[Λ] = 1
volPSL(2,C)

×
∫

[Dϕ]e−StL[ϕ] . (2.4)

Expanding the Weyl mode into a basis of real spherical harmonics on the two-sphere

ϕ(θ, φ) =
∞∑
l=0

l∑
m=−l

ϕl,mYl,m(θ, φ) , θ ∈ [0, π) , φ ∼ φ+ 2π . (2.5)

we define the measure in (2.4)

[Dϕ] =
∏
l,m

(Λuvυ

π

) 1
2
dϕlm . (2.6)

such that
1 =

∫
[Dϕ]e−Λuv

∫
d2x
√
g̃ ϕ(x)2

. (2.7)

Here Λuv is the UV cutoff of the theory.

2.1 Fadeev-Popov gauge fixing, round saddle & small fluctuations

First and foremost we need to take care of the infinite volume of PSL(2,C) in (2.4). This
infinite volume might suggest a vanishing sphere partition function, however the invariance
of the Liouville action under [6]

ϕ(z, z̄)→ ϕ(f(z), f(z)) + q

2 log f ′(z) + q

2 log f ′(z) + q
(
Ω(f(z), f(z))− Ω(z, z̄)

)
, (2.8)

produces another volume of PSL(2,C) upstairs and thus yields an infinity over infinity
situation in (2.4). In (2.8) f(z) is an element in PSL(2,C) and we defined Ω(z, z̄) in (2.1).
We will fix the volume of PSL(2,C) by using a Fadeev-Popov approach. We follow [6, 18]
and set the three l = 1 modes δϕ1,m, m ∈ {−1, 0, 1} to zero. This fixes three of the six pa-
rameters of PSL(2,C) and we are left with the finite volume of SO(3). Explicitly we obtain

∆FP≡ det dδϕ1,m
dδαn

= a0q
3 +a1q

2∑
m=−2

ϕ2
2m+a2

(
ϕ3

2,0 + 3
2ϕ2,0(ϕ2

2,1 +ϕ2
2,−1) (2.9)

+ 3
2
√

3ϕ2,2(ϕ2
2,1−ϕ2

2,−1)+3
√

3ϕ2,1ϕ2,−1ϕ2,−2−3ϕ2,0(ϕ2
2,−2 +ϕ2

2,2)
)
,

where m ∈ {−1, 0, 1} and αn denote directions in PSL(2,C)/SO(3). One can check
that (2.9) is indeed SO(3) invariant. Furthermore we find

a0 ≡ −
16

3
√

3
π3/2 , a1 ≡

12
5
√

3π , a2 ≡
12
5

√
3
5 . (2.10)

The classical equations of motion of (2.2) are

− 2∇̃2ϕ = 8πβΛe2βϕ − 2
υ
q , (2.11)
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where −∇̃2 is the Laplacian with respect to g̃ij . Equation (2.11) admits a constant and
real solution given by1

ϕ∗ = 1
2β log

(
q

4πυΛβ

)
, (2.13)

and we obtain the saddle point contribution of (1.3)

Zsaddle[Λ] =
(

q

4πeΛυβ

) q
β

≈
( 1

Λυβ2

) 1
β2
. (2.14)

We now add a small fluctuation δϕ to ϕ∗

ϕ→ ϕ∗ + δϕ . (2.15)

Using the expansion (2.5) the Laplacian ∇̃2 for δϕ obeys the eigenvalue equation

∇̃2δϕ = −1
υ
l(l + 1)δϕ , l ≥ 0 . (2.16)

Expanding (2.2) around (2.15) we observe that for l ≥ 2 we are dealing with an infinite
number of unsuppressed Gaussian terms. To cure this we will follow [32] and rotate δϕ→
±iδϕ. The resulting Jacobian is an ultralocal contribution [33] and can be absorbed in the
measure. We thus have

ZtL[Λ] = Zsaddle[Λ]×Zpert[β] , (2.17)

where Zsaddle we defined in (2.14) and the perturbative part is given by

Zpert[β] = 1
volSO(3)

×
∫

[Dδϕ]×∆FP[δϕ]×
∏

m={−1,0,1}
δ(δϕ1m)

× e−
1

4π

∫
S2 d2x

√
g̃(g̃ij∂iδϕ∂jδϕ− 2

υ
qβδϕ2)

× e−
1

4π
q
β

∫
dΩ(−i 4

3β
3δϕ(Ω)3+ 2

3β
4δϕ(Ω)4+i 4

15β
5δϕ(Ω)5− 4

45β
6δϕ(Ω)6+...) . (2.18)

2.2 One-loop contribution

To quadratic order in the fields and in the semiclassical small β limit the path integral (2.18)
including the Fadeev-Popov determinant is given by

Z(2)
pert[β] = a0q

3
∫ ∏

l,m

(Λuvυ

π

) 1
2

dδϕl,m

×
∏

m={−1,0,1}
δ(δϕ1m) e

a1
a0q2

∑2
m=−2 δϕ

2
2,me

− 1
4π
∑

l,m
(l(l+1)−2βq)δϕ2

l,m . (2.19)

1If we allow also complex saddles we have the integer indexed family of constant solutions

ϕc,∗ = ϕ∗ + πi

β
n , n ∈ Z . (2.12)

– 6 –



J
H
E
P
0
5
(
2
0
2
2
)
0
5
7

We highlight that we also Wick-rotated the l = 2 mode in the Fadeev-Popov determi-
nant (2.9) and consequently we have in the above expression

a1
a0

= + 27
20π . (2.20)

Whereas the Wick rotation δϕ → ±iδϕ cured the unsuppressed Gaussians for l ≥ 2,
from (2.19) we infer that it created a Gaussian unsuppressed l = 0 mode. We cure this by
Wick rotating a single mode back δϕ00 → ±iδϕ00 [32, 33] . Keeping track of the resulting
Jacobian we arrive at

Z(2)
pert[β] ≡ ±ia0q

3
(2πυΛuv

βq

) 1
2
(
υΛuv
π

) 3
2
(

4πυΛuv
6− 2βq − 4π a1

a0q2

) 5
2 ∞∏
l=3

( 4πυΛuv
l(l + 1)− 2βq

)l+ 1
2
.

(2.21)
In the above expression we have been treating the l = 0, 1, 2 and l ≥ 3 modes separately.
In particular for l ≥ 3 we encounter an infinite product which we can evaluate using for
example a heat kernel regularisation scheme. We obtain

− 1
2

∞∑
l=3

(2l + 1) log
(
l(l + 1)− 2βq

4πΛuvυ

)
= −107 + 12ν2

12 log
(

2e−γE
ε

)
+ 2
ε2 + ν2

+
(1

2 −∆+

)
ζ ′(0,∆+) +

(1
2 −∆−

)
ζ ′(0,∆−) + ζ ′(−1,∆+) + ζ ′(−1,∆−)

+ 3
2 log β2 + 5

2 log(2 + β2) + 1
2 log(−1 + β2) + 9

2 log 2 . (2.22)

where ν ≡
√
−2βq − 1/4, ∆± = 1/2 ± iν, and ζ(a, z) denotes the Hurwitz ζ-function.

Furthermore we have ε = e−γE/
√
πυΛuv. Applying to (2.22) the relations [34]2

ζ ′(0, z) = logΓ(z)− 1
2 log(2π) , ζ ′(−1, z) = ζ ′(−1)− logG(z + 1) + z logΓ(z) , (2.23)

we find

+
(1

2 −∆+

)
ζ ′(0,∆+) +

(1
2 −∆−

)
ζ ′(0,∆−) + ζ ′(−1,∆+) + ζ ′(−1,∆−)

+ 1
2 log(−1 + β2) + 3

2 log β2 + 5
2 log(2 + β2) + 9

2 log 2

∼ 1
6 + 1

2 log(6) + log(96)− 2 logA+
(13

12 − 2γ
)
β2 + 61

432β
4 +O

(
β6
)
. (2.24)

For details to the calculation of the Fadeev-Popov determinant and the heat-kernel analysis
we refer to [6].

To conclude this section we discuss the effect of the Fadeev-Popov determinant (2.9).
Expanding the contribution of the Fadeev-Popov determinant for small β and stripping off

2These identities are to be understood as yielding a real valued analytic expression at small β.
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the factor a0q
3 we obtain3

ZFP
pert[β] = a0q

3
∫ 2∏

m=−2
dϕ2,m e

− 1
4π (6−2qβ) × elog ∆FP

a0q3 (2.26)

= a0q
3
∫ 2∏

m=−2
dϕ2,m e

− 1
4π

(
6−2βq−4π a1

a0q2

)
δϕ2

2,m
e
a2
a0

Φ3β3− 1
2

(
a1
a0

)2
Φ2

2β
4+...

,

where for notational convenience we defined

Φ2≡
2∑

m=−2
δϕ2

2,m , Φ3≡ δϕ3
2,0 + 3

2δϕ2,0(δϕ2
2,1 +δϕ2

2,−1)+ 3
2
√

3δϕ2,2(δϕ2
2,1−δϕ2

2,−1)

+3
√

3δϕ2,1δϕ2,−1δϕ2,−2−3δϕ2,0(δϕ2
2,−2 +δϕ2

2,2) . (2.27)

Expanding the exponential, we obtain to order O(β4)

1
Z(2)

pert[β]
×ZFP

pert[β] = 1− 35π2

8

(
a1
a0

)2
β4 + . . . . (2.28)

In particular we note the first appearance of a2 will be at order O(β6) and that we absorbed
the phases of the Wick rotation of the FP determinant into the coefficients ai (2.10).

3 Diagramatics

In this section we calculate the higher-loop corrections to (2.18). We start by explaining
the propagator on the two-sphere, review the two-loop calculations of [6] and then delve
into the three loop-contributions.

3.1 Propagators & spherical harmonics

First we note the propagator. For Ω,Ω′ two points on the round two-sphere we have

G(Ω; Ω′) ≡ 1
Z(2)

pert[β]

∫
[D′δϕ]e−S

(2)
pert[δϕ]δϕ(Ω)δϕ(Ω′) = 2π

∑
l 6=1,m∈[−l,l]

Ylm(Ω)Ylm(Ω′)
Al

,

(3.1)
where we defined for l 6= 1, Al ≡ (l(l + 1) − 2 + 2β2 − 4πa1/(a0q

2)δl,2), Ω is a point on
the round two-sphere and Yl,m(Ω) denote the real spherical harmonics. Our conventions
we explain in appendix A. In particular at coincidence where Ω = Ω′ we have∫

S2
dΩG(Ω; Ω) = 2π

∞∑
l 6=1

2l + 1
Al

= 4πG(Ω0; Ω0) . (3.2)

3Note that we could have also calculated∫ 2∏
m=−2

dδϕ2,m ∆FP e
− 1

4π (6−2βq)δϕ2
2,m+... , (2.25)

explicitly. We decided to calculate the pieces order by order to have a better idea about the propagator.
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Figure 2. Double-tadpoles, cactus and melonic type diagrams.

The last equality follows from the fact that G(Ω; Ω) is Ω independent. The above sum di-
verges logarithmically, as expected for coincident fields in two dimensions. Eq. (3.2) holds
true also if we remove the l = 1 modes since for each l the spherical harmonics form an irre-
ducible representation of SO(3). Finally for the l = 2 modes we also need to take into con-
sideration the effects arising from the Fadeev-Popov determinant (2.19), thus shifting the
“mass” in Al. We now examine the Feynman diagrams in (2.18). We first review the two-
loop calculation in [6] and then delve into the three-loop contributions. Care must be taken
since we need to remove the l = 1 modes and adjust the propagator for the l = 2 modes.

3.2 Two-loop contributions

We now discuss the path integral (2.18)

Zpert[β] =
∫

[Dδϕ]×∆FP[δϕ]×
∏

m={−1,0,1}
δ(δϕ1m) (3.3)

× e−S
(2)
pert[δϕ]e−

1
4π

q
β

∫
S2 dΩ(−i 4

3β
3δϕ(Ω)3+ 2

3β
4δϕ(Ω)4+i 4

15β
5δϕ(Ω)5− 4

45β
6δϕ(Ω)6+...)

in a small β expansion. We remind the reader of the relation q = β−1 − β. The leading
two-loop contribution has already been calculated in [6]. We summarise the main results.
To two-loop order we obtain three different types of diagrams which we denote as double
tadpoles, cactus diagrams and melonic type diagrams (see figure 2)

©−© ≡ − 1
A0

∑
l 6=1

(2l1 + 1)(2l2 + 1)
Al1Al2

, ©© ≡ −1
2
∑
l 6=1

(2l1 + 1)(2l2 + 1)
Al1Al2

,

	 ≡ −2
3
∑
l 6=1

(2l1 + 1)(2l2 + 1)(2l3 + 1)
Al1Al2Al3

(
l1 l2 l3
0 0 0

)2

. (3.4)

We use bold symbols to combine summation indices, e.g. in the melonic sum 	 the
boldsymbol l = {l1, l2, l3} and so on. Since at order O(1), A0 = −2 we observe that the
UV divergent double-tadpole and cactus diagrams cancel each other at order O(β2). The
remaining melonic type diagrams give a UV finite contribution at order O(β2). In summary
the diagramatics so far leads to

1
Z(2)

pert[β]
×Zpert[β] = 1 + β2	+ . . . (3.5)

Due to the β dependency of

Al = l(l + 1)− 2 + 2β2 − 4π
q2
a1
a0
, q = β−1 − β (3.6)
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however cactus and double-tadpoles do not cancel anymore at order O(β4). Furthermore
for the l = 2 there is also the effect of the Fadeev-Popov determinant. Before delving into
three-loop contributions which add diagrams of order O(β4) we therefore expand Al in (3.4):

β2 (©−©+©©+	) = β2	+ β4

2
∑
l 6=1

(2l1 + 1)(2l2 + 1)
Al1Al2

+ 4β4∑
l 6=1

(2l1 + 1)(2l2 + 1)(2l3 + 1)
A2
l1
Al2Al3

(
l1 l2 l3
0 0 0

)2

+ 2
3 × 3× 5× 4π

A2
2

a1
a0
β4 ∑

l 6=1,2

(2l2 + 1)(2l3 + 1)
Al2Al3

(
2 l2 l3
0 0 0

)2

+ 2
3 × 6× 52 × 4π

A3
2

a1
a0
β4 ∑

l3 6=1,2

(2l3 + 1)
Al3

(
2 2 l3
0 0 0

)2

+ 2
3 × 3× 53 × 4π

A4
2

a1
a0
β4
(

2 2 2
0 0 0

)2

. (3.7)

Since the 3j symbol obeys the triangle condition we can evaluate the last two contributions
explicitly. Clearly then only the second contribution in (3.7) is logarithmically divergent
in the UV whereas the other diagrams yield finite contribution.

We now start our journey calculating the three-loop contributions, thereby finding a
contribution exactly and fully cancelling the logarithmically divergent contribution in (3.7).

3.3 Three-loop contributions

To three loop and at order O(β4) we obtain from (2.18) the following seven contributions

1
9π2

〈∫
S2

dΩdΩ′ϕ(Ω)3ϕ(Ω′)3
〉

+ 1
6π

〈∫
S2

dΩϕ(Ω)4
〉

+ 1
45π2

〈∫
S2

dΩdΩ′ϕ(Ω)3ϕ(Ω′)5
〉

+ 1
45π

〈∫
S2

dΩϕ(Ω)6
〉

+ 1
72π2

〈∫
S2

dΩdΩ′ϕ(Ω)4ϕ(Ω′)4
〉

+ 1
108π3

〈∫
S2

dΩdΩ′dΩ′′ϕ(Ω)3ϕ(Ω′)3ϕ(Ω′′)4
〉

+ 1
1944π4

〈∫
S2

dΩdΩ′dΩ′′dΩ′′′ϕ(Ω)3ϕ(Ω′)3ϕ(Ω′′)3ϕ(Ω′′′)3
〉
. (3.8)

Here 〈·〉 denotes the expectation value with respect to the Gaussian integral (2.19). We
explain the diagrams individually.

First we highlight that two-loop diagrams appear at order O(β4) not only through the
β dependency in Al (3.6) (see (3.7)) but also due to the fact that the couplings in (2.18)
are of the form qβa, a ≥ 2, which itself has a small β expansion. The first two diagrams
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in (3.8) are thus well known, adding melons, double-tadpoles and vector diagrams:

1
9π2

〈∫
S2

dΩdΩ′ϕ(Ω)3ϕ(Ω′)3
〉

= 1
9π2 c1 ×

∫
S2

dΩdΩ′G(Ω,Ω′)3 + 1
9π2 c2 ×G(Ω0,Ω0)2

∫
S2

dΩdΩ′G(Ω,Ω′)

= 4
3
∑
l 6=1

(2l1 + 1)(2l2 + 1)(2l3 + 1)
Al1Al2Al3

(
l1 l2 l3
0 0 0

)2

+ 2
A0

∑
l 6=1

(2l1 + 1)(2l2 + 1)
Al1Al2

, (3.9)

where c1 = 6 and c2 = 9 are two combinatorial factors. So we find melons and double-
tadpoles also at three-loop order. The second contribution in (3.8) are cactus diagrams

1
6π

〈∫
S2

dΩϕ(Ω)4
〉

= 1
6πc1 ×

∫
S2

dΩG(Ω,Ω)2 = 1
2
∑
l 6=1

(2l1 + 1)(2l2 + 1)
Al1Al2

. (3.10)

Now we delve into the world of three-loop contributions. We have

1
45π2

〈∫
S2

dΩdΩ′ϕ(Ω)3ϕ(Ω′)5
〉

= 1
45π2 c1 ×G(Ω0,Ω0)

∫
S2

dΩdΩ′G(Ω,Ω′)3

+ 1
45π2 c2 ×G(Ω0,Ω0)3

∫
S2

dΩdΩ′G(Ω,Ω′)

= 4
3
∑
l 6=1

(2l1 + 1)(2l2 + 1)(2l3 + 1)(2l4 + 1)
Al1Al2Al3Al4

(
l1 l2 l3
0 0 0

)2

+ 1
A0

∑
l 6=1

(2l1 + 1)(2l2 + 1)(2l3 + 1)
Al1Al2Al3

. (3.11)

The combinatorial factors are c1 = 60 and c2 = 45; the sextic diagram evaluates to

1
45π

〈∫
S2

dΩϕ(Ω)6
〉

= 1
6
∑
l 6=1

(2l1 + 1)(2l2 + 1)(2l3 + 1)
Al1Al2Al3

. (3.12)

Now we are entering more subtle ground. We find

1
72π2

〈∫
S2

dΩdΩ′ϕ(Ω)4ϕ(Ω′)4
〉

=
∑
l 6=1

(2l1 + 1)(2l2 + 1)(2l3 + 1)
Al1Al2A

2
l3

+ 1
8
∑
l 6=1

(2l1 + 1)(2l2 + 1)(2l3 + 1)(2l4 + 1)
Al1Al2Al3Al4

(3.13)

+ 1
3
∑
l 6=1

∑
l5≥0

(2l1 + 1)(2l2 + 1)(2l3 + 1)(2l4 + 1)(2l5 + 1)
Al1Al2Al3Al4

(
l1 l2 l5
0 0 0

)2(
l3 l4 l5
0 0 0

)2

,

where we highlight that in the last sum the sum over l5 runs over all positive integers subject
only to the triangle condition of the 3j symbols (see appendix A). Finally we are dealing
with the last two terms in (3.8). The evaluation of these diagrams is a bit more cumbersome
and we refer to appendix B for the results. Graphically the above diagrams correspond to
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2

Figure 3. Diagrams in order of appearance starting at (3.11).

+ + + + + + + + = 0

Figure 4. Type of UV divergent diagrams that mutually cancel at order O(β4).

4 Sphere partition function

We now combine the 26 diagrams (3.9)–(3.13) and (B.2)–(B.4) with the O(β4) contribution
of the two-loop diagrams (3.7).

4.1 Cancellations

UV divergences & cancellations. We summarise all the UV divergent diagrams. As
expected these divergences appear logarithmically for large l:

1
2
∑
l 6=1

(2l1 +1)(2l2 +1)
Al1Al2

+ 1
2
∑
l 6=1

(2l1 +1)(2l2 +1)
Al1Al2

+ 2
A0

∑
l 6=1

(2l1 +1)(2l2 +1)
Al1Al2

+ 1
A0

∑
l 6=1

(2l1 +1)(2l2 +1)(2l3 +1)
Al1Al2Al3

+ 1
6
∑
l 6=1

(2l1 +1)(2l2 +1)(2l3 +1)
Al1Al2Al3

+ 2
A2

0

∑
l 6=1

(2l1 +1)(2l2 +1)(2l3 +1)
Al1Al2Al3

+ 4
3A3

0

∑
l 6=1

(2l1 +1)(2l2 +1)(2l3 +1)
Al1Al2Al3

+ 1
8
∑
l 6=1

(2l1 +1)(2l2 +1)(2l3 +1)(2l4 +1)
Al1Al2Al3Al4

+ 1
2A2

0

∑
l 6=1

(2l1 +1)(2l2 +1)(2l3 +1)(2l4 +1)
Al1Al2Al3Al4

+ 1
2A0

∑
l 6=1

(2l1 +1)(2l2 +1)(2l3 +1)(2l4 +1)
Al1Al2Al3Al4

+ 4
A0

∑
l 6=1

(2l1 +1)(2l2 +1)(2l3 +1)
A2
l1
Al2Al3

+
∑
l 6=1

(2l1 +1)(2l2 +1)(2l3 +1)
Al1Al2A

2
l3

+ 4
A2

0

∑
l 6=1

(2l1 +1)(2l2 +1)(2l3 +1)
A2
l1
Al2Al3

= 0 , (4.1)

where in the last step we used that A0 = −2 at order O(1). Graphically this corresponds
to the cancellations as depicted in figure 4.

Additionally we observe cancellations between UV finite diagrams; graphically these
are cancellations of diagrams of the form 5.
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+ + + = 0

Figure 5. Type of UV finite diagrams that mutually cancel at order O(β4).

Figure 6. Type of diagrams surviving at order O(β4).

Finite O(β4) diagrams. We are finally left with the following 7 diagrams:

loopsβ4 ≡ 4
∑
l 6=1

(2l1 + 1)(2l2 + 1)(2l3 + 1)
A2
l1
Al2Al3

(
l1 l2 l3
0 0 0

)2

+ 4
3
∑
l 6=1

(2l1 + 1)(2l2 + 1)(2l3 + 1)
Al1Al2Al3

(
l1 l2 l3
0 0 0

)2

+ 1
3
∑
l 6=1

∑
l5≥0

(2l1 + 1)(2l2 + 1)(2l3 + 1)(2l4 + 1)(2l5 + 1)
Al1Al2Al3Al4

(
l1 l2 l5
0 0 0

)2(
l3 l4 l5
0 0 0

)2

+ 4
∑
l 6=1

(2l1 + 1)(2l2 + 1)(2l3 + 1)(2l4 + 1)(2l5 + 1)
Al1Al2Al3Al4Al5

(
l1 l2 l5
0 0 0

)2(
l3 l4 l5
0 0 0

)2

+ 2
9
∑
l 6=1

(2l1 + 1)(2l2 + 1)(2l3 + 1)(2l4 + 1)(2l5 + 1)(2l6 + 1)
Al1Al2Al3Al4Al5Al6

(
l1 l2 l3
0 0 0

)2(
l4 l5 l6
0 0 0

)2

+ 4
∑
l 6=1

(2l1 + 1)(2l2 + 1)(2l3 + 1)(2l4 + 1)(2l5 + 1)
Al1Al2Al3Al4A

2
l5

(
l1 l2 l5
0 0 0

)2(
l3 l4 l5
0 0 0

)2

+ 8
3
∑
l 6=1

(−1)m1+m2+m3+m4+m5+m6 (2l1 + 1)(2l2 + 1)(2l3 + 1)(2l4 + 1)(2l5 + 1)(2l6 + 1)
Al1Al2Al3Al4Al5Al6

×
(
l1 l2 l3
m1 m2 m3

)(
l1 l4 l5
−m1 m4 m5

)(
l2 l4 l6
−m2 −m4 m6

)(
l3 l5 l6
−m3 −m5 −m6

)

×
(
l1 l2 l3
0 0 0

)(
l1 l4 l5
0 0 0

)(
l2 l4 l6
0 0 0

)(
l3 l5 l6
0 0 0

)
+ two-loopβ4 , (4.2)

where we denote by two-loopβ4 the last three O(β4) contributions of the two-loop diagrams
in (3.7) (those proportional to a1/a0). We remark that the fifth diagram in the above
contribution is minus one half times the square of the melonic diagram (3.4). Out of all
the 26 diagrams contributing to the path integral (2.18) at three-loop only the above seven
UV finite diagrams survive. All the UV divergent diagrams cancel each other mutually
because of the coefficients in (2.18) as well as the fact that A0 = −2 (3.1). The diagrams
contributing to loopβ4 are of the form depicted in the figure 6.
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4.2 Three-loop two-sphere partition function

Combining (2.14), (2.21), (2.28) as well as loopsβ4 , the semiclassical two-sphere partition
function in TLT at three-loop order is given by

ZtL[Λ] ≈ ±i
volSO(3)

const × e
− 1
β2−

1
β2 log(4πβ2)

υ
ctL
6 Λ

7
6−β

2

uv Λ−
1
β2 +1 (4.3)

×
( 1
β

+
(1

6(19− 6 log 4)− (2γE + log π) +
(
	− 10

3 + 5πa1
2a0

))
β

+
(

1
2 ×

(1
6(19− 6 log 4)− (2γE + log π) +

(
	− 10

3 + 5πa1
2a0

))2

+
(
loopsβ4 −

17
27 + 15πa1

4a0
− 25π2a2

1
8a2

0
− 1

2	
2
))

β3 + . . .

)
,

where
const ≡ a0 ×

6× 21/3√3
A2π5/6 e−25/12 ,

a1
a0

= 27
20π . (4.4)

and ctL = 1− 6q2 is given by

ctL = − 6
β2 + 13− 6β2 . (4.5)

The partition function (4.3) clearly reflects the sphere anomaly of a two-dimensional CFT,
providing independent evidence for timelike Liouville to be a conformal field theory. Nu-
merically we obtain strong evidence (see appendix B) that at two-loop

	− 10
3 + 5πa1

2a0
= 0 , a1

a0
= 27

20π , (4.6)

where we defined the melonic diagrams in (3.4). We thus end up with

ZtL[Λ]≈ ±i
volSO(3)

const× e−
1
β2−

1
β2 log(4πβ2)

υ
ctL
6 Λ

7
6−β

2

uv Λ−
1
β2 +1×

( 1
β

+
(1

6(19−6log4)−(2γE +logπ)
)
β+

(
1
2×

(1
6(19−6log4)−(2γE +logπ)

)2

+
(
loopsβ4−

17
27 + 15πa1

4a0
− 25π2a2

1
8a2

0
− 1

2	
2
))

β3 + . . .

)
. (4.7)

We finish this section by summarising the main ingredients of (4.7)

• The ±i ambiguity arises after Wick rotating the unsuppressed l = 0 mode backwards.

• The υ dependency is reminiscent of the sphere anomaly of a two-dimensional CFT
providing independent evidence that TLT is indeed a two-dimensional CFT.

• The Fadeev-Popov determinant adds O(β−3) to the semiclassical expansion.
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5 Comparison to (timelike) DOZZ

The goal of this section is to compare (4.7) to the sphere partition function obtained upon
analytically continuing the DOZZ formula for three area operators Oβ = e2βϕ.

5.1 Sphere partition function from (timelike) DOZZ

Another possibility to obtain the sphere partition function exploits the DOZZ formula
of three area operators. The three-point function structure constant has originally been
introduced for spacelike Liouville theory. Whereas the analytic continuation ϕ → ±iϕ,
b→ ∓iβ and Q→ ±iq from the spacelike to the timelike Liouville action is an admissible
process, it is in general not for the three-point function. Care must be taken because of the
pole structure of the DOZZ formula. It seems however that the spacelike DOZZ formula
for three area operators Ob = e2bϕ admits a well defined analytic continuation. Since
additionally the timelike DOZZ formula in [21] for three area operators Oβ = e2βϕ vanishes,
contradicting a non-vanishing sphere partition function from a path integral perspective
we will proceed with our comparison using C(b, b, b; Λ)|b→±iβ . We thus consider

〈Oβ(z1)Oβ(z2)Oβ(z3)〉 = 1
volPSL(2,C)

× C(b, b, b; Λ)|b→±iβ
|z1 − z2|2|z1 − z3|2|z2 − z3|2

. (5.1)

To make contact with the Liouville partition function ZtL[Λ] in (1.3) we note that [29]

− ∂3
ΛZDOZZ

tL [Λ] = 2× C(b, b, b; Λ)|b→±iβ , (5.2)

where we have used that [24]∫
C3

d2z1d2z2d2z3
|z1 − z2|2|z1 − z3|2|z2 − z3|2

= 2 volPSL(2,C) . (5.3)

This leads to [6, 29]

ZDOZZ
tL [Λ] = ±i

(
πΛγ(−β2)

)− 1
β2 +1 (1 + β2)

π3qγ(−β2)γ(−β−2) e
q2−q2 log 4 , (5.4)

where γ(x) ≡ Γ(x)/Γ(1− x). In the semiclassical β → 0+ limit we obtain

ZDOZZ
tL [Λ] ≈ ±16

π2 e
−2−2γEe

− 1
β2−

1
β2 log(4πβ2)Λ−

1
β2 +1

(
1− e

2iπ
β2
)

(5.5)

×
( 1
β

+ 1
6 (19− 6 log 4)β +

(1
2 ×

1
36(19− 6 log 4)2 − 2

3ζ(3)
)
β3 + . . .

)
,

where we have taken e−iπ = −1. This we compare with (4.3). However we quickly realise
that (5.5) bears two subtleties, which we can phrase in terms of two questions:

• What is the regularisation scheme of the DOZZ formula?

• What is the meaning of e
2iπ
β2 in ZDOZZ

tL [Λ]?
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To attack the first question we allow some freedom in the UV cutoff in (4.3). In our path
integral derivation we chose a specific regularisation scheme — a heat kernel approach — to
calculate the functional determinant (2.22). To compare the two-sphere partition functions
we thus need to allow for an additional parameter Λuv → sΛuv keeping track of this scheme.
Motivated by a two-loop comparison of (4.3) and (5.5) and using (4.6) we choose4

s = e−(2γE+log π) . (5.6)

It remains to test whether

0 ?= −25π2

8

(
a1
a0

)2
+ 15π

4

(
a1
a0

)
− 17

27 + loopsβ4 −
1
2	

2 + 2
3ζ(3) , (5.7)

holds true. This equation combines contributions arising from the Fadeev-Popov gauge
fixing procedure, apparent in the ratio a1/a0 (2.20), the functional determinant analysis
and the loop expansion. It is clear that the challenge consists in evaluating the diagrams
in (4.2), in particular the last contributions in loopsβ4 stemming from

〈∫
S2

dΩdΩ′dΩ′′dΩ′′′ϕ(Ω)3ϕ(Ω′)3ϕ(Ω′′)3ϕ(Ω′′′)3
〉
. (5.8)

We rely on a numerical evaluation of the 3j symbols in (4.2) closely approaching the exact
result (5.7) (see appendix B for some numerical evidence). We believe that proving (5.7)
exactly is solely a numerical issue.5

One way to obtain a normalisation independent result would be to not consider the
sphere partition function on its own but to either consider ratios of either different gen-
era [12] or divide the sphere partition function by a squared disk partition function of
timelike Liouville theory. See [14, 15] for such an approach in spacelike Liouville theory.

To approach the second question we allow ourselves a short detour. One possible
interpretation of the exponential in e

2iπ
β2 is as a second complex saddle in the path integral

with ϕc = ϕ∗ + πi/β. Whereas in principle the gravitational path integral allows for the
integer indexed family of complex constant solutions ϕc,∗ = ϕ∗ + πin/β, n ∈ Z (2.11) the
DOZZ formula dictates that only the complex saddle with n = 1 should be included in the
path integral. It is not clear to us why this specific saddle needs to be included. Since (2.1)

ds2 = e2βϕcds̃2 = e2βϕ∗+2πids̃2 = e2βϕ∗ds̃2 , (5.9)

it does not affect the metric and hence following [31] both saddles are allowed.
Finally we note that the agreement between (5.5) and (4.3) provides further evidence

that the semiclassical expansion provides a loophole around Gribov-phenomena [30].
4Note that this is slightly different than s in v1 and v2 of [6] where we did not Wick rotate the Fadeev-

Popov determinant. The comparison with the DOZZ formula at three-loop however suggests that we have
to Wick rotate ϕ2,m in ∆FP rendering a1/a0 positive.

5In case numerical explorations would not confirm (5.7) another possible option to explore would be a
β dependent shift s→ s(β).

– 16 –



J
H
E
P
0
5
(
2
0
2
2
)
0
5
7

Figure 7. Examples of diagrams expected to survive cancellations at four- and five-loop.

6 Outlook

All-loops path integral. The analytically continued DOZZ formula provides the all-
loop conjectured sphere partition function of two-dimensional quantum gravity. Provided
we take into consideration the scheme dependency of the regularisation scheme (5.6) its
semiclassical expansion agrees with the path integral expansion. Importantly however the
DOZZ formula predicts the inclusion of one additional complex saddle in the path integral
picture. It would be interesting to understand why the DOZZ formula picks one and not
multiple additional complex saddles. Furthermore we observe that at two- and three-loop
all UV divergences in the path integral cancel and that the surviving diagrams are some
sort of generalised melonic type diagrams (figure 7). It would be interesting to understand
if this is the general structure of diagrams in TLT on the two-sphere. Besides being non-
unitary timelike Liouville theory provides a well defined UV finite QFT on the sphere. It
would be interesting to understand if there is a symmetry argument that could explain the
cancellations of the UV divergent and UV finite diagrams observed in loop calculations.
Maybe understanding the set-up in position space could be helpful for this also.

Higher genera. Whereas timelike Liouville theory provides an unconstrained sphere
saddle on a genus zero surface, as compared to (spacelike) Liouville theory which does so
only upon fixing the area of the physical metric [13, 22], upon increasing the genus of the
Riemann surface spacelike and TLT switch roles. Since the Ricci scalar is negative for
h ≥ 2 TLT now only admits a saddle upon fixing the area of the physical metric.

A microscopic model for timelike Liouville? Although various attempts of a micro-
scopic model for timelike Liouville theory have been discussed (see e.g. [37]) none of them
has so far been able to provide sufficient evidence. It would be interesting to see whether the
comparison of the sphere partition function of timelike Liouville theory with the sphere
partition function of spacelike Liouville theory [13, 22] can provide some evidence for a
microscopic model. This model might be more subtle than a matrix model.

Supersymmetric timelike Liouville theory. In [35, 36] a supersymmetric version of
spacelike Liouville theory has been introduced. It would be interesting to extend this to
timelike supersymmetric Liouville theory. In particular it would be interesting to under-
stand if N = 1 timelike super Liouville admits a dS2 saddle and could thus provide a setup
to use supersymmetric techniques in de Sitter [10, 38]
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A Spherical harmonics

We use real valued spherical harmonics throughout the paper. We denote by Ylm(θ, φ) the
complex spherical harmonics defined by

Ylm(θ, φ) =
√

(2l + 1)
4π

(l −m)!
(l +m)! Pl,m(cos θ) eimφ , (A.1)

where Pl,m is the associated Legendre function, and m ∈ [−l, l] with l ∈ N. Real spherical
harmonics Ylm(θ, φ) can be obtained using the linear combinations

Ylm(θ, φ) =


i√
2 (Ylm(θ, φ)− (−1)mYl,−m(θ, φ)) , if m < 0
Yl0(θ, φ)

1√
2 (Yl,−m(θ, φ) + (−1)mYlm(θ, φ)) , if m > 0 .

(A.2)

The Wigner 3j symbol is given by the Clebsch-Gordan coefficients and gives the integral
of the product of three complex spherical harmonics∫

S2
dφdθ sin θYl1,m1(θ, φ)Yl2,m2(θ, φ)Yl3,m3(θ, φ)

=

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 m2 m3

)
. (A.3)

3j symbol relations. The Clebsch-Gordan coefficients satisfy various properties. In
particular they obey the orthogonality relation

∑
α,β

(
a b c

α β γ

)(
a b c′

α β γ′

)
= 1

2c+ 1δcc
′δγγ′ . (A.4)

Furthermore(
a b c

0 0 0

)
6= 0 iff a+ b+ c ∈ 2Z &

(
a b 0
α β 0

)
= (−1)a−α√

2a+ 1
δabδα−β . (A.5)

The 3j symbol is non-vanishing iff

α+ β + γ = 0 , |a− b| ≤ c < a+ b . (A.6)

The latter condition we refer to as the triangle condition.
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B More three-loops

The last two expectation values in (3.8) involve ten and twelve fields respectively, allowing
seven and eight possible Gaussian integral combinations respectively. We start with the
integral over ϕ(Ω)3ϕ(Ω′)3ϕ(Ω′′)4:

1
108π3

〈∫
S2

dΩdΩ′dΩ′′ϕ(Ω)3ϕ(Ω′)3ϕ(Ω′′)4
〉

= 1
108π3 c1 ×

∫
S2

dΩdΩ′dΩ′′G(Ω,Ω)G(Ω,Ω′)G(Ω′,Ω′)G(Ω′′,Ω′′)2

+ 1
108π3 c2 ×

∫
S2

dΩdΩ′dΩ′′G(Ω,Ω′)3G(Ω′′,Ω′′)2

+ 1
108π3 c3 ×

∫
S2

dΩdΩ′dΩ′′G(Ω,Ω′′)3G(Ω′,Ω′′)G(Ω′,Ω′)

+ 1
108π3 c4 ×

∫
S2

dΩdΩ′dΩ′′G(Ω,Ω)G(Ω′,Ω′)G(Ω′′,Ω′′)G(Ω,Ω′′)G(Ω′,Ω′′)

+ 1
108π3 c5 ×

∫
S2

dΩdΩ′dΩ′′G(Ω,Ω′)2G(Ω,Ω′′)G(Ω′,Ω′′)G(Ω′′,Ω′′)

+ 1
108π3 c6 ×

∫
S2

dΩdΩ′dΩ′′G(Ω,Ω′)G(Ω′,Ω′′)2G(Ω′′,Ω′′)G(Ω,Ω)

+ 1
108π3 c7 ×

∫
S2

dΩdΩ′dΩ′′G(Ω,Ω′)G(Ω,Ω′′)2G(Ω′,Ω′′)2 , (B.1)

where c1 = 27, c2 = 18, c3 = 144, c4 = 108 and c5 = 216, c6 = 216, c7 = 216. After the
dust settles we find

1
108π3

〈∫
S2

dΩdΩ′dΩ′′ϕ(Ω)3ϕ(Ω′)3ϕ(Ω′′)4
〉

= 1
2A0

∑
l 6=1

(2l1 + 1)(2l2 + 1)(2l3 + 1)(2l4 + 1)
Al1Al2Al3Al4

+ 1
3
∑
l 6=1

(2l1 + 1)(2l2 + 1)(2l3 + 1)(2l4 + 1)(2l5 + 1)
Al1Al2Al3Al4Al5

(
l1 l2 l3
0 0 0

)2

+ 8
3A0

∑
l 6=1

(2l1 + 1)(2l2 + 1)(2l3 + 1)(2l4 + 1)
Al1Al2Al3Al4

(
l1 l2 l3
0 0 0

)2

+ 2
A2

0

∑
l 6=1

(2l1 + 1)(2l2 + 1)(2l3 + 1)
Al1Al2Al3

+ 4
∑
l 6=1

(2l1 + 1)(2l2 + 1)(2l3 + 1)(2l4 + 1)
Al1Al2A

2
l3
Al4

(
l1 l2 l3
0 0 0

)2

+ 4
A0

∑
l 6=1

(2l1 + 1)(2l2 + 1)(2l3 + 1)
A2
l1
Al2Al3

+ 4
∑
l 6=1

(2l1 + 1)(2l2 + 1)(2l3 + 1)(2l4 + 1)(2l5 + 1)
Al1Al2Al3Al4Al5

(
l1 l2 l5
0 0 0

)2(
l3 l4 l5
0 0 0

)2

. (B.2)
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Figure 8. Diagrams appearing in the Wick contraction of ϕ(Ω)3ϕ(Ω′)3ϕ(Ω′′)4.

Finally we have the last term in (4.2). We have twelve distinct fields leading to eight
distinct non-vanishing Gaussian integrals

1
1944π4

〈∫
S2

dΩdΩ′dΩ′′dΩ′′′ϕ(Ω)3ϕ(Ω′)3ϕ(Ω′′)3ϕ(Ω′′′)3
〉

= 1
1944π4 c1×

∫
S2

dΩdΩ′dΩ′′dΩ′′′G(Ω,Ω)G(Ω,Ω′)G(Ω′,Ω′)G(Ω′′,Ω′′)G(Ω′′,Ω′′′)G(Ω′′′,Ω′′′)

+ 1
1944π4 c2×

∫
S2

dΩdΩ′dΩ′′dΩ′′′G(Ω,Ω′)3G(Ω′′,Ω′′′)3

+ 1
1944π4 c3×

∫
S2

dΩdΩ′dΩ′′dΩ′′′G(Ω,Ω)G(Ω,Ω′)G(Ω′,Ω′)G(Ω′′,Ω′′′)3

+ 1
1944π4 c4×

∫
S2

dΩdΩ′dΩ′′dΩ′′′G(Ω,Ω′)G(Ω,Ω′′)G(Ω,Ω′′′)G(Ω′,Ω′)G(Ω′′,Ω′′)G(Ω′′′,Ω′′′)

+ 1
1944π4 c5×

∫
S2

dΩdΩ′dΩ′′dΩ′′′G(Ω,Ω′)G(Ω,Ω′′)G(Ω,Ω′′′)G(Ω′,Ω′′)2G(Ω′′′,Ω′′′)

+ 1
1944π4 c6×

∫
S2

dΩdΩ′dΩ′′dΩ′′′G(Ω,Ω′)G(Ω,Ω′′)G(Ω,Ω′′′)G(Ω′,Ω′′)G(Ω′,Ω′′′)G(Ω′′,Ω′′′)

+ 1
1944π4 c7×

∫
S2

dΩdΩ′dΩ′′dΩ′′′G(Ω,Ω′)2G(Ω′′,Ω′′′)2G(Ω,Ω′′)G(Ω′,Ω′′′)

+ 1
1944π4 c8×

∫
S2

dΩdΩ′dΩ′′dΩ′′′G(Ω,Ω′′)2G(Ω,Ω′)G(Ω′′,Ω′′′)G(Ω′,Ω′)G(Ω′′′,Ω′′′), (B.3)

where c1 = 34 × 3, c2 = 108, c3 = 324, c4 = 648, c5 = 3888, c8 = 1944, c6 = 648 × 2,
c7 = 1944. After the dust settles we find

1
1944π4

〈∫
S2

dΩdΩ′dΩ′′dΩ′′′ϕ(Ω)3ϕ(Ω′)3ϕ(Ω′′)3ϕ(Ω′′′)3
〉

= 1
2A2

0

∑
l 6=1

(2l1 +1)(2l2 +1)(2l3 +1)(2l4 +1)
Al1Al2Al3Al4

+ 2
9
∑
l 6=1

(2l1 +1)(2l2 +1)(2l3 +1)(2l4 +1)(2l5 +1)(2l6 +1)
Al1Al2Al3Al4Al5Al6

(
l1 l2 l3
0 0 0

)2(
l4 l5 l6
0 0 0

)2

+ 2
3A0

∑
l 6=1

(2l1 +1)(2l2 +1)(2l3 +1)(2l4 +1)(2l5 +1)
Al1Al2Al3Al4Al5

(
l1 l2 l3
0 0 0

)2

+ 4
3A3

0

∑
l 6=1

(2l1 +1)(2l2 +1)(2l3 +1)
Al1Al2Al3

+ 8
A0

∑
l 6=1

(2l1 +1)(2l2 +1)(2l3 +1)(2l4 +1)
A2
l1
Al2Al3Al4

(
l1 l2 l3
0 0 0

)2

+ 8
3
∑
l 6=1

(−1)m1+m2+m3+m4+m5+m6 (2l1 +1)(2l2 +1)(2l3 +1)(2l4 +1)(2l5 +1)(2l6 +1)
Al1Al2Al3Al4Al5Al6
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2 2

Figure 9. Diagrams appearing in the Wick contraction of ϕ(Ω)3ϕ(Ω′)3ϕ(Ω′′)3ϕ(Ω′′′)3.

×
(
l1 l2 l3
0 0 0

)(
l1 l4 l5
0 0 0

)(
l2 l4 l6
0 0 0

)(
l3 l5 l6
0 0 0

)

×
(
l1 l2 l3
m1 m2 m3

)(
l1 l4 l5
−m1 m4 m5

)(
l2 l4 l6
−m2 −m4 m6

)(
l3 l5 l6
−m3 −m5 −m6

)

+4
∑
l 6=1

(2l1 +1)(2l2 +1)(2l3 +1)(2l4 +1)(2l5 +1)
Al1Al2Al3Al4A

2
l5

(
l1 l2 l5
0 0 0

)2(
l3 l4 l5
0 0 0

)2

+ 4
A2

0

∑
l 6=1

(2l1 +1)(2l2 +1)(2l3 +1)
A2
l1
Al2Al3

. (B.4)

B.1 Numerical evidence

In this section we provide some numerical evaluations of the diagrams contributing to
loopsβ4 . By putting a sharp cutoff L = 250 on the summation indices l of the melonic
diagrams 	 (3.4) we test the conjecture (4.6)

	− 10
3 + 5πa1

2a0
= 0 , a1

a0
= 27

20π . (B.5)

We obtain |	| = 0.0411 (while 1/24 ∼ 0.0416.). For two-loopβ4 , i.e. the last three con-
tributions at order O(β4) arising because of the FP contribution to the propagator we
find

two-loopβ4 ∼ 0.013π × a1
a0
. (B.6)

Putting sharp cutoffs on the other diagrams in loops4
β (4.2) we find convergence toward

200∑
l 6=1

(2l1 +1)(2l2 +1)(2l3 +1)
A2
l1
Al2Al3

(
l1 l2 l3
0 0 0

)2

∼ 0.193 ,

60∑
l 6=1

120∑
l5≥0

(2l1 +1)(2l2 +1)(2l3 +1)(2l4 +1)(2l5 +1)
Al1Al2Al3Al4

(
l1 l2 l5
0 0 0

)2(
l3 l4 l5
0 0 0

)2

∼ 2.615 ,

20∑
l 6=1

(2l1 +1)(2l2 +1)(2l3 +1)(2l4 +1)(2l5 +1)
Al1Al2Al3Al4Al5

(
l1 l2 l5
0 0 0

)2(
l3 l4 l5
0 0 0

)2

∼−0.240 ,

30∑
l 6=1

(2l1 +1)(2l2 +1)(2l3 +1)(2l4 +1)(2l5 +1)
Al1Al2Al3Al4A

2
l5

(
l1 l2 l5
0 0 0

)2(
l3 l4 l5
0 0 0

)2

∼ 0.125 . (B.7)
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The last diagram in loopsβ4 we could not evaluate for a high enough cutoff. It is negative
and for some small cutoff L = 4 is equal to −0.048, tending however to a larger negative
value. Combining these results we obtain loopsβ4 −	2/2 ∼ 1.28. Consequently in

0 ?= −25π2

8

(
a1
a0

)2
+ 15π

4

(
a1
a0

)
− 17

27 + loopsβ4 −
1
2	

2 + 2
3ζ(3) , (B.8)

we are off by around 0.6. We believe this is solely a numerical issue and could be solved
by increasing the last cutoff.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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