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1 Introduction

Gravity amplitudes can be obtained from Yang-Mills amplitudes through a squaring opera-
tion known as the double copy. This relation between theories has been studied through
different lenses, exhibiting a rich underlying mathematical structure. New elements of
understanding are however still being collected. The double copy was first discovered by
Kawai, Lewellen and Tye (KLT) from relations between tree-level open- and closed-string
amplitudes [1]. In the KLT formalism, (dilaton-axion-)gravity amplitudes are obtained from
products of the appropriate color-ordered on-shell amplitudes of a gauge theory, normalized
by a scalar factor dubbed the KLT kernel, which depends on the kinematics of the process.

A different but equivalent product structure was discovered at the level of trivalent
graphs in field theory by Bern, Carrasco and Johansson (BCJ) [2, 3]. In this approach, each
Yang-Mills graph is expressed in terms of a color and a kinematic numerator multiplying
propagators. It was found that both types of numerators can be chosen such that they
obey identical algebraic relations under particle permutations, e.g. Jacobi-like identities.
This remarkable fact is known as the color-kinematics (CK) duality. Replacing the color
numerator by a second kinematic numerator then yields gravity amplitudes, in an economical
way. The double-copy structure was also observed using scattering equations by Cachazo,
He and Yuan [4–6], who identified the aforementioned KLT kernel with the inverse matrix
of color-ordered amplitudes computed in a bi-adjoint scalar theory.

In recent years, it has become clear that double-copy relations exist beyond the (gravity)
= (Yang-Mills)2 example, and that theories different from Yang-Mills can be used as inputs,
thereby double-copying to other theories than gravity. A web of theories connected through
double-copy relations was identified and further explorations are ongoing about the space of
theories it covers [6, 7]. It was for example found that gauge theories with massive (scalar
or fermionic) matter in the fundamental representation can also be double-copied [8–14],
and even theories with spontaneous symmetry breaking obey the CK duality [15]. In
addition, the double copy of massive gauge bosons has been considered in [16–20]. Besides
gauge theories, a double-copy structure has been observed in pure scalar theories such
as the aforementioned bi-adjoint scalar theory and the non-linear sigma model [21, 22].
Furthermore, the double-copy product based on the CK duality has been found to extend to
the loop level in various examples. For a comprehensive review on the double copy, see [23].

The above examples mostly correspond to renormalizable theories, however higher-
dimensional operators are also expected to take part in some form of the double copy.
Higher-derivative corrections to Yang-Mills theories were explicitly studied in [24] and more
recently in [25], while scalar effective field theories (EFTs) were studied in e.g. [26–31].
Other heavy mass EFTs have also been considered in [32, 33].

Two more systematic approaches to study the range of higher-derivative operators that
can be double-copied have recently been proposed by Carrasco, Rodina, Yin, Zekioğlu [34, 35]
and Chi, Elvang, Herderschee, Jones, Paranjape [36]. In the former, the color-kinematics
approach to the double copy is taken and extended by considering generalized numerators
that may simultaneously depend on both color and kinematics, while still satisfying Jacobi-
like identities. A set of composition rules is defined to systematically build such numerators
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at a given order in the EFT expansion. This approach can be extended from 4- to 5-point
amplitudes [35].

In the approach taken by [36], the KLT kernel is generalized. The initial observation
is that the map between open- and closed-string amplitudes involves a kernel with higher-
derivative corrections, which is the inverse matrix of the color-ordered amplitudes in a
bi-adjoint EFT with operator coefficients correlated in a specific way [37]. This notion is
generalized by allowing for more free parameters in the KLT kernel, arising from a more gen-
eral bi-adjoint EFT. A set of bootstrap equations on the KLT kernel and input theories are
proposed to guarantee a healthy analytical structure in the resulting double-copy amplitudes.
Solving the bootstrap then yields a systematic study of the operators possibly involved in
the double copy. Correct factorization properties for a theory with fixed particle content
need to be imposed as an additional constraint on both the kernel and the input amplitudes.

In this paper, we aim to shed light on these two approaches to the double copy of EFTs
and on their relation, by introducing a new method to construct generalized numerators
at any multiplicity. The traditional color numerators, consisting of products of Lie-group
structure constants, can be written as linear combinations of the single traces of products
of group generators. In the same way, we show that all generalized numerators can be
constructed from simple numerator seeds, which satisfy the same permutation properties as
the single traces of generators.

The construction of numerators has previously been investigated from different per-
spectives. They have for instance been extracted from known amplitudes and the KLT ker-
nel [38, 39]. Dual trace factors, analogous to our numerator seeds but involving momenta and
polarization vectors, have also previously been identified in Yang-Mills amplitudes [40–44].
In contrast, we use numerators to construct EFT amplitudes, and seeds built out of color
and momenta to construct generalized scalar numerators. Based on the kinematic algebra,
vector numerators for Yang-Mills and heavy-quark effective theories have also recently been
constructed from simpler “pre-numerators” [32, 45].

A further advantage of numerator seeds is that they can be directly related to KLT
kernels. This enables the study of the operators involved in the KLT double copy, through
a method that is alternative to the bootstrap of [36]. Numerator seeds thus provide further
insight into the relation between the double copy approaches of [34, 35] and [36], and
into the structure of the generalized KLT kernel. In particular, at 4-point, we show that
the double-copy amplitudes obtained with a generalized KLT kernel can equivalently be
achieved by the traditional kernel, multiplying healthy local input amplitudes including
higher-derivative corrections. As emphasized in [36], the generalized kernel does however
allow for more general EFT inputs to the double copy. We also report on various results
which indicate that this observation extends to higher multiplicities.

The structure of this paper is as follows. To be self-contained and set the notation,
we first provide in section 2 a detailed review of the two aforementioned approaches to
the double copy of EFTs. The construction of generalized numerators from seeds at any
multiplicity is then presented in section 3. In this section, we also show how this construction
facilitates the reorganization of CK-dual representations of amplitudes in terms of color-
ordered amplitudes, which are the building blocks of the KLT formalism. Moreover, for
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any input amplitude that can be double-copied with a generalized kernel, we identify new
objects which yield the same double copy with the traditional kernel. This holds provided
the generalized kernel can be constructed from numerator seeds, and provided one can
ensure locality of the new objects in order to call them amplitudes. We discuss these two
caveats at 4- and 5-point in the subsequent sections. Restricting to 4-point amplitudes,
section 4 and section 5 illustrate our method and show that it generates all solutions to
the KLT bootstrap. We also analyse the double-copy structure in the KLT formalism,
and the factorization properties of the amplitudes involved. The two caveats above are
successfully addressed in this 4-point case. Moving on to 5-point amplitudes in section 6, we
demonstrate that the lowest-order bootstrap solutions provided in [36], can be reproduced
from our numerator construction. We also present partial results suggesting that no new
double copies are generated by the generalized kernel at 5-point either.

2 The systematic double copy of EFTs

We start with a review on the generalized KLT method of [36] and the generalized numerator
method of [34, 35].

2.1 The generalized KLT approach

The KLT formula for an amplitude with n external particles in the adjoint representation
of SU(N) (or U(N)) symmetry groups is given by

Mn =
(n−3)!∑
α,β

ALn [α] Sn[α|β] ARn [β] . (2.1)

Here, ALn and ARn are the color-ordered amplitudes of potentially different theories, called
single copies, and Mn is the double-copy amplitude. Due to the Kleiss-Kuijf (KK) [46]
and BCJ [2] relations, the number of independent color-ordered amplitudes forming a BCJ
basis is (n− 3)!. The indices α, β in eq. (2.1) refer to the color-orderings of the single-copy
amplitudes and the sums run over the elements of any two BCJ bases, while the KK and
BCJ relations ensure that the double-copy amplitude does not depend on the chosen bases.

The multiplication of the single copies is governed by Sn, the KLT kernel, which is
a scalar function of Lorentz invariants. Its form depends on the BCJ bases considered
in the sum. The kernel plays a crucial role in ensuring that the resulting double-copy
amplitude has a healthy analytical structure. It cancels poles that are present in both
ordered amplitudes, to prevent double poles in Mn, and provides missing poles so that
all physical factorization channels are generated. This requires the KLT kernel to have a
precise structure, which was found to be closely related to the amplitudes of the bi-adjoint
scalar theory (BAS) [6].

The BAS Lagrangian is given by

LBAS = −1
2(∂µφaã)2 − gφ

6 f
abcf̃ ãb̃c̃φaãφbb̃φcc̃ , (2.2)
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where the scalar field has two adjoint color-group indices.1 We normalize the adjoint
generators and structure constants such that [T a, T b] = fabcT c and Tr

(
T aT b

)
= δab. Using

the decomposition of the structure constants, the full bi-adjoint n-point amplitude can be
written in terms of linearly independent traces of the generators,

Abas
n =

∑
α,β∈Sn−1

Tr(T aα1T aα2 · · ·T aαn ) mn[α|β] Tr(T̃ ãβ1 T̃ ãβ2 · · · T̃ ãβn ) . (2.3)

The objects mn[α|β] are called doubly color-ordered amplitudes. They can be computed by
summing over the trivalent graphs that contribute to the color orderings of both arguments,
with appropriate relative signs. For example, at 3-point we have m3[123|123] = gφ.

At 4-point, it is useful to define the vector of color factors,

c0 =
(
(1234), (1243), (1324), (1342), (1423), (1432)

)T
, (2.4)

where (1234) ≡ Tr(T a1T a2T a3T a4), etc. We define c̃0 similarly as c0 for the color factors
with tilded indices. The full BAS amplitude is then written compactly in matrix form as,2

Abas
4 = c0 ·m4 · c̃0 , (2.5)

with

m4 =


m4[1234|1234] m4[1234|1243] · · · m4[1234|1432]
m4[1243|1234] m4[1243|1243] · · · m4[1243|1432]

...
... . . . ...

m4[1432|1234] m4[1432|1243] · · · m4[1432|1432]

= g2
φ


1
s+ 1

u −1
s · · · 1

s+ 1
u

−1
s

1
s+ 1

t · · · −
1
s

...
... . . . ...

1
s+ 1

u −1
s · · · 1

s+ 1
u

 ,

where we use the conventions s = s12, t = s13 and u = s14 with sab = (pa + pb)2 and all
momenta incoming.

Remarkably, the KLT kernel can be identified as the inverse matrix of doubly color-
ordered amplitudes [6],

Sn[α|β] = (mn[α|β])−1 , (2.6)

where the indices α and β should be restricted to any two BCJ bases (in which color-ordered
amplitudes are independent), such that the mn[α|β] sub-matrix is of full rank and can
be inverted. The rows and columns of mn all satisfy the KK and BCJ relations, and the
double copies of BAS amplitudes are trivial:

mn[α|δ] =
(n−3)!∑
β,γ

mn[α|β]Sn[β|γ]mn[γ|δ] , (2.7)

where the uncontracted α, δ indices correspond to the color orderings that are left untouched
in this relation.

1We refer to these indices as color ones although they are associated to global symmetries.
2We will often omit vector arrows and transposes, writing for instance c0 ·m4 · c̃0 instead of ~c T

0 ·m4 · ~̃c0.
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The BAS theory can also be double-copied with another single-copy theory, in which
case the KLT product encodes the KK and BCJ relations. This is simple to illustrate at
4-point, where m4[α|β] has rank 1 and the kernel is simply the inverse of a number for fixed
α, β. In this case, eq. (2.6) implies that there are choices of BCJ bases that render the KLT
relation trivial, such as in

A4[α] = m4[α|β] S4[β|γ] A4[γ] or A4[α] = A4[γ] S4[γ|β] m4[β|α] , (2.8)

when α = γ. However, because of the KK and BCJ relations, the left-hand side does not
depend on the β, γ bases chosen in the product. For example, (note α 6= γ, but arbitrary β)

A4[1234] = m4[1234|β] S4[β|1243] A4[1243] = t

u
A4[1243] , (2.9)

is exactly a BCJ relation, while one of the KK relations is given by

A4[1234] = m4[1234|β]S4[β|1432]A4[1432] = A4[1432] . (2.10)

It was emphasized in [36] that the BAS behaves like an identity element in the KLT product,
which is why it is also referred to as the zeroth copy.

The identification of the BAS as the identity element of the KLT product leads to
generalizations of this product associated to modifications of the BAS theory. This is exactly
the case for the field theory form of the KLT relation between the open- and closed- string
amplitudes [37]. However, not all modifications of the BAS theory result in acceptable
KLT kernels. It was found that these corrections should preserve the rank of the matrix of
doubly color-ordered amplitudes, which is (n − 3)! [36]. This is called the minimal rank
condition. In this paper, we will focus on higher-derivative (h.d.) corrections suppressed
by powers of an EFT cutoff scale Λ, i.e. mh.d.

n = mn + O(1/Λ). In the decoupling limit,
Λ→∞, one therefore recovers the traditional KLT product.

In the generalized KLT formalism, the kernel Sh.d.
n is the inverse of a full-rank sub-matrix

of mh.d.
n and satisfies

mh.d.
n [α|δ] =

∑
β,γ

mh.d.
n [α|β] Sh.d.

n [β|γ] mh.d.
n [γ|δ] . (2.11)

The consistency conditions that follow from products of the identity element (BAS) with
another theory are called the generalized KKBCJ relations. For single-copy color-ordered
amplitudes, A′n,l/r, they have the form

A′n,r[α] =
∑
β,γ

mh.d.
n [α|β] Sh.d.

n [β|γ] A′n,r[γ] ,

A′n,l[α] =
∑
β,γ

A′n,l[γ] Sh.d.
n [γ|β] mh.d.

n [β|α] , (2.12)

and allow to bootstrap the single-copy amplitudes A′n,l/r that can take part in the double
copy,

M′n =
∑
α,β

A′n,l[α] Sh.d.
n [α|β] A′n,r[β] . (2.13)
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Depending on the form of mh.d.
n and Sh.d.

n , the generalized KKBCJ relations for A′n,r and
A′n,l may be different. We emphasize that both An,l/r and A′n,l/r may in principle contain
higher-derivative corrections. The prime indicates that the amplitudes satisfy generalized
KKBCJ relations, which allow for more operators.

That eq. (2.13) produces a healthy amplitude when mh.d.
n has minimal rank is a non-

trivial empirical result [36]. The generalized KLT formalism allows for a systematic study
of the space of theories that can appear as input and output of the double-copy procedure.
Although the bootstrap equations strongly constrain the higher-derivative corrections that
are allowed in the input (single-copy) amplitudes, the generalized KLT formalism allows
for more independent operators in the single copies than its traditional version. However,
up to the orders checked explicitly in [36], it was found that the space of generalized output
(double-copy) amplitudesM′n is the same asMn. At 4-point, where the double-copy relation
contains a single term, ‘similarity transformations’ were proposed in [36] to explain this fact
(see also [48]). We aim to shed further light on this observation in section 3 and section 5.

As an example, the 4-point amplitude of the BAS theory with higher-derivative correc-
tions is

Abas+h.d.
4 = c0 ·mh.d.

4 · c̃0 . (2.14)

Solving the minimal rank condition, the mh.d.
4 matrix of doubly color-ordered amplitudes

corresponding to BAS+h.d. can be written as [36]

mh.d.
4 =



f1(s, t) f2(s, t) f2(u, t) f2(s, t) f2(u, t) f1(s, t)
f2(s, u) f1(s, u) f2(t, u) f1(s, u) f2(t, u) f2(s, u)
f2(u, s) f2(t, s) f1(t, s) f2(t, s) f1(t, s) f2(u, s)
f2(s, u) f1(t, u) f2(t, u) f1(t, u) f2(t, u) f2(s, u)
f2(u, s) f2(t, s) f1(u, s) f2(t, s) f1(u, s) f2(u, s)
f1(s, t) f2(s, t) f2(u, t) f2(s, t) f2(u, t) f1(s, t)


, (2.15)

where
f1(s, t) = f1(u, t) ≡ f2(s, t)f2(u, s)

f2(t, s) , (2.16)

and f2 satisfies the bootstrap equation

f2(s, t)f2(t, u)f2(u, s) = f2(t, s)f2(s, u)f2(u, t) . (2.17)

Furthermore, the aforementioned assumption mh.d.
4 = m4 +O(g2

φ/Λ2) requires f2(s, t) =
−g2

φ/s + O(g2
φ/Λ2). Additional constraints on f2 arise if we forbid extra particles in the

BAS+h.d. theory.
For later reference, we note that the alternative ordering of the single traces, c0 =(

(1324), (1234), (1243), (1423), (1432), (1342)
)T, exposes a block matrix structure,

mh.d.
4 =

(
m̃h.d.

4 m̃h.d.
4

m̃h.d.
4 m̃h.d.

4

)
, with m̃h.d.

4 ≡

 f1(t, s) f2(u, s) f2(t, s)
f2(u, t) f1(s, t) f2(s, t)
f2(t, u) f2(s, u) f1(s, u)

 . (2.18)
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This structure also exists if we turn off the higher-derivative corrections, with

m̃4 = g2
φ


1
t + 1

u − 1
u −1

t

− 1
u

1
s + 1

u −1
s

−1
t −1

s
1
s + 1

t

 . (2.19)

Restricting to the smaller m̃h.d.
4 and m̃4 matrices will prove useful in the following sections.

We will actually only use these hereafter and drop the tildes for convenience. However,
such a block matrix structure generally only exists at lowest derivative order for n > 4
particles. The 4-point case is special because the kinematics is invariant under reversal of
the particle labels: f̃(1, 2, 3, 4) ≡ f(s12, s13) = f(s43, s42) ≡ f̃(4, 3, 2, 1), for any function f
of the Mandelstam invariants.

2.2 The generalized numerators approach

Another approach to the double copy is based on the color-kinematics (CK) duality [2, 3].
The basic idea is to use the decomposition of an on-shell n-point amplitude An on trivalent
graphs g,

An =
∑
g

cgng
dg

, (2.20)

where dg is the product of the (inverse) propagators it involves; cg traditionally correspond
to color factors associated to that same graph (i.e. combinations of generators of the gauge
algebra); while ng are the kinematic numerators that depend on Lorentz invariants and
possibly on polarization vectors. Given an amplitude An, the numerators ng are not unique.
CK duality is then a property of amplitudes for which there exists a choice of numerators
ng which verify the same algebraic relations as those of the color factors cg, inherited from
the gauge algebra. In certain theories, such as Yang-Mills, all tree-level amplitudes satisfy
the CK duality. In particular, the SU(N) color factors of 4-point amplitudes obey Jacobi
identities of the form3

cga + cgb + cgc = 0 , (2.21)

and antisymmetry relations upon interchanging two legs on one vertex in the ga, gb, gc
graphs. Any numerator satisfying these adjoint algebraic relations will be called an adjoint
numerator.

In gauge theories, the color relations ensure the gauge invariance of the amplitude
under shifts of the polarization vectors contained in ng, A|εi→pi = 0, for any particle label i.
This implies, in turn, that cg can be replaced by any expression which satisfies the same
relations without spoiling gauge invariance, and the latter applies in particular to another
copy of a CK-dual ng. The BCJ double-copy procedure [2, 3] is thus schematically

An =
∑
g

cgng
dg

, Ãn =
∑
g

cgñg
dg

−→ Mn =
∑
g

ñgng
dg

, (2.22)

3The signs in the Jacobi relation are fixed by the cs, ct, cu conventions. We use cs = fabefecd,
ct = facefedb and cu = fadefebc.
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whereMn is the double-copy amplitude. The numerator ñg is not necessarily the same as
ng, but both are CK-dual to the same cg color factors.4 For two copies of Yang-Mills, the
resulting amplitude describes the scattering of gravitons (as well as scalars).

Let us illustrate this approach at 4-point with the well-known case of Yang-Mills
theories. There are three trivalent diagrams associated to the s, t, u channels, and the
amplitude reads

Aym
4 (1+

a 2+
b 3−c 4−d ) = g2

ym [12]2 〈34〉2
(
facef edb

st
− f

adef ebc

su

)
= csns

s
+ ctnt

t
+ cunu

u
, (2.23)

where we defined

cadj ≡

csct
cu

 ≡
f

abef ecd

facef edb

fadef ebc

 , n ≡

nsnt
nu

 ≡ g2
ym [12]2 〈34〉2


1−2α
u − α

t

α
s −

1−2α
u

α
t −

α
s

 , (2.24)

with an arbitrary function α. Square and angle brackets denote spinor-helicity variables (for
pedagogical introductions see e.g. [49, 50]). The Jacobi identity reads cs+ct+cu = 0 and the
explicit formulæ above allow to check that ns+nt+nu = 0 for any α. The color factors also
satisfy antisymmetry relations such as cs|1↔2 = cs|a↔b = −cs. For α = 1/3, the numerators
are antisymmetric too: e.g. ns|1↔2 = ns|t↔u = −ns. This shows the CK duality of the
4-point YM amplitude. The double-copy method then leads to a diffeomorphism-invariant
four-gravitons amplitude,

Mgr
4 (1+22+23−24−2) = n2

s

s
+ n2

t

t
+ n2

u

u
. (2.25)

The bi-adjoint scalar theory considered in the previous subsection also plays the role of
a zeroth copy in the CK approach. It has a (color-color) dual structure,

Abas
n = gn−2

φ

∑
g

cg c̃g
dg

, (2.26)

where the two color groups lead to cg and c̃g. Being both color factors in the adjoint
representation, they verify Jacobi and antisymmetry relations and any of the two can be
treated as a CK-dual numerator ng. Moreover, replacing cg in eq. (2.22) by one of the BAS
color factors has a trivial effect.

Higher-derivative effects in the BAS theory can be included, while preserving the dual
CK structure, by building generalized numerators, ch.d.(c, sab) [34, 35] (see also [31]). These
verify the same adjoint algebraic relations as the cg, but may depend on both the Mandelstam
invariants sab and color factors c. The color factors are themselves not necessarily of adjoint
type, but more generally built from products of traces of group generators. Only their
combination with Mandelstams is required to satisfy the adjoint algebraic relations. In this

4The CK duality has to be manifest in at least one numerator. Notice, however, that a manifest CK
duality can be achieved through so-called generalized gauge transformations, which are not always trivial
to perform.

– 8 –



J
H
E
P
0
5
(
2
0
2
2
)
0
4
2

paper, we focus on single traces and do for instance not consider generalizations in the form
of double traces (see e.g. [31]).

Choosing ch.d. = cg +O(sab/Λ2), the generalized numerators result in EFT amplitudes
for the bi-adjoint scalar theory that retains the CK-duality,

Abas+h.d.
n = gn−2

φ

∑
g

ch.d.
g c̃ h.d.

g

dg
. (2.27)

Similarly, higher-order corrections in a gauge theory that preserve the CK-duality can be
obtained by replacing the color factors by generalized numerators,

Aym+h.d.
n =

∑
g

ch.d.
g ng

dg
, (2.28)

for unmodified ng. This can also be interpreted as the double copy between Aym
n and

Abas+h.d.
n amplitudes. The gauge invariance of the amplitude is maintained because the

ch.d.
g satisfy the same relations as the cg. This is the approach taken in [34, 35] to extend
the CK double-copy method to higher-derivative EFT amplitudes.

To find the most general allowed numerators, one could construct an ansatz for ch.d. at
each order in the Mandelstams and impose the adjoint algebraic relations. Exploiting the
underlying structure instead, [34] demonstrated that all purely kinematic adjoint 4-point
numerators can be built using a simple composition rule acting on existing lower-order
adjoint kinematic numerators j and k (vectors),

n(j, k) =

jtkt − jukujuku − jsks
jsks − jtkt

 . (2.29)

This requires only one building block made out of kinematic invariants,

n(ss) =

t− uu− s
s− t

 . (2.30)

Furthermore, all adjoint 4-point numerators involving one factor of color can be generated
using eq. (2.29) with one of the two input numerators containing color, and the additional rule

c (j, d) = d j , (2.31)

where d is the color factor that is fully symmetric under external particle permutations,

d(abcd) ≡ 1
3!
∑
σ∈S3

Tr(T aT σ(b)T σ(c)T σ(d)) . (2.32)

The only other color structures required as primary building blocks are the adjoint ones,
cs = fabef ecd, etc. encountered in eq. (2.24). All possible adjoint structures at 4-point can
then be obtained by successive applications of these composition rules, and linear combi-
nations of these yield the most general ch.d. [34]. At 5-point, the situation is complicated
by the presence of more composition rules and algebraic structures [35].
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In the next section, instead of constructing adjoint numerators from lower-order ad-
joint numerators and applying composition rules, we will build all of them from simpler
non-adjoint objects. This alternative construction procedure can be extended to higher
multiplicities without much complication.

3 Numerator construction from seeds at any multiplicity

We now propose an alternative method to construct generalized adjoint numerators of
the SU(N) (or U(N)) unitary group. At this stage, we are only interested in the adjoint
numerators themselves, without regard to the factorization properties and particle content
of amplitudes in which they enter. Section 5 discusses which extra constraints are imposed
by such considerations. The current section applies to any number of particles, while the
construction is repeated explicitly in the next section at 4-point.

3.1 Numerator seeds

The main observation is that the adjoint color factor, cadj, consisting of products of the
structure constants, can be written in terms of linear combinations of single traces of the
group generators (see also [44]),

cadj = J · c0 , (3.1)

where
c0 =

(
(123 . . . n), all permutations of {2, 3, . . . , n}

)T
. (3.2)

The matrix J contains only {±1, 0} entries and will play a central role in our construction.
Its entries are determined by decomposing the structure constants in terms of traces through

fabc = (abc)− (acb) . (3.3)

Products of traces can then be combined using the SU(N) completeness relation,∑
a

T aij T
a
kl = δilδkj −

1
N
δijδkl , (3.4)

and one can show that the 1/N terms cancel for products of structure constants.
In this way, the matrix J relates the simple algebraic structure of single traces (contained

in the c0 vector) to the more involved adjoint algebraic properties. It encodes the Jacobi
identities, and the antisymmetry relations which follow from the permutation properties of
the single traces. The matrix J can be decomposed as follows:

J = A ·B (3.5)

where B is the (n− 2)!× (n− 1)! matrix of rank (n− 2)! that relates c0 to the color factors
in a Del Duca-Dixon-Maltoni (DDM) basis [51], and A is the (2n− 5)!!× (n− 2)! matrix of
rank (n− 2)! that relates the DDM basis to cadj. Conventions can also be chosen such that
both A and B are sub-matrices of J, see [44].

Therefore, any object n0 that satisfies the same algebraic properties as the single traces
will be mapped to an adjoint numerator under multiplication by J. The vector of single
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traces has linearly independent entries that are given in terms of permutations of one
functional form, which is cyclically invariant in its arguments,

(ab . . . c) = (b . . . ca) . (3.6)

In matrix notation, the algebraic properties can be summarized as follows. Under a
relabeling σ of the particles, c0 transforms as

c0 −→
σ
Mc0,σ · c0 , (3.7)

whereMc0,σ is a permutation matrix. We shall call objects that obey the algebraic properties
of the single traces,

n0 −→
σ
Mc0,σ · n0 , (3.8)

numerator seeds, or seeds for short, as they can be used to generate adjoint numerators. We
shall use both n0 and ch.d.

0 to refer to numerator seeds. The latter notation emphasizes that
the cyclically invariant functional form of the seeds depends on both Mandelstam invariants
and color factors. Such seeds generate the generalized adjoint numerators discussed in
section 2.2.

In appendix A, we prove that any adjoint numerator can be constructed from a
numerator seed, i.e.

nadj = J · n0 . (3.9)

Since the seeds are straightforwardly constructed, this provides an efficient way to explore
the space of possible (generalized) adjoint numerators. A similar result was proven for
kinematic numerators in renormalizable Yang-Mills theory using a different method [42].

A set of linearly independent numerator seeds generally maps to a redundant set of
adjoint numerators, namely J · n0 = J · n′0 could happen even for n0 6= n′0. Therefore,
identifying a set of seeds which generates independent adjoint numerators requires an extra
step of reduction. This can be done by directly inspecting the general expression of n0,
or by relying on a construction which removes redundancies. We give explicit examples of
the former below, while the latter can be achieved using the Moore-Penrose pseudo-inverse
of J, called J+ (see appendix A): it also follows from the argument of appendix A that
J+·J·n0 = J+·J·n′0 is a valid numerator seed.5 A complete and independent set of numerator
seeds can thus be obtained by projecting with J+ · J on all cyclically invariant functions.

As an example of redundancies, permutation invariant functional forms result in valid
numerator seeds, but they are mapped to zero and thus do not give rise to independent
adjoint numerators. In addition, J always combines seed entries with reversed ordering
of particle labels, since cadj → (−1)ncadj under reversal, at n-point. The entries in a
numerator seed can thus be ordered such that J has a block matrix structure, schematically:
Ja×b =

(
Ja×(b/2) , (−1)nJa×(b/2)

)
. Therefore, the general numerator seed

n0 =
(
n0(1, 2, . . . , n), . . . , n0(n, . . . , 2, 1), . . .

)
, (3.10)

5It is also interesting to note that the projection by J+ · J is equivalent to imposing the KK relations on
the seeds. As shown in [44], a vector ~v satisfies the KK relations if and only if ~ri ·~v = 0, where ri are the right
null-vectors of J. Since the right null-space of J is captured by 1− J+ · J, and (1− J+ · J) · J+ · J · n0 = 0,
the seed J+ · J · n0 satisfies the KK relations.
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k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
4-pt 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5
5-pt 0 0 1 2 5 8 14 21 32 45 63 84 112 144 185
6-pt 1 3 9 23 54 120 243 469 861 1509 2546 4158 · · · · · · · · ·

Table 1. Number of independent scalar kinematic numerators at O(1/Λ2k) in the EFT expansion.
The Gram determinant constraints relevant in 4 spacetime dimensions have been accounted for. The
counting at 4- and 5-point was achieved in [34] while the 6-point one is provided here for the first
time. Although straightforward in principle, the numerically intensive reduction of the overcomplete
set of numerators was not pushed beyond k = 12 at 6-point.

and the seed on which we impose (anti)symmetry under reversal on the functional form,

n̄0 = 1
2
(
n0(1, 2, . . . , n) + (−1)n n0(n, . . . , 2, 1), . . . ,

n0(n, . . . , 2, 1) + (−1)n n0(1, 2, . . . , n), . . .
)
, (3.11)

result in the same adjoint numerator. At 4-point, these are the only sources of redundancy in
the construction of adjoint numerators. There are further redundancies in the construction
of CK-dual amplitudes, called generalized gauge transformations that will be addressed in
section 4.3. At higher multiplicity, redundancies can take a more complicated form, to be
exemplified at 5-point in section 6.

Even without identifying the specific algebraic origin of the redundancies, it is straight-
forward to just build the overcomplete set of seeds and identify numerically a basis of
independent adjoint numerators. We provide the counting of the latter in table 1, for
numerators taking the form of polynomials of Mandelstam invariants. This table can be
compared with table 2 in appendix B, listing the number of independent seeds, which grows
faster with n than the number of independent numerators. The construction of adjoint
numerators at 4-point agrees with the observation made in [34], namely that higher-order
adjoint numerators can be obtained from lower order ones by multiplication with a permu-
tation invariant function. The results at 5-point also agree with the number of independent
numerators listed in table 2 of [35] and we have constructed all the adjoint kinematic scalar
numerators up to 6-point and O(1/Λ24).6 We also provide explicit examples of numerator
seeds and adjoint numerators of lowest orders in appendix B.

3.2 Double copy and color-ordered amplitudes from numerators

The matrix J is also useful to obtain color-ordered amplitudes from adjoint numerators.
This approach was previously taken in [7], with a similar definition for J.7 For instance,
writing the full bi-adjoint scalar amplitude of eq. (2.26) in matrix form and using the fact
that cadj and c0 are related by J through eq. (3.1) yields

Abas = cadj ·P · c̃adj = c0 · JT ·P · J · c̃0 , (3.12)
6We thank the authors of [47] for private communications which lead us to correct our enumeration of

6-point numerators.
7For us, J relates the adjoint color factors to the single traces while, in [7], they are instead related to a

subset of adjoint color factors (which are independent under the Jacobi identities).
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where P contains the propagators (and coupling constants) of the trivalent graphs on its
diagonal. By definition, this produces the BAS matrix of doubly ordered amplitudes (see
also [44]),

m = JT ·P · J . (3.13)

Similarly, one can write the single-copy (color-ordered) amplitudes in terms of a numerator
seed (replacing c̃adj by nadj = J · n0,r),

Ar = m · n0,r . (3.14)

These single-copy amplitudes satisfy the traditional KK and BCJ relations as a consequence
of the explicit factor of m and of the relation in eq. (2.7). The double-copy amplitude can
be obtained in the CK way,

M = nadj,l ·P · nadj,r = n0,l ·m · n0,r , (3.15)

or equivalently through the KLT relations,

M =
(n−3)!∑
α,β

Al[α]S[α|β]Ar[β]

=
(n−1)!∑
α,δ

(n−3)!∑
β,γ

n0,l[α]m[α|β]S[β|γ]m[γ|δ]n0,r[δ]

= n0,l ·m · n0,r . (3.16)

This exposes the special role played by the BAS matrix of color-ordered amplitudes to
ensure the correct propagator structure of the double-copy amplitude.

The same method can be applied to obtain color-ordered amplitudes from generalized
numerators. Defining a matrix Hh.d., which depends only on Lorentz invariants, one can
decompose the numerator seeds (which, for simplicity, we build using only single traces) as
ch.d.

0 = Hh.d. · c0.8 This allows eq. (2.27) to be rewritten as

Abas+h.d. = ch.d.
0 ·m · c̃ h.d.

0 = c0 ·Hh.d.
r ·m ·Hh.d.

l · c̃0 . (3.17)

It follows that the higher-derivative color-ordered amplitudes can be constructed by left-
and right-multiplication of the lowest order matrix m,

mh.d. = Hh.d.
r ·m ·Hh.d.

l . (3.18)

Similarly, starting from eq. (2.28), one can write the higher-derivative single-copy (full)
amplitude as

A′r = ch.d.
0 · JT ·P · J · n0,r , (3.19)

and color-ordered amplitudes as

A′r = Hh.d.
r · JT ·P · J · n0,r , (3.20)

8At 4-point, the form of the matrix Hh.d. will be derived in section 4, where it will be shown to be
diagonal. This is not generally true at higher multiplicity.
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where we defined n0,r such that nadj = J · n0,r. Assuming that Hh.d.
l is of full rank, which

always holds for an EFT expansion of the form Hh.d.
l = 1 + O(sab/Λ2), we can further

define n′0,r such that n0,r ≡ Hh.d.
l · n′0,r, and we obtain

A′r = Hh.d.
r ·m ·Hh.d.

l · n′0,r = mh.d. · n′0,r . (3.21)

Note that n′0,r also satisfies the properties of numerator seeds, and A′r satisfies the generalized
KKBCJ relations.

The naive procedure for obtaining a double-copy amplitude in the generalized CK
formalism is to replace ch.d.

0 in eq. (3.19) by a kinematic seed n0,l (or equivalently replace
ch.d.

adj = J · ch.d.
0 by nadj,l). This results in the same double-copy amplitudeM as one could

have been obtained without generalized numerators (eq. (3.15)). The same occurs in the
generalized KLT formalism:

M′ =
(n−3)!∑
α,β

A′l[α]Sh.d.[α|β]A′r[β]

=
(n−1)!∑
α,δ

(n−3)!∑
β,γ

n′0,r[α]mh.d.[α|β]Sh.d.[β|γ]mh.d.[γ|δ]n′0,r[δ]

= n′0,l ·mh.d. · n′0,r = n0,l ·m · n0,r =M , (3.22)

where we distinguish sums over all (n− 1)! color factors and sums over BCJ bases.
We have thus derived that the double-copy amplitudes obtained by the generalized KLT

relations can equivalently be obtained through the traditional KLT double copy. However,
there are two caveats to this statement. First, we derived this statement assuming that
mh.d. is constructed via generalized numerators. It is unclear whether it then reproduces
all solutions to the KLT bootstrap. In section 5, we prove that this is the case at 4-point,
and we have performed initial checks at 5-point presented in section 6. Second, while the
double-copy amplitude obtained by A′l/r and a generalized kernel is the same as the one
obtained by Al/r = (Hh.d.

l/r )−1 ·A′l/r and a traditional kernel, it is unclear whether Al/r are
physical amplitudes and what is their particle content. In section 5, we show at 4-point
that the assumption that Hh.d.

l/r does not affect the BAS particle content implies that this is
also the case for Al/r.

4 Seeds and generalized numerators at 4-point

In this section, we will work out the 4-point construction of scalar adjoint numerators from
their seeds. This serves as an illustration of the method, and prepares for a comparison
with the generalized KLT formalism in the next section.

A product of structure constants can be written in terms of single traces as follows,

fabxfxcd =
[
(abcd) + (dcba)

]
−
[
(abdc) + (cdba)

]
. (4.1)
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As noted before, the traces appear together with their reversed ordering in this relation.
The adjoint color numerator can thus be written compactly in terms of traces as

cadj =

f
12xfx34

f13xfx42

f14xfx23

 =

 0 1 −1
−1 0 1
1 −1 0

 ·
(1324) + (4231)

(1234) + (4321)
(1243) + (3421)

 = J4 · c0 . (4.2)

This defines the matrix J4 with {±1, 0} entries, which encodes the Jacobi identity as the
vanishing sum of its rows. Notice that we redefined the vector of traces c0 shown in eq. (2.4),
combining traces and their reversed orderings such that

c0 =
(
c0(1, 3, 2, 4), c0(1, 2, 3, 4), c0(1, 2, 4, 3)

)T
, c0(a, b, c, d) = (abcd) + (dcba) . (4.3)

We have conventionally chosen the ordering in the arguments of c0 entries such that the
s, t, u Mandelstams are invariant under the cyclic permutation of the (1,3,2,4), (1,2,3,4),
(1,2,4,3), respectively. For instance, s|1→3→2→4 = s.

The 4-point BAS amplitude can now be rewritten as

Abas
4 = g2

φ

(
csc̃s
s

+ ctc̃t
t

+ cuc̃u
u

)
= cadj ·P4 · c̃adj

= c0 · JT
4 ·P4 · J4 · c̃0 = c0 ·m4 · c̃0 , (4.4)

with

P4 ≡ g2
φ


1
s 0 0
0 1

t 0
0 0 1

u

 , (4.5)

and m̃4 defined in eq. (2.19).
It is clear that J4 multiplying any numerator seed that satisfies the same algebraic

relations9 as c0 results in an adjoint numerator. However, it is not immediately clear that all
adjoint numerators can be constructed in this way. In the following, we prove that indeed
the construction via numerators seeds leads to the complete set of adjoint numerators.
For the general proof at any multiplicity, see appendix A. First, notice that JT

4/3 satisfies
J4 · JT

4/3 · J4 = J4, and thus (since J4 encodes the Jacobi identities as the sum of its rows)
J4 · JT

4/3 · nadj = nadj for any vector nadj that satisfies the Jacobi identities. Therefore,
JT

4 · nadj/3 is the pre-image of any nadj. Importantly JT
4 · nadj/3 is also a numerator seed:

[JT
4 · nadj](1, 3, 2, 4) = −nadj,t + nadj,u (4.6)

is invariant under cyclic permutations of its arguments and the reversal of their order,
thanks to the algebraic properties of nadj. This completes the proof. As an example,
consider multiplying the adjoint color factor by JT

4 ,

[JT
4 · cadj](1, 3, 2, 4) = −f13xfx42 + f14xfx23 = 3 [(1324) + (4231)]−

∑
σ∈S3

(1σ(234)) . (4.7)

9Since the 4-point c0 of eq. (4.3) is invariant under cyclic permutations and the reversal of its arguments,
numerator seeds for example transform as n0 −→

σ
Mc0,σ · n0, with Mc0,σ =

(
1 0 0
0 0 1
0 1 0

)
for σ = {1→3→2→4→1}

and Mc0,σ =
(

1 0 0
0 1 0
0 0 1

)
for σ = {1↔ 4, 2↔ 3}.
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The resulting seed is equivalent to the usual c0 up to the addition of a fully permutation-
invariant quantity (mapped to zero by J4), as it should since they generate the same adjoint
color numerator.

It is illustrative to compare the construction via numerator seeds with the composition
method to construct adjoint numerators [34], reviewed in section 2.2. Both the composition
rule of eq. (2.29) and the basic kinematic building block of eq. (2.30) can be rewritten as a
numerator seed multiplied by J4,

n(j, k) = J4 ·

js ksjt kt
ju ku

 , n(ss) = J4 ·

st
u

 . (4.8)

The composition rule of eq. (2.31) can similarly be rewritten,

n(j, d) = ~n(J4 · j0 , d) = J4 · (d j0) , (4.9)

where j0 is in fact a numerator seed (vector). This last composition rule encodes the simple
statement that a fully symmetric object, such as d, takes an adjoint numerator to another
one. This means that, at 4-point, there is a direct correspondence between the construction
of adjoint numerators from seeds and by composition. This is however not the case at
5-point, where the composition rules [35] are not equivalent to a simple multiplication by J5.

4.1 Kinematic numerator seeds

Analogous to eq. (4.3), purely kinematic numerator seeds for a scalar theory have the form

n0 =
(
n0(1, 3, 2, 4), n0(1, 2, 3, 4), n0(1, 2, 4, 3)

)T
, n0(a, b, c, d) = g(sac, sab) , (4.10)

where g is a function of the Mandelstam invariants sab ≡ (pa+pb)2. Invariance under reversal
is automatic at 4-point, while cyclic invariance requires g(s, t) = g(s,−s− t) = g(s, u). A
general polynomial expansion of g(s, t) can then be written as10

g(s, t) =
∑
i,j=0

ai,j s
i
(
t [−s− t]

)j
Λ2i+4j = a0,0 + a1,0s

Λ2 + a2,0s
2 + a0,1tu

Λ4 + a3,0s
3 + a1,1stu

Λ6 + · · · .

(4.11)

Consistent factorization on the poles and assumptions on the particle spectrum of a theory
can impose further restrictions on the ai,j coefficients. From this numerator seed, a single-
copy scalar amplitude can be constructed following eq. (3.14), which leads to

Ar = m4 · n0,r = −g2
φ

(
s g(s, t) + t g(t, s) + u g(u, s)

)1/tu
1/us
1/st

 , (4.12)

where we note that the function g(s, t) only appears through a permutation-invariant overall
factor (so that it does not affect the traditional KK and BCJ relations).

10To see this, first express g(s, t) in term of t+ u and t− u. The requirement that g(s, t) = g(s,−s− t) =
g(s, u) imposes a symmetry under t ↔ u exchange which requires that t − u only arises in even powers.
However, since (t− u)2 = s2 − 4 t u, one concludes that g(s, t) can be written as an expansion in powers of
just s and t u, as claimed.
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4.2 Generalized numerator seeds

At zeroth order in Mandelstam invariants, one can verify that there is only one linear
combination of single traces (cadj defined in eq. (4.2)) that satisfies the adjoint algebraic
properties. Therefore, the only necessary numerator seed containing only color information
is given by the c0 vector defined in eq. (4.3). At this order, any other seed is related to c0 by
the addition of a permutation invariant combination of traces. Such seeds also map to cadj
because permutation invariant combination of traces map to zero under multiplication by J.

At higher orders in the kinematics, the most general functional form that is cyclically
and reversal invariant is

c̄ h.d.
0 (1, 2, 3, 4) = g(t, s) c0(1, 2, 3, 4) + h(u, t) c0(1, 2, 4, 3) + h(s, t) c0(1, 3, 2, 4) , (4.13)

from which one defines the generalized seed vector

c̄ h.d.
0 =

(
c̄h.d.

0 (1, 3, 2, 4), c̄h.d.
0 (1, 2, 3, 4), c̄h.d.(1, 2, 4, 3)

)T
, (4.14)

analogously to eq. (4.3). Here g(s, t) = g(s,−s− t) = g(s, u) which is the same constraint
as before (eq. (4.10)), and h(s, t) is a priori a general function. Notice that it is not trivial
that we can write the equation above in terms of the vector c0 instead of the single traces
separately. This is a feature of the 4-point kinematics, which is invariant under reversal of
particle labels: f ′(1, 2, 3, 4) ≡ f(s12, s13) = f(s43, s42) ≡ f ′(4, 3, 2, 1), for any function f of
the Mandelstam invariants.11

While c̄h.d.
0 is the most general numerator seed, for the purpose of constructing indepen-

dent adjoint numerators, the g(t, s) c0(1, 2, 3, 4) term is redundant. It can be canceled by
adding a permutation invariant function and redefining the arbitrary h(s, t). This means
that we can restrict to the numerator seed

c̄ h.d.
0 =

 0 h(t, s) h(u, s)
h(s, t) 0 h(u, t)
h(s, u) h(t, u) 0

 · c0 ≡ Hh.d. · c0 , (4.15)

and still generate all possible adjoint numerators with color. We could have reached the
same conclusion regarding the fact that the function g can be absorbed in h using the
systematic algorithm which makes use of J+ which we discussed in section 3.

4.3 Generalized gauge transformations

Up to this point, we have considered numerators independently from the amplitudes they
generate. There does exist a freedom to shift a numerator without affecting the amplitude,
if the other numerators they multiply satisfy Jacobi identities. For instance, at 4-point, the
redefinition ns → ns + s∆, nt → nt + t∆, nu → nu + u∆, for any function ∆, results in

A4 = cs ns
s

+ ct nt
t

+ cu nu
u
→ A4 + (cs + ct + cu)∆ , (4.16)

11At higher multiplicity n, this is not generally true. While generalized numerator seeds can always
be organized in terms of an (n − 1)!/2 dimensional vector, factorizing out the color from the kinematic
dependence generally requires all (n− 1)! single traces separately.
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which is justA4 if the color vector ~c satisfies the Jacobi identity. In matrix notation, any shifts
in the vector ~n proportional to (s, t, u)T leave the amplitude A = c ·P4 · n invariant. Here
(s, t, u)T is the null vector of JT

4 ·P4, where JT
4 arises if ~c satisfies the Jacobi identity. Such

shifts are called generalized gauge transformations because an actual gauge transformation,
εi → εi + pi for any particle label i, results in a similar vanishing shift of the amplitude.
Nevertheless, generalized gauge transformations are also present in non-gauge theories.

At the level of the numerator seeds, the generalized gauge transformations allow for
shifts proportional to the null-vectors of m̃4 = JT

4 · P4 · J4, which are (u, 0,−s)T and
(t,−s, 0)T. This includes the permutation invariant shift proportional to (1, 1, 1)T (the
null-vector of J4) that was used before and does not affect the constructed adjoint numerator.
Other shifts are possible that change the permutation properties of the seed and, in turn,
may correspond to a non-adjoint numerator. A particular generalized gauge transformation,
given by

c̄ h.d.
0 → ch.d.

0 = c̄ h.d.
0 +


t h(s,t)+uh(s,u)

s −h(t, s) −h(u, s)
−h(s, t) uh(t,u)+s h(t,s)

t −h(u, t)
−h(s, u) −h(t, u) s h(u,s)+t h(u,t)

u

 · c0 , (4.17)

has the property that the shift is itself a numerator seed and, therefore, maps into a valid
seed ch.d.

0 . Hence, to capture all amplitudes in a CK-dual theory, c̄ h.d.
0 in eq. (4.15) can be

replaced by

ch.d.
0 =

g(s, t) 0 0
0 g(t, s) 0
0 0 g(u, s)

 · c0 ≡ Gh.d. · c0, (4.18)

with the redefinition
g(s, t) = g(s, u) = t h(s, t) + uh(s, u)

s
. (4.19)

This defines the diagonal matrix Gh.d. for future reference. We thus find that one can
restrict to the functional form

ch.d.
0 (1, 2, 3, 4) = g(t, s) c0(1, 2, 3, 4) (4.20)

(if g(s, t) is allowed to have simple poles). We stress that this is not the most general
numerator seed, nor does it construct the most general adjoint numerator, but it constructs
the most general amplitude.

5 Seeds and the generalized KLT bootstrap at 4-point

The constructive approach to generalized adjoint numerators presented in the previous
section enables a straightforward comparison with the generalized KLT approach by explicitly
building BAS+h.d. amplitudes. Restricting to 4-point in this section, we show that the
generalized CK and KLT formalisms are equivalent, and we study what this means for the
possible double-copy amplitudes.
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The matrix mh.d.
4 has the general form shown in eq. (3.18) but generalized gauge

transformations allow us to write

mh.d.
4 = Gh.d.

r ·m4 ·Gh.d.
l

= g2
φ


− s gr(s,t) gl(s,t)

t u −gr(s,t) gl(t,s)
u −gr(s,t) gl(u,s)

t

−gr(t,s) gl(s,t)
u − t gr(t,s) gl(t,s)

s u −gr(t,s) gl(u,s)
s

−gr(u,s) gl(s,t)
t −gr(u,s) gl(t,s)

s −u gr(u,s) gl(u,s)
s t

 , (5.1)

where Gl/r is defined as in eq. (4.18) with gl/r(s, t) instead of g(s, t). In fact, this
corresponds to a generalized KLT matrix showed in eq. (2.18), with the solution to the
minimal-rank bootstrap eqs. (2.16), (2.17) given by

f2(s, t) = −
g2
φ

s
gr(t, s) gl(u, s) . (5.2)

Another way to see that mh.d.
4 has minimal rank, is that the diagonal matrices Gh.d.

l/r have full
rank and therefore preserve the rank of the matrix m4. Conversely, the relation above can
be inverted to express gl/r in terms of f2 (not uniquely), which means that they encompass
any EFT solution f2 of the bootstrap equations. One can for instance take

gr(s, t) =
(
f(t, s) f(u, s)2 f(t, u)

f(s, u)

)1/3

, gl(s, t) =
(
f(t, u) f(u, t)
f(s, t) f(s, u)

)1/3
, (5.3)

with f(s, t) ≡ −s f2(s, t)/g2
φ. Thanks to the bootstrap condition for f2, these satisfy the

constraint g(s, t) = g(s,−s − t) = g(s, u), as required for numerator seeds. This shows
that the generalized numerator seed of eq. (4.20) generates any matrix of doubly ordered
amplitudes that appears in the generalized KLT formalism. The choice above is not unique
since mh.d.

4 only depends on the product of gl and gr.
To illustrate how eq. (5.3) works in an EFT expansion, let us consider the lowest-order

terms in the bootstrap solution for a pure scalar theory [36],

f2(s, t)
g2
φ

= −1
s

+ 1
Λ4 (a1,0 t+ a1,1 s) + a2,0

Λ6 t (s+ t) +O
(
s3
ab

Λ8

)
, (5.4)

which determines the generalized matrix of doubly ordered amplitudes. Besides the bootstrap
equation (eq. (2.17)), further constraints have been imposed on this function, which ensure
correct locality properties of the resulting BAS+h.d. theory. From eq. (5.3), it follows that
the matrix determined by f2 is equivalently obtained through eq. (5.1) with

gr(s, t) = 1 + 4a1,1 − a1,0
3Λ4 t (−t− s) + a1,0 − a1,1

3Λ4 s2 + a2,0
Λ6 s t (−s− t) +O

(
s4
ab

Λ8

)
,

gl(s, t) = 1− a1,0 − a1,1
3Λ4 (s2 + 2 t (−s− t)) +O

(
s4
ab

Λ8

)
. (5.5)

– 19 –



J
H
E
P
0
5
(
2
0
2
2
)
0
4
2

These functions give rise to the numerator seeds and the associated adjoint numerators of
the BAS+h.d. theory.

The minimal-rank bootstrap equations also allow for solutions that are not of the
BAS+h.d. form. However, modifications to the lowest-order 4-point kernel were found to
increase the rank at higher multiplicities and lead to unhealthy double-copy structures [36].

5.1 Generalized single and double copies

From eq. (5.1), it is now straightforward to obtain the generalized KLT kernel Sh.d.
4 in terms

of the traditional BAS one, S4[α|β] = 1/m4[β|α]:

Sh.d.
4 [α|β] = 1

Gh.d.
l [α|α] S4[α|β] 1

Gh.d.
r [β|β] . (5.6)

Due to the diagonal structure of Gh.d.
l/r , each entry of the generalized kernel only depends

on that of the BAS kernel with the same color ordering. Since the rank of both m4 and
mh.d.

4 is one, this relation holds for any choice of single color orderings α and β. One can
explicitly check that this kernel obeys the KLT relation of eq. (2.11),

mh.d.
4 [α|β] Sh.d.

4 [β|γ] mh.d.
4 [γ|δ] = Gh.d.

r [α|α] m4[α|β] S4[β|γ] m4[γ|δ] Gh.d.
l [δ|δ]

= Gh.d.
r [α|α] m4[α|δ] Gh.d.

l [δ|δ]
= mh.d.

4 [α|δ] , (5.7)

and the generalized KKBCJ relations for color-ordered amplitudes are given in eq. (3.21),

Gh.d.
r [α|α] m4[α|β]S4[β|γ] 1

Gh.d.
r [γ|γ] A

′
r[γ] = A′r[α] ,

A′l[α] 1
Gh.d.

l [α|α] S4[α|β]m4[β|γ] Gh.d.
l [γ|γ] = A′l[γ] . (5.8)

For example, eq. (2.9) is generalized to

A′r[1234] = t gr(t, s)
u gr(u, s) A

′
r[1243] , (5.9)

which reduces to the traditional BCJ relation for gr(s, t) = 1. It is worth remarking that
the KKBCJ relations for A′r (A′l) depend only on Gh.d.

r (Gh.d.
l ).

Interestingly, the explicit form of the generalized KKBCJ relations points to an object

Ar[α] ≡ A′r[α]
Gh.d.

r [α|α] , (5.10)

which obeys the traditional KK and BCJ relations, and similarly for Al. Although the
notation suggests otherwise, Ar may still contain higher-derivative corrections, but they are
such that they do not affect the form of the traditional KK and BCJ relations. If Ar can be
argued to be a valid amplitude, this could be an efficient method to construct generalized
single copies. In addition, it would imply that the generalized KLT formalism does not lead
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to double copies with additional higher-derivative corrections besides the ones which can be
obtained with the usual KLT kernel. Indeed,

M′ = A′l[α]Sh.d.
4 [α|β]A′r[β] = Al[α]S4[α|β]Ar[β] =M , (5.11)

where we stress that both primed and unprimed amplitudes may contain higher-derivative
corrections and S4 stands for the traditional BAS KLT kernel.

However, as it stands, Ar[α] cannot be interpreted as a physical amplitude, since it
does not necessarily factorize properly on all channels, whose associated residues can be
affected by Gh.d.

r . We will study the functional form of Gh.d.
l/r , under the assumption of a

fixed BAS particle content in section 5.2. This will lead to a slightly adapted but equivalent
form for eq. (5.10), such that Ar[α] and A′r[α] have the same residues on all poles.

Leaving momentarily aside the question of physical residues, eq. (5.10) also provides
a means to construct generalized single copies. They can be obtained by multiplying
amplitudes that satisfy the traditional KK and BCJ relations with Gh.d.

l/r . The same
conclusion is reached in the numerator formalism (see eq. (3.21)). Explicitly, comparing
with eq. (4.12), we have that

A′r = Gh.d.
r ·m4 · n0 = −g2

φ

(
s g(s, t) + t g(t, s) + u g(u, s)

)gr(s, t)/tu
gr(t, s)/us
gr(u, s)/st

 , (5.12)

where n0 =
(
g(s, t), g(t, s), g(u, s)

)T. All generalized amplitudes can be constructed in
this way, showing that one can associate a generalized color numerator to any amplitude
obtained from the generalized KKBCJ relations. The first equality in eq. (5.12) also applies
to gauge theories in which case n0 contains polarization vectors. Imposing particular locality
properties on this amplitude restricts the coefficients inside g(s, t) and gr(s, t). We note that
such constraints may be less restrictive than the constraints on gl/r coming from imposing
a fixed particle content on mh.d.

4 . We will get back to this point in the following.

5.2 Factorization properties and particle spectrum

So far, we have not been concerned with the particle content (and factorization properties)
of the BAS+h.d. amplitudes constructed through eq. (5.1). Following [36], we now impose
that mh.d.

4 reduces to the BAS matrix m4 at lowest order and that the particle content
of the theory is fixed to one bi-adjoint scalar. This implies that f(s, t) = −s f2(s, t)/g2

φ in
eq. (5.3) is a polynomial of the form 1 +O(sab/Λ2). Interpreting eq. (5.3) up to a fixed
order in the 1/Λ expansion, the functions gl/r(s, t) are then also of the same form.

While double or spurious poles are avoided in the construction of mh.d.
4 with polynomial

gl/r(s, t), the residues might be modified. Such modifications are either non-physical or
can be interpreted as new particles appearing in the factorization channels. However, at
4-point, only contact-term higher-derivative corrections are allowed with a fixed single scalar
particle content (since the 3-point amplitudes are not modified in the solution to the KLT
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bootstrap [36]). Imposing such conditions yields the following constraints:

m4[1324|1324] = gr(s, t)gl(s, t)
t

+ gr(s, t)gl(s, t)
u

∼
t→0

1
t

=⇒ gr(s, 0)gl(s, 0) = 1 ,

m4[1324|1234] = −gr(s, t)gl(t, s)
u

∼
u→0
−1
u

=⇒ gr(−t, t)gl(t,−t) = 1 ,

(5.13)

which enforce in particular the consistency conditions

gl/r(s, 0) = gl/r(−s, 0) , (5.14)

when using gl/r(s, t) = gl/r(s,−s − t). This implies that, on the t and u poles, the first
variable of g(s, t) necessarily appears in even powers. The lowest order terms in the solutions
are then

gl(s, t) = 1 +
al2,0 s

2 + al0,1 t u

Λ4 +
al1,1 s t u

Λ6 ,

gr(s, t) = 1 +
−al2,0 s

2 + ar0,1 t u

Λ4 +
ar1,1 s t u

Λ6 , (5.15)

where we emphasize that the same coefficient al2,0 appears in both expansions. These
solutions are fully consistent with the expansions in eq. (5.5), which were obtained from the
bootstrap solution f2(s, t), assuming a fixed particle content [36].12 With these solutions,
one of the generalized KKBCJ relations, showed in eq. (5.9), is given by[

1 +
(al2,0 − ar0,1) s(t− u)

Λ4 +O
(
s4
ab

Λ8

)]
t

u
A′r[1243] = A′r[1234] . (5.16)

Now let us turn our attention to the object Ar[α] ≡ A′r[α]/Gh.d.
r [α|α] that appeared

in eq. (5.10). Given that the functions gr in Gh.d.
r [α|α] are polynomials, the Ar[α] and

A′r[α] functions have the same poles. However, it is not guaranteed that the residues
on these poles are consistent. In particular, on any of the poles of Ar[α], the function
Gh.d.

r [α|α] contributes a non-trivial inverse factor of gr(s, 0) (or gr(t, 0)). On the poles,
these factors can also be obtained from the function gr(

√
(s2 + t2 + u2)/2, 0)|t→0 = gr(s, 0),

where the square root always appears in even powers in the Taylor expansion over the first
variable thanks to the consistency condition of eq. (5.14). Since gr(

√
(s2 + t2 + u2)/2, 0) is

permutation invariant, we can redefine the amplitude Ar[α] as

Ar[α] ≡
gr

(√
s2+t2+u2

2 , 0
)

Gh.d.
r [α|α] A′r[α] (5.17)

which still satisfies the traditional KK and BCJ relations while also having the same poles
and residues as A′r[α]. Defining simultaneously

Al[α] ≡
gl

(√
s2+t2+u2

2 , 0
)

Gh.d.
l [α|α] A′l[α] , (5.18)

12The consistency conditions also imply that f2(s, t) does not contain even powers of just s. Since
gl/r(s, t) = gl/r(s,−s − t) takes f2(s, 0) ∝ gr(0, s) gl(−s, s)/s to gr(0,−s)gl(−s, 0)/s, the conditions of
eq. (5.14) indeed constrain f2(s, 0) to be an odd function of s.
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it follows from eq. (5.13) that gl
(√

(s2 + t2 + u2)/2, 0
)

= 1/gr
(√

(s2 + t2 + u2)/2, 0
)
,

which leads to the conclusion that the double-copy amplitude remains unchanged. In
other words, there is an interplay between the left and right amplitudes and the generalized
kernel that allows for the cancellation of any correction to the kernel, in a manner that does
not affect the residues and poles of the amplitudes.

We therefore conclude that a double-copy amplitude obtained with a generalized kernel
can equivalently be generated with the traditional BAS kernel (cf. eq. (5.11)). The single-
copy amplitudes may then still include higher-derivative corrections, but only those that do
not spoil the usual KK and BCJ relations. To prove this statement, we assumed that no
extra particles are added to the BAS spectrum. At 4-point, the generalization of the KLT
formalism does thus not enlarge the space of possible double copies, but it does enlarge the
space of single copies that can be used as input.

In our derivation, it is also clear that eqs. (5.17), (5.18) can be used to obtain amplitudes
that satisfy generalized KKBCJ relations (A′l/r) from amplitudes satisfying the usual KK
and BCJ relations (Al/r), with the same particle content. This, indeed, has exactly the
same form in the generalized numerators approach shown in eq. (5.12).

6 Results at 5-point

Here, we use the numerator seeds described in section 3 to construct adjoint numerators
at 5-point. We also discuss the seed redundancies, previously described at 4-point in
section 4. The statement that the generalized KLT formalism does not enlarge the space of
double-copy amplitudes had two caveats, see section 3.2. While these were fully addressed
at 4-point in the previous sections, we only provide partial results at 5-point. We check
explicitly that the generalized numerators generate all the leading-order KLT kernels
of [36]. Furthermore, we study the factorization properties and the particle spectrum of the
objects Al/r = (Hh.d.

l/r )−1 ·A′l/r for a restricted set of higher-derivative corrections. For the
corresponding generalized kernels, we achieve the same conclusion as at 4-point, namely
that the double-copy amplitudes it produces can equally be obtained with the traditional
BAS kernel and physical single-copy amplitudes.

6.1 Numerator seeds

At 5-point, the kinematic numerator seeds have the functional form

n0(1, 2, 3, 4, 5) =
(
g(s12, s23, s34, s45, s51)− g(s51, s45, s34, s23, s12)

)
+ cyclic , (6.1)

where we have demanded invariance under cyclic permutations and antisymmetry under
reversal. Imposing this antisymmetry is however optional, as the components symmetric
under reversal are mapped to zero by the J-matrix. We do not consider the parity-odd fully
antisymmetric contraction of four independent momenta, which may lead to additional
numerators. The numerator seed vector is then given by

n0 =
(
n0(1, 2, 3, 4, 5), all permutations of {2, 3, . . . , n}

)T
, (6.2)
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and all scalar adjoint numerators are easily built from nadj = J5 · n0. The explicit form
of J5 is given in section C.1. We chose a cyclic basis of Mandelstam invariants, which is
possible at any multiplicity (see e.g. [52]) and simplifies the particle permutation properties.

In addition, there are two independent adjoint numerators containing only color infor-
mation. These are obtained from the following single-trace seeds,

c0,1 =
(
(12345), all permutations of {2, 3, . . . , n}

)T
,

c0,2 =
(
(13524), all permutations of {2, 3, . . . , n}

)T
.

(6.3)

As before, it is not necessary to impose antisymmetry under reversal. Any other allowed
single-trace color numerator maps to a linear combination of J5 · c0,1 and J5 · c0,2. For
instance, the two independent adjoint numerators ca,1,2 of [35] are13

ca,1 = J5 · c0,1, ca,2 = 1
6 J5 · (3c0,2 − c0,1) . (6.4)

Besides numerator seeds featuring only kinematic and color information, we study
generalized seeds that contain both, i.e.

ch.d.
0 (1, 2, 3, 4, 5) = f(1, 2, 3, 4, 5) + cyclic, (6.5)

where f(. . .) is a function of Mandelstam invariants and color structures. Independent
numerator seeds can give rise to redundant adjoint numerators, as discussed in the 4-
point case. For example, if g(. . .) is cyclic in its arguments (just like a single trace), then
choosing f(1, 2, 3, 4, 5) = g(1, 2, 3, 5, 4) generates the same adjoint numerator as a linear
combination of ch.d.

0,1 (1, 2, 3, 4, 5) = g(1, 2, 3, 4, 5) and ch.d.
0,2 (1, 2, 3, 4, 5) = g(1, 3, 5, 2, 4). This

can be established a priori, in analogy with the fact that c̄0(1, 2, 3, 4, 5) = (12354) + cyclic
is redundant with the two pure color seeds of eq. (6.3). We leave the exploration of the
independent basis of seeds for future work. In practice, it is straightforward to identify the
independent numerators from the over-complete set built from seeds.

6.2 BAS+h.d. amplitudes

At any multiplicity, the BAS matrix of doubly color-ordered amplitudes that derives from
the generalized numerators can be written as (see eq. (3.18))

mh.d.
n = Hh.d.

r ·mn ·Hh.d.
l . (6.6)

At 4-point, using generalized gauge transformations, we have previously shown that Hh.d.
l/r

can be taken to be diagonal matrices, and that these capture all solutions to the KLT
bootstrap. At 5-point, the generalized gauge transformations can reduce any single-trace
numerator seed to the linear combination

ch.d.
0 (1, 2, 3, 4, 5) = g1(1, 2, 3, 4, 5) (12345) + g2(1, 2, 3, 4, 5) (13524), (6.7)

13The original definitions of these two objects are ca,1(1, 2, 3, 4, 5) ≡ f12xfx3yfy45 and ca,2(1, 2, 3, 4, 5) ≡
2 d123xfx45 + d124xfx35 − d125xfx34 + 2 d234xfx15 − 2 d235xfx14 [35].
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for independent g1 and g2 functions of the Mandelstam invariants that are cyclically
symmetric. Even if an original seed is free of poles, capturing the same amplitude with ch.d.

0

may introduce poles. For example, the amplitudes constructed from

c̄ h.d.
0 (1, 2, 3, 4, 5) = h(1, 2, 3, 4, 5) (12354) + cyclic , (6.8)

for any function h depending only on the Mandelstam invariants, may equivalently be
constructed from

g1(1, 2, 3, 4, 5) = −h(3, 4, 5, 2, 1)− h(5, 1, 2, 4, 3)
s12s34 m5[12345|12345] + cyclic , (6.9)

and

g2(1, 2, 3, 4, 5) = h(3, 5, 2, 1, 4)
s12s34 m5[12345|12345] + cyclic , (6.10)

where m5[12345|12345] = 1/s12s34 + cyclic, showing that the functions g1 and g2 are in
general likely to have poles. This means that an amplitude built with ch.d.

0 for those special
values of g1,2 is equal to an amplitude built with c̄h.d.

0 , because both seeds are related by a
generalized gauge transformation (nevertheless, the adjoint numerators obtained via these
seeds are linearly independent). Therefore any 5-point BAS matrix of doubly color-ordered
amplitudes can be written as

mh.d.
5 =

(
Gh.d.

1,r + Gh.d.
2,r

)
·m5 ·

(
Gh.d.

1,l + Gh.d.
2,l

)
, (6.11)

where Gh.d.
1,2 follow from the numerator seed defined by eq. (6.7) by stripping off the single

traces. The Gh.d.
1 is diagonal and Gh.d.

2 is non-diagonal, with only one non-zero entry on
each row/column, as can be seen in section C.1. The non-diagonal matrix is necessary
because the 5-point BAS matrix m5 contains zero entries, which may become non-zero
when higher-derivative corrections are included.

It is non-trivial to verify whether eq. (6.11) covers all solutions to the KLT bootstrap
of [36]. As argued in general in section 3.2, mh.d.

5 has minimal rank just as m5 since
Gh.d.

1,r/l + Gh.d.
2,r/l has full rank. We have reproduced the solution of the KLT bootstrap for

all orders explicitly provided in [36] and the forms of the necessary functions are listed in
section C.2. Going beyond this, we also checked that the numerator seeds reproduce the
lowest-order 5-point contact terms, which are cubic in the Mandelstam invariants. These
are captured by eq. (6.11) with

g1,l(1, 2, 3, 4, 5) = 1 + c1
Λ10 s

5
cyclic , g2,l(1, 2, 3, 4, 5) = c2

Λ10 s
5
cyclic ,

g1,r(1, 2, 3, 4, 5) = 1 + c3
Λ10 s

5
cyclic , g2,r(1, 2, 3, 4, 5) = c4

Λ10 s
5
cyclic , (6.12)

where s5
cyclic ≡ s12s23s34s45s51 and ci are free parameters. Recall that m5 is O(1/s2

ab) so
that the resulting mh.d.

5 is of third order in the Mandelstam invariants. This exposes a
simple structure of higher-order corrections.
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6.3 Factorization properties and particle spectrum

As discussed in section 3.2, given a single-copy amplitude A′ that satisfies the generalized
KKBCJ relation, the object A = (Hh.d.)−1 · A′ satisfies the usual KK and BCJ relations
(where we momentarily omitted the subscript L/R, for simplicity). Moreover, the same
double copy can be constructed using either of these two single copies. However, it is not im-
mediately clear that A and A′ share the same analytic properties. At 4-point, we showed that
this is indeed the case. At 5-point, achieving a fully general proof seems far more challenging.
Therefore, we start the exploration of this question with simplifying assumptions.

Since one can write Hh.d. = (G1 + G2) at 5-point, it follows that A′ = (G1 + G2) ·A.
Restricting to the two independent 12345 and 13524 color orderings, we have that

A′[12345] = g1(1, 2, 3, 4, 5)A[12345] + g2(1, 2, 3, 4, 5)A[13524] ,
A′[13524] = g1(1, 3, 5, 2, 4)A[13524] + g2(1, 3, 5, 2, 4)A[15432] .

(6.13)

This is a simple choice of BCJ basis since the amplitudes do not share any poles (see
section C.3 for more details). The full set of ordered amplitudes can be reconstructed using
the KKBCJ relations. The fact that A[15432] satisfies the traditional KK reflection relation
A[15432] = −A[12345] allows to write(

A[12345]
A[13524]

)
=
(

g1(1, 2, 3, 4, 5) g2(1, 2, 3, 4, 5)
−g2(1, 3, 5, 2, 4) g1(1, 3, 5, 2, 4)

)−1

·
(
A′[12345]
A′[13524]

)
. (6.14)

Therefore, the unprimed amplitude can be written as

A[12345] = A′[12345]g1(1, 3, 5, 2, 4) +A′[13524]g2(1, 3, 5, 2, 4)
g1(1, 2, 3, 4, 5)g1(1, 3, 5, 2, 4) + g2(1, 2, 3, 4, 5)g2(1, 3, 5, 2, 4) . (6.15)

Studying the analytic properties of the amplitude A is challenging for two main reasons.
First, as discussed in section 6.2 and in contrast to the 4-point case, the functions g1 and
g2 may contain poles. So a general parametrization has a complicated form and studying
whether the poles of A and A′ agree is non-trivial. Second, even if we take analytic g1, g2 so
that A and A′ poles are identical, a suitable redefinition of A may be necessary to guarantee
that its residues match those of A′ (similarly to the 4-point case presented in eq. (5.17)).

Working out such a redefinition at 5-point, or even proving that one always exists, is
beyond the scope of this paper. However, in the simplest setup, namely that of a kernel
whose first EFT correction is a 5-point contact term constructed from a vanishing g2 and a
polynomial g1, we can identify a suitable redefinition of Al/r such that their residues agree
with those of A′l/r while leaving the double copy unchanged (we checked this property up
to order O(1/Λ10)). Explicitly, we found that the locality properties of the kernel at 5-point
impose that (for seeds up to order O(1/Λ10))

g1,l/r(1, 2, 3, 4, 5) = pl/r(1, 2, 3, 4, 5) +
cl/r
Λ10 s12s23s34s45s51 , (6.16)

where cl/r are free constants and pl/r(1, 2, 3, 4, 5) = pl/r are permutation-invariant functions
such that plpr = 1 whenever a Mandelstam invariant vanishes. Consequently,

plAl[α] and Ar[α]
pl

, (6.17)
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have the same residues on the poles as A′l and A′r, respectively. Therefore, the double-copy
amplitudes associated to the kernel obtained from the seeds of eq. (6.16) can also be obtained
with the traditional KLT kernel and single-copy amplitudes which verify the usual KKBCJ
relations. Whether such manipulations can be performed in full generality at 5-point is a
question left for future investigation.

7 Conclusions and outlook

In this paper, we revisited recent proposals for the systematic double copy of effective field
theories. Inspired by the decomposition of adjoint color factors into single traces of Lie
algebra generators, we proposed a method to construct generalized adjoint numerators.
These satisfy Jacobi-like and antisymmetry relations, while depending on both color and
kinematics. Starting from numerator seeds satisfying the permutation properties of single
traces, we proved that all adjoint numerators can be obtained through the linear map J
between single-trace and adjoint color factors. While generalized numerators have previously
been constructed up to 5-point in [34, 35], the construction from numerator seeds is advanta-
geous because the algebraic properties of single traces are simpler than the adjoint algebraic
relations. We showed that this method works for any multiplicity and it is convenient to
explore the higher-derivative corrections that allow for a color-dual representation.

The matrix J is also instrumental in relating the amplitudes represented with trivalent
graphs involving (generalized) adjoint numerators to color-ordered ones. The construction of
generalized adjoint numerators therefore facilitates the comparison between the generalized
numerators construction of [34, 35] and the generalized KLT formalism of [36]. At 4-point,
we showed that the generalized adjoint numerators encode all the KLT bootstrap solutions,
to any order in the EFT expansion. The two approaches therefore allow for exactly the
same higher-derivative corrections to the bi-adjoint scalar amplitudes. The single-copy
amplitudes are also the same in the two formalisms. This insight consequently exposed the
structure of double-copy amplitudes. While the generalized KLT formalism does expand
the range of operators in the single-copy amplitudes, we find (at 4-point) that any resulting
double copy can also be obtained with the traditional KLT kernel. We provide partial
5-point results suggesting that these conclusions may extend to higher multiplicity. However,
due to the more complicated KLT bootstrap and structures involved, further investigations
on higher multiplicities are left to future work.

There are several directions that deserve further attention. For example, we have
focused on the construction of scalar numerators, as opposed to gauge-theory numerators
involving polarization vectors. The relevant purely kinematic numerator seeds have been
considered for Yang-Mills theory in [40–44], but not in the EFT context or for generalized
numerators. Gauge invariance must hold at the level of amplitudes (i.e. A|εi→pi = 0), and
individual entries in a numerator are typically not gauge invariant. The necessary extra
constraint on numerator seeds may therefore take a complicated form, especially beyond
4-point. Methods proposed to identify the possible gauge-invariant structures in Yang-Mills
theories [52, 53] could be useful. In particular, a basis of cyclically invariant structures
which can be used as numerator seeds was provided in [53].
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Furthermore, we have only considered color factors consisting of single traces of Lie
algebra generators. However, the construction of adjoint numerators from numerator seeds
does apply more generally. For instance, at 4-point there exist theories with double traces,
which can be combined into the seed c0(1, 3, 2, 4) = Tr(T a1T a2)Tr(T a3T a4) = δ12δ34. The
resulting generalized adjoint numerator was previously identified in [31]. Constructing
generalized color factors involving products of traces may lead to interesting new single or
double copies, which would also be worth studying in the generalized KLT formalism.

Besides the assumption of single traces, we have not included the possibility of extra
particles beyond the bi-adjoint scalar discussed in section 5. For the double copy of a
gauge theory with matter in the fundamental representation, the KLT kernel is for instance
constructed from a bicolor theory containing two scalars [10, 12]. Including new particles
in factorization channels, or even externally, in the generalized KLT formalism would allow
for a larger space of single-copy amplitudes. It would then be worthwhile to extend the
numerator seeds to amplitudes with a more complicated particle spectrum.

Altogether, the simple construction of adjoint numerators from numerator seeds has
been useful to explore the structures in the generalized CK and KLT double-copy formalisms.
Still, the double copy of effective field theories retains various unexplored aspects which
promise exciting new findings for the years to come.
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A Proof: numerator seeds construct all adjoint numerators

In this appendix, we prove that any adjoint numerator can be constructed from a numerator
seed, as in eq. (3.9). For any (not necessarily square) matrix J, there exists a unique
pseudoinverse J+ (see for instance [54]) satisfying

J · J+ · J = J (A.1)

(together with J+ · J · J+ = J+, (J · J+)T = J · J+, and (J+ · J)T = J+ · J for real J,
which will be of less importance in the following) That is, J · J+ maps all columns of J
to themselves. Another word for pseudoinverse is the Moore-Penrose inverse. It can be
obtained, for example, by the rank decomposition as in eq. (3.5). Here (2n − 5)!! is the
number of trivalent graphs. We then have

J+ = BT · (B ·BT)−1 · (AT ·A)−1 ·AT . (A.2)

At 4- and 5-point, the pseudoinverse takes a particularly simple form: J+
4 = JT

4/6 and
J+

5 = JT
5/20. At 6-point, the pseudoinverse is not proportional to JT

6 , but can still be
obtained algorithmically.
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Since the adjoint color factor cadj is constructed by J, eq. (A.1) allows to express the
Jacobi identities in matrix form,

(1− J · J+) · ~cadj = 0 . (A.3)

By definition, (generalized) color-kinematics duality states that adjoint numerators should
obey the same algebraic relations as cadj. In other words, as pointed out in e.g. [18, 44], it
implies that all adjoint numerators should live in the null-space of 1− J · J+. Therefore,
any adjoint numerator ~n (with only kinematics or both color and kinematics) that satisfies
the Jacobi relations obeys

J · J+ · ~n = ~n . (A.4)

This crucially implies that any adjoint numerator at any multiplicity can be written as the
J-matrix multiplying a vector,

~n0 = J+ · ~n . (A.5)

Below, we show that ~n0 constructed in this way transforms in the same way as c0 under
permutations of the particle labels. It is thus a numerator seed. Therefore, all adjoint
numerators can be constructed from numerator seeds by multiplication with J.

~n0 = J+ · ~n is a numerator seed. In this subsection, we prove that the numerator
seeds constructed through eq. (A.5), transform according to the same rule as the color
factor c0,

c0 −→
σ
Mc0,σ · c0 , (A.6)

under a permutation of the particle labels, σ.
First, note that adjoint numerators transform analogously under σ,

nadj −→
σ
Mcadj,σ · nadj , (A.7)

with the same Mcadj,σ ( 6= Mc0,σ) for any adjoint numerator. Since the entries of c0 are
linearly independent,

cadj = J · c0 −→
σ

Mcadj,σ · J · c0 = J ·Mc0,σ · c0

=⇒ Mcadj,σ · J = J ·Mc0,σ . (A.8)

The numerator seeds transform as

n0 = J+ · nadj −→
σ

J+ ·Mcadj,σ · nadj , (A.9)

which we want to show is the same as J+ · nadj
?−→
σ

Mc0,σ · J+ · nadj. We will prove this by
showing that

[
J+J,Mc0,σ

]
= 0.

Each row and each column of the matrix Mc0,σ contains exactly one 1 and the rest 0’s.
Such matrices are orthogonal, MT

c0,σ = M−1
c0,σ. In addition, any permutation can be written

as a product of transpositions (the interchange of two labels, σ = a↔ b). Therefore, it will
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be enough to prove that
[
J+J,Mc0,a↔b

]
= 0. Performing the same transposition twice is

the same as doing nothing. That is, transpositions are their own inverse,

Mc0,a↔b = M−1
c0,a↔b = MT

c0,a↔b . (A.10)

As in eq. (3.5), J can be decomposed as J = A ·B, where B is the matrix that relates
c0 to some choice of DDM basis, cddm = B · c0. This implies

J+ · J = BT · (B ·BT)−1 ·B . (A.11)

The entries in the DDM basis correspond to all half-ladder graphs with fixed endpoints. If
a, b are not those endpoints, then σ = a↔ b maps entries of the DDM basis to other entries
of the same DDM basis, so cddm −→

σ
Mcddm,a↔b · cddm. Therefore for each transposition there

exists a choice of B such that

B · c0 −→
σ
Mcddm,a↔b ·B · c0 = B ·Mc0,a↔b · c0

=⇒ Mcddm,a↔b ·B = B ·Mc0,a↔b . (A.12)

Now, using eq. (A.10) and eq. (A.12), it is straightforward to show that

Mc0,a↔b ·BT · (B ·BT)−1 ·B = BT · (B ·BT)−1 ·B ·Mc0,a↔b . (A.13)

Therefore

Mc0,σ · J+ · J = J+ · J ·Mc0,σ = J+ ·Mcadj,σ · J

=⇒ J+ ·Mcadj,σ · nadj = J+ ·Mcadj,σ · J · J
+ · nadj

= Mc0,σ · J+ · J · J+ · nadj

= Mc0,σ · J+ · nadj . (A.14)

Thus, as we wanted to show, the numerator seed n0 = J+ ·nadj (which exists for any adjoint
numerator) transforms as

n0 −→
σ

Mc0,σ · n0 . (A.15)

B Examples of seeds and adjoint numerators

In this appendix, we present the construction of kinematic adjoint numerators from numer-
ator seeds. In general, a numerator seed can be obtained from any function f(1, 2, . . . , n)
through

n0(1, 2, . . . , n) =
(
f(1, 2, . . . , n) + (−1)n f(n, . . . , 2, 1)

)
+ cyclic . (B.1)

The number of independent numerator seeds built using this equation, up to 6-point and
dimension 30, is provided in table 2. After multiplying them by J, one needs to explicitly
verify the linear independence of the resulting adjoint numerators. To determine the counting
provided in table 1, we first construct vectors by evaluating the numerators numerically
for different values of the momenta. The rank of the matrix formed with these vectors as
columns is the number of independent adjoint numerators.
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k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
4-pt 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8
5-pt 0 0 2 4 10 16 28 42 64 90 126 168 224 288 370
6-pt 2 8 22 58 133 298 600 1166 2132 3754 6324 10351 16368 25266 38004

Table 2. Counting of scalar kinematic numerator seeds up to 6-point and at O(1/Λ2k) for k ≤ 15
in the EFT expansion. The Gram determinant constraints relevant in 4 spacetime dimensions have
been accounted for.

A systematic correspondence can be established between the entries of table 1 and
table 2. At 5-point, the number of independent numerators is, for instance, exactly half of
that of independent seeds. This can be understood from the algebraic properties of color
factors decomposed into structure constants fabc and symmetric dabc..., as discussed in [35]
up to 5-point. The 4- and 5-point cases are detailed below.

4-point. At 4-point, the numerator seeds are given by eq. (4.11). At lowest orders, we have

n0(1, 3, 2, 4) = s =⇒ nadj,s = t− u ,
n0(1, 3, 2, 4) = s2 =⇒ nadj,s = t2 − u2 = s(u− t) .

(B.2)

The other valid numerator seed at second order, n0(1, 2, 3, 4) = t u maps to the same adjoint
numerator, because the permutation invariant s2 + t2 + u2 = 2(s2 − t u) maps to zero.
At third order (and any higher order), the adjoint numerators are permutation invariant
functions multiplying the lowest two orders [34]:

n0(1, 3, 2, 4) = s3 =⇒ nadj,s = t3 − u3 = (t− u)(s2 + t2 + u2)/2 . (B.3)

Upon comparing table 1 and table 2, one can identify the difference between the numbers of
independent seeds and numerators at 4-point as being the number of permutation-invariant
functions of the Mandelstam invariants. The latter are combinations of terms of the
form (s2 + t2 + u2)m(stu)n for integer m,n. Indeed, the seeds at 4-point are symmetric
under reversal symmetry, hence they capture all expressions which are combinations of
reversal-symmetric terms of the form

f(σ(a), σ(b), σ(c), σ(d)) + f(σ(d), σ(c), σ(b), σ(a)) (B.4)

for some permutation σ and some function f , consistently with eq. (B.1). They do however
not capture expressions that are antisymmetric under the reversal of particle labels. To un-
derstand what algebraic structures appear in the symmetric combinations, one can consider
the permutation properties of color structures generated by single traces of group generators,
which are identical to those of f(1, 2, . . . , n)+cyclic in eq. (B.1). At 4-point, the relevant color
structures are dabxfxcd, fabxfxcd and dabcd [35]. The first one is expressed in terms of antisym-
metric combinations of traces only, whereas the other two are expressed in terms of symmetric
combinations. Therefore, the seeds generate expressions with the same algebraic properties
as the two last color structures, which are respectively adjoint and permutation-invariant.
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5-point. At the lowest two orders in the Mandelstam invariants, there are no numerator
seeds. For example, the candidate function f(1, 2, 3, 4, 5) = s12 + s23 + s34 + s45 + s51
is invariant under cyclic permutations, but symmetric instead of antisymmetric under
reversing the order of its arguments, therefore it is mapped to zero under the action of J.
At third order in the Mandelstams, there exists

n0(1, 2, 3, 4, 5) = 1
2(s2

12 s34 − s2
45 s23) + cyclic , (B.5)

which is mapped to the adjoint numerator

nadj,s12s45 =
(
n0(1, 2, 3, 4, 5)− n0(1, 5, 4, 3, 2)

)
+
(
n0(1, 4, 5, 3, 2)− n0(1, 2, 3, 5, 4)

)
+
(
n0(1, 2, 5, 4, 3)− n0(1, 3, 4, 5, 2)

)
+
(
n0(1, 3, 5, 4, 2)− n0(1, 2, 4, 5, 3)

)
= (s24s

2
35 − s24s

2
13) +

(
s2

24s13 − s2
24s35

)
+
(
s25s

2
13 − s14s

2
35
)

+
(
s2

14s35 − s2
25s13

)
+
(
s14s

2
23 − s25s

2
34
)

+
(
s2

25s34 − s2
14s23

)
+
(
s15s

2
34 − s15s

2
23
)

+
(
s2

15s23 − s2
15s34

)
. (B.6)

Here, the subscript s12s45 indicates the pole structure of the trivalent graph to which this
entry belongs, i.e. cadj,s12s45 = f12xfx3yfy45. The first line in eq. (B.6) is analogous to

f12xfx3yfy45 =
(
(12345)− (15432)

)
+
(
(14532)− (12354)

)
+
(
(12543)− (13452)

)
+
(
(13542)− (12453)

)
.

(B.7)

(recall (12 . . . 5) ≡ Tr(T a1T a2 . . . T a5), etc.).
The comparison between table 1 and table 2 shows that the number of independent

adjoint numerators is exactly half that of independent seeds. As in the 4-point case, this
can be understood from the algebraic properties of the color factors which are generated by
combinations of single traces of group generators with the same behavior under reversal
symmetry as the seeds. At 5-point, the seeds are antisymmetric under reversal, while the
color factors which can be decomposed onto antisymmetric combinations of single traces can
be identified from the classification in [35]. In the language of this reference, they correspond
to adjoint and hybrid structures, which correspond to combinations of color factors of the
form fabxfxcyfyde and dabcxfxde. Therefore, antisymmetric seeds generate all expressions
having the algebraic properties of these two kinds. In addition, there exists a bijection
between adjoint and hybrid structures [35]. Namely, for each expression with adjoint
properties, there exists one with hybrid properties, and reciprocally. It then follows that
the number of independent seeds is exactly twice that of independent adjoint numerators.

6-point. At lowest order, there exist two functional forms that are cyclically invariant
and symmetric under argument reversal,

n0(1, 2, 3, 4, 5, 6) = s12 + s23 + s34 + s45 + s56 + s16 ,

n0(1, 2, 3, 4, 5, 6) = s123 + s234 + s345 ,
(B.8)

where sabc = (pa + pb + pc)2. These map to one independent adjoint numerator after
multiplication by J. At second order, there are three independent adjoint numerators. Out
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of the eight independent seeds, these can for instance be constructed from

n0(1, 2, 3, 4, 5, 6) = s123 (s234 + s345) + s234 s345 ,

n0(1, 2, 3, 4, 5, 6) = s16s34 + s12s45 + s23s56 ,

n0(1, 2, 3, 4, 5, 6) = s123(s16 + s34) + s345(s23 + s56) + s234(s12 + s45) .
(B.9)

The adjoint numerator then has the form

nadj,s12s34s56 =
[
n0(1,2,3,4,5,6)−n0(1,2,3,4,6,5)−n0(1,2,4,3,5,6)+n0(1,2,4,3,6,5)
−n0(1,2,5,6,3,4)+n0(1,2,5,6,4,3)+n0(1,2,6,5,3,4)−n0(1,2,6,5,4,3)

]
+reversed orderings , (B.10)

for the adjoint entry corresponding to cadj,s12s34s56 = f12xf34yf56zfxyz, and

nadj,s12s123s56 =
[
n0(1,2,3,4,5,6)−n0(1,2,3,4,6,5)−n0(1,2,3,5,6,4)+n0(1,2,3,6,5,4)
−n0(1,2,4,5,6,3)+n0(1,2,4,6,5,3)+n0(1,2,5,6,4,3)−n0(1,2,6,5,4,3)

]
+reversed orderings , (B.11)

for the adjoint entry corresponding to cadj,s12s123s56 = f12xfx3yfy4zfz56. At third order,
there are nine independent adjoint numerators. They can be constructed from, for example,

n0(1, 2, 3, 4, 5, 6) = s12s34s56 + s23s45s16 , (B.12)
n0(1, 2, 3, 4, 5, 6) = s123s234s345 ,

n0(1, 2, 3, 4, 5, 6) = s12s23s34 + s12s23s16 + s23s34s45 + s12s16s56 + s16s45s56 + s34s45s56 ,

n0(1, 2, 3, 4, 5, 6) = (s56s
2
12 + s2

34s12 + s16s
2
23 + s23s

2
45 + s34s

2
56 + s2

16s45)
+ (1↔ 6, 2↔ 5, 3↔ 4) ,

n0(1, 2, 3, 4, 5, 6) = s234(s2
12 + s2

45) + s123(s2
16 + s2

34) + s345(s2
23 + s2

56) ,
n0(1, 2, 3, 4, 5, 6) = s123s345(s12 + s45) + s123s234(s23 + s56) + s234s345(s16 + s34) ,
n0(1, 2, 3, 4, 5, 6) = s2

123 (s234 + s345) + s2
234 (s123 + s345) + s2

345 (s123 + s234) ,
n0(1, 2, 3, 4, 5, 6) = (s123 + s234 + s345) 3 ,

n0(1, 2, 3, 4, 5, 6) = (s12 + s23 + s34 + s45 + s56 + s16) 3 .

We leave the detailed comparison between the entries of table 1 and table 2 at 6-point
(and higher) to future work.

C Details at 5-point

C.1 Matrices

At 5-point, for the trace ordering given by

c0 =
(

(12345), (12354), (12435), (12453), (12534), (12543), (13245), (13254),
(13425), (13524), (14235), (14325), (15432), (14532), (15342), (13542),

(14352), (13452), (15423), (14523), (15243), (14253), (15324), (15234)
)T
,

(C.1)
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and the adjoint color numerators by

cadj =
(
f12xf34yf5xy, f12xf35yf4xy, f12xf45yf3xy, f13xf24yf5xy,

f13xf25yf4xy, f13xf45yf2xy, f14xf23yf5xy, f14xf25yf3xy,

f14xf35yf2xy, f15xf23yf4xy, f15xf24yf3xy, f15xf34yf2xy,

f23xf45yf1xy, f24xf35yf1xy, f25xf34yf1xy
)T
,

(C.2)

the matrix J5 =
(
J15×12,−J15×12

)T
with

J15×12 =



1 0 −1 0 −1 1 0 0 0 0 0 0
0 1 −1 1 −1 0 0 0 0 0 0 0
−1 1 0 1 0 −1 0 0 0 0 0 0
0 0 0 −1 0 0 1 0 −1 −1 0 0
0 0 0 0 0 −1 0 1 −1 −1 0 0
0 0 0 1 0 −1 −1 1 0 0 0 0
0 −1 0 0 0 0 0 1 0 0 1 −1
0 0 0 0 −1 0 0 1 0 −1 0 −1
0 1 0 0 −1 0 0 0 0 −1 −1 0
−1 0 0 0 0 0 1 0 0 0 1 −1
0 0 −1 0 0 0 1 0 −1 0 1 0
1 0 −1 0 0 0 0 0 −1 0 0 1
1 −1 0 0 0 0 −1 1 0 0 0 0
0 0 1 −1 0 0 0 0 0 −1 −1 0
0 0 0 0 1 −1 0 0 −1 0 0 1



. (C.3)

A block structure in J5 has been made manifest by ordering c0 into the schematic form:
c0 = (c012, reversed(c012))T, where c012 contains 12 entries of c0 that are not related by
reversing the order of the particle labels.

The matrix G2, which can be obtained from the numerator seed eq. (6.7) by stripping
of the single traces, for g̃12345 ≡ g2(1, 2, 3, 4, 5), is

G2 =



0 0 0 0 0 0 0 0 0 g̃12345 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 g̃12354 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 g̃12435 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 g̃12453 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 g̃12534 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 g̃12543 0
0 0 0 0 g̃13245 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 g̃13254 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 g̃13425 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 g̃13524 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 g̃14235 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 g̃14325 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 g̃15432 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 g̃14532 0 0 0
0 0 0 0 0 0 0 g̃15342 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 g̃13542
0 0 0 0 0 0 g̃14352 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 g̃13452 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 g̃15423 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 g̃14523 0 0 0 0 0 0 0 0 0
0 g̃15243 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

g̃14253 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 g̃15324 0 0 0 0 0 0
0 0 0 g̃15234 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



.
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C.2 Solution of the KLT bootstrap

We confirmed explicitly that the solution to the KLT bootstrap at 5-point is reproduced by
eq. (6.11), with

g1,l(1, 2, 3, 4, 5)×m[12345|12345] = 3 e1
Λ4 −

e1
Λ4

(
s12
s34

+ s12
s45

+ cyclic
)

+ e2
Λ6

(
−2 s12 + s2

12
s34

+ s2
12
s45

+ 2 s12s23
s45

+ cyclic
)

g2,l(1, 2, 3, 4, 5)×m[12345|12345] = e1
Λ4 −

e2
Λ6 (s12 + cyclic)

g1,r(1, 2, 3, 4, 5)×m[12345|12345] = 3 e3
Λ4 −

e3
Λ4

(
s12
s34

+ s12
s45

+ cyclic
)

g2,r(1, 2, 3, 4, 5)×m[12345|12345] = e3
Λ4 (C.5)

where
m[12345|12345] = 1

s12s34
+ cyclic , (C.6)

and ei are free parameters, which reproduce the results of [36] when e1 = a1,0 − a1,1,
e2 = a2,0, and e3 = a1,1. Note that the e2 parameter could have equivalently been part of
g1,r and g2,r without changing the amplitudes.

C.3 Generalized KLT kernel from seeds

At 4-point, the generalized kernel for any choice of BCJ bases was obtained by multiplying
the left and right side of the traditional KLT kernel by the diagonal matrices Gh.d.

l/r for the
same BCJ bases, see eq. (5.6). This simple structure extends to 5-point only for a particular
BCJ bases, as the structure gets more involved due the presence of the non-diagonal matrix
Gh.d.

2 in eq. (6.11). This is not necessarily a problem as one is always allowed to choose a
particular basis to compute double-copy amplitudes.

For example, for the usual biadjoint scalar theory, the sub-matrix of ordered amplitudes
for α, β ∈ {12345, 13524} reads

m5[α|β] =
(
m5[12345|12345] 0

0 m5[13524|13524]

)
, (C.7)

where m5[12345|13524] = m5[13524|12345] = 0 because the color orderings 12345 and 13524
do not share any poles. The associated kernel is then simply

S5[α|β] =
(

1/m5[12345|12345] 0
0 1/m5[13524|13524]

)
. (C.8)

It turns out that mh.d.
5 is also simplified when restricted to the BCJ basis {12345, 13524}.

For any color ordering a, and δ restricted to {12345, 13524}, eq. (6.11) becomes

mh.d.
5 [a|δ] =

24∑
b,c

(G1,r +G2,r)[a|b] m5[b|c] (G1,l +G2,l)[c|δ] . (C.9)
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This can be simplified by noting that (G1,l + G2,l)[c|12345] is nonzero only for c =
{12345, 14253}, while (G1,l+G2,l)[c|13524] is nonzero only for c = {12345, 13524}. Moreover,
m5[α|14253] = −m5[α|13524] for any α, which means that the second index of m5 can be
limited to the BCJ basis {12345, 13524}. This means that we can restrict to the sub-matrix
(appearing in eq. (6.14))

Gl ≡
(

(G1,l +G2,l)[12345|12345] (G1,l +G2,l)[12345|13524]
−(G1,l +G2,l)[14253|12345] (G1,l +G2,l)[13524|13524]

)
, (C.10)

and similarly for the right side with

Gr ≡
(

(G1,r +G2,r)[12345|12345] −(G1,r +G2,r)[12345|14253]
(G1,r +G2,r)[14253|12345] (G1,l +G2,r)[13524|13524]

)
. (C.11)

We can then write the BAS amplitudes for this specific BCJ basis as

mh.d.
5 [α|δ] =

∑
β,γ∈{12345,13524}

Gr[α|β] ·m5[β|γ] · Gl[γ|δ] . (C.12)

Therefore, in this case, it is simple to invert the generalized BAS matrix to obtain the
generalized KLT kernel:

Sh.d.
5 [α|δ] =

∑
β,γ∈{12345,13524}

G−1
l [α|β]S[β|γ]G−1

r [γ|δ] . (C.13)

We let the investigation of similar formula for a generic BCJ basis for a future work.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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