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1 Introduction

The B → D`ν` and B → D∗`ν` weak semileptonic decays have been broadly studied in
the last decades (for a recent review see, e.g., ref. [1]). The predictions of observables in
these decays critically depend on our knowledge of the corresponding hadronic form factors.
The B → D(∗) form factors are calculated in lattice QCD with a continuously increasing
accuracy [2]. These form factors can also be obtained from QCD sum rules, where the most
advanced computations are in refs. [3–5]. In addition, in the heavy-mass limit — that is
for mc,mb →∞ — the B → D(∗) form factors are constrained and normalized at the zero
recoil point corresponding to the maximal momentum transfer to the leptons.

Less explored from both the theoretical and the experimental sides are the B-meson
semileptonic transitions to the lowest lying excited charmed mesons D∗0, D

(′)
1 , D∗2 with

the spin-parity JP = 0+, 1+, 2+, respectively. Nonetheless, an accurate knowledge of the
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Meson j JP Mass [MeV] Width [MeV]

D∗0(2300) 1
2 0+ 2343± 10 229± 16

D1(2430) ≡ D′1 1
2 1+ 2412± 9 314± 29

D1(2420) ≡ D1
3
2 1+ 2422.1± 0.6 31.3± 1.9

D∗2(2460) 3
2 2+ 2461.1± 0.8 47.3± 0.8

Table 1. The lowest excited charmed mesons. For definiteness, we quote the masses and total
widths of electrically neutral states from [6].

form factors of these transitions is important for several reasons. Firstly, there is a long
standing problem of filling the gap between the inclusive B → Xc`ν` width and the sum of
the exclusive semileptonic widths dominated by the B → D`ν and B → D∗`ν modes [6].
Secondly, the constraints on the B → D

(∗)
0,1,2 form factors from the heavy-mass limit are

weaker, since we do not have a normalization condition for these cases. Finally, the observed
tension in the lepton-flavour universality (LFU) ratios R(D) and R(D∗) demands LFU tests
in all channels of the exclusive b → c transitions, including B → D

(∗)
0,1,2`ν`. It is therefore

extremely important to calculate the form factors of B transitions to each of these excited
charmed mesons.

The masses and widths of the lowest four charm resonances with JP = 0+, 1+, 2+

are collected in table 1. In the heavy mass limit for the charm quark, e.g. within Heavy
Quark Effective Theory (HQET), one indeed expects four states with one unit of orbital
angular momentum. Since the heavy quark spin decouples, these states fall into two (mass
degenerate) spin-symmetry doublets, differing by the total angular momentum j of light
degrees of freedom. One doublet with j = 1/2 consists of 0+ and 1+ states and a second
doublet with j = 3/2 consists of 1+ and 2+ states.

In this work we focus on the two 1+ mesons D1 and D′1. Again, one invokes HQET
where the strong transition |j = 1/2〉 → |j = 1/2〉+ π proceeds via S-wave whereas in the
transition |j = 3/2〉 → |j = 1/2〉 + π only the D-wave is possible, causing a kinematical
suppression. Hence, the j = 1/2 state has a significantly larger total width than the j = 3/2
state [7, 8]. It is then natural to expect that the observed narrow D1 (broad D′1) resonance
decaying to D∗π is predominantly the j = 3/2 (j = 1/2) state. In reality, a mixing between
the two HQET states inevitably takes place if one goes beyond the mc → ∞ limit. Note
that the mixing pattern of D1 and D′1 in terms of HQET states is purely non-perturbative.
It has been discussed in a model dependent framework (see, e.g., ref. [9] for further details).
It is then desirable to calculate the B → D1 and B → D′1 form factors in a finite c-quark
mass framework.

QCD sum rules [10] have been already used to evaluate the D(′)
1 decay constant and the

B → D
(′)
1 form factors from two-point and three-point correlators, respectively. This was

done mostly in HQET (see, e.g., refs. [11–14]), where the separation of the two lowest 1+

states from each other is straightforward, due to their different orbital angular momentum
j. One has to choose an appropriate interpolating current with j = 1/2 or j = 3/2 and
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consider two separate correlators. However, for a finite c-quark mass the two 1+ states
mix in the observed D1 and D′1 mesons, making the HQET sum rules inadequate for these
mesons. Correlators with a finite c-quark mass were used in, e.g., refs. [15, 16]. Still, these
calculations assume that only one 1+ lowest state is interpolated by the conventional axial
current c̄γµγ5q. This is however in contradiction with HQET that predicts a second 1+ state
in the same mass region, which has been confirmed by experimental data. Consequently,
the assumption that only a single state is present within the duality window of a QCD sum
rule cannot be justified.

QCD light-cone sum rules (LCSRs) [17–19] opened up new possibilities to calculate
the B-to-charm form factors, especially their version with B-meson distribution amplitudes
(DAs) proposed in refs. [20, 21]. These sum rules are derived for a finite c quark mass, which
makes them suitable for our task. They can be used in principle for any charmed hadron
in the final state, and not only for D and D∗ mesons as in, e.g., refs. [3–5]. Nevertheless,
we encounter also in this approach the problem of defining a current that interpolates only
one of the 1+ states at a time.

In this paper, we suggest a novel procedure to separate nearby resonances that super-
sedes the standard LCSR approach. This procedure consists in defining two independent
currents with JP = 1+, which in general interpolate both the D1 and D′1 mesons. By
finding a suitable linear combinations of these currents that interpolate only one 1+ state
at a time, we can write down the desired LCSRs. However, these linear combinations of
currents depend on four unknown decay constants (one for each meson-current combina-
tion). Using two-point QCD sum rules, we are able to determine only three out of the
four decay constants. The fourth one is determined a posteriori, by using the experimental
measurement of the B → D1`ν` decay width. After determining this remaining unknown
parameter, we predict the B → D1 and B → D′1 form factors.

The rest of the paper is organized as follows. In section 2 we derive the two-point
sum rules for the decay constants and fix three out of the four decay constants that enter
in our calculation. In section 3 we define the dedicated interpolating currents and derive
the LCSRs. In section 4 we fix the remaining unknown decay constant by fitting the
expression for the B → D1`ν` total decay width to its measured value. Then, we predict
the B → D

(′)
1 form factors, the D(′)

1 -mesons decay constants, and the LFU ratios R(D(′)
1 ).

A series of appendices contain details regarding the B-meson DAs (in A), our analytical
results for the LCSRs (in B), and the formulae for the B → D

(′)
1 `ν` differential decay

widths (in C).

2 Two-point QCD sum rules for the 1+ charmed mesons

To derive the sum rules for the decay constants of the 1+ charmed mesons, we construct
the two-point correlators

Π(ij)
µν (q) = i

∫
d4x eiqx〈0|T {J (i)

µ (x)J (j)†
ν (0)}|0〉 = −gµνΠ(ij)(q2) + qµqνΠ̃(ij)(q2) , (2.1)
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for i, j = 1, 2. The currents in eq. (2.1) are defined as

J (1)
µ = (mc +mq)c̄γµγ5q , (2.2)

J (2)
µ = ic̄γ5

←→
D µq , (2.3)

where ←→D µ ≡ Dµ −
←−
Dµ and q = u, d. Throughout this paper we work in the isospin limit

and do not distinguish the flavors of the two light quarks, whose masses are neglected.
The two currents (2.2)–(2.3) are linearly independent since they interpolate different

states: while the current J (1)
µ creates from the vacuum (apart from 0− states) 1+ states, for

which the light degrees of freedom have exclusively an angular momentum of j = 1/2, the
current J (2)

µ interpolates, in addition, 1+ states with j = 3/2. In eq. (2.2) we also added a
factor (mc +mq) to the dimension-3 operator, such that both currents have the same mass
dimension.

The hadronic states with spin-parity JP = 1+ contribute to both invariant ampli-
tudes in eq. (2.1), since their contributions are proportional to the transverse combination
(q2gµν + qµqν). Conversely, the pseudoscalar states — which start from D meson — con-
tribute only to the amplitude multiplying the qµqν structure.1 Hence, we consider the
invariant amplitude Π(ij)(q2) to isolate the axial charmed meson contributions.

We also notice that the currents J (1)
µ and J

(2)
µ interpolate both the D1 and the D′1

mesons. Therefore, to extract the decay constants of these mesons, we need to consider
simultaneously the three independent sum rules for the relevant correlators: Π(11), Π(22),
and Π(12) since Π(12) = Π(21). We express these correlators in terms of hadronic dispersion
relations in section 2.1, while we compute the same correlators using an operator product
expansion (OPE) in section 2.2. These two representations of the correlators are then
matched. In addition, semi-global quark-hadron duality is used to remove the contribution
of the continuum and further excited states. A Borel transform is then performed to reduce
the systematic uncertainty due to quark-hadron duality. The procedure up to this point
is a standard one [10] with many successful applications in the literature (see, e.g., the
review [22]). In this article, we extend this procedure to deal with the case where there are
two mesons with very close masses in the same spin-parity channel, like the D1 and the
D′1 mesons.

2.1 Hadronic representation of the two-point correlators

The hadronic spectrum of the correlators defined in eq. (2.1) — considering only the JP =
1+ channel — consists of the two low-lying resonances D1 and D′1 and the continuum with
further excited states. This spectrum is markedly different from the one in a “typical”
QCD sum rule with a single ground-state resonance. The currently available experimental
data suggest that the well established D1(2420) resonance is narrow, whereas the D′1(2430)
resonance is very broad and has a mass only about 10MeV smaller (see table 1). Therefore,
the hadronic dispersion relation for the three correlators (2.1) after performing the Borel

1The situation similar to the QCD sum rule for the light axial meson first obtained in ref. [10]. The
diagonal sum rules for (conventional) heavy-light axial currents were considered in ref. [16].
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transform reads

Π(11)
had (M2) = f2

D1m
4
D1e
−m2

D1
/M2

+ f2
D′1
m4
D′1
e
−m2

D′1
/M2

+
∞∫

sth

ds e−s/M
2
ρ

(11)
cont(s) , (2.4)

Π(12)
had (M2) = fD1gD1m

4
D1e
−m2

D1
/M2

+ fD′1gD′1m
4
D′1
e
−m2

D′1
/M2

+
∞∫

sth

ds e−s/M
2
ρ

(12)
cont(s) , (2.5)

Π(22)
had (M2) = g2

D1m
4
D1e
−m2

D1
/M2

+ g2
D′1
m4
D′1
e
−m2

D′1
/M2

+
∞∫

sth

ds e−s/M
2
ρ

(22)
cont(s) , (2.6)

where sth = (mD + 2mπ)2 ' (mD∗ + mπ)2 is the lowest threshold of hadronic continuum
states in this channel and M2 is the Borel parameter. The decay constants introduced in
the above equations are defined as

〈0|J (1)
µ |D1(q, λ)〉 = m2

D1ε
(D1)
µ fD1 , 〈0|J (1)

µ |D′1(q, λ)〉 = m2
D1ε

(D′1)
µ fD′1 ,

〈0|J (2)
µ |D1(q, λ)〉 = m2

D1ε
(D1)
µ gD1 , 〈0|J (2)

µ |D′1(q, λ)〉 = m2
D1ε

(D′1)
µ gD′1 ,

(2.7)

where ε(D(′)
1 )

µ ≡ ε(D(′)
1 )

µ (p, λ) is the polarization vector of the D(′)
1 mesons. In eq. (2.4)–(2.6),

we have isolated the ground-state resonances and attributed a generic hadronic spectral
density ρ

(ij)
cont(s) to the rest of the hadronic spectrum including continuum and excited

states.
To make this hadronic representations more accurate, we take into account the large

total width of the D′1 meson, replacing the zero-width resonance by a Breit-Wigner form
with the energy-dependent width. After performing the Borel transform, this corresponds
to the replacement of a simple exponential in eq. (2.4)–(2.6) by the following expression:

e
−m2

D′1
/M2

→ E(ΓD′1 ,M
2) =

∞∫
sth

ds e−s/M
2
[

1
π

√
sΓD′1(s)

(s−m2
D′1

)2 + sΓ2
D′1

(s)

]
. (2.8)

The formula for the energy dependence of ΓD′1(s) is approximated by the S-wave phase-
space factor for the dominant decay channel D′1 → D∗π with the largest phase space:

ΓD′1(s) = Γtot
D′1

[
λ1/2(s,m2

D∗ ,m
2
π)mD′1

λ1/2(m2
D′1
,m2

D∗ ,m
2
π)
√
s

]
, (2.9)

where λ is the Källen function. In the narrow-width limit, that is for Γtot
D′1
→ 0, it is easy

to show that E(ΓD′1 ,M
2) = e

−m2
D′1
/M2

. The ansatz (2.8) can be interpreted as a result of
the resummation of the D∗π intermediate states strongly coupled to the D′1 resonance.
In other words, we effectively take into account the most important D∗π continuum state
with the lowest threshold in the hadronic spectrum of the correlator.2 Since the spectral

2This interpretation of the energy-dependent width for a broad ρ resonance is explained, e.g., in ref. [23],
while for a similar resonance ansatz in the LCSRs for B → 2π form factors see ref. [24].
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density of this state spans up to s→∞, in the final sum rules the upper limit of integration
over s in eq. (2.8) is replaced by the effective threshold of the quark-hadron duality. This
means that the part of the D∗π-state contribution above that threshold is subtracted as
a part of the duality approximation. We do not apply the replacement (2.8) for the D1
meson, since its width is relatively small and hence the narrow-width limit is a reasonable
approximation in this case.

Finally, eq. (2.4)–(2.6) become

Π(11)
had (M2) = f2

D1m
4
D1e
−m2

D1
/M2

+ f2
D′1
m4
D′1
E(ΓD′1 ,M

2) +
∞∫

sth

ds e−s/M
2
ρ

(11)
cont(s) , (2.10)

Π(12)
had (M2) = fD1gD1m

4
D1e
−m2

D1
/M2

+ fD′1gD′1m
4
D′1
E(ΓD′1 ,M

2) +
∞∫

sth

ds e−s/M
2
ρ

(12)
cont(s) ,

(2.11)

Π(22)
had (M2) = g2

D1m
4
D1e
−m2

D1
/M2

+ g2
D′1
m4
D′1
E(ΓD′1 ,M

2) +
∞∫

sth

ds e−s/M
2
ρ

(22)
cont(s) . (2.12)

2.2 OPE of the two-point correlators

We compute the correlators (2.1) by expanding the time-ordered product for x ∼ 0, that is
using a short-distance OPE. The leading power contribution to this OPE is reduced to the
perturbative calculation of the correlator. The higher-power terms — which are typically
suppressed by inverse powers of M2 — are given by a series of QCD vacuum condensates
multiplied by the corresponding Wilson coefficient. As a result, the correlators can be
decomposed as

Π(ij)
OPE(q2) = Π(ij)

pert(q2) + Π(ij)
cond(q2) . (2.13)

We discuss the calculation of Π(ij)
pert and Π(ij)

cond in the remainder of this section.
The spectral densities of the correlators Π(ij)

pert, defined as ρ(ij)(s) ≡ (1/π)ImΠ(ij)(s),
at leading order (LO) read

ρ
(11)
pert(s) = m2

c

(
s−m2

c

)2 (
m2
c + 2s

)
8π2s2 θ

(
s−m2

c

)
, (2.14)

ρ
(12)
pert(s) = −m

2
c

(
s−m2

c

)3
8π2s2 θ

(
s−m2

c

)
, (2.15)

ρ
(22)
pert(s) =

(
s−m2

c

)4
8π2s2 θ

(
s−m2

c

)
. (2.16)

The next-to-leading order (NLO) gluon radiative correction to Π(11)
pert is known (see, e.g.,

ref. [16]). This correction is numerically not large, in contrast to the case of b-flavored
currents [25]. To obtain the same correction for the correlators containing the current J (2)

µ

one would have to perform a dedicated calculation of two-loop diagrams, which is out of
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q
×

×
c

q

c
××

Figure 1. The diagrams with nonvanishing contributions to the gluon condensate term in the OPE
of the two-point correlators. The crossed lines denote vacuum gluons.

the scope of this work. Hence, for consistency, we do not include the NLO corrections in
the OPE.

The QCD vacuum condensates are organized in series with increasing mass dimen-
sion of the respective operators. We consider contributions up to and including d = 5
condensates:

Π(ij)
cond = Π(ij)

q̄q + Π(ij)
GG + Π(ij)

q̄Gq . (2.17)

Here Π(ij)
q̄q , Π(ij)

GG, and Π(ij)
q̄Gq are the quark, gluon, and quark-gluon condensate contributions,

respectively.
To calculate the d = 3 quark condensate terms we use the vacuum average

〈0|q̄αiqkβ |0〉 = 1
4Nc
〈q̄q〉δki δαβ .

We find

Π(11)
q̄q (q2) = 〈q̄q〉 m3

c

m2
c − q2 , Π(12)

q̄q (q2) = Π(22)
q̄q (q2) = 0 . (2.18)

Note that including the next-to-leading term in the expansion of quark field at x = 0,
namely

q̄(x) = q̄(0) + xµq̄(x)←−Dµ

∣∣∣
x=0

+ 1
2x

µxν q̄(x)←−Dµ
←−
Dν

∣∣∣∣
x=0

+ . . . , (2.19)

generates contributions in eq. (2.18) proportional to the light-quark mass and hence they
can be neglected.

The d = 4 contributions to eq. (2.18) proportional to the gluon condensate density

〈GG〉 ≡ αs
π
〈0|GaµνGµνa |0〉

are conveniently calculated adopting the Fock-Schwinger gauge, defined as

(x− x0)µAaµ(x) = 0

for x0 = 0 (see, e.g., the reviews [26, 27]). In figure 1 we display the diagrams which provide
non vanishing contributions to the gluon condensate term in the OPE. The remaining
diagram where the light quark emits two gluons vanishes in the adopted limit mq = 0.
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Also the additional diagrams for Π(12),(22) with a gluon emitted from the vertex J (2)
µ with

covariant derivative are vanishing. The diagrams in figure 1 yield

Π(11)
GG (q2) = − 1

12〈GG〉
m2
c

m2
c − q2 , (2.20)

Π(12)
GG (q2) = 1

24(q2)2 〈GG〉m
2
c

((
m2
c − 3q2

)
log

(
m2
c

m2
c − q2

)
− q2

)
, (2.21)

Π(22)
GG (q2) = 1

24(q2)2 〈GG〉
(
−m2

cq
2 +

(
−4m2

cq
2 +m4

c + 3(q2)2
)

log
(

m2
c

m2
c − q2

))
. (2.22)

In the last equation we omit the constant terms since they vanish after performing the
Borel transform. The functions in eq. (2.21)–(2.22) that multiply the gluon condensate

densities develop imaginary parts at q2 = s > m2
c :

ρ
(12)
GG (s) = m2

c

(
m2
c − 3s

)
24s2 θ

(
s−m2

c

)
, (2.23)

ρ
(22)
GG (s) =

(
m4
c − 4m2

cs+ 3s2)
24s2 θ

(
s−m2

c

)
. (2.24)

Therefore, the gluon condensate contributions (2.21) and (2.22) can be represented in the
form of an unsubtracted dispersion relation:

Π(12),(22)
GG (q2) = 〈GG〉

∞∫
m2
c

ds

s− q2 ρ
(12),(22)
GG (s) . (2.25)

We treat these contributions in the same way as the perturbative contributions of eq. (2.14)–
(2.16), i.e. we include them into the OPE spectral density.

Truncating the short-distance OPE at d = 5, we also take into account the quark-gluon
condensate:

〈q̄Gq〉 ≡ 〈0|q̄gsGaµνtaσµνq|0〉 = m2
0〈q̄q〉 .

The calculation of this contribution — although technically more complicated than for the
quark condensate — is well documented in the reviews such as refs. [26, 27] and hence we do
not dwell on details. We only mention that here again the diagrams with a gluon emitted
from the vertex containing a covariant derivative vanish. The results for the quark-gluon
condensate contributions are

Π(11)
q̄Gq(q

2) = −1
2m

2
0〈q̄q〉

m5
c

(m2
c − q2)3 , Π(22)

q̄Gq(q
2) = 3

8m
2
0〈q̄q〉

mc

(m2
c − q2) ,

Π(12)
q̄Gq(q

2) = 1
12m

2
0〈q̄q〉

mc q
2

(m2
c − q2)2 .

(2.26)

Finally, we note that neglecting the d = 6 four-quark condensate contributions is justified
because in the correlators of heavy-light currents these corrections are in general numeri-
cally negligible (for example in the sum rule for the D∗ decay constant of ref. [25]).
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Following the standard procedure to derive a sum rule, we perform a Borel transform
of the results listed in this section. We obtain the following expressions for the OPE of the
three correlators to the adopted accuracy:

Π(11)
OPE(M2) =

∞∫
m2
c

ds e−s/M
2
ρ

(11)
pert(s) +

[
〈q̄q〉m3

c −
1
12〈GG〉m

2
c −

1
4m

2
0〈q̄q〉

m5
c

M4

]
e−m

2
c/M

2
,

(2.27)

Π(12)
OPE(M2) =

∞∫
m2
c

ds e−s/M
2[
ρ

(12)
pert(s) + 〈GG〉ρ(12)

GG (s)
]
− 1

12m
2
0〈q̄q〉mc

(
1− m2

c

M2

)
e−m

2
c/M

2
,

(2.28)

Π(22)
OPE(M2) =

∞∫
m2
c

ds e−s/M
2[
ρ

(22)
pert(s) + 〈GG〉ρ(22)

GG (s)
]

+ 3
8m

2
0〈q̄q〉mce

−m2
c/M

2
. (2.29)

2.3 Two-point sum rules and upper bounds

To obtain the two-point sum rules for the decay constants, we match the hadronic repre-
sentation of the correlators given in section 2.1 to their respective OPE calculations given
in section 2.2. We also use semi-global quark-hadron duality to remove the contributions
of the continuum and excited states encoded in the functions ρ(ij)

cont. This implies that the
upper limit of the integrals in the OPE results (2.27)–(2.29) and, simultaneously, the upper
limit in the expression for E(ΓD′1 ,M

2) are replaced by the respective effective thresholds
s

(ij)
0 , whose choice is discussed in section 4. The resulting sum rules for the three two-point
correlators read

f2
D1m

4
D1e
−m2

D1
/M2

+ f2
D′1
m4
D′1
E(ΓD′1 ,M

2, s
(11)
0 ) = Π(11)

OPE(M2, s
(11)
0 ) , (2.30)

fD1gD1m
4
D1e
−m2

D1
/M2

+ fD′1gD′1m
4
D′1
E(ΓD′1 ,M

2, s
(12)
0 ) = Π(12)

OPE(M2, s
(12)
0 ) , (2.31)

g2
D1m

4
D1e
−m2

D1
/M2

+ g2
D′1
m4
D′1
E(ΓD′1 ,M

2, s
(22)
0 ) = Π(22)

OPE(M2, s
(22)
0 ) . (2.32)

Since there are only three independent sum rules for four unknown decay constants, it is
not possible to determine all of them. We then consider eq. (2.30)–(2.32) as a system of
equations to express fD′1 , gD1 , and gD′1 as a function of fD1 . This system has four distinct
solutions, which are discussed in detail in section 4. These decay constants serve as input
parameters for the LCSRs, which are derived in the next section.

Even though we cannot calculate the individual decay constants with the information
inferred from the sum rules, we can still set bounds on their value. In fact, the two diagonal
correlators Π(11)

µν and Π(22)
µν have positive definite spectral densities. Hence, independent of

the quark-hadron duality assumption, the following model-independent upper bounds are
valid for the squared decay constants (see, e.g., ref. [28] where the upper bounds for the
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D(s) decay constants were obtained):

f2
D1 <

Π(11)
OPE(M2)

m4
D1
e
−m2

D1
/M2 , f2

D′1
<

Π(11)
OPE(M2)

m4
D′1
E(ΓD′1 ,M

2) ,

g2
D1 <

Π(22)
OPE(M2)

m4
D1
e
−m2

D1
/M2 , g2

D′1
<

Π(22)
OPE(M2)

m4
D′1
E(ΓD′1 ,M

2) .

(2.33)

The numerical value of these bounds are presented in section 4.

3 LCSRs for the B → D
(′)
1 form factors

Here we derive the LCSRs with B-meson DAs for the B → D1 and B → D′1 form fac-
tors. This method is well established and has already been applied to several B-meson
transitions. For the derivation of our sum rules we follow refs. [3, 5].

In analogy with the two-point sum rules considered in the previous section, we start
by defining suitable B-to-vacuum correlators:

F (R)
µν (p, q) = i

∫
d4x eip·x 〈0|T

{
J (R)†
ν (x), Jw

µ (0)
}
|B̄(p+ q)〉 , (R = D1, D

′
1) . (3.1)

Here, Jw
µ = c̄γµ(1 − γ5)b is the weak current with the momentum q while p + q is the

momentum of the B meson state, so that (p + q)2 = m2
B. The interpolating currents

J
(D1)
µ or J (D′1)

µ with momentum p are chosen such that they only interpolate the D1 or D′1
meson, respectively. This can be easily achieved by combining the decay constants defined
in eq. (2.7):

J (D1)
µ = J (1)

µ −
fD′1
gD′1

J (2)
µ , J

(D′1)
µ = J (1)

µ −
fD1

gD1
J (2)
µ . (3.2)

Again, the correlators (3.1) can be both expressed in terms of hadronic quantities
and computed using — in this case — a light-cone OPE. The details of these calculations
are given in section 3.1 and section 3.2, respectively. The LCSRs are then obtained by
matching the results of the hadronic representation and OPE calculation and using semi-
global quark-hadron duality.

3.1 Hadronic representation of the B-to-vacuum correlator

To obtain the hadronic dispersion relation for the correlators (3.1), we calculate the imag-
inary part with respect to the variable p2, by inserting a complete set of hadronic states in
eq. (3.1):

Imp2F (R)
had,µν(p, q) = 1

2
∑∫
h

dτh(2π)4δ(4)(ph − p)〈0|J (R)†
ν |h(p)〉〈h(p)|Jw

µ |B̄(p+ q)〉 , (3.3)

where the overline denotes the sum over different polarizations of a given intermediate state
h. The contributions of the D1 and D′1 mesons to eq. (3.3) read

Imp2F (R)
had,µν(p, q) = π δ(s−m2

R)〈0|J (R)†
ν |R(p)〉〈R(p)|Jw

µ |B̄(p+ q)〉+ . . . , (3.4)
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where the ellipsis stands for contributions from other hadronic states with the same quan-
tum numbers. Using the definitions in eq. (2.7), one can easily find that

〈0|J (D1)
ν |D1(p)〉 = m2

D1ε
(D1)
ν

(
fD1 −

fD′1
gD′1

gD1

)
,

〈0|J (D′1)
ν |D′1(p)〉 = m2

D′1
ε

(D′1)
ν

(
fD′1 −

fD1

gD1
gD′1

)
,

(3.5)

and, by construction,

〈0|J (D′1)
ν |D1(p)〉 = 〈0|J (D1)

ν |D′1(p)〉 = 0 .

Furthermore, we express the hadronic matrix elements of the weak current in terms of the
B → D

(′)
1 form factors:

〈R(p, ε)|Jw
µ |B̄(p+ q)〉 = −iε(R)∗

µ (mB +mR)V BR
1 (q2) + i(2p+ q)µ(ε(R)∗ · q) V

BR
2 (q2)

mB +mR

+ iqµ(ε(R)∗ · q)2mR

q2

(
V BR

3 (q2)− V BR
0 (q2)

)
− εµναβε(R)∗νpαqβ

2ABR(q2)
mB +mR

, (3.6)

where 2mRV
BR

3 (q2) = (mB +mR)V BR
1 (q2)− (mB −mR)V BR

2 (q2) and V BR
0 (0) = V BR

3 (0),
and we adopt the convention ε0123 = 1. Note that our form factor definitions are analogous
to the conventional definitions of the B → D∗ form factors of, e.g., ref. [3]. There are now
one axial-vector and three independent vector form factors instead of one vector and three
axial-vector form factors in the B → D∗ case, since the parity of the final state is opposite.

Substituting the definitions of hadronic matrix elements (3.5)–(3.6) in eq. (3.4) we
obtain

1
π

Imp2F (D1)
had,µν(p, q) = m2

D1hD1

[
i

(
gµν −

pµpν
m2
D1

)
(mB +mD1)V BD1

1 (q2)

−i(2p+ q)µ
(
qν − pν

(q · p)
m2
D1

)
V BD1

2 (q2)
mB +mD1

−i
(
qµqν − qµpν

(q · p)
m2
D1

)
2mD1

q2

(
V BD1

3 (q2)− V BD1
0 (q2)

)

+εµναβpαqβ
2ABD1(q2)
mB +mD1

]
δ(p2 −m2

D1) + . . . , (3.7)

1
π

Imp2F (D′1)
had,µν(p, q) = m2

D′1
hD′1

i
gµν − pµpν

m2
D′1

 (mB +mD′1
)V BD′1

1 (q2)

−i(2p+ q)µ

qν − pν (q · p)
m2
D′1

 V
BD′1

2 (q2)
mB +mD′1
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−i

qµqν − qµpν (q · p)
m2
D′1

 2mD′1

q2

(
V
BD′1

3 (q2)− V BD′1
0 (q2)

)

+ εµναβp
αqβ

2ABD′1(q2)
mB +mD′1

 1
π

√
p2ΓD′1(p2)

(p2 −m2
D′1

)2 + p2Γ2
D′1

(p2) + . . . . (3.8)

Here, as in section 2.1, we take into account the width of the D′1 state and, for the sake of
brevity, introduce a notation for the two combinations of decay constants:

hD1 ≡
(
fD1 −

fD′1
gD′1

gD1

)
, hD′1 ≡

(
fD′1 −

fD1

gD1
gD′1

)
.

For future convenience, we decompose the correlator F (R)
µν (p, q) in a set of indepen-

dent Lorentz structures Lµν(p, q) multiplied by the corresponding invariant amplitudes
F (R)
L (p2, q2):

F (R)
µν (p, q) =

∑
L
Lµν(p, q)F (R)

L (p2, q2) . (3.9)

From the above decomposition we specifically choose the Lorentz structures

Lµν = gµν , pµqν , qµqν , εµναβp
αqβ , (3.10)

since they are free from the contributions of pseudoscalar charmed mesons. Indeed, the
hadronic matrix elements 〈0|J (R)†

ν |D(p)〉 are proportional to the momentum pν , which does
not appear in eq. (3.10). Finally, we can write down a hadronic dispersion relation for each
function F (R)

L (p2, q2):

F (R)
had,L(p2, q2) = 1

π

∞∫
sth

ds
Imp2F (R)

had,L(s, q2)
s− p2 , (3.11)

where sth is the same threshold as in the hadronic dispersion relations for the two-point
correlator considered in section 2.1.

3.2 Light-cone OPE of the B-to-vacuum correlator

The calculation of the light-cone OPE for the correlators (3.1) is analogous to the one
performed in refs. [3, 5, 21] for the B → P or B → V form factors, where P = π,K,D and
V = ρ,K∗, D∗. The main difference with these calculations is the choice of the interpolating
current, which has already been discussed at the beginning of this section.

It is more convenient to consider separately the correlators

F (i)
µν (p, q) = i

∫
d4x eip·x 〈0|T

{
J (i)†
ν (x), Jw

µ (0)
}
|B̄(p+ q)〉 , (i = 1, 2) (3.12)

which are related to the ones in eq. (3.1) through the following equations:

F (D1)
µν = F (1)

µν −
fD′1
gD′1
F (2)
µν , F (D′1)

µν = F (1)
µν −

fD1

gD1
F (2)
µν . (3.13)
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We expand the correlators F (i)
µν at near light-cone separations x2 ' 0, which in momentum

space implies that our calculation is valid for p2 � m2
c and q2 � (mb + mc)2. Using

the Wick’s theorem to compute the time-ordered product in eq. (3.12) and expanding the
c-quark propagator near the light-cone, we obtain

F (1)
OPE,µν(p, q) = i

∫
d4x eip·x 〈0|mcq̄(x)γνγ5iSc(x, 0)Γw

µ b(0)|B̄(p+ q)〉 , (3.14)

F (2)
OPE,µν(p, q) =

∫
d4x eip·x 〈0|q̄(x)γ5(Dν −

←−
Dν)iSc(x, 0)Γw

µ b(0)|B̄(p+ q)〉 , (3.15)

where Γw
µ = γµ(1 − γ5). We neglect the gluon emission effects which generate quark-

antiquark-gluon (three-particle) components of the B meson DAs. Indeed, their contribu-
tions turned out to be numerically irrelevant in LCSRs for the B → D(∗) form factors [5, 29].
We also do not take into account the O(αs) corrections which can be relevant [4] but would
demand involved loop diagram calculations which are out of our scope. Thus, the covariant
derivatives in eq. (3.15) can be replaced with partial derivatives and in both correlation
functions the free c-quark propagator can be used:

Sc(x, 0) =
∫

d4k

(2π)4 e
−ik·x /k +mc

k2 −m2
c

. (3.16)

Using these approximations, eq. (3.14)–(3.15) can be written as

F (1)
OPE,µν(p, q) = −mc

∫
d4x eip·x 〈0|q̄α(x)bβ(0)|B̄(p+ q)〉

[
γνγ5Sc(x, 0)Γw

µ

]
αβ
, (3.17)

F (2)
OPE,µν(p, q) = i

∫
d4x eip·x

{
〈0|q̄α(x)bβ(0)|B̄(p+ q)〉

[
γ5∂νSc(x, 0)Γw

µ

]
αβ

− 〈0|q̄α(x)←−∂ νbβ(0)|B̄(p+ q)〉
[
γ5Sc(x, 0)Γw

µ

]
αβ

}
, (3.18)

where α, β are Dirac indices. Eq. (3.18) is further simplified integrating by parts its sec-
ond line:

F (2)
OPE,µν(p, q) = i

∫
d4x eip·x 〈0|q̄α(x)bβ(0)|B̄(p+ q)〉

×
{

2
[
γ5∂νSc(x, 0)Γw

µ

]
αβ

+ ipν
[
γ5Sc(x, 0)Γw

µ

]
αβ

}
. (3.19)

This allows us to write the correlators F (1)
OPE,µν and F (2)

OPE,µν in the same compact form

F (i)
OPE,µν(p, q) =

∫
d4x eip·x

∫
d4k

(2π)4 e
−ik·x[Γ(i)

ν γ5
/k +mc

m2
c − k2 Γw

µ

]
αβ
〈0|q̄α(x)bβ(0)|B̄(p+ q)〉 ,

(3.20)

where

Γ(1)
ν = mcγν , Γ(2)

ν = pν − 2kν .

To proceed, we approximate the B-to-vacuum matrix element in the above expression
by its HQET limit, replacing the b-quark field by the heavy-quark effective field with
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velocity v = (p + q)/mB, i.e. b(0) → hv(0). This non-local B-to-vacuum matrix element
can now be expanded in B-meson light-cone DAs of increasing twist. We emphasize that
even though we apply the HQET approximation for the b quark and light degrees of freedom
within B meson, we still treat the virtual c quark in the correlation functions as a full QCD
object with a finite mass.

In our calculation of correlation functions we specifically use the DAs given in ref. [30]
up to twist four. In addition, we include the twist-five DA g− in the Wandzura-Wilczek limit
as in ref. [5]. For the reader’s convenience we collect the relevant formulae in appendix A.
Using the expressions given there, taking the traces, and isolating the Lorentz structures
Lµν listed in (3.10), eq. (3.20) can be written as

F (i)
OPE,L(p2, q2) = fBmB

∑
k

∞∫
0

dσ
I

(i,k)
L (σ, q2)
(p2 − s)k

, (i = 1, 2) (3.21)

where

σ ≡ ω

mB
, s(σ, q2) ≡ σm2

B + m2
c − σq2

σ̄
, σ̄ ≡ 1− σ . (3.22)

The functions I(i,k)
L are linear combinations of the four B-meson DAs:

I
(i,k)
L (σ, q2) =

∑
ψ

C(i,k)
L,ψ (σ, q2)ψ(mBσ) , (3.23)

for ψ = φ+, g+,Φ±, G±. Our results for the coefficients C(i,k)
L,ψ are collected in appendix B.

This completes our OPE calculation for the correlators F (1)
µν and F (2)

µν .

3.3 Light-cone sum rules

To obtain the LCSRs for the B → D
(′)
1 form factors we match the hadronic representa-

tions of the correlators from section 3.1 onto their respective OPE expressions presented
in section 3.2. In addition, we use semi-global quark-hadron duality to eliminate the con-
tribution of the continuum and excited states in the hadronic dispersion relation. After
adopting this approximation and performing the Borel transform, the OPE result (3.21)
can be written as [5, 31]

F (i)
OPE,L(M̂2, ŝ0, q

2) = fBmB

4∑
k=1

(−1)k
(k − 1)!

{∫ σ0

0
dσ e−s(σ,q

2)/M̂2 1
(M̂2)k−1

I
(i,k)
L (σ, q2)

+
[
e−s(σ,q

2)/M̂2
k−1∑
j=1

1
(M̂2)k−j−1

1
s′

(
d

dσ

1
s′

)j−1
I

(i,k)
L (σ, q2)

]
σ=σ0

}
, (i = 1, 2) , (3.24)

where ŝ0 is the LCSRs effective threshold. We assume a universal duality interval for all
LCSRs. In the equation above, we have introduced the following notation:(

d

dσ

1
s′

)n
f(σ) ≡

(
d

dσ

1
s′

(
d

dσ

1
s′
. . . f(σ)

))
, s′ ≡ ds

dσ
,

σ(q2, s) =
m2
B − q2 + s−

√
4 (m2

c − s)m2
B +

(
m2
B − q2 + s

)2
2m2

B

, σ0 ≡ σ(q2, ŝ0) .
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Finally, we can write down the LCSRs B → D1 and B → D′1 form factors:

m2
D1hD1

2ABD1(q2)
mB +mD1

e
−m2

D1
/M̂2

= F (D1)
OPE,εµνpq(M̂

2, ŝ0, q
2) , (3.25)

im2
D1hD1(mB +mD1)V BD1

1 (q2)e−m
2
D1
/M̂2

= F (D1)
OPE,gµν (M̂2, ŝ0, q

2) , (3.26)

−i 2m2
D1hD1

V BD1
2 (q2)

mB +mD1
e
−m2

D1
/M̂2

= F (D1)
OPE,pµqν (M̂2, ŝ0, q

2) , (3.27)

−2im3
D1hD1

V BD1
3 (q2)− V BD1

0 (q2)
q2 e

−m2
D1
/M̂2

= F (D1)
OPE,rµqν (M̂2, ŝ0, q

2) , (3.28)

m2
D′1
hD′1

2ABD′1(q2)
mB +mD′1

E(ΓD′1 , M̂
2, ŝ0) = F (D′1)

OPE,εµνpq(M̂
2, ŝ0, q

2) , (3.29)

im2
D′1
hD′1(mB +mD′1

)V BD′1
1 (q2)E(ΓD′1 , M̂

2, ŝ0) = F (D′1)
OPE,gµν (M̂2, ŝ0, q

2) , (3.30)

−i 2m2
D′1
hD′1

V
BD′1

2 (q2)
mB +mD′1

E(ΓD′1 , M̂
2, ŝ0) = F (D′1)

OPE,pµqν (M̂2, ŝ0, q
2) , (3.31)

−2im3
D′1
hD′1

V
BD′1

3 (q2)− V BD′1
0 (q2)

q2 E(ΓD′1 , M̂
2, ŝ0) = F (D′1)

OPE,rµqν (M̂2, ŝ0, q
2) . (3.32)

Here, the equations (2.8), (3.7)–(3.10), and (3.13) have been used. We have also introduced
the shorthand notation

F (D1)
OPE,L = F (1)

OPE,L −
fD′1
gD′1
F (2)

OPE,L , F (D′1)
OPE,L = F (1)

OPE,L −
fD1

gD1
F (2)

OPE,L , (3.33)

and

F (R)
OPE,rµqν ≡ F

(R)
OPE,qµqν −

1
2F

(R)
OPE,pµqν , (R = D1, D

′
1) . (3.34)

Note that to extract the form factors ABR, V BR
1 , and V BR

2 we have selected the Lorentz
structures εµναβpαqβ , gµν , and pµqν , respectively. The form factor difference V BR

3 − V BR
0

is extracted by taking the linear combination of the Lorentz structures qµqν and pµqν .

4 Numerical analysis and predictions

Turning to the numerical analysis, we note that each of the LCSRs for a B → D
(′)
1 form

factor presented in eq. (3.25)–(3.32) depends on all four decay constants of D(′)
1 -mesons. In

a standard LCSR with B-meson DAs, a form factor is multiplied by a single decay constant
of the final-state hadron. This decay constant can be replaced by its analytical expression
inferred from the two-point sum rule. However, here we only have at our disposal three
two-point sum rules (2.30)–(2.32). Hence, one of the decay constants, which we choose to
be fD1 , remains a free parameter to be fixed from an additional external input specified
below. The two-point sum rules provide three relations that allow us to express the three
decay constants fD′1 , gD1 and gD′1 as functions of fD1 . In more details, we adopt the
following procedure:
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• We set the input parameters and evaluate the OPE part of the two-point sum rules
in eqs. (2.30)–(2.32).

• Employing these sum rules, we express the decay constants fD′1 , gD1 , and gD′1 as
functions of fD1 , i.e. fD′1 = fD′1(fD1), gD1 = gD1(fD1) and gD′1 = gD′1(fD1).

• Specifying the input parameters (including the parameters of B meson DAs, the
interval of Borel mass M̂ and the threshold ŝ0), we evaluate the OPE part of the LC-
SRs F (i)

OPE,L in eq. (3.24). This is done for negative values of the momentum transfer
squared, where the OPE in the adopted approximation is valid. Using conformal
mapping and a z expansion, we extrapolate these results to positive q2 values.

• The extrapolated OPE results, together with the hadron masses and expressions for
the decay constants, are substituted in the LCSRs (3.25)–(3.32) yielding the B → D

(′)
1

form factors as functions of fD1 .

• Employing these expressions for B → D1 form factors, we compute the B → D1`ν

decay width as function of fD1 . Matching this computation with the corresponding
experimental value, we determine the numerical value of fD1 .

• Finally, using fD1 , extracted with the procedure outlined above we evaluate the nu-
merical values of all B → D

(′)
1 form factors and predict the lepton-flavour universality

ratios R(D(′)
1 ). As a byproduct, the values of other decay constants are calculated

as well.

4.1 Numerical analysis of the sum rules and fD1 determination

The input parameters that we use for the numerical analysis outlined above are listed in
table 2. For the parameters determining the OPE such as the c-quark mass, the vacuum
condensate values and the characteristics of B meson DAs, we quote their sources. Our
choice of the sum-rule specific parameters deserves separate comments. For instance, for the
normalization scale we use a typical interval established in the analyses of other correlation
functions with a virtual c-quark. In these cases (see, e.g., refs. [25, 32]) not only the LO, as
here, but also the NLO gluon radiative corrections were taken into account. Importantly,
their numerical effect turned out to be mild, indicating a good convergence of perturbative
series at these particular scales.

In addition, to evaluate the OPE part of the two-point sum rules, that is the r.h.s.
of the eq. (2.30)–(2.32), we need to choose a suitable interval for the Borel parameter M2

and to determine the effective thresholds s(ij)
0 . The Borel parameter has to be chosen such

that both the contributions of states above D(′)
1 and higher-power terms in the OPE are

sufficiently suppressed. An indicator of the goodness of this interval is a mild variation
of the sum rule result. For the sum rules (2.30)–(2.32) the requirements listed above
are fulfilled for the interval quoted in table 2. Moreover, we find that the same interval
represents a reasonable choice for the Borel parameter M̂2 in LCSRs as well.

Concerning the choice of the duality threshold, the commonly used procedure consists
in taking the ratio between the derivative of a sum rule over −1/M2 and the initial sum rule.
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Parameter Value/Interval Ref.
normalization scale µ = 1.5GeV (1.3–2.5)GeV [25, 32]

c-quark mass mc(µ = 1.5GeV) = 1.205± 0.035GeV [6]
quark condensate 〈q̄q〉(µ = 1.5 GeV) = − (0.278± 0.022 GeV)3 [2]
Ratio 〈q̄Gq〉/〈q̄q〉 m2

0 = 0.8± 0.2GeV2
[33]

Gluon condensate 〈GG〉 = 0.012+0.006
−0.012 GeV4

B-meson decay constant fB = 189.4± 1.4MeV [34]
Parameters of the λB = 0.460± 0.110GeV [35]
B-meson DAs3 λ2

E = 0.03± 0.02GeV2
[37]

λ2
H = 0.06± 0.03GeV2

Borel parameters M2 = (2.5–3.5) GeV2, M̂2 = M2

Duality thresholds s
(22)
0 = (7.20± 0.65)GeV2

ŝ0 = s0 = s
(11)
0 = s

(12)
0 = s

(22)
0 .

Table 2. Input values used in the numerical analysis of the two-point sum rules and the LCSRs.

For the charmed meson channel this procedure was used, for example, in the LCSRs for
the B → D(∗) form factors. Note that here, apart from the conventional axial interpolating
current, we deal with a nonstandard current with a derivative. It is therefore important
to clarify if a correlator of these currents reveals a peculiar duality threshold. To find that
out, we have considered the sum rule for the correlator Π(22) and applied the differentiation
procedure to establish the value of s(22)

0 . The resulting interval for which the masses of
the D1 and D′1 mesons (neglecting their small difference) are reproduced, is displayed in
table 2. It also turns out to be in the same ballpark as the thresholds for various two-point
sum rules and LCSRs with D∗ mesons (see, e.g., [3, 5, 25, 32]). Guided by this affinity
and by the fact that the correlators Π(11) and Π(12) yield similar values for the threshold,
we simplify our numerical analysis adopting one and the same threshold for all remaining
sum rules.

Using the inputs in table 2, we evaluate the OPE part of the two-point sum rules
and LCSRs in eq. (2.30)–(2.32) and (3.24), respectively. Inspecting the light-cone OPE in
the LCSRs, we observe that for q2 < 0 there is a strong suppression of the higher-twist
contributions (of the DAs g±). However, at q2 ≥ 0 these contributions almost reach the
level of the lower-twist ones (of the DAs φ±). To ensure a maximal predictivity of the OPE
results, we follow the same strategy as in ref. [5] and calculate the OPE at negative values,
choosing the points q2 = {−20.0,−15.0,−10.0,−5.0}GeV2.

We then extrapolate these OPE results to the semileptonic region 0 < q2 < (mB −
m
D

(′)
1

)2 using a parametrization similar to the one proposed in refs. [40]. Each function

3For the parameter λB we use the value obtained from a QCD sum rule in ref. [35]. This value has
recently been confirmed in ref. [36]. For the parameters λ2

E and λ2
H we use the results of ref. [37], which

are in agreement — due to the large uncertainties — with an independent recent calculation of ref. [38].
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JP Form factors Bc(JP ) resonance masses [GeV]
0+ V BR

0 6.70
1− V BR

1 , V BR
2 6.33

1+ ABR 6.74

Table 3. The lowest-lying Bc(JP ) resonances in the form factor parametrizations. The masses are
taken from the refs. [6, 39].

F (i)
OPE,L is written as

F (i)
OPE,L(q2) = 1

1− q2

m2
JP

K∑
k=0

α
(k)
L

[
z(q2)− z(0)

]k
, (4.1)

where

z(q2) =
√
t+ − q2 −

√
t+ − t0√

t+ − q2 +
√
t+ − t0

, (4.2)

with the parameters

t+ = (mB +mD)2 , t0 = (mB +mD) (√mB −
√
mD)2 . (4.3)

The parametrization (4.1) isolates the Bc(JP ) resonances located below the thresholds of
the continuum bc̄ states. The masses mJP of these resonances, listed in table 3, have been
calculated in lattice QCD. One can see from eq. (3.25)–(3.32) that each Lorentz structure
is related to a certain form factor, which in turn has certain spin-parity quantum numbers
of the bc̄ states in the timelike region. For the function F (i)

OPE,rµqν , which corresponds to
the form factors with both the 0+ and the 1− states, we take for simplicity the mass m0+ .
Since q2

max = (mB − mD
(′)
1

)2 � m2
0+ this assumption has no significant numerical effect.

Note that we truncate the series in eq. (4.1) already at K = 1. Given the uncertainties of
the LCSRs, a third coefficient in this expansion should not affect significantly the results
of the extrapolation.

Having the OPE results in the semileptonic region, we obtain the B → D
(′)
1 form

factors in this region as functions of fD1 using eq. (3.25)–(3.32). Then, we calculate the
total semileptonic width Γ(B → D1`ν) ≡ Γth

D1
as a function of fD1 . The formulas for

the decay width expressed via form factors are given in appendix C. We determine fD1

by fitting Γth
D1

(fD1) to its experimental value obtained using the corrected experimental
measurement quoted in ref. [41]

B(B+ → D̄0
1`

+ν̄`) = (0.67± 0.05) · 10−2, (` = e, µ) (4.4)

and τB± = 1.638 ps [6].
Note that, as we have already mentioned in section 2.3, there are four solutions ex-

pressing the decay constants fD′1 , gD1 , and gD′1 in terms of fD1 . This is due to the fact
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that eq. (2.30) and eq. (2.32) are quadratic in the decay constants. However, only two
of these solutions lead to phenomenologically different results. The other two solutions
can be related to the former two via a redefinition of the form-factor phase which is not
observable. As a result, the two independent solutions that the fit to eq. (4.4) yields are

sol. 1: fD1 = (60± 20)MeV , (4.5)
sol. 2: fD1 = (95± 25)MeV . (4.6)

We stress that the difference between the two solutions is not only in the resulting value
of fD1 , but also in the functional dependence of the other decay constants and the form
factors on fD1 . For each of these solutions we obtain numerical results for the full set of
B → D

(′)
1 form factors and D(′)

1 decay constants. These results are presented in the next
subsection.

The twofold ambiguity that emerges in our approach could be resolved by using addi-
tional experimental data. However, the form factors obtained for both the solutions, (4.5)
and (4.5), predict similar intervals of the B → D′1`ν` width which is not used in the fit
(see section 4.2). These intervals, within large errors, are in agreement with the measured
value. Hence, the currently achieved accuracy of both LCSRs and experimental widths is
not sufficient to distinguish the two solutions. Certain angular observables might be able
to resolve this twofold ambiguity, due to their different dependence on the form factors
in contrast to the total decay width. Alternatively, further theoretical inputs could also
simplify the extraction of the B → D

(′)
1 form factors within out approach. For instance,

if one of the D(′)
1 decay constants was known from lattice QCD, we would not need to

perform any fit to extract fD1 and thus we would be able to compute the form factor with
no ambiguity.

Note that a systematic comparison of our results with the ones obtained in refs. [41, 42]
in the framework of HQET is not straightforward and demands additional studies which are
beyond our scope. The evident reason for that is that in HQET the D1 and D′1 resonances
are assumed to be pure j = 3/2 and j = 1/2 states, respectively, whereas our approach does
not use this assignment. Still, comparing the slopes of differential distributions obtained
in [41] with our predictions, we observe a better agreement when our form factors are
obtained using “sol. 1”.

4.2 Form factors, decays constants, and LFU ratios

We predict the B → D1 and B → D′1 form factors using the OPE results obtained in the
previous subsection for the two alternative solutions emerging from our analysis. The plots
of these form factors are given in figure 2, where it is also possible to observe the difference
between the two solutions in eq. (4.5)–(4.6) of the fit to fD1 . For a practical use, we fit our
form factor results to the following parametrization:

FBR(q2) = FBR(0)
1− q2

m2
JP

{
1 + βF

[
z(q2)− z(0)

]}
, (4.7)
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Figure 2. The q2-dependence of the B → D1 and B → D′1 form factors. The central values and
68% probability envelopes in blue (green) are the results obtained using sol. 1 (sol. 2).

for FBR = ABR, V BR
0 , V BR

1 , V BR
2 , (R = D1, D

′
1). Here, we use the same definition of the

variable z as in eq. (4.2). The central values, the uncertainties, and the correlation of the
coefficients in eq. (4.7) are given in table 4.

We predict also the decay constants fD′1 , gD1 , and gD′1 using the two-point sum rules
derived in section 2. For the two solutions we obtain:

sol. 1: fD′1 = −110± 28 MeV , gD1 = −110± 38 MeV , gD′1 = −22± 31 MeV . (4.8)

sol. 2: fD′1 = 5± 34 MeV , gD1 = 0± 34 MeV , gD′1 = −136± 44 MeV . (4.9)

The predicted values for the decay constants together with the fitted values (4.5), (4.6) for
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FBR(0) βF Correlation

so
l.
1

ABD1 −0.27± 0.29 −3.15± 1.76 0.03
V BD1

0 0.44± 0.20 −3.41± 1.26 0.04

V BD1
1 0.16± 0.10 1.69± 1.38 0.01

V BD1
2 −0.32± 0.38 −4.19± 6.29 0.01

ABD
′
1 −1.69± 0.77 −1.82± 0.74 0.04

V
BD′1

0 0.60± 0.32 −0.75± 1.21 −0.04

V
BD′1

1 0.53± 0.22 9.98± 1.05 −0.02

V
BD′1

2 0.40± 0.15 5.86± 3.42 −0.02

so
l.
2

ABD1 1.00± 0.45 −1.82± 0.50 −0.06
V BD1

0 −0.26± 0.15 −0.26± 1.63 0.02

V BD1
1 −0.31± 0.12 9.32± 1.73 −0.02

V BD1
2 −0.39± 0.19 2.26± 2.36 0.04

ABD
′
1 −0.92± 0.61 −3.28± 1.26 −0.03

V
BD′1

0 0.66± 0.33 −3.71± 2.37 0.03

V
BD′1

1 0.37± 0.19 3.74± 3.25 0.01

V
BD′1

2 −0.12± 0.25 −5.84± 4.42 0.02

Table 4. The central values, 1σ uncertainties, and correlations of the coefficients of the form factor
parametrization (4.7).

fD1 , lead to the following observation. If the solution 1 is adopted, then the interpolating
current J (1)

µ has a larger overlap with the broad resonance D′1 than with the narrow reso-
nance D1. Simultaneously, the current J (2)

µ with derivative of quark field has a larger decay
constant with D1 than with D′1. The solution 2 clearly manifests an opposite situation.
The observed correlation between the structure of the interpolating currents and the decay
constants deserves further investigation.

Furthermore, the values (4.9) together with the ones for fD1 in eq. (4.5)–(4.6) satisfy
the upper bounds given in section 2.3. Evaluating the r.h.s. of the inequalities (2.33) we
obtain

|fD1 | < 181 MeV , |fD′1 | < 220 MeV ,

|gD1 | < 266 MeV , |gD′1 | < 323 MeV ,
(4.10)

where, to stay on the conservative side, we have increased the central values of these bounds
by one standard deviation.

By construction, our calculated value of the B → D1`ν total decay width reproduces
the measured one in eq. (4.4). On the other hand, our predictions of the B → D′1`ν
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(` = e, µ) width converted into branching fraction are

sol. 1: B(B+ → D̄0
1`

+ν̄`) = (2.0+2.8
−1.4) · 10−2 , (4.11)

sol. 2: B(B+ → D̄0
1`

+ν̄`) = (1.7+2.1
−1.1) · 10−2 . (4.12)

They are still compatible with the measured value B(B+ → D̄0
1`

+ν̄`) = (0.2 ± 0.05) ·
10−2 [6, 41] but only within large uncertainties.

Currently, a very important observable for a semileptonic exclusive B decay is the cor-
responding lepton-flavour-universality (LFU) ratio. In our case, these ratios are defined as

R(D(′)
1 ) = Γ(B → D

(′)
1 τν)

Γ(B → D
(′)
1 `ν)

(4.13)

with ` = e, µ. Our predictions are the same for both solutions and read

R(D1) = 0.10± 0.02 , (4.14)
R(D′1) = 0.10± 0.03 . (4.15)

The relatively small uncertainties of these results indicate a partial cancellation of para-
metric uncertainties in the ratios of widths. These predictions are in agreement with the
results of refs. [41, 43].

5 Conclusion

In this paper, we have performed the first calculation of the B → D1 and the B → D′1
form factors using QCD light-cone sum rules (LCSRs) with B-meson distribution ampli-
tudes (DAs).

In order to disentangle the D1 and D′1 mesons, which are close in mass and are both
1+ states, we have set up a novel approach that combines QCD two-point sum rules and
LCSRs. This approach consists in defining two currents that interpolate both D1 and
D′1 states and finding a linear combinations of these currents, which interpolate each of
these states individually. This implies that four decay constants are needed as inputs to
evaluate the B → D

(′)
1 form factors from the LCSRs with the properly defined currents.

Using three independent two-point sum rules, we have related three decay constants to
the fourth one, which we have chosen to be fD1 and which is then determined a posteriori
using the experimental measurement of the B → D1`ν (` = e, µ) branching ratio.

Our new results include analytical expressions for the diagonal and non-diagonal two-
point correlators of the two interpolating currents obtained with local OPE and used to
derive the two-point sum rules. In addition, we have calculated the light-cone OPE in terms
of B-meson DAs for the two vacuum-to-B correlators formed by the same interpolating
currents with the weak b→ c current and used them to derive LCSRs.

A drawback of our approach is that it yields to a twofold ambiguity, which could be
resolved in future with more precise experimental data and/or further independent inputs
from theory. For example, if a lattice QCD result for one of the decay constants would
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be available, we would neither have a twofold ambiguity nor need to use experimental
information. Hence, it is an important, albeit challenging task for lattice QCD to isolate
the narrow D1 resonance and calculate its decay constant of at least one of the interpolating
currents.

Our main numerical results include the full set of the B → D
(′)
1 form factors in the

whole semileptonic region. Even though these results suffer from large uncertainties caused
also by the twofold ambiguity, we have found that important observables — such as the
lepton flavour universality ratios R(D1) and R(D′1) — can be predicted with a moderate
error. It will be interesting to use our results for comparison with the future measurements
of semileptonic B → D∗π`ν` decays which are accessible, e.g., with the Belle II detector.
An angular analysis disentangling S and D waves of the D∗π final state in these decays will
allow to obtain more accurate information on the positions and widths of both 1+ states.
Especially important is to confirm the properties of the broad resonance D′1 which are
currently less certain. Another type of processes where our predictions could be used are
various nonleptonic B decays with D1 and D′1 in the final state observed as D∗π resonances.
Here both LHCb and Belle-II measurements are possible. To give just one example: the
B(s) → D∗ππ(K) modes where the predicted decay constants f

D
(′)
1

of the axial current can
be used in the factorizable approximation to the decay amplitudes.

Future improvements of the approach suggested in this paper are possible and realistic.
They include a more precise calculation of the OPE for both two-point sum rules and
LCSRs, for instance by taking into account perturbative radiative corrections and, for the
LCSRs, also the subdominant three-particle contributions. Moreover, an improvement of
the input parameters of B-meson DAs, especially of its first inverse moment, will also help
to pin down the overall parametric uncertainty of our results. Achieving this precision of
OPE in future would also demand a more refined analysis of the duality thresholds. One
should use a threshold fixing procedure with the inverse Borel-mass differentiation for each
sum rule separately.

Furthermore, a relation to HQET in the context of QCD sum rules remains a very
important issue. Starting from the correlators with a finite c-quark mass considered in
this paper and expanding them in the powers of inverse mass, could provide a link to the
heavy-quark limit of the resulting sum rules and to get insight into the mixing pattern of
j = 1/2 and j = 3/2 states. Studying this mixing pattern could also help to resolve the
twofold ambiguity of our results. We plan to return to this problem in future.

In conclusion, let us mention that the LCSR method with B meson DAs and finite c
quark mass is universal enough to be used also for the B-meson transitions to the other
excited charmed mesons listed in table 1, which will be another natural continuation of
this work.
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A B-meson distribution amplitudes

Following the most complete analysis available for the B-meson DAs in ref. [30] , we define
the two-particle B-meson DAs as

〈0| q̄α(x)hβv (0) |B̄(v)〉 = − ifBmB

4

∫ ∞
0

dω

{
(1 + /v)

[
φ+(ω)− g+(ω)∂λ∂λ

+ 1
2
(
Φ±(ω)−G±(ω)∂λ∂λ

)
γρ∂ρ

]
γ5

}βα
e−il·x

∣∣∣∣∣
l=ωv

. (A.1)

The derivatives ∂µ ≡ ∂/∂lµ are understood to act on the hard-scattering kernel. We have
also introduced the notation

Φ±(ω) ≡
ω∫

0

dτ
(
φ+(τ)− φ−(τ)

)
, G±(ω) ≡

ω∫
0

dτ
(
g+(τ)− g−(τ)

)
. (A.2)

The DAs φ+, φ−, g+, and g− are of twist two, three, four, and five, respectively. For
the twist two, three, and four DAs we use the exponential model given in section 5.1 of
ref. [30]. For the twist five DA, which is not specified in ref. [30], we use its Wandzura-
Wilczek approximation given in eqs. (A.7)–(A.8) of ref. [5].

B OPE coefficients and transformation to sum rule

In this appendix we list the coefficients C(i,k)
L,ψ defined in eq. (3.23), which enter the master

formula (3.24) to compute the OPE of the correlators F (i)
L :

C(1,1)
εµνpq ,φ+

= −mc

σ̄
, (B.1)

C(1,2)
εµνpq ,Φ±

= m2
c

σ̄2 , (B.2)

C(1,2)
εµνpq ,g+ = −4mc

σ̄2 , (B.3)

C(1,3)
εµνpq ,g+ = 8m3

c

σ̄3 , (B.4)

C(1,4)
εµνpq ,G±

= −24m4
c

σ̄4 , (B.5)

C(1,1)
gµν ,φ+

= imc
(
σ̄2m2

B − 2σ̄mcmB +m2
c − q2)

2σ̄2 , (B.6)
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C(1,1)
gµν ,Φ±

= − im
2
c

2σ̄2 , (B.7)

C(1,2)
gµν ,Φ±

= − im
2
c

(
σ̄2m2

B − 2σ̄mcmB +m2
c − q2)

2σ̄3 , (B.8)

C(1,1)
gµν ,g+ = 2imc

σ̄2 , (B.9)

C(1,2)
gµν ,g+ = −2imc

(
−σ̄2m2

B +m2
c + q2)

σ̄3 , (B.10)

C(1,3)
gµν ,g+ = −4im3

c

(
σ̄2m2

B − 2σ̄mcmB +m2
c − q2)

σ̄4 , (B.11)

C(1,2)
gµν ,G±

= 4imBmc

σ̄2 , (B.12)

C(1,3)
gµν ,G±

= −4i(2σ̄mB − 3mc)m3
c

σ̄4 , (B.13)

C(1,4)
gµν ,G±

= 12im4
c

(
σ̄2m2

B − 2σ̄mcmB +m2
c − q2)

σ̄5 , (B.14)

C(1,1)
qµqν ,φ+

= −2i(σ̄ − 1)mc

σ̄
, (B.15)

C(1,2)
qµqν ,Φ±

= −2i(σ̄ − 1)2mBmc

σ̄2 , (B.16)

C(1,2)
qµqν ,g+ = −8i(σ̄ − 1)mc

σ̄2 , (B.17)

C(1,3)
qµqν ,g+ = 16i(σ̄ − 1)m3

c

σ̄3 , (B.18)

C(1,3)
qµqν ,G±

= −16i(σ̄ − 1)2mBmc

σ̄3 , (B.19)

C(1,4)
qµqν ,G±

= 48i(σ̄ − 1)2mBm
3
c

σ̄4 , (B.20)

C(1,1)
pµqν ,φ+

= i(1− 2σ̄)mc

σ̄
, (B.21)

C(1,2)
pµqν ,Φ±

= − i
(
2mBσ̄

2 − 2mBσ̄ −mc
)
mc

σ̄2 , (B.22)

C(1,2)
pµqν ,g+ = −4i(2σ̄ − 1)mc

σ̄2 , (B.23)

C(1,3)
pµqν ,g+ = 8i(2σ̄ − 1)m3

c

σ̄3 , (B.24)

C(1,3)
pµqν ,G±

= −16i(σ̄ − 1)mBmc

σ̄2 , (B.25)

C(1,4)
pµqν ,G±

= 24i
(
2mBσ̄

2 − 2mBσ̄ −mc
)
m3
c

σ̄4 , (B.26)

C(2,1)
εµνpq ,Φ±

= 1
σ̄
, (B.27)
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C(2,2)
εµνpq ,G±

= 4
σ̄2 , (B.28)

C(2,3)
εµνpq ,G±

= −8m2
c

σ̄3 , (B.29)

C(2,1)
gµν ,Φ±

= − i
(
σ̄2m2

B − 2σ̄mcmB +m2
c − q2)

2σ̄2 , (B.30)

C(2,1)
gµν ,g+ = 4imB

σ̄
, (B.31)

C(2,1)
gµν ,G±

= − 2i
σ̄2 , (B.32)

C(2,2)
gµν ,G±

= −2i
(
σ̄2m2

B − 2σ̄mcmB −m2
c − q2)

σ̄3 , (B.33)

C(2,3)
gµν ,G±

= 4im2
c

(
σ̄2m2

B − 2σ̄mcmB +m2
c − q2)

σ̄4 , (B.34)

C(2,1)
qµqν ,φ+

= −2i(σ̄ − 1)((σ̄ − 1)mB +mc)
σ̄

, (B.35)

C(2,1)
qµqν ,Φ±

= 4i(σ̄ − 1)
σ̄

, (B.36)

C(2,2)
qµqν ,Φ±

= −2i(σ̄ − 1)mc((σ̄ − 1)mB +mc)
σ̄2 , (B.37)

C(2,2)
qµqν ,g+ = −8i(σ̄ − 1)(2(σ̄ − 1)mB +mc)

σ̄2 , (B.38)

C(2,3)
qµqν ,g+ = 16i(σ̄ − 1)m2

c((σ̄ − 1)mB +mc)
σ̄3 , (B.39)

C(2,2)
qµqν ,G±

= 16i(σ̄ − 1)
σ̄2 , (B.40)

C(2,3)
qµqν ,G±

= −16i(σ̄ − 1)mc((σ̄ − 1)mB + 2mc)
σ̄3 , (B.41)

C(2,4)
qµqν ,G±

= 48i(σ̄ − 1)m3
c((σ̄ − 1)mB +mc)
σ̄4 , (B.42)

C(2,1)
pµqν ,φ+

= −2i(σ̄ − 1)(σ̄mB +mc)
σ̄

, (B.43)

C(2,1)
pµqν ,Φ±

= 4i− 3i
σ̄
, (B.44)

C(2,2)
pµqν ,Φ±

= −2i(σ̄ − 1)mc(σ̄mB +mc)
σ̄2 , (B.45)

C(2,2)
pµqν ,g+ = −8i(σ̄ − 1)(2σ̄mB +mc)

σ̄2 , (B.46)

C(2,3)
pµqν ,g+ = 16i(σ̄ − 1)m2

c(σ̄mB +mc)
σ̄3 , (B.47)

C(2,2)
pµqν ,G±

= 4i(4σ̄ − 3)
σ̄2 , (B.48)
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C(2,3)
pµqν ,G±

= −8imc
(
2mBσ̄

2 − 2mBσ̄ + 4mcσ̄ − 3mc
)

σ̄3 , (B.49)

C(2,4)
pµqν ,G±

= 48i(σ̄ − 1)m3
c(σ̄mB +mc)
σ̄4 . (B.50)

C B → D
(′)
1 `ν̄ total decay width

The differential distribution for the semileptonic decay B → D
(′)
1 `ν̄ with respect to the

lepton-neutrino invariant mass square q2 can be written as

dΓ(B → D
(′)
1 `ν`)

dq2 = G2
F |Vcb|2

192m3
Bπ

3 q
2λ1/2(m2

B,m
2
D

(′)
1
, q2)

(
1− m2

`

q2

)2

×

(1 + m2
`

2q2

)2

{|H(′)
+ |2 + |H(′)

− |2 + |H(′)
0 |

2}+ 3m2
`

2q2 |H
(′)
t |2

 .
(C.1)

Here, the helicity amplitudes are

H
(′)
+,− = i(mB +m

D
(′)
1

)V BD
(′)
1

1 (q2)∓
iλ1/2(m2

B,m
2
D

(′)
1
, q2)

mB +m
D

(′)
1

ABD
(′)
1 (q2) , (C.2)

H
(′)
0 = i

mB +m
D

(′)
1

2m
D

(′)
1

√
q2

(m2
D

(′)
1

+ q2 −m2
B)V BD

(′)
1

1 (q2) +
λ(m2

B,m
2
D

(′)
1
, q2)

(mB +m
D

(′)
1

)2 V
BD

(′)
1

2 (q2)

 ,

(C.3)

H
(′)
t = −i

λ1/2(m2
B,m

2
D

(′)
1
, q2)√

q2 V
BD

(′)
1

0 . (C.4)

Equation (C.1) coincides with the formulas given in [41]. The relations between their
HQET basis of form factors and our basis are

ABD1 = i (mB +mD1)
2√mBmD1

fA , (C.5)

V BD1
1 =

i
√
mBmD1

mB +mD1
fV1 , (C.6)

V BD1
2 =− i (mB +mD1)

2√mBmD1

[
fV3 + mD1

mB
fV2

]
, (C.7)

V BD1
0 = i

2√mBmD1

[
mBfV1 +

m2
B −m2

D1
+ q2

2mB
fV2 +

m2
B −m2

D1
− q2

2mD1
fV3

]
, (C.8)

ABD
′
1 =

i
(
mB +mD′1

)
2√mBmD′1

gA , (C.9)

V
BD′1

1 =
i√mBmD′1

mB +mD′1

gV1 , (C.10)
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V
BD′1

2 =−
i
(
mB +mD′1

)
2√mBmD′1

[
gV3 +

mD′1

mB
gV2

]
, (C.11)

V
BD′1

0 = i

2√mBmD′1

mBgV1 +
m2
B −m2

D′1
+ q2

2mB
gV2 +

m2
B −m2

D′1
− q2

2mD′1

gV3

 . (C.12)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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