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Abstract: We investigate the subleading-power corrections to the exclusive B → D`ν`
form factors at O(α0

s) in the light-cone sum rules (LCSR) framework by including the
two- and three-particle higher-twist contributions from the B-meson light-cone distribution
amplitudes up to the twist-six accuracy, by taking into account the subleading terms in
expanding the hard-collinear charm-quark propagator, and by evaluating the hadronic
matrix element of the subleading effective current q̄ γµ i /D⊥/(2mb)hv. Employing further
the available leading-power results for the semileptonic B → D form factors at the next-to-
leading-logarithmic level and combining our improved LCSR predictions with the recent
lattice determinations, we then carry out a comprehensive phenomenological analysis
on the semi-leptonic B → D`ν` decay. We extract |Vcb| =
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particularly obtain for the gold-plated ratio R(D) = 0.302± 0.003.
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1 Introduction

The precision study of the semileptonic B → D`ν` decays is evidently indispensable for
determining the CKM matrix element |Vcb| from exclusive processes [1], hence providing
a valuable probe of the delicate quark-flavour mixing mechanism in the Standard Model
(SM) and beyond. Such heavy-to-heavy B-meson decays further offer the unique window
into the strong interaction dynamics of the heavy-hadron system from the first-principles
QCD theory. The disagreement on the determinations of |Vcb| from inclusive and exclusive
channels as well as the renowned anomaly [2] in R(D) ≡ B(B → Dτντ )/B(B → D`ν`)
have triggered numerous studies on new-physics interpretations and explanations, both
model-independently and in concrete new-physics scenarios, see e.g. [3–11]. In [12] it was
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pointed out that it is rather difficult to accommodate the |Vcb| discrepancy by new physics,
making SM improvements even more important and hence calling for further dedicated
investigations on the SM predictions of B → D form factors with higher accuracy. While
the B → D form factors have been considered at the zero-recoil limit in the framework
of heavy quark effective theory (HQET) for some time (see, e.g., [13] for a pedagogical
review, [14–16] for recent studies, and [17] for a comprehensive report), and calculated with
Lattice QCD [18–20], it has only become possible in recent years to extend the theoretical
studies beyond the zero-recoil kinematics. In particular, it has been demonstrated that the
light-cone sum rule (LCSR) approach is particularly helpful in predicting the form factors
at the large-recoil limit, where a systematic power-counting scheme can be established,
taking the light-cone distribution amplitudes (LCDAs) as the nonperturbative ingredients.
This machinery can be formulated both in the context of QCD as well as in soft-collinear
effective theory (SCET), as pioneered in the work of [21–24] and [25, 26], respectively. To
be more specific about the power-counting scheme, which plays a key role in our analysis,
we adopt mc ∼ O

(√
ΛQCDmb

)
which is motivated by the mass hierarchy in the Standard

Model. This scheme was adopted in refs. [27, 28] to analyze the inclusive semileptonic
B → Xc`ν` decay, in contrast to the commonly used scheme mc ∼ O(mb) in the study of
heavy decays (see, for instance [29, 30]). The power counting of mc ∼ O

(√
ΛQCDmb

)
then

validates the identification of the on-shell bottom-, charm-, and light-quark field respectively
as hard, hard-collinear and soft modes in QCD following the convention established in [31].

Taking advantage of the parton-hadron duality and the light-cone operator product
expansion (OPE), the LCSR approach has yielded fruitful theoretical predictions for the
exclusive B → D transition form factors with an energetic charmed meson. Furnished by
the explicit power-counting scheme introduced above, QCD factorization for the leading-
power contribution to the corresponding vacuum-to-B-meson correlation function with
an interpolating current for the D-meson has been established at tree level [32] and at
one loop [33], respectively. The subleading power corrections from the three-particle B-
meson LCDAs were further calculated at O(α0

s) [32, 33] based upon the then-available
parametrization of the three-body light-ray matrix element [34, 35] and subsequently
revisited in [36] at the twist-four accuracy by employing the general decomposition of the
non-local HQET matrix element [37]. The updated version of the higher-twist LCDAs
given in [37] were further adopted in [36, 38, 39] for phenomenological studies where the
two-particle contributions were found to dominate over their three-particle counterparts as
previously observed in the context of B → π,K form factors [40].

It is also worth mentioning that alternative approaches to the LCSR have been at-
tempted in recent decades. For example, in refs. [41–44], the B → D`ν` form factors were
computed from QCD sum rules via the vacuum-to-D-meson correlation function interpolated
by a B-meson state where the nonperturbative strong interaction dynamics are encapsulated
in the D-meson LCDAs instead. The main issue of such considerations lies in the yet poor
constraints on the LCDAs of the D meson. Another QCD-motivated framework relies
on the transverse-moment-dependent (TMD) factorization to evaluate the B → D form
factors [45, 46] in which case a systematic power-counting mb � mc � ΛQCD was proposed.
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This route has been further explored in refs. [47, 48] and a wealth of perturbative matching co-
efficient functions has been obtained [49–52] supplementing this endeavor. The TMD factor-
ization for hard exclusive processes is yet to be fully understood as it requires a definite power-
counting scheme for the intrinsic transverse momentum [53] as well as a proper construction
of the Wilson-line for the TMD wave functions which is necessary to circumvent the rapidity
and pinch singularities in the infrared subtraction procedure [54]. As an active on-going
field of research, we are looking forward to seeing all these matters settled in the near future.

The main goal of the present work is to establish a systematic evaluation of the next-
to-leading-power (NLP) corrections of the B → D process at the tree-level employing up to
twist-six B-meson LCDAs as the nonperturbative inputs. From a phenomenological point of
view, this allows us to quantify the size of such corrections which is of paramount importance
given the potential BSM signal the B → D`ν` process may carry. Besides, a better estimate
of the subleading power corrections is essential in providing evidence for a clear hierarchy
of power expansion, which is crucial for any theory prediction to be trustworthy. From
the theory side, it is also an interesting subject as it represents a nontrivial example for
exploring the factorization properties of B-meson decays at subleading power, which has
drawn much attention in recent years, and has been explicitly shown to hold at tree level for
certain decay channels, see e.g. [55, 56]. Besides the more theoretically motivated insights,
it is also of phenomenological importance to achieve better determinations of |Vcb| and
R(D) by bridging the gap between recent lattice results at the low hadronic recoil and our
advanced LCSR computations at large recoil. Improved unitarity bounds [57–59] provide
another handle to lower uncertainties in our predictions for |Vcb| and R(D).

The present article is organized as follows. In section 2, we establish the relevant
definitions, kinematics and notations and present the αs corrections to the leading-power
contribution. Section 3 is then devoted to the derivation of the various contributions
at subleading power. Section 4 is reserved for numerical studies where we extract the
Boyd-Grinstein-Lebed (BGL) parameters using our theoretical predictions complemented by
lattice data [18–20], which is currently still restricted to the small-recoil region, in order to
survey the entire kinematic range of the decay process. In this section, we also provide our
prediction for the decay rates of B → D`ν` from which we are able to extract |Vcb| by fitting
to the BaBar and Belle data. The celebrated ratio R(D) predicted in this work can be found
in (4.19). Finally in section 5, we discuss the implications of our results as well as potential
avenues for future investigations. Most of the technical details are collected in the appendices.

2 Leading-power contributions

2.1 General framework

The B → D decay amplitude is parametrized by two form factors f+
BD and f0

BD through
Lorentz decomposition of the B → D matrix element as follows

〈D(p) |c̄γµb| B̄(pB)〉 = f+
BD(q2)

[
2pµ +

(
1− m2

B −m2
D

q2

)
qµ

]
+ f0

BD(q2)m
2
B −m2

D

q2 qµ ,

(2.1)
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where p and pB respectively denote the momenta of the D meson and the B meson
and q ≡ pB − p = mBv − p is the momentum transfer between the two meson states.
It is convenient to consider the decay process in the rest frame of the B meson fixing
vµ = (1, 0, 0, 0). The B → D transition is induced by the flavor changing current c̄γµb
which effectively converts the bottom quark into the charm one in accordance with the
weak interaction. The main objective of this work is to offer theoretical predictions for
f+
BD(q2) and f0

BD(q2).
The LCSR approach to the study of the B → D decay takes advantage of vacuum-to-

B-meson correlation function

Πµ(n · p, n̄ · p) = i

∫
d4x eip·x〈0 |T {q̄(x)/nγ5c(x) , c̄(0)γµb(0)}| B̄(pB)〉 , (2.2)

with the constituents of the D-meson state acting as an interpolating operator. This
correlation function will constitute the main object of study in section 3. In the above
formula q (c) denotes the light (charm) quark field and we have introduced two light-like
vectors n and n̄ satisfying1 n̄2 = n2 = 0 and n · n̄ = 2. Together, they span the two-
dimensional plane where the B → D decay takes place, allowing to decompose any vectors
of this process in terms of these two light-like vectors. In order to facilitate the power
expansion, we adopt the following power counting scheme in the kinematic region of large
hardonic recoil

|n̄·p| ∼O(λ2mb) , n·p= m2
B+m2

D−q2

mB
∼O(mb) , mc∼O(λmb) , (2.3)

where λ ∼ O
(√

ΛQCD/mb

)
. The hadronic representation of the correlation function (2.2) is

Πhad
µ (n · p, n̄ · p) = ifDmB

2 (m2
D/n · p− n̄ · p)

{[
n · p
mB

f+
BD(q2) + f0

BD(q2)
]
n̄µ

+ mB

n · p−mB

[
n · p
mB

f+
BD(q2)− f0

BD(q2)
]
nµ

}
+
∫ ∞
ωs

dω′

ω′ − n̄ · p− i0
[
ρn̄(n · p, ω′) n̄µ + ρn(n · p, ω′)nµ

]
, (2.4)

where ωs is the threshold parameter for which we will explain in detail later. The D-meson
decay constant fD is defined as

〈0 |q̄/nγ5c|D(p)〉 = in · p fD . (2.5)

The general rationale of the LCSR approach is that in certain Euclidean kinematic regions
(|p2| ∼ O(λ2m2

b)), the integral in (2.2) is dominated by light-like separations where the
light-cone expansion can be properly constructed. In this perspective, the partons account
for the fundamental degrees of freedom subject to the QCD perturbative corrections forming

1To fix the normalization, we explicitly take nµ = (1, 0, 0, 1) and n̄µ = (1, 0, 0,−1), which means
vµ = (nµ + n̄µ)/2 in the B-meson rest frame.
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the foundation for our calculations. The partonic-level results of the correlation function
can be parameterized as

Πpar
µ (n · p, n̄ · p) = i

f̃B(µ)mB

n · p

[
Πn̄(n · p, n̄ · p) n̄µ + Πn(n · p, n̄ · p)nµ

]
. (2.6)

To extract the form factors f+
BD(q2) and f0

BD(q2), we make extensively use of dispersion
relation and express the partonic level representation of the correlation function as

Πn,n̄(n · p, n̄ · p) =
∫ ∞

0

dω′

ω′ − n̄ · p− i0
1
π

Imω′Πn,n̄(n · p, ω′) . (2.7)

The LCSR procedure matches two distinct descriptions of the correlator — the QCD
representation Πpar

µ derived with the perturbative factorization approach, and the physical
one Πhad

µ obtained with the hadronic dispersion relation. In practice, certain duality
assumptions have to be drawn to make the matching possible. The general interpretation
of the quark-hadron duality is that above a certain (continuum) threshold ωs the hadronic,
in our current case corresponding to the hadronic states with the same quantum number of
the D meson, spectral density of physical observables coincides with that of the QCD one
averaged by a weight function when the space-like p2 is large

∫ ∞
ωs

dω′

ω′ − n̄ · p− i0 ρn,n̄(n · p, ω′) = if̃B(µ)mB

n · p

∫ ∞
ωs

dω′

ω′ − n̄ · p− i0
1
π

Imω′Πn,n̄(n · p, ω′) .

(2.8)

After the continuum subtraction, the resulting expression from the matching then in
principle enables one to make theory predictions in the large-recoil region of the physical
process. In reality, however, caution has to be taken in assessing the LCSR results as
systematic uncertainties from the parton-hadron duality must be under control. The final
trick of this technique is to introduce the Borel transform for the purpose of suppressing
the contributions from the continuum states. Then the form factors can be written as

fD exp
[
− m2

D

n · pωM

]{
n · p
mB

f+
BD(q2), f0

BD(q2)
}

= f̃B(µ)
n · p

∫ ωs

0
dω′ exp

[
− ω′

ωM

] 1
π

[
Imω′

(
Πn̄(n · p, ω′)± n · p−mB

mB
Πn(n · p, ω′)

)]
, (2.9)

where the “+” and “−” signs contribute to f+
BD and f0

BD separately. ωM and ωs denote,
respectively, the Borel and threshold parameter with mass dimension one, constituting the
two inputs in the framework of LCSR.

2.2 Leading-power contribution at tree level

The leading power contribution at tree level to the correlation function (2.2) can be obtained
in the p2 < 0 region by evaluating the Feynman diagram in figure 1. Following the power
counting scheme (2.3) and applying the definition of the B-meson LCDAs given in (A.1a),
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k

b

q̄

c

pB − k

p

q

Figure 1. Two-particle contribution to the correlation function Πµ(n · p, n̄ · p) at tree level.

one obtains the leading-power (LP) contribution at tree level to the correlation function,2

Πtree
µ,LP(n · p, n̄ · p) = i

∫
d4x eip·x〈0 |q̄(x)/nγ5c(x)c̄(0)γµhv| B̄v〉

= −if̃B(µ)mB n̄µ

∫ ∞
0

dω
φ−B(ω, µ)

n̄ · p− ω − ωc + i0

= −if̃B(µ)mB n̄µ

∫ ∞
ωc

dω′
φ−B(ω′ − ωc, µ)
n̄ · p− ω′ + i0 , (2.10)

where ωc ≡ m2
c/n · p, and we have applied the heavy quark equation of motion (EOM)

/vhv = hv and performed the Fourier transform according to (A.3a) in the intermediate step.
The scale-dependent B-meson decay constant f̃B(µ) in HQET can be further expressed in
terms of its QCD counterpart fB via a perturbatively calculable matching coefficient

f̃B(µ) = fB

[
1− αs(µ)CF

4π

(
3 ln mb

µ
− 2

)
+O(α2

s)
]
. (2.11)

Here we have dropped the subleading power terms in the hard-collinear charm-quark
propagator, whose factorization properties will be explored at length with the aid of
the HQET equations of motion in section 3.2. The third equality in (2.10) presents the
spectral representation of the correlation function Πµ. Taking the massless limit mc → 0,
the obtained tree-level factorization formula (2.10) reduces to the B → π case [60] as
expected. We mention in passing that the achieved LP contribution to the vacuum-to-
B-meson correlation function under discussion is governed by the subleading-twist LCDA
φ−B(ω), thus obstructing the extraction of the fundamental shape parameters λB and σ̂n as
defined in (D.12). It proves more convenient to access such non-perturbative quantities by
investigating the non-hadronic B-meson decay processes [55, 61–67].

2.3 Leading-power contribution at O(αs)

As it was already demonstrated in ref. [33], the (partial) next-to-leading-logarithmic (NLL)
corrections of the leading power are in general numerically more prominent compared to the
contributions of the three-particle LCDAs. Therefore, in order to make a sensible prediction

2After integrating out hard/hard-collinear degrees of freedom the matrix element is written solely in
terms of the soft (non-perturbative) dynamics in HQET. At the LP approximation this amounts to replacing
b→ hv and B̄(pB)→ B̄v.
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for the B → D form factors with an inclusion of the subleading power contributions, it
is necessary to take into account the NLL corrections of the leading power as well. The
factorization formula for the correlation function (2.2) at the one-loop level in αs, with the
hard function and the jet function encoding separately contributions of the hard scale and
the hard-collinear scale, can be obtained with the help of the method of regions [68, 69],
see ref. [33] for the detail.

The NLL resummation improved LCSR prediction for the leading-power contribution
to the form factors was derived in [33] which we quote here,

fD exp
[
− m2

D

n · pωM

] {
n · p
mB

f+,LP
BD (q2) , f0,LP

BD (q2)
}

= −U2(µh2 , µ) f̃B(µh2)
∫ ωs

0
dω′ exp

[
− ω′

ωM

] {
FLP

+ (ω′, µ) , FLP
− (ω′, µ)

}
, (2.12)

where ωs denotes the effective continuum threshold in the D-meson channel, and

FLP
± = C+,n̄(n · p, µ) Φeff

+,n̄(ω′, µ) + U1(n · p, µh1 , µ)C−,n̄(n · p, µh1) Φeff
−,n̄(ω′, µ)

± n · p−mB

mB

[
C+,n(n · p, µ) Φeff

+,n(ω′, µ) + C−,n(n · p, µ) Φeff
−,n(ω′, µ)

]
. (2.13)

The simplified Φeff
±,n̄ and Φeff

±,n are collected in (B.1)–(B.4). The hard-matching coefficient
functions C±,n̄(n · p, µ) and C±,n(n · p, µ) can be found in (B.11). U1(n · p, µh1 , µ) and
U2(µh2 , µ) are the evolution factor for C−,n̄(n ·p, µ) and f̃B(µ), respectively which effectively
resum large logarithms of the form ln(µ/µh1) and ln(µ/µh2) allowing the matching calcula-
tion to be carried out at the hard scales µh1 and µh2 , significantly above the factorization
scale µ so that the perturbative calculation is under good control. The explicit form of
these functions corresponding to the NLL resummation can be found in ref. [61]. The large
logarithms ln(µ/µ0) in the LCDAs φ±B(ω, µ) with µ0 of O(ΛQCD) are also resummed to the
leading-logarithmic accuracy (D.15).

The LP form factors at the tree level, which correspond to the contribution of the
effective heavy-to-light current J (A0) in SCET [70], preserve the large-recoil symmetry
relation f0

BD(q2) = n ·p/mBf
+
BD(q2). The symmetry is broken by both the power corrections

in ΛQCD/mb and the perturbative corrections in αs [71]. The breaking of the symmetry
relation by O(αs) effects can be seen directly from (2.12) noticing the last line of (2.13)
is proportional to αs. The culprit responsible for the symmetry breaking comes from
integrating out the hard and hard-collinear fluctuations. We will show in the following
section that the NLP contributions can also break the large-recoil symmetry. It is also
worth noting that the power-enhanced contribution (of O(λ2)), which is proportional to the
charm-quark mass mc, is only present in Φeff

+,n̄(ω′, µ) and therefore preserves the large-recoil
symmetry relation. Here we draw an analogy to the SCET analysis of B → V form
factors [72] to understand the power enhancement of Φeff

+,n̄(ω′, µ). Upon the replacement of
mq → mc, with mq(mc) maintaining the power counting of O(λ2mb)(O(λmb)), the form
factor receives the power enhancement O(λ3)→ O(λ2).

– 7 –
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3 Subleading-power contribution at tree level

The main motivation of this paper is to systematically investigate the subleading power
corrections to the B → D form factors at the tree level. These corrections can be organized
into three classes according to their origins.

• Subleading-power corrections generated by higher-twist LCDAs including both two-
particle and three-particle contributions.

• An expansion of the charm quark propagator in figure 1 in which case the leading-twist
B-meson LCDA contributes with a power suppression ΛQCD/(n · p) ∼ O(λ2).

• Heavy quark expansion which takes into account the ΛQCD/mb corrections in the
HQET framework.

3.1 Higher-twist contribution

Generally speaking, the higher-twist B-meson LCDAs can give rise to the higher-power contri-
butions as already observed in, e.g. [33, 55], which can be evaluated presumably by applying
the perturbative factorization technique for the correlation function Πµ defined in (2.2).

One source for such contributions comes from the interactions between the hard-collinear
charm quark and the soft gluon(s) emitted from the B-meson state. To properly motivate
this particular type of contribution, it is necessary to consider the scenario where the
massive c-quark propagates in the vicinity of the light-cone with a soft-gluon background,
which acquires an expansion in terms of the strong coupling [73, 74] (see also [75, 76] for an
alternative but symmetric form)

ci(x)c̄j(0) =
∫
d4k

(2π)4
i e−ik·x
/k −mc

{
δij + gs

∫ 1

0
du

[
uxµγν

/k +mc
− σµν

2(k2 −m2
c)

]
Gaµν(ux)(T a)ij

}
+ . . .

(3.1)

with σµν = i
2 [γµ, γν ], Gaµν the gluon field strength tensor, and T a denotes the generators

in the fundamental representation. It is clear that the second term in the curly bracket
generates the subleading-power corrections involving the three-particle B-meson LCDAs
(i.e. LCDA with particle content as antiquark-gluon-quark). Substituting this term into the
correlation function (2.2) and evaluating the resulting matrix element using (A.1b) leads to
the three-particle higher-twist (3PHT) contribution

Π3PHT
µ (n · p, n̄ · p) = − if̃B(µ)mB

n · p

∫ ∞
0

dω dξ

∫ 1

0

du

(n̄ · p− ω − uξ − ωc)2

×
{[

(1− 2u)ψ5(ω, ξ) + ψ̃5(ω, ξ) + 2mc

n · p
φ6(ω, ξ)

]
n̄µ

+
[
2(u− 1)φ4(ω, ξ) + mc

n · p

(
ψ̃5(ω, ξ)− ψ5(ω, ξ)

) ]
nµ

}
, (3.2)

where we have neglected terms that generate power corrections beyond the subleading order.
We would like to note that the linear mc term is of O(λ3) suppressed compared to the LP

– 8 –
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contribution of the correlation function with mc ∼ O(λmb). We will keep this term because
we also want to explore the NLP corrections to the linear mc terms which will be more
relevant with the power counting mc ∼ O(mb) [29, 30].

In addition, the first term in the curly bracket of (3.1) also generates subleading power
contributions from the higher-twist two-particle LCDAs, e.g., g±B(ω) in (A.1a), after being
sandwiched between the B-meson state and the vacuum. In the partonic language, such
contributions are attributed to the nonvanishing transverse momenta of the light quark
travelling in close proximity to, but not exactly on the light-cone. We therefore obtain the
subleading-power corrections to the correlator due to the higher-twist two-particle LCDAs

Π2PHT
µ = i

∫
d4k

(2π)4

∫
d4x ei(p−k)·x〈0|q̄(x)/nγ5

i(/k +mc)
k2 −m2

c

γµhv(0)|B̄v 〉

= if̃B(µ)mB

4

∫ ∞
0

dω

∫
d4k

(2π)4

∫
d4x ei(p−k−ωv)·x

{
x2

k2 −m2
c

× Tr
[1 + /v

2

(
2g+
B(ω)− /x

v · x

[
g+
B(ω)− g−B(ω)

])
γ5/nγ5(/k +mc)γµ

]
+O(x4)

}

= if̃B(µ)mB

∫ ∞
0

dω g−B(ω) ∂2
p

[
n · p n̄µ +mc nµ
(p− ωv)2 −m2

c

]
= 4 if̃B(µ)mB

−n · p

∫ ∞
0

dω g−B(ω)
(n̄ · p− ω − ωc)3

[(
n̄ · p− ω − 3ωc

)
n̄µ − 2ωcmc

n · p
nµ

]
, (3.3)

where we have used /x/(v · x) = /̄n+ · · · with the ellipses representing terms that generate
power contributions beyond the subleading order and are therefore ignored together with
O(x4) contributions at the third equal sign. Note that this expression is in agreement
with (3.12) in ref. [40] after taking the limit of mc → 0, serving as a consistency check.

Summing up (3.2) and (3.3) therefore yields the tree-level higher-twist (HT) contribution
to the correlator at the subleading power

ΠHT
µ (n · p, n̄ · p) = − if̃B(µ)mB

n · p

∫ ∞
0

dω

{
τ n̄2 (ω) n̄µ
ω2

2
+ mc

n · p
τ̃ n2 (ω)nµ
ω2

2

+
∫ ∞

0
dξ

∫ 1

0

du

ω2
3

[(
τ n̄3 (u, ω, ξ) + mc

n · p
τ̃ n̄3 (ω, ξ)

)
n̄µ

+
(
τn3 (u, ω, ξ) + mc

n · p
τ̃ n3 (u, ω, ξ)

)
nµ

]}
, (3.4)

where

ω2 = n̄ · p− ω − ωc , ω3 = n̄ · p− ω − uξ − ωc , (3.5)

with ωi modulating the contribution of the i-particle LCDA and

τ n̄2 (ω) = 4ĝ−B (ω)
[
1−2 ωc

ω2

]
, τ̃ n2 (ω) =−8ωc ĝ−B (ω)

ω2
,

τ n̄3 (u,ω,ξ) = ψ̃5(ω,ξ)−ψ5(ω,ξ)+ 4ūωcψ5(ω,ξ)
ω3

, τn3 (u,ω,ξ) =−2ūφ4(ω,ξ) ,

τ̃ n̄3 (ω,ξ) = 2φ6(ω,ξ) , τ̃ n3 (u,ω,ξ) = τ n̄3 (u,ω,ξ) , (3.6)
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where ū = 1−u. Taking the massless limit ωc → 0 reproduces (3.17) of [40] as expected. The
explicit definitions of the higher-twist LCDAs are collected in (A.4)–(A.7), and (A.1a). The
object ĝ−B (ω) defined in (D.2) corresponds to the “Wandzura-Wilczek” (WW) component
of the two-particle twist-5 LCDA g−B(ω). Namely, ĝ−B (ω) is entirely determined by the
lower-twist LCDAs as shown in (D.3).

3.2 Charm-quark expansion

The correlation function Πµ(n ·p, n̄ ·p) receives corrections from the charm quark propagator
expansion (CE). The tree-level CE contribution to the correlation function is derived from

Πµ(n · p, n̄ · p) ⊃ −
∫
d4x

∫
d4k

(2π)4 e
ik·x〈0|q̄(x)/nγ5

(/p− /k) +mc

(p− k)2 −m2
c + i0γµhv(0)|B̄v〉 , (3.7)

with the expansion of the charm-quark propagator

(/p− /k) +mc

(p− k)2 −m2
c

= 1
n̄ · p̂

/̄n

2︸ ︷︷ ︸
LP

+ 1
n · pn̄ · p̂

[
n̄ · p /n2 −

/k + n · kn̄ · p
n̄ · p̂

/̄n

2

]
︸ ︷︷ ︸

NLP

+ mc

n · p
1

n̄ · p̂

[
1 + n · kn̄ · p

n · pn̄ · p̂

]
︸ ︷︷ ︸

mc NLP

,

(3.8)

where n̄ · p̂ = n̄ · p− n̄ · k − ωc. Note that although the second term in the last brackets is
of O(λ3) suppressed compared to the LP term with mc ∼ O(λmb), we will keep this term
as explained above. The NLP of this type reads,

ΠCE
µ,NLP(n·p, n̄·p) =

∫
d4x

∫
d4k

(2π)4 e
ik·x n·k

n·pn̄·p̂
(3.9)

×〈0|q̄(x)
[
−mc

n·k /
nnµ+

(
/nn̄µ+ /̄nnµ

)
+nµ/k/n

n·k
− n̄·p
n̄·p̂

(
n̄µ+ mc

n·p
nµ

)
/n

]
γ5hv(0)|B̄v〉 ,

where we have applied the heavy quark EOM /vhv = hv in the second step.
We now proceed to relate the matrix elements in (3.9) to the B-meson LCDAs in a

factorized form. For the first term in the square bracket, we write n · k = 2v · k − n̄ · k.
While n̄ · k is readily equal to ω after integrating over kµ and evaluating the yielding matrix
element using the definition of the two-particle higher-twist LCDAs given in eq. (A.1a), the
2v · k part demands more effort. We thus detail the derivation of the 2v · k contribution in
the following, we have,

ΠCE,(1)
µ,NLP(n · p, n̄ · p) ≡

∫
d4x

∫
d4k

(2π)4 eik·x 2v · k 〈0|q̄(x)Γµhv(0)|B̄v〉
n · p (n̄ · p− n̄ · k − ωc)

(3.10)

= 2i
∫

d4k

(2π)4

∫
d4x eik·x v · ∂x〈0|q̄(x)Γµhv(0)|B̄v〉

n · p (n̄ · p− n̄ · k − ωc)

= 2
∫

d4k

(2π)4

∫
d4x

eik·x
n · p

[
Λ̄〈0|q̄(x)Γµhv(0)|B̄v〉
n̄ · p− n̄ · k − ωc

−
∫ 1

0
du ū

〈0|q̄(x)[x, ux]gs xσ vρGσρ(ux)[ux, 0]Γµhv(0)|B̄v〉
n̄ · p− n̄ · k − ωc

]
,
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where Γµ = (/nn̄µ + /̄nnµ)γ5, ∂ρx ≡ ∂/∂xρ, and Gσρ ≡ Gσρa T
a. Notice that the gauge link

[x, 0] is restored in the second equality after integration-by-parts to ensure gauge invariance.
We have also applied the HQET EOM v ·Dhv = 0, and the operator level relation with
arbitrary Dirac structure Γ [34, 37, 77]

∂ρxq̄(x)Γ[x, 0]hv(0) = ∂ρ[q̄(x)Γ[x, 0]hv(0)]− q̄(x)Γ[x, 0]Dρhv(0)

+ i

∫ 1

0
du ū q̄(x)[x, ux]gs xσ Gσρ(ux)[ux, 0]Γhv(0) . (3.11)

Here ∂ρ is the total translation operator, namely, for an arbitrary operator O(x1, x2, . . . , xn)
with n spacetime arguments,

∂ρO(x1, x2, . . . , xn) ≡ ∂

∂ζρ
O(x1 + ζ, x2 + ζ, . . . , xn + ζ)

∣∣∣
ζ=0

. (3.12)

The matrix element identity in HQET

iv · ∂〈0|q̄(x)Γhv(0)|B̄v〉 = Λ̄〈0|q̄(x)Γhv(0)|B̄v〉 , (3.13)

due to the translational covariance, is implemented subsequently, with the effective mass
Λ̄ = mB −mpole

b +O(Λ2
QCD/mb), allowing us to make the replacement iv · ∂ 7→ Λ̄ [13] to

finally reach eq. (3.10).
It is evident that the three-particle LCDAs are non-negligible in the charm-quark-

propagator expansion at the subleading order of the power correction. After some algebra
and with the help of eqs. (A.1b) and (A.1a), one obtains,

ΠCE,(1)
µ,NLP = 2if̃B(µ)mB

n · p

∫ ∞
0
dω

{[
Λ̄φ+

B(ω)
ω2

+
∫ ∞

0
dξ

∫ 1

0
du

ū ψ4(ω, ξ)
ω2

3

]
nµ (3.14)

+
[

Λ̄φ−B(ω)
ω2

+
∫ ∞

0
dξ

∫ 1

0
du

ū ψ5(ω, ξ)
ω2

3

]
n̄µ

}
.

The rest of the contributions in (3.9) are calculable in the same fashion allowing us to
write down the total subleading power correction to the correlator at the tree level due to
charm-quark propagation as follows,

ΠCE
µ,NLP(n · p, n̄ · p)

= i
f̃B(µ)mB

n · p

∫ ∞
0

dω

{[
φ−B(ω) (ω + ωc) (ω − 2Λ̄)

ω2
2

+ 2
∫ ∞

0
dξ

∫ 1

0
du ū ψ5(ω, ξ) ω3

ω3
3

]
n̄µ

+
[
− mc

ω2
φ−B(ω) + 2 Λ̄− ω

ω2

(
φ+
B(ω) − mc

n · p
n̄ · p φ−B(ω)

ω2

)

+ 2
∫ ∞

0
dξ

∫ 1

0

du

ω2
3

(
ψ4(ω, ξ) + uφ4(ω, ξ)− mc

n · p
ū ψ5(ω, ξ) 2 n̄ · p

ω3

)]
nµ

}
, (3.15)

where ω3 = ω3 − 2n̄ · p = −n̄ · p− ω − uξ − ωc.
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3.3 Heavy-quark expansion

We proceed to take into account the subleading term in the HQET representation of the
bottom-quark field in order to reach our goal of accuracy [55]. At the tree level, it is
straightforward to express the heavy-to-light QCD current in the following form

q̄γµb = q̄γµhv + 1
2mb

q̄γµi /D⊥hv + · · · (3.16)

where /D⊥hv = [ /D − (v · D)/v]hv = /Dhv due to the HQET EOM. The ellipses denote
O(1/m2

b) terms which are beyond the scope of our current study. The second term in the
expansion also appears in the effective heavy-to-light current J (A2) in SCET [78], which
gives rise to O(λ2) suppressed correction compared to the leading J (A0) current.

Focusing on the subleading-power correction to the correlator, we write,

ΠHQE
µ,NLP(n · p, n̄ · p) = i

2mb

∫
d4x eip·x〈0|q̄(x)/nγ5c(x)c̄(0)γµi /Dhv|B̄v〉

= −i
2mb n · p

∫
d4k

(2π)4 〈0|q̄(k)/nγ5

(
n · p
ω2

n̄µ + mc nµ /̄n

2ω2

)
/Dhv|B̄v〉 , (3.17)

where one only keeps the leading term from the expansion of the charm quark propagator.
Employing eqs. (3.11), (3.13) and the EOMs together with integration-by-parts to move
derivatives to the desired position, and then projecting out the resulting matrix elements to
the appropriate LCDAs following eqs. (A.1b) and (A.1a), one finds the contribution of the
heavy-quark expansion to the correlator at the subleading power takes the following form,

ΠHQE
µ,NLP(n · p, n̄ · p) = if̃B(µ)mB

2mb

[
n̄µ −

mc

n · p
nµ

] ∫ ∞
0

dω

{[
2Λ̄− ω
ω2

φ+
B(ω) + Λ̄− ω

ω2
φ−B(ω)

]

+ 2
∫ ∞

0
dξ

∫ 1

0

du

ω2
3

[
φ4(ω, ξ) + ψ4(ω, ξ)

]}
. (3.18)

3.4 LCSR for the form factors

Following the procedure described above, we present the LCSR for the form factors at the
subleading order of power corrections

f `,NLP
BD (q2) =

∑
C=HT,CE

f `,CBD(q2) + f `,HQE
BD (q2) , ` = +, 0. (3.19)

From the correlation functions of the higher-twist LCDAs (3.4), the charm-quark-propagator
expansion (3.15) and the heavy-quark expansion (3.18) contributions, the corresponding
B → D form factors can be extracted employing (2.9)

f `,CBD(q2) = f̃B(µ)m`
B

fD (n·p)`+1 exp
[

m2
D

n·pωM

][
F n̄

C (q2)− n·p−mB

(−1)`mB
F n

C (q2)
]
, C = HT,CE

f `,HQE
BD (q2) = f̃B(µ)m`

B

fD (n·p)`mb
exp

[
m2
D

n·pωM

][
F n̄

HQE(q2)− n·p−mB

(−1)`mB
F n

HQE(q2)
]
, (3.20)
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by taking ` = {+, 0} 7→ {+1, 0} in the mathematical expressions. The explicit expressions
for Fn,n̄C,HQE will become clear later. Here we have made the power-counting of 1/(n · p)k

and 1/[mb(n · p)k] manifest and included the exponential factor em2
D/(n·pωM ) from the Borel

transform with ωM commonly known as the Borel mass.
The task for us now is to find FnC(q2) ,F n̄C(q2) ,FnHQE(q2), and F n̄HQE(q2). Applying the

dispersion relation to eq. (3.4) yields,

F n̄
HT(q2) = F2,2(τ n̄,22 ) + F2,3(τ n̄,32 ) + F3,2(τ n̄,23 ) + F3,3(τ n̄,33 ) + mc

n · p
F3,2(τ̃ n̄,23 ) ,

F n
HT(q2) = F3,2(τn,23 ) + mc

n · p

[
F2,3(τ̃ n,32 ) + F3,2(τ̃ n,23 ) + F3,3(τ̃ n,33 )

]
, (3.21)

where Fi,k(τN,ki ) with N = n̄, n denotes the i-particle LCDA contribution generated by
the tree level partonic corrections of the form τNi (ω)/(ω + · · · )k. The ellipses indicate
terms that depend on the nature of the LCDAs, (see (3.4)). Notice that we employ the
bold-font letters for the “modified DA” in the LCSR formulas with τ̃ specifically reserved
for contributions generated by the charm quark mass mc.

The explicit expressions for the functional Fi,j(φ) are collected in eqs. (C.1)–(C.5),
whereas τN,ji , τ̃N,ji are as follows,

τ n̄,22 (ω) = −4ĝ−B (ω) , τn,23 (u, ω, ξ) = 2ū φ4(ω, ξ) , τ n̄,23 (u, ω, ξ) =
[
ψ5 − ψ̃5

]
(ω, ξ) ,

τ n̄,32 (ω) = 8ωc ĝ−B (ω) , τ n̄,33 (u, ω, ξ) = −4ū ωc ψ5(ω, ξ) , τ̃ n̄,23 (u, ω, ξ) = −2φ6(ω, ξ) ,
τ̃ n,32 (ω) = τ n̄,32 (ω) , τ̃ n,23 (u, ω, ξ) = τ n̄,23 (u, ω, ξ) , τ̃ n,33 (u, ω, ξ) = τ n̄,33 (u, ω, ξ) .

(3.22)

Taking the massless quark limit ωc = m2
c/n · p→ 0 reproduces the corresponding B → π

contribution given in eq. (3.17) of [40] as expected.
Similarly from (3.15), we obtain the subleading power corrections due to charm quark

propagator expansion,

F n̄
CE(q2) = F2,2(ηn̄,22 ) + F3,2(ηn̄,23 ) + F3,3(ηn̄,33 ) ,
F n

CE(q2) = F2,1(ηn,12 ) + F3,2(ηn,23 )

+ mc

n · p

[
F2,1(η̃ n,12 ) + F2,2(η̃ n,22 ) + F3,2(η̃ n,23 ) + F3,3(η̃ n,33 )

]
, (3.23)

following the convention for the super and subscripts of the bold-font letters established
before, and,

ηn̄,22 (ω) = (ω + ωc) (ω − 2 Λ̄)φ−B(ω) , ηn,12 (ω) = (2Λ̄− ω)φ+
B(ω) ,

η̃ n,12 (ω) = (−n · p+ ω − 2Λ̄)φ−B(ω) , η̃ n,22 (ω) = ηn̄,22 (ω) ,
ηn̄,23 (u, ω, ξ) = −2ū ψ5(ω, ξ) , ηn̄,33 (u, ω, ξ) = −4ū (ω + uξ + ωc)ψ5(ω, ξ) ,
ηn,23 (u, ω, ξ) = 2

[
ψ4 + uφ4

]
(ω, ξ) , η̃ n,23 (u, ω, ξ) = −4ū ψ5(ω, ξ) ,

η̃ n,33 (u, ω, ξ) = ηn̄,33 (u, ω, ξ) . (3.24)
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The subleading power corrections from the heavy-quark expansion can be obtained
along the same line from eq. (3.18) which takes the form,

F n̄
HQE(q2) = F2,1(ζn̄,12 ) + F3,2(ζn̄,23 ) , F n

HQE(q2) = − mc

n · p
F n̄

HQE(q2) , (3.25)

where the explicit expressions for the functionals Fij(φ) can be found in appendix C, and

ζn̄,12 (ω) = 1
2
[
(2Λ̄− ω)φ+

B(ω) + (Λ̄− ω)φ−B(ω)
]
, ζn̄,23 (u, ω, ξ) =

[
φ4 + ψ4

]
(ω, ξ) . (3.26)

Before we proceed to the numerical study, let us have a look at the power counting of the
various quantities, adopting the asymptotic behaviours of the LCDAs. We identify another
small parameter λsc ≡ ωsc/ΛQCD with ωsc = ωs − ωc ∼ O(λΛQCD)� ΛQCD entering Fi,k.
This introduces a non-homogeneous scaling of the form factors after LCSR. While we are
interested here in the scaling behaviour of the NLP form factors in the parameter λsc, we
note that, following ref. [55],3 we will not perform the expansion with respect to λsc in our
subsequent numerical study, but keep the full expressions there. It is useful to apply the
following scaling property of Fi,k(φ)

F2,k(φ) ∼ O
(
ω2−k
sc φ(ωsc)

)
, k = 1, 2, 3 ,

F3,k(φ) ∼ O
(
ω3−k
sc φ

(
λsc, ωsc,ΛQCD

))
, k = 2, 3 , (3.27)

where we have employed ωM ∼ ωs � ωsc, and the r.h.s. displays the dominant behaviour
only. Then one obtains directly

O(λ0λ1
sc) F2,1(η̃n,12 ),

O(λ2λ−1
sc ) F2,3(τ n̄,32 ),

O(λ2λ0
sc) F2,2(τ n̄,22 ), F3,3(τ n̄,33 ), F2,2(ηn̄,22 ), F3,3(ηn̄,33 ),

O(λ2λ1
sc) F3,2(τn,23 ), F3,2(τ n̄,23 ), F3,2(τ̃ n̄,23 ), F3,2(ηn̄,23 ),

F3,2(η̃n,23 ), F2,1(ζn̄,12 ), F3,2(ζn̄,23 ),
O(λ2λ2

sc) F2,1(ηn,12 ), F3,2(ηn,23 ), (3.28)

and for the form factors

f
(+,0),HT
BD ∼ O(λ4 λ−1

sc ), f
(+,0),CE
BD ∼ O(λ3 λ1

sc), f
(+,0),HQE
BD ∼ O(λ4 λ1

sc). (3.29)

The difference in the power counting compared to [40] can be attributed to the asymptotic
behaviour of ĝ−B (ω), which we updated in the present work according to constraints from
the equations of motion.

4 Numerical study

4.1 Input parameters

We collect the input parameters for our numerical study in table 1 along with the references
from where the numbers are quoted. The central values and ranges of all parameters used

3For a detailed discussion, see text below eq. (4.9) in ref. [55].
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Parameters values ref. Parameters values ref.
mB− 5.27933GeV [1] mD0 1.86483GeV [1]
mB∗− 5.32470GeV [1] mD∗0 2.00685GeV [1]
mb(mb) 4.193+0.022

−0.035 GeV [89] mc(mc) 1.288(20)GeV [90]
fB (190.0± 1.3)MeV [80] fD 212.0(7)MeV [80]
µh1 [mb/2, 2mb] µh2 [mb/2, 2mb]
µ = µhc 1.5(5)GeV µ0 1.0GeV
M2 (4.5± 1.0)GeV2 [33] s0 6.0(5)GeV2 [33]
λB 0.35(15)GeV [55]

{σ̂1, σ̂2}
{0.7 , 6.0}

[55](λ2
E/λ

2
H) 0.5(1) [55] {0.0 , π2/6}

(2λ2
E + λ2

H) 0.25(15)GeV2 [55] {−0.7 ,−6.0}

Table 1. Parameters used for the numerical analysis. σ̂1 and σ̂2 are the first two (modified) inverse
logarithmic moments of the leading twist DA with explicit definitions given in (D.12). λE and λH
parameterize the matrix element of the local antiquark-gluon-quark operator (D.8). The quark
masses are in the MS-scheme evaluated at the scale of their MS masses.

in the study are also explicitly given therein. mB∗− (mD∗0) is the mass of the first excited
state of the B(D)-meson. The heavy quark masses mb and mc are given in the MS-scheme
at the scale of their respective (MS) masses. The scale dependence of the strong coupling
αs(µ) as well as the heavy quark masses mb(µ) and mc(µ) is evaluated numerically with
the help of RunDec [79], with the former performed at the four-loop order with five-flavor
ΛQCD corresponding to αs(mZ) = 0.1181. The B-meson decay constant fB is taken from
the Nf = 2 + 1 + 1 Lattice-QCD simulation [80] which takes into account results from
the HPQCD Collaboration [81, 82], the ETM Collaboration [83] and the FNAL/MILC
Collaboration [84] (see [85–88] for more discussions about the QED corrections to the
determination of the decay constant). The two hard scales µh1 and µh2 introduced in
the matching procedure of the hard coefficient function and the B-meson decay constant,
respectively, are varied independently. The effects of their variations, independent or
not, turn out to be minuscule. The factorization scale µ is taken to be the same as the
hard-collinear scale in the range of 1.5± 0.5 GeV.

The numerical values of the hadronic parameters λB , σ̂1,2 , λE,H are customarily given
at the reference scale µ0 = 1 GeV. They are then evolved to the common factorization
scale µ as all other scale-dependent quantities that enter in the final predictions for the
form factors.4 In order to make numerical predictions for the B → D form factors, it
is necessary to have explicit expressions for all the relevant B-meson LCDAs. On the
one hand, the nonperturbative determination of the B-meson LCDA from the method
of QCD sum rules [91] becomes more sensitive to the parton-hadron duality ansatz and
can be validated only for the light-cone separation between the light quark field and the

4In practice, however, the evolution of λB as well as σ̂1,2 are achieved by evolving the leading-twist DA
φB+(ω) whilst the evolution λE and λH are neglected numerically.
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HQET b-quark field of order 1 – 3 GeV−1. On the other hand, the experimental and lattice
constraints on the LCDAs are still far from adequate even in the most innocent case of
λB. We therefore resort to constructing the LCDAs via modeling, the details of which are
collected in appendix D of this work. It is, however, necessary to highlight several guidelines
available through perturbative calculations that the LCDA models must follow. First and
foremost, the models must satisfy the EOMs which relate LCDAs of different twists by
differential equations [37]. For our current accuracy, it is sufficient to take the EOMs at
the tree level. Second, the LCDAs should resemble their asymptotics at sufficiently large
scales dictated by their RGEs. We point out that the second constraint is not as serious
as the first one in the sense that it is not entirely clear what counts as “sufficiently large”
scales. This in principle gives rise to a reasonable amount of model variations allowed at
the reference scale µ0 as suggested with tantalizing evidence from the study of γ∗γ → π

transition [92–96].
We should mention that the key hadronic input λB(µ0) has been also determined from

an updated QCD sum rule analysis [97] invoking further non-local quark condensates in
analogy to ref. [91] and the yielding prediction λB(µ0) = 383± 153MeV is compatible with
the adopted value shown in table 1. Moreover, this fundamental quantity was also recently
extracted by matching the NLO computation of twist-one and twist-two contributions to
B̄u → γ`ν` from the light-cone sum rule method [98] and an alternative SCET analysis [55]
including the subleading power correction estimated with the dispersion technique. The
obtained result λB(µ0) = 360± 110MeV [98] is again in excellent agreement with what we
have employed in our numerical analysis, but with somewhat smaller theory uncertainty
than the corresponding number quoted in table 1. Additional determinations of the inverse
moment λB have been also pursued [31, 33, 40, 72] by matching two distinct versions of the
light-cone QCD sum rules. Taking advantage of the estimated intervals of λB with reduced
uncertainties will indeed be beneficial for pinning down the theory predictions for the partial
decay rates of B → D`ν` as well as for the celebrated CKM matrix element |Vcb|. However,
such update is not expected to bring about the notable impact on the extracted result of
the gold-plated ratio R(D) due to the substantial cancellation of the very non-perturbative
uncertainty. Since we aim at performing the conservative evaluation of the semileptonic
B → D`ν` decay observables, we prefer to take the valus of λB(µ0) with larger uncertainty
as specified in table 1 (see also [99]), also keeping in mind that the robust determination of
this essential parameter is not available at present.

The central values and ranges of the LCSR parametersM2 and s0 are obtained following
the standard procedure outlined in [31] which yields

M2 ≡ n · pωM = (4.5± 1.0) GeV2 , s0 ≡ n · pωs = (6.0± 0.5) GeV2 , (4.1)

in agreement with the choice in refs. [32, 100].

4.2 Numerical results from LCSR

By making use of the numerical inputs listed in table 1 and the LCDA models in appendix D,
we are able to produce theory predictions for the B → D form factors in the large-recoil
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Figure 2. Form factor f+
BD(q2 = 0) dependence on the Borel parameters M2 and s0.

limit. In this subsection, we adopt the simple-exponential model corresponding to taking
{σ̂1, σ̂2} = {0.0, π2/6} as our default choice for the leading-twist LCDAs, which is sufficient
for our subsequent analysis. The explicit expressions for the higher-twist LCDAs, which are
necessary for the evaluation of the higher-power corrections, are then generated accordingly
from the general ansatz presented in appendix D. The uncertainty induced by varying the
values of {σ̂1, σ̂2} will be included for estimating the total uncertainties of the form factors.

As it was elucidated earlier, the application of LCSR requires the introduction of
two (auxiliary) parameters M2 and s0 commonly known as the Borel mass and threshold,
respectively. Ideally, the final predictions of the physical observables should be independent
of the actual values of these parameters, at least within a reasonable interval. In practice,
however, this is normally not the case. Yet, from varying these parameters in a certain
range, one is able to get a handle on the reliability of the LCSR formalism itself. This
is exactly what we would like to demonstrate in figure 2 where it is clear that the effects
of the Borel mass and the threshold parameter on the prediction of B → D form factor
f+
BD(0) are rather small, validating the application of LCSR near q2 = 0.

The dependence of the form factor f+
BD(q2 = 0) on the factorization scale µ provides us

with another error estimate for our theory predictions. Since, as we will see below (figure 4),
the subleading-power contributions are significantly smaller compared to their leading-power
counterpart, it is sufficient for us to look into the scale dependence of the leading-power
contribution only as illustrated in figure 3. Here we can readily observe that the scale depen-
dence of the leading power contribution becomes almost invisible after taking into account
the NLL resummation improvement. This is in agreement with the recent study of the
two-loop evolution of the leading-twist B-meson LCDA [101, 102] where it was demonstrated
that the two-loop effects are minuscule for a variety of B-meson LCDA models.5

Numerically, we find roughly a 20% decrease in the leading-power contribution to
f+
BD(0) at µ = 1.5 GeV with the inclusion of αs correction to the perturbative matching
coefficients, namely, from LL to NLO. With the (partial) NLL resummation improvement,

5Technically speaking, the leading-power contribution to the B → D form factors is induced by the twist-
3 LCDA φ−B , whose two-loop evolution is still unknown. However, it is expected that the Wandzura-Wilczek
contribution is dominating and hence φ−B can be well approximated by its twist-2 part.
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Figure 3. Factorization scale µ dependence of the form factor f+
BD(q2 = 0) at leading power

approximation. An explanation for the nomenclature is in order: “LL”, “NLO”, and “NLL”
correspond to C0

1⊗Φ1, C
1
1⊗Φ0, and C1

2⊗Φ1, respectively, where Cij is the i-loop matching coefficient
including up to j-loop anomalous dimension (scale dependence) whereas Φi denotes the twist-3
LCDA with i-loop evolution improvement. The symbol ⊗ stands for a general convolution integral.

the leading-power contribution then increase by ∼ 3% from the NLO result at the same
factorization scale. While at a small scale µ = 1.0 GeV, the NLL resummation effects
can generate a ∼ 15% enhancement to the NLO form factor. From this observation we
conclude that the NLL resummation completely stabilizes the µ-dependence of the form
factor f+

BD(0), see figure 3. The same holds true for f0
BD(0).

We now proceed to investigate the numerical predictions for each contributing factors
of f+

BD(q2) shown in figure 4. As it was already pointed out in [32], the light-cone OPE
for the correlation function (2.2) is justifiable only at the vicinity of maximal recoil where
the power counting n · p� mc � ΛQCD and mc ∼ O(

√
n · pΛQCD) is valid. Furthermore,

the power-counting analysis implies that the QCD factorization is fully applicable to the
correlation function (2.2) in the entire space-like region of q2. Therefore, we conclude that
the LCSR predictions for the B → D form factors are trustworthy in a modest range of
q2 for which we take q2 ∈ [−3, 2] GeV2 [100] where the lower bound is set to match the
sum rule parameters M2 and s0 adopted in table 1, albeit we have the freedom to go much
deeper into the space-like region. The upper bound, which is in principle only subject to
constraints much higher than 2 GeV2 due to issues of parameterization (see subsection 4.3
for detailed discussions), is somewhat arbitrary. Such a choice is based on our intention of
preserving the small uncertainties of the lattice results which is the determining factor for
the uncertainties in our final predictions of the form factors as well as the ratio R(D). In
other words, we choose to take the upper bound of q2 close to the large-recoil limit so that
the relatively large uncertainties of the LCSR predictions are still competitive compared to
the high precision lattice calculation which still struggles to go beyond the zero-recoil limit,
hence having the two approaches complementing each other.

On the one hand, it is immediately evident from figure 4 that the resummation-improved
leading-power contribution is dominant across the kinematic region q2 ∈ [−3, 2]GeV2. This
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Figure 4. A comparison of different contributors to f+
BD(q2) at different q2. The leading power

contribution is clearly dominant across the full range of q2 depicted in the figure. The explicit
formulas for each contribution {HT,HC,HQE, 3P,LP} are given in eqs. (3.3), (3.15), (3.18), (3.2),
and (2.12), respectively. Similar hierarchies are also observed for f0

BD(q2).

is reassuring as the foundation of any sensible theory predictions requires a hierarchy of clear
power separation. On the other hand, all the subleading-power contributions generated by
the two-particle LCDAs are of the same order with an opposite sign to the leading-power
contribution (black curve). Whereas the three-particle contribution is significantly smaller
(∼ 10%) compared to its two-particle counterpart which can be attributed to its higher
Fock-state nature. This strongly suggests that from a phenomenological point of view, a
complete two-loop matching coefficient function for the leading-power contribution is far
more desirable than going beyond the tree-level for the subleading part.

4.3 BGL fitting with strong unitarity bound

As our LCSR predictions are effective only at the large-recoil limit, we have to rely on
additional information in order to properly access the entire kinematic region of q2. The
Boyd-Grinstein-Lebed (BGL) parameterization [103–105] provides such a framework that
enables us to reliably extend our results beyond the large-recoil limit. Our basic strategy is
to determine the free parameters in the BGL parameterization using our LCSR predictions
in combination with recent lattice estimates valid in the zero-recoil-limit [18, 19]. The fitted
BGL parameterization for the B → D form factors are then used to make predictions for
the entire region of q2 of our interest.

It has not escaped our attention that alternative approaches to the numerical analysis
of the B → D form factors are available, most noticeably the Caprini-Lellouch-Neubert
(CLN) [106] and the Bourrely-Caprini-Lellouch (BCL) [107] parameterization. While the
former exploits the symmetries in HQET to further constrain the unitarity bounds, the
latter was proposed to cure the unphysical behaviors of a finite order truncation of the BGL
parameterization in the kinematic region of |q2| ' (mB +mD)2. On the one hand, as the
quality of the lattice data has become significantly more precise in recent years, higher order
corrections in ΛQCD/mc to the CLN parameterization have to be included, which raises the
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possibility of it being inadequate in incorporating the precision achieved in modern lattice
calculations [57]. Therefore, we will not consider the CLN parameterization in this work.
On the other hand, the BCL parameterization employs a more complicated form making it
less feasible to apply to the strong unitarity bounds. Thus, in order to impose the strong
unitarity bounds to our phenomenological studies without sacrificing the high precision
results from lattice calculations, we will adopt the BGL parameterization hereafter for our
numerical analysis with the premise of keeping |q2| well below the threshold.

The starting point of the BGL parameterization is to map the entire complex plane of
q2 onto a unit disk as follows,

z(q2, t0) =
√
t+ − q2 −

√
t+ − t0√

t+ − q2 +√t+ − t0
, z(q2) ≡ z(q2, t−) =

√
t+ − q2 −

√
t+ − t−√

t+ − q2 +√t+ − t−
, (4.2)

with t± = (m(∗)
B ±m

(∗)
D )2. Here we have tacitly included all possible B and D resonance

states with (∗). t− corresponds to the physical kinematic upper bound of q2 in the B → D

decays. The form factors develop cuts at t+ after analytic continuation of q2 to the entire
complex plane. t0 < t+ is a free parameter determining which point in the complex plane
of q2 is mapped onto the origin of the complex z-plane. It is easy to convince oneself that
|z(q2, t0)| ≤ 1 and |z(q2, t−)| ≤ 1 for arbitrary q2 ∈ C. In the following we will only consider
the case t0 = t− with losing generality.

The two B → D decay form factors are then parametrized as follows

f+
BD(z) = 1

P+(z)φ+(z)

∞∑
n=0

anz
n , f0

BD(z) = 1
P0(z)φ0(z)

∞∑
n=0

bnz
n , (4.3)

where P`(z) and φ`(z) are called Blaschke factors and outer functions, respectively. Assuming
that B → D constitutes the only decay channel, namely neglecting all the excited hadronic
states in the decay process, the coefficients an and bn in eq. (4.3) are then subject to the
weak unitarity bound

∞∑
n=0

a2
n < 1 ,

∞∑
n=0

b2n < 1 . (4.4)

This follows from dispersion relations, analyticity of the form factors, the crossing symmetry,
as well as the quark-hadron duality. For further discussion of the unitarity bounds see [58, 59].
The outer functions, which depend on how the helicity amplitudes enter the form factors,
are given by

φ+(z) = k+
(1 + z)2√1− z

[(1 + r)(1− z) + 2
√
r (1 + z)]5 , k+ ' 12.43, [57]

φ0(z) = k0
(1−z2)

√
1− z

[(1 + r)(1− z) + 2
√
r (1 + z)]4 , k0 ' 10.11 [57] (4.5)

with r = mD/mB. k+ and k0 are calculable perturbatively at regions far away from the
threshold, normally chosen at q2 = 0. The Blaschke factors in eq. (4.3) take the form,

P+(z) =
3∏

P+=1

z − zP+

1− zzP+
, P0(z) =

2∏
P0=1

z − zP0

1− zzP0
, (4.6)
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1− state Mass (GeV) ref. 0+ state Mass (GeV) ref.
Bc(1 3S1) 6.332 [108] Bc(2 3P0) 6.712 [109]
Bc(2 3S1) 6.925 [108, 110] Bc(3 3P0) 7.105 [109]
Bc(3 3D1) 7.007 [111]
Bc(3 3S1) 7.280 [111]

Table 2. Relevant scalar (0+) and vector (1−) Bc masses. Note that the Bc(3 3S1) state is above
the threshold and therefore does not enter the Blaschke factor for our process.

where zP is defined as

zP =

√
t+ −m2

P −
√
t+ − t0√

t+ −m2
P +√t+ − t0

,

with mP denoting the mass of the P -th Bc resonance below the threshold for BD pair
production with the appropriate quantum number assignment of 1− for P+(z) and 0+ for
P0(z). The role of the Blaschke factors is to remove any poles below the threshold from the
form factors rendering the form factors to be analytic for all q2 below the threshold. The
masses of all resonance states entering the Blaschke factors are collected in table 2.

The strong unitarity bound [104] requires multiple decay channels with the correct
quantum numbers to be considered. This also includes channels with higher multiplicity.
The inclusion of additional channels reflects the physical picture more realistically, i.e.,
the intermediate process of the B → D decay should be thought of as a superposition of
the two-particle BD-state with a collection of additional resonances including Bc, which
can pair-produce the BD state, as well as a continuum of states such as BDππ, and etc.
The amplitudes of these extra channels then give rise to additional form factors via the
dispersion relation based on their spin and parity as in the ground state case. For each
form factor in consideration, one adopts the same parametrization as (4.3). As an example
relevant for our current study, we write,

F
(i)
+ = 1

P
(i)
+ (z)φ(i)

+ (z)

∑
n

ainz
n , F

(i)
0 = 1

P
(i)
0 (z)φ(i)

0 (z)

∑
n

binz
n , (4.7)

where F (i)
+ denotes the vector form factor in general whereas F (i)

0 corresponds to the scalar
form factor. Index i labels the helicity of the form factor. Applying the same procedures
that produce eq. (4.4) to each form factor then allows to write a series of bounds,

hi∑
i=0

∞∑
n=0

a2
in ≤ 1 ,

hj∑
j=0

∞∑
n=0

b2jn ≤ 1 , (4.8)

where i, j counts all the helicity states that enter the vector and scalar transition form
factors, respectively. The different form factors can further be related using heavy-quark
symmetry with the possibility of incorporating the effect of heavy quark masses order
by order [57]. For our purpose, we take into account in total 7 vector and 3 scalar form
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q2 [GeV2] −3.0 −2.0 −1.0 0.0 1.0 2.0
f+
BD 0.479(191) 0.502(199) 0.526(208) 0.552(216) 0.581(226) 0.611(235)
f0
BD 0.525(210) 0.534(212) 0.543(214) 0.552(216) 0.562(218) 0.572(220)

Table 3. LCSR predictions of the B → D form factors obtained in this work used in the BGL fit.

factors describing the B(∗)D(∗) states6 [104, 112]. These form factors are generated by Bc
resources below the physical threshold for BD pair production and therefore indispensable
in constraining the BGL parameterization for the B → D factor. In comparison to the
ground state B → D decay, we have 6 (2) additional vector (scalar) form factors. The
strong unitarity bound therefore becomes,

7∑
i=0

∞∑
n=0

a2
in ≤ 1 ,

3∑
j=0

∞∑
n=0

b2jn ≤ 1 . (4.9)

Following ref. [57], we truncate the infinite series at order O(z). Adopting the relevant
numerical values listed in table 2, we find,

34.95a2
0 + 33.25a0a1 + 16.74a2

1 ≤ 1 , 3.76b20 + 2.53b0b1 + 2.07b21 ≤ 1 , (4.10)

where relations between different form factors (labeled by i, j for vector and scalar one
in (4.9) respectively) due to heavy-quark symmetry including 1/mb corrections have been
applied, leaving only four free parameters {a0, a1, b0, b1}.

We are now ready to extract the four parameters from the LCSR predictions of the
B → D form factors. Employing the BGL parameterization to f+

BD(z) and f0
BD(z) with

O(z) approximation, we have,

f+
BD(z) = a0 + a1z

P+(z)φ+(z) , f0
BD(z) = b0 + b1z

P0(z)φ0(z) . (4.11)

Applying eqs. (4.5) and (4.6) to the boundary condition f+
BD(z = 0) = f0

BD(z = 0) provides
an exact relation among the four parameters,

b0 = 4.797a0 + 0.311a1 − 0.065b1 . (4.12)

Finally, we are able to fix the three parameters {a0, a1, b1} by fitting eq. (4.11) to the LCSR
predictions for the form factors in combination with the data obtained from the lattice
QCD calculations [18, 19]. This allows us to access a much wider range of q2. The relevant
data points used for the fitting are given in tables 3 and 4. In table 3, we provide our LCSR
predictions for the form factors in the range of q2 ∈ [−3.0, 2.0] GeV2 with error estimates.
The relevant formulas can be found in eqs. (2.12) and (3.20). In table 4, we collect the
lattice QCD results for the form factors from two collaborations adopted in our BGL fit.
The combined data from both tables are then fed into eqs. (4.11) to extract the parameters
{a0, a1, b1} using (4.12) under the constraint of (4.10).

6Here both B and D can be labeled with or without ∗, hence giving four different combinations in total.
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FNAL/MILC [18] HPQCD [19]
q2 [GeV2] 8.51 10.08 11.66 9.30 10.48 11.46
f+
BD 1.005(12) 1.094(10) 1.199(10) 1.038(39) 1.105(42) 1.167(45)
f0
BD 0.825(9) 0.861(8) 0.903(7) 0.840(37) 0.870(39) 0.897(40)

Table 4. Lattice QCD predictions of the form factors used in the BGL fit.

correlation matrix
value a0 a1 b1

a0 0.0155(1) 1 0.170 0.276
a1 −0.041(3) 1 0.937
b1 −0.206(15) 1

Table 5. Values of BGL parameters extracted from fitting the BGL parameterization against LCSR
and lattice QCD predictions. Correlations between the three parameters are also provided.

The final numerical results are listed in table 5 together with the correlation matrix. It
is fair to say that the three parameters are highly correlated, in particular the correlation
between a1, b1 is close to 100% indicating that the data is highly restrictive, which can
also be concluded from the small uncertainties of the parameters. The values of {a0, a1, b1}
are obtained using χ2-fitting with χ2/d.o.f = 68.32/(24− 3) = 3.25. Apparently, the two
unitariry bounds displayed in (4.10) are not saturated in practice. One should not be
surprised by this observation, since we have not taken into account all the contributing
exclusive channels (for instance Bs → D

(∗)
s , Bc → ηc, Bc → J/ψ, Λb → Λ(∗)

c ) in the
construction of the strong unitarity bounds (4.9) and moreover we have truncated the
infinite series appearing in (4.9) at order O(z) in an attempt to derive the very constraints
presented in (4.10).

The effectiveness of the BGL fitting is demonstrated in figure 5 where the large error-
bars of the LCSR predictions in the interval q2 ∈ [−3, 2] GeV2 are due to the large model
uncertainties. The combined data, however, allows to generate predictions for the form
factors across a large range of q2 ∈ [−3, 12] GeV2 with relatively small errors.

4.4 Semileptonic decay rate and extraction of |Vcb|

One of the major uncertainties for our theory predictions comes from the first inverse
moment λB(1GeV) of the leading-twist LCDA, for which we have adopted the value
obtained from double-radiative B-decay B → γγ [56] with λB(1GeV) = (0.35± 0.15) GeV.
This value is comparable to the previous study based on B-meson leptonic radiative decay
B → γ`ν` [55, 113].

We are now ready to extract the value of R(D) and the CKM matrix element |Vcb|, both
of which play an utmost important role in probing the BSM physics. The former provides a
handle on testing the assumption of lepton universality in the Standard Model, while the
latter gives us hints on physics inaccessible directly to our current particle colliders.
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Figure 5. BGL fitted results of the form factors as functions of q2 (left) and z (right). The red
(blue) points with error bars represent the FNAL/MILC (HPQCD) data whereas the magenta and
green points are LCSR results from this work for f+

BD(q2) and f0
BD(q2), respectively. The magenta

(green) curves correspond to f+
BD(q2) (f0

BD(q2)) obtained by fitting the combined data of LCSR and
lattice predictions. The shaded regions are error bands due to uncertainties of the three parameters
in table 5.

The differential decay rate of B → D`ν` in the rest frame of the B-meson can be
computed as

dΓ(B→D`ν`)
dq2 = η2

EWG2
F |Vcb|2

24π3m2
B

(
1−m

2
`

q2

)2

|~pD|
[(

1+ m2
`

2q2

)
m2
B |~pD|2

∣∣∣f+
BD(q2)

∣∣∣2
+ 3m2

`

8q2 (m2
B−m2

D)2
∣∣∣f0
BD(q2)

∣∣∣2] , (4.13)

where |~pD| =
√
λ
(
m2
B,m

2
D, q

2)/(2mB) with λ(a, b, c) = a2 + b2 + c2− 2ab− 2ac− 2bc is the
magnitude of the three-momentum of the D-meson and the effective coefficient

ηEW = 1 + αem
π

ln
(
mZ

mB

)
' 1.0066 (4.14)

arises from the electroweak correction to the semileptonic b→ c`ν` process [114] at one loop.
It remains important to mention that the dedicated investigation of the low-energy QED

correction to the electroweak penguin B̄ → K̄`+`− has been carried out comprehensively
in [115] (including also interesting discussions on the electromagnetic correction to the
semileptonic B → D`ν` decay) by employing the effective mesonic Lagrangian, which
surpasses the previous study [116] on the same topic in various aspects (see appendix A.2
of ref. [115] for more details). In particular, the logarithmically enhanced QED corrections
proportional to α/(4π) log(m2

b/m
2
` ) to the inclusive B̄ → Xs`

+`− decay distributions have
been addressed intensively in [117–120] in anticipation of the precision measurements at
the Belle II experiment.7 Monte Carlo studies on the actual size of the QED logarithms
due to angular and energetic cuts were carried out in [119, 120], revealing that the cuts
tame the logarithms in the electronic case toward the size of that of the muons. While a

7See appendix A.1.1 of ref. [115] for the further comparison with the exclusive B̄ → K̄`+`− decay.
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Figure 6. The differential decay rates for B → Dµνµ (red curve) and B → Dτντ (blue curve) with
error bands obtained from this work. The black points with error bars are the experimental data for
B → Dµνµ from the Belle collaboration [130].

complete Monte Carlo study along the lines of [119, 120] is beyond the scope of the present
paper, we believe that due to the universality of the collinear bremsstrahlung effect this
type of QED corrections to R(D) will be small.

Moreover, the general analysis presented in [115] tends to indicate that the structure-
independent QED correction to B → D`ν` is not expected to generate exceedingly large
impact in practice. Furthermore, the short-distance electromagnetic effects in the exclusive
B-meson decays have been explored with the QCD×QED factorization technique (or
equivalently the soft-collinear effective theory framework) for B̄q → µ+µ− [86, 87], for the
charmless hadronic two-body B-meson decays [121] (see section 6 of this article on the
conceptual difference when compared with the earlier study of the soft photon effect [122]),
and for the two-body hadronic and semileptonic B-meson decays with heavy-light final
states [123], demanding actually the introduction of light-cone hadronic distribution ampli-
tudes with qualitatively new features [124] in comparison with the conventional quantities
in QCD-only. Additionally, the lattice QCD method has been developed to incorporate the
electromagnetic effects in the exclusive semileptonic decays [85, 125, 126] and in the leptonic
decay processes [127–129]. A complete analysis of the QED correction to the semileptonic
B → D`ν` decay is apparently an important task of its own (see a variety of open issues
discussed in [86, 87, 115]) from both the theoretical and phenomenological aspects and
goes well beyond the scope of our work mainly focusing on the intricate strong interaction
dynamics encoded in the exclusive B → D decay form factors.

In figure 6, we show that our prediction for the differential decay rate of B → Dµνµ is
in good agreement with the Belle results [130]. In addition, we also provide predictions for
the differential decay rate of B → Dτντ .
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[t1,t2] ∆Γµ(t1, t2) (10−12)GeV [t1,t2] ∆Γµ(t1, t2) (10−12)GeV
(GeV2) this work Belle [130] (GeV2) this work Belle [130]

[0.00,0.98] 0.94±0.03 1.01±0.05 [5.71,6.90] 0.57±0.01 0.53±0.03
[0.98,2.16] 1.08±0.03 1.06±0.06 [6.90,8.08] 0.42±0.01 0.41±0.03
[2.16,3.34] 0.96±0.03 0.99±0.05 [8.08,9.26] 0.28±0.00 0.27±0.02
[3.34,4.53] 0.84±0.02 0.85±0.05 [9.26,10.45] 0.14±0.00 0.14±0.01
[4.53,5.71] 0.70±0.02 0.70±0.04 [10.45,11.63] 0.03±0.00 0.02±0.01

Table 6. Theory predictions for B → Dµνµ in different bins compared against the Belle data.

The binned (normalized) partial decay rate of B → D`ν` reads,

∆Γ`(t1, t2) =
∫ t2

t1
dq2 dΓ(B → D`ν`)

dq2
1
|Vcb|2

. (4.15)

In table 6, we collect our predictions for the partial decay rate ∆Γµ at different intervals of
(t1, t2) and compare them with the Belle results [130]. We also predict the total normalized
decay rate of B → Dµνµ in the entire kinematic region of q2 ∈ [m2

µ, (mB − mD)2] =
[0.01, 11.63] GeV2 to be,

∆Γµ(0.01GeV2, 11.63GeV2) = (5.97± 0.16)× 10−12 GeV . (4.16)

By fitting our theoretical predictions of ∆Γµ(t1, t2) to the BarBar and Belle data, we
are able to extract the value of |Vcb|,

|Vcb| =


(
40.2+0.6

−0.5
∣∣
th

+1.4
−1.4

∣∣
exp

)
× 10−3 , [BaBar 2010 [131]](

40.9+0.6
−0.5

∣∣
th

+1.0
−1.0

∣∣
exp

)
× 10−3 , [Belle 2016 [130]]

, (4.17)

where “th” and “exp” denote the theoretical and experimental uncertainties, respectively.
Now we consider ratios of differential decay widths integrated over different q2 intervals,

∆R(t1, t2) = ∆Γτ (t1, t2)
∆Γµ(t1, t2) . (4.18)

In table 7, we collect the partial decay rates of B → Dτντ and the ratio ∆R in different
intervals of q2. Our predictions for ∆R are in good agreement with the previous one [132].

Summing up the total branching ratio of B → Dτντ and B → Dµνµ in the entire kine-
matic region relevant for each channel, namely q2 ∈ [m2

τ , (mB −mD)2] = [3.16, 11.63] GeV2

for B → Dτντ and q2 ∈ [m2
µ, (mB −mD)2] = [0.01, 11.63] GeV2 for B → Dµνµ, we find

the Standard Model prediction for the ratio R(D) which has become the gold standard for
testing lepton universality and hence probing the BSM physics,

R(D) ≡ B(B → Dτντ )
B(B → Dµνµ) = ∆Γτ (m2

τ , (mB −mD)2)
∆Γµ(m2

µ, (mB −mD)2) = 0.302± 0.003 , (4.19)
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[t1,t2] ∆Γτ (t1, t2) (10−12)GeV ∆R(t1, t2)
(GeV2) this work this work [132]

[4.00,4.53] 0.072±0.002 0.199±0.000 0.199±0.001
[4.53,5.07] 0.112±0.003 0.330±0.001 0.330±0.001
[5.07,5.60] 0.139±0.003 0.455±0.001 0.455±0.001
[5.60,6.13] 0.158±0.003 0.571±0.001 0.571±0.002
[6.13,6.67] 0.172±0.004 0.680±0.002 0.680±0.002
[6.67,7.20] 0.173±0.003 0.786±0.002 0.786±0.003
[7.20,7.73] 0.170±0.003 0.892±0.003 0.892±0.003
[7.73,8.27] 0.165±0.003 1.006±0.004 1.006±0.004
[8.27,8.80] 0.150±0.003 1.135±0.004 1.135±0.005
[8.80,9.33] 0.134±0.002 1.293±0.006 1.294±0.006
[9.33,9.86] 0.116±0.002 1.508±0.007 1.513±0.007
[9.86,10.40] 0.096±0.001 1.851±0.010 1.860±0.010
[10.40,11.63] 0.116±0.002 3.150±0.022 −

Table 7. Theory predictions for the partial decay rates of B → Dτντ and for the binned distributions
of ∆R(t1, t2). Our predictions are comparable to [132] albeit with slightly larger error bars in general
due to large uncertainties from LCDAs.

where the branching ratio B is the decay rate normalized to the total B-meson decay
width, which is of course unimportant for computing R(D). Our prediction for R(D)
is in reasonable agreement with the experimental value 0.340(27)(13) [2, 133–137], the
lattice average 0.2934(53) [80], as well as the extracted interval 0.298(6) [138] from the
model-independent global analysis of exclusive hadronic b→ c`ν` processes within theory
uncertainties. In spite of the slightly smaller central values, the resulting predictions of
|Vcb| and R(D) obtained in [38, 39] are compatible with our results. In table 8 we give
an overview of how our numbers compare to those of other recent studies following the
techniques of LCSR, lattice QCD, and HQET.

5 Summary

In this work, we have presented a comprehensive study on the subleading power corrections
to the B → D decay with the B-meson LCDAs providing the nonperturbative information
of the hadronic state. The calculation relies on the LCSR technique to gain access to the
B → D form factors in the large-recoil region by employing the power-counting scheme
n · p ∼ O(mb), |n̄ · p| ∼ O(λ2mb), and mc ∼ O(λmb). The corrections that we consider
are generated by the higher-twist B-meson LCDAs including both two- and three-particle
contributions, by the NLP terms in expanding the charm-quark propagator, and by the
subleading terms in the HQET representation of the bottom-quark field. The applied
techniques that we used to derive the higher-power corrections comprise, amongst others,
the systematic inclusion of higher-twist HQET LCDAs as dictated by power-counting, the
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LCSRa Lattice HQETb This work

|Vcb| × 103
41.3(1.4) [15], 40.6+1.2

−1.3 [15] 39.36(68) [80] 40.2+0.6
−0.5

∣∣
th

+1.4
−1.4

∣∣
BaBar

39.2+3.5
−3.4 [33], 41.4(4.0) [33] 38.40(0.7) [139] 39.3(1.0) [14]

40.3(0.8) [38] 43.0(2.7) [140] 40.9+0.6
−0.5

∣∣
th

+1.0
−1.0

∣∣
Belle

R(D)
0.305+0.022

−0.025 [33] 0.299(11) [18]
0.296(6) [36] 0.300(8) [19] 0.299(3) [14] 0.302(3)
0.297(3) [38] 0.301(6) [141]

aHere we quote the LCSR predictions including the lattice inputs.
bLattice and QCD sum rule inputs are used in combination with HQET constraints.

Table 8. Recent determinations of |Vcb| and R(D) from different techniques.

classical EOM relations between the non-local operators, the diagrammatic factoriztion
approach as well as the dispersion relations. These aspects, together with a non-negligible
amount of bookkeeping, render our calculation non-trivial.

We then proceeded to explore the phenomenological implications of the LCSR by
constructing models for the B-meson LCDAs up to the twist-six level. These models,
inspired by previous studies [55] with extensions to LCDAs beyond twist four, are consistent
with all known constraints by construction. The leading-power contribution was evaluated
at the (partial) NLL level where it was demonstrated that the factorization scale dependence
is negligible. This is consistent with the previous study of the two-loop B-meson LCDA
evolution. We found that the subleading power corrections are minuscule compared to their
leading-power counterparts in the kinematic region where LCSR is applicable. Numerically,
they account for approximately ∼ 20% in total to the theory prediction of the form factors.
This is encouraging as it indicates the presence of a well-established power hierarchy. The
LCSR predictions at the large hadronic recoil are then complemented by the lattice data,
which is valid at the other end of the kinematic spectrum, allowing us to fix the coefficients
in BGL parametrization under the strong unitarity bound with small uncertainties. In this
way, we are able to evaluate the B → D form factors in the entire kinematic region of q2.

Subsequently, the form factors are used to predict the decay rate of B → D`ν`, from
which we have extracted the CKM matrix element |Vcb| in eq. (4.17) from two experimental
data sets, as well as the ratio R(D) = 0.302± 0.003, crucial for testing lepton universality.
In addition, we also provide theory predictions for the physical observables ∆Γτ (t1, t2) and
∆R(t1, t2) in q2 bins.

Let us conclude by mentioning a couple of further directions to be addressed in future
work. First, the perturbative corrections can be extended to two loops at the leading-
power approximation and to one loop for the next-to-leading power contribution. Second,
since the two-loop evolution kernel for the leading-twist LCDA φ+

B(ω, µ) has become
available recently [101], this allows for a complete next-to-leading-logarithmic resummation
to be accomplished for certain decays (e.g., B → γ`ν`) with the resulting two-loop RGE
subsequently solved in the Mellin [102] and Laplace space [142]. For future perspectives of
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the B → D decays in this regard, it is desirable to refine the Wandzura-Wilczek part, which
is the dominating component of the two-particle twist-3 LCDA φ−B(ω, µ), to the NLL level.
Finally, an interesting future study will be to reformulate the subleading-power corrections
in the SCET framework. While this task is technically challenging it certainly deserves a
dedicated further investigation.
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A Conventions

Following the convention established in [143], the B-meson LCDAs are defined in terms of
the renormalized non-local operators composed of an effective heavy quark field hv(0) and
light degrees of freedom with a light-like separation, sandwiched between the vacuum and
the B-meson state |B̄v〉 in the HQET framework [37]

〈0| q̄(x) Γ [x, 0]hv(0) |B̄v〉

= − i2 f̃B(µ)mB

{
Tr
[
γ5ΓP+

] (
Φ+
B + x2G+

B

)
− 1

2 Tr
[
γ5ΓP+/x

] 1
v · x

[(
Φ+
B − Φ−B

)
+ x2(G+

B −G
−
B

)]}
(v · x, µ) , (A.1a)

〈0| q̄(z1n̄) [z1n̄, z2n̄] gsGµν(z2n̄) Γ [z2n̄, 0]hv(0) |B̄v〉

= 1
2 f̃B(µ)mB Tr

{
γ5ΓP+

[
(vµγν − vνγµ)

[
ΨA −ΨV

]
− iσµνΨV − (n̄µvν − n̄νvµ)XA

+ (n̄µγν − n̄νγµ)
[
W + YA

]
− iεµναβn̄αvβγ5X̃A + iεµναβn̄

αγβγ5ỸA

− (n̄µvν − n̄νvµ)/̄nW + (n̄µγν − n̄νγµ)/̄n Z
]}

(z1, z2;µ) , (A.1b)
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where γ5 = iγ0γ1γ2γ3, P+ = 1
2(1 + /v), Γ represents an arbitrary Dirac structure, the

totally antisymmetric Levi-Civita tensor follows ε0123 = 1, f̃B(µ) denotes the B-meson
decay constant in HQET, and

[zn̄, 0] ≡ Pexp
[
ig

∫ 1

0
du n̄µA

µ(uzn̄)
]

(A.2)

is the Wilson line connecting the fundamental fields that ensures gauge invariance. Such
factors are always implied if not shown explicitly. We have expanded the two-particle matrix
element to O(x2) to match our current accuracy where the two-particle LCDAs Φ+

B, Φ−B,
G+
B and G−B are of the twist counting two, three, four and five, respectively. The physical

interpretation of such an expansion in the partonic picture is that the light quark carries
nonvanishing transverse momenta along the light-cone. The momentum space distributions
are defined naturally as

Φ±B(z, µ) =
∫ ∞

0
dω e−iωz φ±B(ω, µ) , (A.3a)

ΨA(z1, z2) =
∫ ∞

0
dω1

∫ ∞
0
dω2 e

−iω1z1−iω2z2 ψA(ω1, ω2) , (A.3b)

and similarly for the other two- and three-particle LCDAs. We adopt the convention to use
upper (lower) case letters for coordinate (momentum) space distributions.

The eight invariant three-particle functions from Lorentz structure decomposition can be
expanded in terms of LCDAs with definite collinear twist. One finds one LCDA of twist three

Φ3 = ΨA −ΨV , (A.4)

three twist-four LCDAs

Φ4 = ΨA + ΨV , Ψ4 = ΨA +XA , Ψ̃4 = ΨV − X̃A , (A.5)

three twist-five LCDAs

Φ̃5 = ΨA + ΨV + 2YA − 2ỸA + 2W ,

Ψ5 = −ΨA +XA − 2YA ,
Ψ̃5 = −ΨV − X̃A + 2ỸA , (A.6)

and one twist-six LCDA [37]

Φ6 = ΨA −ΨV + 2YA + 2W + 2ỸA − 4Z . (A.7)

It has been demonstrated that the one-loop RGEs for the three-particle LCDAs up to twist
four are completely integrable in the large Nc limit [37, 144] thanks to their relations to
certain spin chain models [145].
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B NLO correction to the leading-power contribution

The “effective” DAs, which incorporate the contribution of the one-loop jet function, take
the form [33]

Φeff
+,n(ω′,µ) = αsCF

4π θ(ω′−ωc)
{
rc

[
(1−rc) ln

( 1
rc
−1
)
−1
]
φ+
B(ω′−ωc)

+
∫ ∞

0
dω

[
ω

(ω+ωc)2

(
P ωc
ω′−ω−ωc

−rc
)

+ r2
c

ω+ωc

− 1−rc
ω

θ(ω+ωc−ω′)+ rc
ω−ω′

θ(ω′−ω−ωc)
]
φ+
B(ω)

}
, (B.1)

Φeff
+,n̄(ω′,µ) = αsCF

4π θ(ω′−ωc)
{
mc

[ 1
ω′

[
(1−rc) ln

( 1
rc
−1
)
−1
]
φ+
B(ω′−ωc) (B.2)

+
∫ ∞

0
dω

1
(ω+ωc)2

(
P ω

ω′−ω−ωc
+
(

1+ ωc
ω

)
rc (1−rc)+rc

)
φ+
B(ω)

−
∫ ∞

0
dω θ(ω′−ω−ωc)

ω′−ω−ωc
(ω′−ω)2

φ+
B(ω)
ω

]

+ r

∫ ∞
0

dω

[
r2
c −θ(ω+ωc−ω′)−θ(ω′−ω−ωc)

ω2
c

(ω′−ω)2

]
φ+
B(ω)
ω

}
,

Φeff
−,n(ω′,µ) =−φ−B(ω′−ωc)θ(ω′−ωc) , (B.3)

Φeff
−,n̄(ω′,µ) =−φ−B(ω′−ωc)θ(ω′−ωc)+ αsCF

4π

{
φ−B(ω′−ωc)θ(ω′−ωc)ρ(1)(ω′) (B.4)

+
[
d

dω′
φ−B(ω′−ωc)

]
θ(ω′−ωc)ρ(2)(ω′)+φ−B(0)ρ(3)(ω′)

+
∫ ∞

0
dω

[
ρ(4)(ω,ω′)+ρ(5)(ω,ω′) d

dω
+ ρ(6)(ω,ω′)

ω

(
d

dω
− 1
ω

)]
φ−B(ω)

}
,

where P stands for the principal value and

ρ(1)(ω′) = − ln2 µ2

n · pω′
+ ln(1− rc)

[
2 ln µ2

n · p (ω′ − ωc)
+ 4 ln

( 1
rc
− 1

)
− (1− rc)2

]

− (1 + 2 rc − r2
c ) ln rc + 2 Li2(1− rc)− rc −

π2

2 , (B.5)

ρ(2)(ω′) = 2ωc
[
3 ln µ2

n · pωc
+ 4

]
, (B.6)

ρ(3)(ω′) = 2ωc δ(ωc − ω′)
[
3 ln µ2

n · pωc
+ 4

]
+ 2 θ(ω′ − ωc) θ(ω′)

[
ln(1− rc)− ln2(1− rc)

]
, (B.7)
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ρ(4)(ω, ω′) = θ(ω′ − ωc)
{
P 1
ω′ − ω − ωc

[
−2 ln µ2

n · pω′
+ 4 ln(1− rc)−

(
ω

ω + ωc

)2]

+ 4
[
θ(ω + ωc − ω′)
ω′ − ω − ωc

ln ωc
ω + ωc − ω′

+ θ(ω′ − ω − ωc)
ω′ − ω − ωc

ln ω′ − ω
ω′ − ω − ωc

]
+ P 4 θ(ω + ωc − ω′)

ω − ω′
ln ωc
ω + ωc − ω′

+ 4 θ(ω′ − ω − ωc)
ω − ω′

ln(1− rc)

+
(
rc −

ω

ω + ωc
− 1

)
rc

ω + ωc
+ θ(ω′ − ω − ωc)

ω + ωc − ω′

(ω′ − ω)2

}
, (B.8)

ρ(5)(ω, ω′) = 2 θ(ω′ − ωc)
{
θ(ω′ − ω − ωc)

[
2 ln ω

′ − ω − ωc
ω′ − ωc

ln µ2

n · p (ω′ − ω)

− ln2 ω
′ − ω − ωc

ω′
+ ln ω

′ − ω − ωc
ω′

(
2 ln ω

′ − ω
ω′

+ 1
)]

− 2 θ(ω + ωc − ω′) Li2
(

ω′ − ω
ω′ − ω − ωc

)}
, (B.9)

ρ(6)(ω, ω′) = 2 θ(ω + ωc − ω′) θ(ω′ − ωc)
(
ωc − ω′

)
ln ω + ωc − ω′

ω′ − ωc
, (B.10)

with rc = ωc/ω
′.

The (renormalized) hard coefficient functions C±,n̄(n ·p, µ) and C±,n(n ·p, µ) to one-loop
accuracy were derived in ref. [33] taking the form,

C+,n(n ·p,µ) =C+,n̄ = 1 , C−,n =−αsCF4π

[ 1
r−1

(
1+ r

1−r ln r
)]

,

C−,n̄(n ·p,µ) = 1− αs4π

[
2 ln2 µ

n ·p
+5ln µ

mb
−2Li2

(
1− 1

r

)
− ln2 r+ 2−r

r−1 ln r+ π2

12 +5
]
,

(B.11)

where r = n · p/mb.
The evolution of hard coefficient functions C+,(n,n̄) and C−,n are irrelevant at the one-

loop matching and therefore are not considered. The RGEs governing the scale dependence
of C−,n̄ and the HQET decay constant read [33],

d

d lnµC−,n̄(n · p, µ) =
[
−Γcusp(αs) ln µ

n · p
+ γ(αs)

]
C−,n̄(n · p, µ) ,

d

d lnµ f̃B(µ) = γ̃(αs) f̃B(µ) , (B.12)

where the anomalous dimensions of the hard function

γ(αs) =
∞∑
n=0

(
αs
4π

)n+1
γ(n) , γ̃(αs) =

∞∑
n=0

(
αs
4π

)n+1
γ̃(n) (B.13)

– 32 –



J
H
E
P
0
5
(
2
0
2
2
)
0
2
4

to the two-loop order are as follows [61]

γ(0) = −5CF , γ(1) = CF

[
−1585

18 − 5π2

6 + 34ζ(3) + nl

(
125
27 + π2

3

)]
,

γ̃(0) = 3CF , γ̃(1) = CF

[
127
6 + 14π2

9 − 5
3 nl

]
(B.14)

with nl being the number of light flavors and ζ(n) being the Riemann zeta function. The
cusp anomalous dimension

Γcusp ≡
∞∑
n=0

(
αs
4π

)n+1
Γ(i)

cusp (B.15)

to the three-loop order reads,

Γ(0)
cusp = 4CF , Γ(1)

cusp = CF

[268
3 − 4π2 − 40

9 nl
]
, (B.16)

Γ(2)
cusp = CF

{
1470− 536π2

3 + 44π4

5 + 264ζ3 + nl

[
−1276

9 + 80π2

9 − 208
3 ζ(3)

]
− 16

27n
2
l

}
.

The RGEs can then be solved analytically with the solution

C−,n̄(n · p, µ) = U1(n · p, µh1 , µ)C−,n̄(n · p, µh1) ,
f̃B(µ) = U2(µh2 , µ) f̃B(µh2) (B.17)

with the explicit expressions of the evolution factors U1 and U2 given in [63].

C Next-to-leading power corrections

The B-meson LCDAs contribute to the LCSR for the B → D form factors as shown in
eq. (3.19), via the following functionals

F2,1(φ) = −e−ωc/ωM
∫ ωs−ωc

0
dω e−ω/ωM φ(ω) , (C.1)

F2,2(φ) = e−ωs/ωM φ(ωs − ωc) + e−ωc/ωM
ωM

∫ ωs−ωc

0
dω e−ω/ωM φ(ω) , (C.2)

F3,2(φ) = e−ωs/ωM
∫ ωs−ωc

0
dω

∫ ∞
ωs−ωc−ω

dξ

ξ
φ

(
ωs − ωc − ω

ξ
, ω, ξ

)
+ e−ωc/ωM

ωM

∫ ωs−ωc

0
dω′

∫ ω′

0
dω

∫ ∞
ω′−ω

dξ

ξ
e−ω′/ωM φ

(
ω′ − ω
ξ

, ω, ξ

)
, (C.3)

F2,3(φ) = −1
2 e−ωs/ωM

[
d

dωs
φ(ωs − ωc) + 1

ωM
φ(ωs − ωc)

]
− 1

2
e−ωc/ωM
ω2
M

∫ ωs−ωc

0
dω e−ω/ωM φ(ω) , (C.4)
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F3,3(φ) = 1
2 e−ωs/ωM

{∫ ωs−ωc

0
dω

∫ ∞
ωs−ωc−ω

dξ

ξ

[(
− 1
ξ

d

du
− 1
ωM

)
φ(u, ω, ξ)

]∣∣∣∣
u=ωs−ωc−ω

ξ

−
∫ ∞

0

dξ

ξ
φ(0, ωs − ωc, ξ) +

∫ ωs−ωc

0

dξ

ξ
φ(1, ωs − ωc − ξ, ξ)

}
− 1

2
e−ωc/ωM
ω2
M

∫ ωs−ωc

0
dω′

∫ ω′

0
dω

∫ ∞
ω′−ω

dξ

ξ
e−ω′/ωM φ

(
ω′ − ω
ξ

, ω, ξ

)
, (C.5)

where φ represents a general LCDA with an appropriate particle content entering the
functional Fi,j . Here i and j respectively indicate the number of particles composing φ and
the power in the denominator of the coefficient function accompanying φ, which together
contribute to Πµ (see eq. (C.6)).

It is easy to show that taking ωc → 0 reproduces the corresponding expressions in
ref. [40]. The underlined term can potentially produce power-suppressed contribution
depending on the specific LCDA from which φ(u, ω, ξ) is constructed. More specifically,
the power counting is determined by the asymptotic behavior of the three-particle LCDA
at the small momenta region ω, ξ ∼ 0 dictated by the conformal spins of the fundamental
fields building up the LCDA [37].

More generally, one obtains for the two-particle case,

F2,k(φ2) ≡
∫ ωs

0

dω′

ω′ − n̄ · p
1
π

Imω′

∫ ∞
0

dω
φ2(ω)

(ω′ − ω − ωc + iε)k (C.6)

= 0!
(k − 1)!

∫ ωs

0

dω′

ω′ − n̄ · p

∫ ∞
0

dω φ2(ω) 1
π

Imω′

[
dk−1

dωk−1
1

ω′ − ω − ωc + iε

]

= 0!
(k − 1)!

∫ ωs

0

dω′

ω′ − n̄ · p

∫ ∞
0

dω φ2(ω)
[
(−1) dk−1

dωk−1 δ(ω
′ − ω − ωc)

]

= (−1)k
(k − 1)!

k−1∑
l=1

(l − 1)!
(ωs − n̄ · p)l

φ
(k−l−1)
2 (ωs − ωc) +

∫ ωs−ωc

0
dω

(−1)kφ2(ω)
(ω + ωc − n̄ · p)k

,

where Imzf(z) ≡ Imf(z + i0), and we have used integration-by-parts repeatedly in the last
step and applied ωs > ωc. The three-particle dispersion relation can be written in a similar
fashion,

F3,k(φ3)≡
∫ ωs

0

dω′

ω′−n̄·p
1
π

Imω′

∫ ∞
0

dωdξ

∫ 1

0
du

f(u)φ3(ω,ξ)
(ω′−ω−uξ−ωc+iε)k

= (−1)1 0!
(k−1)!

∫ ∞
0

dωdξφ3(ω,ξ)
∫ 1

0
duf(u)

[
dk−1

dωk−1
c

∫ ωs

0
dω′

δ(ω′−ω−uξ−ωc)
ω′−n̄·p

]

=
k−1∑
l=1

(−1)l+1

(k−1)!
(l−1)!

(ωs−n̄·p)l
dk−l−1

dωk−l−1
c

∫ ωsc

0
dω

∫ ∞
ωsc−ω

dξ

ξ
φ3(ω,ξ)f

(
ωsc−ω
ξ

)

+(−1)k
∫ ωsc

0

dω′

(ω′+ωc−n̄·p)k
∫ ω′

0
dω

∫ ∞
ω′−ω

dξ

ξ
φ3(ω,ξ)f

(
ω′−ω
ξ

)
, (C.7)

where ωsc = ωs − ωc, and f(u) is an arbitrary function regular in u integration.
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D Modeling the B-meson LCDAs

The LCDAs are, however, not independent as they are constrained by the EOMs. At
tree-level in coordinate space, the following identities hold [34, 37],[
z
d

dz
+ 1

]
Φ−B(z) = Φ+

B(z) + 2z2
∫ 1

0
uduΦ3(z, uz) , (D.1a)

2z2G+
B(z) = −

[
z
d

dz
− 1

2 + izΛ̄
]

Φ+
B(z)− 1

2Φ−B(z)− z2
∫ 1

0
ūduΨ4(z, uz) , (D.1b)

2z2G−B(z) = −
[
z
d

dz
− 1

2 + izΛ̄
]

Φ−B(z)− 1
2Φ+

B(z)− z2
∫ 1

0
ūduΨ5(z, uz) , (D.1c)

Φ−B(z) =
(
z
d

dz
+ 1 + 2izΛ̄

)
Φ+
B(z) + 2z2

∫ 1

0
du
[
uΦ4(z, uz) + Ψ4(z, uz)

]
, (D.1d)

For later convenience, we introduce Ĝ−B which plays a similar role as the WW-term in φ−B

G−B(z) = Ĝ−B(z)− 1
2

∫ 1

0
du ūΨ5(z, uz) , (D.2)

satisfying the following condition,

2 z2 Ĝ−B(z) =−
[
z
∂

∂z
− 1

2 + i z Λ̄
]

Φ−B(z)− 1
2 Φ+

B(z) . (D.3)

Further, neglecting systematically contributions of twist-four four-particle operators of the
type q̄GGhv and q̄qq̄hv leads to the following identity due to Lorentz-invariance,

2 d

dz1
z1Φ4(z1, z2) =

(
d

dz2
z2 + 1

) [
Ψ4(z1, z2) + Ψ̃4(z1, z2)

]
. (D.4)

The B-meson LCDAs at the reference scale µ0 (commonly taken to be 1 GeV) can be
systematically constructed [55] in such a way that both the constraints in eqs. (D.1), (D.4),
and the normalization conditions of the LCDAs [37, 143] are satisfied.

φ+
B(ω) = ω F(ω;−1) , φ−WW

B (ω) = F(ω; 0) ,

φ−t3
B (ω) = 1

6 N (λ2
E − λ2

H)
[
− ω2 F(ω;−2) + 4ω F(ω;−1)− 2F(ω; 0)

]
,

φ3(ω1, ω2) = 1
2 N (λ2

E − λ2
H)ω1 ω

2
2 F(ω1 + ω2;−2) ,

ĝ+
B(ω) = 1

4

[
2ω (ω − Λ̄)F(ω; 0) + (3ω − 2Λ̄)F(ω; 1) + 3F(ω; 2)

− 1
6 N (λ2

E − λ2
H)ω2 F(ω; 0)

]
,

ĝ−B(ω) = 1
4

{
(3ω − 2Λ̄)F(ω; 1) + 3F(ω; 2)

+ 1
3 N (λ2

E − λ2
H)ω

[
ω (Λ̄− ω)F(ω;−1)−

(
2 Λ̄− 3

2 ω
)

F(ω; 0)
]}

,

φ4(ω1, ω2) = 1
2 N (λ2

E + λ2
H)ω2

2 F(ω1 + ω2;−1) ,
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ψ4(ω1, ω2) = N λ2
E ω1 ω2 F(ω1 + ω2;−1) , ψ̃4(ω1, ω2) = N λ2

H ω1 ω2 F(ω1 + ω2;−1) ,
φ5(ω1, ω2) = N (λ2

E + λ2
H)ω1 F(ω1 + ω2; 0) , ψ5(ω1, ω2) = −N λ2

E ω2 F(ω1 + ω2; 0) ,
ψ̃5(ω1, ω2) = −N λ2

H ω2 F(ω1 + ω2; 0) ,
φ6(ω1, ω2) = N (λ2

E − λ2
H)F(ω1 + ω2; 1) , (D.5)

where

N = 1
3
β (β + 1)
α (α+ 1)

1
ω2

0
, Λ̄ = 3

2
α

β
ω0 ,

F(ω;n) ≡ ωn−1
0 U(β − α, 2− n− α, ω/ω0) Γ(β)

Γ(α) e
−ω/ω0 , (D.6)

with U(a, b, z) being the hypergeometric U function. Here we have exploited the relationship
between the first moment of the leading-twist LCDA and Λ̄∫ ∞

0
dω ω φ+

B(ω) = 4
3Λ̄ . (D.7)

We follow the procedure of fixing the model parameters by a set of {λB(µ0), σ̂1(µ0), Λ̄(µ0)}
at the reference scale µ0 = 1 GeV. The λE and λH are defined by the matrix element of
local quark-gluon-quark operator,

〈0|q̄(0)gsGµν(0)Γhv(0)|B̄(v)〉 = − i6 f̃B(µ)mBλ
2
H Tr

[
γ5ΓP+σµν

]
(D.8)

− 1
6 f̃B(µ)mB

(
λ2
H − λ2

E

)
Tr
[
γ5ΓP+(vµγν − vνγµ)

]
.

The matrix element can be evaluated using QCD sum rules yielding,

λ2
E = 0.11± 0.06GeV2, λ2

H = 0.18± 0.07GeV2, [143] (D.9)
λ2
E = 0.03± 0.02GeV2, λ2

H = 0.06± 0.03GeV2, [146] (D.10)
λ2
E = 0.01± 0.01GeV2, λ2

H = 0.15± 0.05GeV2, [147] (D.11)

where the last estimate, which has some overlap with the previous ones, has not been fully
incorporated into our current study.

In principle, the model is expected to be valid only at the small momenta region
ω, ω1, ω2 ∼ 0 due to the development of a large momentum tail from the evolution of
LCDAs. For inverse (logarithmic) moments, this does not pose as a major issue as the
tail contribution is suppressed and the inverse (logarithmic) moments are sensitive only to
the small momentum behavior of DA adequately captured by the model. It is, however,
certainly not the case for Λ̄. We, therefore, emphasize that Λ̄ is only taken as an input
parameter not determined from the LCDA models but fixed by physical values. This is a
consequence of the insufficient knowledge regarding the large momentum behaviors of the
LCDAs at the moment. Then the leading-twist LCDA is evolved to the factorization scale
with no reference to the value of Λ̄ any more. In other words, the model satisfies eq. (D.7)
only at µ0 = 1 GeV.
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It is convenient to define the (logarithmic) inverse moments of the leading-twist B-meson
LCDA as follows,

1
λB(µ) =

∫ ∞
0

dω

ω
φ+
B(ω, µ) ,

σ̂n(µ)
λB(µ) =

∫ ∞
0

dω

ω
lnn e

−γEλB(µ)
ω

φ+
B(ω, µ) , (D.12)

which are relatable to the parameters of the model (D.5) via

λB(µ) = α− 1
β − 1 ω0 ,

σ̂1(µ) = ψ(β − 1)− ψ(α− 1) + ln α− 1
β − 1 ,

σ̂2(µ) = σ̂2
1(µ) + ψ′(α− 1)− ψ′(β − 1) + π2

6 (D.13)

with γE and ψ(x) being the Euler-Mascheroni constant and the digamma function, respec-
tively. The scale dependence of these moments at one-loop level read

λB(µ0)
λB(µ) = 1 + αs(µ0)CF

4π ln µ

µ0

[
2− 2 ln µ

µ0
− 4σ1(µ0)

]
,

σ̂1(µ) = σ̂1(µ0) + αs(µ0)CF
4π 4 ln µ

µ0

[
σ̂2

1(µ0)− σ̂2(µ0)
]
. (D.14)

The evolution of the second logarithmic moment σ̂2 is not considered in predicting the form
factors due to its dependence on the higher ≥ 3 logarithmic moment and the expected
small effect.

Another major advantage of introducing the general ansatz in (D.5) is that the LL
resummation (evolution) for the twist-2 and 3 two-particle DAs can be accomplished
analytically. Explicitly, we find [55],

φ+
B(ω, µ) = Uφ(µ, µ0) 1

ωp+1
Γ(β)
Γ(α) G(ω; 0, 2, 1) ,

φ−WW
B (ω, µ) = Uφ(µ, µ0) 1

ωp+1
Γ(β)
Γ(α) G(ω; 0, 1, 1) ,

φ−t3
B (ω, µ) = −1

6 U
t3
φ (µ, µ0)N (λ2

E − λ2
H) ω2

0
ωp+3

Γ(β)
Γ(α)

{
G(ω; 0, 3, 3)

+ (β − α)
[
ω

ω0
G(ω; 0, 2, 2)− β ω

ω0
G(ω; 1, 2, 2)− G(ω; 1, 3, 3)

]}
, (D.15)

where p = Γ(0)
cusp

2β0
ln[αs(µ)/αs(µ0)], the twist-3 two-particle LCDA φ−B(ω, µ) = φ−WW

B (ω, µ) +

φ−t3
B (ω, µ) is a linear combination of the (twist-2) WW term and the genuine twist-3 term,

and

G(ω; l,m, n) ≡ G21
23

(
ω

ω0

∣∣∣ 1,β+l
p+m,α,p+n

)
, (D.16)
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denotes the MeijerG function. The evolution factor Uφ(µ, µ0) and U t3
φ (µ, µ0) reads explicitly

at one-loop order [37, 144],8

Uφ(µ, µ0) = exp
{
−Γ(0)

cusp
4β2

0

( 4π
αs(µ0)

[
ln r − 1 + 1

r

]

− β1
2β0

ln2 r +
(

Γ(1)
cusp

Γ(0)
cusp
− β1
β0

)
[r − 1− ln r]

)} (
e2γEµ0

)Γ(0)
cusp
2β0

ln r
r
γ

(0)
t2

2β0 ,

U t3
φ (µ, µ0) = Uφ(µ, µ0)

∣∣∣∣
γ

(0)
t2 →γ

(0)
t2 +γ(0)

t3

, (D.17)

where r = αs(µ)/αs(µ0), Γ(i)
cusp are the cusp anomalous dimensions at various orders (B.16),

and

γ
(0)
t2 = −2CF , γ

(0)
t3 = 2Nc . (D.18)

Both evolution factors satisfy the boundary condition at the reference scale µ0

Uφ(µ0, µ0) = 1 , U t3
φ (µ0, µ0) = 1 . (D.19)
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